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Abstract

Background: It is known that any individual similarity measure will not always give the best recall of active
molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening
approaches can be enhanced by using data fusion. Data fusion can be implemented using two different
approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity
measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking
of the compounds in the database.

Results: The Condorcet fusion method was examined. This approach combines the outputs of similarity searches
from eleven association and distance similarity coefficients, and then the winner measure for each class of
molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved
active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data
report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used
for experiments and were represented by 2D fingerprints.

Conclusions: Simulated virtual screening experiments with the standard two data sets show that the use of
Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when
the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness
of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.
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Background
Virtual screening refers to the use of a computer-based
method to process compounds from a library or data-
base of compounds in order to identify and select the
ones that are likely to possess a desired biological activ-
ity, such as the ability to inhibit the action of a particular
therapeutic target. The selection of molecules with a vir-
tual screening algorithm should yield a higher propor-
tion of active compounds, as assessed by experiment,
relative to a random selection of the same number of
molecules [1,2].
Many virtual screening (VS) approaches have been im-

plemented for searching chemical databases, such as
substructure search, similarity, docking and QSAR. Of
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these, similarity searching is the simplest, and one of the
most widely-used techniques, for ligand-based virtual
screening (LBVS) [3]. Similarity search aims to search
and scan a chemical database to identify those molecules
that are most similar to a user-defined reference struc-
ture using some quantitative measures of intermolecular
structural similarity [4-8].
There are many different ways to implement the simi-

larity searching based on different similarity models.
However, as Sheridan and Kearsley [9] noted, it is most
unlikely that a single search mechanism could be ex-
pected to perform at a consistently high level under all
circumstances. Instead, a more realistic approach to en-
hancing the effectiveness of ligand-based virtual screening
approaches is the use of data fusion [10] or consensus
scoring in the structure-based virtual screening literature
[11]. Data fusion was first used for similarity searching in
the late-Nineties [12-14]. Recently, data fusion has been
used to combine the results of the structure and ligand-
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based approaches to virtual screening [15], their results
outperforming any single method in ranking of activities.
The latest reviews on using fusion in ligand-based virtual
screening can be found in [16,17].
There are two main approaches to data fusion: similar-

ity fusion and group fusion [10,18]. The first type com-
bines ranking from single searches based on multiple
similarity measures, while the second one combines
ranking from multiple searches based on a single simi-
larity measure. The basic procedure that has been devel-
oped for the fusion process is shown in algorithmic form
as described below:
The basic procedure for data fusion:

for x = 1:n
for y = 1:N
Use x-th similarity or scoring measure to calculate
similarity or score, Simx(qy) for y-th database-
structure.

for 1:N
Use the fusion rule to combine the set of n score
Simx(qy) for y-th database-structure to give its fused
score FSimy,
Sort the database into decreasing order of fused score
FSimy.

In this algorithm, there are n different similarity mea-
sures for calculating the similarity SIMx(dy) for each of
the N structures in the database that is being searched
(1 ≤ x ≤ n, and 1 ≤ y ≤N).
The idea of voting algorithms emerged in the 18th

century to address the shortcomings of simple majority
voting when there are more than two candidates. Ac-
cording to Montague and Aslam [19] and Riker [20],
there are two main voting algorithms: majoritarian and
positional voting algorithms. Majoritarian voting algo-
rithms are based on a series of pairwise comparisons of
candidates, while positional algorithms are based on the
ranking a candidate receives.
In this paper, the authors examined the use of Condor-

cet fusion in order to improve the effectiveness of ligand
virtual screening by enhancing the recall of active com-
pound structure. In our proposed model, for each simi-
larity measure the top retrieved structures represent the
voters; each candidate’s similarity measures received a
number of points or votes depends on the similarity
values of the retrieved structures. At last, Borda’s count
method evaluated by summation of these points to find
the winner candidate’s measure. The winner candidate
got the highest number of points.

Methods
This study has compared the retrieval results obtained
using two different similarity-based screening models.
The first screening system was based on the Tanimoto
(TAN) coefficient, which has been used in ligand-based
virtual screening for many years and is now considered a
reference standard. The second model, the proposed
model of this study, was based on the Condorcet model
proposed by Montague and Aslam [19]. In our approach,
the two groups of similarity measures were used, the first
group is seven of the association coefficients: Jaccard/
Tanimoto, Ochiai/Cosine, Sokal/Sneath(1), Kulczynski(2),
Forbes, Fossum and Simpson; the second group is four of
the distance coefficients: Mean Euclidean, Mean Canberra,
Divergence and Bray/Curtis. The results from the two
groups were used together and the Condocert fusion
based on combining ranking from single searches for each
of the eleven similarity measures is achieved. More details
about the above similarity measures or metrics found in
the early study proposed by Ellis et al. [21].

Tanimoto-based similarity model
This model used the continuous form of the Tanimoto
coefficient, which is applicable to the non-binary data of
the fingerprint. SK,L is the similarity between objects or
molecules K and L, which, using Tanimoto, is given by
Equation 1:

SSK ¼

XM

j¼1

wjkwjl
� �

XM

j¼1

wjk
� �2 þ

XM

j¼1

wjl
� �2−

XM

j¼1

wjkwjl
� �

ð1Þ

For molecules described by continuous variables, the
molecular space is defined by an M ×N matrix, where
entry wji is the value of the jth fragments (1 ≤ j ≤M) in
the ith molecule (1 ≤ i ≤N). The origins of this coefficient
can be found in [21].

Condorcet-based fusion model
In this study we start our search using single reference
structure and then the retrieved results based on differ-
ent values of n represent the input of this process, which
we will call a voting profile. Depending on the numbers
of points, a social choice function based on Borda count
that uses the positional voting procedure and Condorcet
voting algorithm that uses majoritarian method will map
voting profiles to a set of candidates — the winners.
The Borda count is perhaps the most sensible pos-

itional voting procedure. In the Borda count imple-
mented here, for each voter, each candidate receives n
points (n is the number of points in the retrieved struc-
tures in top-n results). The pairwise comparisons of
candidates, based on the Condorcet voting algorithm
that uses the majoritarian method, select the winner
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similarity method with the most points received. This
process is repeated for each activity class.
In this method, eleven similarity measures and four

different values of top retrieved structures were exam-
ined. The retrieved structures in each top retrieved rep-
resent the voter population to elect the winner similarity
measures based on the Borda count method of points
achieved by each candidate measure. The Condorcet-
based fusion algorithm is described as follows:
Condorcet-based Fusion Algorithm

1. for z = 1 top-n % n is number of activity classes in
the data set

2. get the top-n ranking score for the each similarity
measure

3. for x = 1 to m do % m is number of similarity
measures

4. Assign value to each similarity measure equal to the
a number of votes or points in retrieved topn
structures in the results

5. find out the total Borda score for each similarity
measure,

Bc ¼
Xtopn

i¼1

Bi

% Bi is the number of points for this activity class
Table 1 explanation example on electing winner measure
based achieved votes or points

Similarity measures

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Votes or points 11 9 10 1 3 7 6 4 8 2 5

9 8 11 4 5 3 1 2 7 6 10

7 3 9 1 8 4 11 6 2 5 10
use the x-th similarity measure in topn for y-th
database structure

6. Select the winner similarity measure (Fsimx) using
pairwise comparisons based on Condorcet voting
algorithm that used majoritarian method

7. end for
8. end for

The complexity of the algorithm is calculated and it
processes in a worst time of O(n(2m + top-n)). This
time was calculated based on the following: (i) the outer
loop (line 1) is based on the number of activity classes in
the data set; thus, the maximum number of iterations is
n, (ii) the first inner loop (line 3) is also based on the
number of similarity measures; the maximum number of
iterations is m, (iii) the second inner loop (line 5) is
based on the Borda score for each similarity measure;
the maximum number of iterations is top-n. Finally, for
the final inner loop (line 6), on Condorcet voting algo-
rithm, the maximum number of iterations is (m).

Experimental design
The searches were carried out using the most popular
chemoinformatics databases, the MDL Drug Data Re-
port (MDDR) [22], maximum unbiased validation
(MUV) [23] and Directory of Useful Decoys (DUD) [24].
All the molecules in both databases were converted to
Pipeline Pilot ECFC_4 (extended connectivity finger-
prints and folded to size 1024 bits) [25]; MDDR and
MUV data sets have been used recently by our research
group in this research area [26-29]. Mathworks Matlab
R2012b (UTM license) was used for coding our pro-
posed algorithms; all calculations were run on 2.80 GHz
Intel(R) Xeon(R) processors.
The algorithm is started by searching using a single

reference structure and the eleven similarity measures
(each structure from each activity class); the retrieved
output, based on different values of top results, is evalu-
ated. For each retrieved structure per each class, the
similarity measure with maximum similarity value re-
ceive a high vote or point (the number eleven is given
for the best measure and the number one for the worst),
then the summation of the Borda scores or vote was cal-
culated by summation of the votes or points for this top
retrieved value and the winning measure is the one that
has the highest votes or points. Finally, the search was
carried out again using the winner measure and the final
results were calculated. The explanation example in
Table 1 shows the voting profile example of three top re-
trieved structures, showing that measure S3 is the win-
ner (with 30 votes or points). In this study, the same
scenario is used for different numbers of top retrieved or
nearest neighbours (10, 20, 50 and 100).
For the screening experiments, two data sets (MDDR1

and MDDR2) with 102516 molecules were chosen from
the MDDR database. The MDDR1 data set contains 10
homogeneous activity classes and the MDDR2 data set
contains 10 heterogeneous activity classes (i.e. structur-
ally diverse). Details of these two data sets are given in
Tables 2 and 3. Each row of a table contains an activity
class, the number of molecules belonging to the class,
and the class’s diversity, which was computed as the
mean pairwise Tanimoto similarity calculated across all
pairs of molecules in the class using ECFC_4. The sec-
ond data set, (MUV) as shown in Table 4, was reported
by Rohrer and Baumann [23]. This data set contains 17
activity classes, with each class containing up to 30 ac-
tives and 15,000 inactives. The diversity of the class for
this dataset shows that it contains high diversity or more
heterogeneous activity classes. This data set was also
used in the previous study by our research group [30].



Table 4 MUV structure activity classes

Activity index Activity class Pair-wise similarity

466 S1P1 rec. (agonists) 0.445

548 PKA (inhibitors) 0.430

600 SF1 (inhibitors) 0.445

644 Rho-Kinase2 (inhibitors) 0.416

652 HIV RT-RNase (inhibitors) 0.398

689 Eph rec. A4 (inhibitors) 0.449

692 SF1 (agonists) 0.365

712 HSP 90 (inhibitors) 30 0.413

713 ER-a-Coact. Bind. (inhibitors) 0.389

733 ER-b-Coact. Bind. (inhibitors) 0.352

737 ER-a-Coact. Bind. (potentiators) 0.502

810 FAK (inhibitors) 0.425

832 Cathepsin G (inhibitors) 0.435

846 FXIa (inhibitors) 0.532

852 FXIIa (inhibitors) 0.492

858 D1 rec. (allosteric modulators) 0.400

859 M1 rec. (allosteric inhibitors) 0.386

Table 2 MDDR1 structure activity classes

Activity
index

Activity class Active
molecules

Pair-wise
similarity

07707 Adenosine (A1)
agonists

207 0.424

07708 Adenosine (A2)
agonists

156 0.484

31420 Renin inhibitors 1 1300 0.584

42710 CCK agonists 111 0.596

64100 Monocyclic -lactams 1346 0.512

64200 Cephalosporins 113 0.503

64220 Carbacephems 1051 0.414

64500 Carbapenems 126 0.444

64350 Tribactams 388 0.673

75755 Vitamin D analogous 455 0.569
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The third data set used in this study is Directory of
Useful Decoys (DUD), this data set has recently been
compiled as a benchmark data set, specifically for dock-
ing methods. It was introduced by [24] and was used re-
cently in molecular virtual screening [31] as well as
molecular docking [32]. The decoys for each target were
chosen specifically to fulfil a number of criteria to make
them relevant and as unbiased as possible. In this study
twelve subsets of DUD with 704 active compounds and
25,828 decoys were used as shown in Table 5.
Searches were carried out using single reference struc-

tures and a total of eleven similarity measures. Different
numbers of top retrieved or nearest neighbours—10, 20,
50, and 100—were selected (as voter committee or popu-
lation) for each activity class and used as input to the
Table 3 MDDR2 structure activity classes

Activity
index

Activity class Active
molecules

Pair-wise
similarity

09249 Muscarinic (M1) agonists 900 0.257

12455 NMDA receptor
antagonists

1400 0.311

12464 Nitric oxide synthase
inhibitors

505 0.237

31281 Dopamine-hydroxylase
inhibitors

106 0.324

43210 Aldose reductase
inhibitors

957 0.370

71522 Reverse transcriptase
inhibitors

700 0.311

75721 Aromatase inhibitors 636 0.318

78331 Cyclooxygenase
inhibitors

636 0.382

78348 Phospholipase A2
inhibitors

617 0.291

78351 Lipoxygenase inhibitors 2111 0.365
fusion stage to determine the winner candidate similarity
measure. Finally, a search was carried out again based on
the winner or fused similarity measure.

Results and discussion
The results of the searches of MDDR1, MDDR2, MUV
and DUD are presented in Tables 6, 7, 8 and 9 respect-
ively, using cut offs at 5%. In these tables, the second
column from the left contains the results for the TAN,
Table 5 Number of active and inactive compounds for
twelve DUD sub datasets, where Na : number of active
compounds, Ndec : number of decoys

No. Data
set

Active and inactive compounds

Na Ndec

1 FGFR1 120 4550

2 FXA 146 5745

3 GART 40 879

4 GPB 52 2140

5 GR 78 2947

6 HIVPR 62 2038

7 HIVRT 43 1519

8 HMGA 35 1480

9 HSP90 37 979

10 MR 15 636

11 NA 49 1874

12 PR 27 1041

Total 704 25828



Table 8 Retrieval results of top 5% for data set MUV

Activity index TAN Top10 Top20 Top50 Top100

466 6.72 9.05 7.97 8.69 8.90

548 20.85 25.43 26.06 25.82 26.29

600 9.94 13.82 13.85 13.99 15.69

644 23.07 22.47 23.27 22.93 22.85

652 7.74 11.21 10.88 10.52 11.17

689 12.40 13.35 14.76 16.39 12.38

692 7.25 9.28 10.23 6.80 7.76

712 15.63 13.11 13.42 13.62 12.94

713 6.99 9.60 10.37 9.71 11.97

733 9.13 11.60 11.00 12.75 13.31

737 8.50 10.62 10.71 13.36 13.53

810 8.51 9.27 9.37 9.40 10.93

832 18.75 14.23 15.10 15.20 17.38

846 24.56 29.64 30.37 29.88 29.72

852 15.71 24.50 24.48 23.63 23.81

858 7.38 8.29 7.53 8.39 8.47

859 9.51 9.92 9.60 11.32 11.44

Mean 12.51 14.43 14.65 14.85 15.21

CI Lower 6.72 8.29 7.53 6.80 7.76

Upper 24.56 29.64 30.37 29.88 29.72

Star (*) cells 2 3 3 1 8

Table 9 Retrieval results of top 5% for data set DUD

Table 6 Retrieval results of top 5% for data set MDDR1

Activity index TAN Top10 Top20 Top50 Top100

07707 71.56 87.72 85.62 86.03 85.67

07708 56.96 80.46 92.15 92.25 96.85

31420 88.89 89.07 88.61 89.39 89.45

42710 88.65 90.03 89.66 89.85 90.06

64100 94.85 94.19 94.29 99.31 99.26

64200 78.41 91.69 91.26 91.62 96.94

64220 53.40 70.11 62.54 81.61 89.75

64500 45.28 74.17 74.72 89.06 88.64

64350 92.27 92.52 99.95 97.82 98.28

75755 95.27 95.52 96.61 97.55 95.16

Mean 76.55 86.55 87.54 91.45 93.01

CI Lower 45.28 70.11 62.54 81.61 85.67

Upper 95.27 95.52 99.95 99.31 99.26

Star (*) cells 0 1 1 3 5
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the third to sixth columns contain the corresponding re-
sults when the Condorcet fusion model is used based on
different four top retrieved values. Each row in the tables
lists the recall for the top 5% for each activity class. The
mean rows in the tables correspond to the mean when
averaged over all activity classes, and the CI rows repre-
sent the 95% confidence interval. The similarity method
with the best recall rate in each row is shown as (*), and
the best mean recall value is boldfaced. The bottom row in
a table corresponds to the total number of (*) cells for each
similarity method across the full set of activity classes.
A look at the recall values in Tables 6, 7, 8 and 9 enables

comparisons to be made between the effectiveness of the
various search models. However, a more quantitative
Data set TAN Top10 Top20 Top50 Top100

FGFR1 7.25 6.08 6.08 7.08 12.08

FXA 8.70 9.52 9.52 9.52 9.52

GART 21.25 21.5 21.5 21.5 7.25

GPB 27.12 29.04 29.04 29.04 35

GR 6.79 6.79 6.79 8.97 13.21

HIVPR 12.74 6.45 6.45 12.9 6.45

HIVRT 4.42 8.42 9.42 4.42 8.42

HMGA 10.02 10.30 15.21 15.35 17.44

HSP90 9.46 9.46 9.46 9.46 8.92

MR 8.67 8.67 8.67 8.67 8.67

NA 6.53 6.53 6.53 6.73 10.73

PR 5.93 7.70 9.70 10.7 12.7

Mean 10.74 10.87 11.53 12.03 12.53

CI Lower 4.42 6.08 6.08 4.42 6.45

Upper 27.12 29.04 29.04 29.04 35.00

Star (*) cells 3 3 4 5 8

Table 7 Retrieval results of top 5% for data set MDDR2

Activity index TAN Top10 Top20 Top50 Top100

09249 24.64 23.88 24.01 24.64 23.89

12455 11.24 21.26 21.40 13.47 14.17

12464 16.25 23.72 23.60 23.64 37.29

31281 30.57 39.70 32.74 39.54 50.63

43210 16.82 18.45 26.49 29.36 14.17

71522 13.22 16.16 15.87 16.12 16.22

75721 25.81 28.29 27.89 48.22 31.36

78331 16.05 17.80 18.67 18.33 24.76

78348 25.16 26.20 26.29 20.97 26.92

78351 12.70 14.46 14.60 14.85 15.15

Mean 19.25 22.99 23.16 24.91 25.46

CI Lower 11.24 14.46 14.60 13.47 14.17

Upper 30.57 39.70 32.74 48.22 50.63

Star (*) cells 1 0 1 3 6



Table 10 Rankings of similarity approaches based on
Kendall W test results: MDDR1, MDDR2, MUV and DUD
top 5%

Data set W P Ranking

MDDR1 0. 594 0.001 Top100 > Top50 > Top20 > Top10 > TAN

MDDR2 0.479 0.008 Top100 > Top50 > Top20 > Top10 > TAN

MUV 0.447 0.002 Top100 > Top50 > Top20 > Top10 > TAN

DUD 0.441 0.009 Top100 > Top50 > Top20 > Top10 > TAN
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approach is possible using the Kendall W test of concord-
ance [33]. This test shows whether a set of judges make
comparable judgments about the ranking of a set of ob-
jects. Here, the activity classes were considered the judges
and the recall rates of the various search models, the
objects.
The outputs of this test are the value of the Kendall

coefficient and the associated significance level, which
indicates whether the value of the coefficient could have
occurred by chance. If the value is significant (for which
we used cutoff values of 0.05), then it is possible to give
an overall ranking of the objects that have been ranked.
The results of the Kendall analyses for MDDR1,

MDDR2, MUV and DUD are reported in Table 10 which
describes the top 5% rankings for the various searching
approaches. In this Table, the columns show the data set
type, the value of the Kendall’s coefficient of Concord-
ance (W), the associated probability (p) and the ranks of
each of the different searching methods. Table 10 shows
that the values of Kendall coefficients vary from 0.441
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Figure 1 Performance with 95% confidence bound for the three scree
data sets at top 5%.
(agreement is 44.1%) for DUD to 0.594 (agreement is
59.4%) for MDDR1, while the values of associated prob-
ability, (p), are (< 0.01) for all recall percentages of the
three data sets. This indicates that these values are sig-
nificant and it becomes possible to give an overall rank-
ing to the objects (searching approaches). Therefore, the
ranking of the search methods for all cases is significant
and has not occurred by chance.
Using Kendall W may result, in some cases, in the oc-

currence of tied values for ranking. The effect of ties is
to reduce the value of W; however, this effect is small
unless there are a large number of ties. When tied values
occur, they are each given the average of the ranks that
would have been given had no ties occurred and correc-
tion factors will be calculated as shown in the following
equation:

Tj ¼
Xgi

i¼1
t3i −ti
� �

where ti is the number of tied ranks in the ith group of
tied ranks and gj is the number of groups of ties in the
set of ranks (ranging from 1 to n) for judge j. Thus, Tj is
the correction factor required for the set of ranks for
judge j, i.e. the jth set of ranks.
Some of the activity classes, such as low-diversity ac-

tivity classes, may contribute disproportionately to the
overall value of mean recall. Therefore, using the mean
recall value as the evaluation criterion could be impartial
in some methods, but not in others. To avoid this bias,
the effective performances of the different methods have
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Table 11 Rankings of similarity approaches based on
friedman’s test results: MDDR1, MDDR2, MUV and DUD
top 5%

Dataset P Mean ranks

Tan Top10 Top20 Top50 Top100

MDDR1 0.001 1.40 2.90 2.60 4.00 4.10

MDDR2 0.011 1.55 3.00 3.10 3.35 4.00

MUV 0.002 1.76 2.76 3.29 3.35 3.82

DUD 0.017 2.17 2.67 2.96 3.54 3.67
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been further investigated based on the total number of
(*) cells for each method across the full set of activity
classes. This is shown in the bottom rows of Tables 6, 7,
8 and 9. According to the total number of (*) cells in
these tables, Condorcet fusion at Top100 was the best
performing search across the three data sets.
The results of the MDDR1 search shown in Table 6

show that Condorcet fusion at Top100 produced the
highest mean value compared with other measures. The
value of the Kendall coefficient is 0.594. Given that
the result is significant, since associated probability is
< 0.01, the overall ranking of the different approaches is
Top100 > Top50 > Top20 > Top10 > TAN for the cut off
5%, which shows that the proposed method has a high
rank value. Similarly, For MDDR2 data set, our proposed
method has the highest rank at cut off 5%. On the other
hand, the MDDR2 searches are of particular interest,
since they involve the most heterogeneous activity clas-
ses in the three data sets used, and thus provide a
complete test of the effectiveness of a screening method.
Table 7 shows that Condorcet fusion at Top100 gives
the best performance out of all the methods for this data
set at cut off 5%.
While the MDDR1 dataset includes highly similar activ-

ities, the MUV and DUD datasets have been carefully de-
signed to include sets of highly dissimilar actives. Most of
the similarity methods as well as our proposed method
here show a very high recall rate for the low diversity data-
set and very low recall for the high diversity datasets, such
as MDDR2, MUV and DUD used in this study.
Figure 1 showing the mean, lower and upper bounds

of the confidence intervals of different methods, reveal-
ing that we can be 95% confident that the Condorcet
fusion at Top100 method performs best for the three
data sets. Therefore, on the basis of these results, we can
say with 95% statistical certainty that our proposed
method search will do better than conventional similarity
systems.
An ROC curve describes the trade-off between sensi-

tivity and specificity, where the sensitivity is defined as
the ability of the model to avoid false negatives, and the
specificity relates to its ability to avoid false positives.
The area under the ROC curve (AUC) is a measure of

the model’s performance: the closer AUC is to 1, the bet-
ter is the performance of the prediction. In our study we
used the ROC curve to study the performance of differ-
ent methods at cutoff 5%. Visual inspection of Figure 2
provides a preliminary indication about the quality of
each method for data set MDDR1, The area under curve
(AUC) metric was calculated for the data MDDR1 and
their results added at the end of Figure 2.
In addition, Friedman’s test [34] was performed as an-

other significant test and the result was reported in
Table 11. The outputs of this test are the value of the
Friedman’s test (p-values) and associated mean ranks of



Table 12 Enrichment values of (BEDROC α = 20) and (EF 1%) using our proposed method on MDDR1, MDDR2, MUV and DUD data sets

MDDR1 MDDR2 MUV DUD

BEDROC (α = 20) EF (1%) BEDROC (α = 20) EF (1%) BEDROC (α = 20) EF (1%) BEDROC (α = 20) EF (1%)

Method Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

TAN 0.49 0.47 80.52 84.99 0.30 0.35 23.25 22.98 0.38 0.36 16.94 16.87 0.17 0.15 20.87 19.55

Top10 0.50 0.54 81.85 89.10 0.32 0.36 24.85 23.11 0.40 0.37 17.99 16.64 0.19 0.18 21.67 20.83

Top20 0.52 0.49 86.31 89.10 0.35 0.36 23.99 23.79 0.41 0.35 18.70 16.90 0.21 0.16 22.59 20.74

Top50 0.55 0.47 86.99 88.55 0.36 0.34 24.72 21.45 0.42 0.39 17.72 17.01 0.29 0.28 23.22 21.05

Top100 0.63 0.62 91.17 90.05 0.47 0.51 27.87 23.99 0.45 0.40 19.94 18.64 0.35 0.30 25.61 22.14
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each method. P-values are often coupled to a signifi-
cance or alpha (α) level, which is also set ahead of time,
usually at 0.05 (5%). Thus, if a p-value was found to be
less than 0.05, then the result would be considered sta-
tistically significant and the null hypothesis would be
rejected [35]. Looking at the mean rank and their associ-
ated p-values, we can conclude that the Top100 fusion
method outperformed the Tanimoto as well as fusion
methods at the other top values, with associated values
of 0.001, 0.011, 0.002 and 0.017 for the MDDR1,
MDDR2, MUV and DUD datasets respectively.
In many fundamental problems, ranging from infor-

mation retrieval to drug discovery, only the very top of
the ranked list of predictions is of any interest and ROCs
and AUCs [36,37] are not very useful. New metrics, visu-
alizations and optimization tools are needed to address
this “early retrieval” problem [38-40]. In this study,
two performance metrics: Enrichment Factor (ER 1%)
and Boltzmann-Enhanced Discrimination of ROC (BED-
ROC) (α = 20) [41] were used as additional and latest
powerful performance evaluation metrics and their re-
sults were reported in Table 12. Table 12 shows average
and median of (EF 1%) and BEDROC (α = 20) enrich-
ment results. The average enrichment using the Top100
fusion method across the 10 targets of MDDR and the
17 MUV targets improves considerably over the best
single method. However, the conclusion which can be
drawn from Table 12 is the similar to what was derived
from Figure 1, Figure 2 and Tables 6, 7, 8, 9, 10 and 11.
Furthermore, our results were compared with recent

similar studies such as rank- based group fusion by Chen
et al. [42] and standard score (Z-score) by Sastry et al.
[39]. In Chen et al. study, the mean recall of their RKP
method for MDDR1 data set range from 94.20 to 94.30,
while in our method the minimum value of the upper
band is 95.27 for Top10 and the maximum value is
99.95 for the Top100 method. Similarly, the best mean re-
call for the MDDR2 data set of our method is 50.63 for the
activity index 31281 compared with 48.98 with their re-
sults. In addition, Sastry et al. used the top 1% of MDDR1
and the best mean recall for their method was 43.8 for the
RXG combination method, when running our experiment
and get 1%, the best mean recall of our method is 44.35
which slightly outperformed their findings.

Conclusion
In this study, we have developed a Condorcet fusion
model to enhance the effectiveness of ligand-based virtual
screening. The overall results of our proposed method
show that the screening similarity search outperformed
the Tanimoto which considered the conventional similar-
ity methods. In addition, there was evidence to suggest
that our proposed method, Condorcet fusion at Top100,
was more effective for high diversity data sets.
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