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a b s t r a c t

This is a short technical paper on how to use classical continuum and fracture mechanics to calculate the
plastic zones caused by cracks on heterogeneous or composite materials. As an example, a sample con-
sisting of an a-phase and b-phase is used. A crack is introduced to the sample, and stress is then applied.
The plastic zone in front of the crack resulting from the applied stress is then calculated using commercial
software. The concept uses two-level modeling: a global model using homogenized stiffness from a unit
cell of heterogeneous material and a local model for the a-phase and b-phase. While this paper is written
for general purposes, a concrete example using ferrite and martensite is also presented along with the
experimental data. General agreement between the model and the experiment is observed. This method
eliminates the need for a cumbersome analytical approach.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Information about the plastic zones (PZ) in front of cracks can
be very useful for evaluating the components used in oil refineries,
automobiles and aircrafts (Oudad et al., 2009; Ramachandran,
2005), in terms of both ferrous and non-ferrous materials (Atas
and Sayman, 2000; Bouiadjra et al., 2009; Xin et al., 2010; Yi
et al., 2010). Understanding the plastic zone in front of a crack
caused either by residual stress, applied loading or any other stres-
ses can be very beneficial.

For decades, classical continuum mechanics have proven to be
successful in predicting the shape and the size of the plastic zone
in homogeneous materials. However, their application to heteroge-
neous materials has been cumbersome due to their analytical
approach. When the shape of a material’s multiphase constituents
is simple, such as in the case of spheres, squares or ovals, an ana-
lytical solution can still be formulated. Unfortunately, it is rare that
the shapes of the constituents are so simple. The majority of con-
stituents have random shapes, especially those which occur natu-
rally. Though several attempts to use other methods, including
fractal theory, have been attempted (Carpinteri et al., 2004; Che-
repanov et al., 1995; Epstein and Asniatycki, 2006; Kassner et al.,
2005; Oden et al., 2003; Reddy and Rao, 2008; Wnuk and Yavari,
2008), these analytical approaches have often been very difficult
and impractical to pursue.

With the advancing popularity of commercial finite element
analysis programs, computer technology can obviate the need for
ll rights reserved.
difficult analytical approaches. Currently, researchers are able to
simplify and manipulate the model. This short technical paper
gives an example of how to manipulate the data so that a classical
continuum mechanics approach can be used to study heteroge-
neous materials, even though it was originally developed for
homogeneous materials.

2. Theory

Due to the technical nature of this paper, which relies on several
different fields of knowledge, the theories related to this subject
are briefly presented. Readers who are not familiar with these con-
cepts are encouraged to consult elementary textbooks on mechan-
ics, fracture mechanics, and mathematics.

2.1. Homogenization

The concept of homogenization has become accepted as a com-
putational approach to heterogeneous materials (Aizawa et al.,
2002; Lee et al., 1996; Prawoto, 2012). While the detailed theory
is beyond the scope of this technical paper, a short introduction
is presented here for the reader’s convenience. In this theory, the
local constitutive structure is taken to have a locally specified peri-
odic unit cell, as shown in Fig. 1. Hence, every physical variable
field on this material support can be expressed by a combination
of its averaged part with a local disturbance, as depicted in part
(b) of the figure. Assuming that the periodicity, e, is sufficiently
small, every physical field u(x,y) can be represented by an asymp-
totic expansion in e,
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Fig. 1. (a) A frame of multi-scaling in materials using the homogenization theory. (b) Local deviation in the field variable to be embedded into the rationally smoothed
distribution (Aizawa et al., 2002; Prawoto, 2012).
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uðx; yÞ ¼ u0ðx; yÞ þ eu1ðx; yÞ þ 1
2
e2u2ðx; yÞ þ � � � for y � x=e ð1Þ

or

uðx; yÞ ffi u0ðx; yÞ þ eu1ðx; yÞ ð2Þ

where {u0,u1} are, respectively, the functions for the averaged part
and for the disturbance. Owing to the periodicity of function u in y,
the following two equations are powerful tools:
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where Y denotes the volume of the unit cell. These two equations
(or forms similar to them) have also been frequently used in the
computational approach to auxetic materials. To use this principle
in FEA to compute the elastic modulus, recall the weak form of
the linear elasticity finite element problem:Z

X
Eijkl
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Using the homogenization principle, we use x and y as microscale
coordinates (see Fig. 1),

uðx; yÞ ¼ u0ðx; yÞ þ eu1ðx; yÞ þ 1
2
e2u2ðx; yÞ þ � � � for y � x=e ð6Þ

and

vðx; yÞ ¼ v0ðx; yÞ þ ev1ðx; yÞ þ 1
2
e2v2ðx; yÞ þ � � � for y � x=e ð7Þ

or

uðx; yÞ ffi u0ðx; yÞ þ eu1ðx; yÞ ð8Þ
and

vðx; yÞ ffi v0ðx; yÞ þ ev1ðx; yÞ ð9Þ

Meanwhile, the gradients of u and v are:

ruðx; yÞ ¼ rxu0ðx; yÞ þ erxu1ðx; yÞ þ eryu1ðx; yÞ
rvðx; yÞ ¼ rxv0ðx; yÞ þ erxv1ðx; yÞ þ eryv1ðx; yÞ

ð10Þ

Combining Eq. (5) with the above equations gives:Z
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When e? 0, this becomesZ
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and can be separated to:
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Using Eq. (11), we can rewrite this as

Lim
x!0

;

Z
X

Uðx; yÞdX ¼
Z

X

1
jYj

Z
y
Uðx; yÞdY

� �
dV ð15Þ



Fig. 2. Basic usage of linear elastic fracture mechanics method (Prawoto, 2009).
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Eqs. (13) and (14) eventually become:Z
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Introducing a separation of variables to satisfy this based on linear
elasticity,

u1
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where vkl
p is the microscale parameter. This can be obtained by com-

bining Eqs. (18) and (17):Z
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Therefore, our weak form becomesZ
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where the homogenized tensor of elasticity is
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Therefore, the homogenization concept is highly applicable to het-
erogeneous materials. A unit cell can be chosen to represent the
structure. Skeptics may say that this approach still does not work
for natural structures, but in reality, it demonstrates a compromise
approach that has been proven to be better than a simple rule of
mixture, which does not accommodate the shapes of the constitu-
ents (Prawoto, 2012).

2.2. Stress intensity factor

The concepts of fracture mechanics are concerned with devel-
oping methods to predict the load-carrying capabilities of struc-
tures containing cracks. This fracture mechanics approach is
based on a mathematical description of the characteristic stress
field surrounding a crack in a loaded body.

To explore the characteristics of the stress field surrounding a
crack in a loaded body, one can start with the Westergaard func-
tion. The Westergaard function is a complex solution to the Airy
stress function. To do this, consider a coordinate system x, y, z in
a stressed solid. At each point (x,y,z), one can define the stresses
rx, ry, rz, sxy, sxz, and syz. Neglecting the body forces, for two-
dimensional problems, the equilibrium equations are

@rx
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ð22Þ

Also recall their relations with the elastic strain:
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@u
@x
; ey ¼

@v
@y

; cxy ¼
@u
@y
þ @v
@x

ð23Þ

The equilibrium equation in (22) is automatically satisfied if

rx ¼
@2w
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ð24Þ

with the stress–strain relation
Eex ¼ rx � vry; Eey ¼ ry � vrx; sxy ¼
Ecxy

2ð1þ vÞ ð25Þ

The function w is called the Airy stress function. With extensive
mathematical manipulation (Prawoto, 2009, 2011), the stress sin-
gularity in front of a crack can then be expressed by

rij ¼
KIffiffiffiffiffiffiffiffiffi
2pr
p fijðhÞ ð26Þ

where r and h are the polar coordinates of a point with respect to
the crack tip, and KI is the stress intensity factor (see Fig. 2).

2.3. J-integral

While the discussion in the former section is limited to linear
elastic mechanics, this section covers non-linear elastics. The J-
integral is one way to calculate the strain energy release rate, or
work (energy) per unit fracture surface area (Anderson, 1995).
The J-integral is equal to the strain energy release rate for a crack
in a body subjected to loading under quasi-static conditions (see
Fig. 3). Its simplified two-dimensional form is

J ffi
Z

C
Wdx2 � t � @u

@x1
ds

� �
ð27Þ

where x1 is the crack direction, x2 is perpendicular to the crack
direction, W is the strain energy density, and n is the surface trac-
tion vector. Its general expression is known by:
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@uk
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dC ð28Þ

where

T ¼ njrjk ð29Þ

and

W ¼
Z eij

0
rijdeij ð30Þ

This represents the strain energy release rate of non-linear elastic
materials, as shown in the following,
Fig. 3. Basic usage of non-linear fracture mechanics concept of the J-integral.
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J � � dP
dA

ð31Þ

where P is the potential energy of the cracked body.
For the sake of simplicity, the scope of this technical paper is

limited to linear elastic and elastic–plastic cases. Due to the unidi-
rectional nature of this topic, the term elastic–plastic is treated as
non-linear elastic. For these purposes, the term elastic–plastic be-
comes indistinguishable from non-linear elastic.

Let the curvature of the non-linear elastic take the following
form.

r ¼ r0
e
e0

� �1
n

ð32Þ

Here, n is the hardening index. In this case, mimicking the Rice–
Rosengren formulation, referred to from now on as the HRR (Hutch-
inson–Rice–Rosengren (He and Hutchinson, 1981; Rice and Rosen-
gren, 1968)) formulation, the following stress, strain, and
displacement fields at a point near the crack tip (h,r) must be true:
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J
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where Rij, Eij, and Uij are dimensionless functions.
Rewriting our definition of the J-integral, Eq. (28),
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where the deviatoric stress is

Sij ¼ rij �
rkkdij

3
ð37Þ

Recall that this means for a linear elastic case, n = 1, and for a per-
fectly plastic case, n =1.

3. Computational approach

We have designated Eq. (21) for averaging the heterogeneous
materials, Eq. (26) for stress description near the crack in linear
elasticity, and its comparable governing rule of Eq. (33) for non-lin-
ear elasticity (sometimes referred to as elasto-plasticity, though
strictly speaking they are different). The theoretical plastic zone
shape varies depending on the distance along the crack front com-
pared to a free surface. The two extreme cases appear on the sur-
face and in the middle of a thick sample. On the surface, which is
governed by plane stress, the plastic zone shape differs from inside
the sample, where it is governed by plane strain. Here, using the
same concept, both two-dimensional modeling and three-dimen-
sional modeling were performed. The latter is only described
briefly due to its similarity to the former. For this purpose, the
computation for a material with two different phases, namely a
and b phases, is highlighted. From time to time, this note refers
to previously published papers (Prawoto, 2009; Prawoto et al.,
2009, 2011).

3.1. Modeling procedure

The model here is a heterogeneous material, having a constitu-
ent of a-phase inside a b-phase matrix. As a test specimen, a CT
(compact tension) specimen according to the ASTM E647 (ASTM,
2008a) standard was chosen. The following steps were taken:
� Application of homogenization theory to the heterogeneous
material.
) Eq. (21).
� Use the material characteristics to treat the global heteroge-

neous material as a homogenized object, followed by FEA model
verification.
) Eqs. (26) and (33).)ASTM (ASTM, 2008a,b).
� Use the material characteristics to treat the global heteroge-

neous material as a homogenized object.
) Non-linear-elastic or elasto-plastic analysis. Eq. (32).
� Obtain the output of the global model and use it as a boundary

condition to compute the local model with the heterogeneous
material.
) Use sub-modeling technique.

3.1.1. Application of homogenization theory to heterogeneous material
The first step of model creation is the application of the homog-

enization theory. This can be achieved by digitizing a microstruc-
ture obtained by an SEM or an optical microscope. For two-
dimensional modeling, the model can be made either as a plane
stress or a plane strain. For three-dimensional modeling, several
commercial packages are available to construct it from multiple
slices of picture files (e.g., Amira, which is popular among biomed-
ical engineers/researchers). The unit cell can be created by placing
two mirrors to guarantee the continuity of the boundary condi-
tions (see Fig. 4). As an example, Young’s modulus, E [GPa], was
180, and the Poissons ratio, m, was 0.32. For the a-phase and the
b-phase, E was 210 GPa and m was 0.31. After applying the homog-
enization theory, the unit cell has a stiffness matrix of

EH
1111 EH

1122 0

EH
2211 EH

2222 0

0 0 EH
1212

2
64

3
75 ¼

205:58 64:24 0
64:24 205:58 0

0 0 70:67

2
64

3
75 ð38Þ

This stiffness matrix can then be used to construct the homogenized
global model (next step). It is important to note that the application
of the homogenization theory to obtain the stiffness is not manda-
tory. Depending on the accuracy one needs and depending on the
extent to which one might want to consider the influence of the
shape of each constituent, other methods can be used. The decision
on whether to use the homogenization concept or other methods,
such as the regular rule of mixture, is typically dependent upon
the shape of the constituent because the rule of mixture does not
take into account the stress amplification caused by constituent
shapes; it is a simple volumetric averaging. The closer the constitu-
ent structure is to a circle or sphere, the more accurate the rule of
mixture. The farther away the structure veers from a sphere, espe-
cially if the shape is sharp, the less accurate the rule of mixture. In
such a case, the homogenization theory is advantageous.

3.1.2. The use of the material characteristics to treat global
heterogeneous material as a homogenized object, followed by FEA
model verification

In this step, the stiffness used was that of Eq. (38). The stress
intensity factor, K, can be used for verification. For a compact ten-
sion specimen, the relation between the applied load, P, and K is as
follows (ASTM, 2008a,b):

K¼ P

B
ffiffiffiffiffiffi
W
p 2þa

ð1�aÞ3=2 0:886þ4:64a�13:32a2þ14:72a3�5:6a4
� �

ð39Þ

where B and W represent specimen thickness and width, respec-
tively, a is the relative crack length (a/W), and P is the applied load.
For this analysis, an elastic material was used because the plastic
zone is not studied at this step. The following values were used
for both the analytical verification and the modeling: a = 0.45,
W = 38.1 [mm], and B = 10 [mm]. For this global model, the element



Fig. 4. Implementation of the homogenization theory on the unit cell created based on a real microstructure (10% of a-phase inside the b-phase matrix).
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types used were CPE3 (3-node linear element) and CPE4R (4-node
bilinear element, with reduced integration) with the applied load
P = 200 [N]. For example, from this estimation result, it was found
that the plastic zone was approximately 1.8 [mm] in height. At this
point, one can choose to either lower the applied load until the
desired size of the plastic zone is achieved or adjust the size of
the local model to be slightly larger than the approximate plastic
zone obtained at this step. For three-dimensional computations
the basic principle is the same. Element types such as C3D8R (An
8-node linear brick with reduced integration) can be used.

3.1.3. The use of the material characteristics to treat global
heterogeneous material as a homogenized object

The same model created in the previous step can be used here.
The main point in this step is to adjust the applied loading. In this
example, the area of interest is 1 [mm]2 of area for the two-dimen-
sional model and 1 [mm]3 of volume is needed for the three-
dimensional model. In such cases, the loading can then be lowered,
Fig. 5. Example of the plastic zone calculation with a two-dimensional method
(Prawoto et al., 2009).
e.g., to P = 100 [N]. Readers can either adjust the loading or the size
of the local model according their needs.

3.1.4. Obtain the output of the global model, use it as a boundary
condition to compute the local model with heterogeneous material

The sub-modeling technique is typically used to study a local
part of a model with a refined mesh, based on the FEA result from
a global model with a coarse mesh. There are two steps for sub-
modeling: (1) Perform an analysis of a global (whole) model to find
the boundary conditions for a local area (previous step). (2) Per-
form an analysis of a local model based on interpolation of the
solution from the global model (this step). Displacement of the lo-
cal model boundary is automatically interpolated from the result of
the global model. The results of the von Mises stress and plastic
zone are shown in Figs. 5 and 6.

4. Comparison of the modeling with the experimental data

Because the exact theoretical solution for heterogeneous mate-
rial cannot be computed based on classical continuum mechanics,
Fig. 6. Example of the plastic zone calculation with a three-dimensional method
(Prawoto et al., 2011).



Fig. 7. Experimental verification with X-ray diffraction machine.
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the theoretical solutions were based on two homogeneous materi-
als. The harder constituent (b) gave a lower bound and the softer
constituent produced an upper bound. Using the simple rule of
mixture, the heterogeneous material yield strength was then cal-
culated. Then, the plastic zone size can be calculated analytically.
For simplicity, the plastic zone was computed only at the surface
of the material. Therefore, the plain strain condition applies. Using
Eqs. (26) and (33), the plastic zones in front of the crack and above
the crack were calculated separately, and then the rule of mixture
was applied. Fig. 7 shows the combined data. The result is normal-
ized with respect to its maximum value, which is the upper bound
of the plastic zone obtained analytically when 100% of the constit-
uent is soft material (a-phase). It is worth noting that because the
material here is AISI 10B21, which is a soft spring material, the per-
centage of the soft material could not be made to be exactly equal
to the target. While these achievements and the metallurgical data
remain confidential to the data supplier, the plastic zone size mea-
surement method used can be briefly shared. Mimicking the peak-
broadening concept previously used by the author (Prawoto and
Winholtz, 2000), Rigaku X-ray diffraction was used. Due to the nat-
ure of the equipment, the error bar shown is somewhat large. The
figures show that the computational results using both two-
dimensional methods and three-dimensional methods end up with
similar trends. This trend is also supported by the experimental re-
sults. Compared with the rule of mixture line, however, the trend is
quite different. This is seemingly because in the rule of mixture, the
second phase is always assumed to have no influence in raising the
stress. However, in the actual microstructure, the shape is almost
random; the shapes are nowhere near spherical, and therefore
act to raise the stress, eventually leading to a larger plastic zone.
5. Conclusion

Manipulation methods that enable one to use classical contin-
uum mechanics in heterogeneous materials were presented. As
an example, the calculation of the plastic zone in front of a cracked
member with an applied stress load was carried out. The results
were found to be satisfactory. This concept can also be extended
to other materials and other purposes. As these computational
tools become easier to use, researchers outside this computational
area, such as materials scientists, would be well advised to employ
them. This approach enables researchers to avoid reliance on cum-
bersome analytical procedures that are sometimes impossible to
execute.
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