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Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging
challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on
top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous
silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the
influx of vaporized multilayer vertical carbon nanotubes (MVCNTSs) to the PSi, the diameter distribution increased as the flow
rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure
exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal
structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission
scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight
multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage

properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

1. Introduction

Research and development of energy in the 2Ist century
focused on a wide range of renewable energy sources, due
to concerns over fossil fuel and its ever-aggravating impact
on global warming, environments, and the crisis of natural
resource depletion [1, 2]. Carbon nanotubes have gained
significant research interest for their potential applications,
such as generating electricity [3] and electricity storage [4],
that is, the administrable ability to capture, store, and deliver
generated power. The properties of CNTs depend on the
arrangement of their graphitic rings and the diameter of their
helical structure [5].

CVD is a common CNTs synthesis method based
on thermal decomposition of hydrocarbon vapors [6].

The properties of CNTs depend not only on the deposition
condition but the starting precursor as well [7]. For various
kinds of the deposition process, graphite target is commonly
used for the preparation of carbon-based materials [8].
Natural essential oils, a major source of renewable energy, are
regarded as promising to the world’s thirst for energy [9, 10].
Camphor oil is found in wood of the camphor laurel (Cin-
namomum camphora), which is a large evergreen tree found
in Asia, Dryobalanops aromatica, a giant of the Bornean
forests, and some other related trees in the laurel family,
notably Ocotea usambarensis. Camphor readily ignites and
burns without producing any residue. However, camphor
(C,oH,40), which consists of both sp* and sp® carbons, is an
attractive new material for carbon-based preparation, since
graphite has only sp? carbon [11].



The petroleum-based precursors for synthesis of CNTs
have been investigated in detail, and the easy availability of
high-grade precursors has resulted in the production and
process optimization of different types, structure, dimension,
and orientations of CNTs. However, the naturally occur-
ring hydrocarbon precursors have generated some interest
because of the possibility of production of CNTs from the
bank of hydrocarbons that are being renewably produced
by nature in a carbon-neutral manner [12]. So, it becomes
important to search for new natural renewable precursors
that are easily available and are low in cost, such as essential
oils. Of course, it calls for studies that are related to yield and
quality of the CNTs being produced and the applications of
the resultant CNTs.

Grown MVCNTs arrays with different diameter distribu-
tion feeding gas velocity (sccm) have significant effects on
CNTs, especially on their diameter distribution [13]. To date,
the cause of diameter alterations in single CNTs structures
has yet to be clearly understood [14]. Heterostructured
multilayer CNTs are fabricated via conventional methods
separated by continuous steps, which may be repeated to
provide three or more layers of CNTs [15]. Various catalyst
formulations and reaction conditions have also been devel-
oped to enable the formation of multiple layers of CNTs
through the use of appropriate catalysts for different layers
[16]. Obtaining a comprehensive understanding of the CNTs
growth mechanism is necessary to achieve better control of
CNTs growth and design possible nanostructures [17].

Several researchers have reported different types of CNTs
based on variations in the parameters in multiple processes
[18]; however, to the best of our knowledge, the single
step developed in this study is a new method that allows
for the control of the diameter of CNTs on PSi. In the
present study, MVCNTs were successfully synthesized on a
PSi substrate in a one-step process using renewable natural
camphor oil via CVD. Moreover, the diameter of CNTs
produced through the optimized growth condition is limited
by controlling the diffusion of feedstock and also hydrogen
storage characteristic of the synthesized multilayer CNTs
being analyzed.

2. Experimental Procedure

The experimental setup is based on horizontal electronic fur-
naces used to cover the quartz tube during CNTs fabrication.
A mass flow controller was used to adjust the velocity of the
carrier gas by means of syringe pump into Psi, which was
fabricated via selective doping [19].

Camphor oil as a precursor was mixed with ferrocene
and then introduced to the inlet of the quartz tube fitted
by the first furnace to release the vaporized CNTs. The
reaction temperature was increased to 180°C and maintained
for 30 min to ensure that the precursor and catalysts were
completely pyrolyzed. Ferrocene decomposes to form the
iron catalyst necessary for the experiment, while camphor
acts as a carbon source (feedstock) of the substrate in the
second furnace. The CVD experiments commenced when the
deposition temperature of the second furnace reached the
optimal temperature (between 750 and 850°C). The exhaust
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argon gas in the quartz tube induced movement of the
amorphous vaporized carbon into the second furnace by
means of a mass flow controller, thereby allowing CNTs
growth on the surface of the proposed substrate [20]. To
identify the relation between the flow rate and CNTs diameter
on the substrate, three flow rates were employed at 1 bar.
Argon gas was injected into the inlet of the quartz tube at a
maximum velocity of 600 sccm. After 10 min, the velocity was
gradually decreased to 400 sccm as its median range of the
flow rate. Then, after 20 min, the flow rate was decreased to
200 sccm until complete consumption of the carbon source.
After 1h of reaction time, the reactor was cooled down slowly
to room temperature in Ar ambient space after the synthesis.

The CNTs were characterized by FESEM (ZEISS Supra
40VP) operated at 5 kV to evaluate the structure and diameter
of the samples. Raman spectra were obtained using micro-
Raman spectroscopy (Horiba Jobin Yvon-DU420A-OE-325),
with Ar" ions at 514.5nm to determine the adsorption,
desorption, and surface area of the samples. The surface
structure of the CNTs was confirmed by a VECTOR33 FT-
IR instrument. The chemisorption analyses of the synthesized
CNTs were done by TPDRO 1100.

During the TPD analysis, the sample, adequately pre-
treated, is submitted at an increasing temperature at a
constant rate and is swept by an inert gas such as helium.
The sample surface desorbs the gas that has been previously
chemisorbed, and a suitable detector monitors the process. In
the TPD studies, the solid system is previously equilibrated
until saturation, with a probe gas in isothermal conditions at
a given partial pressure [21].

3. Results and Discussion

As shown in Figurel, vertically-aligned CNTs with high
uniformity and nearly identical diameters were fabricated.
FESEM images confirm that well-aligned CNTs with three
different diameters were synthesized. As the flow rate
decreases, the CNTs gradually thicken [22]. The duration
of carrier gas feeding and its flow rate into the reaction
zone are key parameters controlling the CNTs diameter
[18]. The growth rates of the active ends of the CNTs vary
proportionally to the flow rate of argon gas until complete
consumption of the carbon source [23]. Alteration of the flow
velocity during deposition and limited gas-flow rate control
the growth conditions of the CNTs [24].

Considering the influx of vaporized CNTs to the PSi, the
diameter distribution increases as the flow rate decreased in
the reactor. The quantity of carbons covalently attached to the
active end of the tube increased with decreasing flow rates
[25]. Various diameters of CNTs are evident during structural
transition of the feedstock around the substrate. During the
first stage of the experiment, the average diameter of the tubes
is approximately 30 nm, and high uniformity is observed.
Reducing the flow rate during deposition process changes
the diameters of the tubes and produces a central layer with
uniformity that is identical to that in the first layer, with an
average diameter of 75 nm. The minimum flow rate generates
the last layer of multilayer CNTs with the different geometry



BioMed Research International

S
EHT = 5.00 kV
WD = 5.3 mm

Absorbance (a.u.)

4000 3600 3200 2800 2400 2000 1600 1200 800

Wavenumber (cm™')

400

FIGURE 2: FT-IR spectrum of the fast synthesized multilayer carbon
nanotubes.

as the previous layers and average diameter to up to 1 ym; this
final layer is obtained by terminating the carbon source.

FESEM images show that variations in flow rate could
systematically change the diameter distribution of the CN'Ts.
We propose that at any given flow rate an optimal diameter
exists for the CNTs. Varying the carrier gas flow rate during
the growth process can be employed to control the growth of
CNTs [13].
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TaBLE 1: FT-IR spectroscopy absorption bands of multilayer carbon
nanotubes.

Frequency (cm™) Possible assignment

3424 H-bonded OH groups
2928 C-H bending, stretching
1699 C=0 stretching
1540 C=C stretching

Given that other parameters, such as carbon feeding rate,
temperature, and type of carrier gas, can be altered during
CNTs synthesis, our hypothesis also can be developed due
to alteration of the other parameters involved with growth
process such as multilayer growth of CNTs dependence on
temperature [26]. Atlow temperatures, only small nanoparti-
cles are activated; altering the temperature parallel to the flow
rate can change the growth efficiency and aspect ratio of the
CNTs [25].

The FT-IR spectrum (400 cm™ to 4000cm™) of the
fabricated CNTs is shown in Figure 2, and the related peaks
are summarized in Table 1. The spectra were recorded using
pressed disks of the pure solid powders combined with
KBr. Only a small C-C stretch and a peak at 1532cm™"
to 1560 cm™' were observed, which indicates the presence
of a carbon double bond (C=C); this finding confirms the
hexagonal structure of the CNTs [27]. Figure 3 shows the
Raman spectra of the CNTs.
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FIGURE 3: Raman spectra of the fast synthesized multilayer carbon
nanotubes.

The Raman results have been compared with the growth
CNTs in a unique flow rate to ensure the effect of the
transitive gas flow on the growth process. Accordingly, two
main peaks are found at 1348 cm ™' and 1577 cm™'; these peaks
correspond to the D and G bands, respectively [28]. The I /I
ratio suggests that the crystallinity of the synthesized CNTs
under varying flow rates is identical to those grown under a
fixed flow rate [29]. The Ij,/I; ratio for both types of CNTs
is approximately 1.12. As such, the crystalline quality of the
CNTs shows no major variation despite changes in flow rate
[30].

The growth carbon nanotubes might be a suitable nanos-
tructure for hydrogen storage devices, since for multiwall
carbon nanotubes the hydrogen storage capacity is inde-
pendent of tube’s diameter [31]. Furthermore, there are also
repulsive forces present between the H and C atoms. This
energy tends to become larger as the diameter of tube
increases. The potential of nanostructured materials is not
only limited to energy storage and conversion devices but also
to nanotransistors [32], actuators [33], electron field emission
[34], and biological sensing devices [35].

The hydrogen adsorption properties of the fast synthe-
sized multilayer CNTs were explored in Figure 4. Accord-
ingly, the sample was degassed to 100°C and exposed to
hydrogen at 760 Torr to obtain a TPD spectrum. For
comparison, a TDP spectrum of a single layer CNTs also
was degassed in the same condition, which was shown
in the inset in Figure4. In both cases, the sample was
cooled to ~190K, while the H, gas was evacuated [36].
These results indicate that unique hydrogen adsorption sites
exist on the fast synthesized multilayer CNTs and display
a hydrogen adsorption capacity at near ambient conditions
that is ~2x greater than that of single layer CNTs. Therefore,
conclusively, it can be concluded that multilayer CNTs may
also be promising candidates for vehicular hydrogen storage
applications [37].
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FIGURE 4: Hydrogen TPD spectra of the fast synthesized multilayer
carbon nanotubes. Inset figure represents hydrogen TPD spectra of
single layer carbon nanotubes.

4. Conclusion

Well-aligned CNTs with three different diameters have been
synthesized by employing different flow rates. FESEM images
show that varying the flow rate could systematically change
the diameter distribution of the CNTs. Reducing the flow rate
during deposition process changes the diameter of the tubes,
thereby producing a central layer of CNTs with the same
uniformity as that in the first layer. The minimum flow rate
generates the last layer of the CNTs structure with the same
geometry as the previous layers and high average diameter.
FT-IR spectrum indicates the presence of carbon double
bonds (C=C), which confirms the integrity of the hexagonal
structure of the CNTs. The obtained Raman spectra indicate
that the crystallinity of the CNTs structure exhibits no major
variation despite changes in flow rate. According to the TPD
method for the hydrogen storage properties of MVCNTs, the
fast synthesized multilayer CN'Ts for the hydrogen adsorption
capacity at near ambient conditions are ~2x greater than
the single-layer CNTs. These results demonstrate a new
geometric combination of CNTs based on heterostructured
multilayer nanotubes, which can be used in energy storage
devices because of their nanosize distribution of carbon
nanotubes, accessible surface area, and high stability.
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