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Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using
several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from
several models. However, there is no study that provides the importance of every peak feature in contributing to a good and
generalizedmodel. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO)
are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study:
(1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the
best combination of all the available features that offers good peak detection and a high classification rate from the results in the
conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and
98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the
proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces
low variance model.

1. Introduction

The peak detection algorithms have significantly been used
on different types of biological signals such as electroocu-
logram (EOG), electrocardiogram (ECG), and electroen-
cephalogram (EEG). EOG signal is generated by human eye.
ECG signal is generated by heart. EEG signal is generated by
brain. The peak detection in the EOG signal has been used
for detecting the eye blink [1, 2]. In the EOG based signal, a
number of electrodes are placed around the eyes. If the eyes
move in vertical direction, positive or negative peak points
will arise. For the ECG signal, peak detection is typically used
to detect the combination ofQ, R, and Swaves or the so-called
QRS complex [3].The QRS complex is a peak model for ECG
signal including Q-valley point, R-peak point, and S-valley

point. Other important peak points in ECG signal are P-peak
point and T-peak point. The detection of the QRS complex is
critical part in numerous ECG signal processing system. The
different pattern of QRS complex will determine the patient
heart syndrome. Additionally, the peak detection for the EEG
signal has been widely used to detect P300 response [4, 5]
and epilepsy response [6]. P300 is a brain response measured
by electrodes covering the parietal lobe in the presence of
visual and auditory stimuli. A brain with chronic disorder
will respond with epilepsy. Therefore, the utilization of peak
detection algorithm for the biological signals is compatible in
this study.

To date, variety approaches of peak detection algorithms
have been proposed. These algorithms can be categorized
into four main approaches based on time domain [7–15],
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frequency domain [16], time-frequency domain [10, 17], and
nonlinear [18]. In time domain approach, the peaks are ana-
lyzed in time. In frequency domain approach, the peaks are
analyzed in frequency. In time-frequency domain approach,
the peaks are analyzed in both time and frequency domain.
In nonlinear approach, some statistical parameters of the
peaks are analyzed. The general framework of peak detection
algorithm usually involves several processes which are signal
preprocessing, peak candidate detection, feature extraction,
and classification. Various signal preprocessing methods
have been employed such as data compression [19], wavelet
transform [6], Kalman filter [20], and Hilbert transform [15].
Two methods for peak candidate detection have been used
which are three point sliding windowmethod [8] and k-point
nonlinear energy operator (k-NEO) method [21]. Various
feature extraction techniques have been proposed which are
model-based [21], wavelet analysis [22], template matching
[23], and power spectra analysis [24]. Several classifiers have
been used, which are rule-based [8, 24], artificial neural
network (ANN) [10, 11, 25, 26], support vector machine
(SVM) [7, 27], and expert system [10]. The highlighted
purposes in designing the framework are to achieve the
highest performance and to reduce the computational time.
Almost all studies in the EEG peak detection literature focus
on the problem of detecting peaks in epileptic EEG signals. A
review of peak detection algorithms that is employed to the
epileptic EEG signal is presented in [28].Thepeak detection is
just a first step in epileptic event detection.Themain goal is to
determine the epileptic spikes not thewhole peaks.Therefore,
for an epileptic event detection system, the epileptic spike
detection performance not the peak detection performance
is the performance of interest.

In time domain approach, fourteen different peak features
are recognized from different peak models [7–10]. The peak
model is a set of peak features that represents a peak by its
amplitude, width, and slope. Most algorithms [7–13, 21] in
time domain approach consider different peak models and
the different styles of framework. The peak model is chosen
based on the experiences of EEG expert. To date, there is
no any peak detection framework that automatically finds
the finest existing peak model. The use of the finest peak
model will give a chance for the algorithm to achieve a good
performance. On the other hand, the chosen peak model is
not necessarily suitable for different types of biological signal.
Moreover, the finest peak model represents somemeaningful
information on the signal to be evaluated. Therefore, the
adaptation of feature selection technique is important in
this study to automatically find the finest peak model. The
utilization of feature selection on peak detection algorithm
will also reduce the computational time.

In this study, feature selection and classifier parame-
ters estimation method based on standard particle swarm
optimization (PSO) and random asynchronous PSO (RA-
PSO) algorithm are employed. The process to find the finest
peak model and classifier parameter estimation is executed
simultaneously. The peak features will be evaluated by a rule-
based classifier. The role of the classifier is to distinguish
between peak point and non-peak point. Rule-based classifier
is employed due to the ability to provide an outstanding

interpretation for the obtained decisions [24]. In addition, the
parameter values are tricky to be estimated manually. A PSO
algorithm is considered to be appropriate for addressing the
problem based on the reason in which the feature selection
is a binary search problem and determination of classifier
parameter is a continuous search problem [29].

1.1. Peak Model in Time Domain Analysis. Peak model is a set
of peak features that represents a peak by its amplitude, width,
and slope. In time domain analysis, fourteen different peak
features are recognized from different peak models [8–10].
The earliest peak model was introduced by Dumpala et al. in
1982 [8]. The peak model comprises four features, which are
(1) the amplitude between the magnitude of peak point and
the magnitude of valley point at the first half wave, (2) the
width between valley point of first half point and valley point
at second half wave, (3) and (4) two slopes between a peak
point and valley point in the first half wave and second half
wave. A similar definition of the peak amplitude and slopes
are also been used in [7, 11, 13].

An additional feature of peak amplitude and two features
of peak width have been introduced by Acir et al. [7, 11].
The additional peak amplitude is the amplitude between the
magnitude of peak point and themagnitude of valley point of
the second half wave. The peak widths are the width between
peak point and valley point of first half wave and second
half wave. The total features that are introduced by Acir et
al. are six features. Acir et al. did not use the width feature
that was introduced by Dumpala et al. A similar definition of
the peak amplitudes, widths, and slopes has also been used in
[21]. In [21], an additional peak feature is added with a set of
features that is introduced in [7, 11], which is the area of peak.
However, the definition of area integration is not presented in
the paper.

In addition, Liu et al. [10] have introduced eleven peak
features. The proposed peak model consists of four ampli-
tudes: (1) the amplitude between themagnitude of peak point
and the magnitude of valley point at the first half wave; (2)
the amplitude between the magnitude of peak point and the
magnitude of valley point of the second half wave; (3) the
amplitude between themagnitude of peak and themagnitude
of turning point at the first half wave, and (4) the amplitude
between themagnitude of peak and themagnitude of turning
point at the second half wave. The turning point is defined
as the point where the slope decreases more than 50% as
compared to the slope of the preceding point.Themodel also
consists of three widths: (1) the width between valley point at
first half point and valley point at second half wave, (2) the
width between turning point at first half wave and turning
point at second half wave, and (3) the width between half
point at first half wave and half point at second half wave.
There are four slopes that are also measured: (1) and (2) two
slopes between a peak point and valley point in the first half
wave and second half wave, (3) and (4) two slopes between
peak point and turning point at first half wave and second
half wave.

Another peak model consists of four features, which has
been proposed by Dingle et al. [9]. The peak amplitude is
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Table 1: Summary of different peak models on different style of framework.

Peak model Type of signal Description of framework

Dumpala et al.
(1982) [8]

Electrical control
activity (ECA)

The theory of maxima and minima using three-point sliding window approach has been
applied to detect a candidate peak. Two flowcharts of peak detection have been proposed. A
predicted peak can be identified if the feature values satisfied the decision threshold values. The
strength and weakness of the proposed approach are described as follows: (1) strength: the
authors claimed that the proposed peak detection algorithm can be used for other biological
signals, (2) weakness: the utilization of peak-to-peak amplitude on the peak model is hard to
distinguish between noise and actual peak. In addition, large variation of peak width in the
signal may drop the classification performance.

Dingle et al.
(1993) [9] Epileptic EEG

Based on the defined peak model, the features are grouped into two: (1) epileptiform transient
parameters and (2) background activity parameters. Two-threshold systems have been
employed to detect a candidate peak or candidate epileptiform transient. Expert system which
considered both spatial and temporal contextual information has been used to reject the
artifacts and classify the transient events. The strength and weakness of the proposed approach
are described as follows: (1) strength: moving average amplitude is good in rejecting false peak
points. The employed features are claimed to offer good performance in the proposed expert
system, (2) weakness: inconsistency of feature slope information as the proposed work claimed
that the proposed framework fails to provide slope information.

Liu et al. (2002)
[10] Epileptic EEG

Wavelet transform has been used to decompose the EEG signal. Based on the decomposed
signals and the defined peak model, seven features are calculated. These features are used as the
input of ANN classifier. Expert system which considered both spatial and temporal contextual
information has been used to reject the artifact. Several heuristic rules have been employed to
distinguish the type of artifact. After all artifacts are recognized and rejected, the decision will
be made to classify the epileptic events. The strength and weakness of the proposed approach
are described as follows: (1) strength: the employed features is claimed to offer good
performance in the proposed expert system, (2) weakness: it considers that almost all the
features may deteriorate the classification performance.

Acir et al. (2005)
[11] Epileptic EEG

A three-stage procedure based on ANN is proposed for the detection of epileptic spikes. The
EEG signal is transformed into time-derivative signal. Several rules have been used to detect a
peak candidate. The features of peak candidate are calculated based on the defined peak model.
These features are fed into two discrete perceptron classifiers to classify into three groups:
definite peak, definite non-peak, and possible/possible non-peak. The peak that belongs in the
third group is going to be further processed by nonlinear classifier. The strength and weakness
of the proposed approach are described as follows: (1) strength: the employed features are
claimed to offer good performance in the proposed system, (2) weakness: inconsistency of
feature slope information as the proposed work claimed that the proposed framework fails to
provide slope information.

Acir (2005) [26] Epileptic EEG

A two-stage procedure based on a modified radial basis function network (RBFN) is proposed
for the detection of epileptic spikes. The EEG signal is transform into time-derivative signal.
Several rules have been used to detect a peak candidate. The features of peak candidate are
calculated based on the defined peak model. These features are fed into discrete perceptron
classifiers to classify into two groups: definite non-peak and peak-like non-peak. The peak that
belongs to the second group requires further process by modified RBFN classifier. The strength
and weakness of the proposed approach are described as follows: (1) strength: the employed
features are claimed to offer good performance in the proposed system, (2) weakness:
inconsistency of feature slope information as the proposed work claimed that the proposed
framework fails to provide slope information.

Liu et al. (2013)
[21] Epileptic EEG

A two-stage procedure is proposed for the detection of epileptic spike. k-NEO has been used to
detect a candidate peak. The peak features are calculated based on the defined peak model.
These features are then used as the input of the AdaBoost classifier. The strength and weakness
of the proposed approach are described as follows: (1) strength: the peak model considers
feature based on peak area, (2) weakness: the definition of area integration is not presented in
the paper.

the difference between the peak point and the floating mean.
The floating mean is the average EEG which is centered
at the peak point that is also called moving average curve
(MAC) [12]. The width is calculated based on the difference
between the valley point at the first half wave and the

valley point at the second half wave. The two slopes are the
slopes between a peak point and valley point in the first
half wave and second half wave. Summary of different peak
models on different style of framework is briefly described
in Table 1. The strength and weakness are also highlighted
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Figure 1: Feature selection and parameters estimation framework for peak detection algorithm.

in Table 1. Generally, the authors claimed that the selected
peak feature offers good classification performance on the
proposed framework. However, the previous works did not
provide the justification on the selected features.

2. Methodology

Figure 1 shows the framework of the proposed techniques
for EEG signal peak detection. There are two phases of the
process which are training and testing phases. The training
phase is firstly run to find the finest peak model and the
optimal decision threshold values. Next, the testing phase is
utilized for unseen EEG signal.

The framework can be divided into four stages: peak
candidate detection, features extraction of peak candidate,
feature selection and parameters estimation, and classifica-
tion. In the first stage, the detection of peak candidates is
performed to differentiate between a peak candidate and a
non-peak candidate. The second stage is the extraction of
peak candidate features. In the third stage, PSO algorithm is
adapted during the training phase for feature selection and
classifier parameters’ estimation. Finally, the peak candidates
are classified between predicted peak and predicted non-peak
at particular locations by rule-based classifier.

2.1. Peak Candidate Detection. The first step to detect peaks
is to find candidate peaks. Consider a discrete-time signal,
𝑥(𝐼), of 𝐿 points. The 𝑖th candidate peak point, PP

𝑖
, as shown

in Figure 2, is identified using three-points sliding window
method [8]. Those three-points are denoted as 𝑥(𝐼 − 1), 𝑥(𝐼),
and 𝑥(𝐼 + 1) for 𝐼 = 1, 2, . . . , 𝐿. A candidate peak point is
identified when 𝑥(PP

𝑖
− 1) < 𝑥(PP

𝑖
) > 𝑥(PP

𝑖
+ 1) and two

associated valley points, VP1
𝑖
and VP2

𝑖
, are in between as

shown in Figure 2. Both valley points exist when 𝑥(VP1
𝑖
−

PPi

HP1i

TP1i

VP1i

VP2i

HP2i

TP2i

MAC (PPi)

Figure 2: Model-based parameters.

1) > 𝑥(VP1
𝑖
) < 𝑥(VP1

𝑖
+ 1) and 𝑥(VP2

𝑖
− 1) > 𝑥(VP2

𝑖
) <

𝑥(VP2
𝑖
+ 1).

2.2. Feature Extraction. Based on the existing peak models,
the total peak features are fourteen. The peak features of a
peak candidate are calculated based on the eightmodel-based
parameters as shown in Figure 2. The parameters consist
of the 𝑖th candidate peak point, PP

𝑖
, the two associated

valley points, VP1
𝑖
and VP2

𝑖
, the half point at first half

wave (HP1
𝑖
), the half point at second half wave (HP2

𝑖
), the

turning point at first half wave (TP1
𝑖
), the turning point

at second half wave (TP2
𝑖
), and the moving average curve

(MAC(PP
𝑖
)). The peak features can be categorized into three

groups; amplitude, width, and slope. There are five different
amplitudes, five different widths, and four different slopes
that can be calculated based on the model-based parameters.
All equations and description of peak features are tabulated
in Table 2. Referring to Table 3, the peak model, which is
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Table 2: Equations and descriptions of peak features.

Peak feature Equation Description

Amplitudes

𝑓
1
=




𝑥(PP
𝑖
) − 𝑥(VP1

𝑖
)





Amplitude between the magnitude of peak and the magnitude of valley at the first
half wave

𝑓
2
=




𝑥(PP
𝑖
) − 𝑥(VP2

𝑖
)





Amplitude between the magnitude of peak and the magnitude of valley of the
second half wave

𝑓
3
=




𝑥(PP
𝑖
) − 𝑥(TP1

𝑖
)





Amplitude between the magnitude of peak and the magnitude of turning point at
the first half wave

𝑓
4
=




𝑥(PP
𝑖
) − 𝑥(TP2

𝑖
)





Amplitude between the magnitude of peak and the magnitude of turning point at
the second half wave

𝑓
5
=




𝑥(PP
𝑖
) −MAC(PP

𝑖
)



 Amplitude between the magnitude of peak and the magnitude of moving average

Widths

𝑓
6
=




VP1
𝑖
− VP2

𝑖




 Width between valley point of first half point and valley point at second half wave

𝑓
7
=




PP
𝑖
− VP1

𝑖




 Width between peak point and valley point at first half wave

𝑓
8
=




PP
𝑖
− VP2

𝑖




 Width between peak point and valley point of second half wave

𝑓
9
=




TP1
𝑖
− TP2

𝑖






Width between turning point at first half wave and turning point at the second half
wave

𝑓
10
=




HP1
𝑖
−HP2

𝑖




 Width between half point of first half wave and half point of second half wave

Slopes

𝑓
11
=










𝑥(PP
𝑖
) − 𝑥(VP1

𝑖
)

PP
𝑖
− VP1

𝑖










Slope between a peak point and valley point at the first half wave

𝑓
12
=










𝑥(PP
𝑖
) − 𝑥(VP2

𝑖
)

PP
𝑖
− VP1

𝑖










Slope between a peak point and valley point at the second half wave

𝑓
13
=










𝑥(PP
𝑖
) − 𝑥(TP1

𝑖
)

PP
𝑖
− TP1

𝑖










The slope between peak point and turning point at the first half wave

𝑓
14
=










𝑥(PP
𝑖
) − 𝑥(TP2

𝑖
)

PP
𝑖
− TP2

𝑖










The slope between peak point and turning point at the second half wave

Table 3: List of different peak models and sets of features.

Peak model Set of features Number of features
Dumpala et al. (1982) [8] 𝑓

1
, 𝑓
6
, 𝑓
11
, 𝑓
12

4
Acir et al. (2005) [7, 11, 26] 𝑓

1
, 𝑓
2
, 𝑓
7
, 𝑓
8
, 𝑓
13
, 𝑓
14

6
Liu et al. (2002) [10] 𝑓

1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
6
, 𝑓
9
, 𝑓
10
, 𝑓
11
, 𝑓
12
, 𝑓
13
, 𝑓
14

11
Dingle et al. (1993) [9] 𝑓

5
, 𝑓
6
, 𝑓
11
, 𝑓
12

4

introduced byDumpala et al. [8] andDingle et al. [9], consists
of four features.The peakmodel, which is specified by Acir et
al. [7, 11], consists of six features. The peak model, which is
specified by Liu et al. [10], consists of eleven features.

2.3. Feature Selection and Parameters Estimation Using Par-
ticle Swarm Optimization. In this stage, the peak features
and classifier parameters are simultaneously found using two
different PSO algorithms which are standard PSO and RA-
PSO algorithms. At the end of this stage, the finest peak
model and the optimal classifier parameters are obtained.The
optimal classifier parameters represent the optimal decision
threshold values.

The PSO algorithm was firstly introduced by Kennedy
and Eberhart in 1995 [30]. The PSO algorithm has been
numerously enhanced fundamentally [31, 32] and applied
in many fields [33–35]. Fundamentally, the PSO algorithm
follows several steps as described in Algorithm 1: (1) initial-
ization, (2) calculation of the fitness function, (3) updating
the personal best (pbest) for each particle and global best
(gbest), (4) updating the particle’s velocity and the particle’s

(1) Initialization
(2) while not stopping criteria do
(3) for each 𝑖th particle in a population do
(4) calculate fitness function
(5) update pbest and gbest
(6) end for
(7) for each particle in a population do
(8) update the 𝑖th particle’s velocity and
(9) update the 𝑖th particle’s position
(10) end for
(11) end while

Algorithm 1: Standard PSO Algorithm.

position, and (5) performing termination based on a stopping
criterion.

In PSO, particles search for the best solution and update
the position information from iteration to iteration. Each
particle in the population consists of a vector position and
vector velocity in 𝑑 dimension. The position of particle 𝑖 at
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(1) Initialization
(2) while not stopping criteria do
(3) while not meet 𝑁 times do
(4) Randomly choose 𝑖th particle in a population
(5) for 𝑖th particle in a population do
(6) calculate fitness function
(7) update pbest and gbest
(8) update the 𝑖th particle’s velocity and
(9) update the 𝑖th particle’s position
(10) end for
(11) end while
(12) end while

Algorithm 2: Random Asynchronous PSO (RA-PSO).

Table 4: Representation of particle position.

Particle Peak features (binary type) Thresholds (continuous type)
1 2 ⋅ ⋅ ⋅ 𝑛𝑓 𝑛𝑓 + 1 𝑛𝑓 + 2 ⋅ ⋅ ⋅ 𝑛𝑓 × 2

𝑠
𝑘

𝑖
𝑥
𝑘

𝑖,1
𝑥
𝑘

𝑖,2
⋅ ⋅ ⋅ 𝑥

𝑘

𝑖,𝑑
𝑥
𝑘

𝑖,1
𝑥
𝑘

𝑖,2
⋅ ⋅ ⋅ 𝑥

𝑘

𝑖,𝐷

iteration 𝑘 is denoted as 𝑠𝑘
𝑖
= {𝑥
𝑘

𝑖,1
, 𝑥
𝑘

𝑖,2
, 𝑥
𝑘

𝑖,3
, . . . , 𝑥

𝑘

𝑖,𝑑
}, while

the velocity of particle 𝑖 at iteration 𝑘 is denoted as V𝑘
𝑖
=

{V𝑘
𝑖,1
, V𝑘
𝑖,2
, V𝑘
𝑖,3
, . . . , V𝑘

𝑖,𝑑
}. The pbest of particle 𝑖 is represented as

𝑝
𝑘

𝑖
= {𝑝
𝑘

𝑖,1
, 𝑝
𝑘

𝑖,2
, 𝑝
𝑘

𝑖,3
, . . . , 𝑝

𝑘

𝑖,𝑑
} and the gbest is denoted as 𝑝𝑘

𝑔
=

{𝑝
𝑘

𝑔,1
, 𝑝
𝑘

𝑔,2
, 𝑝
𝑘

𝑔,3
, . . . , 𝑝

𝑘

𝑔,𝑑
}. To obtain the updated position of a

particle, 𝑠𝑘+1
𝑖

, each particle changes its velocity as the follows:

V𝑘+1
𝑖
= 𝜔V𝑘
𝑖
+ 𝑐
1
𝑟
1
(𝑝
𝑘

𝑖
− 𝑥
𝑘

𝑖
) + 𝑐
2
𝑟
2
(𝑝
𝑘

𝑔
− 𝑥
𝑘

𝑖
) , (1)

where 𝑐
1
is a cognitive coefficient, 𝑐

2
is a social coefficient, 𝑟

1

and 𝑟
2
are random values [0, 1], and 𝜔 is a decrease inertial

weight [36, 37] calculated as follows:

𝜔 = 𝜔max − (
𝜔max − 𝜔min
𝑘max

) × 𝑘, (2)

where 𝜔max and 𝜔min denote the maximum and minimum
values of inertia weight, respectively, and 𝑘max is the maxi-
mum iteration. Then, the particle’s position is updated based
on (3). Note that this equation is only valid for continuous
version of PSO algorithm:

𝑠
𝑘+1

𝑖
= 𝑠
𝑘

𝑖
+ V𝑘+1
𝑖
. (3)

For a binary version of PSO [38], the particle position is
updated based on the following equation:

𝑇 (V𝑘+1
𝑖
) =






tanh (V𝑘+1

𝑖
)






, (4)

𝑠
𝑘+1

𝑖
= {

(𝑠
𝑘

𝑖
)

−1

if rand < 𝑇 (V𝑘+1
𝑖
)

𝑠
𝑘

𝑖
rand ≥ 𝑇 (V𝑘+1

𝑖
) .

(5)

Equation (4) is a transfer function which is the main part
of the binary version. Several studies have proven that this
transfer function significantly improves the performance of

the standard binary PSO. Equation (5) is used to update the
particle position according to the given rules, where 𝑠𝑘

𝑖
and

V𝑘
𝑖
represent the vector position and velocity of 𝑖th particle at

iteration 𝑘 and (𝑠𝑘
𝑖
)

−1

is the complement of 𝑠𝑘
𝑖
. The particle

position maintains the current position when the velocity is
lower than random value and its complement the position
when the velocity is greater than random value. This method
has been introduced by Mirjalili and Lewis (2013) that is also
named as v-shaped transfer function [39].

Synchronous update in standard PSO algorithm indicates
that all particles move to their new position after all particles
are evaluated, as described in Algorithm 1. However, in RA-
PSO [40], a particle immediately updates its position after
it is evaluated without the need to wait until the evaluation
of all particles is completed. Moreover, an 𝑖th particle in a
population is randomly chosen with a total 𝑁 times before
𝑖th particle is evaluated. 𝑁 is the total number of particles.
Some particles might be chosen more than once while some
particles might not be chosen at all. The RA-PSO algorithm
is described in Algorithm 2.

To perform the feature selection and parameters esti-
mation simultaneously, both versions of PSO algorithm are
employed to the standard PSO and RA-PSO algorithms.
Table 4 illustrates the representation of particle position. The
𝑖th particle at iteration 𝑘, 𝑠𝑘

𝑖
, in PSO represents two types

of dimensions which are binary and continuous type of
dimension [29], 𝑠𝑘

𝑖
= {𝑥

𝑘

𝑖,1
, 𝑥
𝑘

𝑖,2
, . . . , 𝑥

𝑘

𝑖,𝑑
, 𝑥
𝑘

𝑖,1
, 𝑥
𝑘

𝑖,2
, . . . , 𝑥

𝑘

𝑖,𝐷
}.

The 𝑑 = 1, 2, 3, . . . , 𝑛𝑓 is a 𝑑th dimension of binary type, and
the𝐷 = 𝑛𝑓 + 1, 𝑛𝑓 + 2, 𝑛𝑓 + 3, . . . , 𝑛𝑓 × 2 is a𝐷th dimension
of continuous type. 𝑛𝑓 is the total number of peak features.
The particle dimension is a two times number of features.The
number of thresholds is equal of the number of features.

In the initialization stage of PSO algorithm, some of the
parameters are initialized: (1) the initial PSO parameters and
(2) the initial particle position. The initial PSO parameters
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consist of the maximum inertia weight, 𝜔max, the minimum
inertia weight, 𝜔min, the velocity clamping, Vmax the velocity
vector for each particle, the pbest score for each particle, gbest
score, the cognitive component, 𝑐

1
, and the social component,

𝑐
2
. The random values, 𝑟

1
and 𝑟
2
, are randomly distributed

values from 0 to 1. All particles are randomly placed within
the search space.

For the calculation of fitness function, geometric mean
(Gmean) is employed. The Gmean is calculated as follows:

TPR = TP
TP + FN

,

TNR = TN
TN + FP

,

Gmean = √TPR × TNR,

(6)

where true peak (TP) is a correctly detected peak point, true
non-peak (TN) is a correctly detected non-peak point, false
peak (FP) is a wrongly detected the non-peak point, false
non-peak (FN) is a wrongly detected peak point, TPR is a true
peak rate, and TNR is a true non-peak rate.

2.4. Rule-Based Classifier. A rule-based classifier is employed
to distinguish whether the candidate peak is a true peak or
true non-peak from the extracted features. Each feature has
a corresponding threshold value in the classification process.
Given a set of features, a true peak only can be identified if
all the feature values are greater than or equal to the decision
threshold values. Otherwise, the candidate peak belongs to
true non-peak. The form of the rule is

IF 𝑓
1
≥ th
1
AND 𝑓

2
≥ th
2
AND . . .AND

𝑓
𝑀
≥ th
𝑁

THEN Candidate Peak is a True Peak,
(7)

where 𝑓
𝑖
is denoted as a one of sixteen peak features, th

𝑖
is

denoted as one of the decision threshold values of this peak
feature, and true peak is predicted peak at a particular peak
point location.

3. Experimental Setup

In this section, two experiments are conducted for peak
detection of EEG signal. For first experiment, the framework
is executed without feature selection. For second experiment,
the experiment is executed with feature selection. The exper-
imental protocols are discussed in the next subsection. The
training and testing EEG signal are prepared to evaluate the
performance of the proposed framework. Then, the results
are discussed and analyzed.

Each experiment is conducted in 10 independent runs.
For each run, 30 particles are used to perform feature
selection and parameters estimation. For each particle, the
total number of dimensions is depending on the number of
features in a feature set. The maximum iteration was set to
1000. For the initial value of PSO parameters, the maximum
inertia weight, 𝜔max, is 0.9 and the minimum inertia weight,
𝜔min, is 0.4. The cognitive component, 𝑐

1
, and the social

Table 5: Parameters setting of standard PSO and RA-PSO algo-
rithms.

Initial PSO parameters
Parameters Value
Decrease inertia weight, 𝜔 0.9∼0.4
Cognitive component, 𝑐

1
2

Social component, 𝑐
2

2
Random value, 𝑟

1
and 𝑟
2

Random number [0, 1]
Velocity vector for each particle 0
Initial pbest score for each particle 0
Initial gbest score 0
Range of search space for 𝑛𝑓 + 1 to 𝑛𝑓 + 5 [0 30]

Range of search space for 𝑛𝑓 + 6 to 𝑛𝑓 + 12 [0 781.25]

Range of search space for 𝑛𝑓 + 13 to 𝑛𝑓 × 2 [0 24.16]

component, 𝑐
2
, are set to 2. These values are proposed by

Shi and Eberhart in 1999 [41]. The random values, 𝑟
1
and

𝑟
2
, are randomly distributed values from 0 to 1. The velocity

clamping, Vmax, for binary version is set to 6 [39].The velocity
vector for each particle, the pbest score for each particle, and
gbest score is set to 0.The parameters setting of standard PSO
and RA-PSO algorithms are tabulated in Table 5.

3.1. Experimental Protocols. This study uses the eye move-
ment EEG signal as a case study to evaluate the proposed
framework.The observation of the eyemovement EEG signal
indicates that the most observable signal pattern is the peak
point which signifies the brain response on eye movements.
The known peak point locations through the response of
the brain can be translated into an output, for example,
wheelchair movement.

The experimental protocol to acquire this EEG signal
was reviewed and approved by the Medical Ethic Committee
(MEC) in theUniversity ofMalayaMedical Centre (UMMC).
The subject gave a written consent prior to the data collection
session.This EEG signal was acquired in the Applied Control
and Robotic (ACR) Laboratory, Department of Electrical
Engineering, Faculty of Engineering, University of Malaya,
Malaysia. A healthy subject was involved voluntarily in this
data collection session who is a postgraduate student in the
Faculty of Engineering.

The EEG signal recording was conducted using the
g.MOBIlab portable signal acquisition system. The EEG
signal was recorded from C4 channel. The EEG signal of
channel CZ was used as a reference. The ground electrode
was located on the forehead. The electrode was placed using
the 10–20 international electrode placement system. The
sampling frequency was set to 256Hz.

Before the session begins, the subject was advised to get
good rest. Thus, he can give full focus during the session.
The subject was also advised to wash his hair. During the
data collection session, the subject was required to be ready
within 0 to 4 seconds for waiting for an external cue. The cue
is a command for a subject to move their eyes to the right
position. Within the standby time, the subject is required not
to move their eyes into a frontal position.
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Figure 3: Filtered EEG signal.

Table 6: Signal specifications.

Specification Channel C4
Total sampling point 10240
Total length signal (second) 40
Number of peak points in the signal 40
Sampling frequency (Hz) 256

When the time is exactly 5 seconds, the external cue
appears on the screen monitor. The instruction allows the
subject to move back their eyes in a frontal position. The
external cue appears for 40 times. The total length of EEG
recording is 40 seconds. As a cleanliness procedure, the
electrodes and head-cap that are used in the session were
washed. The filtered EEG signal is shown in Figure 3. Forty
locations of definite peak points are highlighted in the red
circle. The next process is to prepare the training and testing
data.

From the data collection, 40 definite peak point locations
have been identified by EEG expert. In 40-second signal there
are 10240 sampling points, 𝑥(𝐼).There are only 40 peak points
and the remaining of 10200 sampling points are the non-
peak points. For preparing the training and testing signal, the
training signal is selected from 1 to 5120 sampling pointswhile
the remaining EEG signal is used for testing signal.The signal
specification is summarized in Table 6.

4. Results and Discussions

To evaluate the proposed framework for training and testing
phase, four different measures are used including the average
Gmean, themaximumGmean, theminimumGmean, and the
standard deviation (STDEV).

4.1. Results of Peak Detection Algorithm without Feature
Selection. Four peak models are employed for evaluating
the peak models performance in the proposed framework.
The training and testing performance based on those four

different measures for each model is shown in Table 7. The
standard PSO algorithm is used to find the optimal threshold
values for each peak model. The obtained results for each
peak model are compared with the results of peak detection
algorithm and the feature selection framework based on
standard PSO. Notably, in this section, only standard PSO is
considered in the peak detection algorithm without feature
selection framework.

Referring to Table 7, the training performance for aver-
age, maximum, minimum, and STDEV is 84.01%, 89.15%,
80.58%, and 4.43% for Dumpala et al.’s peak model; 74.4%,
80.59%, 67.08%, and 3.71% for Acir et al.’s peak model; and
90.98%, 94.76%, 83.66%, and 5.51% for Dingle et al.’s peak
model, respectively. The testing performance for average,
maximum, minimum, and STDEV is 81.22%, 91.83%, 74.15%,
and 9.13% for Dumpala et al.’s peak model; 68.59%, 77.43%,
54.77%, and 6.97% for Acir et al.’s peak model; and 88.78%,
94.75%, 77.44%, and 7.98% for Dingle et al.’s peak model,
respectively.

Overall, the average performance of the training phase for
Dumpala et al.’s peakmodel, Acir et al.’s peakmodel, andDin-
gle et al.’s peakmodel is greater than the average performance
of their testing phase. However, for the peakmodel, Liu et al.’s
peak model, will give zero percent performance for training
and testing phase. This result indicates the limitation of rule-
based classifier when dealing with both feature sets. During
the training process on the feature sets, the particles in the
PSO algorithm do not meet the optimum decision threshold
values and the particlesmight also be trapped at local optima.
Based on the preceding rule, a true peak only can be identified
if all the feature values are greater than or equal to the decision
threshold values. So, if one of the feature values does not
satisfy the decision threshold value, the classifier will decide
the peak candidate as a non-peak point. When this happens
to all peak candidates, the TP is equal to zero.Gmeanwill give
zero percent performance even if TN is equal to some values.
The end results indicate the employment of the presented rule
is only valid for Dumpala et al.’s peak model, Acir et al.’s peak
model, and Dingle et al.’s peak model.

Compared to the test average performance of the peak
models, the highest test performance is obtained by Dingle et
al.’s peakmodel, which is 88.78%, then follows by Dumpala et
al.’s peak model, which is 81.22%. The worst test performance
is obtained by Acir et al.’s peak model, which is 68.59%. It
can be concluded: from the findings of experimental results,
the finest peak model for the filtered EEG signal is Dingle et
al.’s peak model, and the worst peak model for the filtered
EEG signal is Acir et al.’s peak model. True peak rate and
true non-peak rate of test performance are shown in Table 8.
It can be concluded that, from the finding experimental
results, the chosen peakmodels limit the designed framework
to obtain the best accuracy. Therefore, the feature selection
technique using standard PSO is employed into the designed
framework.

4.2. Results of PeakDetectionAlgorithmwith Feature Selection.
The results of peak detection algorithmwith feature selection
are categorized into two subsections which are the results of
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Table 7: Training and testing performance of peak detection for each peak model (without feature selection).

Peak model Training (%) Testing (%)
Average Max Min STDEV Average Max Min STDEV

Dumpala et al. (1982) [8] 84.01 89.15 80.58 4.43 81.22 91.83 74.15 9.13
Acir et al. (2005) [7, 11, 26] 74.4 80.59 67.08 3.71 68.59worst 77.43 54.77 6.97
Liu et al. (2002) [10] 0 0 0 0 0 0 0 0
Dingle et al. (1993) [9] 90.98 94.76 83.66 5.1 88.78best 94.75 77.44 7.98

Table 8: TPR and TNR test results for EEG signal (without feature
selection).

Peak model TPR (%) TNR (%)
Dumpala et al. (1982) [8] 65.0 99.7
Acir et al. (2005) [7, 11, 26] 50.0 99.9
Liu et al. (2002) [10] 0.0 0.0
Dingle et al. (1993) [9] 80.0 99.3

feature selection using standard PSO and the results of feature
selection using RA-PSO. Also, the results from the two PSO
algorithms in the proposed framework are discussed.

4.2.1. Feature Selection Using Standard PSO. The feature sets
of 10 runs using the standard PSO algorithm are shown
in Table 9. The result shows the variety of the optimal
combination of features that give the higher classification
performance, mostly higher than 99.69%. The maximum
training accuracy is 99.98%.Themost significant peak feature
is the feature 𝑓

5
because all the 10 runs appear as a selected

feature by PSO. Feature 𝑓
5
is the amplitude that is calculated

from the difference between peak points (PP) and moving
average curve (MAC). Another most significant feature is
feature 𝑓

2
, which is the calculated amplitude between a peak

point and valley point at the second haft wave. The feature
𝑓
6
is chosen 4 times. The feature 𝑓

6
is chosen 4 times. The

features 𝑓
4
and 𝑓

9
are chosen 2 times. The feature 𝑓

10
is only

selected at 9th run.
Based on the results in Table 9, the combination of peak

features (𝑓
2
, 𝑓
5
, and 𝑓

6
) appears 4 times, the combination

of peak features (𝑓
2
, 𝑓
5
, and 𝑓

9
) appears 2 times, and the

combination of peak features (𝑓
2
and 𝑓

5
) appears 2 times.

Therefore, there are 3 optimal combinations of features that
can be chosen.

Table 10 has the optimal threshold values for the optimal
combination of the features.The threshold values are selected
based on the selected peak features that are highlighted in the
table.

The average of training and testing results of 10 runs using
standard PSO algorithm is tabulated in Table 11.The results of
standard PSO show the average training accuracy is 99.91%.
The maximum training accuracy is 99.98%. The minimum
training accuracy is 99.69%, and the standard deviation is
8.07%. On the other hand, the testing accuracy is 93.73%.The
maximum testing accuracy is 99.92%. The minimum testing
accuracy is 77.41%.

In terms of peak and the non-peak rate (TP and TN) for
training results, the classifier accurately predicted all 20 peak
points and 5113 non-peak points. The results also show that
the classifiermisclassified 27 non-peak points.Themaximum
of the true peak point is 20 and true non-peak point is 5118.
The minimum of true peak point is 20, and true non-peak
point is 5109.

For testing results, the classifier accurately predicted 18
peak points and 5110 non-peak points. The maximum of the
true peak point is 20 and true non-peak point is 5114. The
minimum of true peak point is 12 and true non-peak point is
5106. In general, the average testing result that corresponds
to the selected peak features using the proposed feature
selection framework is greater than the average testing result
of Dingle’s peak model which is 93.73% and 88.78%. The
feature set of the Dingle’s peak model is 𝑓

5
, 𝑓
6
, 𝑓
11
, and 𝑓

12

while the feature set that gives a higher training performance
in this experiment is 𝑓

2
and 𝑓

5
.

However, the proposed framework based on standard
PSO produces slightly high variance model as it measures
from the STDEV index. The STDEV is evaluated for mea-
suring the algorithm consistency where lowest STDEV value
indicates a good generalization algorithm. Based on the
results of the STDEV in Table 13, the STDEV values of
the standard PSO are 8.07% and 7.18% for training and
testing, respectively. This results show that the high standard
deviation of the accuracy is recorded between maximum
and minimum of classification rate. The experimental results
are reasonable due to the limitation of the standard PSO
algorithm.

4.2.2. Feature Selection Using RA-PSO. Table 12 shows the
feature selection results of 10 runs based on the RA-PSO
algorithm. The feature set was highlighted of each run. The
threshold values for all selected features are also given in
Table 13.The highestGmean value of training phase is 99.91%.
The significant peak features are𝑓

5
and𝑓
8
.The corresponding

threshold values are 9.20 and 4. Note that feature 𝑓
5
is the

amplitude that is calculated from the difference between peak
points (PP) andmoving average curve (MAC). Another most
significant feature is feature 𝑓

8
, which is the width between

peak point and valley point of second half wave. The features
𝑓
2
, 𝑓
4
, and 𝑓

8
are chosen 3 times. The feature 𝑓

12
is only

selected at second run.
Three similar results were obtained out of ten runs. Other

significant feature sets that are obtained in this result are the
combination of peak features (𝑓

2
and 𝑓

5
) and (𝑓

4
and 𝑓

5
).

These feature sets also appear 3 times.
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Table 9: Training results: the feature sets of 10 runs using standard PSO.

Run
Peak features

Amplitudes Widths Slopes Gmean (%)
𝑓
1
𝑓
2
𝑓
3
𝑓
4
𝑓
5
𝑓
6
𝑓
7
𝑓
8
𝑓
9
𝑓
10
𝑓
11
𝑓
12
𝑓
13
-𝑓
14

#1 0 1 0 0 1 0 0 0 1 0 0 0 0 99.89
#2 0 0 0 1 1 0 0 0 0 0 0 0 0 99.91
#3 0 1 0 0 1 0 0 0 1 0 0 0 0 99.69
#4 0 1 0 0 1 1 0 0 0 0 0 0 0 99.92
#5 0 1 0 0 1 1 0 0 0 0 0 0 0 99.91
#6 0 1 0 0 1 0 0 0 0 0 0 0 0 99.95
#7 0 1 0 0 1 1 0 0 0 0 0 0 0 99.94
#8 0 1 0 0 1 1 0 0 0 0 0 0 0 99.91
#9 0 0 0 1 1 0 0 0 0 1 0 0 0 99.96
#10 0 1 0 0 1 0 0 0 0 0 0 0 0 99.98

Table 10: Training results: the optimal decision threshold values of 10 runs using standard PSO.

Run Optimal threshold values
th1 th2 th3 th4 th5 th6 th7 th8 th9 th10 th11 th12 th13-th14

#1 — 0.40 — — 9.07 — — — 9 — — — —
#2 — — — 0.27 9.20 — — — — — — — —
#3 — 1.24 — — 9.27 — — — 17 — — — —
#4 — 0.37 — — 8.93 12 — — — — — — —
#5 — 0.43 — — 9.18 12 — — — — — — —
#6 — 1.25 — — 11.34 — — — — — — — —
#7 — 0.93 — — 9.07 11 — — — — — — —
#8 — 0.38 — — 9.10 8 — — — — — — —
#9 — — — 0.43 9.13 — — — — 8 — — —
#10 — 0.90 — — 10.07 — — — — — — — —

Table 11: Average training and testing results of 10 runs with feature selection using standard PSO.

Algorithm Results Training Testing
Gmean (%) TN FP TP FN Gmean (%) TN FP TP FN

Standard PSO

AVG 99.91 5113 27 20 0 93.73 5110 30 18 2
MAX 99.98 5118 22 20 0 99.92 5114 26 20 0
MIN 99.69 5109 31 20 0 77.41 5106 34 12 8

STDEV 8.07 7.18

Table 12: Training results: the feature sets of 10 runs using RA-PSO.

RA-PSO Peak features
Amplitudes Widths Slopes Gmean (%)

Run 𝑓
1
𝑓
2
𝑓
3
𝑓
4
𝑓
5
𝑓
6
𝑓
7
𝑓
8
𝑓
9
𝑓
10
𝑓
11
𝑓
12
𝑓
13
-𝑓
14

#1 0 0 0 0 1 0 0 1 0 0 0 0 0 99.91
#2 0 0 0 0 1 0 0 0 0 0 0 1 0 99.87
#3 0 0 0 1 1 0 0 0 0 0 0 0 0 99.90
#4 0 0 0 1 1 0 0 0 0 0 0 0 0 99.90
#5 0 0 0 0 1 0 0 1 0 0 0 0 0 99.91
#6 0 1 0 0 1 0 0 0 0 0 0 0 0 99.90
#7 0 1 0 0 1 0 0 0 0 0 0 0 0 99.90
#8 0 0 0 1 1 0 0 0 0 0 0 0 0 99.90
#9 0 1 0 0 1 0 0 0 0 0 0 0 0 99.90
#10 0 0 0 0 1 0 0 1 0 0 0 0 0 99.91

AVERAGE Gmean 99.90
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Table 13: Training results: the optimal decision threshold values of 10 runs using RA-PSO.

Run Optimal threshold values using RA-PSO
th1 th2 th3 th4 th5 th6 th7 th8 th9 th10 th11 th12 th13-th14

#1 — — — — 9.20 — — 4 — — — — —
#2 — — — — 9.21 — — — — — — 0.6 —
#3 — — — 0.38 9.21 — — — — — — — —
#4 — — — 0.22 9.20 — — — — — — — —
#5 — — — — 9.20 — — 4 — — — — —
#6 — 0.36 — — 9.04 — — — — — — — —
#7 — 0.39 — — 9.22 — — — — — — — —
#8 — — — 0.25 9.20 — — — — — — — —
#9 — 0.27 — — 9.19 — — — — — — — —
#10 — — — — 9.20 — — 4 — — — — —

Table 14: Average training and testing results of 10 runs with feature selection using RA-PSO.

Algorithm Results Training Testing
Gmean (%) TN FP TP FN Gmean (%) TN FP TP FN

RA-PSO

AVG 99.90 5110 30 20 0 98.59 5106 34 19 1
MAX 99.91 5111 29 20 0 99.86 5107 33 20 0
MIN 99.87 5107 33 20 0 97.33 5103 37 19 1

STDEV 1.15 1.33

Table 14 shows the average training and testing results of
10 runs with feature selection using RA-PSO algorithm. The
averageGmean value of the RA-PSO algorithm is 99.90% and
98.59% for training and testing, respectively. The maximum
Gmean value of the RA-PSO algorithm is 99.91% and 99.86%
for training and testing, respectively. The minimum Gmean
value of the RA-PSO algorithm is 99.87% and 97.33% for
training and testing, respectively.

In terms of peak and the non-peak rate (TP and TN) for
training results, the classifier accurately predicted all 20 peak
points and 5110 non-peak points. The results also show that
the classifiermisclassified 30 non-peak points.Themaximum
of the true peak point is 20 and true non-peak point is 5111.
The minimum of true peak point is 20 and true non-peak
point is 5107.

For testing results, the classifier accurately predicted 19
peak points and 5106 non-peak points. The maximum of the
true peak point is 20 and true non-peak point is 5107. The
minimum of true peak point is 19 and true non-peak point is
5103.

As compared to the framework, using standard PSO, RA-
PSO is found to offer lower variance model. The recorded
STDEV values of the RA-PSO are 1.15% and 1.33% for training
and testing, respectively. Therefore, the RA-PSO may offer a
reliable and reasonable model as compared to standard PSO
with consistent classification rate.

5. Conclusions

In this study, the framework of feature selection and param-
eters estimation is proposed for EEG signal peak detection
algorithm. The proposed framework involves peak candidate

detection, feature extraction, feature selection, and classifica-
tion. The framework is developed based on PSO algorithm
and a rule-based classifier. In general, the binary PSO based
algorithm was utilized for selecting the peak features while
the continuous PSO based algorithm was utilized for opti-
mizing the classifier parameters. Two PSO based algorithms
are employed in the proposed framework: (1) standard PSO
and (2) RA-PSO. Fourteen peak features were employed
in this study. All these peak features were taken from the
existing peak models in the time domain approach. The
available peak features are then automatically selected in
combinatorial form using the proposed framework. Based on
the experiment results of peak detection algorithm without
feature selection, the best peak model is Dingle et al.’s [9]
peak model where the highest performance obtained is
88.78%. Meanwhile, the experimental results with feature
selection show the proposed framework with standard PSO
can further improve the Dingle et al.’s model. However, the
recorded results are inconsistent due to high variances of the
classification accuracy. The unreliability of the standard PSO
can be further improved based on the proposed framework
using RA-PSO. In general, the proposed feature selection
technique offers a better performance as compared to any
peak models without feature selection. For future work, the
proposed framework will be employed in more case studies
and will invent more classification methods.
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