TREATMENT AND GENERATION OF ELECTRICITY FROM PALM OIL MILL EFFLUENT USING LOCALLY ISOLATED ELECTROACTIVE MICROBES IN MICROBIAL FUEL CELL

HASSAN SH ABDIRAHMAN ELMI

This dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia

JANUARY 2014

This thesis is dedicated to my beloved mother Fadumo Nour Abib, my wife Amal Mohamoud Jibril, my daughter Fadumo, my family members, my friends, in the Environmental Bioengineering Lab1, and my respective supervisor, Assoc. Prof. Dr. Zaharah Ibrahim for their endless support and encouragement.

ACKNOWLEDGEMENT

In the Name of ALLAH the most Gracious and the most Merciful

First and foremost I would like to express my sincerest gratitude to my supervisor, Assoc. Prof. Dr. Zaharah Ibrahim for her constant excellent guidance, caring and patience during my work on this research. She inspired me greatly to work in this study. Her willingness to motivate me contributed tremendously to our research. I am fortunate to have her as my supervisor.

Beside, I would also like to thank Mr Hanif, Ahmed, Fahmi, Lam and Neoh for their continuous helpful guidance and willingness throughout my study. I also like to thank my lovely family and friends for their never ending love and support through all situations.

Finally, I would like to offer my regards and blessings to all of those who supported me during my study including Islamic Development Bank (IDB) and Amoud University. It is a great pleasure to me to say you thank all and God bless you.

ABSTRACT

Palm oil industries are the largest agricultural based industries in Malaysia and in processing palm oil, high pollutant liquid waste known as palm oil mill effluent (POME) is being generated. Currently, treatment of POME to meet the standard discharge limit and generate environmentally friendly renewable energy has become an important issue. Therefore, this study was conducted to treat final discharge POME in microbial fuel cell (MFC) and generate electricity using electro-active bacteria from palm oil mill sludge (POMS). Double chamber MFC fabricated using polyacrylic sheets with a working volume of 1 L, proton exchange membrane (Nafion 115) and carbon electrodes connected to copper wires attached to a resistor of 10 k Ω were used. The anodic solution consisted of final discharge pond POME, overnight SRB1 inoculum (10% v/v) and phosphate buffer (pH 7) while the cathodic solution consisted of phosphate buffer (pH 7) and potassium hexacyanoferrate (III). The results showed 58% of COD removal and 60% of colour removal in 8 days. Simultaneously electricity generation was monitored and the maximum voltage, current density, power density and columbic efficiency recorded using a digital multimeter was 942 mV, 89.2 mA/m², 83.7 mW/m^2 and 54% respectively. The SRB1 bacterium that was used to treat the POME and produced electricity was later identified as *Pseudomonas aeruginosa strain* NCIM 5223 using molecular techniques (16S rDNA analysis). In conclusion SRB1 was able to treat and generate electricity from final pond POME.

ABSTRAK

Industri minyak kelapa sawit adalah industri terbesar berasaskan pertanian di Malaysia dan dalam pemprosesan minyak kelapa sawit, sisa cecair pencemar yang tinggi dikenali sebagai Effluen Pemprosesan Kelapa Sawit (POME) turut dijana. Pada masa ini, rawatan POME untuk mematuhi had pelepasan standard dan menjana tenaga boleh diperbaharui yang mesra alam telah menjadi satu isu penting. Oleh itu, kajian ini telah dijalankan untuk merawat pelepasan POME akhir dalam Sel Fuel Mikrob (MFC) dan menjana tenaga elektrik menggunakan bakteria elektro-aktif dari sisa kelapa sawit enapcemar (POMS). Kebuk berkembar MFC distruktur menggunakan lapisan poliakrilik dengan jumlah kerja 1 L, membran pemindah elektron (Nafion 115) dan elektrod karbon disambungkan pada wayar tembaga yang dilampirkan pada perintang 10 k Ω . Cecair anodik terdiri dari kolam pelepasan POME akhir, inokulum semalaman SRB1 (10% v/v) dan penimbal fosfat (pH 7) manakala cecair katodik terdiri dari penimbal fosfat (pH 7) dan kalium heksasianoferat (III). Keputusan menunjukkan 58% penyingkiran COD dan 60% penyingkiran warna dalam tempoh 8 hari. Pada masa yang sama penjanaan elektrik telah dipantau dan voltan maksimum, ketumpatan arus, ketumpatan kuasa dan kecekapan kolumbik dirakamkan dengan menggunakan multimeter digital masing-masing adalah 942 mV, 89.2 mA/m², 83.7 mW/m² dan 54%. Bakteria SRB1 yang digunakan untuk merawat POME dan penghasilan tenaga elektrik kemudiannya dikenalpasti sebagai strain Pseudomonas aeruginosa NCIM 5223 menggunakan teknik molekul (analisis 16S rDNA). Kesimpulannya SRB1 dapat merawat dan menjana tenaga elektrik daripada kolam pelepasan POME akhir.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	II
	DEDICATION	III
	ACKNOWLEDGEMENT	IV
	ABSTRACT	V
	ABSTRAK	VI
	TABLE OF CONTENTS	VII
	LIST OF TABLES	XII
	LIST OF FIGURES	XIII
	LIST OF ABBREVIATIONS	XVI
	LIST OF APPENDICES	XVII

1 INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objectives of the Study	3
1.4	Scope of Study	4
1.5	Significant of the Study	4

2 LITERATURE REVIEW

2.1	introduction		5
2.2	Palm Oil	I Milling Process	6
	2.2.1	Sterilization	7
	2.2.2	Stripping	7
	2.2.3	Digestion	7
	2.2.4	Oil Extraction	8
	2.2.5	Nut And Fibre Separation	8
	2.2.6	Nut Cracking	8
	2.2.7	Wastewater Generation	9
2.3	Characte	eristics of POME	9
	2.3.1	Chemical Oxygen Demand (COD)	12
	2.3.2	Biochemical Oxygen Demand (BOD)	12
	2.3.3	Colour	12
	2.3.4	рН	13
	2.3.5	Ammoniacal Nitrogen	13
	2.2.6	Total Suspended Solids	14
2.3	Methods	Used to Treat Palm Oil Mill Effluent	14
	2.3.1	Mechanical Treatment of POME	14
	2.3.2	Physicochemical Treatment	15
	2.3.3	Biological Treatment System (Lagoon System)	15
		2.3.3.1 Anaerobic Digestion	15
		2.3.3.2 Aerobic Treatment	16
2.4	Microbia	al Fuel Cell	17
	2.4.1	Basic Principles of MFC	17

	2.4.2	Microbial Fuel Cell Design	18
		2.4.2.1 Double Chamber MFC	19
		2.4.2.2 Single Chamber	20
2.5	Types of	f Microbial Fuel Cells	21
	2.5.1	Mediator MFC	21
		2.5.1.1 Characteristics of Good Mediators	22
	2.5.2	Mediatorless MFC	23
2.6	Generatio	on of Electricity	24
	2.6.1	Proton Exchange Membrane	24
	2.6.2	Voltage	25
	2.6.3	Current	25
	2.6.4	Resistance	25
	2.6.5	Size of the Inoculum	26
2.7	Facto	ors Affecting Performance of he MFC	26
	2.7.1	pH	27
	2.7.2	Temperature	27
	2.7.3	Electrode Material	28

3 METHODS AND MATERIALS

3.1	Preparation	on of Medium and Reagents	29
	3.1.1	Preparation of Nutrient Agar	29
	3.1.2	Preparation of Nutrient Broth	30
	3.1.3	Preparation of Photosynthetic Growth Medium (G5 Broth)	30
	3.1.4	Preparation of Baar's Growth Medium	30

	3.1.5	Preparation of Enrichment Medium	31
	3.1.6	Preparation of Sterilized Pome	31
	3.1.7	Preparation of Phosphate Buffer	32
	3.1.8	Preparation of Potassium Hexacyanoferate Solution	32
	3.1.9	Preparation of Dinitrosalicylic Acid (DNS) Reagent	32
3.2	Isolation	of the Microbes	32
	3.2.1	Preparation of the Winogradsky Column	33
	3.2.2	Inoculating sludge in Baar's broth	34
3.3	Determin	nation of the Water Quality Parameters	34
	3.3.1	Determination of pH	34
	3.3.2	Determination of Total Suspended Solids (TSS)	34
	3.3.3	Determination of Colour Intensity	35
	3.3.4	Determination of Chemical Oxygen Demand (COD)	35
	3.3.5	Determination of the Biological Oxygen Demand (BOD)	36
	3.3.6	Determination of Ammoniacal Nitrogen	36
	3.3.7	Determination of Total Organic Carbon (TOC)	37
	3.3.8	Determination of Reduced Sugar Using Dns Reagent	37
3.4	Characte	erization of the Bacteria	38
	3.4.1	Gram Staining	38
	3.4.2	Genomic DNA Extraction	38
	3.4.3	Agarose Gel Electrophoresis	39
	3.4.4	PCR Amplification of 16S rDNA Analysis	39
		3.4.4.1 Properties of Universal Primers	40
	3.4.5	DNA Sequence Analysis	41

	3.4.6	Multiple Sequence Alignment and Phylogenetic Tree		
		Construc	tion	41
3.5	Microbi	al Fuel Cel	ls Construction	42
	3.5.1	Microbia	l Fuel Cell for Testing Electroactive Microbes	42
	3.5.2	MFC Used for Treatment of POME and Generation of		
		Electr	icity	44
	3.5.3	PreTreat	ment of the PEM the Electrodes	46
	3.5.4	Wastewa	ter Analysis	46
	3.5.5	Measuren	nent of Electricity Parameters	46
		3.5.5.1	Voltage	46
		3.5.5.2	Current	47
		3.5.5.3	Current Density	47
		3.5.5.4	Power	47
		3.5.5.5	Power Density	47
		3.5.5.6	Internal Resistance	48
		3.5.5.7	Columbic Efficiency	48
3.6	Experin	nental Desig	gn	49

4 RESULTS AND DISCUSSION

4.1	Sample Collection	50
4.2	Characterization of the Wastewater	51
4.3	Isolation of the Bacteria	52
	4.3.1 Photosynthetic Bacteria	52

	4.3.2	Bacteria Inoculated from Sludge to Baar's Growth	
		Medium	53
	4.3.3	Growth Curve of the Bacteria	55
4.4	Screeni	ng of the Bacteria in Treatment PPOME	55
	4.4.1	Bacterial Growth Profile in Raw and Final POME	56
	4.4.2	Chemical Oxygen Demand (COD) Removal	57
	4.4.3	Colour Removal	58
	4.4.4	pH Profile of the Growth	59
4.5	Screeni	ng of the Bacterial in Electricity Generation	59
4.6	Treatme	ent of POME in MFC	61
	4.6.1	COD Removal	61
	4.6.2	Colour Removal	62
	4.6.3	Profile of pH	63
4.7	Electricit	ty Generation	64
	4.7.1	Glucose Consumption, Bacterial Growth and Current	
		Density	64
	4.7.2	Voltage Output	66
	4.7.3	Electricity Generation	66
	4.7.4	Columbic Efficiency And The Cod Removal	67
4.8	Bacteria	al Identification	68
	4.8.1	Gram Staining	68
	4.8.2	16S rDNA Analysis	69
		4.8.2.1 Isolation of Genomic DNA	69
		4.8.2.2 Polymerase Chain Reaction (PCR)	70

4.8.2.3	Sequencing PCR	72
4.8.2.4	Similarity Search For Partial 16S rDNA Gene	73
4.8.2.5	Multiple Sequence Alignments-Phylogenetic Tree	
	Construction	74

5 CONCLUSION AND FUTURE WORK

5.1	Conclusion	75
5.2	Future Work	76
REFER	RENCE	77
APPEN	IDICES	85

LIST OF TABLES

TABLE NO.	TITLE	PAGE
ADLE NU.		FAGE

2.1	Characteristics POME from the previous studies	10
2.2	Reported methods of POME treatment	16
2.3	Synthetic mediators used	23
3.1	Chemicals composition of G5 broth	30
3.2	Chemicals composition of Baar's broth	31
3.3	Composition of mixture	40
3.4	Properties of the primer	40
3.5	Thermal cycling profile of the PCR	41
4.1	Characterization of POME sample	51
4.2	Colour removal by SRB1 and PHT1 in raw and final	
	POME	58
4.3	Electricity generated by SRB1 And PHT1 in the testing	
	MFC	60
4.4.	Gram staining results	68
4.5	The top 15 identical P.Aeruginisa Strains to SRB1	73

LIST OF FIGURES

FIGURE No.	TITLE	PAGE

2.1	Palm oil milling process	6
	Schematic diagram of two chambers MFC	19
2.3	Schematic diagram of single chamber MFC	20
2.4	Schematic diagram of mechanisms of mediator double	
	chamber MFC	22
2.5	Schematic diagram of the mechanisms of mediatorless	
	double chamber MFC	24
2.6	Schematic diagram of Wingrdsky column	33
3.1	Schematic diagram of the simple MFC	43
3.2	Schematic diagram of the double MFC	45
3.3	Experimental flow chart	49
3.4	Final discharge POME pond	50
4.1	Bacterial growth in the Winogradsky column	52
4.2	Bacterial growth in Baar's broth	54
2.3	Growth curve of the SRB1 and PHT1 in Nutrient broth	55
4.4	Growth curve and glucose concentration of POME with	

	PHT1	56
4.5	Growth curve and glucose concentration of POME with	
	SRB1	57
4.6	Percentage of COD removal by. PHT1 and SRB1	58
4.7	The pH change of POME by PHT1 and SRB1	59
4.8	Electricity generation in the testing MFC	60
4.9	Percentage of COD removal and growth curve	62
4.10	Percentage of colour removal	63
4.11	The pH of the anodic	64
4.12	Current density	65
4.13	Voltage generated over time	66
4.14	Power density as a function of current density	67
4.15	Columbic efficiency and COD removal	68
4.16	Gel electrophorese results of genomic DNA before PCR	70
4.17	Gel electrophorese result after PCR products	71
4.18	Phylogenetic tree of the SRB1 with different Pseudomonas	74
	groups	

xix

LIST OF ABBREVIATIONS

ADMI	American Dye Manufacturing Unit
BOD	Biochemical Oxygen Demand
cm	Centimetre
C_E	Columbic efficiency
COD	Chemical oxygen demand
DNS	Dinitrosalicylic Acid
DO	Dissolved oxygen
et al	and others
g	gram
L	Litre
m	Millilitre
MFC	Microbial fuel cell
nm	Nanometer
PEM	Proton Exchange Membrane
pH	Hydrogen ion concentration
POME	Palm oil mill effluent
POMS	Palm oil mill sludge
rpm	Rotation per minute
TOC	Total Organic Carbon
TSS	Total suspended Solids
v/v	Volume over volume
°C	Degree Celsius
μL	Microliter

LIST OF APPENDICES

APPEN	NDIX TITLE	PAGE
А	Serial Dilution Techniques	88
В	16S rDNA Extraction Procedure	89
С	Nanodrop Results	90
D	BLAST Results	92
Е	Alignment with the most identical strain	95
F	MFC Used in Testing Elctroactivity of the Bacteria	97
G	MFC Used in Treatment and Gereration of Elctric from	
	PPOME	98
Н	Doubling time	
Ι	Glucose concentration	

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Palm oil and soya beans are the most important vegetable oils in the world's oil and fats market (Igwe and Onyegbado, 2007). Palm Oil (*Elaeis guineensis*) is the most important species in *Elaeis* genus which belongs to the family of Palmae. Malaysia and Indonesia are the largest palm oil producing countries where they produce more than 90% of worlds palm oil export (Rupani *et al.*, 2010). Palm oil industries are the largest agro based industries in Malaysia and in 2008 more than 17,734,441 tonnes crude palm oil were produced (Wu *et al.*, 2010). However, production of this huge amount of crude palm oil lead to the generation of larger amounts of palm oil mill effluent (POME) and in 2008 more than 44 million tonnes of POME was generated in Malaysia (Wu *et al.*, 2010).

The extraction method of crude palm oil from the Fresh Fruit Bunches (FBB) adapted in Malaysia is wet palm oil milling process (Ibrahim *et al.*, 2012). Wet milling process consists of several stages including sterilisation, stripping, digesting, and oil extraction. Extraction of the crude oil uses large volume of water generating huge quantities of POME wastewater. Raw POME is an acidic, brownish, colloidal suspension, and non-toxic if chemical is not added during the process, containing high

environmental pollutant elements including; COD, BOD, total solids, suspended solids, oil and grease (Ahmad *et al.*, 2003).

Discharging POME without proper treatments cause problems to the environment (Wood *et al.*, 1979). For this reason, Malaysian government has set Environmental Quality Act 2009 which defines the standard discharge limit of effluent. Biological treatment is the common treatment method of POME adopted in Malaysia though other treatments such as; physicochemical and membrane filtration is considered. Improving treatment methods of POME and generating environmental friendly, renewable energy can contribute to environmental cleaning.

Studies done in the last 3 decades shown that microbial fuel cell (MFC) can generate green electricity. MFC is a reactor that converts biochemical energy into electrical energy using the catalytic action of the microbes. Microbial substrate reduction-oxidation (redox) reaction is the basic principles of the MFC. There are many types of MFC including mediator MFC, mediatorless MFC, mediator and membrane less MFC, up flow MFC, and stacked MFC. Designing MFC into single or double chamber is very commonly used.

MFC consists of two compartments anodic and cathodic compartment separated by proton exchange membrane (PEM) or salt bridge each filled with anolytes and catholytes. Carbon graphite is commonly used as electrodes in MFC because of its conductivity and low cost. Microbial metabolic reactions on substrates generate electrons and as POME contains many organic molecules it has potential to generate more electrons.

1.2 Problem statement

Palm oil plantation and industries are increasing rapidly in Malaysia and the neighbouring countries. These results the increase in production of POME. Palm oil industry is recognized as the largest river polluting agro-industries throughout the country. For that reason, the Malaysian government had set standard discharge rules and regulation for the polluting parameters. In order to meet the standard discharge limits palm oil industries treat POME in many ways including conventional treatment.

Consumption of energy is dramatically increasing due to demand of the transportation sector, electrically operating products used and industries. Microbial fuel cell is a device that can convert the biochemical energy into electrical energy using the catalytic action of the microbes (Kim *et al.*, 2002). Organic wastes like POME are rich in biochemical energy that indigenous microbes are able to harvest (Heck *et al.*, 2002). Previous studies have reported the treatment of POME u s i n g both physical and biological method, and in addition, generation of electricity from wastewaters. However, this study was carried out to treat and generate electricity simultaneously from POME using electroactive microbes from palm oil mill sludge (POMS) in MFC.

1.3 Objectives of the study

- 1. To isolate electroactive microorganisms from palm oil mill sludge (POMS)
- 2. To treat POME wastewater using selected electroactive microbes
- 3. To generate green electricity from treatment of POME

1.4 Scope of study

In this study, isolation and identification of elecetroactive bacteria from palm oil mill sludge (POMS) using molecular techniques (16S rDNA) was carried. Bacteria obtained were used to treat and generate electricity from POME using MFC. Colour and COD removal were focused to treat from the final discharge pond. Subsequently, generation of electricity was measured.

1.5 Significant of the study

Previous studies showed that POME contributes pollution of the watercourse. Discharging POME into the rivers can cause destruction of aquatic life. Treating POME becomes an important public concern not only to save the environment but also human health. Furthermore, electricity consumption rate increases due high production and usage of electronics. Energy generated from fossil fuels contributes to climatic change and global warming and are not renewable. Thus, immediate action needs to maximize environmental cleaning process and minimize global warming by replacing the use of fossil fuels with renewable, environmentally friendly green electricity using MFC.

REFERENCE

- Abascal, F. and Valencia, A. (2003). Automatic annotation of protein function based on family identification. *Proteins: Structure, Function, and Bioinformatics*. 53(3), 683-692.
- Abdul Latif, A., Suzylawati, I., Norliza, I. and Subhash, B. (2003). Removal of suspended solids and residual oil from palm oil mill effluent. *Journal of Chemical Technology & Biotechnology*. 78.
- Abdullah, A. Z., Ibrahim, M. H. and Ab Kadir, M. O. (2012). Treatment of Palm Oil Mill Effluent (POME) Supernatants Using Aerobic Attached–Growth System: Trickling Filter as a Case Study. *Jurnal Teknologi*. 40(1), 77–90.
- Adjemian, K., Srinivasan, S., Benziger, J. and Bocarsly, A. (2002). Investigation of PEMFC operation above 100 C employing perfluorosulfonic acid silicon oxide composite membranes. *Journal of power sources*. 109(2), 356-364.
- Aelterman, P., Rabaey, K., Pham, H. T., Boon, N. and Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. *Environmental science & technology*. 40(10), 3388-3394.
- Ahmad, A., Sumathi, S. and Hameed, B. (2006). Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. *Chemical Engineering Journal*. 118(1), 99-105.
- Ahmad, A. L., Ismail, S., Ibrahim, N. and Bhatia, S. (2003). Removal of suspended solids and residual oil from palm oil mill effluent. *Journal of Chemical Technology and Biotechnology*. 78(9), 971-978.
- Allen, R. and Bennetto, H. P. (1993). Microbial fuel-cells. *Applied Biochemistry and Biotechnology*. 39-40(1), 27-40.
- APHA, AWWA and WEF (2005). *Standard methods for the examination of water and wastewater*. (21st ed.) Washington D.C: American Public Health Association
- Assas, N., Ayed, L., Marouani, L. and Hamdi, M. (2002). Decolorization of fresh and stored-black olive mill wastewaters by< i> Geotrichum candidum</i>. Process Biochemistry. 38(3), 361-365.
- Atlas, R. M. (2004). Handbook of microbiological media. (Vol. 1)CRC press.
- Barua, P. K. and Deka, D. (2010). Electricity Generation from Biowaste Based Microbial Fuel Cells. *International Journal of Energy, Information, and Communications*. 1(1), 77-92.

- Bennetto, H. (1990). Electricity generation by microorganisms. *Biotechnology Education*. 1(4), 163-168.
- Bond, D. R. and Lovley, D. R. (2005). Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. *Applied and Environmental Microbiology*. 71(4), 2186-2189.
- Borja, R. and Banks, C. J. (1994). Treatment of palm oil mill effluent by upflow anaerobic filtration. *Journal of Chemical Technology and Biotechnology*. 61(2), 103-109.
- Bretschger, O., Kus, E., Mansfeld, F. and Nealson, K. (2006). Factors Affecting the Performance of a Microbial Fuel Cell. *Proceedings of the 2006 Meeting Abstracts*: The Electrochemical Society, 280-280.
- Bullen, R. A., Arnot, T. C., Lakeman, J. B. and Walsh, F. C. (2006). Biofuel cells and their development. *Biosensors and Bioelectronics*. 21(11), 2015-2045.
- Cao, Y., Zheng, Y. and Fang, B. (2004). Optimization of polymerase chain reaction-amplified conditions using the uniform design method. *Journal of Chemical Technology and Biotechnology*. 79(8), 910-913.
- Cappuccino, J. and Sherman, N. (2002). Microbiol. a laboratory manual. Pearson Education, Inc. San Francisco, CA.
- Carmen, A. V. and Ivonne, F. (1987). Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. *Bioelectrochemistry and Bioenergetics*. 17.
- Chan, Y., Chong, M. and Law, C. (2010). Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). *Journal of environmental management*. 91(8), 1738-1746.
- Chaudhuri, S. K. and Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. *Nature Biotechnology*. 21(10), 1229-1232.
- Cheng, J., Zhu, X., Ni, J. and Borthwick, A. (2010). Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters. *Bioresource Technology*. 101(8), 2729-2734.
- Chigusa, K., Hasegawa, T., Yamamoto, N. and Watanabe, Y. (1996). Treatment of wastewater from oil manufacturing plant by yeasts. *Water Science and Technology*. 34(11), 51-58.
- Cho, E. J. and Ellington, A. D. (2007). Optimization of the biological component of a bioelectrochemical cell. *Bioelectrochemistry*. 70(1), 165-172.
- Coma, M., Puig, S., Balaguer, M. and Colprim, J. (2010). The role of nitrate and nitrite in a granular sludge process treating low-strength wastewater. *Chemical Engineering Journal*. 164(1), 208-213.
- Copcia, V., Hristodor, C., Luchian, C., Bilba, N. and Sandu, I. (2010). Ammonium nitrogen removal from aqueous solution by natural clay. *Rev. Chim.(Bucharest).* 61, 1192-1196.

- Davis, F. and Higson, S. P. (2007). Biofuel cells—recent advances and applications. *Biosensors and Bioelectronics*. 22(7), 1224-1235.
- Du, Z., Li, H. and Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. *Biotechnology advances*. 25(5), 464-482.
- Elakkiya, E. and Matheswaran, M. (2013). Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell. *Bioresource technology*. 136, 407-412.
- Feng, Y., Yu, Y., Wang, Y. and Lin, X. (2007). Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. *Current Microbiology*. 55(5), 402-408.
- Guo, F., Fu, G., Zhang, Z. and Zhang, C. (2013). Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells. *Bioresource technology*. 136, 425-430.
- Hairston, R. V. (1999). The Winogradsky Column & Biofilms: Models for Teaching Nutrient Cycling& Succession in an Ecosystem. *The American Biology Teacher*. 61(6), 453-459.
- He, Z., Wagner, N., Minteer, S. D. and Angenent, L. T. (2006). An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. *Environmental science & technology*. 40(17), 5212-5217.
- Heck, J. X., Hertz, P. F. and Ayub, M. A. (2002). Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation. *Brazilian Journal of Microbiology*. 33(3), 213-218.
- Holmes, S. (2003). Bootstrapping phylogenetic trees: theory and methods. *Statistical Science*. 241-255.
- Ibrahim, A. H., Dahlan, I., Adlan, M. N. and Dasti, A. F. (2012). Comparative Study on Characterization of Malaysian Palm Oil Mill Effluent. *Research Journal of Chemical Sciences ISSN*. 2231, 606X.
- Idris, A. M., Jami, M. S. and Muyibi, S. A. (2010). Tertiary treatment of biologically treated palm oil mill effluent (POME) using UF membrane system: effect of MWCO and transmembrane pressure. *International Journal of Chemical and Environmental Engineering*. 1(2), 108-112.
- Ieropoulos, I., Greenman, J., Melhuish, C. and Hart, J. (2005). Energy accumulation and improved performance in microbial fuel cells. *Journal of power sources*. 145(2), 253-256.
- Igwe, J. and Onyegbado, C. (2007). A review of palm oil mill effluent (POME) water treatment. Global Journal of Environmental Research.
- Illés, E. and Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. *Journal of Colloid and Interface Science*. 295(1), 115-123.
- Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (1990). *PCR protocols: a guide to methods and applications*. Access Online via Elsevier.

- Ioannis, A. I., John, G., Chris, M. and John, H. (2005). Comparative study of three types of microbial fuel cell. *Enzyme and Microbial Technology*. 37.
- Jadhav, G. and Ghangrekar, M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. *Bioresource Technology*. 100(2), 717-723.
- Jang, J. K., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H. (2004). Construction and operation of a novel mediator-and membrane-less microbial fuel cell. *Process Biochemistry*. 39(8), 1007-1012.
- Jia, C., Xiuping, Z., Jinren, N. and Alistair, B. (2010). Palm oil mill effluent treatment using a twostage microbial fuel cells system integrated with immobilized biological aerated filters. *Bioresource technology*. 101.
- Jong, B. C., Kim, B. H., Chang, I. S., Liew, P. W. Y., Choo, Y. F. and Kang, G. S. (2006). Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. *Environmental science & technology*. 40(20), 6449-6454.
- Khan, M. R., Amin, M., Rahman, M., Akbar, F. and Ferdaus, K. (2013). Factors affecting the performance of double chamber microbial fuel cell for simultaneous wastewater treatment and power generation. *Polish Journal of Chemical Technology*. 15(1), 7-11.
- Kheang, L. S., Mohamad, N. F. and Ngan, M. A. (2009). charactrization of palm oil mill effluent (POME) for process control and baseline establishment *MPOB inforation series*
- Khelifi, E., Gannoun, H., Touhami, Y., Bouallagui, H. and Hamdi, M. (2008). Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. *Journal of Hazardous Materials*. 152(2), 683-689.
- Kim, B., Park, H., Kim, H., Kim, G., Chang, I., Lee, J. and Phung, N. (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. *Applied Microbiology and Biotechnology*. 63(6), 672-681.
- Kim, K. H., Tucker, M. P. and Nguyen, Q. A. (2002). Effects of Pressing Lignocellulosic Biomass on Sugar Yield in Two-Stage Dilute-Acid Hydrolysis Process. *Biotechnology Progress*. 18(3), 489-494.
- Latif Ahmad, A., Ismail, S. and Bhatia, S. (2003). Water recycling from palm oil mill effluent (POME) using membrane technology. *Desalination*. 157(1), 87-95.
- Li, X.-N., Song, H.-L., Li, W., Lu, X.-W. and Nishimura, O. (2010). An integrated ecological floatingbed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. *Ecological Engineering*. 36(4), 382-390.
- Li, X., Zhao, Q. and Hao, X. (1999). Ammonium removal from landfill leachate by chemical precipitation. *Waste management*. 19(6), 409-415.
- Liu, H., Cheng, S. and Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. *Environmental science & technology*. 39(2), 658-662.

- Liu, J. and Mattiasson, B. (2002). Microbial BOD sensors for wastewater analysis. *Water Research*. 36(15), 3786-3802.
- Logan, B., Cheng, S., Watson, V. and Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. *Environmental science & technology*. 41(9), 3341-3346.
- Logan, B., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete,
 W. and Rabaey, K. (2006). Microbial fuel cells: methodology and technology. *Environmental Science & Technology*. 40(17), 5181-5192.
- Logan, B. E. (2008). Microbial fuel cells. Wiley. com.
- Logan, B. E., Murano, C., Scott, K., Gray, N. D. and Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. *Water Research*. 39(5), 942-952.
- Lovley, D. R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. *Current Opinion in Biotechnology*. 17(3), 327-332.
- Ma, A. (2000). Environmental management for the palm oil industry. Palm Oil Dev. 30, 1-10.
- Ma, A. and Ong, A. S. (1985). Pollution control in palm oil mills in Malaysia. *Journal of the American Oil Chemists' Society*. 62(2), 261-266.
- Madigan, M. T. (2005). Brock Biology of Microorganisms, 11th edn. SciELO Espana.
- McPherson, M. and Møller, S. (2007). Pcr. Taylor & Francis.
- Meisam, T., Raha Abdul, R., Norhani, A., André-Denis, G. W., Yoshihito, S., Kenji, S., Alawi, S. and Mohd Ali, H. (2010). Importance of the methanogenic archaea populations in anaerobic wastewater treatments. *Process Biochemistry*. 45.
- Miller, G. L., Blum, R., Glennon, W. E. and Burton, A. L. (1960). Measurement of carboxymethylcellulase activity. *Analytical Biochemistry*. 1(2), 127-132.
- Min, B., Cheng, S. and Logan, B. (2005). Electricity generation using membrane and salt bridge microbial fuel cells. *Water Research*. 39(9), 1675-1686.
- Min, B., Román, Ó. B. and Angelidaki, I. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. *Biotechnology letters*. 30(7), 1213-1218.
- Morrison, D. A. and Ellis, J. T. (1997). Effects of nucleotide sequence alignment on phylogeny estimation: A case study of 18S rDNAs of Apicomplexa. *Molecular Biology and Evolution*. 14(4), 428-441.
- Olson, E. R. (1993). Influence of pH on bacterial gene expression. *Molecular microbiology*. 8(1), 5-14.
- Oswal, N., Sarma, P., Zinjarde, S. and Pant, A. (2002). Palm oil mill effluent treatment by a tropical marine yeast. *Bioresource technology*. 85(1), 35-37.
- Park, D. and Zeikus, J. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. *Applied and Environmental Microbiology*. 66(4), 1292-1297.

- Park, D. and Zeikus, J. (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. *Biotechnology and Bioengineering*. 81(3), 348-355.
- Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K. and Chang, H. I. (2001). A Novel Electrochemically Active and Fe (III)-reducing Bacterium Phylogenetically Related to< i> Clostridium butyricum</i> Isolated from a Microbial Fuel Cell. Anaerobe. 7(6), 297-306.
- Pleanjai, S., Gheewala, S. H. and Garivait, S. (2004). Environmental evaluation of biodiesel production from palm oil in a life cycle perspective. *Proceedings of the 2004 The Joint International Conference on "Sustainable Energy and Environment (SEE)*, 1-3.
- Rabaey, K., Clauwaert, P., Aelterman, P. and Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. *Environmental Science & Technology*. 39(20), 8077-8082.
- Rabaey, K., Lissens, G., Siciliano, S. and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. *Biotechnology Letters*. 25(18), 1531-1535.
- Raghavulu, S. V., Mohan, S. V., Goud, R. K. and Sarma, P. N. (2009). Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. *Electrochemistry Communications*. 11(2), 371-375.
- Ren, Z., Ward, T. E. and Regan, J. M. (2007). Electricity production from cellulose in a microbial fuel cell using a defined binary culture. *Environmental science & technology*. 41(13), 4781-4786.
- Rupani, P., Singh, R. and Ibrahim..., M. (2010). Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice. *World Applied Sciences*
- Saifuddin M, N. and Kumaran, P. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. *Electronic Journal of Biotechnology*. 8(1), 43-53.
- Shahrakbah, Y., Yoshihito, S., Mohd Ali, H., Minato, W. and Sunderaj, S. (2006). Start-up operation of semi-commercial closed anaerobic digester for palm oil mill effluent treatment. *Process Biochemistry*. 41.
- Shammas, N. K., Liu, Y. and Wang, L. K. (2009). Principles and kinetics of biological processes *Advanced Biological Treatment Processes* (pp. 1-57)Springer.
- Shirai, Y., Wakisaka, M., Yacob, S., Hassan, M. A. and Suzuki, S. i. (2003). Reduction of methane released from palm oil mill lagoon in Malaysia and its countermeasures. *Mitigation and Adaptation Strategies for Global Change*. 8(3), 237-252.
- Silhavy, T. J., Kahne, D. and Walker, S. (2010). The bacterial cell envelope. *Cold Spring Harbor Perspectives in Biology*. 2(5).
- Singh, P. and Thakur, I. S. (2004). Removal of colour and detoxification of pulp and paper mill effluent by microorganisms in two step bioreactor. *Journal of Scientific and Industrial Research*. 63, 944-948.

- Singh, R., Ibrahim, M. H., Esa, N. and Iliyana, M. (2010). Composting of waste from palm oil mill: a sustainable waste management practice. *Reviews in Environmental Science and Bio/Technology*. 9(4), 331-344.
- Soccol, C. R., Vandenberghe, L. P. S., Costa, B., Woiciechowski, A. L., Carvalho, J. C. d., Medeiros,
 A. B. P., Francisco, A. M. and Bonomi, L. J. (2005). Brazilian biofuel program: An overview. *Journal of Scientific & Industrial Research* 64, 897-904.
- Tokuji, I. and Kenji, K. (2003). Vioelectrocatalyses-based application of quinoproteins and quinprotein-containing bacterial cells in biosensors and biofuel cells. *Biochimica et Biophysica Acta*. 1647, 121-126.
- Torsvik, V. and Øvreås, L. (2008). Microbial diversity, life strategies, and adaptation to life in extreme soils *Microbiology of Extreme Soils* (pp. 15-43)Springer.
- Umland, J. B. and Bellama, J. M. (1999). General chemistry. Brooks/Cole Publishing Company.
- Velasquez-Orta, S. B., Head, I. M., Curtis, T. P. and Scott, K. (2011). Factors affecting current production in microbial fuel cells using different industrial wastewaters. *Bioresource Technology*. 102(8), 5105-5112.
- Vethanayagam, R. R. (1991). Purple photosynthetic bacteria from a tropical mangrove environment. *Marine Biology*. 110(1), 161-163.
- Vijayaraghavan, K., Ahmad, D. and Ezani Bin Abdul Aziz, M. (2007). Aerobic treatment of palm oil mill effluent. *Journal of environmental management*. 82(1), 24-31.
- Wang, L. K., Hung, Y.-T., Lo, H. H. and Yapijakis, C. (2004). *Handbook of industrial and hazardous wastes treatment*. CRC Press.
- Whiting, D. (1978). The treatment of liquid wastes from oil palm fruit processing factories. *Market Development of Palm Oil Products. International Trade Center, Geneva.* 108-113.
- Wong, Y. S., Kadir, M. O. A. and Teng, T. T. (2009). Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. *Bioresource technology*. 100(21), 4969-4975.
- Wood, B. J., Pillai, K. R. and Rajaratnam, J. A. (1979). Palm oil mill effluent disposal on land. *Agricultural Wastes*. 1(2), 103-127.
- Wu, T., Mohammad, A., Md Jahim, J. and Anuar, N. (2007). Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling. *Biochemical engineering journal*. 35(3), 309-317.
- Wu, T. Y., Mohammad, A. W., Jahim, J. M. and Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. *Journal of Environmental Management*. 91(7), 1467-1490.
- Yacob, S., Hassan, M., Shirai, Y., Wakisaka, M. and Subash, S. (2005). Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment. *Chemosphere*. 59(11), 1575-1581.

- Zhang, G., Zhao, Q., Jiao, Y., Wang, K., Lee, D.-J. and Ren, N. (2012). Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. *Water research*. 46(1), 43-52.
- Zinatizadeh, A., Mohamed, A., Abdullah, A., Mashitah, M., Hasnain Isa, M. and Najafpour, G. (2006). Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Research. 40(17), 3193-3208.