SOFTWARE DYNAMIC PRICING BY AN OPTIMIZATION DETERMINISTIC MODEL WITH PRESENCE OF PIRACY

RASHID MESBAH

A thesis submitted in partial fulfilment of the requirements for the award of the degree of
Master of Engineering (Industrial Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JANUARY 2015

DEDICATION

To my worthy parents who are virtuous pillars of my growth. Moreover to people who seek the reality to quench their curiosity and use their faculty to change the world for the better.

ACKNOWLEDGEMENT

I appreciate the kindness and friendship of my supervisor Dr. Syed Ahmad Helmi which compassionately understand and follow my research and give me hope and inspiration to continue working on my thesis. Also my thanks to my friends who were beside me in difficulties.

Abstract

This project presents an optimization model for pricing a monopolistic software application with presence of piracy. The purpose is raising revenue produced by product's sale with adjusting prices in a price skimming strategy and minimizing amount of piracy. The model is a multifunctional price skimming optimization with simplex method which accompanied by deterministic and stochastic methods for calculating time intervals of each segment. Linear functions are used to describing demand of each segment. In addition a linear piracy function is proposed to making piracy a dynamic parameter. The model has the ability to apply penetration pricing and controlling market share. Windows 7 is chosen for case study. Optimizing case of Windows 7 is resulted in 8.2 percentage increase in revenue, while value of net market share is virtually constant. Therefore the developed model demonstrates its competence in optimizing revenue by modifying prices with presence of piracy. Results show that to face with piracy, range of price skimming must decreased in a way that highest price need to be intensely decreased and also lowest one must be slightly decreased. By using this strategy lowest loss in revenue due to piracy can be recurred. Effects of an escalation in piracy on proposed optimization model are: increase in number of sale, demand, selling portion, market share but decrease in price, price difference between segments, and revenue. Time intervals between successive prices, which are obtained for Windows 7, is obtained by deterministic and stochastic technics which are shown to be nearly equal due to large number of customers.

Abstract

ABSTRAK

Kajian ini mengetengahkan pengoptimasian model untuk menentukan harga perisian berbentuk monopolistik dengan kewujudan masalah cetak rompak. Ia bertujuan untuk meningkatkan pulangan melalui penjualan produk tersebut. Ia dilaksanakan dengan menggunakan kaedah penentuan harga permulaan yang tinggi ketika produk tersebut baru diperkenalkan dan pada masa yang sama mengurangkan kadar cetak rompak. Model tersebut mempunyai pelbagai fungsi dalam menentukan harga termasuk kaedah simplex, kaedah boleh tentu dan kaedah stokastik. Fungsi berkadar terus digunakan untuk menentukan jumlah permintaan pada setiap segmen. Tambahan itu, fungsi yang berkadar terus dengan cetak rompak telah dicadangkan dengan menjadikan cetak rompak sebagai parameter yang dinamik. Model ini berupaya untuk menembusi pasaran dan menguasai pasaran. Perisian Windows 7 telah dipilih sebagai bahan ujikaji. Pengoptimasian perisian Windows 7 ini berjaya mengingkatkan pulangan sebanyak 8.2% manakala nilai penguasaan pasaran adalah tidak berubah. Oleh yang demikian, model yang telah dibina ini berjaya menunjukkan keupayaannya untuk mengoptimasikan pulangan dengan mengubah harga walaupun dengan kehadiran masalah cetak rompak. Keputusan kajian menunjukkan julat harga perlu dikurangkan bagi mengurangkan aktiviti cetak rompak. Peningkatan aktiviti cetak rompak pada model yang telah dioptimumkan ini adalah peningkatan jualan, permintaan pasaran, penguasaan pasaran tetapi perlu seiring dengan penurunan harga, perbezaan harga antara segmen dan pendapatan. Tempoh masa antara dua harga telah ditentukan melalui kaedah "deterministic" dan "stokastik". Nilainya adalah hampir sama memandangkan bilangan pengguna yang besar.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi

1. INTRODUCTION 1
1.1 Introduction 1
1.2 Background 1
1.3 Research questions 4
1.4 Problem Statement 4
1.5 Objective 5
1.6 Scope 5
2. LITERATURE REVIEW 6
$2.1 \quad$ Introduction 6
2.2 General Dynamic Pricing Models 6
2.2.1 Talluri And Van Ryzin Model: Single-Product Dynamic Pricing Without Replenishment 7
2.2.2 Chopra: Pricing To Multiple Segments 8
2.3 Software Pricing Dynamic Models 9
2.3.1 Yipeng Liu And Hsing Model: Optimal Software
Pricing In The Presence Of Piracy And Word-Of-Mouth Effect(Liu, Et Al., 2010) 10
2.3.2 Kogan And Ozinci: Containing Piracy With Product Pricing Updating And Protection Investments 14
2.3.3 Waters Pricing Model 14
2.4 Parameters Of Pricing Models For Software 15
2.4.1 Price Formation 15
2.4.2 Price Discrimination Strategies 17
2.4.3 Price Bundling 21
2.4.4 Dynamic Pricing Strategies 25
2.5 System Dynamic 26
3. METHODOLOGY 29
3.1 Introduction 29
3.2 Modeling Methods 29
3.3 Market And Product 30
3.3.1 Monopoly, Oligopoly, And Perfect-Competition Models 30
3.4 Research Procedure 31
3.5 Expected Result 34
4. OPTIMIZATION MODEL 35
4.1 Introduction 35
4.2 Demand Function 35
4.2.1 Regularity Assumptions Of Demand Function 37
4.2.2 Microeconomic Analysis Of Linear Function For Software Pricing 37
4.3 Segmentation Of Customers 40
4.4 Software Dynamic Pricing Optimization Model 42
4.4.1 Piracy Function 44
4.4.2 Model's Constraints 45
4.4.3 Stochastic And Deterministic Time Intervals 46
5. DATA COLLECTION AND ANALYSIS 47
5.1 Introduction 47
5.2 Data Collection 47
5.3 Data Analysis 51
5.3.1 Building Demand Functions 52
5.3.2 Piracy Function 55
5.4 Solving The Case Study Via Revenue Optimization Model 56
5.4.1 Deterministic Time Intervals 60
5.4.2 Stochastic Time Intervals 60
5.4.3 A Minimum Price Constraint For Last Segment 62
5.5 Validation Of The Model 64
5.5.1 An Alternative Solution By Microeconomic Techniques 64
5.5.2 Compressing Price Range By Piracy 65
6. RESULTS AND DISSCUTION 67
6.1 Introduction 67
6.2 Discussing Results 67
6.3 Conclusion 76
6.3.1 Significant And Unique Specifications of Presented Model 77
6.4 Future Work 79
REFERENCES 80
Appendix A 85

LIST OF TABLES

TABLE NO.TITLEPAGE
4.1 Common Demand Functions 36
5.1 Microsoft Windows 7 And PC Sales Information 49
5.2 Market Analysis of Windows 7 51
5.3 Market Parameters 52
5.4 Without Piracy 53
5.5 With Piracy 54
5.6 Functions Without Piracy 54
5.7 Functions With Piracy 54
5.8 Piracy Percentages 55
5.9 Predicted Values Of Piracy Percentages 56
5.10 Results of Solving Windows 7 Pricing Model 59
5.11 Deterministic Time Intervals 60
5.12 Stochastic Time Intervals 61
5.13 Expected Revenue 62
5.15 Microeconomic Solution Results 64
5.16 Model Results 65
5.17 Compressed Prices 66
6.1 Market Analysis of Windows 7 68
6.2 Revenue 68
6.3 Total Sale, Piracy And Demand 68
6.4 Optimized Variables 69
6.5 Current Variables 69
6.6 Revenue In Million Dollar 73

LIST OF FIGURES

FIGURE NO.
TITLE
PAGE
2.1 Legal and illegal software diffusion over time. 13
2.2 Parameters of pricing models for software products 16
2.3 Aspects of price bundling (Lehmann \& Buxmann, 2009) 22
2.4 Effect of RP correlations on the homogeneity of the RPs for the
bundle (Olderog and Skiera, 2000)
3.1 Research procedure 33
4.1 Multi-function segmentation 35
4.2 Linear function 38
4.3 Microeconomic parameters of a linear function 39
4.4 Comparing demand functions of 4 segments 41
4.5 Piracy percentage function 45
4.1 Regression carve 55
6.1 Windows 7's sale values of model's results and case 70
6.2 Windows 7's piracy values of model's results and case 70
6.3 Windows 7's demand values of model's results and case 71
6.4 Windows 7's price values of model's results and case 72
6.5 Windows 7's piracy percentage of model's results and case 72
6.6 Windows 7's revenue of model's results and case 73
6.7 Comparison of time intervals 74
6.8 Causal effect diagram of variables 75
6.9 Vensim analysis of price and revenue 75

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter a background is presented to explain basic definitions and concepts of pricing and software market. Then research question, problem statement, objective and scope of project is presented.

1.2 Background

Revenue management is the use of pricing to increase the profit generated from a limited supply of supply chain assets. The impact of revenue management on supply chain performance can be significant. Pricing influences the amount of product demanded and the total revenue generated (Chopra \& Meindl, 2010). It also is an important lever to increase supply chain profits by better matching supply and demand. Pricing plays a key role in most organizations' strategies (Simon 1992). It directly affects revenues and therefore, in the long term, profits. Incorrect decisions can jeopardize the company's reputation and customer relationships. Despite its importance, pricing strategies are often deficient in a number of respects, including lack of rationality in the shape of ad-hoc or arbitrary decisions (Florissen 2008). Small and midsize enterprises frequently rely on gut feeling when they make pricing decisions.

Dynamic pricing is the tactic of varying price over time, and suitable for assets such as fashion apparel that have a clear date which they lose a lot of their value beyond. Studies show that price adjustment at the right time usually has a greater impact on profit than a reduction in costs. For instance, a price adjustment of just 1% can lead to a rise in operating profit of some 8% (Marn et al., 2003).Price skimming is one of strategies of dynamic pricing. In that a rather high starting price gradually reduced in the course of time. The aim is to reach customers with a high willingness to pay first and to skim consumers with lower reservation prices later by a lower price (Buxmann et al., 2008a). Effectively this create multi-degree price discrimination segmenting customers with different values for the good. (Talluri \& Van Ryzin, 2005). Price discrimination is strategy of charge customers with different prices for modified versions of a product.

The software industry is fundamentally different from other industries. This is partly due to the unique nature of software as a product, but also the structure of software markets. A distinctive feature of software products is that they, like all other digital goods, can be reproduced cheaply. In other words, variable costs are close to zero. This cost structure has the result that the licensing side of software providers' business is generally more profitable than the service side. Moreover, software can be copied any number of times without loss of quality. In addition, once a software product has been developed, it is relatively simple to create different versions or packages and sell these to separate groups of customers at different prices; this technic names versioning or price discrimination.

Software markets also have some unique characteristics. The software industry is more international in nature than practically any other sector. Software can be developed by distributed teams working almost anywhere in the world, and sold over the Internet in seconds, at negligible cost. This has fueled global competition between software providers. In comparison with other industries, providers in many segments enjoy little "home advantage" in their national markets. Moreover, the network effects associated with software often creates winner-takes-all markets (Buxmann, et al., 2013). It is relatively expensive to develop a first copy of a digital good. But the marginal cost of an additional copy is near zero. It cause cost-based pricing be useless
here and demand- or value-based pricing makes more sense. This means that software providers need to base their prices on how much their potential customers are willing to pay.

Regarding to special features which is alluded so far about software pricing conventional pricing models are not directly applicable to software products (Bontis and Chung 2000). Furthermore for price skimming have been not offered any model yet in software industry and it is the fact that inspires this research.

Most implemented models in supply chain minimize the cost of meeting demand rather than maximizing net revenue which is more appropriate for tactical and strategic planning (Shapiro, 2007). This is advantage of using revenue management that let managers to focus on maximizing revenue. Variables under control of marketing affect demand. A powerful one is price which changing it can influence on demand significantly. This strategy name dynamic pricing. Dynamic pricing is as old as commerce itself. Firms and individuals have always resorted to price adjustments (such as haggling at the bazaar) in an effort to sell their goods at a price that is as high as possible yet acceptable to customers. However, the last decade has witnessed an increased application of scientific methods and software systems for dynamic pricing, both in the estimation of demand functions and the optimization of pricing decisions (Talluri \& Van Ryzin, 2005).

Price skimming is a strategy that can be used for software regarding to its nature which has a decreasing value until it get zero price. Thereby it is a prominent field that using it gives a noticeable profit to an organization. Price skimming increase number of sales by selling product to several segments. It rise the penetration rate of product that is very important for software since it boost number of users and the network effect in a synergy.

Segmenting of customers with differential pricing decreases the number of lost sales and thus improves asset availability to the customer, while improving profits for the asset owner (Chopra \& Meindl, 2010). Availability of software in low price for
customers dims amount of piracy. This is attributable to the fact that the most common reason offered for pirating software is the high cost of legal software (Cheng, 1997)

According to the fourth BSA and IDC Global Software Piracy Study (Business Software Alliance), 43% of the software installed in 2009 on personal computers worldwide was obtained illegally, amounting to $\$ 51.4$ billion in global losses (Anon., 2009). Base on the fact that piracy change demand of software remarkably it has to considered in pricing models in order to model make sense.

1.3 Research Questions

Fundamental questions by which this project is written are:
i. What are optimum prices for selling software that maximize revenue with presence of piracy?
ii. How to minimize piracy loss?
iii. How to calculate time interval of each customer's segment?

1.4 Problem Statement

There is not an optimization price skimming model for software applications in the literature. Models use other mathematical methods include arithmetic, heuristic, exhaustive search. Furthermore limitative assumptions make models far from reality. In addition models are intricate and complex which are difficult to use. Common models for tangible goods are not useful in the case because they are based on inventory. Therefore a practical model which be able to describe properly the real situation of market is required.

1.5 Objective

The objective of the study is presenting a deterministic price skimming model for a software with existence of piracy in order to maximize revenue by adjusting prices in a dynamic situation of market. Furthermore obtaining time interval of customer's pricing segments.

1.6 Scope

Assumptions and tools that are used include: Market is monopoly, customers are heterogeneous and strategic, product is perishable, durable and therefore there is a finite sale horizon. Price skimming as a technique of dynamic pricing is used. Product is software and Windows 7 is used as the case study. Presence of software Piracy is considered. Mathematic tools that are used are nonlinear programing, optimization with Excel Solver, Matlab, Vensim and also revenue management techniques. Furthermore price skimming as a technique of dynamic pricing is used.

1.7 Conclusion

This chapter defines the project with presenting research questions, problem statement, objective and scope. In the next Chapter literature review is presented.

REFERENCES

Adams WJ, Yellen JL (1976) Commodity bundling and the burden of monopoly. The Quarterly Journal of Economics 90(3):475-498

Ahtiala P (2006) the optimal pricing of computer software and other products with high switching costs. International Review of Economics and Finance 15(2):202-211

Albers S, Clement M, Skiera B (2000) Wie sollen die Produkte vertrieben werden?
Distributionspolitik. In: Albers S, Clement M, Peters K, Skiera B (eds) eCommerce. Einstieg, Strategie und Umsetzung im Unternehmen. 2nd edn. F.A.Z. Institut, Frankfurt am Main, pp 79-94

Anon., 2009. SIIA Report on Global Software, s.l.: Information Industry Association (SIIA).

Arthur WB (1996) Increasing returns and the new world of business. Harvard Business Review 74(4):100-109

Bakos Y (1998) the emerging role of electronic marketplaces on the internet. Communications of the ACM 41(8):35-42

Bakos Y, Brynjolfsson E (1999) Bundling information goods: pricing, profits and efficiency. Management Science 45(12):1613-1630

Bhargava K, Choudhary V (2008) When is versioning optimal for information goods? Management Science 54(5):1029-1035

Bontis N, Chung H (2000) the evolution of software pricing: from box licenses to application service provider models. Electronic Networking Applications and Policy 10(3):246-255

Buxmann P (2002) Strategien von Standardsoftware-Anbietern: Eine Analyse auf der Basis von Netzeffekten. Zfbf 54:442-457

Buxmann P, Diefenbach H, Hess T (2008a) Die Softwareindustrie: Ökonomische Prinzipien, Strategien, Perspektiven. Springer, Heidelberg

Buxmann P, Hess T, Lehmann S (2008b) Software as a Service. WIRTSCHAFTSINFORMATIK 50(6):500-503

Buxmann, P., Diefenbach, H. \& Hess, T., 2013. The Software Industry. s.l.:Springer.

Choi SY, Stahl DO, Whinston AB (1997) the economics of electronic commerce: the essential of doing business in the electronic marketplace. Macmillan, Indianapolis
chopra, s. \& meindl, p., 2010. supply chain management. 4th ed. s.1.:pearson.
Choudhary V, Ghose A, Mukhopadhyay T, Rajan U (2005) Personalized pricing and quality differentiation. Management Science 51(7):1120-1130

Cusumano MA (2007) the changing labyrinth of software pricing. Communications of the ACM 50(7):19-22

Dean J (1950) Pricing policies for new products. Harvard Business Review 28:45-53
Diller H (2008) Preispolitik, 4th edn. Kohlhammer, Stuttgart
Fishburn PC, Odlyzko AM (1999) Competitive pricing of information goods: subscription pricing versus pay-per-use. Economic Theory 13:447-470

Florissen A (2008) Preiscontrolling - Rationalitätssicherung im Preismanagement. Zeitschrift für Controlling und Management 52(2):85-90

Günther O, Tamm G, Leymann F (2007) Pricing web services. International Journal of Business Process Integration and Management 2(2):132-140
H.K. Cheng, R. S. H. T., 1997. To purchase or to pirate software: an empirical study. Journal of Management Information Systems, Issue 13, p. 49-60.

Harmon R, Raffo D, Faulk S (2005) Value-based pricing for new software products: strategy insights for developers. http://www.cpd.ogi.edu/MST/CapstoneSPR2005/VBSP.pdf. Accessed 2009-03-10

Hecker F (1999) setting up shop: the business of open-source software. IEEE Software 16:45-51

Hill S (2008) SaaS economics seem to favor users more than vendors. Manufacturing Business Technology Jan. 2008, p 48

Hitt LM, Chen P (2005) Bundling with customer self-selection: a simple approach to bundling low marginal cost goods. Management Science 51(10):1481-1493

Homburg C, Krohmer H (2006) Marketingmanagement. Strategie - Instrumente Umsetzung - Unternehmensführung, 2nd edn. Gabler, Wiesbaden

Ivanov, D., Sokolov, B. \& Kaeschel, J., 2010. A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations. European Journal of Operational Research, Issue 200, p. 409420.

Katz ML, Shapiro C (1985) Network externalities, competition, and compatibility. American Economic Review. Number 75:424-440

Kittlaus H, Rau C, Schulz J (2004) Software-Produkt-Management. Springer, Heidelberg

KonstantinKogan, YaacovOzinci \& YaelPerlman, 2013. Containing piracy with product pricing updating and protection investments. Int. J.ProductionEconomics, Issue 144, p. 468-478.

Lambrecht A, Skiera B (2006) Paying too much and being happy about it: existence, causes, and consequences of tariff-choice biases. Journal of Marketing Research 43:212-223

Lehmann, S. \& Buxmann, P., 2009. Pricing Strategies of Software Vendors. Business \& Information Systems Engineering, Issue 6.

Licensing_Report.pdf. Accessed 2009-03-10
Linde F (2008) Pricing-Strategien bei Informationsgütern. WISU 2:208-214
Liu, Y., Cheng, H. K., Q. C. T. \& Eryarsoy, E., 2010. Optimal software pricing in the presence of piracy and word-of-mouth effect. Decision Support Systems, Issue 51, p. 99-107.

Lünendonk T (2007) Führende Standard-Software-Unternehmen in Deutschland. Studie der Lünendonk GmbH, Bad Wörishofen

Nalebuff B (2004) Bundling as an entry barrier. Working Paper. School of Management, Yale University, New Haven

Nieschlag R, Dichtl E, Hörschgen H (2002) Marketing, 19th edn. Duncker \& Humblot, Berlin

Olderog T, Skiera B (2000) The benefits of bundling strategies. SBR 52(2):137-159
Pepels W (1998) Einführung in das Preismanagement. Oldenbourg, München
Pigou AC (1929) The economics of welfare, 3rd edn. Macmillian, London
Rullkötter L (2008) Preismanagement - Ein Sorgenkind? Zeitschrift für Controlling und Management 52(2):92-98

Schmalensee R (1984) Gaussian demand and commodity bundling. The Journal of Business 57:(1)211-230

Schmidt C, Weinhardt C, Horstmann R (1998) Internet-Auktionen - Eine Übersicht für Online-Versteigerungen im Hard- und Softwarebereich. WIRTSCHAFTSINFORMATIK 40(5):450-457

Shapiro C, Varian HR (1999) Information rules: a strategic guide to the network economy. Harvard Business School, Boston

Shapiro, j. f., 2007. Modeling the Supply Chain. 2nd ed. s.1.:thomson.

Shy O (2001) The economics of network industries. Cambridge University, Cambridge

SIIA, Macrovision, SoftSummit, SVPMA, CELLUG (2006) Key trends in software pricing and licensing: a survey of software industry executives and their enterprise customers. http://www.
siia.net/software/pubs/SW_Pricing_
Simon H (1992) Preismanagement: Analyse, Strategie, Umsetzung, 2nd edn. Gabler, Wiesbaden

Simonson I, Tversky A (1992) Choice in context: tradeoff contrast and extremeness aversion. Journal of Marketing Research 29(3):281-295

Skiera B (1999a) Preisdifferenzierung. In: Albers S, Clement M, Peters K (eds) Marketing mit interaktiven Medien. Strategien zum Markterfolg. F.A.Z. Institut, Frankfurt am Main, pp 283-296

Skiera B (1999b) Mengenbezogene Preisdifferenzierung bei Dienstleistungen. Gabler, Wiesbaden

Skiera B, Spann M (1998) Gewinnmaximale zeitliche Preisdifferenzierung für Dienstleistungen. ZfB 68:703-718

Skiera B, Spann M (2000) Flexible Preisgestaltung im Electronic Business. In: Weiber R (eds) Handbuch electronic Business: Informationstechnologien Electronic Commerce - Geschäftsprozesse. Gabler, Wiesbaden, pp 539-557

Skiera B, Spann M (2002) Preisdifferenzierung im Internet. In: Schögel M, Tomczak T, Belz C (eds) Roadm@p to E-Business. Thexis, St. Gallen, pp 270-284

Skiera B, Spann M, Walz U (2005) Erlösquellen und Preismodelle für den Business-to-Consumer-Bereich im Internet. WIRTSCHAFTSINFORMATIK 47(4):285293

Smith GE, Nagle TT (1995) Frames of reference and buyers' perception of price and value. California Management Review 38(1):98-116

Suermann JC (2006) Bilanzierung von Software nach HGB, US-GAAP und IFRS Integrative Analyse der Regelungen zu Ansatz, Bewertung und Umsatzrealisation von Software aus Hersteller- und Anwendersicht. Diss. Universität Würzburg. http://www.opus-bayern.de/uniwuerzburg/volltexte/2006/1933. Accessed 2009-03-10

Sundararajan A (2004) Nonlinear pricing of information goods. Management Science 50(12):1660-1673
talluri, k. t. \& van ryzin, g. j., 2005. the theory and practice of revenue management. s.1.:springer.

Varian HR (1997) Versioning information goods. In: Kahin B, Varian HR (eds) Internet publishing and beyond: the economics of digital information and intellectual property. MIT, Cambridge, pp 190-202

Viswanathan S, Anandalingam G (2005) Pricing strategies for information goods. Sadhana - Journal of the Indian Academy of Sciences 30(2,3):257-274

Wu S, Anandalingam G (2002) Optimal customized bundle pricing for information goods. In: Proceedings workshop on information technology and systems, Barcelona

Wu S, Hitt LM, Chen P, Anandalingam G (2008) Customized bundle pricing for information goods: a nonlinear mixed-integer programming approach. Management Science 54(3):608-622

Zerdick A, Picot A, Schrape K, Artopé A, Goldhammer K, Lange UT, Vierkant E, López-Escobar E, Silverstone R (1999) Die Internet-Ökonomie: Strategien für die digitale Wirtschaft, 2nd edn. Springer, Heidelberg

Zhang J, Seidmann A (2003) The optimal software licensing policy under quality uncertainty. ACM Press: Proceedings of the 5th international conference on electronic commerce. New York, pp 276-286

