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Magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite
vertical oscillating plate with uniform heat flux in a porous medium is studied. Exact dimensionless
solutions of momentum and energy equations, under Boussinesq approximation, are obtained using
Laplace transforms. They satisfy all imposed initial and boundary conditions and reduce to known
solutions from the literature as special cases. Finally, the influence of different parameters like thermal
radiation parameter, Grashof number, Prandtl number, and time on velocity, temperature, and skin
friction is shown by graphs.
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1. Introduction

Free convection flows of an incompressible viscous
fluid past a vertical infinite plate were extensively stud-
ied in the literature due to their vast applications in en-
gineering and environmental processes. They are also
of great interest in industrial applications such as fiber
and granular insulation, geothermal systems, filtration
processes, nuclear reactors, design of spaceship, etc.
Unsteady free convection flow past a moving vertical
plate is investigated by many researchers considering
different thermal conditions on the boundary. Soundal-
gekar [1] seems to be the first who provided an exact
solution for free convection effects on the flow of a vis-
cous incompressible fluid past an impulsively started
infinite vertical plate. Later, Raptis and Singh [2] stud-
ied the free-convection flow of a visco-elastic fluid past
an accelerated vertical plate. The effects of magnetic
field have been also taken into consideration. Free con-
vection effects on the flow past an exponentially ac-
celerated vertical plate was studied by Singh and Ku-
mar [3]. Free convection oscillating flow past an infi-
nite vertical porous plate with constant suction were
studied by Soundalgekar [4]. Mansour [5] studied the
interaction of free convection with thermal radiation
of the oscillating flow past a vertical plate. An in-

teresting study of the effects of thermal radiation on
the flow past an infinite vertical oscillating isothermal
plate in the presence of a transversely applied mag-
netic field has been recently realized by Chandrakala
and Bhaskar [6]. The effects of thermal radiation on
the boundary layer flow over a horizontal plate have
been also studied by Ishak [7, 8].

In the last years, problems of free convection and
heat transfer flows through porous media under the
influence of a magnetic field have attracted the at-
tention of many researchers. This type of flows has
applications in magnetohydrodynamic (MHD) power
generation, MHD pumps, flowmeters and accelera-
tors, plasma studies, nuclear reactor using liquid metal
coolant, and geothermal energy extraction. On the
other hand, flows by a porous medium have numer-
ous engineering and geophysical applications in chem-
ical engineering for filtration and purification process,
agriculture engineering to study the underground wa-
ter resources, and petroleum technology to study the
movement of natural gas, oil, and water through oil
reservoirs. Among the most recent and interesting re-
sults from this area, we remember here the work
by Rajesh and Varma [9], Narahari and Ishak [10],
Seth et al. [11], Chandrakala and Bhaskar [12] and
Chandrakala [13].
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Having in mind the above remarks regarding the im-
portance of magnetic and porous effects on the fluid
motion, we study the effect of a uniform transverse
magnetic field on the free convection of an incom-
pressible viscous fluid past an infinite vertical oscillat-
ing plate with uniform heat flux in a porous medium.
The dimensionless governing equations are solved us-
ing the Laplace transform technique, and exact solu-
tions for velocity and temperature are obtained in terms
of exponential and complementary error functions.
Knowing the velocity, the dimensionless expression of
the skin friction is also determined. In the absence of
radiation effects, the expression of the temperature re-
duces to that obtained by Chaudhary et. al. [14, Eq.
(15)] and the solution for velocity agree well with [14,
Eq. (16)] of the same reference. Some special cases
are considered, and in the absence of thermal, mag-
neto, and porous effects the solution obtained by Er-
dogan [15, Eq. (8)] is recovered for velocity. Finally,
the effects of pertinent parameters on velocity, temper-
ature, and skin friction are graphically underlined.

2. Statement of the Problem and Solution

Let us consider an incompressible electrically con-
ducting viscous fluid past an infinite vertical plate em-
bedded in a porous medium. A magnetic field of uni-
form strength B0 is transversely applied to the plate.
The induced magnetic field due to the fluid motion is
assumed to be negligible in comparison to the applied
magnetic field. This restriction is justified for metallic
liquids and partially ionized fluids [16] because their
magnetic Reynolds number is very small. The effect of
polarization of the fluid is also negligible as no external
electric field is applied. At initial moment t = 0, both
the plate and the fluid are at rest at the constant temper-
ature T∞. At time t = 0+, the plate begins to oscillate
in its plane (y = 0) according to

v = U cos(ωt)iii , t > 0, (1)

where the constant U is the amplitude of the motion,
iii is the unit vector in the flow direction, and ω is the
frequency of vibrations. Due to the shear, the fluid is
gradually moved, and its velocity is of the form

v = v(y, t) = u(y, t)iii .

In view of the above assumptions, as well as of
the usual Boussinesq’s approximation, the governing

equations reduce to Seth et al. [11, Eqs. (1) and (2)]

∂u
∂ t

= ν
∂ 2u
∂y2 −

σB2
0

ρ
u− ν

K
u+gβ (T −T∞) , (2)

∂T
∂ t

=
k

ρcp

∂ 2T
∂y2 −

1
ρcp

∂qr

∂y
, (3)

where T,ν ,ρ,σ ,K,g,β ,k,cp, and qr are, respectively,
temperature of the fluid, kinematic viscosity, fluid den-
sity, electrical conductivity, permeability of porous
medium, acceleration due to gravity, volumetric coeffi-
cient of thermal expansion, thermal conductivity, spe-
cific heat at constant pressure, and the radiative heat
flux in y-direction.

Assuming that no slipping occurs between the plate
and the fluid, the appropriate initial and boundary con-
ditions of the system of partial differential equations
(2) and (3) are

u(y,0) = 0 , T (y,0) = T∞ for y≥ 0 ,

u(0, t) = U cos(ωt) ,
∂T (0, t)

∂y
=−q

k
for t > 0 ,

u→ 0 and T → T∞ as y→ ∞ , t > 0 ,

(4)

where q is the constant heat flux. In the following, we
adopt the Rosseland approximation for radiative flux
qr [10, 11, 13, 17], namely

qr =−4σ∗

3κ∗
∂T 4

∂y
, (5)

where σ∗ is the Stefan–Boltzmann constant and κ∗ is
the mean absorbtion coefficient. Assuming small tem-
perature difference between the fluid temperature T
and the free stream temperature T∞, expanding in Tay-
lor series T 4 about T∞, and neglecting the second and
higher order terms, we find that

T 4 ∼= 4T 3
∞T −3T 4

∞ . (6)

It is worth pointing out that (6), expressing the term
T 4 as a linear function, is widely used in computa-
tional fluid dynamics involving radiation absorbtion
problems [18].

Introducing (6) into (3), we obtain (see also Seth
et al. [11, Eq. (6)])

ρcp
∂T
∂ t

= k
∂ 2T
∂y2 +

16σ∗T 3
∞

3κ∗
∂ 2T
∂y2 . (7)
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Now using the next dimensionless quantities

u∗ =
u
U

, y∗ =
U
ν

y , t∗ =
U2

ν
t ,

ω
∗ =

ν

U2 ω , θ =
Uk
νq

(T −T∞) ,

Gr =
(

ν

U2

)2 gβq
k

, Pr =
µcp

k
,

Nr =
16σ∗T 3

∞

3kκ∗
, M2 =

σνB2
0

ρU2 , K∗ =
U2

ν2 K ,

(8)

and dropping out the star notation from u,y, t,ω , and K,
the governing equations (2) and (7) take the simplified
forms

∂u(y, t)
∂ t

=
∂ 2u(y, t)

∂y2 −Hu(y, t) (9)

+Grθ(y, t) ; y, t > 0 ,

Pr
∂θ(y, t)

∂ t
=(1+Nr)

∂ 2θ(y, t)
∂y2 ; y, t > 0 , (10)

where H = M2 + 1
K . In (8), Pr is the Prandtl number,

Gr the Grashof number, and Nr the radiation parame-
ter. In non-dimensional form, the initial and boundary
conditions (4) become

u(y,0) = 0 , θ(y,0) = 0 for y≥ 0 ,

u(0, t) = cos(ωt) ,
∂θ(0, t)

∂y
=−1 for t > 0 ,

u(y, t)→ 0 , θ(y, t)→ 0 as y→ ∞ and t > 0 .

(11)

The energy equation (10) is uncoupled to the mo-
mentum equation (9) and its solution with the cor-
responding initial and boundary conditions (11) was
given by Das et al. [19, Eq. (10)] and Chandrakala [13,
Eq. (11)]. Unfortunately, both results contain printing
errors and the correct result is given by

θ(y, t) =
2
√

t√
Preff

(12)

·
[

1√
π

exp

(
−y2Preff

4t

)
− y
√

Preff

2
√

t
erfc

(
y
√

Preff

2
√

t

)]
,

where Preff = Pr
1+Nr

is the effective Prandtl number as in
Magyari and Pantokratoras [20]. Introducing (12) into
(9), applying the Laplace transform with respect to t,
and bearing in mind the initial and boundary condi-
tions corresponding to the velocity u(y, t), we find the

solution

u(y, t) =
1
4

·

[
e−iωt

[
e−y
√

H−iω erfc

(
y

2
√

t
−
√

(H− iω)t
)

+ ey
√

H−iω erfc

(
y

2
√

t
+
√

(H− iω)t
)]

+ eiωt
[

e−y
√

H+iω erfc

(
y

2
√

t
−
√

(H + iω)t
)

+ ey
√

H+iω erfc

(
y

2
√

t
+
√

(H + iω)t
)]]

+
Gr

H
√

Preff

[
− 1

π

[∫
∞

0

cos(y
√

x)

(x+H)
3
2

[
1− e−(x+H)t]dx

+
∫ H

0

e−y
√

x+H

x
3
2

[
1− e−xt]dx

]
(13)

+
ebt

π

[∫
∞

0

cos(y
√

x)
(x+H +b)

√
x+H

[
1− e−(x+H+b)t]dx

+
∫ H

0

e−y
√

x+H

(x+b)
√

x

[
1− e−(x+b)t]dx

]
+2

√
t
π

exp

(
−y2Preff

4t

)
− y
√

Preff erfc

(
y
√

Preff

2
√

t

)
− ebt

2
√

b

[
e−y
√

bPreff erfc

(
y
√

Preff

2
√

t
−
√

bt

)
− ey

√
bPreff erfc

(
y
√

Preff

2
√

t
+
√

bt

)]]
,

where the constant b = H
Preff−1 . The temperature θ(y, t)

given in (12) is valid for all positive values of Preff,
while the solution for the velocity is not valid for
Preff = 1. Consequently, in this case, the velocity u(y, t)
has to be rederived starting from (9) and (10). The so-
lution that is obtained for Preff = 1, is

u(y, t) =

1
4

[
e−iωt

[
e−y
√

H−iω erfc

(
y

2
√

t
−
√

(H− iω)t
)

+ ey
√

H−iω erfc

(
y

2
√

t
+
√

(H− iω)t
)]

+ eiωt
[

e−y
√

H+iω erfc

(
y

2
√

t
−
√

(H + iω)t
)

+ ey
√

H+iω erfc

(
y

2
√

t
+
√

(H + iω)t
)]]
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+
Gr
H

[
− 1

π

[∫ ∞

0

cos(y
√

x)

(x+H)
3
2

[
1− e−(x+H)t

]
dx

+
∫ H

0

e−y
√

x+H

x
3
2

[
1− e−xt] dx

]
+2

√
t
π

exp

(
−y2

4t

)
− yerfc

(
y

2
√

t

)]
. (14)

The corresponding skin friction, which is a measure
of the shear stress at the plate, can be determined by
introducing (13) and (14) into

τ = τ(t) = −∂u(y, t)
∂y

∣∣∣∣
y=0

; t > 0 . (15)

Its non-dimensional expressions are

τ =
e−iωt

2

[√
H− iω erf

√
(H− iω)t

+
1√
tπ

e−(H−iω)t
]

+
eiωt

2

[√
H + iω erf

√
(H + iω)t +

1√
tπ

e−(H+iω)t
]

+
Gr

H
√

Preff

[
(1− ebt)

√
Preff (16)

− 1
π

∫ H

0

√
H + x

x
3
2

[
1− e−tx] dx

+
ebt

π

∫ H

0

√
H + x

(b+ x)
√

x

[
1− e−t(b+x)

]
dx

]
,

for Preff 6= 1 and

τ =
e−iωt

2

[√
H− iω erf

√
(H− iω)t

+
1√
tπ

e−(H−iω)t
]

+
eiωt

2

[√
H + iω erf

√
(H + iω)t (17)

+
1√
tπ

e−(H+iω)t
]

+
Gr
H

[
1− 1

π

∫ H

0

√
H + x

x
3
2

[
1− e−tx] dx

]
,

for Preff = 1. The velocity u(y, t), as well as the skin
friction τ(t), consists of two parts. The first part, due to
the oscillations of the plate, is not affected by thermal

effects. The second part of the velocity, as well as the
last term of the skin friction, are due to radiation and
free convection currents.

3. Special Cases

Equations (12) – (14) provide exact analytical solu-
tions for the fluid temperature and velocity for the un-
steady hydromagnetic flow of an incompressible vis-
cous electrically conducting fluid past an oscillating
vertical plate when thermal effects and porosity are
taken into consideration. In order to underline the influ-
ence of the corresponding parameters on the fluid mo-
tion, as well as for a check of results, it is worth point-
ing out different special cases of general solutions. It
may be worthwhile to compare such a motion with the
one where at least one of the above mentioned effects
is absent.

3.1. Solution in the Absence of Radiation

In the absence of thermal radiation, i.e. in the
pure convection case which numerically corresponds
to Nr = 0, the dimensionless temperature θ(y, t) takes
the form

θ(y, t) =
2
√

t√
Pr

[
1√
π

exp

(
−y2 Pr

4t

)

− y
√

Pr

2
√

t
erfc

(
y
√

Pr

2
√

t

)]
,

(18)

obtained in Chaudhary et. al. [14, Eq. (15)]. By now
letting Nr = 0 and ω = 0 into (13) and (14), the veloc-
ity field obtained by Chaudhary et al. [14, Eqs. (16) or
(17)] is recovered.

3.2. Solution in the Absence of Thermal, Magnetic,
and Porous Effects

It is interesting to observe that in the absence of ther-
mal effects, the Grashof number Gr = 0 and the veloc-
ity field

u(y, t) =

1
4

[
e−iωt

[
e−y
√

H−iω erfc

(
y

2
√

t
−
√

(H− iω)t
)

+ ey
√

H−iω erfc

(
y

2
√

t
+
√

(H− iω)t
)]

(19)
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+ eiωt
[

e−y
√

H+iω erfc

(
y

2
√

t
−
√

(H + iω)t
)

+ ey
√

H+iω erfc

(
y

2
√

t
+
√

(H + iω)t
)]]

resulting from (13) or (14), corresponds to the MHD
flow of an incompressible viscous fluid past an oscil-
lating vertical infinite plate through a porous medium.
For large time, the starting solution (19) tends to the
steady state solution

u(y, t) = e−αy cos(ωt−βy) , (20)

where

α
2 =

√
H2 +ω2 +H

2
and β

2 =

√
H2 +ω2−H

2
.

The solutions corresponding to the MHD flow or
through a porous medium are immediately obtained
from (19) and (20) for K → ∞, respectively M = 0.
If H→ 0 (the magnetic and porous effects are also ne-
glected), (19) and (20) reduce to the known solutions
obtained by Erdogan [15, Eqs. (8) and (12)]. Finally
making ω → 0 into (19) and (20), the solutions cor-
responding to the motion past an impulsively started
infinite vertical plate are obtained.

4. Numerical Results and Discussion

In this note, the radiation and porosity effects on the
MHD free convection flow of an incompressible vis-
cous fluid past an infinite vertical oscillating plate with
uniform heat flux are studied. The dimensionless gov-
erning partial differential equations are solved by the
usual Laplace transform technique. Exact solutions for
velocity and temperature are obtained in terms of the
exponential and complementary error functions. They
satisfy all imposed initial and boundary conditions and,
in special cases, reduce to known solutions from the
literature. Dimensional expressions for the skin fric-
tion, that is a measure of the shear stress on the plate,
are also determined. In the absence of thermal radia-
tion (when qr = 0) and for ω→ 0, all present solutions
tend to those obtained by Chaudhary et al. [14].

In order to get physical insight and to understand
the effects of different parameters in the problem, nu-
merical computations are carried out for velocity, tem-
perature, and skin friction for different values of per-
tinent parameters such as Grashof number Gr, radia-
tion parameter Nr, magnetic parameter M, permeability

parameter K, Prandtl number Pr, phase angle ωt, and
time t. However, the Grashof number Gr in (13) and
(14) can take positive, zero or negative values. Physi-
cally Gr < 0 corresponds to an externally heated plate,
Gr = 0 corresponds to the absence of the free convec-
tion currents while Gr > 0 corresponds to externally
cooled plate [21]. The heating and cooling take place
by setting up free convection current due to temper-
ature and concentration gradient. In the case Gr = 0,
the velocity is independent of the Prandtl number Pr
of the fluid and describes only hydromagnetic oscilla-
tions. This case will not be considered here, and we
begin our graphs with the Grashof number.

Figure 1 clearly shows that the velocity increases
with an increase of thermal Grashof number Gr in
the case of cooling of the plate. For negative values
of Gr, as expected, an opposite phenomenon appears.
Figures 2 – 6 present the velocity profiles against y for
air (Pr = 0.71) due to the variations of Nr,M,K,ωt,
and time t for the case of heating (Gr < 0) and cool-
ing (Gr > 0) of the plate. In Figure 2, the velocity
profiles for different values of the radiation parame-
ter Nr in cases of cooling and heating of the plate at
t = 0.2 and ωt = π

2 are presented. It is observed that
the fluid velocity decreases with increasing values of
Nr for the case of cooling of the plate. This is due to
the fact that an increase in the radiation parameter Nr,
for fixed k and T∞, means an increase in the Rosseland
mean absorbtion coefficient k∗ [22]. A reverse effect is
observed in the case of heating of the plate. Figure 3
illustrates the influence of the magnetic parameter M
also in both cases of cooling and heating of the plate
at t = 0.2. The velocity of the fluid decreases with an

Fig. 1. Velocity profiles for different values of Gr with t =
0.2, Nr = 1.2, M = 0.8, K = 1.4, Pr = 0.71, ω = 0.5, and
ωt = π

2 .
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Fig. 2. Velocity profiles for different values of Nr with t =
0.2,M = 0.8,K = 1.4,Pr = 0.71, ω = 0.5, and ωt = π

2 .

Fig. 3. Velocity profiles for different values of M with t =
0.2,Nr = 2,K = 1.4,Pr = 0.71,ω = 0.5, and ωt = π

2 .

Fig. 4. Velocity profiles for different values of K with t =
0.5,Nr = 2,M = 4,Pr = 0.71,ω = 0.2, and ωt = π

2 .

increase of magnetic parameter M for the case of cool-
ing of the plate. This is due to a resistive type force
(Lorentz force) similar to drag force, which tends to re-
sist the fluid flow and thus reduces its velocity. Clearly,

Fig. 5. Velocity profiles for different values of ωt with t =
0.2,Nr = 1.2,M = 0.8,K = 1.4,Pr = 0.71, and ω = 0.5.

Fig. 6. Velocity profiles for different values of t with Nr =
2,M = 1.4,K = 1.5,Pr = 0.71,ω = 0.5, and ωt = π

2 .

a reverse effect is observed in the case of heating of
the plate. In the case of cooling of the plate the veloc-
ity increases near the plate, becomes a maximum, and
then decreases away from the plate asymptotically. The
velocity profiles due to the variations in K (permeabil-
ity parameter) are drawn in Figure 4. The velocity in-
creases with an increase of the permeability parameter
K for the case of cooling of the plate and decreases in
the case of heating of the plate. This is due to the fact
that the presence of a porous medium increases the re-
sistance to flow. A reverse trend appears in the case of
heating of the plate.

Figure 5 represents the velocity profiles due to the
variations of the phase angle ωt in case of cooling and
heating of the plate. The velocity of the fluid decreases
with increasing the phase angle ωt for the case of cool-
ing of the plate. A similar effect is also observed in the
case of heating of the plate. It is clear from the figure
that the velocity near the plate exceeds at the plate, i.e.
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the velocity overshoot occurs. In Figure 6, the velocity
profiles due to the variations in t (time) are displayed in
cases of cooling and heating of the plate. It is observed
that the velocity decreases with time for the case of
cooling of the plate when the phase angle ωt = π

2 . A
reverse effect is observed in the case of heating of the
plate. In the case of cooling of the plate, the velocity
increases near the surface of the plate, becomes a max-
imum, then decreases away from the plate and finally
approaching zero asymptotically.

The temperature profiles of air (Pr = 0.71) are
shown in Figure 7 and Figure 8 for different values of
Nr and t. Figure 7 clearly shows that the temperature
decreases with increasing values of radiation parame-
ter Nr. When radiation is present, the thermal boundary
layer was always found to thicken. This may be ex-
plained by the fact that radiation provides an additional
means to diffuse energy. From Figure 8 it is observed
that the temperature increases with increasing time in
the presence of radiation. Furthermore, it is found that
the thermal boundary layer thicken with increasing val-
ues of time. The effect of the Prandtl number Pr on the
fluid temperature is analysed from Figure 9. It is no-
ticed that the temperature decreases on increasing Pr,
and the thickness of thermal boundary layer is greater
for air (Pr = 0.71), and there is more uniform temper-
ature distribution across the thermal boundary layer as
compared to electrolytic solution (Pr = 1.0) and water
(Pr = 7). The reason is that smaller values of Prandtl
number are equivalent to increasing thermal conduc-
tivity and therefore heat is able to diffuse away from
the heated surface more rapidly than for higher values
of Prandtl number. Thus, the temperature falls more
rapidly for water than air and electrolytic solution. The

Fig. 7. Temperature profiles for different values of Nr with
t = 0.2 and Pr = 0.71.

Fig. 8. Temperature profiles for different values of t with
Nr = 3 and Pr = 0.71.

Fig. 9. Temperature profiles for different values of Pr with
t = 0.2 and Nr = 3.

temperature is maximum near the plate and asymptoti-
cally approaches to zero in the free stream region.

The skin friction is presented in Figures 10 – 13.
From Figure 10, it is clear that the skin friction de-
creases with an increase of thermal Grashof number
Gr for both cooling and heating of the plate for time
t < 0.72. But when t > 0.72, the skin friction increases
with an increase of Gr for both cooling and heating of
the plate. Figures 11 – 13 present the skin friction pro-
files for air (Pr = 0.71) due to variations of Nr, M, and
K for the case of cooling (Gr > 0) and heating (Gr < 0)
of the plate against time t and ωt = π

2 . In Figure 11, it is
observed that the skin friction increases with increasing
values of radiation parameter Nr for the case of cooling
of the plate. An opposite phenomenon is observed in
the case of heating of the plate. Figure 12 illustrates the
influence of the magnetic parameter M in both cases
of heating and cooling of the plate. The skin friction
increases with an increase of M for the case of cooling
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Fig. 10. Skin friction profiles for different values of M with
K = 1.4,Pr = 0.71,Nr = 2,ω = 0.5, and ωt = π

2 .

Fig. 11. Skin friction profiles for different values of Nr with
K = 1.4,Pr = 0.71,M = 0.8,ω = 0.5, and ωt = π

2 .

of the plate. Clearly, a reverse effect is observed in the
case of heating of the plate. The skin friction profiles
due to the variations in permeability parameter K are
shown in Figure 13. The skin friction decreases with
an increase of K in the case of cooling of the plate and
increases for the case of heating of the plate.

5. Conclusions

In this study, we have analysed the governing equa-
tions for unsteady hydro-magnetic natural convective
heat transfer flow of Boussinesq fluid past an oscillat-
ing vertical plate with uniform heat flux in a porous
medium in the presence of radiative heat transfer. The
governing equations are analytically solved by the
Laplace transform technique. The cases of cooling and
heating of the plate are considered corresponding to the
Grashof number Gr > 0 and Gr < 0, respectively. The

Fig. 12. Skin friction profiles for different values of Gr with
K = 1.4,Pr = 0.71,M = 1.2,Nr = 2, ω = 0.5, and ωt = π

2 .

Fig. 13. Skin friction profiles for different values of K with
M = 1.2,Nr = 2,Pr = 0.71,ω = 0.5, and ωt = π

2 .

pertinent parameters bring to light the following effects
on the velocity and temperature in case of cooling and
heating of the plate:
(i) The Grashof number Gr accelerates the velocity of
the fluid in case of cooling of the plate. A reverse effect
is observed in the case of heating of the plate.
(ii) An increase in the radiation parameter Nr results in
a decrease in velocity for Gr > 0 and an increase when
Gr < 0. Also radiation parameter reduces the tempera-
ture of the fluid.
(iii) The magnetic parameter M retards the velocity of
the fluid in case of cooling of the plate. Whereas, it en-
hances the velocity of the flow field in case of heating
of the plate.
(iv) The phase angle ωt has a retarding effect on the
fluid flow for both cooling and heating of the plate.
(v) The phase angle ωt has a retarding effect on the
fluid flow for both cooling and heating of the plate.
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(vi) The velocity of the fluid increases with time t in
case of cooling and decreases in case of heating of the
plate.
(vii) The temperature increases with increase in time t.
(viii) An increase in the Prandtl number Pr reduces the
temperature of the fluid.
(ix) An increase in M or Nr results in an increase in
the skin friction τ in case of cooling of the plate and a
decrease in case of heating of the plate.

(x) The skin friction increases due to increase in K in
case of heating and decreases in case of cooling of the
plate.
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