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Abstract

Artificial intelligence (AI) based diagnostic algorithms have achieved ambitious 

aims through automated image pattern recognition. For neurological disorders, 

this includes neurodegeneration and inflammation. Scalable imaging 

technology for big data in neurology is optical coherence tomography (OCT). 

We highlight that OCT changes observed in the retina, as a window to the 

brain, are small, requiring rigorous quality control pipelines. There are existing 

tools for this purpose. Firstly, there are human-led validated consensus quality 

control criteria (OSCAR-IB) for OCT. Secondly, these criteria are embedded into 

OCT reporting guidelines (APOSTEL). The use of the described annotation of 

failed OCT scans advances machine learning. This is illustrated through the 

present review of the advantages and disadvantages of AI-based applications 

to OCT data. 

The neurological conditions reviewed here for the use of big data include 

Alzheimer disease, stroke, multiple sclerosis, Parkinson disease, and epilepsy. It

is noted that whilst big data is relevant for AI, ownership is complex. For this 

reason, we also reached out to involve representatives from patient 

organizations and the public domain in addition to clinical and research 

centers. The evidence reviewed can be grouped in a five-point expansion of the

OSCAR-IB criteria to embrace AI (OSCAR-AI). The review concludes by specific 

recommendations on how this can be achieved practically and in compliance 

with existing guidelines.
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Funding None.

Introduction

Sophisticated artificial intelligence (AI) based algorithms not only enable 

discrete layer segmentation of retinal optical coherence tomography (OCT) 

scans, but can identify novel retinal features. A prominent recent example is 

automatic clinic referral via deep learning based on retinal layer analysis 1. The 

current OSCAR-IB quality control (QC) criteria take algorithmic quality 

components into account (the A-criterion) but the criteria are not adapted to AI-

based algorithms 2. Given the recent success and rapid developments in this 

field, it is timely to build on the OSCAR-IB QC criteria to address the challenges 

of AI and big data specifically. 

To this purpose it is critical to acknowledge that accuracy is paramount to the 

interpretation of retinal OCT in neurological disease. Judgments are highly 

dependent on quantitative data of individual retinal layers. Key components are

thickness, degree of change and alteration of the topography. The retinal layer 

thickness changes seen in neurological disorders are much more subtle 3-7 than 

the pathologies seen in the ophthalmologic diseases, now successfully 

detected by AI-based methods 1,8,9. For neurodegenerative diseases relevant 

annual retinal layer atrophy rates are just above the axial image resolution of 
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contemporary spectral-domain and swept-source OCT techniques 5. For this 

reason, image QC is paramount. Over the past decade, big OCT data has 

accumulated in neurodegenerative and neuroinflammatory diseases. These 

data are attractive for the development of AI strategies. The expectation is to 

improve the accuracy of OCT-based quantification, diagnostic sensitivity and 

specificity, discover novel surrogates for monitoring disease progression as well

as outcome metrics for clinical trials. Fully automated AI-based strategies are 

transferable from highly specialized services to primary care. The test 

throughput is also scalable to include, for example high street opticians. Both 

will aid with the logistics of patient care through local centers. 

In 2012, we proposed the first consensus OCT QC criteria, OSCAR-IB 2. The 

name served as a mnemonic for seven distinct QC criteria to be remembered; 

(i) Obvious errors, (ii) Signal strength, (iii) Centration of scan, (iv) Algorithm 

failure, (v) Retinal pathology, (vi) Illumination, (vii) Beam placement. This was 

followed by international validation 10 and endorsement to reporting guidelines 

11. The OSCAR-IB QC criteria which was developed in a multiple sclerosis (MS) 

network, and have since been broadly accepted. This success is at least in part 

due to the demand for clarity and transparency on being practical to 'get 

simple things right'. A similar approach is warranted for the role of AI in relation

to OCT data in neurodegenerative diseases.
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Review of evidence for need of QC 

AI-based strategies are at risk for propagation of systematic errors, imbalance 

and bias due to subtle differences in data acquisition or post-processing. There 

is justified concern about the lack of QC standards for big data 12,13. The rise of 

big data is in part driven by the hope of improving P4 medicine: predictive, 

preventive, personalized and participatory care 14. For example, integrative 

prediction models encompassing as many as 63 variables have been proposed 

to enable personalized predictions of individuals’ outcomes and guide 

treatment decisions in myeloproliferative neoplasms 15. The implications that AI

driven approaches will have for individuals can easily be influenced by bespoke

sources of bias fed into the model as discussed below.

Importantly, minimal variation in image acquisition can cause substantial errors

in the quantitative data 16,17. Strategies based on AI are excellent in recognizing

changes between images, but do not necessarily know how the human OCT 

operators have acquired an image. This can mislead the AI-based strategy with

a downstream effect of possible misdiagnosis, mismanagement and harm. The 

risk for such a situation to occur increases with rapidly rising numbers of OCT 

scans to be evaluated. It may introduce systematic errors if imbalances exist 

between populations or centers., e.g. due to service capacity issues or 

automation of our health care systems. The possible medico-legal ramifications

are also evident. 
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Review of failures and successes of retinal OCT in neurological 

diseases

To date, OCT data in MS and related disorders is most consistent as most 

reports adhered to the OSCAR-IB QC criteria and followed the APOSTEL 

reporting guidelines 2,11. Results are more heterogeneous for other neurological 

diseases because of lack of standardization. There is evidence for an early 

publication bias in Alzheimer disease (AD) reports 6. Subsequent data were not 

supportive of the earlier enthusiasm. Few of the reports on AD followed a 

rigorous QC approach. This similarly applies to reports of OCT in Parkinson 

disease (PD) 18,19, amyotrophic lateral sclerosis (ALS) 20-23, stroke 24, epilepsy 4,25 

and schizophrenia 26.

Review of successes of AI in neurological diseases

There are critical successes for the use of AI in neurological disease. For 

example urgent triaging of individuals from brain imaging to neurosurgery 27; 

earlier diagnosis of AD 28; identifying suitable candidates for epilepsy surgery 29;

and regulation of adaptive deep brain stimulation in movement disorders 30. 

Imaging-based trial outcome measures in neurology include almost all 

neurodegenerative, neurovascular and neuroinflammatory conditions alongside

tumors 31. Imaging data have become multi-modal. This adds to complexity and

time needed by human readers and reporting. Likewise, histological data can 

now be used for machine and deep learning 32. 
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The review committee

The ophthalmological community has driven advances in AI-based analysis of 

retinal OCT 1. The committee for this review has been expanded (Table 1). We 

included representatives from neurological sub-specialties who have used 

retinal OCT data for diagnostic and prognostic purposes, as well as treatment 

trial outcome measures. We have also engaged with experts in the fields of AI 

and bio-engineering and bio-statistics and two not-for-profit organizations 

(www.ern-eye.eu and www.  imsv  i  sual.org  ). 

The patient voice

The importance of patient involvement as a key stakeholder has been 

recognized 33 and contributed to the development of conceptual models 34. On a

day to day practical level, the experience has demonstrated that individuals 

tolerate retinal OCT well. It is non-invasive, non-contact, quick and provides 

instant feed-back. The possibility to display images directly to the individuals 

and discuss changes has given them more confidence and insight in their care 

35. This good partnership has helped in working together to build trust, 

supporting treatment decisions and making OCT scans available for research. 

There is a need to maintain this mutual trust at a time where the immense 

amount of data accumulated now permits AI inspired projects on big data. 

None of this is possible without patient participation, their consent and feed-

back. A key concern of patients and their advocates is that their data will be 
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misused. Individuals have a higher level of confidence in not-for-profit 

stakeholders than in government or private companies 36. 

Data Protection and Privacy

Due to the requirement of very large training data-sets for optimal 

performance, most current clinical AI systems have been developed using 

routinely collected data which have been anonymized. Anonymization of 

medical images presents specific challenges, however, particularly images of 

individually-unique structures such as the neurosensory retina 37. Even when 

carefully anonymized, there is at least a theoretical risk of re-identification for 

such images, either now or with some future technology 38. Therefore, we 

recommend a multi-step approach to addressing data protection and privacy. 

Firstly, retinal OCT scans should be anonymized according to current national 

and international standards 39. This includes removal of any imaging meta-data 

such as patient names, dates of birth, or medical record numbers, obscuration 

of hospital visit dates, plus careful consideration of any associated clinical 

meta-data (e.g., merging of categories/classes if they contain only a limited 

number of examples) 40. Secondly, a range of additional safeguards should be 

put in place. Technical safeguards include the requirement to store data in 

trusted research environments with access controls and audit logs; contractual 

safeguards include prohibitions against linkage or attempted re-identification of
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data. Importantly, every attempt should be made to minimize the data shared 

to that required for the clinical or research purpose - this is a fundamental 

principle of much data protection regulations, including the European General 

Data Protection Regulation (GDPR). Finally - and perhaps most importantly - it is

vital to engage in patient and public engagement and involvement at the 

earliest possible stage. This includes making patients aware that their data is 

being used for research, publishing study protocols, and giving patients the 

opportunity to opt-out. By adopting a cautious and engaged approach such as 

this, we believe it is possible to reduce any data protection risks while 

maximizing the potential for future patient benefit. In the future, a range of 

technical solutions, including federated learning and homomorphic encryption, 

should help further mitigate these risks 41. 

Search strategy and selection criteria

We reviewed three databases, PubMed, Web of Science and Google Scholar 

between 01-JAN-1963 and 23-APR-2020 without language restriction. We chose 

the English version of a manuscripts if the same group had published similar 

data in Dutch, French, German, Italian or Spanish. The search terms used were 

“optical coherence tomography” or “OCT” combined with “artificial 

intelligence”, “machine learning”, “deep learning”, “multiple sclerosis”, “optic 

neuritis”, “dementia”, “Alzheimer”, “Parkinson”, “motor neuron disease”, 

“amyotrophic lateral sclerosis”, “stroke”, “cerebrovascular accident”, 
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“schizophrenia”, “patient voice”. We also reviewed articles included in three 

systematic reviews previously conducted 3,5,8.

Methods

Firstly, we reviewed the original OSCAR-IB criteria to clarify which of the QC 

failures require an individual to be re-assessed or to be excluded if for example 

post-hoc homogenization approaches fail. Having to recall a patient for a failed 

test is not desirable, is problematic and is expensive. Secondly, we reviewed 

approaches to rectifying QC failures by image post-processing. Thirdly, we 

examined the outcome of our AI-based methods for irregularities, identical to 

the approach taken in the original OSCAR-IB report 2. The terminology of terms 

explicitly related to AI is summarized in Table 2.

Defining QC for AI: RASCO

Firstly, there is a clear and justified fear of the misuse of big data [37]. 

Secondly, the patient-physician relationship must be supported to provide an 

optimal experience. Thirdly, demonstration of the capability of the AI strategy 

enhances the ability to produce high quality and relevant effectiveness 

research. Fourthly, it promotes accountability. Fifthly, it provides the grounding 

for the production of reproducible studies. Together, the definition of QC for AI 

can be summarized by five pillars which were named individually or in 

combination in the literature reviewed (Figure 1). The mnemonic, RASCO, 

stands for Reproducibility (R), Accountability for decisions made (A), to be 
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supportive of the patient-physician relationship (S), Capability ranging from 

machine learning (ML) supported OCT quality control assessment to time and 

resource efficient decision making (C), and Openness with and trust in public 

opinion (O) is pertinent, given the personal data protection issues discussed 

above.

42

Big data

The utility of AI in medical applications is more dependent on data quality than 

quantity. The new research field of big data has contributed considerably to the

advancement of medical science by analysis of large data-sets. Until recently, it

had not been easy to accumulate enough data to create a large data repository

and analyses were too complicated or lacked statistical and computer power. A 

critical area of weakness of big data can be the granularity and quality of the 

source data entered. In essence, the quality of outputs or results of AI-based 

assessments should not be expected to exceed the underlying quality of the 

data being analyzed (input data). This underpins the importance of maintaining

the highest standards of quality, even in the AI space. As we are at the dawn of

AI for OCT research, one of our aims is to facilitate the generation of the high-

quality data needed for future research in the field.
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Prospective OCT image QC

Each OCT scan should prospectively be labeled as QC fail or not. There are 

several reasons why a scan may fail QC. Each failed scan should be annotated 

with a complete list of reasons. An efficient way is to use the capital letters of 

the OSCAR-IB criteria 10. To avoid a potential bias by eliminating scans from the 

sickest individual who may have difficulties with the test, this needs to be 

explicitly noted. Retinal and systemic co-morbidities require careful clinical 

evaluation with more in-depth ophthalmic phenotyping than hitherto done in 

most neurological studies 43.

QC failure may result in two situations: (1) where an error can be corrected at 

post-processing; and (2) where the error requires recalling and repeating the 

test

Human led OCT image QC is a time-consuming task so it is desirable for this to 

be performed using AI strategies. We suggest making use of the above-

described annotation of failed scans for ML of OSCAR-IB criteria (Figure 2). This 

will enable the training of future AI algorithms to separate good from 

insufficient quality OCT scans. The next application step within the pool of 

scans designated as being of inadequate quality will be to identify those scans 

which may be subjected to post-acquisition correction approaches, thereby 

making them high quality, and enabling their safe and accurate utilization. This

is a crucial step as it allows for AI training in auto-correction. Scans which failed

OSCAR-IB and are not correctable must be excluded from any further AI steps. 
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Taken together this leaves a staged approach to QC in AI: (1) Automated AI OCT

QC rating using validated OCT QC criteria 2,10; (2) where possible AI QC 

correction during image post-processing, or if not possible patient recall for 

repeat acquisition; (3) Final step of AI-based image analysis. This will typically 

make use of pattern recognition and be the key step forward for the primary 

research questions. A limitation to keep in mind is that presently it is not 

possible to exclude ophthalmological co-morbidities without a clinical 

assessment. 

AI artifact vulnerability

We have not identified reports on the vulnerability of algorithms to 

misclassification due to the use of different OCT devices or software versions. 

Even seemingly small updates have the potential to cause significant 

differences which if left unnoticed can bias results 44. 

Ground truth

The definition of ground truth is disease-specific. It should be stated explicitly 

how the ground truth was defined. At the minimum for AD and other 

neurodegenerative dementias, epilepsy, MS, optic neuritis (ON), neuromyelitis 

optica spectrum disorder (NMOSD), PD, adherence to consensus investigation 

protocols and diagnostic criteria will be required. As diagnostic criteria in most 
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neurological diseases are regularly updated, this needs to be taken into 

account. 

Statistics

The descriptive statistics reviewed were mostly based on binary classifiers such

as a disease is present “yes/no”. These models should include a comment on 

proportional bias 45. This is needed to interrogate how much the AI-based 

prediction agrees with the ground truth. The definition for an acceptable 

ground truth needs to include the level of evidence on which it was based. For 

binary and multi classifier models the degree of inter-rater agreement should 

be stated to permit judging on how stable the ground is. 

 

Graphs can be presented in a way that allows judgment of the degree of over-

fitting and underestimation relevant in comparing differences between AI and 

ground truth. Many studies used Bland-Altman plots 46 or analyzed the 

performance of AI and ground truth based on a receiver operator curve (ROC) 

based area under the curve (AUC). This gives comparative estimates of 

sensitivity, specificity and the positive predictive value (PPV) as a measure of 

overall accuracy. This is particularly relevant for relatively rare diseases. It was 

recommended to complementing area under the curve ROC (AUROC) values by

precision-recall (Precision is the PPV and recall is the sensitivity in the AI 
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literature) curves (AUPRC) 8. This was found to be of relevance for unbalanced 

data-sets (substantially more subjects in one of the groups compared). 

Cut-off level calculation

Reporting of calculation of cut off values included the use of independent 

cohorts, a graphical ROC based approach, the Youden Index, k-fold cross-

validation or hold-out validation approaches to obtain accurate estimations of 

AI-based cut-off performance.

Power calculations

We did not yet find consistent reports of the inclusion of power calculations to 

studies, which are relevant for randomized controlled trials using AI-based 

outcome measures 47. It is recommended that sample size estimates be 

performed before developing an algorithm and repeated after study 

completion. The gain in power, meaning a more robust statistical result, is just 

as informative for future research as the potential cost savings by optimizing 

numbers. Lastly, the standardized effect size, likely to come from AI, was 

recommended to be aligned with distribution, and anchor health economics to 

inform clinical trials on what will be a realistic difference 47,48.

Cohort description

On review cohort descriptions were mostly conform to contemporary standards 

on demographic characteristics. Cohort descriptions are relevant for AI, and will

Page 19



Running title: OSCAR-AI

also greatly limit/determine the usability of the system. This reinforces the 

need to build on successful initiatives such as the established Consolidated 

Standards of Reporting Trials of Electronic and Mobile Health Applications and 

online TeleHealth (CONSORT-EHEALTH) 49 and the CONSORT-AI guidelines 50. 

Documentation of developmental changes is also relevant throughout pediatric 

care and at the transition to adult care. A novel source of potential biases 

related to the disease diagnostic criteria used. For many of the conditions of 

interest to retinal OCT, subsequent diagnostic criteria were published over the 

past decades. Whilst generally aimed at improving practicability, sensitivity 

and specificity, this bears the risk that cohorts which are supposed to have the 

same disease can be quite different in their composition. For example, 

subsequent diagnostic criteria for MS, AD, PD have profoundly reshaped the 

patient base for clinical research over time. Contemporary cohorts tend to be 

milder than historical cohorts 51. Clinical trial populations are different from 

observational studies. The co-morbidity burden is relevant. Relevant items for 

the pooling of big data are: reporting of the exact diagnostic criteria, a detailed 

listing of all inclusion and exclusion criteria, recruitment, referrals and 

capability of individuals to comply with the examinations. Minimization of the 

risk of systematic bias will ensure that validation of AI in other cohorts will be 

comparable.
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Validation

For all AI algorithm development efforts, data used for this purpose should be 

clearly described for discovery and replication analyses. To avoid obtaining a 

distorted/biased view on performance, data that is used for validation (for 

example to assess performance) should not have been used during algorithm 

development. There is a real risk for over-fitting the AI models. It was 

recommended to perform a validation of the algorithm with the aid of a 

comparable out-of-sample population. Each AI classification scheme should be 

rated to whether or not an external validation was performed. This can be 

supported by publishing details on the building blocks of the AI. Relevant are 

precise and meaningful definitions on a functional and performance level. This 

entails a detailed description of the AI architecture, hyper-parameters, as well 

as details on how the available data were used to train such systems, 

preferably via open access code repositories. One of the challenges with AI at 

regulatory level but also at the clinical level found was the fact that neural 

networks can learn with data and improve their performance. For this reason, it

was suggested to define in advance which type of learning is allowed without 

requiring validation, approval or lack clinical risks.

Human versus machine and human with machine

It was reported that AI might improve over human performance in terms of 

accuracy and speed 52. For this ‘machine versus human’ approach reporting 
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included data on sensitivity, specificity, positive and negative predictive values 

including the 95% confidence intervals (CI) and the numbers on which the 

calculations were based. These data permit to answer the question if AI can 

outperform humans not only as seen with Chess and ‘Go’ games 53,54, but also 

for classification of retinal appearances 55.

There is a second, equally important question to be answered. How can AI be 

used to enhance human performance 56? Therefore, it was recommended 

to test if there is a synergistic effect if the AI and human approach are 

combined. This is typically referred to as human-AI symbiont/symbiotic 57. 

Clinical practice

The relevance of potential clinical downstream effects has been recognized 58-60.

The big chances are to reduce the burdens on physicians and help with service 

capacity issues. It was recommended to indicate if an algorithm is useful for 

clinical practice. This requires to test the algorithm in clinical routine. There 

were different levels at which algorithms added information: on an individual 

level, on a cohort level or for screening purposes. There can be important 

consequences for daily clinical care and health systems. Concerns reported 

related to misdiagnosis and practicability. This has implications for disease 

classification 61. 
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Guidelines

At the time of the review the following guidelines were relevant, APOSTEL, 

TRIPOD-AI, CONSORT-AI 50, SPIRIT-AI, STROBE 62 guidelines. They are regularly 

updated and latest information can be found on the equator network website at

www.equator-network.org/  .  

Open access

Open access and data sharing were found to be essential for accountability and

reproducibility. The classified sample dataset is just as valuable as the 

developed algorithm. Datasets can potentially be used by other groups, to 

facilitate even greater improvements. Accordingly, data availability may 

accelerate development in the field. Algorithms can also be transferable and 

codes can be shared.

Black box

On review there is a need to understand on what basis an algorithm came to a 

particular conclusion. 

Review of the black box of OCT in neurology

There are a few careful predictions one can make regarding the “black box” for 

neurodegeneration based on anatomy and progression pattern. 
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Firstly, anatomically each area in the retina is connected by axons with a 

corresponding area in the brain because of the hard-wired retino-cortical 

projections 3,5. The location of damage to the brain will determine the location 

of expected OCT changes in a determined area of the retina, a “Region of 

Interest” (ROI). It has been shown that an ROI based approach to quantification

of inner retinal layer atrophy is superior to occasionally performed sector 

analysis 5-7 or the generally adopted global averaged approach because it can 

mask small areas of atrophy 63,64. 

Secondly, the progression pattern is determined by location and size of a lesion

damaging the retino-cortical projections 64-66. The speed of progression is 

highest and the area of inner retinal atrophy most extensive with direct 

retrograde axonal degeneration as seen with optic nerve damage. More distal 

brain damage will still cause localized atrophy in the retina by a mechanism 

called retrograde trans-synaptic axonal degeneration 65,67. On sequential OCT 

imaging the time course of atrophy is shorter with small brain lesions 

compared to larger brain lesions 64. It can be anticipated that a smoldering, 

slowly enlarging brain lesion will continue to drive the expansion of OCT 

detectable retinal atrophy 68. 

Thirdly, inflammatory activity in demyelinating disease has been related to 

transient increase of the inner nuclear layer (INL) volume 69-73. Part of this INL 

thickening is related to the development of microcystic macular edema (MME) 

69,70,74. Vitreous traction had been implicated, but is not required for the 

development of MMO 75. In most (>80%) cases, MMO is a transient 
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phenomenon 74. In the remainder, it remains static over the years 74,76 and is 

considered by some to represent a retrograde maculopathy 77 due to 

axonotmesis in the anterior visual pathways as known from experimental 

models 78.

Fourthly, there are qualitative observations on the OCT images which have not 

yet been translated into automated forms of quantification. One example is the

presence of hyper-reflective spots 74. There are two types of these hyper-

reflective spots on OCT, and one is static and particularly visible at the upper 

and lower border of the INL. With the advent of OCT-Angiography (OCTA) and 

adaptive optics, it has become clear that they represent reflectivity changes 

from the inner retinal vasculature 79. There is at least another type of hyper-

reflective spot noticed on serial OCT images, which migrates vertically through 

the retina.

Fifthly, the vitreous has specific OCT signal characteristics which can reliably 

quantified from the raw image data 80,81. The technique is useful in neurological 

disease affecting younger adults where the vitreous body still adheres to the 

retina such as the majority of people with MS 82. The evaluation of the raw OCT 

data, rather than analysis of an already post-processed screen image is 

required due to signal changes. 

Sixth, advanced image shape analyses now permit for quantitative data on 

qualitative characteristics of the optic disc. The technique has proved valuable 

in idiopathic intracranial hypertension 83,84 and possibly also idiopathic 

moyamoya angiopathy 85. Similarly, the presence of peripapillary hyper-
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reflective ovoid mass like structures (PHOMS) are a novel OCT finding 86, which 

akin to MMO remained undetectable on conventional funduscopic examination. 

Likewise shape analysis of the fovea has become possible 8787,88 . 

Sevenths, functional assessment of individual retinal layers by OCT is possible 

using for example a dark adaptation 79. One can anticipate that with the 

availability of OCTA the retinal equivalent of a blood-oxygen-level-dependent 

(BOLD) signal for the brain will emerge 89. Increased, localized retinal metabolic

activity will demand increased oxygen supply and cause elevated perfusion of 

the microvasculature 79. Pioneering data on OCTA in MS imply that there is a 

need for AI-supported QC to exclude artifacts 90-92. This will be relevant for 

reliable quantitative OCTA data on the retinal microvasculature which may help

to differentiate between disease entities such as MS and NMOSD 93.

Eighth, inter-eye differences of individual retinal layers are an attractive and 

highly sensitive method to screen for optic neuritis and MS 43,94-101. Expanding 

on these findings there is a field for AI-based analyses of patterns of retinal 

asymmetry in MS 43.

Lastly, reflectivity changes of individual layers can be interrogated to estimate 

tissue properties indirectly 102,103.

Based on the above combination of numerous quantitative and qualitative 

changes in retinal (neural and non-neural tissue) architecture in neurological 

disease, there are promising avenues for a supervised ML approach to the 

analysis and interpretation of OCT data. Equally, for researchers who prefer to 

follow a non-supervised ML approach, the committee recommends checking if 
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findings may be explainable, at least in part, by the above summary of 

anatomically, biologically and pathologically plausible observations.

Summary

In summary, we reviewed several levels of AI-based OCT research in neurology. 

The main points arising from this review are summarized in Table 3 and based 

on five pillars (RASCO). The practical conclusions from the multiple levels of 

evidence reviewed and the summary table may be found helpful on a practical 

level for future research in the field.
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Pruvo, J.-P.; Leclerc, X.; Zéphir, H. and others. Asymptomatic optic nerve lesions: An 

underestimated cause of silent retinal atrophy in MS, Neurology  2020;:.

100. Outteryck, O.; Lopes, R.; Drumez, É.; Labreuche, J.; Lannoy, J.; Hadhoum, N.; Boucher, J.; 
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Table 1: Expertise of the literature review committees.

Expertise Members

Patient voice Nils Wiegerink (patient), Russel Wheeler (patient advocate), 

Christiaan Waters (President of patient organisation), Avril Daily 

(Retina International, ERN-EYE), Christina Fasser (Retina 

International, ERN-EYE), Orla Galvin Deborah (Retina International, 

ERN-EYE) Oshakuade (Retina International, ERN-EYE)

AI Erik Bekkers, Siegfried Wagner, Pearse Keane

Public relation & Media Avril Daily

ALS Philip Albrecht, Orhan Atkas

Alzheimer disease Thomas Wisnewski

Epilepsy Josemir W. Sander

Parkinson disease Alexander Brandt, Philipp Albrecht, Orhan Atkas

Stroke Shadi Yaghi, Arvind Chandratheva

Multiple Sclerosis Alexander Brandt, Peter Calabresi, Laura Balcer, Elliot & Tree 

Frohman, Friedeman Paul, Ari Green, Pablo Villoslada, Axel Petzold, 

Philipp Albrecht, Orhan Aktas, E. Ann Yeh, Bernardo Sanchez-Dalmau,

Jen Graves, Shiv Saidha, Robert Bermel, IMSVISUAL, ERN-EYE

Rare Diseases Alexander Brandt, Philipp Albrecht, Orhan Atkas, Axel Petzold, 

Friedeman Paul, Frederike Oertel, Alexander Brandt, E. Ann Yeh, Avril 

Daily (Retina International, ERN-EYE), Christina Fasser (Retina 

International, ERN-EYE), Orla Galvin Deborah (Retina International, 

ERN-EYE) Oshakuade (Retina International, ERN-EYE), Bernardo 

Sanchez-Dalmau, ERN-EYE

Ophthalmology Bernardo Sanchez-Dalmau, Pearse Keane, Siegfried Wagner

Neuro-ophthalmology Fiona Costello, Ari Green, Axel Petzold, Laura Balcer, Bernardo 

Sanchez-Dalmau, Jen Graves, ERN-EYE

OCT Alexander Brandt, Frederike Oertel, Hannah Zimmerman, Philipp 

Albrecht, Orhan Atkas, Peter Calabresi, Axel Petzold, Jen Graves, 
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Rachel Nolan-Kennedy, Laura Balcer, Shiv Saidha, Bernardo Sanchez-

Dalmau, Pablo Villoslada, Robert Bermel

OCTA Benjamin Knier, Shiv Saidha, Axel Petzold

Clinical trials OCT QC Alexander Brandt, Friedeman Paul, Sven Schippling, Axel Petzold, 

Robert Bermel, Laura Balcer

Statistics and 

epidemiology

David Crabb, Gary Cutter, Laura Balcer, Jen Graves, Rachel Nolan-

Kennedy, Kathryn Fitzgerald, Zhaoxia Yu
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Table 2: Terminology and basic concepts

Artificial Intelligence 

(AI)

Computer or machine-based intelligence which 

enables “learning” and “problem solving”

Machine learning (ML) One subset of AI. Typically algorithms improve 

automatically through experience after training on

a dataset. ML can be supervised or unsupervised

Deep learning One subset of ML essentially based on artificial 

neuronal networks. Very efficient and the basis of 

most contemporary AI-based studies on image 

recognition

Supervised Supervised ML works on a labelled training 

dataset (for example OSCAR-IB OCT scans) and 

reproduces the desired outcome

Unsupervised Unsupervised ML tries to discover previously 

undetected patterns in a dataset

Over fitting Over fitting can be a problem with ML, a source of 

over-enthusiastic reporting and reason for lack of 

reproducibility
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Table 3: Summary of key points from the literature review on OCT and AI 

research in neurology. The categories are based on the mnemonic “RASCO”. 

This table may be found helpful in guiding future use of the reported data for 

AI-based studies.

Question Answer

REPRODUCIBLITY

OSCAR-IB OCT quality control compliant ? Yes / No

APOSTEL OCT reporting guideline compliant ? Yes / No

TRIPOD-AI compliant ? Yes / No

CONSORT-AI compliant ? Yes / No

SPIRIT-AI compliant ? Yes / No

STROBE compliant ? Yes / No

ACCOUNTABILITY

Training, test & validation sets explained ? Yes / No

Potential for bias14 in big data addressed ? Yes / No

Ground truth explicitly stated ? Yes / No

Statement on proportional bias given ? Yes / No

Precision recall curves provided ? Yes / No

Power calculations included ? Yes / No

SUPPORTS PATIENT DOCTOR RELATIONSHIP

Patient voice included ? Yes / No

Conflicts of interest, including political, explained ? Yes / No

Shows how AI is used to enhance human performance ? Yes / No

14 Sources of bias can be analytical, clinical, statistical, imbalance in populations or centres where the original 

research was conducted.
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Tested in clinical practise ? Yes / No

CAPABILITY OF ALGORITHM

Unsupervised AI15 ? Yes / No

Has QC capabilities16 ? Yes / No

Provides a glimpse into the black box17 ? Yes / No

Vulnerabilities of AI explained18 ? Yes / No

External Validation ? Yes / No

OPENNESS

Data availability statement ? Yes / No

Data deposited in repository ? Yes / No

AI deposited in open access code repository ? Yes / No

15 See Table 2

16 See Figure 2

17 See Figure 3

18 Vulnerabilities to artefacts, use of different devices, hard- or software updates of the OCT device.
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Figure legends

Figure 1: The goal of quality control in Artificial Intelligence (AI) rests 

on five pillars: RASCO. (1) Openness with and trust in the public opinion, (2) 

to be supportive for the patient-physician relationship, (3) Capability ranging 

from machine learning (ML) supported OCT quality control assessment to time 

and resource-efficient decision making, (4) Accountability for decisions made, 

(5) Reproducibility (RASCO).
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Figure 2: The capability of AI to contribute interpreting OCT images depends 

on the optimization of each step contributing to the decision tree. The first step

relates to the quality of the raw data. Validated QC criteria for OCT image have 

been summarised as OSCAR-IB 2. The ground truth of whether or not an OCT 

passes QC is based on human assessment. The seven OSCAR-IB criteria for QC 

rejection by a human assessor can directly be used to train AI. Annotation of 

corrupted OCT scans permit for two outcomes (1) image post-processing and 

repair of artefacts or (2) complete rejection and (if feasible) recall of patient 

and OCT rescan. Only a dataset that passed OCT image QC should be used for 

further AI interpretation.
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