
Newcastle University e-prints

Date deposited: 19th August 2011

Version of file: Author final

Peer Review Status: Unknown

Citation for item:

Zorzo AF, Romanovsky A, Xu J, Randell B, Stroud R, Welch I. Using Coordinated Atomic Actions to Design
Dependable Distributed Object Systems. In: OOPSLA '97 Workshop on Dependable Distributed Object
Systems, Atlanta, Georgia, USA, 5 October 1997. Part of the 1997 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA). 1997, Atlanta, Georgia, USA: ACM.

 Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,
without prior permission or charge, for personal research or study, educational, or not for profit
purposes provided that:

• A full bibliographic reference is made to the original source
• A link is made to the metadata record in Newcastle E-prints
• The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the
copyright holders.

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.
NE1 7RU. Tel. 0191 222 6000

javascript:ViewPublication(158991);�
javascript:ViewPublication(158991);�

Using Coordinated Atomic Actions to Design

Dependable Distributed Object Systems

A�Zorzo�� A�Romanovsky� J�Xu� B�Randell� R�Stroud� and I�Welch
Department of Computing Science� University of Newcastle upon Tyne� UK

� Introduction

The Coordinated Atomic �CA� action concept ��� ��� is a uni�ed approach to structuring complex
concurrent activities and supporting error recovery between multiple interacting objects in an
object�oriented system� This paradigm provides a conceptual framework for supporting both
cooperating and competing concurrency and achieving fault tolerance by extending and integrating
two complementary concepts � conversations and transactions� CA actions have properties of both
conversations and transactions� Conversations are used to control cooperative concurrency and to
implement coordinated error recovery whilst transactions are used to maintain the consistency of
shared resources in the presence of failures and competitive concurrency�

Each CA action has roles which are activated by some external activities	 i�e� participants	
�e�g� threads	 processes� and which cooperate within the scope of the CA action� A CA action
starts when all roles have been activated and �nishes when each role has completed its execution�
Objects that are external to CA actions and can therefore be accessed concurrently by more than
one CA action must support transactional semantics� In other words	 the sequence of operations
performed by a given CA action on a set of such objects must be atomic with respect to other
CA actions� In this way	 it is possible to guarantee good fault tolerance properties for CA actions
and prevent information smuggling between CA actions� The execution of a CA action updates
the system state �represented by a set of external objects� atomically� In addition	 actions can use
local objects� They are the only means by which the participants within an action can interact and
coordinate their executions� These local objects are similar to the local variables of procedures	
but because they can be used by several participants their consistency has to be provided �usually
not by the CA action support but by the objects themselves which must guarantee some form
of monitor semantics�� CA actions provide a basic framework for exception handling that can
support a variety of fault tolerance mechanisms to tolerate both hardware and software faults� In
particular	 backward and forward error recovery �as well as their combination� can be used�

The purpose of the research described in this paper is to demonstrate how CA actions could be
used as a system structuring tool for designing dependable distributed systems by applying them
to the Production Cell case study �
� and to the Distributed GAMMA model ���	 and to explore
some of the issues that arise in providing a distributed implementation of CA actions�

� Why Use CA Actions to Design Dependable Systems�

CA actions	 as a design structuring concept	 can provide appropriate support for the following
aspects of dependability�

�� Damage Con�nement� If an error is not detected and limited to a certain extent then its
eects may spread throughout the whole system inducing further errors� A CA action can con�ne
the erroneous information �ow by enclosing the interaction and cooperation between concurrent
activities within its boundaries and by controlling access to external shared objects�

�� Complexity Control� like the atomic action concept	 CA actions can provide a general
tool used for structuring complex concurrent systems and allow the designer to reason about the
dynamic structure of a system	 thereby controlling complexity and con�ning damage�

�Lecturer at PUCRS�Brazil �on leave��

�

� Fault Tolerance� For many critical applications	 fault tolerance is often the only possible
way of achieving the required reliability and safety� CA actions provide a uni�ed framework for
handling exceptional situations	 into which various proven hardware fault tolerance techniques
and existing software fault tolerance techniques can be easily incorporated�

�� Critical Condition Validation� For many safety�critical systems	 once an exceptional event
occurs the system must be left in a well�de�ned safe state� CA actions can naturally attach
pre� and post�conditions to their speci�cations� If necessary	 these conditions can be checked at
execution time� When any of the pre�conditions are violated due to a fault in a previous action
or in the enclosing action	 the corresponding CA action will not be executed� An appropriate
exception must be raised and be handled properly� Similarly	 if any of the post�conditions cannot
be met because of a fault within the CA action	 an exception must be raised and the eects of the
action must be undone	 leaving the system in the previous validated state�

CA actions can be nested� Nested CA actions can provide support for �ner damage con�nement
and enable layered exception handling �i�e� the raising of a failure exception from a nested CA
action would invoke appropriate recovery measures in the enclosing action�� A nested action
also helps to control complexity by further enclosing a group of basic operations which are part
of the containing action� In principle	 CA actions can be thought of as an abstraction of an
agreement protocol � some execution threads come together synchronously	 perform some actions
cooperatively	 and agree upon the outcome�

� Case Studies

Production Cell� The Production Cell model �
� is composed of � devices	 �
 actuators	 and
�� sensors �see Figure ��� Metal plates are conveyed to an elevating rotary table by a feed belt�
A robot takes each plate from the elevating rotary table and places it into the press using its �rst
arm� The robot�s �rst arm withdraws from the press	 then the press processes the metal plate�
After the plate has been forged	 the robot�s second arm takes the forged metal plate out of the
press and puts it on a deposit belt� Finally	 a travelling crane picks the metal plate up and takes
it to the feed belt again	 making the system cyclic�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Tr
av

el
lin

g
C

ra
ne

Feed Belt Elevating

Arm 1

Arm 2

Press

Robot

Deposit Belt

Metal Plate

Rotary
Table

Sensor

Figure �� Production Cell

Our design for the Production Cell separates the safety	 functionality	 and e�ciency require�
ments between a set of actions that occur during the system execution and a set of device�sensor
controllers that determine the order in which the actions are executed� Because the safety require�
ments are the most important in the system	 we satisfy them at the level of CA actions	 while the
other requirements are met by the device�sensor controllers	 which can be programmed in several
ways� Figure � shows the relation between the controllers and the actions in our design for the
Production Cell�

Typically an action has two roles	 one that takes a plate as an input argument	 and the other
that takes a plate as an output argument� The device correspondig to the role that has the plate
as an input argument passes the plate to the role that has the plate as an output argument� Some
actions have also sensor roles that check whether or not the devices are in the right position�

�

Table

Crane

Operator

Load

Unload

 means that the Controller participates
 in that Action, and a plate is sent/
 received to/from that Action

Press

Belt
Deposit

Press

Press

FeedBelt

Arrow connecting Action and Controller

Robot

Controlling Software

Load

Deposit
Load

Belt

Table
Unload

Table
Load

Reload
Plate

Belt
Deposit
Unload Transport

Plate

Plate

Forge
Plate

Shaded circles represent Actions
White circles represent Controllers

Dotted arrows represent message passing

Figure �� Relations in the Production Cell

For safety reasons	 all the actions designed for the Production Cell are synchronous actions	 i�e�
they will begin only when all the participants in the action start to execute their respective roles�
The same is true for the end of the action� Each participant is only able to execute a new action
when all participants have �nished their current role in the action they were executing together�

Distributed GAMMA Computation� GAMMA is a model of parallel computation based on
the idea of multiset transformations� It behaves in a similar way to a chemical reaction action
upon a collection of individual pieces of data ���� Each step of a GAMMA computation involves
selecting a set of values from the multiset and then combining them in some way to produce a new
set of values� A distributed GAMMA model has also been proposed ���� Its main novelties are
distribution of multisets �each of them is presented as a set of local multisets�	 and distribution of
chemical reactions� To demonstrate how distributed GAMMA computations can be implemented
using CA actions	 we have used a simple example where numbers from distributed multisets are
summed and the result is stored in a multiset�

Our distributed GAMMA system is composed of a set of participants �located on dierent
hosts�	 a CA action scheduler �located on a separate computer� and a set of CA actions� It is
designed in two levels� The �rst level is concerned with information exchange between computers
�participants and the CA action scheduler�� This is the level on which the execution of the CA
actions is scheduled �or the actions are glued together�� At the second level of design	 individual
CA actions perform steps of the GAMMA computation by coordinating the interactions between
participants and their access to external objects �multisets�� On this level numbers are passed
between dierent local multisets and summed�

A participant starts when it is loaded into a client computer and establishes a connection with
the CA action scheduler� Each participant has a local multiset	 i�e� a queue in which some part
of the global multiset is kept� Each participant informs the CA action scheduler when it receives
a new number in its local multiset� The CA action scheduler starts a new action whenever there
are at least two new numbers available in local multisets� There can be as many actions active
concurrently as there are pairs in all local multisets at a given time �although in practice the
degree of concurrency may be restricted for implementation reasons�� Each participant creates a
new thread to execute a role in an action and in this way it is possible for a participant to be
involved in several actions at the same time �for example	 if there are several numbers available
in its local multiset�� This allows a better parallelisation of the GAMMA computation�

CA actions are activated dynamically to perform the GAMMA computation� Each action
has three roles� two producers �each of which supplies a number from its local multiset� and a

second
number

Send

time

Add numbers and

store the result

Consumer

FirstProducer

SecondProducer

(FirstProducer)
ParticipantQueue

Send
first
number

Access to queue

(SecondProducer)

ParticipantQueue
(Consumer)

ParticipantQueue

Figure
� GAMMA CA Action

consumer �which computes the sum of these numbers and stores the result in its local multiset��
Each CA action encloses the interactions between the participants in a single step of the GAMMA
computation �see Figure
��

� Distributed Implementation of CA Actions

We have developed a distributed implementation of CA actions in which actions are represented
by objects composed of a set of role objects	 a set of local objects	 and a set of external objects�
The CA action mechanism is responsible for managing synchronous entry and exit to actions	
global exception handling	 recovery	 consistency and atomicity of external and local objects	 and
so on���� Figure � shows how the components of a CA action are distributed in our approach�

h
o

st
 4

h
o

st
 3

host 6

object
shared local

h
o

st 2

from other
CA Actions

private local object

corresponding role responsible

the roles under control

for its recovery

host 1
external

object
atomic

host 5

CA action

connects an object and the

connects the controller and

shows that the
role uses this object

action
controller

object

role 1
object

role 2
object role 3

object

Figure �� Distribution of CA action components

We have chosen to treat individual roles within an action as the units of distribution because
this allows them to be executed in the locations at which information is produced or consumed�
Although several approaches �e�g� ���� view CA actions as packages �modules	 objects	 etc��	 we
do not adhere to this approach because these units cannot be split into parts and distributed� The

�

general idea of attaching exception handling to roles suits role distribution very well	 in spite of
the fact that these handlers are controlled by the application�independent action controller �global
exception resolution and coordinated action exit are not local decisions�� The exception handling
which a role provides is application�speci�c and should be performed in its context� Moreover	
because of this	 roles deal with external and local object recovery�

To understand how local and external objects are distributed more clearly we should discuss
how they are manipulated and recovered� Although backward error recovery can be provided
in an application�independent fashion	 forward error recovery must be performed by the action
participants because such recovery is application�speci�c and cannot be provided by the underlying
CA action support mechanism�

Shared local objects should be recovered by participant handlers in an application�speci�c way�
Our proposal is to assume that each shared object is attached �logically� to an action participant
which has to recover it as part of action recovery if necessary� The object designer should take
advantage of any application�speci�c knowledge� If there is a chance that these objects can be
accessed by adjacent CA actions �e�g� parent	 sibling or child actions�	 then some mechanism
should be used to guarantee the consistency and atomicity of all modi�cations carried out within
one action� The simplest way could be just to lock the object� Another simpli�cation is using
shared local objects which are declared in only one action and are not seen by others� Our
conclusion is that the recovery of these objects is essentially application�speci�c	 and it is only due
to this that it can be made fast and simple� if simple recovery is not possible	 then these objects
should be treated as external ones�

Private local objects are not used concurrently and should be recovered by their owners� If
forward recovery is not possible	 a failure exception should be raised�

External objects can be supported by a transactional system� It is the responsibility of the
CA action support mechanism to ensure that a transaction is started at the same time as the CA
action and committed or aborted as appropriate when the CA action completes�

Acknowledgements

This research has been supported by ESPRIT Long Term Research Project ����� on �Design for
Validation� �DeVa�� Avelino Zorzo is also supported by CNPq�Brazil �grant no� ����
��������

References

��� B� Randell	 A� Romanovsky	 R� J� Stroud	 J� Xu	 and A� F� Zorzo� �Coordinated Atomic
Actions� from Concept to Implementation�� Submitted to Special Issue of IEEE Transactions

on Computers� �����

��� J� Xu	 B� Randell	 A� Romanovsky	 C� Rubira	 R� Stroud	 and Z� Wu� �Fault Tolerance in
Concurrent Object�Oriented Software through Coordinated Error Recovery�� In Proc� of the

��th Int� Symp� on Fault�Tolerant Computing	 IEEE CS Press	 USA	 ����	 pp� ��������

�
� C� Lewerentz and T� Lindner� �Formal Development of Reactive Systems� Case Study �Pro�
duction Cell� �� Lectures Notes in Computer Science ���	 Springer�Verlag	 January �����

��� G� Di Marzo and N� Guel�� �Formal Reverse Engineering of Java Applets Based Client�Server
Applications�� Submitted Paper�

��� J��P� Banatre and D� Metayer� �Programming by Multiset Transformation�� In CACM	 vol�

�	 no� �	 pp� ������� Jan� ���
�

��� A� Romanovsky	 B� Randell	 R� Stroud	 J� Xu	 and A� Zorzo	 �Implementation of Blocking
Coordinated Atomic Actions Based on Forward Error Recovery�� Journal of System Archi�

tecture �to be published in July�����

�

