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Abstract
Concerns around machine learning’s societal impacts have led to proposals to certify some systems. While prominent gover-
nance efforts to date center around networking standards bodies such as the Institute of Electrical and Electronics Engineers
(IEEE), we argue that machine learning certification should build on structures from the sustainability domain. Policy chal-
lenges of machine learning and sustainability share significant structural similarities, including difficult to observe credence
properties, such as data collection characteristics or carbon emissions from model training, and value chain concerns, includ-
ing core-periphery inequalities, networks of labor, and fragmented and modular value creation. While networking-style stan-
dards typically draw their adoption and enforcement from functional needs to conform to enable network participation,
machine learning, despite its digital nature, does not benefit from this dynamic. We therefore apply research on certification
systems in sustainability, particularly of commodities, to generate lessons across both areas, informing emerging proposals
such as the EU’s AI Act.
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1. Introduction

Machine learning systems, often colloquially called “algorithms” or even “artificial intelligence” systems, are a
type of software distinguished by the way that they “learn from experience.” It is said that a machine “learns” if,
after being exposed to data, its subjectively measured performance at a given task improves (Mitchell 1997).1

They have been at the receiving end of a range of recent critiques concerning varied social impacts accompanying
their commercial use. These critiques have generally centered upon their potential to create and perpetuate
unwanted discrimination, both within applications (Custers et al. 2013; Barocas & Selbst 2016) and more struc-
turally (Gangadharan & Niklas 2019) and the difficulties apparent when attempting to scrutinize these systems in
practice (Hildebrandt & Gutwirth 2008; Edwards & Veale 2017). One way this furore has so far manifested itself
in the policy sphere has been through a range of national and international reports and initiatives targeted
squarely at machine learning systems (see e.g. House of Commons 2018; House of Lords 2018; Committee of
Experts on Internet Intermediaries (MSI-NET) (2017); Craglia et al. 2018) – some of which have been branded as
“ethics-washing” (see generally Bietti 2020). Another has been the high-profile unearthing of obscure and un-
litigated but relevant strands of pre-existing law, such as the “automated decision making” provisions present in
European data protection law in various forms since their genesis in 1970s France (Bygrave 2001; Edwards &
Veale 2017). Few previous topics in technology law and policy have created as much buzz as the governance of
machine learning.

In this paper, we argue that the nature of machine learning issues, and the range of different actors that
become involved in this process of learning from experience in a global context, allows us to usefully characterize
machine learning through lenses more familiar to the study of socioenvironmental issues and sustainability more
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broadly in commodities and supply chains. This characterization facilitates the bringing together of the two fields,
particularly with the aim of examining the nature of challenges that those seeking to regulate machine learning
using private governance regimes may face.

We proceed as follows. In Section 2, we first note that there are key similarities between policy-relevant char-
acteristics of commodities and machine learning systems. Certain aspects of both can be classified as credence
qualities – qualities that cannot be assessed, even after use (such as the impacts that the production of a particular
food stuff, such as coffee, had on the environment, compared to the fundamental rights issues in collecting the
data to build a model). Furthermore, both machine learning and commodities commonly analyzed in relation to
their socioenvironmental characteristics can be seen through the lens of the value chains involved in their pro-
duction and use. We examine similarities in three areas: (i) networks of labor used in the creation of machine
learning algorithms; (ii) the core-periphery inequality in the economics of system design; and (iii) the fragmenta-
tion and modularity of value in machine learning systems.

In the sustainability of commodities, these characteristics, likely due to their fit, have coincided the use of cer-
tification as a governance tool. Certification has also been prominently explored in the area of machine learning.
In Section 3, we illustrate how these two views of certification are surprisingly far apart. We attribute this largely
to the focus of discussion around machine learning certification centering on networking-style standards, an area
many technologists in that area have experience with, and we argue that these foundations are inappropriate and
likely to be ineffective. We instead move to see what lessons research and practice around sustainability certifica-
tion can provide to machine learning, applying research findings about the former to the sociotechnical features
of the latter.

Given the broad and general-purpose nature of machine learning systems, and the fast-emerging nature of
business models and practices, we rely throughout the paper on a broad array of sources to identify and highlight
issues and comparators at a relatively early stage. In seeking to do so, we draw on a range of scholarship from
many disciplines, high-quality journalism, and policy documents. This is particularly important in a domain
where trade secrets and NDAs typically restrict a thorough external analysis of machine learning products or
practices within a particular sector or company.

2. Value chains illuminate underexplored governance issues in machine learning

Prevailing academic and policy analysis of machine learning has typically viewed it as a service provided by a
software object. This service might output prima facie discriminatory results (Barocas & Selbst 2016), be insecure
to cybersecurity attacks (Huang et al. 2011; Veale et al. 2018b), or be opaque and difficult to scrutinize
(Edwards & Veale 2017). When analyzed in its deployment context, it might, for example, create feedback effects
in interaction with its environment, such as contributing to over-policing of already marginalized communities
(Lum & Isaac 2016; Ensign et al. 2018), or engender organizational pressures to transfer it to new and unsuitable
contexts (Veale et al. 2018a).

All these issues can, and are, analyzed only using information about the software object, and information
about its deployment context and downstream effect. But what happens upstream to create this deployed system?
To do so requires analysis not of the functionality of the service of machine learning systems, but analyzing
machine learning as a good.

To understand what is omitted, we now introduce some concepts relating to the qualities of products from
the governance of value chains and commodities (Darby and Karni 1973; McCluskey and Loureiro 2005). Experi-
ential qualities are those that are possible to observe upon an item’s use – consider a banana’s taste or longevity.
For a machine learning model, experiential qualities might include its explicability to certain audiences, or its per-
formance offline, on test set data. Experiential qualities contrast with credence qualities, which due to their largely
invisible or unattributable natures, are generally a matter of buyer or user trust or belief. Credence qualities can
be further distinguished. Some credence qualities are difficult or costly to observe, largely because they do not
leave a mark on the product. In commodities, these may be labor or environmental standards in production; in
machine learning, they may also include aspects such as privacy or unethical experimentation in the collection of
training data. Other credence qualities are costly to attribute. In commodities, these notably include health
impacts from consumption, or environmental impacts from disposal. In machine learning, we may place aspects
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of deployed performance in this category: systemic biases, feedback loops, or insecurity to attacks in practice that
may be (methodologically) difficult to detect before or even during deployment, but ultimately result from
upstream production or design choices. Impacts on human rights through processes of data collection or labeling
(Roberts 2019), or impact on emissions from large model training (Bender et al. 2021), are further examples of
credence attributes in machine learning. We do not attempt to present an exhaustive list here. Issues such as
these may not be immediately evident without costly, dedicated study, and may require additional data to evalu-
ate (Veale & Binns 2017). It is important to clarify what this terminology is not intended to denote: upstream
harms may certainly be experiential in the sense that they consciously experienced by individuals and communi-
ties (Petty et al. 2018).

These three categories are mapped in Table 1.
To go backwards before an item’s purchase or use to a point where credence qualities could be observed, the

lens of the value chain is particularly useful. Value chains are a way of understanding production and consump-
tion patterns in an interconnected, global economy. In the commodity sector, value chains span from the pro-
ducers of raw materials, such as agricultural smallholders, to end consumers that may be located in a very
different part of the world. These end users might be consuming a product that has been significantly trans-
formed through its combination with other converging value chains, processing, and the provision of services to
producers all over the world. Value chain analysis highlights the links between globalization and existing and
emergent forms of inequity, and calls attention to how systems might be reshaped to mean that the creation of
new, higher value goods increases the living standards of those across the component parts of their production
systems.

The lens of value chains has emerged as particularly useful in understanding systems where any single actor
lacks much unilateral leverage over the production processes in a sector. This includes governmental actors, who
in some accounts are forcibly sidelined by globalization (Cutler et al. 1999) or in others step aside to legitimate
further economic integration (Sassen 1996). Single states have little power to manage processes that span multiple
jurisdictions, and state-sponsored international actors, organizations, and efforts have also had limited buy-in
and impact. Disempowered actors can also include firms in these fragmented processes who are positioned in
such a way that does not afford them significant sectoral control. Yet at other times, the analysis of global value
chains can highlight how specific actors maintain control, even despite a lack of explicit vertical integration.

Commodities such as coffee and tea can be easily seen through this lens (Neilson & Prichard 2009). Value
chain analysis also shines light on composite products such as electronics or clothing, which often integrate many
components and transnational production processes through complex subcontracting processes that can be
opaque even to the core actors involved.

Value chain analysis is commonly used to consider issues of sustainability, given the position of environmen-
tal and labor characteristics as difficult-to-observe credence attributes (see e.g. Mol & Oosterveer 2015). We argue
this usefully applied to issues of justice in machine learning models.

Why would a frame developed for tangible commodities and composite products be applicable to intangible,
informational ones? Machine learning systems might be portrayed in the media and in popular culture as “smart”
software and traditionally might be seen as more akin to intellectual property than a physical commodity (such

Table 1 Attributes of commodities versus attributes of machine learning

Commodities Machine learning

Experiential
difficult to observe until
use

Quality (taste, durability, etc.) For example, measurable performance;
interpretability; energy use from querying

Credence (origin)
difficult to observe

Production conditions and footprint For example, training process (exploitation,
privacy, energy use, or emissions from training)

Credence (use)
difficult to attribute

Post-consumption impacts (e.g. health, disposal
effects)

For example, systemic biases, robustness, and
resilience
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as subject to a European database right), but a closer look at their development and maintenance emphasizes sig-
nificant parallels which are often overlooked. Here, we draw upon several of the characteristics of value chains
highlighted in the research literature (see generally Gereffi et al. 2005) to make the case that such a framing can
provide insights into the development of machine learning systems, too. These are:

• Networks of labor used in the creation of machine learning systems;
• Clear core-periphery inequality in the economies of system design; and
• The fragmented and modular nature of value in machine learning systems.

We now address each in turn.

2.1. Networks of labor
The vast majority of deployed machine learning systems are built on datasets collected from the physical and
social worlds.2 Many of these datasets are created by either observing individuals or from individuals explicitly
contributing to them.

Observed data might be recorded unbeknownst to the individuals generating it.3 For example, systems that
help understand the meaning of words by locating them as a point in high-dimensional space relative to other
words – word vectors – are broadly trained on huge corpora of text data, such as the entirety of English
Wikipedia, or from web crawls (Mikolov et al. 2013; Pennington et al. 2014). They might also be taken from indi-
vidualized surveillance the user is unaware of, such as the data captured by Facebook Pixel, a covert web tracker
present on a large proportion of commonly used sites on the Web (Karaj et al. 2018), or through trackers embed-
ded in mobile apps (Binns et al. 2018). Even when individuals are unaware of these activities, populations are set
up as the sources of these extractive activities by the design of the infrastructure and business models that sur-
round them (Zuboff 2015). These activities that leave a data shadow – content creation, browsing, indexing, and
the like – can be construed as labor undertaken by individuals around the globe (Morozov 2019). Indeed, the
information systems and software people use every day are and have for many years been constructed to elicit
such labor from individuals by re-organizing their activities (Agre 1994; Gürses & van Hoboken 2018, pp. 594–
95). Software products are today developed using “agile” methods where the users are constant subjects of
experimentation in real time. This “agile” approach integrates this constant labor of re-organization into the
development processes of much software today (Gürses & van Hoboken 2018). Following from the way labor has
been commodified, and increasingly informationalized, as an industrial input, contemporary practices of data
extraction and processing themselves create new sources of “raw materials” framed as inputs to particular types
of productive activity (Cohen 2019). Despite usually not being able to “own” data that result from these processes
under current intellectual property regimes, either in the United States or the EU, companies act as legal entre-
preneurs to piece together an array of mechanisms from terms-of-service contracts, NDAs, trade secrets and even
privacy law to jealously guard access to and enclose the infrastructures creating and processing these “raw
materials” (Cohen 2019).

Other forms of labor for machine learning involve significantly more explicit collection practices. Supervised
machine learning, the most common type deployed today, requires labeled data – historical data that have
included the value(s) a system should be able to predict when given a new data record. For example, a social
media post might have a label rating it for abuse; a new support ticket for a helpdesk might have the most rele-
vant FAQ, or the length it took to resolve; a section of CCTV footage from a store might have label indicating
whether shoplifting is visible within it. Machine learning practitioners sometimes call this a “ground truth.” There
are many forms labor to create labels can take. Web users will likely be familiar with Google’s reCAPTCHA prod-
uct, which requires individuals to answer questions before they are allowed to proceed with an activity such as
accessing a site (such as “which of the following photos contains a picture of a shop front”). reCAPTCHA has a
dual purpose design: (i) creating an effective barrier against automated clients attempting to undermine the integ-
rity or availability of online services through methods such as registering fake accounts or contributing to distrib-
uted denial of service (DDoS) attacks and (ii) to create an extensive pool of labeled data for training machine
learning models by asking questions that such models currently struggle to answer reliably.
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Online projects from the “Scalable Cooperation” lab at MIT Media Lab indicate possible future directions for
such explicit labor. In the “Deep Empathy” project,4 individuals are asked to choose from two photos that “make
[them] feel more empathic [sic] toward victims of Syria crisis [sic]” to “train [their] algorithm to get better.” In the
“Moral Machines” project, individuals are presented with “moral dilemmas, where a driverless car must choose
the lesser of two evils, such as killing two passengers or five pedestrians.”5 Effectively, both these studies ask
humans to do one thing only humans can do: emotional labor. As machines get better at comparatively objective
tasks such as assessing shop-fronts, it may be that emotional laboring is one of the main areas left to present to
users to assess their humanity, as well as train the emotional analysis or “affective computing” (Picard 1997) sys-
tems commonly deployed in areas such as marketing today. Indeed, CAPTCHA exercises deigned to interface
with aspects of individuals’ emotions are already being developed by computer scientists (Seering et al. 2019).

Even more explicit labor for machine learning exists. Labeled datasets are commonly created using both infor-
mal “crowdworkers” who work from home and are paid by the job through platforms such as Amazon Mechani-
cal Turk, or through contractors and sub-contractors, particularly of large technology firms. They often labor to
moderate content posted to social media platforms for abuse or “toxicity,” or to label illegality such as child por-
nography, incitement to violence, or content intended to radicalize individuals (Roberts 2019). A range of investi-
gative news stories have also uncovered poor conditions, limited psychological support, tenuous employment,
and even evidence that moderators themselves can be radicalized as a result of the content they are judging
(Chen 2014; Newton 2019). These workers are too often treated like “just an API call” by both technology firms
and machine learning researchers who use them to build labeled datasets (Silberman et al. 2010). This sits closely
alongside many other forms of labor and material extraction used in production of machine learning systems
(Crawford & Joler 2018; Ensmenger 2018).

2.2. Core-periphery inequality
Geographic disparities are prominent in the creation if machine learning systems. Cheaper markets, such as the
Philippines, are often used to outsource the labeling tasks discussed in the previous section. Many of these tasks
are potentially distressing or invasive and are undertaken for a fraction of the wage of countries in the Global
North (Chen 2014).

Modern software development and machine learning in particular rely on experimentation (Gürses and Van
Hoboken 2018; Bird et al. 2016). Experimentation in the production of information has a history of core-
periphery issues we should be wary of machine learning replicating as the sector grows. For the last 30 years, the
pharmaceutical sector has been increasingly locating clinical trials in developing countries (Petryna 2009, p. 13),
where costs can be one tenth of those in the United States (Glickman, Cairns, and Schulman 2009, p. 816). The
availability of willing participants (often in need of basic medical treatment) is considerably higher, important to
easily reach the statistical power needed to trial drugs treating rare conditions or conferring only slight benefits
(Weigmann 2015) – even though these drugs are rarely relevant to the health issues in the country hosting the
trial (Glickman, Cairns, and Schulman 2009).

We see this trend toward identifying and isolating willing sites for participation in machine learning particu-
larly in urban environments. Sidewalk Labs was a project by Google’s parent company, Alphabet. The company
was developing a “smart city” using the testbed of the Quayside, a 12 acre plot of land in downtown Toronto.
With strong backing and permissions provided by the city, a critical and recurring question in the media sur-
rounded the extent to which a wide array of sensors and experiments were going to be run on Toronto residents
in order to provide training data for systems to be sold and deployed elsewhere (Sauter 2018). To the concern of
many, the CEO of Alphabet Inc and co-founder of Google, Larry Page, proposed in 2013 that to avoid the issues
of regulation, it might be possible to “set aside a part of the world” for permissionless innovation around con-
nected technologies (Ingraham 2013). The distribution of benefits relative to experimentation and surveillance
between “testbed” cities and beneficiary cities is yet to be seen, although the Sidewalk Labs project was canceled
in May 2020, ostensibly due to uncertainty from the economic fallout of COVID-19.

Insofar as knowledge about human behavior and institutions is transferable, but requires large-scale experi-
mentation in order to crystallize into machine-learned models, it is likely that such experimentation will take
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place where the economic and regulatory calculus facilitates it, to the benefit of where its deployment is most
valuable.

2.3. Fragmented and modular value creation
Deployed machine learning systems are often misleadingly portrayed in the media (and at times, in the scholar-
ship) as if they are an instantiation of weak “artificial general intelligence” – a single, polymathic machine capable
of achieving a wide array of tasks. This notion stems at least in part from how the research institutes receiving
the most publicity, including Google DeepMind and Open.AI, have this as their stated goal. In practice, however,
this is not how machine learning generally works, nor how it is shaping up in business contexts. Machine learn-
ing systems must still be built separately for specific tasks, such as image recognition or speech synthesis, often
specialized further for the type of data in a particular application domain.

A range of technology companies seek to create and monetize the “best” machine learning technologies for
particular, general applications. There are two main business through which this currently occurs and is increas-
ingly seen (Veale et al. 2018b). The first is through the licensing of application programming interfaces (APIs).
This approach sees a firm, usually with unrivalled access to datasets, train a machine learning model, and make it
available through a black-box, pay-per-query interface, usually through a cloud service. Currently, such models
commonly do things such as speech recognition and synthesis, affective (emotion-based) computing, image rec-
ognition, or translation – question-answer tasks amenable to query over the Internet. The second is through pack-
aged model trading, where a trained model is given to users (potentially in a protected format) to be run locally.
This move is often used where models have to be queried rapidly with low latency or in areas of patchy or no
connectivity. To this end, companies such as Apple and Google have been building hardware and software pack-
ages to more efficiently run complex trained models, such as CoreML or TensorFlow Lite. It is also used when
querying or augmenting models in the cloud would involve the transfer or potential leakage of sensitive data, for
example in medical contexts.

These models themselves are unlikely to be singular, but bespoke to different customers and specialized by
sector. Tools such as Google AutoML are designed to allow companies to augment these models with their own
datasets in order to specialize them further. These models in turn are integrated, alongside other software and
potentially more machine learning models, into a final product. The suppliers of them might be swapped (com-
pare for example Google Cloud Vision API, Microsoft Azure Face API and Amazon Rekognition) or the datasets
used to augment the models changed or added to. These systems in turn might be integrated into other services
or APIs, which are sold to customers downstream. This significant interweaving of data sources makes analysis of
the value chains created by these networks of data and analytics both necessary and challenging.

3. Proposed private governance of machine learning

Many of the key features of both credence issues and value chains make them a challenge from a governance per-
spective. Voluntary programs are a popular approach to governance in the area of commodity value chains, com-
monly turned to in an effort to coax complex systems toward credence goods and social ends such as
environmental sustainability or heightened labor rights. Such a turn has many names in the literature, including
private regulation or governance, private law, or private authority regimes (Cutler et al. 1999; Mattli &
Büthe 2003; Cashore et al. 2004).

Private governance has emerged as an important part of discussions around ensuring sustainability. In part,
this is because sustainability is a shared global challenge, characterized by trans-border effects and common pool
resources, which have made co-operation between states challenging. Information technologists are often familiar
with private governance mechanisms too, given the role organizations such as the Internet Engineering Taskforce
(IETF) or the World Wide Web Consortium (W3C) have played in the governance of the Internet and the Web
respectively (see generally Harcourt et al. 2020).

A range of policy tools exist to attempt to tackle social issues in globe-spanning supply and value chains,
which might be successfully adapted to machine learning (Matus 2010a). These include:

• Standards, certification and labeling;
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• Databases, tools and information sharing;
• Awards and recognition;
• Economic incentives;
• Market creation and preferential purchasing;
• Technology mandates;
• Regulatory restrictions;
• Research funding;
• Partnerships and collaborations;
• Technical assistance.

In many cases, such tools are used in concert to achieve some policy end. Here, we primarily consider the first
category – standards, certification, and labeling.

Standards, certification, and labeling are one policy tool that has already seen activity in the area of machine
learning and society. Conceptually, certification systems contain three elements: a standard, a certification, and a
label. A standard lists “specifications and/or criteria for the manufacture, use, and/or attributes of a product, pro-
cess, or service.” Certification is the “process, often performed by a third party, of verifying that a product,
process, or service adheres to a given set of standards and/or criteria.” Lastly, labeling is the “method of providing
information on the attributes, often unobservable, for a product, process or service” (Matus 2010b). While for
some products, the label is synonymous with a brand identity that is used to communicate to household level
consumers, the label can also be thought of as a straight-forward way for certified entities to signal the qualities
(especially credence qualities) of a product. For the purposes of this study, labeling covers any method of clearly
communicating that a product has been certified (formally evaluated) to comply with a particular standard.
Labels communicate authenticity and specific (usually unobservable) qualities, which is crucial for the success of
these private governance systems.

We can contrast this three-step approach to proposed standards for machine learning. The efforts for stan-
dards around machine learning that have been developed come predominantly from a very particular institu-
tional heritage of voluntary standard-setting organizations with norms and structures originating in the years
before and after the start of the twentieth century (Yates & Murphy 2019).

At the time of writing, there is significant activity occurring in such standard setting bodies concerning
machine learning. The International Organization for Standardization (ISO) technical committee on artificial
intelligence, ISO/IEC JTC 1/SC 42, has published three standards on “Big Data” focusing on vocabulary, implica-
tions for existing standards, and thoughts on the ways forwards for standards and is developing nine standards
on artificial intelligence, including areas such as bias and trustworthiness. Some standards already exist from
national ISO member bodies addressing ethics, robotics, and artificial intelligence. British Standard
(BS) 8611:2016, for example, Robots and Robotic Devices: Guide to the Ethical Design and Application for Robots
and Robotic Systems, attempts to build a categorization of harms from these systems (see generally Bryson &
Winfield 2017). Additionally, 10 standards relating in varying ways to social dimensions of machine learning sys-
tems are currently under development, with one published, by the Institute of Electrical and Electronics Engineers
Standards Association (IEEE-SA), a spin-out of its related professional association with long ties to official
national standards bodies (Yates & Murphy 2019, p. 225).6 These “IEEE P70xx” series standards focus on issues
such as data management and algorithmic bias and are being developed by a range of stakeholders. IEEE P7001,
for example, is a proposed transparency standard aiming to set out measurable and testable level or tiers of trans-
parency, and a toolkit for self-assessing against these levels (Bryson & Winfield 2017, p. 119).

Predominantly, these standard-setting initiatives have so far been focused on achieving consensus on the ter-
minology and analytical frameworks that should surround these emerging sociotechnical systems. Much of the
potential influence they might have would be as a “meta-standard,” laying out terminological use applicable to
substantive standardizing processes.

While sustainability standards are conceived as a part of a proposed certification system, the institutions
underpinning these proposed machine learning standards have typically treated consensus on terminology and
information exchange as a major goal in and of itself, providing significant benefits. This is due to a category
error between two uses of the term. Above, we have defined a standard as comprising specifications and/or criteria
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for the manufacture, use, and/or attributes of a product, process, or service. However, for institutions such as the
ISO, IEEE or IETF, a standard is instead, more narrowly, a structured protocol for conforming the activities of
multiple nodes in a network (Cohen 2019, p. 217), producing a networked governance arrangement where actors
with infrastructural control can gain policy dominance without processes of auditing or assurance to ensure any
specifications or criteria are being met. In practice, if you are not using IEEE 802.11, the common wireless com-
puter networking standard behind, you will not be able to communicate with devices around you which are
expecting you to use this standard – the well-known power of architectural rules in the information domain
(Reidenberg 1998).

Sustainability certification systems, not being based on networking, have consensus as an instrumental rather
than intrinsic aim. Convergence supports an efficient and workable system from the perspective of auditing or
labeling, and it is hard to see how a hugely fragmented system could carry much legitimacy. Yet it does not bring
enforcement. Machine learning is a product of data analysis, not a layer of a network (or a good where compati-
bility and interoperability are major end-goals). But the institutions currently considering and developing
machine learning standards that claim to seek to govern credence properties, such as IEEE P70xx, either seek
convergence for networked governance or produce conceptually clarifying meta-standards, which are not by
themselves the substantive standards needed in a certification system. This does not seem like a very strong fit if
a certification system is a governance arrangement expected or sought from these efforts.

In contrast, organizations designing standards for sustainability certification have to design them to fit gover-
nance arrangements that do not draw their power from network effects. The policy challenges posed by machine
learning, particularly those that relate to its credence properties outlined in Section 2, may benefit from reaching
agreed standards that improve, for example, energy efficiency or working conditions for labelers. However, unlike
in networking, standardization cannot be both the desired and as well as the main mechanism of change. The
similarities between commodities and machine learning outlined in Section 2 mean that if we are to envisage pri-
vate governance systems relating to the credence properties of machine learning, it would be instructive to
attempt to apply lessons from across the sustainability certification sector to this new potential regulatory
endeavor. It is to this we now turn.

4. Learning from sustainability certification systems

There have been many attempts to effectively and responsibly regulate credence goods in relation to sustainability
concerns. As actors across the supply chain have become concerned with the socio-environmental impacts of pro-
duction and have struggled with the challenges of assessing the qualities of credence goods, one governance tool
that has become popular is the use of third-party certification systems. One underlying logic is that by providing
consumers information about the credence quality of these goods (i.e. how sustainably they were produced), they
will be able to command a price premium, which will cover the added costs of both the more sustainable produc-
tion methods, and the certification process. This price premium, in turn, will incentivize more producers to join
the program, improving their production processes and contributing to an improvement in sustainability in the
value chain (van der Heijden 2012; Komives & Jackson 2014).

Establishing a virtuous (and effective) cycle via sustainability certification has proven to be difficult in prac-
tice. Yet despite the challenges, a number of sustainability certification programs have managed to grow and
become financially viable. Private voluntary sustainability standard systems are a market-based approach to pro-
moting sustainable production and business practices. Adoption of these sustainability standards is intended to
be voluntary: the standards are not created, run, or required by governments or government regulation
(Cashore 2002). Instead, voluntary sustainability standard systems are non-government initiatives that seek to
drive sustainable production and consumption by creating market demand for sustainable products, and a supply
to meet that demand. They are designed to help buyers (both consumers and businesses) identify sustainably pro-
duced products, and they guide producers, forest managers, mine and tourism operators, and factory owners and
others in the choice of sustainable practices (Komives & Jackson 2014). Many others have been at least partially
successful, though frequently still struggle to move beyond a reliance on donor funding to support their opera-
tions (Barry et al. 2012). Despite the difficulties in developing and growing sustainability certifications, their
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number has grown dramatically. The Ecolabel Index currently tracks 463 ecolabels in 199 countries and 25 sectors
(www.ecolabelindex.com) – though not all of these are full certification programs.

There are several features of this growth in sustainability certification that provides an important set of les-
sons that may be relevant to machine learning. The first is the set of features of a robust certification system.

As previously discussed, these systems consist of up to three parts, which are meant to cover the full set of
functions of a regulatory system: standard setting, behavior modification, and information collection (Hood
et al. 2001):

1 A set of technical standards (which can cover management systems, methods of production, outcomes, or
some combination therein). These standards answer the question of what is being regulated (what behavior
needs to be modified). The choice of technical standards reflects a theory of change, which links something
that can be measured or monitored to the underlying problem.

2 A certification process (which includes monitoring and enforcement) to ensure that the standards are being
met/followed. The certification process answers the question of how will it be regulated – specifically mech-
anisms for monitoring and enforcement, including appropriate auditors, who are responsible for informa-
tion collection.

3 A labeling program (to provide information on the credence qualities to consumers). This answers the
question of communication of participation to the “market.”

In the sustainability domain, there is an ISO meta-standard that sets out best practices for the process of esta-
blishing a sustainability certification program (Lambin & Thorlakson 2018), similar to the meta-standards dis-
cussed above. There are also private meta-standard efforts. One example is that ISEAL Alliance, founded in 2002,
which is a global membership body for sustainability certifications. To become a member, these certifications
must be deemed “credible,” by virtue of meeting ISEAL’s Codes of Practice7 (Lambin & Thorlakson 2018). Mem-
bers also share best practice, work together to promote innovation, and provide an important platform for shar-
ing and problem solving. The development of particular Codes of Practice, and associated guidelines, helps
member certifications improve their effectiveness (Komives & Jackson 2014). While only a fraction of sustainabil-
ity certifications are members (currently there are 19 full members and five associate members), they remain an
important platform for the dissemination of best practices.

Experience in the sustainability space has underscored the underlying regulatory scholarship, which indicates
that successful regulatory systems have multiple requirements. Lodge and Stirton (2010), in their expansion on
the work of Hood et al. (2001), expand into five distinct areas of consideration:

1 The decisionmaking process that leads to the creation of a regulatory standard in the first place;
2 The existence of a regulatory standard for affected participants within the regulated policy domain;
3 The process through which information about the regulated activities is being gathered and how this infor-

mation is “fed back” into standard-setting and behavior-modification;
4 The process through which regulatory standards are being enforced;
5 The activities of the regulated parties themselves.

The experience of sustainability certification systems in each of these areas is worth exploring, as doing so is
likely to provide guidance to the analogous value chain system and governance of the credence properties of
machine learning. In exploring this in the section below, we consider studies and observations that relate to a
range of commodities. This is not to generalize findings across distinct commodities with their own challenge,
but to focus on what can be transferred as potentially analytically useful frames and questions for further investi-
gation in the distinct machine learning context.

4.1. Decisionmaking and standard-setting
In sustainability certification, multiple stakeholders have come together to address what has been seen as a gap in
more traditional, government-based certification systems for particular commodities. Some of these gaps were the
result of the cross-jurisdictional nature of global commodity value chains (similar to the case argued for machine
learning). Organizations such as the ISO and the ISEAL Alliance have developed procedures for creating a
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governance structure and decisionmaking framework to enable a process of standard-setting. These multi-
stakeholder processes differ from traditional regulatory systems, in that participants need to find ways to decide
on which actor groups are represented in the process, and how to balance conflicting interests, without the gov-
ernment acting via its authority capacity (Cashore 2002; Bernstein & Cashore 2012; Bennett 2017). Different cer-
tification systems have faced criticisms when they get this balance “wrong” – for example when they are
critiqued for being overly (or insufficiently) representative of industry interests, at the expense of producer, envi-
ronment, or civil society groups (Cashore 2002; Auld & Gulbrandsen 2010; Bennett 2017). The tangible result of
getting decision structures “right” is supposed to be reflected in the legitimacy of the standard in the market –
although this translation is complex and may further depend on both the intended audience for a label
(e.g. business-to-consumer or business-to-business) and the broader context.

Such legitimacy is related to the aims of the standard, and the mechanisms by which the standard seeks to
achieve these aims. One reason that sustainability is a useful analogue to deployed machine learning is that it too
is, at its core, a complex, adaptive system that is difficult for even the most experienced experts to completely
understand in its sociotechnical entirety, not to mention predict. For sustainability, the ultimate concern is a set
of outcomes (labor practices, environmental conditions, livelihoods) – but these are often difficult to measure,
observe, and attribute to any particular set of activities. For many sustainability certifications, early standards
focused on processes and procedures (i.e. farming practices) (Komives & Jackson 2014). These are more clearly
observable than the direct and indirect impacts of farming activities. However, with any practice or process-based
standard, there remain questions regarding whether the connections between practice or procedural standards
and outcomes are significantly robust, and the degrees of stringency required to balance the need for uptake, but
also behavioral change, to deliver impacts (Gulbrandsen 2004; Cashore et al. 2007; Auld et al. 2008; Barry
et al. 2012). They also can present challenges when the “good practices” outlined in the standard are not linked
to concrete processes for implementation, or when there are gaps between the content of the standard and actual
practices. This results in challenges for transparency, and quality, of auditing and evaluation.

More recently, performance-based standards have been proposed, which seek to measure impacts directly and
work backwards from there (Veale & Seixas 2015). Unlike the prescription of particular processes, these give
firms flexibility in how to achieve their goals (Gunningham 1996), although they may lack the capacity or under-
standing of how to best meet them as a result. In sustainability, these standards might measure, for example, how
much carbon dioxide particular production emits (following a permissible methodology), and seek its reduction
as a result.

Performance-based standards in social impacts machine learning would be in line with recent work in
“debiasing” machine learning or making it explicable in particular ways, such as that published by a growing field
of computing scholars at conferences such as ACM FAccT, NeurIPS, and ICML. This work is particularly impor-
tant as these conferences, heavily attended and organized and presented at by large technology firms, appear to
have significantly influenced industry practice. A performance-based standard would make a specific definition
of, say, fairness, in accordance with a particular philosophy (Binns 2018) and would seek to measure systems’
performance against this metric. They contrast with either prescriptions for particular safeguards or technologies,
or “red lines,” such as recent calls for bans on facial recognition or granular behavioral advertising.

Yet a comparison with sustainability highlights a downside. Society is concerned with multiple impact catego-
ries in relation to both commodities and to the use of technology in the context of broader social systems. One
thing that has emerged from the (admittedly limited) evaluations of sustainability certifications is that no pro-
gram has been able to address the entire range of sustainability concerns effectively. For example, Fair Trade is
strong on labor practices and livelihood issues, but quite weak in terms of environmental outcomes. Many of the
other certifications, such as FSC and Rainforest Alliance, have set strong environmental standards, but are much
weaker on social elements (Barry et al. 2012). At a narrow level, the practical outcome is twofold. One, that
buyers often have to choose between desired outcomes when given choices of different certified products in the
market. And second, that many producers are pressured to become certified by multiple programs, which can be
costly and even contradictory (Abbott et al. 2017). For machine learning, the implication is that, for practical rea-
sons, there may need to be different certifications (or policy approaches entirely) for labor practices and data use,
for example – but the impacts on those who need to be certified, and the power of the market to “pull” entities
by choosing certified products needs to be considered in any regulatory design.
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More concerningly perhaps, certification systems also place a market mechanism at their core, and the
impacts possible from sustainability certification of commodities are limited to those that are achievable within a
market paradigm. Certification systems operate within existing economic relationships, international trade agree-
ments, physical infrastructures, and regulatory environments, with limited potential to change any of those
aspects of the system. Opting for market-based regulation further risks narrowing the space for dialogue away
from policy interventions that may change these broader rules and conditions (Parker et al. 2017). Insofar as
those characteristics are the main forces restricting change toward sustainability, certification has limited transfor-
mative potential.

Similarly, in machine learning, the quantification of deeply historically rooted issues such as discrimination to
make it subject to a type of reduction inherently limits the issues in scope. Indeed, seeing it this way might “shy
from an analysis of systematic forms of injustice,” as “technologically mediated discrimination exists alongside
other forms of discrimination that contribute to the systemic marginalization of individuals and groups marked
by social difference” (Gangadharan & Niklas 2019). Reducing discrimination to that which can be measured and
mitigated at scale automatically and computationally does not challenge existing infrastructures and systems
and may even serve to legitimize and entrench them.

Furthermore, the credence properties that are amenable to standard-setting and certification in machine
learning, and which resemble sustainability the most, such as labor, environmental, or privacy standards during
training, only encompass a subset of the policy issues associated with machine learning. Systems that are environ-
mentally friendly, free of bias according to a relevant definition, or trained in an ethical and responsible manner
can still be put to reprehensible ends or incorporated into abusive business models (Keyes et al. 2019). In com-
modities, lifecycle assessments, for example, coffee, indicate about half of the environmental footprint happens at
a stage controlled by a user (e.g. brewing, disposal), meaning that certification is inherently limited in the issues it
can tackle even using this simple frame (Humbert et al. 2009).

If there is an acceptance that standards are a required approach, sustainability shows us that the question of
what kind of standard is not inconsequential, and that there may be a trade-off between what it is possible to
standardize, and the desired outcomes of the standard (Barry et al. 2012). More broadly, restricting the range
of governance tools to only what is possible to standardize itself shuts down broader political questions which
standard-setting organizations have never faced head-on (see e.g. on the IETF, Cath & Floridi 2017; on data
ethics, Taylor & Dencik 2020, pp. 8–9). There is broad agreement that a world with more interoperable
machinery creates new social and economic possibilities. There is also relatively strong consensus that interna-
tional trade of commodities is not going anywhere fast, and that markets are here to stay. Yet both in sustain-
ability and in machine learning, there is no consensus that relevant emerging and incumbent sociotechnical
and socioeconomic structures should persist. Should countries in the Global South continue to be engage only
in comparatively lower-value parts of the value chain that are mostly transformed into higher value products
abroad, even if such production is, in isolation, subject to good labor conditions and environmental protec-
tions? Should individuals in socially precarious situations and marginalized communities – or simply individ-
uals online – be more heavily surveilled and assessed for “risk” using an increasing array of automated systems,
often powered by machine learning, even if those systems are “fair” and “transparent” according to an agreed
upon standard? Realistically, we might expect a number of differently focused certification programs to emerge
and “fight it out” in the market, but competition among different notions of labor standards or different
notions of machine learning fairness will not be the same as debates around the broader rules of the game and
the infrastructures that support them – particularly if such standards are supported by the very institutions,
platforms, and infrastructures that those debates may wish to challenge. Certification systems may be legitimate
governance tools for aspects of issues around machine learning – but they will not likely be well-suited to
them all.

4.2. Information, feedback, and enforcement
Initially, many sustainability certification actors focused on the first two pieces of the regulatory structure: bring-
ing stakeholders together and setting up governance mechanisms for standard-setting. But there are only the first
two elements of a successful certification system. A strong program of assessment, monitoring, and enforcement
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is also required. In fact, these are often limiting factors for growth of certificates (Matus 2014). Ensuring compli-
ance can be costly, and often relies on scarce capacity, in terms of the availability of appropriately skilled auditors
(or similar “regulatory intermediaries”) (Abbott et al. 2017) – which for legitimacy reasons are almost always
organizations external to the standard-setting organization (Cashore 2002; Auld & Renckens 2017). There are
also potential principal-agent problems, wherein the auditors are under competitive pressure with other auditing
agencies. They may compete for human resources, or drive towards efficiency, which may not always align with
stringency (Auld & Renckens 2017). Recent scholarship has broadened the scope of intermediaries to any actor
that acts as a “go-between” in the relationship between a regulator and its target regulatees. Brès, Mena and
Salles-Djelic (2019) develop a typology based on two dimensions: formal/informal and official/unofficial. This
typology is useful to better understand the positive and negative impacts that different types of intermediaries
can play in these regulatory systems. Work by Kourula et al. (2019) divides the work of intermediaries in these
systems into four generic roles: creating and/or organizing, coordinating between programs, supporting the
implementation of a program, and voicing an opinion.

Auditors would generally fall into the category of formal intermediators (Brès, 2019). Auditors can play a cru-
cial role in successful implementation of standards. These bodies are usually the ones responsible for interpreting
and translating standards into practice on the ground. They are the groups interacting most closely with pro-
ducers, and their feedback to the certification programs is an important source of information for the certification
programs. There is increasing attention being paid to their role in the effectiveness of regulation generally, includ-
ing in voluntary certification systems (Abbott et al. 2017). In general, while regulatory intermediaries can bring
benefits of expertise, capacity, and legitimacy to a certification program, they can also act in ways that are self-
interested, or even corrupted (Abbott et al. 2017). The challenges associated with ensuring that the auditing sys-
tem in place is robust, meets the needs of all parties, and has the required technical capabilities available are all
elements that need to be considered in any effort to bring certification to machine learning.

The question of enforcement and monitoring is one that machine learning should take quite seriously. The
current state of technical standard setting, for example the efforts by IEEE, resembles industry-led self-
certification programs that emerged in the chemical industry in the late 1980s and early 1990s in the wake of the
Bhopal tragedy. These efforts, known as Responsible Care, were designed to address public concerns about
the potential health and safety impacts of chemical manufacturing on local communities. In an effort to forestall
regulation, the chemical industry put together a program that compelled firms to undergo a series of planning
exercises and self-certify these activities. Adherence to Responsible Care was made a requirement for membership
in the American Chemical Council, although it spread through industry internationally. However, after much
criticism over the years, the program had to turn to outside auditors and an overall more rigorous process of
standard setting (including more community participation), monitoring, and enforcement. Even so, it has never
really escaped its reputation as being a weak attempt by industry to avoid more serious regulatory efforts
(Gunningham 1995; Gunningham et al. 2004; King & Lenox 2000; King, Lenox, and Terlaak 2005; Lenox 2007;
Lenox 2006).

Insights on the importance of legitimate, formal intermediaries in private governance need to be taken seri-
ously by the machine learning community. Similar to the chemical industry, actors outside the sector are unlikely
to distinguish between different (firms) in the sector in the case of negative outcomes. Negligence or carelessness
can reflect poorly on the whole system and reduce the social license to operate, leading to tougher, more intrusive
regulatory systems. Especially if the sector is viewed as having used less legitimate self-regulation to deflect gov-
ernment regulation (Gunningham et al. 2004). Data-driven systems are no stranger to ineffective self-regulatory
efforts. In privacy in particular, it has been a frequent feature, pushed especially in the United States and widely
criticized for its inefficacy (Gellman & Dixon 2011). A proliferation of self-regulatory codes of conduct, public
commitments, certificates, and privacy seals in this space has been conceptually complicated by the integration of
these modes of governance as provisions in European data protection law (Bennett & Raab 2018), but this reifica-
tion of them in statute has not generally been appraised as leading to their effectiveness.

The ineffective nature of these instruments was most apparent in the grisly demise of the EU-US Safe Harbor
agreement, a data sharing agreement between the two blocs felled at the hands of the Court of Justice of the
European Union in 2015 in Schrems v. Data Protection Commissioner. Its failure was linked to the considerable
skepticism about how the private governance and certification seal instruments such as TRUSTe the agreement
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relied upon really improved privacy practices on-the-ground (Charlesworth 2000). These self-regulatory mecha-
nisms were seen by the Court as weak in a range of ways. It was apparent that “a significant number of certified
companies did not comply, or did not comply fully, with the safe harbor principles” (Schrems, para 21), and the
Court noted that while certification might plausibly bind the certified actor, it did not give Europeans recourse
against the US Government compelling a certified organization to hand over their personal data. They were rep-
laced by a broadly similar system of self-certification under the EU-US Privacy Shield Framework, which was
promptly also declared invalid for similar reasons in 2020 by the Court of Justice in Facebook Ireland and
Schrems. Ongoing conceptual challenges continue to stress surveillance law in the context of machine learning
(Kosta Forthcoming).

Certification as a mechanism now exists in the General Data Protection Regulation (GDPR), although a literal
reading indicates it is only capable of certifying data controllers and processors against the standards in that law,
without creating a presumption of compliance (see Leenes 2020), rather than capable of being applied as a certifi-
cate to machine learning systems themselves to demonstrate their credence properties. Indeed, in general the
processing surrounding credence properties will likely be outside the GDPR’s material, and potentially territorial,
scope once it reaches a controller who wishes to use it. It is “inspired by the stages of the international ISO/IEC
17065,” a meta-standard laying out appropriate processes for conformity assessment of the certification of goods
and services, rather than specific to social issues around machine learning (Kamara & de Hert 2018, p. 17). Regu-
lators do, however, have significant investigative and transparency powers when certification is being sought,
which might serve to increase accountability and monitoring (Henderson 2017). Such a process is familiar in
Internet and telecoms governance as a form of co-regulation, where a body with statutory regulatory authority
monitors a code or certificate generally developed and applied by industry (Marsden 2011). However, while Inter-
net co-regulation, as discussed by Marsden, can operate on the regulatory access points or bottlenecks of a net-
work, such access points are not always so easy to identify for software, which can be copied, open-sourced, or
run locally, on end-users’ devices. Data protection regulation illustrates this in part, particularly when seen
through a “decentered” framework (Yeung & Bygrave Forthcoming) Examining the regulation of commodity
flows, along with the role of enforcement and intermediaries in the sustainability sphere, may help conceptually
bridge Internet co-regulation theory and the governance of machine learning value chains.

Just as it is difficult to provide assured history of a particular coffee bean in the supply chain, it is difficult to
keep track of datasets and changing systems. In sustainability certification, enforcement has also required the
development of a broader set of certificates that guarantee that certified commodities have been identified and
separated from non-certified and non-controlled commodities as they make their way along the supply chain,
particularly where they pass through areas with weaker legal systems. These “chain of custody” certificates are, in
many cases, a structural prerequisite to a functioning system with limited fraud and deception. In the field of data
engineering, the efficient and effective design of a system to capture and manage meta-data about the production
process of an object – whether a cash crop or a piece of data – is called provenance (Carata et al. 2014). Conse-
quently, the functional requirements of systems to track physical objects are extremely similar to those that track
data objects. While physical objects are not vulnerable to certain threats (e.g. a coffee bean cannot be covertly
duplicated), they are also costly to attach provenance information to in a secure manner. This means that
schemes are vulnerable to, for example, a quantity of experientially high-quality certified crop being swapped out
for low quality produce that can be passed off as certified and sold for a higher value due to its credence attri-
butes. While it might be expensive to “fingerprint” a coffee bean, more options are available to do this in relation
to data, as indicated by the literature on creating data policies and metadata with “sticky” attributes during data
flows (Miorandi et al. 2020). Recent work has explored applying cryptographic methods and the tools from the
data provenance literature to machine learning systems (Kroll et al. 2017; Singh et al. 2019) – effectively focusing
on providing code-based constraints, opposed to legal or organizational constraints alone (Reidenberg 1998).
However, while technological tools can help, capturing and verifying these data remains challenging in environ-
ments with many actors, boundaries, and different systems (Singh et al. 2019; Miorandi et al. 2020), and the sur-
rounding governance-related accountability pre-requisites required for a successful certification system that can
be examined and enforced cannot be underestimated or reduced to technical considerations. The practical experi-
ence of chain-of-custody certification in sustainability schemes may help machine learning certification avoid
practical and unexpected pitfalls in this regard.
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4.3. Actions of the regulated (and non-regulated) entities
A certification system is only successful if it can incentivize behavioral change at sufficient scale.

One issue that has emerged in the sustainability arena is the “adoption paradox.” This stems from the fact
that in order to be financially viable, a standard requires a minimum level of uptake. To meet this, in some cases,
the standard must be sufficiently low, lest adoption prove too difficult and costly, in which case, the low adoption
rate makes it impossible for the program to remain viable. Yet set the bar too low, and the adopters are either
those that are already performing at a high(er) level, or just below it, and who can easily improve. Once certified,
there is little, if any, incentive to improve performance (Cashore 2002; Auld et al. 2008).

One potential strategy is then a program wherein the standards are raised over time, or tiered, which provides
incentives for continuous improvement. Another implication is that certification is often a useful complement to
a strong regulatory “floor,” wherein traditional state regulation protects against the worst actors, and certification
provides an incentive for best actors and overall improvement (Cashore et al. 2007; Bernstein & Cashore 2012).
One problem that has emerged in the sustainability space is the lack of coordination between different certifica-
tion systems – and between certified and non-certified production.

In the case of sustainability, there are a number of competing certification systems for particular commodities.
This has a number of potential impacts: the first is direct competition for market share between standards (and a
potential “race to the bottom”). Similarly, multiple certifications for a given commodity potentially allow pro-
ducers to choose to align with those that require the fewest (and therefore least costly) adjustments to their cur-
rent practices, in which case certifications end up maintaining the status quo, as opposed to catalyzing change. In
some cases, producers may be under pressure to align with multiple certifications, yet this can be quite costly,
and may involve conflicts between standards. In some cases, multiple certifications may be synergistic or rein-
forcing; in others, they may actually work against the goals of the systems (Lambin & Thorlakson 2018). This
complicates attempts to understand effectiveness, by requiring a more systemic approach, both for those inter-
ested in evaluating these tools in practice, but also for those considering designing new systems.

Another consideration for the design of certification systems, in terms of their potential to catalyze change, is
the question of positive spill-overs, wherein non-certified entities pick up practices that the observe being used by
their neighbors, even if they do not undergo certification themselves (Borck & Coglianese 2009; Jaffee 2014). A
closely related issue is essentially the reverse challenge – the impact that non-certified actors, especially those
using “dirtier” (in the case of sustainability) practices may have on the larger system. For example, one
uncertified firm upriver could essentially negate the benefits of downstream certified production.

For machine learning, a core question is whether a mosaic of certified (potentially via different programs)
and non-certified actors/algorithms would undermine the goal(s) of certification or create a new set of issues that
would need to be addressed via some other sort of intervention.

The fact that standards are being developed by the IEEE points to interesting comparison for this tension.
The IEEE, like organizations such as the IETF, have arguably been successful in previous and quite arcane stan-
dards efforts, but these efforts are distinguished by being primarily a co-ordination challenge. This is not to say
that technical standards have not been political – for example amongst telcos, who often preferred Internet stan-
dards that maintained their centralized power (such as X.25) over standards that were more centrifugal in nature
(such as TCP/IP) (see Ryan 2011). Yet machine learning standards for social issues in general do not present
coordination challenges in the same way – and do not present the coordination benefits that result from solving
them, either. Company A pledging not to use exploitative methods to gather training data does not mean that
the system they build will not technically play with that of Company B, downstream. This encourages us to cast a
closer eye on the governance implications of a plurality – or a monoculture – of machine learning standards.

In particular, it is important to see these dynamics within the context of the large incumbent actors who
act as primary funders of stakeholder meeting-places, such as the Partnership on AI. Primarily, these are the
GAFAM – Google, Amazon, Facebook, Apple, and Microsoft, as well as large technology firms outside of North
America such as Baidu and Tencent. It seems unlikely adoption of any standard can be seen as a success without
the participation of one or more of these firms. Yet, insofar as compliance involves changes to a process or tech-
nology rather than an entire business model, these firms have extraordinarily high technical compliance capacity
themselves. Effectively, all of these organizations each employ a significant proportion of the global research
capacity in areas such as fairness, transparency, and privacy and as a result are likely to be able to ensure any
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new technologies they implement are compliant in ways that might be prohibitively costly for other, smaller
players. As a result, it is questionable how much any standard designed by these firms would be suitable for
smaller technology firms, and the impact on competition more generally. In sustainability certification, organiza-
tions such as Fair Trade have received criticism on issues of scale, such as around certifying entities such as plan-
tations. Such criticism hinges on the basis of broader questions – structurally, can a plantation (as opposed to
e.g. smallholder cooperatives) ever be ‘fair’?

The issue of positive spillovers points to another very important lesson that has emerged from sustainability
certification. Because of the system complexity, it has been very difficult to study the direct impacts of certifica-
tion (reasons for this include the difficulty in developing proper counterfactuals, data collection challenges, and a
focus on process as opposed to outcome in standards). But a set of “indirect” outcome pathways has emerged as
important avenues of change (Barry et al. 2012; Bernstein & Cashore 2012). Among these are certification as:

1 Developing agreement and reducing conflict among key stakeholders;
2 Providing a niche for experimentation and development of new practices; and
3 Acting as a demonstration for practices that could be scaled up via more “traditional” policy

and regulation.

Current thinking on certification sees these programs as just one of many in a toolbox; appropriate for partic-
ular contexts, as opposed to a panacea. Practitioners and policymakers have been working across many commod-
ities to develop and share best practices, and the spill-overs – between certified and non-certified, between
certification systems, and between certification systems and state-based regulations – are all important elements
that have been recognized in the sustainability space that are of use to those considering the use of similar con-
cepts in machine learning.

5. Conclusions

As the machine learning community considers the role that certification could play in governing connected social
impacts, it should be mindful that the closest analogy to the systems they might wish to develop may not be
found in the domains of networking, electronics or telecoms, or even Internet regulation, but in sustainability,
environmental governance and policy.

Lessons from this space particularly concern establishing all the elements of robust certification system, which
must include well-developed processes for standard-setting, certification monitoring and enforcement, and label-
ing/information provision. There are some key questions that need to be answered for the development of stan-
dard and certification programs in this space. What will be subject to the standard? Is it the programmer? The
algorithm? The data? Some combination? Does the standard (behavior modification) actually track to the outcome
of concern? How will adherence to the standard be monitored, and by whom? Is there capacity for this kind of pro-
gram? And what form of labeling or communication will be affected? What is the target audience for the label?
Who is going to pay, and will the costs of such a program be worthwhile?

More broadly, considering the parallels between sustainability and machine learning places emphasis on some
of the broader credence concerns surrounding machine learning, which may be exacerbated or made more visible
as it matures. As we have argued, machine learning can, at least in part, be seen through the lens of value chain
governance. This casts focus on social dimensions, which have largely been neglected in the certification and stan-
dards discussion, such as social conditions throughout the data collection and processing chain. Yet it also casts
focus on the limits of certification to change the structural conditions in which machine learning operates, much
as sustainability certification cannot replace strong national labor laws or reform the fundamental nature of glob-
alized markets.

Despite this, experiences with sustainability certification have demonstrated that these programs have value in
indirect ways. For example, there have been benefits from the development of venues that have promoted the
sharing of best practices and have in turn developed useful Codes of Practice, which serve as meta-standards of a
sort. Machine learning certification efforts should make an effort to understand the value of spillovers as ways to
promote and disseminate best practices outside of the certification program, and as part of a long-term strategy
of change. They should also be wary that not all interaction and spillover effects will have a cumulatively “good”
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impact on the policy challenges. Some may favor incumbents, or introduce steep costs or undesirable socio-
technical lock-in.

Hopes that this form of private governance may be able to fully replace other forms of governance are likely
misplaced. In the case of machine learning, certification may prove to be most valuable as forum for innovation
and learning, proof of concept, the development of knowledge and expertise, and positive interaction between
stakeholders, as a stepping-stone to other forms of regulation. For machine learning, given the extraterritorial
nature of the commodity involved, the enforcement issues will be even more challenging than they have been in
more spatially grounded ones, like agricultural products and textiles. Certainly, data protection authorities are
already struggling to provide the expertise and resource needed for oversight of fairness, transparency, and legal-
ity of data processing.

As this paper was in the final stages of publication, the European Commission (in April 2021) published a
draft Regulation on Artificial Intelligence (the “Artificial Intelligence Act”). Among other provisions, it proposes
a certification scheme inspired by and connected to conformity assessment regimes for (primarily) product safety.
We do not analyze it in detail here, suffice to say that aspects of it do seek to regulate certain credence properties
of machine learning systems. Other aspects, such as the enforcement regime, we suspect can strongly benefit from
the lessons drawn from the sustainability certification of commodities we explored above. We await what is
undoubtedly going to be a long and controversial legislative process with great interest.

Certification as a tool can be an interim step to other forms of regulation and governance. It can provide a
niche for technological and policy innovation, a governance system that is more flexible and adaptable than state-
based regulation, and which can bring together key stakeholders, as a stepping-stone to other, more universally
applicable approaches. Decision-makers and would-be policy entrepreneurs should see certification through this
lens: useful toward a wide variety of ends, but no panacea.
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Endnotes
1 A large number of documents exist to explain machine learning to those from other disciplines and domains, and we point

the reader to those if they have not come across the technology before (see e.g. Edwards & Veale 2017; The Royal
Society 2017).

2 A counter example here is the video or board game playing systems developed by companies such as Google DeepMind.
These effectively use a simulation of a world (which video games and board games are apt to provide) and use not only
human-plays of these systems (such as Go games by champion players), but also the existence of this simulation to play
thousands or millions of games automatically. Worlds we cannot accurately model (such as most complex social phenom-
ena) are much less amenable to this type of machine learning training technique.

3 This is not to be confused with privacy impacts resulting from how that information is used, who has access, or who is dis-
proportionately surveilled.

4 https://deepempathy.mit.edu/
5 http://moralmachine.mit.edu/. See further Awad et al. (2018).
6 The only finalized standard at the time of writing is IEEE 7010 Recommended Practice for Assessing the Impact of Autono-

mous and Intelligent Systems on Human Well-Being (available from URL: https://doi.org/10.1109/IEEESTD.2020.9084219).
7 https://www.isealalliance.org/about-iseal/who-we-are
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