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Abstract  

 

The design of the speed controller greatly affects the performance of an electric drive. A 

common strategy to control an induction machine is to use direct torque control combined 

with a PI speed controller. These schemes require proper and continuous tuning and 

therefore adaptive controllers are proposed to replace conventional PI controllers to 

improve the drive's performance. This paper presents a comparison between four different 

speed controller design strategies based on artificial intelligence techniques; two are based 

on tuning of conventional PI controllers, the third makes use of a fuzzy logic controller and 

the last is based on hybrid fuzzy sliding mode control theory. To provide a numerical 

comparison between different controllers, a performance index based on speed error is 

assigned. All methods are applied to the direct torque control scheme and each control 

strategy has been tested for its robustness and disturbance rejection ability.  
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1 Introduction  

 

PI controllers are widely used in industrial control systems applications. They have a simple 

structure and can offer a satisfactory performance over a wide range of operation. Due to the 

continuous variation in the plant parameters and the nonlinear operating conditions, fixed 

gain PI controllers may become unable to provide the required control performance [1-3]. A 

typical example where nonlinearities or changing parameters occurs is that of a modern 

brushless electrical drive involving an induction machine being fed by an inverter. It is very 

difficult for of-line tuning algorithms to cope with the continuous variations in the induction 

motor parameters as well as the nonlinearities present in inverter, motor and controller [1, 4-

6]. Therefore on-line controller tuning becomes desirable when high performance is required 

from the drive scheme. A lot of strategies have been proposed to tune the PI controller 

parameters. The most famous method, which is frequently used in industrial applications, is 

the Ziegler-Nichols method. Frequency response methods based on specified phase and gain 

margins as well as crossover frequency have also been used to improve the behaviour of the 

system. Root locus and pole assignment design techniques are also used, in addition to 

transient response specifications [6, 7]. These inherent disadvantages of the PI controller have 

encouraged the replacement of the conventional PI controller with adaptive control 

techniques, such as Sliding Mode Control (SMC), Model Reference Adaptive Control 

(MRAC), self tuning PI controllers and other Artificial Intelligence (AI) based controllers 

such as the Fuzzy Logic Controller (FLC), neural network, fuzzy neural network and Genetic 

Algorithms (GA) [1, 3-5, 8-12].  

Fuzzy logic strategy has been proposed for speed control in vector control induction motor 

drives [1, 3, 5, 12]. Combined with neural networks, a hybrid adaptive neuro-fuzzy controller 

has also been presented for speed control [13], with an on-line and off-line memetic control 

design being applied to permanent magnet drives [14]. Fuzzy logic strategy can cope with 

parameter uncertainties, imprecision and does not rely on any mathematical models based on 

human knowledge. Difficult tuning of fuzzy logic parameters and stability are its main 

problems [2, 15]. Genetic Algorithms (GA) are adaptive search techniques based on the 

"survival of the fittest" biological aspect. They have shown an efficient and effective way for 

optimization applications by searching global minimal without needing the derivative of the 

cost function. [11]. However most GA based strategies are not real time [6, 9]. GA strategy is 

proposed to optimize the performance of the Fuzzy and adaptive sliding mode controllers [3, 

9]. Fuzzy logic and GAs are also proposed for tuning the conventional speed controller for a 

vector control induction motor drive [4, 6]. Conventional and Fuzzy sliding mode strategies 

have been also presented as controllers for induction motor drives [2, 9, 10, 16]. Such 

strategies show robustness against motor parameter variation, better external disturbance 

rejection and stability and fast dynamic response [2, 9, 10]. Chattering in the steady state is 

the main drawback of the conventional strategy which may be solved by using the fuzzy 



sliding mode technique [2, 15, 18].  

Despite much research on the design of speed controllers based on either pure or hybrid 

Artificial Intelligence (AI), these techniques have been separately studied and some papers in 

the literature provide a comparative study of these different controllers [2, 12, 17]. Usually 

each new controller design is just compared with the conventional PI controller and not with 

other new designs [2, 4, 12]. Moreover, the majority of these designs are applied to vector 

control drives. One of the main suggestions from a recently published survey paper [19], by 

two of the present authors, is that progress in the electrical drives control area is hampered 

by lack of agreed standard tests and infrequent comparisons of revised algorithms with 

previous standards.  

This paper provides a comprehensive analysis and comparison between three of these different 

controller designs with a GA optimized PI controller. Transient response, robustness, and 

disturbance rejection capability based on assigning a performance index in terms of speed 

error provide a numerical comparison of performances when applied to a DTC induction 

motor drive.  

 

2 Machine model and DTC strategy  

 

The induction motor state space model with stator and rotor currents as state variables can 

be written in d-q coordinates fixed to the stator as:  
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The mechanical equation can be written as:  
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and the electromagnetic torque:  

. /rqsdsqrdmem iiiiPLT )+
2

3
  (3)  

where TL is the load torque, J is the combined motor and load inertia, B is the friction 

coefficient, P is the number of motor pole pairs, -r is the rotor speed in electric rad/s, Ls, Lr 

and Lm are the stator, rotor and mutual inductances respectively, isd, isq, ird, irq are the 



stator and rotor d-axis and q-axis current components and , is the leakage coefficient given by:  
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In principle DTC is a direct hysteresis stator ßux and electromagnetic torque control which 

triggers one of the eight available discrete space voltage vectors generated by a Voltage 

Source Inverter (VSI), to keep stator ßux and motor torque within the limits of two hysteresis 

bands. Correct application of this principle allows a decoupled control of ßux and torque. The 

DTC block diagram is shown in Fig. 1.  

 

Figure 1.  

 

3 PI controller tuning using GA  

 

GA is a stochastic global search optimization technique based on the mechanisms of natural 

selection. GA has been recognized as an effective technique to solve optimization problems [8, 

9]. Compared with other optimization techniques GA is superior in avoiding local minima 

which is a common aspect of nonlinear systems. Furthermore GA is a derivative-free 

optimization technique which makes it more attractive for applications that involve 

nonsmooth or noisy signals. Generally GA consists of three main stages; selection, crossover 

and mutation [3, 6, 8]:  

• Selection stage  

In this stage individuals of the initial population are selected for reproduction with 

probability proportional to their fitness value. The purpose of this operation is to obtain a 

mating pool with the fittest individuals selected according to a probabilistic rule that allows 

these individuals to be mated into the new population.  

• Crossover stage  

After the selection stage the genetic crossover operation is then applied between parent pairs 

from the mating pool to generate new individuals or offsprings which acquire good features 

from their parents. This crossover operation is performed with a crossover probability (Pc). 

The crossover operation can be a one-point or a double-point operation.  

• Mutation stage  

The last operation is genetic mutation which takes place after the crossover operation. The 

application of genetic mutation introduces a change in the offspring bit string to produce 

new chromosomes which may represent a solution of the problem and at the same time avoid 

the population falling into a local optimal point. The mutation operation is performed with a 



mutation probability (Pm) which is usually low to preserve good chromosomes and to mimic 

real life where mutation rarely happens. The application of these three basic operations 

allows the creation of new individuals which may be better than their parents. This 

algorithm is repeated for many generations and finally stops when reaching individuals which 

provide an optimum solution to the problem [3, 7-9]. The GA architecture is shown in Fig. 2 

[3, 7].  

 

Figure 2.  

 

Due to its effectiveness in searching nonlinear, multi-dimensional search spaces, GA can be 

applied to the tuning of PI speed controller gains to cope with the nonlinearities existing in 

the inverter and the machine. In this case the fitness function used to evaluate the individuals 

of each generation can be chosen to be the reciprocal of Integral with Time of Absolute Error 

(ITAE). The mathematical expression of this cost function, which is the function minimized 

by the GA, can be written as:  

dttetITAE
t

0+
0

)(   (5)  

During the search process the GA looks for the optimal setting of the PI speed controller 

gains which minimize the cost function (ITAE). Individuals with low ITAE are considered as 

the fittest. This function is used as the GA evolution criteria and has the advantage of 

avoiding cancellation of positive and negative errors. Each chromosome represents a solution 

of the problem and hence it consists of two genes: the first one is the Kp value and the second 

is the Ki value: So the chromosome vector is [Kp Ki]. The range of each gain must be 

specified. The genetic algorithm parameters chosen for the tuning purpose are shown in Table 

1, [7].  

 

Table 1.  

 

4 PI tuned by fuzzy logic  

 

The control strategy presented in section 3 suffers from an inability to cope with online 

changes of the system's parameters as well as disturbance rejection, even though it provides 

optimum gains for a specific operating condition. On-line GA strategies have been proposed 

but they require significant processing power and hence may be unattractive for real drives 

applications [6]. A solution to this problem is to change on-line the gains of the PI 

compensator by using a Fuzzy Logic Controller (FLC) [4]. Tuning methods based on fuzzy 



logic have been found to offer advantage in dealing with systems that are imprecise, 

nonlinear, or time varying with uncertain or unknown parameter and structure variation. 

This makes the application of the FLC ideal for the tuning of a speed controller in a DTC 

scheme.  

Furthermore a FLC is relatively easy to implement and does not need a mathematical model 

of the controlled system [1, 3]. FLC has become popular in the field of industrial control 

applications. When fuzzy logic is used for the on-line tuning of the PI speed controller it 

receives the scaled values of the speed error and the change in speed error. Its output is the 

updating of the PI controller gains (!Kp and !Ki) based on a set of rules to maintain 

excellent control performance even in the presence of parameter variation and drive 

nonlinearity [4, 7]. The block diagram of the control system is shown in Fig. 3.  

 

Figure 3.  

 

Each input of the FLC has 5 triangular membership functions with equal width and overlap. 

The first output (!Kp) has 3 triangular membership functions; whereas the second output 

(!Ki) has 5 membership functions. The inference rules base has 25 rules [4, 7]. The 

parameters of the FLC are obtained by trial error to ensure optimal performance. The fuzzy 

inference rules used for the on-line tuning of the PI controller gains are given in Tables 2 and 

3 [4, 7]. The flow chart of this self tuning (ST) controller is given in Fig. 4 [7].  

 

 

Tables 2 - 3  

 

Figure 4.  

 

The parameters of the FL ST algorithm are listed in Table 4.  

 

Table 4.  

 

5 Fuzzy logic speed controller  

 

Since FLC can cope with the nonlinearities, load disturbances and the uncertainties of the 

DTC it has also been used to entirely replace the traditional PI controller [1, 3, 12]. For the 



proposed FL speed controller, the inputs are the normalized values of the speed error and the 

rate of change to remain between!11 limits of speed error [1]. Two scaling factors (Ke and 

Kd) are used to normalize the actual speed error and its rate of change. The output of the 

controller is the normalized change of the motor torque command which when multiplied by 

a third scaling factor (Ku) generates the actual value of the rate of change of the motor 

torque demand.  

Finally, a discrete integration is performed to get the value of the electromagnetic torque 

command. Hence a PI-Type FLC is created [5, 17]. The FLC structure is shown in Fig. 5 [1, 

15], [5]. Table 5 shows the fuzzy rule base with 49 rules which can be obtained from 

observation of the drive performance at different operating points, [5, 17].  

The following fuzzy sets are used: NB= NEGATIVE BIG, NM= NEGATIVE MEDUIM, 

NS= NEGATIVE SMALL, EZ= ZERO, PS= POSITIVE SMALL, PM= POSITIVE 

MEDUIM, PB= POSITIVE BIG, [5, 17]. The membership functions of the FLC shown in 

Fig. 6 are obtained by a trial and error technique where the EZ fuzzy set has a narrow shape 

different from other fuzzy sets to improve the controller steady state performance.  

 

Figure 5.  

 

Table 5.  

 

Figure 6.  

 

6 Fuzzy sliding mode controller  

 

Another method of replacing the PI controller is the use of a Sliding Mode Control (SMC) [2, 

10]. This is a Variable Structure Control (VSC) strategy with high frequency switched 

feedback control which forces the states of the system to slide on a predefined hypersurface. 

The plant states are mapped into a control surface using different continuous functions [18]. 

The discontinuous control action switches between these several functions according to plant 

state value at each instant to achieve the desired trajectory. SMC is known for its capability 

to cope with bounded disturbances as well as model imprecision which makes it ideal for the 

robust nonlinear control of induction motor drives [2, 6, 10]. Designing a sliding mode speed 

controller for the induction motor DTC drive starts by defining the speed error as [10]:  

. / ")+ rrte --  (6)  

Defining the attractive switching surface as: 
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such that the error behaviour at the sliding surface at s = 0 will be represented by a 

homogeneous differential equation and hence it will be forced to exponentially decay to zero. 

The error dynamics equation can be written as:  

. / . / 0; 3+ ktkete!  (8) 

The structure of the sliding mode controller can be written as [15]:  
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The sign function is given by:  
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where ueq is the equivalent control which defines the control action when the system is on the 

sliding mode [16], and k1 is a constant which represents the maximum value of the 

controller output. This constant is selected to be large enough to reduce the effect of any 

external disturbances [15]. s(t) is the switching function because the control action switches 

its sign according to its value. The switching control action is shown in Fig. 7(a). 

Unfortunately the use of the sign function causes high frequency chattering due to the 

discontinuous control action, which represents a severe problem when the system state is 

close to the sliding surface [15]. This problem is more severe when a SMC is used in a DTC 

scheme which already includes many switching operations to achieve the desired values of the 

electromagnetic torque and the stator ßux. To overcome this problem a boundary layer is 

introduced around the switching surface as shown in Fig. 7(b), [15, 16, 18]. The switching 

part of the control law is now written as:  
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where B represents the thickness of the boundary layer. The saturation function is defined as [13]:  
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The introduction of the saturation function represents the continuous approximation of the 

discrete relay action by the sign function. The system robustness becomes highly dependent 

on the boundary layer thickness [16].  

Another approach to reduce the chattering phenomenon is to combine a FLC with a SMC [2, 



15]. Hence a new Fuzzy Sliding Mode Controller (FSMC) is formed with the robustness of 

the SMC and the smoothness of a FLC. In this technique the term –k1sat(s/!) is replaced by a 

fuzzy inference system as shown in Fig. 7(c) in order to smooth the control action [15]. The 

choice of B is crucial; small values of B may not solve the chattering problem and large values may 

increase the steady state error [15], requiring a compromise choice when selecting the 

boundary layer thickness The block diagram of the control system and the input-output 

membership functions of the fuzzy logic controller are shown in Figs. 8-9 [15, 16]. The If-

Then rules of the fuzzy logic controller can be written as [15, 16]:  

If s is BN then us is BIGGER  

If s is MN then us is BIG  

If s is JZ then us is MEDIUM  

If s is MP then us is SMALL  

If s is BP then us is SMALLER  

 

Figures 7-9  

 

7 Simulation results  

 

To compare the different speed controller design strategies a DTC of a 7.5 kW squirrel cage 

induction motor shown in Fig. 1 is simulated using Matlab-Simulink software using the well 

established two-axis machine model, which includes the main speed dependant terms. Very 

low speed behaviour will be affected by power electronic nonlinearities such as device 

voltage drop, although attention has been given to reducing these effects on behaviour [19]. 

Experimental investigation of the most promising schemes is being sort, but the comparison 

based on these simulations is invaluable in establishing priorities. The induction motor 

parameters are given in Table 6. The motor is started under 25% rated load with a speed 

command of 50 electrical rad/s and is running under normal operating conditions from t=0 to 

t=0.5s. To study the effect of parameter variation on the performance of the different 

controllers, a 20% step increase in the motor stator resistance is applied at t=0.5s. Stator 

resistance is chosen because the performance of DTC drive is greatly affected by the 

variation of this parameter especially at low speed. At t=1s, a 100% sudden load increase is 

applied to the motor.  

The simulation is performed for the four different speed controller strategies:  

PI-GA: Using the GA parameters given in Table 1, the optimal PI controller gains with 

25% rated torque applied to the motor during the tuning process are found to be Kp = 127, 

Ki = 4.  



PI-FL: The PI speed controller is tuned online using fuzzy logic as shown in Fig. 3 with the 

parameters given in Table 4. These parameters are obtained by trial error to ensure optimal 

performance.  

FLC: The PI speed controller is entirely replaced by a FLC as shown in Fig. 5. The 

controller parameters are chosen based on the guidelines reported in [1] as: Ke =0.007, 

Kd=0.5, Ku=17.3.  

FSM: The PI controller is replaced by a fuzzy SMC as shown in Fig. 8. The controller 

coefficients used in the simulation are: k =!)10)5, k1 = 300 and B = 1. The value of K is obtained 

based on required error dynamic performance. No design criterion is assigned to design the value 

of K1; however, its value should be selected high enough to make the manifold s = 0 in (7) 

attractive [15]. The value of B is obtained as a compromise between chattering reduction and 

steady state error requirements.  

 

7 .1  Spe ed  r e spon s e   

The starting transient performance of the induction motor under the different control 

strategies is shown in Fig.10. The FLC has the best transient response where the motor speed 

is approximately built up in less than 0.1s without overshoot. PI-FL has an over-damped 

response where the motor speed builds in 0.115s without overshoot. PI-GA and FSM have a 

speed overshoot of 1% and 1.4% respectively which are still very small values.  

Fig.11 shows the speed response of the different techniques when the stator resistance 

changes abruptly. Both PI-GA and FSM show more robustness against stator resistance 

variation compared to FLC and PI-FL. When the 100% load change is applied to the motor, 

the rotor speed with the PI-GA strategy drops to 49.92 rad/s with a steady state error of 

0.16% as shown in Fig.12 (a). This is due to the variation of the operating conditions from 

those used during the of-line tuning process. Due to their adaptive features, the three other 

control strategies show fast disturbance rejection. FSM is the most robust controller where 

the speed drops initially to 49.98 rad/s and then is adjusted back to its demanded value in 

1ms as shown in Fig.12 (b). The FLC and PI-FL controllers show speed drops to 49.8 rad/s 

and 49.6 rad/s but are corrected back after 0.1 and 0.2 s respectively, as shown in 

Figs.12(c)-(d). The load torque disturbance rejection property of the different controllers is 

shown together in Fig. 13.  

 

Figure 10-13  

 

Table 6.  

 



7.2 ITAE  

To give a clear idea of the performance of the different controllers, the ITAE using each 

technique is calculated during these three stages: normal operating conditions, stator 

resistance variation and load torque change, as shown in Figs.14-17. During normal operating 

conditions, PI-GA shows the lowest ITAE since it uses the optimal PI controller gains for 

normal operating conditions. FSM has an ITAE near to that of PI-GA. Compared to FLC, 

PI-FL shows a lower ITAE when the drive is working under normal operating conditions. 

During stator resistance variations, FSM has the lowest ITAE. PI-GA has the lowest ITAE 

after the FSM technique. PI-FL performance is still better compared to FLC for motor 

parameter variations. When the sudden load change takes place at t=1s, PI-GA gives the 

highest ITAE whereas FSM shows excellent robustness with the lowest ITAE. For this load 

variation, FLC shows better disturbance rejection capability compared to PI-FL. The 

simulation results are summarized in Table 7.  

 

Figures 14-17  

 

Fuzzy logic has now been combined with a conventional sliding mode controller with 

switching function based on (10), simulated under the same conditions. The total ITAE 

obtained is 0.293, which is very large compared to the value of 0.083 obtained from FSM. 

The considerable chattering in the speed response obtained from the conventional technique 

is shown in Fig. 18. This chattering is reduced dramatically when fuzzy logic is combined 

with sliding mode as shown in Fig. 19.  

 

Figures 18-19  

 

Table 7.  

 

8 Discussion  

 

PI-GA works well under normal operating conditions, giving small drift but has a low torque 

disturbance rejection capability due to the fixed gain controller. Generally the GA of-line 

tuning process is simple but may need a lot of time to converge to the optimal solution, 

depending on the complexity of the drive system and as the choice of the GA parameters. To 

decrease the convergence time, GA parameters such as crossover and mutation rate can be 

varied based on statistics of the population at each generation to form an adaptive genetic 

algorithm. Furthermore, GA can be implemented to tune the PI controller gains on-line, 



however the updating time will be highly dependent on the convergence speed of the 

algorithm.  

Due to its variable gains, PI-FL performs better than fixed gain PI-GA during a load torque 

disturbance. Compared to FLC, PI-FL has better robustness against motor parameter 

variation as well as better steady state performance since the gain updating stops after a 

given limit of speed accuracy. PI-FL also has better steady state performance compared to 

FSM which is affected by the chattering in the steady state. FLC has a better disturbance 

rejection capability compared to PI-FL and a better transient response during starting. It 

does require on-line tuning of its parameters: scaling factors, membership functions and rules 

during drive operation to form an adaptive fuzzy logic controller to improve its steady state 

performance. This will increase the scheme complexity and computational effort. Results 

obtained from FSM look promising: during normal operating conditions its performance is 

very close to PI-GA. Furthermore it shows good robustness against motor parameter 

variation with good, fast load disturbance rejection capability related to proper selection of 

the attractive switching surface with minimum hitting time. However, FSM still needs some 

improvement to reduce the chattering phenomenon which directly affects the steady state 

performance of the controller. A comparison between the four controllers is given in Table 8.  

 

Table 8.  

 

9 Conclusion  

 

In this paper four design strategies for the speed controller in DTC of induction motor are 

presented: PI controller tuned by a genetic algorithm and fuzzy logic, fuzzy sliding mode and 

fuzzy logic controllers. These design techniques are based on artificial intelligence techniques 

which do not require any mathematical modelling. All these techniques work well under 

normal operating conditions. Adaptive structure controllers show more robustness against 

motor parameter variations as well as high disturbance rejection capability compared to fixed 

structure techniques. The fuzzy logic speed controller needs some modifications to improve 

its steady state performance. The fuzzy sliding mode controller seems the best choice for the 

controller design in terms of robustness and disturbance rejection capability, but still needs 

modifications to reduce the chattering phenomenon in the steady state.  
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Fig. 1 Block diagram of DTC with speed control loop  
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Fig. 2 Genetic Algorithm Architecture 
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Fig. 3 Fuzzy self tuning PI speed controller 
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Fig. 4 Flow chart of Fuzzy self tuning PI speed controller 
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Fig. 5 Block diagram of PI-Type Fuzzy logic controller  
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Fig. 6 Fuzzy controller input and output membership functions (a) speed error (b) change in 

speed error (c) change in the torque command 
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Fig. 7 Switching functions (a) Sliding mode (b) Sliding mode with boundary layer (c) Fuzzy 

sliding mode 



Fig.8 Fuzzy sliding mode speed controller 
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Fig.9 Fuzzy logic membership functions (a) input (b) output  
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Fig.10 Starting transient performance 
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Fig.11 Speed response during Rs variation 
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Fig. 12 Speed response due to load change (a) PI-GA (b) FSM (c) FLC (d) PI-FL 
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Fig. 13 Disturbance rejection property for different controllers 
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Fig.14 Total ITAE 
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Fig.15 ITAE with normal operating conditions 
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Fig.16 ITAE with stator resistance variation 
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Fig.17 ITAE with load torque change 
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Fig.18 Speed response using conventional sliding mode controller 
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Fig.19 Speed response using fuzzy sliding mode controller 

 

Tables 

 

Table 1 

Genetic algorithm parameters 

GA property Value/ Method 

Number of generations 10 

No of chromosomes in each generation 8 

No of genes in each chromosome  2 

Chromosome length 40 bit 

Selection method Stochastic Universal Selection (SUS) 

Crossover method Double-point 

Crossover probability 0.7 

Mutation rate 0.05 

 



 

Table 2 

Fuzzy rules for updating the gain "Kp

              e! 

"e! 

NB NS ZE PS PB 

NB — PB PB PB — 

NS — PB PS ZE — 

ZE — PB ZE PB — 

PS — ZE PS PB — 

PB — PB PB PB — 

Table 3 

Fuzzy rules for updating the gain "Ki

              e! 

"e! 

NB NS ZE PS PB 

NB ZE  NS NB NS ZE  

NS PS ZE NS ZE PS 

ZE PB PS ZE PS PB 

PS PS ZE NS ZE PS 

PB ZE NS NB NS ZE  

 

Table 4 

FLC parameters 

Variables Value  

Input scaling factors K1, K2 1.1, 0.1 

Output scaling factors K3, K4 0.2, 1.1 

Defuzzification method Centre of gravity 

Kp initial 10 

Ki initial 1.2 

  

 

 

 



Table 5 

PI-Type fuzzy logic controller rules 

         e! 

"e!
NB NM NS EZ PS PM PB 

PB EZ PS PM PB PB PB PB 

PM NS EZ PS PM PB PB PB 

PS NM NS EZ PS PM PB PB 

EZ NB NM NS EZ PS PM PB 

NS NB NB NM NS EZ PS PM 

NM NB NB NB NM NS EZ PS 

NB NB NB NB NB NM NS EZ 

 

Table 6 

Induction motor parameters 

Machine parameter Value 

Rated power, [kW] 7.5 

Rated voltage, [V] 220 

Rated torque, [Nm] 40 

Rated frequency, [Hz]  60 

Rs, [#] 0.15 

Rr, [#]  0.17 

Ls, [mH]  0.035 

Lm, [mH] 0.0338 

Lr, [mH] 0.035 

J [Kg / m
2
] 0.14 

Pole number 4 

 



Table 7 

Summary of results 

 PI-GA 

Kp = 127 

      Ki  =  4 

PI-FL 

Variable Gains 

FLC FSM 

I J. sst

ITAE

5.0,0K /  0.0811 0.0835 0.0863 0.0813 

I J. sst

ITAE

1,5.0K /  0.0014 0.0028 0.0054 0.0006 

I J. sst

ITAE

5.1,1K /  0.0532 0.0306 0.0166 0.0016 

I J. sst

ITAETotal

5.1,0K /  0.136 0.117 0.108 0.083 

Speed 

overshoot 1% 0% 0% 1.4% 

Torque appl. 

Initial drop 

St. st. error 

 

49.92 r/s 

0.16% 

 

49.6 r/s 

0 after 0.2s 

49.8 r/s 

0 after 0.1s 

49.98 r/s 

0 after 1ms 

  

 

Table 8 

Comparison among controllers   

            Method 

 

Property 

                          

 

PI-GA 

 

PI-FL 

 

FLC 

 

FSM 

Starting transient 

performance 

Good Good  Very 

good 

Good  

 

Robustness 

Very 

good 

Very 

good 

Good Excellent 

Disturbance 

rejection 

Poor Good Very 

good 

 Excellent 

St. state 

performance 

Poor  Very good  Moderate Good 

Computational 

effort 

High during 

tuning and 

low during 

drive 

operation 

High High Low 

 


