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The active visual system comprises the visual cortices, cerebral attention networks, and

oculomotor system. While fascinating in its own right, it is also an important model

for sensorimotor networks in general. A prominent approach to studying this system

is active inference—which assumes the brain makes use of an internal (generative)

model to predict proprioceptive and visual input. This approach treats action as ensuring

sensations conform to predictions (i.e., by moving the eyes) and posits that visual

percepts are the consequence of updating predictions to conform to sensations. Under

active inference, the challenge is to identify the form of the generative model that makes

these predictions—and thus directs behavior. In this paper, we provide an overview of

the generative models that the brain must employ to engage in active vision. This means

specifying the processes that explain retinal cell activity and proprioceptive information

from oculomotor muscle fibers. In addition to the mechanics of the eyes and retina, these

processes include our choices about where to move our eyes. These decisions rest upon

beliefs about salient locations, or the potential for information gain and belief-updating.

A key theme of this paper is the relationship between “looking” and “seeing” under the

brain’s implicit generative model of the visual world.
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INTRODUCTION

This paper reviews visual perception, but in the opposite direction to most accounts. Normally,
accounts of vision start from photons hitting the retina and follow a sequence of neurons from
photoreceptor to visual cortex (and beyond) (Goodale and Milner, 1992; Wallis and Rolls, 1997;
Riesenhuber and Poggio, 1999; Serre et al., 2007; DiCarlo et al., 2012). At each step, we are told
about the successive transformation of these data to detect edges, contours, objects, and so on,
starting from a 2-dimensional retinal image and ending with a representation of the outside world
(Marr, 1982/2010; Perrett and Oram, 1993; Carandini et al., 2005). In this paper, we reverse this
account and ask what we would need to know to generate a retinal image. Our aim is to formalize
the inference problem the brain must solve to explain visual data. By framing perceptual inference
or synthesis in terms of a forward or generative model, we arrive at the space of hypothetical
explanations the brain could call upon to account for what is happening on the retina (Helmholtz,
1878 (1971); MacKay, 1956; Neisser, 1967; Gregory, 1968, 1980; Yuille and Kersten, 2006).

The motivation for this perspective comes from formalisations of brain function in terms of
(active) inference (Friston et al., 2017; Da Costa et al., 2020). The idea is that the brain makes
use of an implicit model of how sensory data are generated. Perception is then the inversion of this
model to find the causes of our sensations (VonHelmholtz, 1867; Gregory, 1980; Doya, 2007). Here,
the term ‘inversion’ refers to the use of (approximate) Bayesian inference to compute posterior
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probabilities that represent (Bayesian) beliefs about the world.
This is an inversion in the sense that we start with a model of
how the world generates sensations and ask what the sensations
we obtain tell us about the world. Central to this is the
bidirectionality inherent in inference. It is this bidirectionality
that manifests in neurobiology (Friston et al., 2017a; Parr and
Friston, 2018b), where messages are passed reciprocally between
neural populations

In a sense, everything we have said so far only brings us to
the point that vision is not just ‘bottom-up’ but that it has an
important “top-down” element to it—which is uncontroversial
(Zeki and Shipp, 1988; Lee and Mumford, 2003; Spratling, 2017).
However, we take this one step further and argue that if the
messages passed up visual hierarchies are the inversion of a (top-
down) generative model, then all we need to do is understand
this model, and the ascending pathways should emerge naturally,
under some neuronally plausible message passing scheme. For
this reason, we will focus upon the problem that the visual brain
must solve and will not concern ourselves with the details of its
solution, reserving this for a future paper.

Perceptual inference is just one part of the story (Ferro et al.,
2010; Andreopoulos and Tsotsos, 2013; Zimmermann and Lappe,
2016; Pezzulo et al., 2017). We only sample a small portion of
our sensory environment at any one time. In the context of
vision, this depends upon where our retina is pointing. This tells
us that, to generate a retinal image, we need to take account
of how we choose where to look (Ognibene and Baldassarre,
2014). The problem of deciding where to look, and of influencing
the biophysical processes required to implement these decisions,
are also inference problems. The first relies upon the notion
of planning as inference (Botvinick and Toussaint, 2012). Here,
we treat alternative action sequences as a set of hypotheses. To
select among these, we must weigh prior beliefs about the best
course of action against the evidence sensory data afford to each
plan. Under active inference, the priors are assumed to favor
those plans for which there is a high expected information gain
(Lindley, 1956; Itti and Koch, 2000; Itti and Baldi, 2006; Friston
et al., 2015; Yang et al., 2016). In short, we have to plan our visual
palpation of the world in a way that allows us to construct a scene
in our heads that best predicts “what would happen if I looked
over there” (Hassabis and Maguire, 2007; Schmidhuber, 2010;
Zeidman et al., 2015; Mirza et al., 2016).

The process of implementing these plans is also an inference
problem but cast in a slightly different way. In its variational
form, approximate Bayesian inference can be framed as
optimisation. The inference is deemed optimal when a lower
bound on the Bayesian model evidence—the probability of data
given a model—is maximized (Beal, 2003; Winn and Bishop,
2005; Dauwels, 2007). While this lower bound can be maximized
by closing the gap between the bound and the evidence, it
can also be maximized by selecting data that cohere with
the model, increasing the evidence itself (c.f., self-evidencing
(Hohwy, 2016)). The implication is that we can use action to
change the data generating process to fit the world to the model,
in addition to fitting the model to the world. For active vision
(Wurtz et al., 2011), this means predicting the proprioceptive
data we might expect from the oculomotor muscles if a given

eye movement is made. Maximizing the evidence then means
changing—through contraction or relaxation—muscle lengths
until the predicted input is achieved. This can be regarded as
a formalization of the equilibrium point hypothesis for motor
control (Feldman and Levin, 2009), which posits that all we need
do is specify some desired setpoint that can be fulfilled through
brainstem (or spinal) reflexes.

To address these issues, we divide this paper into two main
sections. First, we deal with the ‘seeing’ problem. Here, we start
from a given environment (e.g., a room we might find ourselves
in) and our location in it and ask what pattern of retinal cell
activity we would predict. This depends upon the contents of that
environment (e.g., the furniture in the room) and the location
and geometry of those contents. In addition, it depends upon
where we are in the environment, which way we are facing,
and the orientation of our eyes relative to our head. We then
turn to the ‘looking’ problem, and its constituents: where to
look and how to look there. By formulating looking and seeing
as generative models, we reduce the problems to a series of
conditional dependencies. As our interest here is in active vision
as implemented by the brain, we keep in mind the anatomical
manifestations of these conditional dependencies as connections
between neural populations.

SEEING

In this section, our aim is to generate a retinal image. Figure 1
provides an overview of the generative model in (Forney) factor
graph format (Loeliger, 2004; Loeliger et al., 2007; Forney and
Vontobel, 2011; Laar and Vries, 2016; de Vries and Friston,
2017; van de Laar and de Vries, 2019). As we will appeal to this
formalism throughout, we will briefly describe the conventions.
As the name suggests, this graphical notation depends upon
factorizing the problem into a series of smaller problems. If we
assume a set of latent (or hidden) variables x that generate our
retinal image y, we can write down a probability distribution that
can be decomposed according to the conditional dependencies in
the generative model. For example:

P
(

y, x1, x2, x3, . . .
)

= P
(

y|x1
)

P
(

x1|x2, x3
)

P
(

x2|x4
)

. . . (1)

To construct a factor graph of Equation (1), we would take
each factor on the right-hand side and draw a square. We then
draw a line coming out of this square for every variable that
appears inside the factor. If that variable appears in another
factor, we connect the line to the square representing the other
factor. For those used to looking at Bayesian networks—where
edges denote factors—it is worth emphasizing that edges in a
factor graph denote random variables. This may seem a little
abstract. However, we will go through the components of the
factor graph in Figure 1 in detail over the next few sections. The
important thing to begin with is that the upper left of the factor
graph relates to scene and object identity. In contrast, the upper
right deals with locations and directions. The separation of these
explanatory variables offers our first point of connection with
neuroanatomy, as this closely resembles the “what” (ventral) and
“where” (dorsal) visual streams that support object and spatial
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FIGURE 1 | A generative model for seeing. This figure offers a summary of a model that generates a retinal image. Starting from the scene in which we find ourselves,

we can predict the objects we expect to encounter. These objects may be recursively defined, through identifying their constituent parts and performing a series of

geometric (affine) transformations that result in the configuration of parts, the scaling and rotation of this overall configuration, and the placement of these objects in an

allocentric reference frame. The nested parts of the graphical structure (on left hand side) indicate this recursive aspect, e.g., an object is defined by an identity, and

scaling, rotation and translation parameters; furthermore, it may be composed of various sub-objects each of which has these attributes. To render a retinal image, we

also need to know where the retina is and which way it is pointing (i.e., the line of sight available to it). This depends upon where we are in the environment, our

heading direction, and where we choose to look. Subsequent figures unpack the parts of this model in greater detail.

vision, respectively (Mishkin et al., 1983). The sections on The
Ventral Stream and The (Extended) Dorsal Stream deal with
these pathways, and the section on The Retinocortical Pathway
deals with their convergence.

The Ventral Stream
This section focuses upon the identity and shape of the
things causing our visual sensations. From a neurobiological
perspective, the structures involved in object and scene
identification are distributed between the occipital and temporal
lobes (Kravitz et al., 2013). The occipitotemporal visual areas are
referred to as the ‘what’ pathway or the ventral visual stream.
The occipital portion of the pathway includes cells with receptive
fields responsive to concentric circles (Hubel and Wiesel, 1959)
and gratings (Hegdé and Van Essen, 2007). The temporal portion
contains cells with more abstract response properties, relying
upon more specific feature configurations that are invariant to
size, view, or location (Deco and Rolls, 2004; DiCarlo et al.,
2012). We will start from the more abstract (temporal) end of

this pathway and work our way toward the simpler features at
the occipital end.

The first thing we need to know, to generate an image,
is the environment in which we find ourselves. A schematic
of a simple environment is shown in Figure 2, which shows
three possible rooms—each of which contains two objects that
can appear in different locations. If we knew which of these
rooms we were in, we could predict which objects were present.
This is approximately the same structure as used in previous
accounts of scene construction in a 2-dimensional world (Mirza
et al., 2016). It has neurobiological validity as evidenced by the
proximity of the inferotemporal cortex, associated with object
recognition (Logothetis and Sheinberg, 1996; Tanaka, 1996), to
the parahippocampal gyrus, associated with recognition of places
(Epstein et al., 1999), hinting at how the brain might represent
dependencies between scenes and their constituent objects.

Once we know which objects we expect to be present,
we can associate them with their 3-dimensional geometry. To
generate these objects, we assume they are constructed from
simpler structures—for the purposes of illustration, spheres.
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FIGURE 2 | The “what” pathway. This figure focuses upon part of the factor graph in Figure 1. In the upper right, this factor graph is reproduced as it might be

implemented neuroanatomically. Here, the factors are arranged along the occipitotemporal “what” pathway, which loosely follows those cortical areas superficial to a

white matter tract called the inferior longitudinal fasciculus. The panels on the left show the sequence of steps implemented by these factors. Factor a is the

distribution over alternative rooms (or scenes) we could find ourselves in. This implies a categorical distribution assigning a probability to each of the rooms provided in

the example graphics. Conditioned upon being in a room, we may be able to predict which objects are present. Two example objects are shown (from three

orthogonal views). The conditional probability distribution for the geometry of the objects given the room is given by the m factor, which is here broken down into

several constituent factors. First, we need to know the identity of the objects in the room (f), which we operationalise in terms of the configuration of the parts of that

object. Specifically, we decompose f into a series of transformations (k-l) applied to a set of spheres, which represent the constituents of the object. In principle, we

could have used other objects in place of spheres, or could have applied this procedure recursively, such that the constituents of an object can themselves be

decomposed into their constituents. Once we have our object, we can apply the same transformations (k-l) to the whole to position it our room. We do this for each

object in the room, eventually coming to a representation of all the surfaces in the scene (r), shown in the lower right panel.

Figure 1 illustrates the recursive aspect to this, where the object
factor (m) is decomposed into a series of geometric (affine)
transformations applied to a structure as identified by the object
identity factor (f), which itself can be decomposed into a series
of transformations of simpler features. In other words, an object’s
geometry depends upon the configuration of its features (e.g., the
legs and surface of a table), but these features can themselves
depend upon configurations of simpler features (Biederman,
1987). Implicit in this perspective is that the scene itself is simply
the highest level of the recursion, comprising features (objects)
that themselves comprise simpler features. Figure 2 illustrates
this idea graphically.

Taking a step back, we need to be able to represent the shape
of a feature before we can start applying transformations to it.
One way of doing this is to construct a mesh. Meshes specify
the vertices of the surfaces that comprise an object (Baumgart,
1975), effectively setting out where we would expect to find
surfaces. This is the form shown in the graphics of Figure 2—
where we have omitted occluded surfaces for visual clarity. Note
that we have taken a subtle but important step here. We have
moved from discussing categorical variables like scene or object
identity and have started working in a continuous domain. At
this point, we can apply geometric transforms to our objects.
The first is the scaling of an object (factor j), which is a simple
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linear transform using a matrix (S) whose diagonal elements are
positive scaling coefficients along each dimension. This is applied
to each coordinate vector of our mesh. Expressing this as a factor
of a probability distribution, we have:

P
(

xj|xf , xg
)

= δ

(

S(xg)xf − xj
)

S ([α,β , γ ]) =





eα

eβ

eγ



 (2)

The x variables represent the edges in the graph of Figure 1. The
superscripts indicate the factor from which the edge originates
(i.e., the square node above the edge). The xf variable includes
the coordinates of the vertices of each surface of the object. This
is transformed based upon the scaling in each dimension (in
the xg variable) to give the scaled coordinates xj. The scaling
variables are treated as log scale parameters. This means we can
specify factor g to be a Gaussian distribution without fear of
negative scaling. However, we could relax this constraint and
allow for negative scaling (i.e., reflection). In addition, we could
include off-diagonal elements to account for shear transforms.
In Equation (2), δ is the Dirac delta function—a limiting case
of the (zero-centered) normal distribution when variance tends
to zero. It ensures there is non-zero probability density only
when its argument is zero. This is a way of expressing an
equality as a probability density. We could have used a normal
distribution here, but for very large objects, with many surfaces,
the associated covariance matrices could become unwieldy. It is
simpler to absorb the uncertainty into the priors over the (log)
scaling parameters.

Our next step is to apply rotations to the object. Here, we use
a rotation matrix (R) that has the form:

P
(

xk|xj, xh
)

= δ

(

R(xh)xj − xk
)

R([θ ,φ,ϕ]) =





cos(φ) cos(ϕ) − cos(φ) cos(ϕ) sin (φ)

cos(θ) sin(ϕ)+ sin (θ) sin (φ) cos (ϕ) cos(θ) sin(ϕ)− sin (θ) sin (φ) sin (ϕ) − sin (θ) cos (φ)

sin(θ) sin(ϕ)− cos(θ) sin (φ) cos (ϕ) sin(θ) cos(ϕ)+ cos(θ) sin (φ) sin (ϕ) cos (θ) cos (φ)



 (3)

As in Equation (2), we use the Dirac delta distribution such
that the rotated coordinates can only plausibly be the original
coordinates, rotated. This defines the k factor.

Finally, we translate the objects (factor l). This is simply a
matter of adding the same vector to all vertices of the mesh and
centring a Dirac delta distribution for xl on this value. Figure 2
shows two applications of these three operations that give us the
components of object 1 (lower left panel) and that place object 1
in a particular place in our scene (lower middle panel). The factor
r simply concatenates the surfaces from all objects such that xr is
simply a list of surfaces.

Is there any validity to the idea that the brain might generate
objects with a series of geometrical transforms of this sort?
Evidence in favor of this comes from two lines of research.
One is in psychological experiments which show that, during
object recognition, reaction times scale with the angle of rotation
that would have to be performed to bring that object into a
familiar configuration (Cooper and Shepard, 1973; Tarr and

Pinker, 1989)—suggesting a form of implicit mental rotation.
This is consistent with the idea that the brain optimizes its model
through updating beliefs about the degree of rotation until it best
fits the data at hand.

The second line of evidence is from neurophysiological studies
into invariance of neural responses to different properties. To
understand the relevance of invariant representations, note that
the transforms we have described do not commute with one
another. To see this, consider what would happen if we were
to rotate the sphere before rescaling it. The implication is that,
if there are objects whose identity is preserved with changes
in its geometry, we should expect to see different sorts of
invariance emerge at different stages along the visual hierarchy.
At the highest levels, we might expect neural responses to be
consistent for an object, no matter how it is oriented, scaled,
or translated. As we descend toward the occipital lobe, we
might anticipate these invariances being lost, in sequence. This
is exactly what happens (Rust and DiCarlo, 2010; Grill-Spector
and Weiner, 2014; Tacchetti et al., 2018), with inferotemporal
cortical cells responding to specific objects, regardless of their
size, position (Ito et al., 1995), or the angle from which they
are viewed (Ratan Murty and Arun, 2015). As we move toward
the occipital cortex, neurons become more sensitive to the
rotation of an object (Gauthier et al., 2002; Andresen et al.,
2009). On reaching areas V2-V4 of the early visual cortex, the
receptive fields of neurons are many times smaller than those
in inferotemporal cortex (Kravitz et al., 2013). This means they
respond only when a stimulus is in a specific region of space,
implying loss of translation invariance. Evidence that the brain
inverts a model of this sort comes from studies illustrating
that the activity of (feedforward) convolutional neural networks
trained on visual data—which implicitly account for the requisite

transforms—aligns with gamma-band activity in visual cortices
(Kuzovkin et al., 2018). This frequency band is crucial in
ascending neural message passing (Bastos et al., 2015) associated
with model inversion (Friston, 2019).

While we chose affine transforms for simplicity, it is worth
emphasizing that the generative model is highly non-linear.
This is most striking for the recursive part of the ventral
stream model, which alternates between linear operations
(affine transformations of the shapes) and non-linear operations
(selection between shapes). To invert this kind of model,
one would employ a linear operation to undo the affine
transformations for each component of an object. On finding
the log likelihood of the inverted shape for each component,
one could compute a posterior by adding the log prior for each
component and taking a non-linear softmax transform. This
is then repeated for the next level of the recursion, eventually
returning a categorical distribution over plausible objects that
could be causing visual data. The alternation between linear
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and non-linear operations—in the inversion of this model—
could explain why deep learning architectures, that alternate
in this way, have been so successful in machine vision. Non-
affine transformations could be incorporated through using a
spatial basis set to deform the objects or their components—
analogous to the models employed for spatial normalization
in image analysis (Arad et al., 1994; Ashburner and Friston,
1999; Shusharina and Sharp, 2012). This would involve adding
additional factors into the ventral stream model that represent
these deformations but would not change the overall anatomy of
the model.

In summary, we have gone from prior beliefs about the room
we occupy to beliefs about the objects in that room. These
are decomposed into their constituent parts, and the surfaces
that define these parts. At the occipital end of the pathway, we
have a set of surfaces. Taken individually, these surfaces could
belong to any object. Each occupies a smaller portion of space
than the complete objects. This means that, in the process of
generating the geometric structures we will need for vision, we
have traversed the ventral visual pathway from the large, abstract
receptive fields of the inferior temporal cortices to the smaller,
simpler receptive fields of the occipital lobe.

A final consideration for this section is the consequence of
damage to the brain structures implementing this generative
model. Ventral visual stream lesions give rise to an interesting
category of neuropsychological syndromes, broadly referred to
as agnosia (Adler, 1944; Benson and Greenberg, 1969; Greene,
2005). There are many variants of agnosia, but common to
all is a failure to recognize something. Visual agnosia is an
inability to recognize objects, sometimes restricted to specific
categories. For example, prosopagnosia is a form of visual agnosia
specific to faces (Sacks, 2014). Generativemodeling offers a useful
perspective on agnosia, as any lesions to the ventral stream impair
the capacity of a model to predict the visual data that would be
anticipated if a given object were present. If we assumed that a
given lesion removed all neurons involved in representing object
1 from Figure 2 or cut the connections that predicted the surfaces
anticipated when object 1 is present, we could generate as many
images as we wanted by sampling from the generative model
without ever generating one characteristic of object 1. Without
this hypothesis available to the brain, it is unable to invert the
data-generating process to arrive at the conclusion that object 1
is present. Despite this, it might still be possible to identify its
constituent parts, particularly if these parts are like those found
in other objects.

The (Extended) Dorsal Stream
Now that we know the positions and orientations of the surfaces
in our scene, we need to know the same for our retina. To know
where our retina is, the first thing we need to know is where
our head is in allocentric space. In other words, where we are
in our environment. The part of the brain most associated with
this is outside of the classical visual brain. It is the hippocampal
formation that famously contains place (and grid) cells, which
increase their firing rate when an animal is in specific places (or
at repeating intervals) in an environment (Moser et al., 2008).

FIGURE 3 | The “where” pathway. This figure shows the factors that conspire

to generate a field of view. This shows how the allocentric head and egocentric

eye-directions (factors d and e) can be combined to compute an allocentric

eye-direction (factor p). When this vector is placed so that it originates from the

place (factor c) we find ourselves in, we have our field of view (factor q). The

graphic in the lower part of this figure maps the associated factors onto the

brain structures thought to be involved in representing these variables. The

frontal eye-fields (factor e) and the retrosplenial cortex (factor d), both project

to the parietal cortex (factor p), which includes regions sensitive to allocentric

eye-directions. This communicates with temporoparietal regions (factor q),

which are also accessible to hippocampal outputs (factor c) via a pathway

comprising the fornix, mammillothalamic, and cingular white matter tracts.

Figure 3 illustrates this by placing factor c—prior beliefs about
place—in the medial temporal lobe.

We needmore than the location of the head to be able to locate
the retina. First, we need to know which way the head is facing.
Head-direction cells, which fire maximally when an animal is
oriented along a given direction in its environment, are found
distributed throughout the brain (Taube et al., 1990; Taube, 1995;
Blair et al., 1998). Specifically, they are found in the constituents
of the Papez circuit (Papez, 1995), originally thought to mediate
emotional responses. Together, the place and head-direction tell
us where the eyes are, but they do not pinpoint the retinal
location. For this, we also need to know the direction in which
the eyes are pointing. Combining the head-direction (factor d)
with the egocentric eye-direction (factor e), we can compute
the allocentric eye-direction (factor p). With information about
place, this gives us our field of view (factor q).
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Expressed as a probability distribution, factor p is:

P
(

xp|xd, xe
)

= δ

(

xd + xe − xp
)

(3)

This ensures the allocentric eye-direction is given by the angle
of the head plus the angle of the eyes relative to the head. We
can augment this for each eye, to allow for their convergence—
i.e., that the directions of the left and right eye are not parallel
to one another. Factor q is a little more complicated but involves
constructing arrays representing locations of retinal cells or, more
simply, locations in front of the lens that, if light were to pass
through the location and reach the lens, would refract to a given
retinal photoreceptor (or group of photoreceptors). We generate
one array for each eye. We make a simplification here in that we
assume we are dealing with a small foveal area such that we can
ignore the global topography of the retina. As such, we treat the
array of cells as uniformly spaced. Amore complete retinal model
would take account of the log-polar organization (Javier Traver
and Bernardino, 2010), in which the density of photoreceptors
decreases with retinal eccentricity—i.e., distance from the fovea.
This array, along with the location of the lens, gives us our field
of view. Taking the outermost cells from each array, we simply
project from the lens, through that location. This generates the
blue and red lines in the q panel of Figure 3. The xq variables
are tuples, for each element of the retinal array, containing
the location and a unit vector representing its preferred angle
of incidence.

The classical ‘where’ pathway involves the occipitoparietal
cortices. Figure 3 shows how the factors needed to compute a
field of view could converge upon the parietal lobe, assuming
we assign factor q to the temporoparietal cortices. Interestingly,
these regions have been associated with the ability to take another
point of view in several different senses. Electrical stimulation of
these regions on the right side of the brain can induce out of body
experiences (Blanke et al., 2002), where people feel as if they are
observing the world from a vantage point outside of their body.
We also talk informally about seeing things from another person’s
point of view. This relates to theory of mind, and the ability
to infer another’s perspective at a more abstract level. These
functions are also associated with the temporoparietal cortices
(Abu-Akel and Shamay-Tsoory, 2011; Santiesteban et al., 2012).
The implication is that the same machinery may be involved
in taking a viewpoint, both in the literal and metaphorical
sense, and that this machinery is housed in the temporoparietal
region. Some have argued that this representation of viewpoint is
central to the first-person perspective that underwrites conscious
experience (Seth, 2009; Williford et al., 2018).

The retrosplenial cortex is a good candidate for factor d,
given its role in relating visual ‘where’ data with head-direction
(Marchette et al., 2014; Shine et al., 2016). Specifically, it is
responsive to where we have to look to find stable, unambiguous,
landmarks (Auger et al., 2012). Lesions to this region impair
the representation of head-direction in other parts of the
brain—notably the anterior thalamus—even in the presence of
clear visual landmarks (Clark et al., 2010). Neuropsychological
evidence supports this assignment, as lesions to the retrosplenial
cortex can cause a form of topographical disorientation, where

patients lose their sense of direction (Aguirre and D’Esposito,
1999).

The translation from head-centered eye-direction to a world-
centered reference frame (i.e., factors e and p) is consistent
with the connections from the frontal eye fields to the parietal
lobe. These connections are underwritten by a white matter
tract known as the superior longitudinal fasciculus (Makris
et al., 2005; Thiebaut de Schotten et al., 2011). The parts of the
brain connected by this tract are referred to as the attention
networks (Corbetta and Shulman, 2002; Szczepanski et al.,
2013)—identified through their recruitment in attentional tasks
during neuroimaging studies. The frontal eye fields (Bruce et al.,
1985) and intraparietal sulcus (Pertzov et al., 2011) both contain
neurons sensitive to eye position, in different coordinate systems.

In summary, the generation of a line of sight depends upon the
head location and direction, and the position of the eyes relative
to the head. These are represented in the medial temporal lobe,
the frontal lobe, and medial parietal structures. The convergence
of axonal projections from these regions to the lateral parietal
lobe provides the dorsal visual stream with key information,
which can be reciprocally exchanged with the occipital cortices.
While we have adopted the rhetoric of “what” and “where”
streams, it is interesting to note that the controllable aspects of the
generative model all relate to the “where” stream. This provides
a useful point of connection to a complementary framing of the
two visual streams. Under this alternative perspective (Goodale
and Milner, 1992), the ventral stream is thought to support
perception, while the primary role of the dorsal stream is to
inform action. This view is informed by neuropsychological
findings (Goodale et al., 1991), including the ability of those with
dorsal stream lesions to see objects they cannot grasp, and the
ability of those with lesions to other parts of the visual cortices
grasp objects they could not see.

The Retinocortical Pathway
So far, we have generated a set of surfaces, and a field of
view. The final challenge of our ‘seeing’ generative model is
to convert these to a pair of retinal images. This is analogous
to the process of rendering in computer graphics (Shum and
Kang, 2000). There are many ways to implement sophisticated
rendering schemes, and a review of these is outside the scope of
this paper. We will outline one way in which a simple form of
rendering may be implemented and consider whether this has
neurobiological correlates.

For any given retinal photoreceptor, we can trace an imaginary
line out through the lens of the eye and ask which surface it
will first encounter. If it does not pass through any surface, this
means there is nothing that can reflect light in the direction of
that cell, and the receptor will not be activated. However, if it does
encounter a surface, we must determine the intensity of light that
surface reflects in the direction opposite to our imaginary line.
This is similar to the ray tracing method in computer graphics
(Whitted, 1980), and depends upon the rendering equation
(Kajiya, 1986):

P
(

xs|xr , xq, xb
)

= δ

(

3

(

xq, xr , xb
)

− xs
)
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3(u, v, z) = η (u, v) ×



α(u, v)

︸ ︷︷ ︸

Ambient

+
∫

S
3(v,w, z) β (u, v,w) dw
︸ ︷︷ ︸

Reflected




 (4)

The variables in the conditioning set are the light direction
(xb), as a unit vector, and tuples containing information about
the surfaces of objects (xr) and the retinal cells (xq). The η

function acts as an indicator as to whether a line passing through
the lens, that would refract light to a specific retinal cell (u),
intersects with a point on a surface (v) before reaching any other
surface. It is one if so, and zero otherwise. The α function plays
the role of ambient lighting, and we assume this is a constant
for all surfaces, for simplicity. The β function determines the
proportion of light reaching a surface from other sources (w)—
e.g., reflected off other surfaces (S)—that is reflected toward u.
The recursive structure of the integral part of this expression
resembles the recursive marginalization that underwrites belief-
propagation schemes (Frey and MacKay, 1998; Yedidia et al.,
2005). Recursive expressions of this sort can usually be solved
either analytically—e.g., through re-expression in terms of an
underlying differential equation—or numerically. In principle,
we could construct a factor graph like that of Figure 1, using the β

functions as our factors, determining the dependencies between
the level of illumination of each surface. The integral includes
all surfaces S that could reflect light to surface v. To simplify,
we ignore the dependencies between surfaces, and assume a
single level of recursion (i.e., surfaces reflect light to the retina,
but the light incident on a surface originates directly from the
light source). This means we choose S = z, so that Equation (4)
simplifies to:

3(u, v, z) = η (u, v)
(

α(u, v)+ η (v, z) α (v, z) β (u, v, z)
)

(5)

The key differences between different approaches to generating
images rest upon the choice of β . We follow the approach
outlined in (Blinn, 1977):

β (u, v, z) = c1max (0, vn · z)
︸ ︷︷ ︸

Diffuse

+ c2

(

vn · un+z√
(un+z)·(un+z)

)c3

︸ ︷︷ ︸

Specular

(6)

Equation (6) uses the subscript n to indicate (normalized) unit
vectors drawn from the u and v tuples (which also include the
coordinates of the origins of these vectors). For un, this vector
is parallel to the line from the lens outwards—in the opposite
direction to the light that would be refracted to a specific group
of cells on the retina. For vn it is the normal unit vector to
the surface in question1. Equation (6) includes a diffuse term,
which allows for light to be reflected equally in all directions,
where the amount reflected depends upon the angle of incidence.
In Figure 4, we see how this lighting component catches some
surfaces but not others, and the way in which it induces

1If v contains the four vectors corresponding to the vertices of a quadrilateral

surface, then vn is obtained (with appropriate normalization) as vn ∝ (v1 − v2)×
(v4 − v2).

shadows (via multiplication with the η function). The specular
component accounts for the relationship between the angle of
incidence and the angle of reflectance from a surface (Phong,
1975). To gain some intuition for this term, imagine shining
a torch into a mirror. The reflection will appear maximally
bright when the angle between the torch and the normal to the
mirror is equal to the angle between your eye and the normal
to the mirror and will rapidly decay on moving either eye
or torch.

A simplification made in the above is to treat the lens as a
point, neglecting the fact that there are a range of angles of light
that could be focused upon a given cell in the retina. In reality,
neighboring photoreceptors may encounter photons reflected
from the same point on a surface. To account for the artificial
high frequency components introduced during this discretisation
of space, we apply a blurring effect (factor t) This is based upon
a discrete cosine transform followed by attenuation of those
coefficients corresponding to these high frequencies followed by
the inverse transform. Specifically, we multiply the coefficients by
a Gaussian function centered on the low frequency components.
An interesting consequence of this relates to the inversion of
this model. Undoing this process would mean replacing the
high frequency components. This enhancement might give the
appearance of edge detection—a common role afforded to cells
in the early visual pathway with center-surround receptive fields
(Crick et al., 1980; Marr et al., 1980). In addition, it could
account for the sensitivity of early visual neurons to specific
spatial frequencies, and the widespread use of grating stimuli and
Gabor patches in experiments designed to interrogate these cells
(Mahon and De Valois, 2001).

An important feature of this generative model is the fact
that surfaces on the left of the head (in egocentric space)
are projected to the right side of both retinas. Similarly,
surfaces on the right of the head are projected to the left
side of both retinas. This is interesting in the sense that there
are two sorts of deficit we could induce. As shown on the
left of Figure 4, we could disconnect one retina, precluding
surfaces from either side of space from generating an image
on this side. This generates images consistent with monocular
blindness. Alternatively, by precluding any surface on one
side of space from causing retinal cell activation, we lose
activity on the same side of both retinas—i.e., a homonymous
hemianopia. This maps to the deficits found on lesions to
the retinocortical pathway before and after the optic chiasm,
respectively (Lueck, 2010;Wong and Plant, 2015). This highlights
the inevitability of these visual field defects following lesions to
the visual pathway, under the assumption that the brain uses
a model that represents the same surfaces as causes of data on
both retinas.

The generative model ultimately must generate the data it
seeks to explain. For our purposes, these data are the signals sent
from the retina to the visual cortex. However, it is possible to take
this further and to specify the kinds of generative model used
within the retina itself. Attempts to do this have focused upon
a prior belief about the smoothness of input across the retina and
have provided useful accounts of efficient retinal processing as
predictive coding (Srinivasan et al., 1982; Hosoya et al., 2005).
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FIGURE 4 | The retinocortical pathway. This figure takes the results from Figures 2, 3 and combines these to arrive at images in each retina. From factors r and q we

have our field of view and the surfaces it captures. We can then project from each retinal cell (shown as pixels in the retinal images) to see whether any surface is

encountered. For the first surface we reach, we combine the ambient, diffuse, and specular lighting components (factor s). This depends upon factor b from Figure 1,

which provides a lighting direction. Once we have the sum of these lighting components, we apply a blurring (factor t) to the image to compensate for the artificial high

frequency components introduced by our simplifications. Practically, this is implemented by finding the coefficients of a 2-dimensional discrete cosine transform,

multiplying this by a Gaussian function centered on the low frequency coefficients, and then performing the inverse transform. Note that the final image is inverted

across the horizontal and vertical planes. This is due to the light reflecting off surfaces on the temporal visual fields being propagated to the retina on the nasal side,

and vice versa (with the same inversion in the superior and inferior axis). The fact that the same surface can cause activation of both the right and left retina implies a

divergence in the predictions made by parts of the brain dealing in surfaces (e.g., striate cortices) about retinal input. The graphic on the left illustrates the two sorts of

visual field defect resulting from this divergence—either interrupting the influence of any surface on one retina (upper image) or interrupting the influence of a subset

(e.g., the right half) of all surfaces on either retina (lower image).

LOOKING

As alluded to above, retinal data depends not just upon what
is “out there” in our environment, but upon where we direct
our gaze. Figure 5 takes factors d and e from Figure 1, and
conditions these upon a policy variable. This accounts for the
fact that our choices determine where our eyes and our head
are facing. In addition, Figure 5 shows some of the non-visual
sensory modalities that result from these explanatory variables.
These depend upon dynamical systems, as the motion of the
head and eyes cause changes in vestibular and proprioceptive
modalities. This is of particular importance when thinking
about movement as the solution to an inference problem.
When acting so as to minimize any discrepancy between
predicted and realized sensations, thereby maximizing the
evidence for a model, the predicted consequences of action

become central to the performance of that action. The section
on The Brainstem unpacks the generation of proprioceptive
data from the oculomotor muscles and the relationship to the
oculomotor brainstem. The section on The Basal Ganglia then
focuses upon formulation of prior beliefs about the policy—
and its neurobiological manifestation in the oculomotor loops
of the basal ganglia. Together, these can be seen in the spirit of
agenda-driven perspectives (Ballard and Zhang, 2020) on action,
where we unpack a selected policy into the set of processes that
must be initiated at lower levels of a model to execute or realize
that policy.

The Brainstem
This section focuses upon the biophysics of oculomotion
that underwrites implementations of saccadic eye movements.
Modeling the eyes is relatively straightforward. They tend to
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FIGURE 5 | A generative model for looking. This figure builds upon part of the model shown in Figure 1. Specifically, it unpacks some of the other sources of data

resulting from the eye and head-direction factors and includes a policy variable that determines priors over these variables. These depend upon dynamical systems.

This means predicting an equilibrium point (or attractor) that the eyes or head are drawn toward. These dynamics may be divided into changes in the elevation or

heading angles. For head movements, the velocity of the head causes changes in the semi-circular canals in the inner ear, communicated to the brain by cranial nerve

(CN) VIII. For eye movements, the position and velocity of the eyes give rise to proprioceptive signals due to stretch of the oculomotor muscle tendons, communicated

to the brain by CN III, IV, and VI.

move together2 and can be described using Newton’s second law
applied to rotational forces (McSpadden, 1998). This describes
the relationship between a torque τ applied at radius r to a point
massm and an angle θ :

τ = mr2θ̈

⇒
∫ ∞

0
τ (r)dr = θ̈

∫ ∞

0
m(r)r2dr (7)

The second line of this equation relates the first to a solid object,
where the torque and the density (m(r)) of the object can vary
with the radius. The oculomotor muscles that generate torques
insert into the surface of the eyeballs, meaning we can simplify
Equation (7) as follows:

τ (r) = τδ(r − rmax) ⇒
τ = Jθ̈

2Unless you are a chameleon: Katz et al. (2015).

J ,

∫ ∞

0
m(r)r2dr (8)

The term J in the final line is a constant known as the “moment of
inertia.” Equation (8) implies the following equations of motion:

θ ,

[

θ

θ̇

]

θ̇ = f (φ, θ) ,

[

θ̇

J−1τ (φ)

] (9)

All that is left is to provide a functional form for the torque. We
can choose this such that the eyes come to rest at an angle φ:

τ (φ, θ , θ̇) = φ − θ − κθ̇ (10)

This is analogous to the torque associated with a swinging
pendulum. The constant κ determines the damping, which
precludes large oscillations around φ. We can interpret φ as a
target or setpoint, in the spirit of the equilibrium point hypothesis
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of motor control (Feldman and Levin, 2009). Now that we have
the equations of motion of the eye—noting that we have a
single equation for both eyes to enforce conjugacy3. (Parr and
Friston, 2018a)—we must detail the sensory consequences of
these movements. These are given as follows:

g(θ,ω) ,







θ − 1
2ω

θ̇

θ + 1
2ω

θ̇







(11)

Here, ω represents the convergence of the eyes, accommodating
the fact that the angle between the two can vary. The first two
rows relate to the left eye, and the last two to the right. Equation
(11) assumes a direct mapping from the angular positions and
velocities of each eye to the proprioceptive input from the
oculomotor muscles, consistent with the role of II and Ia sensory
afferents (Cooper and Daniel, 1949; Cooper et al., 1951; Ruskell,
1989; Lukas et al., 1994), respectively.

Converting Equations (9–11) to factors of a probability
distribution, we have:

P (ẋv|xv, xe) = N
(

f (xv, xe) ,5f

)

P
(

yy, yz|xv
)

= N
(

g (xv,ω) ,5g

) (12)

The superscripts here refer to the factors determining the prior
densities of each variable in the graph of Figure 5. The precision
matrices 5 stand for inverse covariances. Each of these factors
can itself be factorized (assuming diagonal precision matrices)
into elevation and heading angles and into left and right eyes. The
oculomotor brainstem is well-suited to implementing this part of
the forward model (and its inversion). The superior colliculus4

projects to the raphe interpositus nucleus (Gandhi and Keller,
1997; Yoshida et al., 2001), and via this structure to two nuclei
that represent the first (elevation and heading) factorization.
The paramedian pontine reticular formation mediates horizontal
saccades (Strassman et al., 1986), while the rostral interstitial
nucleus of the medial longitudinal fasciculus mediates vertical
saccades (Büttner-Ennever and Büttner, 1978). These nuclei then
project to the cranial nerve nuclei that communicate directly
with oculomotor muscles. The cranial nerve nuclei on the right
of the midbrain connect to the muscles of the right eye, and
those on the left connect to the left eye. This represents the
second factorization into left and right eyes. Figure 6 shows
how this factorization may manifest anatomically and illustrates

3This assumption of conjugacy may underwrite internuclear ophthalmoplegia.

This is a syndrome—caused by brainstem demyelination or stroke—in which

the predictions required for one eye to move towards the nose (while the other

moves away from it) are interrupted. This violation of the conjugacy assumption

has consequences for the contralateral eye, which exhibits a pathological

oscillatory nystagmus.
4The superior colliculus exhibits a log-polar retinotopy which implies the xv

variable might be represented in this coordinate system. The functional relevance

of this is that the probability density for xv , when translated into polar or Cartesian

coordinates, will assign higher variance to more eccentric values. This has been

proposed as an explanation for the increased variance of saccadic endpoints for

more eccentric locations in a Cartesian frame, despite unform variance in log-polar

reference frames (Daucé and Perrinet, 2020).

the proprioceptive data we would anticipate on simulating the
dynamics outlined above.

This just leaves the question as to where the equilibrium point
(xv) comes from. As we have said, the superior colliculus—a
midbrain structure—is an important junction in the descending
pathway to the oculomotor brainstem. Via factor v, the dynamics
depend upon factor e, which is the same variable that appears
in our frontal eye fields in Figure 3. The frontal eye fields
project to the superior colliculus (Künzle and Akert, 1977;
Hanes and Wurtz, 2001), as shown in Figure 6. However,
factor e is conditioned upon the policy, implying we may
have several alternative equilibrium points available to the
superior colliculus. To adjudicate between these, we need
another input to the colliculus that selects between policies.
We have previously argued that the output nuclei of the basal
ganglia could fulfill this role (Parr and Friston, 2018c). This
is consistent with the projections from the substantia nigra
pars reticulata to the superior colliculus (Hikosaka and Wurtz,
1983). The selection between alternative policies is the focus
of section The basal ganglia. A similar analysis could be made
of head movements and the vestibular data they generate. We
omit this here to avoid duplication of the concepts outlined
above. More generally, selecting a series of attracting points,
as we have for saccadic eye movements, offers a useful way of
representing environmental dynamics, including those that are
out of our control. For instance, by replacing the static prior
over object location with a series of transition probabilities,
we could predict the next location given the current location.
This converts the static elements of the model into a hidden
Markov model. By associating each possible location with an
attracting point, we can predict the continuous trajectories
of the object as it is drawn from one location to the next
(Huerta and Rabinovich, 2004; Friston et al., 2011). This style
of dynamical modeling for active inference has been exploited
in the context of a 2-dimensional visual search task (Friston
et al., 2017a), and in control of arm movements in 3-dimensions
(Parr et al., 2021).

The Basal Ganglia
In thinking about the problem of where to look, wemust consider
a set of subcortical nuclei known to play an important role
in planning (Jahanshahi et al., 2015). The basal ganglia receive
input from much of the cerebral cortex and provide output to
the superior colliculus, among other structures. This means they
are well-positioned to evaluate alternative action plans based
upon the beliefs represented by the cortex, and to modulate the
cortical projections to the colliculus to bring about the most
likely eye movements. As such, these nuclei have frequently
been associated with inferences about what to do in the process
theories associated with active inference (Friston et al., 2017a,b;
Parr and Friston, 2018b).

What makes one eye-movement better than another? One
way to think about this is to frame the problem as one
of experimental design (Itti and Koch, 2000; Friston et al.,
2012). The best experiments (or eye movements) are those

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2021 | Volume 15 | Article 651432

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Parr et al. Active Vision

FIGURE 6 | Oculomotion. The plots on the left of this figure show an example of the kinds of dynamics that result from Equations (9–12). These illustrate a single

saccade toward some equilibrium point determined by factor v. The first two plots detail the hidden states, comprising the heading angle of the eyes, their elevation,

and the rates of change of each of these. In addition, the third plot illustrates the proprioceptive data we might expect these dynamics to generate. These are divided

into sensory neurons that report instantaneous muscle tendon stretch (II afferents) and those that report changes in this (Ia afferents) for the right and left eye. Note

that these differ only in the heading angle—as eye movements are congruent. The constant discrepancy in the heading angle results from the angle of convergence of

the eyes. On the right, the factors are arranged to be consistent with the brainstem structures that deal with saccades in the vertical (factor z) and horizontal (factor y)

directions. The proprioceptive signal is expressed in arbitrary units (a.u.) which could be converted to firing rates with the appropriate (e.g., sigmoidal) transforms.

that maximize expected information gain5—i.e., the mutual
information (Lindley, 1956) between data (y) and hypotheses or
causes (x) under some design or policy (π):

I [X,Y|π] = DKL

[

P(x, y|π)||P(x|π)P(y|π)
]

= EP(y|π)
[

DKL

[

P(x|y,π)||P(x|π)
]]

︸ ︷︷ ︸

Information gain

= H
[

P(y|π)
]

︸ ︷︷ ︸

Predictive Entropy

−EP(x|π)
[

H
[

P(y|x,π)
]]

︸ ︷︷ ︸

Expected Ambiguity

(13)

Equation (13) shows three different expressions of the mutual
information, incorporating KL-Divergences—quantifying how
different two distributions are from one another—and entropies.

5From the perspective of active inference, this is normally augmented with an

additional distribution that ascribes greater probability to preferred datapoints,

turning the mutual information into an expected free energy. However, we focus

upon information seeking specifically, under the assumption that eye movements

are primarily exploratory (i.e., preferences over visual data are uniform). This is a

special case of an expected free energy.

An entropy (H) is a measure of the dispersion or uncertainty
associated with a probability distribution. The first line says
that the expected information gain is greatest when the joint
distribution of data and their causes, under a given policy, is
very different from the product of the twomarginal distributions.
The second line expresses this in terms of the expected update
from prior to posterior—i.e., the information gain. The third
line breaks this down into two components. These are easiest to
understand when thinking about what makes a good experiment.
The first thing is that it should tell us something we do
not already know. An experiment for which we can already
confidently predict our measurements is a poor experiment. Such
experiments are penalized by the predictive entropy term, which
favors those experiments for which the predicted measurements
are maximally uncertain, i.e., not known beforehand.

Figure 7 illustrates the relevance of the predictive entropy
in adjudicating between alternative fields of view. This shows
two (of many) possible head-directions and the visual input this
generates in each of the three rooms shown in Figure 2. Imagine
we are uncertain about the room we occupy, but relatively
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FIGURE 7 | Expected information gain. This figure highlights the role of predictive entropies in adjudicating between salient actions. This shows two alternative fields

of view we could choose between, through making eye or head movements. If we were not sure which room we were in, view 1 (toward the southeast corner) would

be associated with a high predictive entropy, and is consequently useful in resolving uncertainty. In contrast, view 2 (toward the northeast corner) has zero predictive

entropy, and does not help distinguish between rooms.

confident about everything else. View 1 could give rise to a view
with no object, or with object 1. We can be confident that view 2
will always lead to a view with no object, as none of the three
rooms have an object in this location. Any actions leading to
view 1 (by moving eyes or head) will be associated with a higher
predictive entropy than actions leading to view 2 (zero entropy).
Intuitively this is sensible, as we will be able to tell from the
consequences of view 1 whether we are in room 1, or in room
2 or 3. We will gain no information about the room from view 2.
Once we have seen object 1 in view 1, we know we are in room 2
or 3, and there is no added information available in this view. We
would always anticipate seeing the same thing here. At this point,
the southwest or northwest corners of the room may become
more salient, allowing disambiguation between the rooms that
are still plausible.

The expected ambiguity term in Equation (13) expresses
the fact that, even if sensory input is unpredictable, it is
not necessarily useful. Everything else being equal, expected
ambiguity underwrites the imperative to sample precise and
unambiguous visual sensations. Perhaps the simplest example is
keeping our eyes open.When our eyes are closed (or the lights are
off), the probability of every retinal cell firing is roughly the same,
which corresponds to a maximally ambiguous state of affairs.

The basal ganglia appear to be key in quantifying information
gain (Sheth et al., 2011; White et al., 2019). However, they are
part of a broader network of regions involved in making these
decisions. This is important, in the sense that information gain is
a functional (function of a function) of beliefs. As such, the broad

range of inputs to the basal ganglia from the cortex and elsewhere
may give them access to these beliefs across different modalities.
This is evidenced by disorders of salience attribution, like sensory
neglect syndromes (Husain et al., 2001; Fruhmann Berger et al.,
2008; Parr and Friston, 2017a)—which occur with lesions to the
superior longitudinal fasciculus (c.f., Figure 3) (Bartolomeo et al.,
2007, 2012) in addition to basal ganglia structures (Karnath et al.,
2002). In the context of active vision, at least, the basal ganglia
appear to be the point at which the most epistemically valuable
saccadic movements are determined, given the direct influence
of this subcortical network over the superior colliculus (Hikosaka
and Wurtz, 1983).

RELATED WORK

While we have focused upon the sort of generative model
the brain could employ, we have neglected the question as
to how a model of this sort might develop in the first
place. Prominent approaches to learning of such models from
machine vision include capsule networks (Sabour et al., 2017)
and the Generative Query Network (GQN) (Eslami et al.,
2018). The former is a supervised learning technique in which
capsules, groups of neurons representing attributes of an entity
causing visual data, optimize their connections between multiple
convolutional layers to associate images with their labels. The
latter is an unsupervised learning approach—reminiscent of a
variational autoencoder (Kingma and Welling, 2013; An and
Cho, 2015)—that learns two functions. The first is a function
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from observations to a representation of a scene and the second is
a generative function that predicts observations, in a viewpoint-
dependent manner, under the current scene representation. The
two are jointly optimized based upon the fidelity with which
observations are predicted given the scene representation. While
unsupervised in the sense that no labeled training data are
used, this approach could be viewed as supervised learning of a
function from viewpoint to visual data.

There are important shared features between the generative
model presented in this paper and those that emerge from
training capsule networks or the GQN. Perhaps the most
striking is the importance of factorization. In capsule networks,
factors are an integral part of the network. Each neuron
within a capsule represents distinct features in relation to other
neurons. This allows a capsule—representing a given object—to
represent that object in multiple orientations, or colors. In the
GQN, factorization emerges from training on environments in
which different attributes can vary independently. For instance,
training on views of red cubes, red triangles, and blue spheres
enables reconstruction of, previously unobserved, red spheres.
In this paper, we have highlighted the factorization of different
explanatory variables (i.e., latent causes) that manifest in different
visual streams—for instance, changing our viewpoint does not
change object identity, and vice versa.

A second shared feature is the increase in the spatial scale
of receptive fields, as we move from observations to their
causes. In capsule networks, this arises from their convolutional
architecture. In our generative model, the convergence of high
dimensional pixel spaces through to hidden layers with fewer
and fewer units is represented, in reverse, by the generation of
objects from scenes, surfaces from objects, and pixel intensities
from surfaces.

Given that there are successful machine learning approaches
available—that effectively learn the structure of a generative
model for visual rendering—it would be reasonable to ask
what is added by the approach pursued here. In short, the
benefit is transparency, in the sense of both explainability and
interpretability (Marcinkevičs and Vogt, 2020). The benefits of
approaches based upon deep learning are that they scale well,
and that the models they learn emerge from the statistical
regularities in the data on which they are trained. However,
the interpretability of the resulting models is not always
straightforward. In contrast, specifying an explicit generative
model affords an explicit interpretation of the ensuing inferences.
This may not matter when developing new approaches to visual
rendering but is crucial in advancing hypotheses as to how the
brain (and other sentient artifacts) solves active vision problems.
The account advanced in this paper is not designed to replace
machine learning but offers an example of the kind of generative
model they might implicitly learn.

DISCUSSION

In this paper, we set out a generative model capable of
generating simple retinal images. Our aim was to determine
the set of explanatory variables the brain could call upon
to explain these visual data, the dependencies between these
variables, and the anatomical connectivity that could support the

requisite neuronal message passing. In other words, we sought
to identify the problem the visual brain must solve. From a
neurobiological perspective, one conclusion we could draw from
this analysis is that few parts of the brain are not involved in
active vision.

We have seen how beliefs about scenes, and the objects in
those scenes, thought to be represented in the temporal lobe,
are combined with beliefs about the retinal location. The latter
depend upon the parietal cortices and their relationship with
medial temporal and frontal lobe structures. If we know the
retinal location and the set of surfaces in a scene, we can compute
which surfaces lie within our field of view and determine (for
a given light source) the influence of those surfaces on retinal
cells. This is the retinocortical pathway in reverse. Explanations
of visual data afforded by a model of this sort are highly sensitive
to where the retina is. This means part of the explanation must
always include our choices about where we position our retina.
Central to this is the computation of expected information gain,
which implicates the oculomotor loops of the basal ganglia. In
addition, the process of acting to change our eye (or head)
position—when viewed as an inference problem—requires that
we predict all of the sensory consequences of the action we
hope to execute. We detailed how this could play out in the
oculomotor brainstem, predicting the proprioceptive data we
hope to realize.

Clearly, there are limitations to the model presented here, and
many aspects of vision that are not accounted for. It is useful
to consider how these could be incorporated in this generative
model. First, there are other ways, in addition tomoving our eyes,
in which we can influence our visual environment. For instance,
we could move our hands in our field of view (Limanowski
and Friston, 2020). We could go further and move objects
around in the environment or assume that other agents can
do so. This means unfolding the prior beliefs from Figure 1 in
time, such that they factorize into a series of policy-dependent
transition probabilities. Time-dependence adds an interesting
twist to the expected information gain, as it means that the
posterior predictive entropy grows over time for unobserved
locations. The reason for this is simple. The longer the time
since looking in each location, the greater the probability that
something has changed. This is consistent with Jaynes’ maximum
entropy principle (Jaynes, 1957). The result is a form of inhibition
of return (Posner et al., 1985), the duration of which varies with
the precision of probabilistic transitions over time (Parr and
Friston, 2017b). The duration of this inhibition of return is one of
the crucial differences between static and dynamic environments:
reflecting the possibility that things have changed since each
location was last fixated. This engenders loss of confidence about
state of affairs at that location—and an epistemic affordance
of return that increases with time. This relates to other visual
phenomena, even in the absence of overt eye movements.
Periodic redirection of covert attention—a form of mental action
(Rizzolatti et al., 1987; Hohwy, 2012; Limanowski and Friston,
2018)—based upon the accumulated uncertainty of unattended
features reproduces binocular rivalry phenomena (Parr et al.,
2019), in which perception alternates between different images
presented to each eye (Leopold and Logothetis, 1999; Hohwy
et al., 2008).
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We have omitted interesting questions about texture and color
vision. Textured surfaces could be modeled through varying the
constants (c1, c2, c3) from Equation (6) and the ambient lighting
(α) as functions of their location on a surface. Color vision could
be incorporated simply by repeating section The Retinocortical
Pathway for several different wavelengths of light—specifically,
the red, green, and blue wavelengths detected by different
cone photoreceptors (Nathans et al., 1986). This would aid in
disambiguating the roles of magnocellular and parvocellular
streams, involved in dissociable aspects of trichromatic and
monochromatic vision (Masri et al., 2020). The magnocellular
stream also seems to have a key role in detectingmotion (Merigan
et al., 1991) – something that is highly relevant in the context of
active event recognition (Ognibene and Demiris, 2013).

From a computational perspective, there are important
outstanding questions about the role of precision (i.e.,
neuromodulation) which may involve second order thalamic
nuclei, like the pulvinar (Kanai et al., 2015), and the cholinergic
basal nucleus of Meynert (Moran et al., 2013). These could be
accommodated in this model through including prior beliefs
about the precision or variance associated with regions of the
visual field. This may be particularly relevant in understanding
how subcortical structures participate in visual perception. For
instance, the role of the amygdala in enhancing the perception
of fearful faces (Pessoa et al., 2006; Adolphs, 2008) could
be formulated as inferences about the precision of visual
features consistent with this emotional state. Another important
computational feature was omitted in our discussion of models
of oculomotion. We neglected to mention the role of generalized
coordinates of motion (acceleration, jerk and higher order
temporal derivatives) (Friston et al., 2010), which offer a
local approximation to the trajectory of dynamical variables,
as opposed to an instantaneous value. This has important
implications for things like sensorimotor delays (Perrinet
et al., 2014), accounting for small discrepancies in the time the
brainstem receives a proprioceptive signal compared to the time
an oculomotor muscle contracted. In brief, representations of
the local trajectory enable projections into the immediate past
or future. To see how generalized coordinates of motion can be
incorporated into a factor graph, see (Friston et al., 2017a).

Why is it useful to formulate a generative model of active
vision? There are several answers to this question. The first is
that having a forward model is the first step in designing an
inference scheme that inverts the model. This is a matter of
undoing everything that was done to generate visual data, so that
their causes can be revealed. There have been promising advances
in practical, scalable, model inversion for active vision from a
robotics perspective, that use deep neural networks to learn a
generative model that predicts camera images (Çatal et al., 2020),
leading to Bayes optimal behavior in a real environment. Similar
approaches have been developed both in the visual domain
(Fountas et al., 2020; van der Himst and Lanillos, 2020), and
in a generic (non-visual) control setting, which may also have
applications for high-dimensional visual data (Tschantz et al.,
2020). By treating vision as active, we can design agents that
actively sample the environment to resolve their uncertainty, in
high-dimensional, incongruent settings. This takes us beyond

static deep learning models which, although apt at simple
classification tasks (LeCun and Bengio, 1995; Jin et al., 2017), are
unable to handle the complexity involved in human active vision.

The second is that this model generates behavior (i.e.,
saccades). As we highlighted in section The Basal Ganglia,
the saccades performed depend upon prior beliefs. This means
measured eye movements could be used to draw inferences
about the parameters of prior beliefs in the model used by
an experimental participant, or clinical patient (Mirza et al.,
2018; Cullen et al., 2020). Virtual reality technologies offer a
useful way to investigate this, with tight control over the visual
environment combined with eye-tracking (Limanowski et al.,
2017; Harris et al., 2020a,b). In principle, we could present visual
data consistent with the generative model set out here and use
this to test hypotheses about the structure of the generative model
used by the brain, or about the parameters of each factor. One
such hypothesis as to the anatomical implementation has been
set out in the figures. However, it is important to recognize that
this is one of many hypotheses that could have been advanced.
Crucially, a generative model for visual data allows us to generate
stimuli that vary according to specific hidden causes. This would
allow for alternative anatomical hypotheses to be evaluated
through neuroimaging, as we would anticipate variation in a
given hidden state should lead to variation in beliefs about this
state, and changes in neural activity—i.e., belief updating—in
those regions representing these beliefs.

The third utility of forward models of this sort is that
understanding the conditional dependencies in a model, and
by implication the structure of the neuronal message passing
that solves the model, we have an opportunity to frame
questions about classical disconnection syndromes (Geschwind,
1965a,b) in functional (computational) terms (Sajid et al., 2020).
We have briefly touched upon some of these syndromes,
including visual field defects, agnosia, and neglect. Generative
models of active vision let us express the mechanisms that
underwrite these syndromes in the same formal language—that
of aberrant prior beliefs. This approach is commonly used to
characterize inferential pathologies in computational psychiatry
(Adams et al., 2015).

CONCLUSION

Under modern approaches to theoretical neurobiology—
including active inference—brain function is understood in
terms of the problems it solves. Its biology recapitulates the
structure of this problem. In this paper, we have attempted to
define the problem faced by the active visual system. This is
framed as explaining visual input, where good explanations
involve not just the external environment, but how we choose
to position our sensors (i.e., retinas) in that environment. This
explanation takes the form of a predictive model comprising
factors that determine the geometry of objects expected in a
given room, the placement of the retina in that room, and the
combination of these variables in generating a retinal image.
The factors involved in determining the placement of the retina
can be further unpacked in terms of their causes—i.e., the most
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epistemically rich saccades—and their consequences for the
dynamics of, and proprioceptive inputs from, the eyes. We hope
that this paper provides a useful reference that brings together
the probabilistic models required for aspects of biological
active vision.
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