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Aim: Superparamagnetic cubic iron oxide nanoparticles (IONPs) were synthesized and functionalized with
meso-2,3-dimercaptosuccinic acid (DMSA) as a potential agent for cancer treatment. Methods: Monodis-
perse cubic IONPs with a high value of saturation magnetization were synthesized by thermal decom-
position method and functionalized with DMSA via ligand exchange reaction, and their cytotoxic ef-
fects on HeLa cells were investigated. Results: DMSA functionalized cubic IONPs with an edge length of
24.5 ± 1.9 nm had a specific absorption rate value of 197.4 W/gFe (15.95 kA/m and 488 kHz) and showed
slight cytotoxicity on HeLa cells when incubated with 3.3 × 1010, 6.6 × 1010 and 9.9 × 1010 NP/mL for 24, 48
and 72 h. Conclusion: To the best of our knowledge, this is the first study to investigate both the cytotoxic
effects of DMSA-coated cubic IONPs on HeLa cells and hyperthermia performance of these nanoparticles.
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Superparamagnetic iron oxide nanoparticles (IONPs) have great potential as multifunctional theranostic agents in
cancer diagnosis and therapy due to their ability to be controlled magnetically toward cancer cells and that they
provide contrast enhancement and generate localized heat under an alternating magnetic field (AMF). The use of
magnetite (Fe3O4) and maghemite (Fe2O3) phases of IONPs has been clinically approved by the US FDA and the
EMA [1,2]. Inside the body, IONPs are reported to be biodegradable and can be eliminated through natural metabolic
pathways [3]. IONPs can be synthesized with tunable physicochemical properties (e.g., size, shape, surface charges,
surface functionalities), which can affect magnetic properties, heating efficiency and blood circulation time. Under
a critical size, IONPs are superparamagnetic at room temperature, having no remanent magnetization and thus
substantially preventing agglomeration [4]. Their superparamagnetic property makes these nanoparticles (NPs) ideal
for a wide range of biomedical applications, such as magnetically targeted controlled drug delivery, hyperthermia-
induced cell death and MRI. With negligible agglomeration, the NPs can escape the reticuloendothelial system,
which leads to their prolonged circulation half-life and can reduce the danger of thrombosis or blockage of blood
capillaries. The heat generation capability under an external AMF is the result of Néel and Brownian relaxations,
which makes these NPs potential therapeutic agents for controlled drug release and hyperthermia-induced cancer
therapy [5]. For IONPs, it was reported that a short T2 relaxation time results in a darker image (T2-weighted) and
enhances MRI contrast [6]. All these properties of IONPs allow their use in the development of multiple therapeutic
and diagnostic (multimodal theranostic) methods for efficient cancer diagnosis and treatment.

Although the potential of IONPs for clinical use has been approved with many formulations reaching the
market [7–9], some have been later withdrawn due to safety issues related to adverse health effects [8–11], thus limiting
the clinical applications of IONPs. Therefore, further formulations and extensive characterization are needed to
achieve adequate simultaneous heating and image contrast for minimal NP dosage in tumor cells. Each formulation
will show different magnetic behavior, heating capacity and toxicity according to the different physicochemical
properties of the NPs.

Meso-2,3-dimercaptosuccinic acid (DMSA)-coated IONPs including spherical [12–23] and cubic morpholo-
gies [24–27] have been widely studied in the literature. Some of the studies [19,22,27] have only investigated hy-
perthermia properties of DMSA-coated IONPs, whereas others [12,14–16,18,20,21,23,24] have investigated only their
cytotoxicity. In that context, some other works [13,17,25], have not even investigated either hyperthermia or cyto-
toxicity of such NPs. Only Kossatz et al. [26] studied both the hyperthermia properties and cytotoxicity of 15 nm
IONPs as cores on breast and pancreatic cancer xenografts in vivo.

In our study, the magnetic, magnetothermal and physicochemical properties of larger (size ∼24 nm) IONPs
are comprehensively investigated, as well as their cytotoxicity on HeLa cells. Here, we report the synthesis and
characterization of ∼24 nm cubic DMSA functionalized IONPs. Because of their high saturation magnetization,
good magnetothermal properties and nontoxicity for up to 3 days with a concentration of 9.9 × 1010 NP/mL
in vitro, they can have a potential use for the multifunctional cancer diagnosis and treatment. With the size of
<25 nm, it is expected that the cubic IONPs will exhibit superparamagnetism at room temperature, which is crucial
for biomedical applications [11]. Compared with spherical NPs, cubes of similar size have relatively higher-ordered
spins and anisotropy energy values, resulting in higher magnetization and specific absorption rate (SAR) values [28]

and better T2 relaxivity [29]. The nonspherical NPs with a high-aspect ratio could also enhance blood circulation
times [30]; therefore, they are subject to less bioelimination. In addition, nonspherical NPs have greater available
surface area for cells to interact, which can facilitate multivalent interactions with the cell surface, resulting in higher
cellular uptake compared with spherical morphology of similar size [31].

Because NPs synthesized by the thermal decomposition method are hydrophobic, a subsequent ligand exchange
step will be required to make them hydrophilic for bio-applications. Here, the surface of the IONPs is modified
with DMSA molecules, resulting in a stable biological ferrofluid media. The carboxylic and thiol groups of DMSA
on the surface of the NPs can provide conjugation capability for drug molecules and/or targeting ligands. DMSA
coating can also significantly enhance their uptake efficiency [32]. In vitro and in vivo studies have showed that cell
viability and proliferation are not influenced by the DMSA coating of Fe3O4 and Fe2O3 NPs [32]. DMSA-coated
IONPs therefore have the potential to be used as magnetic carriers to deliver high concentrations of radioisotopes
to certain areas, for example, as single-photon emission computerized tomography (SPECT)/dual-modal MRI
contrast agents [33].
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Materials & methods
Chemicals
Iron(III) acetylacetonate (Fe(acac)3, ≥97%), squalene (≥95%), chloroform (≥99%), anhydrous chloroform
(≥95%), acetone (≥99%), decanoic acid (DA) (≥98%), meso-2,3-dimercaptosuccinic acid (98%), toluene
(≥99.7%), 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) (≥97.5%) and ethanol absolute
were obtained from Sigma Aldrich. Dibenzyl ether (DBE), 98%, dimethyl sulfoxide (≥99%), potassium hy-
droxide (>85%) were purchased from Merck. While phosphate-buffered saline (PBS) (Dulbecco’s PBS, 1x) was
obtained from Cegrogen Biotech, Roswell Park Memorial Institute (RPMI) 1640 medium (1x) was purchased from
Thermo Fisher. Spectra/por float-a-lyzer with biotech cellulose ester membranes (molecular weight = 8000–10,000)
were used for dialysis of DMSA-coated IONPs. All reagents were used without purification.

Synthesis of IONPs
Synthesis of the cubic IONPs was modified from the procedure reported in the literature [34]. In our study,
different surfactant concentration and different heating rates were used to obtain around 24-nm cubic IONPs.
The experiments were carried out in a 50-ml three neck (29/32) round-bottom flask equipped with Allihn-type
condenser. In a typical experiment, 0.353 g (1 mmol) of Fe(acac)3, 1.034 g (6 mmol) of decanoic acid (DA) were
dissolved in 10 ml of squalene and 15 ml of DBE under argon flow and stirring magnetically for 25 min. The
mixture was vacuumed for 5 min at room temperature and then heated to 65◦C. After degassing for 120 min at
65◦C, the mixture was heated to 200◦C with a heating rate of 3◦C/min under argon atmosphere. The reaction
mixture was kept at this temperature for 2.5 h and then heated to 297 ◦C with a heating rate of 8◦C/min. On some
occasions, 7◦C/min and 10◦C/min heating rates were also used (see Supplementary Figures 1 & 2 for transmission
electron microscopes [TEM] images of the obtained NPs at those heating rates). The heating rate of 8◦C/min was
found to be best ramp value to obtain monodisperse cubic NPs after several trials. The reaction mixture was then
refluxed for 1 h at the solvent boiling temperature of ∼297◦C and found to be dropping continuously throughout
the reflux due to the decomposition of DBE [34]. Therefore, the set temperature during reflux was adjusted to
maintain the temperature of the reaction solution and prevent polydispersity. When the reaction completed, the
final black solution containing IONPs were cooled to 20◦C rapidly by submerging in an ice bath to keep their
shape and size intact, different from earlier synthesis reported by Guardia et al. [34]. After cool down, 60 ml of
acetone was added to the solution, and it was centrifuged at 8500 rpm for 15 min. The supernatant was then
discarded, and the black precipitate was dispersed in 3 ml of chloroform. Afterward, 60 ml of acetone was added
and the obtained dispersion centrifuged at 8500 rpm for 5 min. Washing procedure with chloroform and acetone
was repeated two-times more. Finally, the obtained NPs were dispersed in ∼10 ml of anhydrous chloroform and
kept at 4◦C.

Synthesis of water-dispersible IONPs
Water-dispersible IONPs were obtained through the phase transfer reaction of DA-coated IONPs with DMSA,
which is an anionic ligand, a good chelating agent containing two carboxylic acid and two thiol groups, adapted from
the procedures reported in the literature [13,16,25]. This consisted of four main steps: ligand substitution of DA by
DMSA; alkalinization (or deprotonization) of the sample enhance the stability of the NPs by electrostatic repulsion
between COO– groups and increasing S-S bonds to reduce hydrodynamic size; dialysis to remove unreacted DMSA
and any other small impurities present in the dispersion, such as potassium ions from potassium hydroxide (KOH)
used for alkalinization; and sterilization and pH adjustment to 7.4 to avoid the presence of any bacteria in the final
dispersion and obtain a suitable sample for in vitro experiments. In the first step, in addition to the ligand exchange,
a fraction of the thiol groups was oxidized to form disulphide bridges between the two DMSA molecules [27].
In the second step, the nonoxidized thiol groups and one of the DMSA carboxylic groups were deprotonated at
pH = 10 with 1 M KOH solution, resulting to increase of sulfur–sulfur bonds around the NPs. This may result in
better stabilization of the NPs due to the very small hydrodynamic sizes and negative charge surface. Thus, a better
dispersion of IONPs at pH = 7 in aqueous media was achieved. In the following steps, alkaline NPs dispersion
was purified using dialysis tubing with the molecular weight cut-off 8–10 kDa. Later, the pH of the NPs dispersion
was adjusted to ∼7.4 in PBS solution and sterilized by being exposed to an ultraviolet light.

In a typical experiment, the DA-coated IONPs dispersed in chloroform were dried under vacuum and 36.2 mg
of those NPs were dispersed in 18.1 ml of toluene. A solution of 33.9 mg DMSA in 1.9 ml DMSO was then
added dropwise to this NP dispersion and stirred with a vortex mixer. Afterward, the mixture was sonicated for
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5 min and mechanically stirred with vortex mixer at a rate of 450 rpm for 48 h at room temperature. After the
reaction completed, the translucent light yellow solvent containing DA was discarded. The black particles attached
to the walls of the Erlenmeyer flask were washed five-times with 20 ml of ethanol (8000 rpm, 10 min) through
centrifugation to remove free DA molecules and finally redispersed in 5 ml of ultrapure water (18.2 M�.cm).
Then, 1 M KOH was added to increase pH to 10. Resulting black homogenous dispersion was dialyzed against
ultrapure water for 4 d.

Characterization of NPs
Crystallographic Phase Analysis of IONPs
The crystallographic phase of the as-synthesized IONPs was examined by X-ray diffraction (XRD) measurement.
Here, the IONPs dispersed in chloroform were precipitated with ethanol and dried under vacuum overnight. XRD
data of the IONPs were recorded on a Panalytical X’PERT PRO MPD X-ray diffractometer using Cu Kα radiation
(λ = 1.540 Å) operated at 45 kV and 40 mA with a scan range from 20 to 90 degrees and a scan step of 0.06
degrees.

Morphology, particle size, size distribution & elemental analyses
NPs were imaged using a FEI Tecnai G2 30 Model and JEM JEOL model 2100F TEM. These instruments were
operated at an accelerating voltage of 300 and 200 kV respectively to determine the particle size and morphology.
The size distribution and mean size were determined by analyzing at least 150 randomly selected NPs visualized
on the different TEM images using Image-J software. Then, the polydispersity index (PDI) value was calculated
by the square of the standard deviation divided by the square of the mean size of the NPs. Elemental analysis was
performed by attached TEM energy dispersive X-ray (EDX) spectroscopy to verify DMSA presence by monitoring
sulfur peaks corresponding to chemical composition of DMSA. Samples were prepared by placing a drop of diluted
NP dispersion onto a carbon coated-copper grid (carbon film, 300 mesh Cu) and left to dry at room temperature.

Thermal property analysis
Thermogravimetric analysis/differential thermal analysis (TGA/DTA) experiments were carried out using TA
Instruments Q600 SDT System in N2 atmosphere at a heating rate of 10◦C/min from room temperature to
600◦C. Changes in mass due to loss of some components of the samples were recorded against temperature rise.
The percentages of the magnetic contents, surfactant amounts in the as-synthesized and functionalized IONPs
were determined from the experiments.

Magnetic characterization
Magnetic characterization of the NPs was carried out using a vibrating sample magnetometer (VSM) cryogen-free
magnet system. Samples were dried in a vacuum oven before the measurements. A VSM capsule containing the
powder sample was placed in the sample holder with a kapton tape. The magnetization curves were then recorded
in the magnetic field range between 3 T and –3 T at a ramp rate of 0.1 T/min at room temperature.

Hyperthermia measurement
Magnetothermal properties of the water-dispersible IONPs (2.4 mg Fe/ml) were measured by a nB nanoscale
Biomagnetics D5 series instrument under an AMF of 15.95 kA/m and frequency of 488 kHz to determine the
magnetic heating efficiency.

Colloidal characterization
Dynamic light scattering and zeta potential measurements of the NP dispersions were performed using Malvern
Zetasizer Nano ZS instrument with a 633 nm red laser and with an angle of 173 degrees between the sample
and detector, being capable of both particle size analysis (hydrodynamic diameters and polydispersity index) and
zeta-potential measurement for colloidal stability.

For the analyses, the DMSA-coated NPs were diluted in ultrapure water with a concentration of 0.5 mg/ml
(NPs/dispersion) and the dispersion was sonicated for ∼10 s before the measurements. A glass cuvette with square
aperture was used. The measurements were performed in pH between 3 and 11 at 25◦C with the equilibration
time of 120 s. Ten millimolars KOH and 10 mM nitric acid (HNO3) solutions were used for pH adjustment.
Hydrodynamic sizes and size distributions of the NPs were reported based on an average of three replicated

928 Nanomedicine (Lond.) (2021) 16(11) future science group



DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents Research Article

measurements. The number of runs per measurement was determined automatically. The mean value of number-
weighted size was used similarly as reported in the literature [34] as a hydrodynamic diameter. For the zeta potential
measurements, a dip cell was used. The measurements were carried out three times, with at least 10 runs in each
one. The zeta potential of a NP dispersion was calculated from the average of the three readings.

Surface chemistry characterization of IONPs
Fourier transform infrared spectroscopy (FTIR) measurements of the NPs were carried out using a Bruker VERTEX
70 spectrometer in the wavenumber range of 4000–400 cm-1 with a resolution of 4 cm-1 at ambient conditions.
The powder samples were ground with potassium bromide (KBr) and compressed into a pellet whose spectra were
recorded. KBr pellet was recorded as a reference spectrum and the reference spectrum was subtracted from the
samples’ spectra automatically by the Opus program.

Iron concentration measurement
Inductively coupled plasma mass spectrometry (ICP-MS) measurements were performed using a Thermo Fisher
Scientific X series 2 instrument (MA, USA) for determining the iron content of the water-dispersible NPs precisely
before the cell culture experiments. After filtration with a 0.45 μm pore size membrane filter, the samples were
dissolved in 2% HNO3. The amount of iron in the NP dilution was determined by 56Fe isotope measurement.

MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay
To determine the number of viable cells, the formazan product was analyzed spectrophotometrically (570 nm)
by a microplate reader (BMG Labtech Spectrostar Nano Absorbance Plate Reader, Ortenberg, Germany) after
being dissolved in isopropanol. An increase in the viable cell number results in an increase in the amount of
MTT formazan and thus an increase in the absorbance value. The absorbance results were used for determining
cell viabilities and they were analyzed statistically.

Statistical analysis
SPSS 23 software was used for statistical analysis. Shapiro–Wilk test was used for testing normality of data. The
equality of variances was evaluated by Levene’s test. The results of groups were compared by using the independent
t-test or Mann-Whitney U-test. A p-value <0.05 was considered to be statistically significant. The results were
represented as the mean ± standard deviation (n = 4).

Cell culture & cytotoxicity experiments
Sample preparation
Filtration

Before performing the in vitro experiments, the NP dispersion was filtered through 45 μm pore size polyvinylidene
fluoride membrane filter. Total Fe concentration in the dispersion was calculated using the signals of 56Fe isotopes
of ICP-MS measurements. As a final step, the pH of the dispersion was adjusted to ∼7.4 by dispersing the NPs in
PBS to perform cytotoxicity experiments.

Sterilization

From the stock NP dispersion (108 μgFe/ml), diluted samples (72 μgFe/ml and 36 μgFe/ml) were prepared. NPs
were diluted with sterile PBS (pH 7.4, 0.1 M). Afterward, NP dispersions were exposed to UV light for 6 h. During
the experiments, 10 μl of NP dispersion was added to each well, which contained 190 μl of culture medium for
a final number of NPs per milliliter on each well of 3.3 × 1010, 6.6 × 1010 and 9.9 × 1010 (NP/ml) (details on
the calculation of the number of NPs per milliliter (in one incubated well) can be found in the supplementary
information, with the relevant data in Supplementary Table 1.

Cell culture & MTT assay
HeLa cells were cultured in RPMI 1640 medium containing 10% (v/v) fetal calf serum (FCS), 1% antibiotic
(streptomycin and penicillin) in 75 cm2 flasks at 37◦C in 5% CO2 atmosphere. Cells were seeded in 96-well
plates with a concentration of 6000 cells/well and then incubated overnight. The next day, the NP dispersions
with different iron concentrations (108, 72 and 36 μg/ml) were diluted in fresh medium in a ratio of 1:20
nanoparticle/medium and then the culture medium in the 96-well plates was replaced with 200 μl of prepared
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medium containing NPs. The plates were incubated for 24, 48 and 72 h in the incubator. After each incubation
time period, the medium was removed followed by two washes with PBS. Next, 100 μl of fresh medium containing
MTT dye solution (5 mg/ml in PBS) in a ratio of 1:10 (v/v) was added to each well. After 4 h incubation at
37◦C, the medium was removed. Then, 100 μL of 2-propanol containing 0.08 M hydrochloric acid (HCl) added
to each well to dissolve formazan crystals and quantified by measuring the absorbance of the solution at 570 nm
by a microplate reader (BMG Labtech Spectrostar Nano Absorbance Plate Reader). The cytotoxicity was evaluated
by determining the viability of HeLa cells. The viability of control HeLa cells was defined as 100% for each MTT
assay. The cell viability was calculated according to following equation:

Cell viability (%) =

[
Optical densitysample

Optical densitycontrol

]
× 100%

where optical densitysample represents the absorbance of the wells treated with NPs and optical densitycontrol represents
the absorbance from the wells untreated with NPs.

Results
Synthesis & physicochemical properties of IONPs
The cubic IONPs with edge length of 24.5 ± 1.9 nm were synthesized by thermal decomposition method. XRD
pattern of the as-synthesized IONPs showed the single phase characteristic of the iron oxide Fe3O4/γ-Fe2O3

cubic spinel structure (see Supplementary Figure 3). Although from the XRD patterns, it is difficult to distinguish
between Fe3O4 and γ-Fe2O3, the black color of the as-synthesized NPs indicates primarily the Fe3O4 phase. The
color of the NPs gradually becomes brownish red with time during the storage suggesting the oxidization to the
γ-Fe2O3 phase.

TEM images of the as-synthesized IONPs are presented in Figure 1A–C, which showed 24.5 ± 1.9 nm
(Figure 1D) cubic monodisperse NPs with a DA layer thickness of 2.1 ± 0.6 nm. The formation of DA layer can
be clearly seen (see Supplementary Figure 4).

The as-synthesized IONPs are hydrophobic in nature, the ligand exchange step with DMSA was required to
render them dispersible in water and was carried out following similar procedures in the literature [13,16,25]. The
TEM images of the hydrophilic DMSA-coated IONPs and the corresponding EDX spectrum are given in Figure 2.

After the ligand exchange, the thickness of the DMSA layer was determined as 3.5 ± 1.4 nm and polydispersity
index value of the NPs was calculated as 0.01 indicating very narrow size distribution. The TEM images and
their histogram in Figure 2A–D and the detected sulfur peak in the EDX spectrum in Figure 2E, indicating the
successful DMSA functionalization onto the surface of the NPs. The presence of the silicon peaks in the EDX
spectrum may originate from silicon substrate on the mounting base or the old detector used.

The DMSA surface coating is also confirmed by FTIR spectroscopy by measuring pure DMSA molecules,
DA-coated cubic IONPs (IO@DA) and DMSA-coated cubic IONPs (IO@DMSA), as shown in Figure 3. Here,
the broad bands at ∼3400 cm-1 in the spectra of IO@DA (Figure 3B) and IO@DMSA (Figure 3A) are associated
with the OH group stretching modes indicating the presence of adsorbed water molecules. The bands in the region
of 400 cm-1 and 600 cm-1 are related to vibrations of the Fe–O bonds [17,25,35,36]. In the spectrum of IO@DA, the
two sharp bands at 2923 and 2855 cm-1 are due to asymmetric CH2 [νas (CH2)] and symmetric CH2 stretching [νs
(CH2)] vibrations respectively [12,36,37], characteristic of CH2 chains in decanoic acid. The two bands at 1526 and
1412 cm-1 were attributed to the asymmetric [ν as (COO–)] and symmetric [νs (COO–)] carboxylate stretching
vibrations [37,38] and indicated that decanoic acid was bound covalently to the surface of the IONPs.

The sharp peak at 1703 cm-1 in the pure DMSA spectrum (Figure 3C) is attributed to the symmetric stretching
of the carbonyl group C=O [12,39]. After ligand exchange, the C=O double bond peak is observed to shift at
∼1400 and 1620 cm-1 due to the splitting, which correspond to symmetric and asymmetric stretching vibrations
of the carboxylate (COO-) ions, respectively [12,13]. This is presumably due to the DMSA molecules attached
to the iron oxide’s surface through the COO– group [40]. According to the previous studies [33], the interaction
between the carboxylate head and the metal atom was classified as monodentate, chelating bidentate and bridging
bidentate structures, and the separation (�ν) between the wave numbers of the [νs (COO-)] and [νas (COO–)]
infrared bands can be used to determine the type of interaction between the carboxylate groups of the DA and
the iron atom. Here, the largest �ν values (200–320 cm-1) correspond to the monodentate structure, the smallest
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Figure 1. Transmission electron microscope images (A–C) at different magnifications and particle size distribution
(D) of the decanoic acid-coated iron oxide nanoparticles synthesized by thermal decomposition method. Scale bars
for A, B and C: 20 nm, 50 nm and 10 nm, respectively.
Dmean: Mean cube edge length of the nanoparticles; n: Number of the nanoparticles counted; SD: Standard deviation.

�ν values (<110 cm-1) the chelate bidentate structure and the medium range �ν values (140–190 cm-1) the
bridging bidentate structure. The obtained separation (�ν) between the wave numbers of the [νs (COO–)] and
[νas (COO–)] infrared bands for the DMSA coated IONPs is 215 cm-1, which refer to the monodentate structure
where one iron ion is bound to one carboxylic oxygen atom. The sharp peaks at 2563 and 2538 cm-1 in DMSA
spectrum (Figure 3c) could be originated from the vibrations of the thiol groups (S–H), which are absent in the
spectra of the DMSA-coated IONPs, presumably due to oxidation of the thiol groups into disulfide (S–S) during
ligand exchange and alkalinization processes. The disulfide IR bands (500–540 cm-1) [13] could not be seen in
the FTIR analysis due to the overlapping with Fe-O band or low transmittance. The absence of the two sharp
bands associated with the CH2 group vibrations at ∼2923 and 2855 cm-1 characteristic for the CH2 chains in
DA [12,36,37] in the spectrum of DMSA-coated IONPs can be attributed to the nonexistence of the residual DA on
the NP surfaces after the ligand exchange. Similarly, the absence of two sharp peaks at around 1530 and 1415 cm-1

corresponding to the asymmetric [νas (COO–)] and symmetric [νs (COO–)] carboxylate stretching [37,38] indicating
the absence of DA bound covalently to the surface of the IONPs [12,13,37,38], which supports the accomplishment
of the ligand exchange process.

The coating efficiency was also examined by TGA measurements and the results are shown in Figure 4A before
and after modification of IONPs with DMSA. A slight mass loss during the heating at 140◦C in both curves
(0.68% for IO@DA in Figure 4Aa, 1.12% for IO@DMSA in Figure 4Ab) is probably originated from the adsorbed
water and/or residual organic solvent, chloroform. For IO@DA, a significant mass loss took place in three steps
between 140 and 500◦C is ∼5.60%, which is associated with the decomposition of organic DA molecules on the
surface of the IONPs. For IO@DMSA, it also reveals three mass loss steps between 140 and 500◦C corresponding
to the burning of DMSA ligands on the surface of the NPs, and was ∼2.35%.
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Figure 2. Transmission electron microscope images (A–C) at different magnifications, corresponding particle size
distribution (D) and transmission electron microscope energy dispersive x-ray spectrum (E) of the iron oxide
nanoparticles after surface functionalization with meso-2,3-dimercaptosuccinic acid.
Dmean: Mean cube edge length of the nanoparticles; n: Number of the nanoparticles counted; SD: Standard deviation.

Magnetization analysis
The magnetization curves of the IONPs before and after DMSA coating are presented in Figure 4B and show no
hysteresis at room temperature, a characteristic of superparamagnetic behavior. Following conjugation with DMSA,
the saturation magnetization is seen to increase from 74.2 to 89.6 emu/g compared with that of 92 emu/g for the
bulk Fe3O4 [13,41].

Hydrodynamic size & colloidal stability analyses
The dynamic light scattering results of the water-dispersible IONPs given as the mean value of number-weighted
size are shown in Figure 5A.
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Figure 4. Thermogravimetric analysis curves (A) of iron oxide nanoparticles before (a) and after (b)
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temperature before (a) and after (b) meso-2,3-dimercaptosuccinic acid coating.
DA: Decanoic acid; DMSA: Meso-2,3-dimercaptosuccinic acid; IO: Iron oxide.

Assuming the spherical shape, the obtained hydrodynamic diameter of the IONPs at physiological pH (pH = 7.5)
is 94.0 ± 20.1 nm with the corresponding polydispersity index of 0.585 ± 0.015. While varying pH values from
5 to 11, the hydrodynamic diameter of the NPs does not show a significant change. The results of zeta potentials
of the water-dispersible DMSA-coated IONPs as a function of pH values are presented in Figure 5B. It can be
seen that at pH of ∼3.5, the NPs have a zeta potential value less than –30 mV, which is generally considered as
a threshold value for the electrostatic stabilization. When the repulsive charges could not overcome the attractive
Van der Waals interactions, causing agglomeration of the NPs, it will give rise to the increase in the hydrodynamic
diameter within reasonable standard deviation, as seen in Figure 5A.
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Figure 5. Number-weighted hydrodynamic diameters of the water-dispersible iron oxide nanoparticles (A), and the
zeta potentials of the water-dispersible iron oxide nanoparticles as a function of pH values (B).
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The zeta potential measurements within the experimental pH range of the water-dispersible DMSA-coated
IONPs showed the negative zeta potentials in between –21.3 ± 8.6 and –41.7 ± 4.9 mV, which can be attributed
to the carboxyl groups of DMSA molecules. By increasing the pH value to alkaline condition, the zeta potentials
of the DMSA-coated IONPs were improved. The higher the ionization, the higher the surface charge density, and
the higher the electrostatic repulsion between the NPs provided by COO- groups and thus it enhances colloidal
stability. Below a pH value of 3.5, the colloidal stability was lost, and NPs began to agglomerate. In general,
the solution of NPs is considered stable if the absolute value of zeta potential is larger than 30 mV. At around
physiological pH (pH = 7.1), the zeta potential value of the DMSA-coated IONPs is –33.3 ± 7.4 mV and has
a good colloidal stability. At pH value below 3, the DMSA-coated IONPs carry no net charge corresponding to
their isoelectric point.

Results of hyperthermia experiment
The results of the hyperthermia experiment are presented in Figure 6 with temperature increase �T as a function
of time. It can be seen that a temperature increase from 22◦C to 37◦C take approximately 5 min of AMF exposure.
The SAR value determination is based on the following equation:

SAR =

∑
i mi c i

mmag
|d (�T)/dt|t=0
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acid-coated iron oxide nanoparticles according to 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay.
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where mi is the mass, ci the specific heat capacity, mmag the total magnetic mass and

|d (�T)/dt|t=0 =
�Tm

τ

the initial slope of the time-dependent heating curve.
In the calculation, it was assumed that the heat capacity of water at 22◦C Cwater = 4187 J/kgK and the specific heat

capacity of the magnetite CF e3 O4 = 651 J/kgK [42]. The DMSA component was omitted because of its negligible
mass compared with the mass of the iron oxide in coated NPs. The calculated SAR value of the IONPs normalized
to the iron amount is 197.4 W/gFe under the applied AMF.

It is well known that the calculated SAR value varies by changing the size, shape and surface coating composition
in NPs. To compare hyperthermia result with the literature, intrinsic loss parameters (ILP) were calculated using
the following equation:

ILP [nHm2kg−1] =
SAR [Wkg −1]

f [kHz] H2 [kAm−1]2

The ILP value for the DMSA-coated IONPs was calculated as 1.59 nHm2kg–1.

Cytotoxicity assessment
The cell viability percentages of the DMSA-coated IONPs at different NP concentrations (3.3 × 1010, 6.6 × 1010

and 9.9 × 1010 NP/ml) and time intervals (24, 48, 72 h) are shown in Figure 7 based on MTT assays. In vitro
cytotoxicity assays showed that the NPs slightly affected Hela cell viability (less than 21%) at the experimental
concentrations after 24 h, 48 h and 72 h compared to the control groups. The cells remained more than 78% viable
relative to the control group for all three different time periods (see Supplementary Table 2 for independent t-test
and Mann Whitney U-test results).

Incubation of cells with an NP concentration of 3.3 × 1010 NP/ml resulted in a statistically significant change
in the cell viability for all three time periods, with a minimum cell viability of 78.6 ± 6.8% (for the lowest NP
concentration after 48 h and 6.6 × 1010 NP/ml after 24 h). For the NP concentration of 6.6 × 1010 NP/ml, a
statistically significant change in the cell viability was observed in the first two time periods studied, in contrast to
the one after 72 h with the same NP concentration. The NPs with a concentration of 9.9 × 1010 did not cause a
significant change in the cell viability within 48 h; however, it reduced the cell viability to 82.3 ± 3.4% after 72 h.
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Figure 8. Schematic illustration of surface modified iron oxide nanoparticles with monodentate and bidentate ligand bonds. The phase
transfer reaction was performed through the reaction of DA-coated IO nanoparticles with DMSA. After ligand exchange reaction,
alkalinization (or deprotonization) of DMSA with 1 M KOH solution at pH 10 was performed to enhance the stability of the nanoparticles
by electrostatic repulsion between COO- groups and by increasing S–S bonds to reduce hydrodynamic size.
IO: Iron oxide; DA: Decanoic acid; DMSA: Meso-2,3-dimercaptosuccinic acid.

Discussion
We described here DMSA-coated cubic IONPs that have been prepared by the ligand exchange of DA on the
surface of the IONPs with DMSA. The aim of the study was to obtain biocompatible superparamagnetic cubic
IONPs having the size just below the superparamagnetic size limit to get the NPs having high magnetization and
good magnetothermal property for potential application as therapeutic agent. NPs have been investigated on their
magnetothermal (hyperthermia) property and cytotoxicity of incubated NPs on HeLa cells was also carried out.
This study appears to be the first study to investigate both hyperthermia property and in vitro cytotoxicity of
DMSA-coated cubic IONPs on HeLa cells.

The modifications in the IONP synthesis procedure, such as using different surfactant amount and different
heating rate, resulted in superparamagnetic property of the obtained IONPs unlike the ferromagnetic one in the
study of Guardia et al. [32] where IONPs were transferred to polar solvents using a different surfactant (gallic
acid-polyethylene glycol).

To assess the percentages of the magnetic and organic masses, TGA analyses were performed. The TGA curves
were also used to predict the layer and bonding structures of the surfactant molecules on the NP surface. The three
desorption processes in TGA curves of DA- and DMSA-coated IONPs (Figure 4Aa & 4Ab) can be explained by
the two possible scenarios: first, a bilayer structure or, second, two kinds of bonding (monodentate and bidentate)
structures of the surfactant molecules on the NP surface.

In the first scenario [38,43,44], it is assumed that there are DA/DMSA bilayers on the NP surface, due to
chemisorption and physisorption of these ligands. While the mass loss at highest temperature could be due to
strong binding between the inner layer of ligands and IONPs, the one at the lower temperature arises from the
removal of the outer layer of ligands on the NPs that bind weakly to the first layer. The third mass loss at the lowest
temperature, which is ∼210◦C, might arise from the residual ligands weakly physisorbed on the NP surface.

For the second scenario [36], it is assumed that there is a single coating layer adsorbed on the NP surface and
that these two mass losses at two different temperatures arise from the two types of bonding pattern of the ligands
– monodentate and bidentate bonding – meaning that they have different bond strengths. A schematic illustration
for DMSA-coated IONPs with monodentate and bidentate ligand bonds is given in Figure 8. The third mass loss
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may also be attributed to the residual ligands adsorbed on the surface. The different paths of the curve a and curve
b (Figure 4A) is due to different amounts of coating materials on the surface of the NPs.

We observed significant improvement of the magnetic property of the IONPs after DMSA functionalization
while keeping their superparamagnetic property. The improvement in the saturation magnetization of the IONPs
after ligand exchange can be attributed to the different functional groups bounded to the particle surfaces causing
different interactions between the ligands and Fe atoms, and it alters the surface magnetic state of the NPs. Different
shell type shields the magnetic core differently depending on its magnetic permeability, electron transfer ability and
structural stability [45]. The increase in the saturation magnetization of IONPs after ligand exchange with DMSA
is somewhat similar to that reported previously for the oleic acid coated Fe3O4 NPs [46,47]. It is also known that
DMSA molecule has short chain and lower molecular weight in comparison with DA. It is expected that DMSA
cause less magnetic shielding effect on the IONPs. In addition, establishing interparticle disulfide bonds can also
contribute to shortening the distance between the magnetic cores of the NPs and result in increased magnetic
interactions. Therefore, DMSA-coated IONPs are expected to have higher magnetization than DA-coated IONPs.

XRD pattern of the IONPs before the ligand exchange with DMSA showed no signs of wüstite presence
(see Supplementary Figure 3), the improvement of magnetization value of the NPs after the ligand exchange
process therefore cannot be attributed to the contribution of the oxidation of the nonmagnetic wüstite phase to the
ferrimagnetic magnetite in the presence of water during the ligand exchange with DMSA. Hence, XRD pattern of
DMSA coated NPs was not important to study.

Compared with previous studies, magnetic saturation value of 24.5 nm nanocubes at room temperature
(Ms = 74.2 emu g−1 for DA-coated IONPs, Ms = 89.6 emu g−1 for DMSA-coated IONPs) is much higher
than those reported for 27 nm nanocubes (<60 emu g-1 for Fe) [24]; for 10 nm spherical NPs (50 emu g−1 for
both DMSA-coated and uncoated IONPs) [20]; for 10 nm spherical NPs (70 emu g−1 for IONPs) [21]; for 12 nm
nanocubes (69 emu g−1 for IONPs) [25]; for 14-18 nm nanocubes (<70 emu g−1 for DMSA-coated IONPs) [27],
which can be attributed to higher magnetic core size and better crystallinity. The results indicate that the NPs
reported in this article can have potential biomedical applications, such as hyperthermia therapy. The other studies
have not been reported magnetization value of their NPs [48] or did not perform the magnetic characterization of
NPs [23].

The result of the hyperthermia experiment of DMSA-coated IONPs was promising, with a temperature rise
of 15◦C in ∼5 min under AMF. The obtained ILP value (1.59 nHm2kg–1) is larger than that of commercial
15.2 nm DMSA-coated Fe3O4 (HyperMAG R©C) with reported SAR values of 31 W/g (AMF of 18.6 kA/m
and frequency 532 kHz, ILP = 0.17 nHm2kg-1) and 48 W/g (AMF of 17.9 kA/m and frequency 267 kHz,
ILP = 0.56 nHm2kg-1) [22]. Also, it is larger than that of the reported study of 18 nm DMSA-coated cubic IONPs
(reported SAR value to be 97 W/g, AMF of 39.9 kA/m and frequency 77 kHz, calculated ILP = 0.79 nHm2kg–1) [27].

Potential effects of the DMSA-coated cubic IONPs on HeLa cells were investigated by MTT assay. The
cytotoxicity results of DMSA-coated IONPs are in agreement with previous studies where the NPs with similar
properties were studied for 24 h on HeLa cells [14,20,21,48]. In this study, the cells were incubated for longer
time periods (48 and 72 h) without significant reduction of cell viability (above 78%). It was reported that
superparamagnetic IONPs itself did not disturb basic cellular functions [12]. Our DMSA-coated IONPs did not
show a time- or concentration-dependent cell viability of tested concentrations similar to earlier report on HeLa
cells for 24 h [24]. A decrease in the cell viability is expected with increased concentration and incubation time of
the IONPs [49]. However, the reason for the improved cell viability after a certain time of incubation with NPs
may be originated from the released iron ions from the IONPs. It has been revealed that DMSA-coated Fe3O4

NPs could degrade into iron ions in lysosomes [49]. Although the high amount of iron can produce reactive oxygen
species (such as superoxide, hydroxyl radical and hydrogen peroxide) and thus causes cell toxicity; however, the low
amount of iron is necessary for cell proliferation and essential for numerous metabolic pathways. The abundance of
the iron in the medium might have caused an increase in cell viability. A similar result for the iron oxide nanorods
has also been reported [50]. Performing filtration before cell culture experiments limited the range of concentrations
to be tested in our study.

Conclusion
We synthesized superparamagnetic DMSA-coated cubic IONPs with a hydrodynamic size less than 100 nm and a
SAR value of 197.4 W/gFe. The saturation magnetization of the IONPs was increased after functionalization with
DMSA which was attributed either to the bonding of functional groups with surface spin disorder or magnetic
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shielding effects. The water-dispersible DMSA-coated IONPs slightly altered HeLa cell viability at the tested
concentrations for the time periods of 24, 48 and 72 h and compared with the control groups. From the results of
the study, the synthesized DMSA-coated IONPs can be a good candidate to be used as nontoxic therapeutic agents
with the possibility of MRI imaging in biomedical application.

Future perspective
It is predicted that superparamagnetic IONPs can make great contributions to human health in the future with their
use as multifunctional theranostic agents in multimodal imaging and therapies. It is possible that the knowledge
gained in this study may contribute to the development of further strategies on DMSA functionalized cubic
IONPs, such as labeling with radioisotope or functionalization with a cancer-specific ligand for cancer diagnosis
and treatment. In vitro assessment and analysis of cellular responses by the exposure of AMF should be investigated
in future studies.

Summary points

• This work details the preparation of meso-2,3-dimercaptosuccinic acid (DMSA) functionalized cubic
superparamagnetic iron oxide nanoparticles (IONPs; IO@DMSA), which have a high potential use for
multifunctional cancer diagnosis and treatment.

• The hydrodynamic sizes of the DMSA-coated IONPs were significantly reduced and the stability of them was
greatly enhanced by alkalinization step.

• IO@DMSA NPs possess good colloidal stability at physiological pH values and have a hydrodynamic size less than
100 nm, which is critical value to avoid rapid clearance of NPs through kidneys and reticuloendothelial system
and to provide them prolonged blood circulation half-life.

• XRD confirms the presence of iron oxide with a reverse spinel structure and VSM result confirm that the
DMSA-functionalized IONPs are superparamagnetic and that ligand exchange with DMSA resulted in an increase
in the magnetic properties of the NPs, while keeping their superparamagnetic behavior.

• The result of the hyperthermia experiment for the cubic IONPs was promising, with a temperature rise of 15 ◦C in
∼5 min under the tested magnetic field and frequency.

• IO@DMSA NPs have slight cytotoxic effect on HeLa cell viability at the concentrations studied up to 3 days
compared with the control groups.

• This study appears to be the first to investigate both in vitro cytotoxicity of DMSA-coated cubic IONPs on HeLa
cells and hyperthermia performance of these NPs.

• The results show a promising potential on the use of the cubic IONPs functionalized with DMSA for biomedical
applications.

Supplementary data
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