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Abstract

Modern astronomical surveys are observing spectral data for millions of stars. These spectra contain chemical
information that can be used to trace the Galaxy’s formation and chemical enrichment history. However, extracting
the information from spectra and making precise and accurate chemical abundance measurements is challenging.
Here we present a data-driven method for isolating the chemical factors of variation in stellar spectra from those of
other parameters (i.e., Teff, log g, [Fe/H]). This enables us to build a spectral projection for each star with these
parameters removed. We do this with no ab initio knowledge of elemental abundances themselves and hence
bypass the uncertainties and systematics associated with modeling that rely on synthetic stellar spectra. To remove
known nonchemical factors of variation, we develop and implement a neural network architecture that learns a
disentangled spectral representation. We simulate our recovery of chemically identical stars using the disentangled
spectra in a synthetic APOGEE-like data set. We show that this recovery declines as a function of the signal-to-
noise ratio but that our neural network architecture outperforms simpler modeling choices. Our work demonstrates
the feasibility of data-driven abundance-free chemical tagging.

Unified Astronomy Thesaurus concepts: Stellar astronomy (1583); Neural networks (1933); Stellar spectral
lines (1630)

1. Introduction

Galactic archeology, the subfield of astronomy interested in
reconstructing the Galaxy’s history, has recently experienced
substantial growth. This has been spurred by stellar surveys
such as RAVE, APOGEE, GALAH, LAMOST, Gaia, and
Gaia-ESO (Steinmetz et al. 2006; Cui et al. 2012; Gilmore et al.
2012; Randich et al. 2013; De Silva et al. 2015; Majewski
et al. 2017; Gaia Collaboration et al. 2018b). These surveys
have obtained spectra and, in the case of Gaia, astrometry and
photometry for hundreds of thousands to millions of stars
across the Galaxy. These data have enabled measurement of
stellar abundances, distances, and ages across the Galaxy.
Future missions are also on the horizon (Bonifacio et al. 2016;
de Jong et al. 2016; Tamura et al. 2016; Kollmeier et al. 2017).

Chemical element abundances derived from stellar spectra
are core to archeological pursuits. While there are evolutionary
and environmental factors that can impact the surface
abundance of a star, the stellar siblings originating from
molecular clouds share similar chemical fingerprints, and
abundances can be used to link stars to individual molecular
clouds (Feng & Krumholz 2014; Bovy 2016; Ness et al. 2018;
Krumholz et al. 2019; Liu et al. 2019). The chemical space of
stars in the Milky Way’s disk seems fairly low-dimensional,
with stars born at the same radius and time being chemically
similar or even identical within measurement precision (Ting
et al. 2012; Ness et al. 2019; Price-Jones & Bovy 2019;
Weinberg et al. 2019). Indeed, at solar metallicity, the
APOGEE survey shows that 1% of field stars are as chemically
similar as stars that are known to be from the same individual
birth cluster (Ness et al. 2018). This doppelganger rate alone
renders chemical tagging of stars to their individual birth sites
using≈20 abundances alone rather difficult. Nevertheless,
identifying chemically identical or near-identical stars has high
utility in reconstructing the galaxy’s formation, for example, in

estimating the number of star-forming clusters in the galactic
disk (e.g., Ting et al. 2016; Kamdar et al. 2019) or for
understanding how stars have moved over time (e.g., Beane
et al. 2018; Coronado et al. 2020; Price-Jones et al. 2020;
Frankel et al. 2018). Furthermore, detailed abundances allow
for connecting stars to their birth radii, as well as their time of
formation (Bedell et al. 2018; Feuillet et al. 2019; Ness et al.
2019; Casali et al. 2020) Typically, efforts to identify
chemically identical stars have involved estimating surface
abundances by comparing observations to synthetic spectra and
then running a clustering algorithm (Hogg et al. 2016; Price-
Jones & Bovy 2019). This procedure is hampered by its
reliance on imperfect stellar models to obtain the abundance
labels that describe the spectra. Typically employed 1D non-
LTE stellar simulations do not fully capture the complexity of
stellar photospheres. Often, only a fraction of the spectrum (the
locations of a subset of cleanly identified features) is utilized.
There may also be systematic abundance offsets in the derived
abundance labels due to signal-to-noise ratio (S/N) dependen-
cies of their derivation or unmodeled instrumental imprints on
the spectra, meaning that abundance estimates are subject to
artifacts (e.g., Holtzman et al. 2015). Data-driven approaches
have provided higher-precision abundances for stars across
surveys (e.g., Ness et al. 2015; Casey et al. 2017; Ho et al.
2017; Wheeler et al. 2020). However, at their core, these
approaches still rely on stellar models to provide stellar
parameter and abundance labels for the training data.
In this paper, we demonstrate the feasibility of identifying

chemically identical stars without explicit use of measured
abundances. We apply a neural network with a supervised
disentanglement loss term to a synthetic APOGEE-like data set
of spectra. The model learns a representation of spectra that
traces abundances independently from the nonchemical factors
of variation. That is, it controls for changes in the spectra
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caused by, for example, effective temperature, Teff, and surface
gravity, log g. This isolates the chemical variation expressed in
the spectra. Stars with identical chemical compositions but
differing Teff and log g are mapped to nearly identical
representations.

Unlike approaches based on explicit abundance estimates,
this model naturally exploits the full available wavelength
range, including blended lines, to effectively estimate the
chemical composition. Additionally, it does not depend on
stellar models and so does not suffer from associated
systematics. We find that the learned low-dimensional
representation of synthetic spectra can be transformed linearly
into abundances with high precision.

Our method relies on the assumption that there is no
correlation or statistical dependency between the physical and
chemical factors of variation. Although such an assumption has
been used (Valenti & Fischer 2005; Jofré et al. 2019), stellar
processes, such as atomic diffusion and dredge-up, contribute
to modifying surface abundances away from their birth values
(Dotter et al. 2017). Because our model learns a representation
of stellar spectra in which all variation dependent on
nonchemical parameters is removed, assuming evolutionary
changes in abundances correlate with the nonchemical factors
we parameterize, the effect of these processes should also be
removed from the representation, meaning that it will reflect
birth, rather than present-day, abundances.

Studies of open cluster populations have demonstrated that
stars can change in their element abundances by 0.1–0.3 dex
across the main sequence to the giant branch (Bertelli Motta
et al. 2018; Souto et al. 2019). This is also in line with
theoretical expectations and a consequence of physical
processes like atomic diffusion (Dotter et al. 2017). It is
therefore a relevant and important distinction that we
interrogate the spectra of a star for its birth abundance
composition, as opposed to its present-day composition.

We have structured our paper such that our technical work
on supervised disentanglement, of potential interest outside the
astronomy community, is presented separately from our
astrophysical application. After introducing the associated
literature in Section 2, in Section 3, we discuss disentangled
representation learning. In Section 4, we adapt this method for
chemical tagging and show our experimental results on an
APOGEE-like data set, demonstrating the recovery of chemi-
cally identical stars in the presence of noise. We also compare
our approach to a baseline method (Price-Jones & Bovy 2019).
We finish by discussing in Section 6 some important aspects of
our method that are not explored using synthetic data that
comprise the next steps, as well as our method’s benefits.

2. Related Work

2.1. Disentangled Representation Learning

There is a growing body of literature on using neural
networks for learning to encode data into interpretable
representations. Unsupervised disentanglement methods, such
as beta-vae (Higgins et al. 2017) and infogan (Chen et al.
2016), attempt to find representations in which distinct
informative factors of variation (such as lighting conditions
and object orientation in the context of images) are encoded in
separate dimensions (Bengio et al. 2013). However, recent
results suggest that finding such disentangled representations in
a fully unsupervised setting is fundamentally ill posed without

additional assumptions or priors being set (Locatello et al.
2019).
Supervised disentanglement methods (Schmidhuber 1991;

Ganin et al. 2016; Lample et al. 2017) specify labels for factors
of variations that should be excluded from the learned
representation. They aim to find a representation of inputs in
which the specified factors of variation are removed from the
representation but for which all other factors of variation are
still present. A perfectly disentangled representation is
statistically independent from the specified factors of variation.
However, there will often be a trade-off between disentangle-
ment and reconstruction (Lezama 2019).
Supervised disentangled learning has primarily been imple-

mented through an adversarial training scheme, in which an
autoencoder—a neural network with a lower-dimensional
bottleneck that is trained at reconstructing inputs—learns to
encode its input in such a way that a second network is unable
to predict the to-be-disentangled labels from the encoded
representation (Edwards & Storkey 2016; Lample et al. 2017;
Hadad et al. 2018). It has also been proposed to obtain a
disentangled representation by enforcing that an autoencoder
learn a representation in which latent and labels are factorized.
This has been done within the variational autoencoder frame-
work in Louizos et al. (2016) but also with adversarial
autoencoders in Polykovskiy et al. (2018). Another existing
avenue for obtaining supervised disentanglement can be found
through a cyclic training scheme that encourages the latent to
remain unchanged after reencoding outputs obtained after
modifying the factors of variation. This approach has been
demonstrated in the context of variational autoencoders in
Chen et al. (2019) and Jha et al. (2018).
Supervised disentanglement could be a very useful technique

in the field of astronomy, and we hope that this paper will be
beneficial for showcasing its potential. For example, supervised
disentanglement could be used in astronomical calibration to
remove the effects of individual fibers or weather conditions on
spectra. This could be done by learning a representation that is,
for example, statistically independent from the fiber number for
a multi-object spectrograph. Such an approach would be
complimentary to our paper, as our proposed method requires
precisely calibrated spectra and additional augmentation to
handle systematic artifacts.

2.2. Data-driven Chemical Tagging

Chemical tagging describes the reconstruction of individual
cluster groups via abundance information (Freeman & Bland-
Hawthorn 2002; Ting et al. 2016; Casey et al. 2019). The
concept has extended to the identification of chemically
anomalous stars of particular formation origins (Hogg et al.
2016; Schiavon et al. 2017), the association of and differentia-
tion between stellar groups and populations using abundances
(Martell et al. 2016; Hawkins & Wyse 2018; Simpson et al.
2019), and grouping stars by chemical similarity (e.g., Price-
Jones & Bovy 2019). Recent work indicates that there is
limited feasibility of chemically tagging stars back to their
individual cluster origins using the≈20 individual abundance
measurements alone from resolution R= 22,500 spectra (e.g.,
Ness et al. 2018). Most approaches use the labels that describe
the spectra, and new approaches have improved the precision
of these labels (Ness et al. 2015; Leung & Bovy 2018; Ting
et al. 2019). Novel approaches to chemical tagging include
those presented in Blanco-Cuaresma & Fraix-Burnet (2018)
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and Jofré et al. (2017), which used techniques from the field of
phylogeny, and Price-Jones & Bovy (2019), who identified
chemically identical stars without explicit use of abundances.
The concurrent work presented in O’Briain et al. (2021) uses a
machine-learning algorithm loosely similar to ours for
improving stellar abundance estimation.

The method proposed in Price-Jones & Bovy (2019), which
itself expands upon earlier work presented in Price-Jones &
Bovy (2017), bears some clear similarity to our work in that it
uses a data-driven model applied directly to spectra to learn a
representation in which undesirable parameters are removed.
They fit a polynomial model of the nonchemical parameters to
every single wavelength bin. The residuals of this fit were then
considered to only contain chemical information. They then ran
a clustering algorithm on a compressed representation of the
residuals obtained after principal component analysis to
identify chemically similar groups. However, as discussed in
their paper, this method comes with some limitations. A
polynomial fit may not be an optimally flexible functional
form, particularly across a breadth of stellar evolutionary states
(see, for example, Ting et al. 2019). As such, it is unlikely to
perfectly remove the physical parameters of variation from the
residuals. Furthermore, by fitting nonchemical parameters in
isolation, any joint dependencies between chemical and
nonchemical factors of variation on spectral line strengths are
ignored.

3. Methods

We present here an overview of our method. Section 3.1
introduces our underlying assumptions on the data-generating
process, the problem we are trying to answer, and the broad
strokes of our method. In Section 3.2, we dive deeper and
present a neural network architecture for solving our introduced
problem. In Section 3.3, we present two different methods of
enforcing a disentangled representation, a key component in
our method.

3.1. Problem Statement

We consider a setup in which a data set { }= ¼X x x, n1 is
observed. We assume the data set to be generated determinis-
tically from latent variables through a mapping unknown to us.
Despite not knowing this mapping, we assume that a subset of
the latent variables can be accurately estimated. As such, we
can subdivide latent variables into a vector of known variables
u and a vector of unknown variables v. For our method to work,
we further assume that u and v are (marginally) statistically
independent (i.e., p(v|u)= p(v)). This corresponds to the notion
that u and v cannot be used to predict each other.

In this paper, we present a general method for quantifying
the similarity of observations x as measured in terms of
unknown variables v. In particular, our method provides a
means for identifying observations x sharing an identical or
near-identical vector v without knowledge of the mapping from
latent to observed variables.

Our method learns a mapping, parameterized by a neural
network, from observations x to a vector z acting as a proxy for
unknown variables v. More precisely, we learn a mapping such
that observations sharing a common parameterization for v, in
turn, share a near-identical representation for z.

We achieve this through finding a representation z that is
statistically independent from the known and provided

parameters, u, but when combined with these known
parameters, it is capable of perfectly reconstructing the
observations x. This ensures that our latent variables contain
all of the information contained within the unknown variables v
but no additional superfluous information.
How does this assumed setup relate back to astronomical

chemical tagging? For chemical tagging, we have access to the
stellar spectra of stars, x, from which we seek to identify stars
sharing an identical chemical composition, v. Although we are
capable of estimating physical parameters, u, fairly accurately,
shortcomings in spectral synthesis make it difficult to relate
spectra back to their chemical composition.

3.2. Approach

We rely on a conditional autoencoder, a type of neural
network, to learn the mapping to the lower-dimensional
representation z. Our autoencoder (represented in Figure 1) is
composed of two separate neural networks. A conditional
encoder takes as inputs the observations, x, concatenated with
known parameters, u, and returning a latent representation, z
(for the remainder of the paper, we adopt machine-learning
terminology and refer to z as latents), and a conditional decoder
takes z and u as inputs and is trained to output reconstructed
observations x.
This autoencoder is trained to minimize the following loss

function:

( )l= +L L L , 1AE rec dis

where Lrec is a reconstruction loss. In our experiments, we used
the mean squared loss,5

[ ( ( ) ) ] ( )( ) ( )  = -~L E D E x u u x, , , 2x u p x urec , , 2
2

The Ldis is a disentanglement loss, acting to ensure that the
latent, z, is maximally disentangled from the known and
provided parameters, u; λ is a term controlling the trade-off
between reconstruction and disentanglement. The disentangle-
ment loss is there to push the network toward learning a latent
representation that is statistically independent from the
observed parameters, u, and should be minimal when z is
independent from u. We present two formulations of Ldis in
Section 3.3.
During training, the autoencoder is iteratively shown data

points grouped into batches—subsets of the data set. The
autoencoder’s loss, as described above, is evaluated on each
batch, and the derivatives of this loss with respect to the neural
network parameters are used to update the parameters in the
direction minimizing the loss function. After training, the
neural network will have converged to parameterizing a
mapping that (locally) minimizes the loss function. Although
not a global minimum, the learned mapping, in part because of
the stochastic nature of the training process, will typically be a
good minimizer of the loss function.
Our neural network, in minimizing the loss function

described by Equation (1), simultaneously minimizes the
reconstruction and disentanglement terms with a trade-off
controlled by λ. Minimizing the disentanglement loss term
corresponds to learning a latent representation statistically
independent from factors of variation parameterized by u. This
is achieved by removing all related information from the latent.
The reconstruction term will be minimized when z and u are

5   = + +x x x: ... .n2 1
2 2
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sufficient for reconstructing observations x. Combined, these
two loss terms will be minimized when all of the information
required for modeling the observations x not included within u
is contained within the latent z. While it may not always be
possible to minimize both loss terms together, we know that it
is possible to do so for data generated as described in
Section 3.1. Indeed, a global minimum of the loss function
would be reached for a neural network that encoded the
observations x into v and decoded back to x.

In addition to isolating unknown factors of variation, v, we
have found that, at least for the problems we have considered,
supervised disentanglement maps observations with shared
parameter values, v, to nearly identical latents, z. We attribute
this to our set of assumptions (see Section 3.1). This property
makes some intuitive sense when we take a moment to consider
how our autoencoder might map the observations, x, generated
from a common shared vector of unknown parameter values, v,
but each with different values of the observed parameters, u. If
the mapping does not project all of these observations to a
common latent value, then the latent value, z, will be
informative about the parameter value u (as some u are then
more or less likely based on the observed z). Therefore, z and u
will no longer be statistically independent.

In practice, our neural network will only approximately
minimize our loss function and so will not perfectly map
observations sharing common parameter values, v, to the same
latent z. Observations sharing common parameter values will
thus appear as overdensities in the latent space. These
overdensities can then be identified, for example, by running
a clustering algorithm such as K-means (Lloyd 1982) or finding
those observations that are particularly close according to some
distance metric. Alternatively, we can instead identify such
observations in the data space if we use the decoder to convert
all latents with a common set of parameters, ui.

3.3. Implementation of Supervised Disentanglement

We present two alternative methods, FaderDis and Factor-
Dis, for learning a disentanglement loss Ldis encouraging
statistical independence. FaderDis is an adaptation of the Fader
disentanglement architecture presented in Lample et al. (2017)
modified for our purposes. FactorDis is, to our knowledge, a
novel architecture for supervised disentanglement. We present
here the architectures investigated.

3.3.1. Factor Disentanglement (FactorDis)

The FactorDis method enforces independence by training a
critic network to differentiate between samples from the joint
distribution p(x, u, z) and samples in which the statistical
dependency between z and u has been forcibly removed.
Analogously to generative adversarial networks (Goodfellow
et al. 2014), the conditional autoencoder is adversarially trained
to generate samples that hinder the critic network’s ability to do
its job.
The joint distribution p(x, u, z) can be expressed using

Bayes’ rule as

( ) ( ∣ ) ( ) ( )=p x u z p x u z p u z, , , , . 3

This can be rewritten as

( ) ( ∣ ) ( ) ( ) ( )=q x u z p x u z p u p z, , , 4

if and only if u is statistically independent from z. If the joint
distribution p(u, z) is not factorizable, the distributions q(x, u, z)
and p(x, u, z) will be different. It follows from this that u and z
are statistically independent if and only if the samples (x, u, z)
drawn according to p(x, u, z) are indistinguishable from those
sampled from q(x, u, z).
How can we generate samples from these two distributions?

If we consider our autoencoder to be an idealistic autoencoder
capable of perfectly reconstructing its inputs, then the encoder
and decoder can be viewed as respectively approximately
parameterizing p(z|u, x) and p(x|u, z), which are both
deterministic functions. We can thus draw samples from p(x,
u, z)= p(z|u, x)p(u, x) by first randomly sampling from the data
set to obtain (u, x) and then using the encoder to obtain the
associated z.
We can similarly draw samples from q(x, u, z)= p(x|u, z)p

(u)p(z) through reusing our samples drawn from p(x, u, z). By
scrambling the (u, z) pairs within a batch, we can effectively
remove any joint information between u and z (Belghazi et al.
2018), which results in samples drawn from the marginal
distribution (u, z)∼ p(u)p(z). We can then use the decoder that
approximates p(x|u, z) to obtain approximate samples q(x, u, z)
drawn from p(x|u, z)p(u)p(z).
As stated above, enforcing statistical independence is the

same as finding a latent representation, z, such that samples
drawn according to these two procedures are indistinguishable.
This bears a strong similarity to the training objective of
generative adversarial networks that attempt to train a generator

Figure 1. Diagram of the conditional autoencoder architecture. We denote the reconstructed observation as x̂. For chemical tagging, x corresponds to stellar spectra
and u to the physical factors of variation.
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such that generated samples are indistinguishable from samples
drawn from a data set. As such, we can take inspiration from
existing generative adversarial network architectures to solve
our disentanglement objective.

In generative adversarial networks (Goodfellow et al. 2014),
a critic network is trained to distinguish between samples
drawn from a data set and samples created by a generator
network fed samples from a well-understood probability
distribution. The generator and critic network are jointly
optimized in a minimax game. That is, the critic attempts to
maximally distinguish between the two data streams, and the
generator attempts to minimize the critic network’s ability at
doing so. The global optimum of this two-player game occurs
when both the generator and critic network can no longer
improve—when the two data streams are identical.

For our disentanglement neural network architecture, we
take heavy inspiration from the Wasserstein generative
adversarial network (Arjovsky et al. 2017). We use an
architecture parallel to that of generative adversarial networks.
However, instead of differentiating between real and fake
samples, we differentiate between samples from p(x, u, z) and q
(x, u, z) generated using the autoencoder. This leads to
optimizing the following minimax objective:

[ ( )]
[ ( )] ( )

( ) ( )

( ) ( )-
Î ~

~




 C x u z

C x u z

min max , ,

, , , 5
x u z p x u z

x u z q x u z

AE C , , , ,

, , , ,

where is the space of 1-Lipschitz continuous function and C
(x, u, z) refers to a critic network that takes as input a vector in
which observations x, latents z, and parameters u are
concatenated and attempts to differentiate between the different
type of samples generated by our autoencoder.

The critic network attempts to maximize Equation (5). In
order to constrain the critic network to learning a Lipschitz
continuous function, we add a gradient penalty term, weighted
by a constant λ, to the loss, as was introduced in Gulrajani et al.
(2017). This leads to a critic loss function

[ ( )]
[ ( )]

[( ( ) ) ] ( )

( ) ( )

( ) ( )

( ) ( )  l

=
-

+  -

~

~

~





L C x u z

C x u z

C x u z

, ,

, ,

, , 1 , 6

x u z q x u z

x u z p x u z

x u z r x u z x u z

critic , , , ,

, , , ,

, , , , , , 2
2

where r(x, u, z) is implicitly defined as sampling uniformly
along straight lines between pairs of points sampled from the
distributions p(x, u, z) and q(x, u, z). Further information about
this sampling procedure can be found in Gulrajani et al. (2017).

Our autoencoder, which plays the role of a generator
network, is trained to minimize Equation (5) while simulta-
neously minimizing the reconstruction loss function:

[ ( )]
[ ( )] ( )

( ) ( )

( ) ( )

l
l

= +
-

~

~




L L C x u z

C x u z

, ,

, , . 7
x u z p x u z

x u z q x u z

AE rec 2 , , , ,

2 , , , ,

This loss function combines the reconstruction loss that is
traditionally used for optimizing autoencoders with a Wasser-
stein loss. In addition, unlike for generative adversarial
networks, as both data streams are passed through the
generator, they are both used for optimizing the generator.
Training involves jointly minimizing the critic and autoencoder
losses. The two different types of losses are weighted by a
factor λ2. Experimentally, we found that it was crucial to
correctly set the factor λ2, such that neither the reconstruction

term nor the disentanglement term in the loss dominated over
the other.

3.3.2. Fader Disentanglement (FaderDis)

The FaderDis method of disentanglement follows the setup
presented in Lample et al. (2017), in which an autoencoder is
adversarially trained to learn a latent representation from which
an auxiliary network is incapable of predicting u. Since the
method is designed to operate on discrete variables, we
discretize out the parameter space u into n equal-sized bins.
In this method, an auxiliary network, A, accepts latents, z, as

inputs and returns as outputs a vector of size equal to the
number of discretized bins. It is trained using a cross-entropy
loss to predict the probability of the corresponding u vector
falling in each of the n bins. The autoencoder is then trained
alongside this auxiliary network. The autoencoder attempts to
minimize the auxiliary network loss weighted by a factor λ1
while also maximizing its own reconstruction loss. The
autoencoder loss takes the form

( [ ( ( ( )))]) ( )( ) ( )l= - -~L L E u A E x ulog , , 8x u p x u nAE rec 1 , ,

where un denotes the one hot-encoding vector after the
discretization procedure, with the subscript n referring to the
bin in which the parameters u fall.
The global optimum of this two-player minimax game will

occur when the autoencoder learns to reconstruct observations
using a latent z that does not contain any helpful information
for the auxiliary network. Since the auxiliary network attempts
to learn p(u|z), this will occur when p(u|z)= p(u) or,
equivalently, u and z are statistically independent.

4. Application to Stellar Spectra

We wish to learn a representation of stellar spectra that
disentangles factors of variation of interest (chemical abun-
dances) from the observed parameters, u. We tested both
methods with metallicity, [Fe/H], as a known and unknown
parameter ( [ [ ]]=u T g, log , Fe Heff and [=u T g, logeff ]).
After training, without any explicit knowledge of abundance
labels, v, our neural network will find a mapping from
observations, x, and parameters, u, to latents, z, such that stars
sharing a common abundance are mapped to nearly identical
latents.
We demonstrate our method using a synthetic data set

described in Section 4.1. The data set is designed to mimic the
spectral variability found within the APOGEE red giant
sample. This allows us to carry out a proof of concept for
our method in an ideal and controlled environment, in which
independence between chemical and physical parameters is
guaranteed and for which we were certain to have accounted
for all factors of variation. This is an important first step in
demonstrating the viability and performance of our method.
We quantify the performance of our generative model with a

chemical abundance twin recovery test, comparing to simpler
models, that also removes factors of variation Teff, log g, and
[Fe/H]. We do this for a number of S/N qualities. We note that
the performance of our method, in practice, will be sensitive to
any calibrations or instrumental artifacts that are poorly
modeled or not included as observed parameters. We also
expect that the dimensionality of real data may be far lower
than that of our synthetic library. This is because we do not
restrict our realized abundances to the correlations observed in
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real stars. We therefore make only a comparative analysis of
different modeling choices in the recovery of abundance twins,
rather than a quantitative prediction of performance for real
survey data.

4.1. Simulated Data Set

For the creation of our spectra, we relied on the APOGEE
package introduced in Bovy (2016), which wraps the
Turbospectrum spectral synthesis code (Plez 2012) using
ATLAS9 atmospheres (Mészáros et al. 2012). We created
identically distributed training and test data sets, both contain-
ing 25,000 pairs of chemical abundance twins, sharing identical
surface chemical abundances but differing stellar parameters.
We generated our spectra assuming solar isotope ratios.

When creating our spectra, the nonchemical parameters
varied were the effective temperature Teff and surface
gravity glog . For each spectra, Teff and glog were generated
by sampling from uniform distributions, as found in Table 1.
These parameter ranges were designed to replicate those of red
giant–type stars, which are the favored type of stars for
chemical tagging (Hogg et al. 2016; Price-Jones & Bovy 2017).
Chemical abundances were generated by independently
sampling log-metallicity ([Fe/H]) and log-element abundance
enhancements ([X/Fe]), assuming Gaussian-distributed values.
Our Gaussian 1− σ standard deviations were chosen to
roughly reflect those observed by the APOGEE survey. Exact
values can be found in Table 2. These were determined from
the 1σ element abundance dispersion in APOGEE’s DR14 for
each element for red giant stars. By fitting separate 1D
Gaussians to the element abundance enhancements, we ignore
any further correlations that may exist between elemental
abundances. In doing this, we will overestimate the spectral
variability (i.e., dimensionality), which could lead to our
chemical tagging predictions being overly optimistic, for the set
of stars we consider in our tests. The absolute performance that
we later report in the recovery of abundance twins is subject to
the number of stars we are evaluating, as well as their density in
chemical element abundance space and the dimensionality of
the spectra themselves. Therefore, it is only the comparative
performance between the approaches we show that is relevant.

4.2. Implementation Details

For both FaderDis and FactorDis, we performed a manual
hyperparameter search on the training data set to select the
best-performing model. Results for selected models are then
shown on the test data set. We chose to set the latent
dimensionality, z, to have dimension 20, slightly exceeding the
number of varied abundances. A more comprehensive descrip-
tion of our neural network architectures can be found in the
Appendix. Our code is available on GitHub at https://github.
com/drd13/tagging-package.

We also evaluated the performance of the model developed
in Price-Jones & Bovy (2017, 2019; described in Section 2.2),
which we refer to as PolyDis from now on. We use PolyDis
with a fourth-order polynomial, as was found to work best on a
training data set.
To better simulate the real data, we also evaluate our

methods on a test data set with added Gaussian noise. For a
given S/N, we add to every bin of the continuum-normalized
spectrum zero-mean Gaussian noise with a standard deviation
s = 1

S N
. For FactorDis, the results of the noisy test data set

are obtained by training models on data in which noise of order
1% (S/N= 100) is added to every observation during training.
For FaderDis (and PolyDis), noise of order 1% was added to
the training data and kept constant for every epoch of training.
It was found that adding this type of noise to the training data
set led to worsened spectral reconstruction but improved the
isolation of the chemical factors of variation. The worsened
reconstruction can easily be attributed to overfitting to the
noise. We do not have a clear explanation for why it led to
improved isolation of the chemical factors of variation.

5. Results

In this section, we present a series of experiments comparing
and contrasting the capacities of the different models.

5.1. Resolving Power of Latent Representation to Distinguish
Chemically Identical Stars

If nonchemical factors of variation have been perfectly
removed from the latent z, stars sharing a common chemical
abundance should, in turn, also share a common latent vector.
As such, any difference in latent representation between
chemically identical stars can be attributed to imperfections
in the learned representation. Here we use this to compare and
contrast how well our considered methods isolate out the
chemical factors of variation.

Table 1
Ranges Used for Uniformly Sampling the Nonchemical Parameters of

Variation

Parameter Ranges

Parameter Min. Max.

Teff [K] 4000 5000
[ ]glog dex 1.5 3.0

Table 2
Mean and Standard Deviation Used When Sampling the Chemical Factors of

Variation

[X/Fe] Mean (dex) Standard Deviation (dex)

[Fe/H] −0.13 0.24
[N/Fe] 0.28 0.11
[O/Fe] 0.03 0.08
[Na/Fe] −0.05 0.38
[Mg/Fe] 0.06 0.08
[Al/Fe] 0.07 0.09
[Si/Fe] 0.05 0.07
[S/Fe] 0.05 0.07
[K/Fe] 0.04 0.07
[Ca/Fe] 0.02 0.04
[Ti/Fe] −0.01 0.06
[V/Fe] −0.01 0.11
[Mn/Fe] −0.04 0.07
[Ni/Fe] 0.02 0.04
[P/Fe] −0.04 0.18
[Cr/Fe] −0.01 0.06
[Co/Fe] 0. 0.15
[Rb/Fe] −0.03 0.29

Note. Enhancements and metallicity are assumed to be Gaussianly distributed
in dex.
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Figure 2 shows histograms of Euclidean distances,
 -z zi j 2, calculated on the latents, z, for both chemically
identical pairs of stars (blue) and randomly sampled (non-
chemically identical) pairs of stars (orange). We show this for
our three different disentanglement methods at several S/Ns.
Distances are evaluated on the 20-dimensional latent for both
the FaderDis and FactorDis methods and the 50-dimensional
principal component analysis components for the PolyDis
approach. We found that 50 principal components explained
99.95% of the variance in the (noiseless) data. In the interest of
making the comparison with PolyDis fair, we include [Fe/H]
as a disentangled parameter during the training of the FaderDis
and FactorDis methods.

Reassuringly, we find that for all considered methods,
chemically identical stars share more similar latents than
random pairs of stars. However, not all methods are equally
good at this task, with PolyDis underperforming compared to
FaderDis and FactorDis. Indeed, we find that, unlike the other
considered methods, the PolyDis method has a nonnegligible
overlap between the distributions of chemically identical pairs
of stars and random pairs of stars. This means that for chemical
tagging purposes, there will be a larger fraction of random stars
in the data set falsely appearing more chemically similar than
genuinely chemically identical stars.

5.2. Quantifying Chemical Tagging Performance

In this section, we evaluate the quality of our learned
representations directly on the task of chemical tagging. Since
our data set was designed such that every star has a unique
chemical abundance twin, we can evaluate chemical tagging
methods based on their capability of recovering these
introduced chemical abundance twins. We once again use the
Euclidean distance in latent space d= -z zi j 2 as our
measure of chemical similarity between stars.

We show the results of our analysis in Figure 3, where we
have plotted the distribution of “false” chemical abundance

twins recovered with each method—considered to be stars
appearing more similar than the genuine chemical abundance
twin. We term these our “doppelganger” stars. In our plot, the
y-axis corresponds to the percentage of stars in the test data set
with fewer false twins than the corresponding value on the x-
axis. For example, when evaluating the FactorDis model that
was trained to remove [Fe/H] on a data set without noise (as
shown in panel (d)), we found that around 85% of stars in the
data set had fewer than 10 out of the 49,998 other stars in the
data set being mistakenly measured as more chemically similar
than their genuine chemical abundance twin. Similarly, the y-
intercept represents the percentage of stars for which none of
the 49,998 other stars in the data set are more similar than the
genuine chemical twin.
The figure suggests that precision disentanglement and

removal of nonchemical factors of variation from stellar spectra
is valuable for chemical tagging pursuits. The FaderDis method
identifies significantly more pairs of chemically identical stars
than the baseline PolyDis method. For example, the FaderDis
method, applied on a noiseless data set with [Fe/H] removed
from the representation (panel (c)), identifies around 97% of
pairs of chemical abundance twins compared to only 50% for
the baseline PolyDis method (panel (e)). For spectra with S/
N= 100, this number goes down to about 88%. As the neural
network performance is sensitive to hyperparameters, archi-
tecture, and loss function, any improvement in these areas
could further improve the results. For example, the FaderDis
method was found to perform significantly worse when noise
was not added as described in the implementation details.
Note that as we randomly generate our stars from a high-

dimensional distribution, there is a possibility for random pairs
of stars to be chemically similar by chance. However, we
expect a chance of no more than 10−12 of doppelganger pairs
given the high dimensionality of the artificially generated data
set. Even if these exist, however, our figure is comparative
only, to demonstrate how the three different methods work to

Figure 2. Distribution of scaled Euclidean distances, d, for a sample of chemically identical (blue) and fully randomly sampled (orange) pairs of stars. For each model,
a scaling is applied to the latents such that the mean distance of chemically identical stars is 1. Each model includes Teff, log g, and [Fe/H] as the parameters to
disentangle from the chemical factors of variation. The top row is evaluated using the noiseless test data set and the bottom with noise of order S/N = 50 added. The
left column is evaluated using the FaderDis method, the middle using the FactorDis method, and right using the PolyDis method (after principal component analysis
with 50 components).
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recover the designated chemical abundance twin stars. As we
are generating data from a fixed range of 20 independent
abundance labels, recovery of chemical abundance twin stars
will become harder under various conditions. This includes the
size of our test set growing within its current abundance ranges
and if the correlations between the abundances were included
in their prescription. We highlight, however, that this is a
comparative test to demonstrate the relative performance of the
three methods and as a function of S/N. The absolute
performance would vary in the physical abundance distribution
plane of real data.

5.3. Interpretability of Latent Representation

In this section, we investigate whether the latent representa-
tions that organically emerge from our neural networks are
interpretable. As our encoder and decoder are nonlinear
functions, we might pessimistically expect our latent repre-
sentations to be noninterpretable. We show that this is not the
case and that instead, at least on our synthetic data set, the
learned representations align well with the measured
abundances.

We approach this question through learning a linear
transformation converting from latents to abundances. We
represent our data set of abundances and latents as matrices V
and Z of shape nspecies× ndata and nz× ndata, where nspecies is
the number of chemical species in the spectra, nz is the
dimensionality of the latent space, and ndata is the number of
observations in the data set. We seek a transformation matrix A
converting latents into abundances as faithfully as possible. We
can find such a matrix by solving ∣∣ ∣∣-AZ VargminA

2, which
has the known solution A= VZ+ (Petersen & Pedersen 2008),
with Z+ the Moore–Penrose inverse of Z. We solve this matrix
using all stars in the noiseless training data.

In Figure 4, we have plotted chemical compositions as
estimated from the linearly transformed latents against true
chemical compositions. These are shown for 2000 stars in the

noiseless test data set. We see a remarkable agreement between
the estimated and true abundances. For almost all species, the
linear transformation is nearly as good at estimating chemical
compositions as a neural network trained on the latents
(denoted “nonlinear”) on the same stars. Although Na is not
as well fit as other species, it is known to be particularly
difficult to estimate (Jönsson et al. 2018; Ness et al. 2019). This
shows that our method has naturally learned to decompose
spectra into a representation nearly equivalent to chemical
abundances. Although these results were obtained on a
synthetic data set, they are particularly encouraging. Measuring
abundance variation quantitatively without reliance on synth-
etic spectra would allow for fully circumventing the uncertain-
ties propagated from inaccuracies in spectral modeling.

5.4. Spectral Reconstruction

Our neural network encoder allows for converting spectra
into a representation in which predefined nonchemical factors
of variation are removed. By subsequently applying the
decoder to this representation, we can generate modified
spectra recast to new nonchemical parameters.
In Figure 5, we leverage this to visually demonstrate, for the

FactorDis approach, how well our learned representation
isolates the chemical information in the spectra of a pair of
metal-rich stars (top panel) and a pair of metal-poor stars
(bottom panel). These test spectra have been generated as
described in Section 4.1, with each pair sharing identical
chemical compositions but differing physical parameters.
For each panel, in the top plot, we show the original pair of

stellar spectra. In the middle plot, we show how these same
chemical abundance twins appear after x1 is transformed to the
physical parameter of x2, and in the bottom plot, we show the
residuals between the twins after the transformation. From
these figures, we see that although the initial spectra are very
different, the transformed spectra are nearly identical. This is
because the encoder isolated the chemical information and the

Figure 3. Fraction of false chemical abundance twins for different models with differing S/N. In each panel, we plot the percentage of stars in the test data set with
fewer false twins than x, where x is the x-axis value, denoted as Ndoppelganger. In the top row, we show results conditioned on Teff and log g. In the bottom row, we show
results conditioned on Teff, log g, and [Fe/H]. We plot the results obtained for FaderDis in the left column, with FactorDis in the middle column and PolyDis in the
right column. It is worth reemphasizing that Ndoppelganger is highly dependent on the size of the data set, and as such, this figure is only intended to be comparative and
not an absolute reference.
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decoder generated the recast spectra (for star x1) at the newly
provided physical parameters (of the star x2).

In Figure 6, we show the residuals between a star and its
transformed twin for FactorDis, FaderDis, and PolyDis. For
this comparison, we include the three factors of nonchemical
variation, Teff, log g, and [Fe/H], in the disentanglement
network training. Alongside the figure, we also report the mean
absolute residual across the full spectral region considered, as
well as the standard deviation (per pixel) of the residuals, σR,
for each approach. For the PolyDis method, a star is recast to its
chemical abundance twin star’s stellar parameters by replacing
its residuals from the polynomial fit with those of its twin star

(the fit is meant to isolate the chemical information in the
residuals).
In Table 3, we report the average mean absolute residual 〈R〉

and average mean squared error 〈MSE〉, obtained by averaging
over random pairs of chemically identical stars in the data set
and transformed to each other’s physical parameters. The
〈MSE〉 metric more severely penalizes large deviations in the
reconstructed compared to the original spectra. Several
interesting trends appear in the data.
We observe a difference in performance between methods,

depending on whether the residuals or the squared residuals are
used for evaluation. Most notably, the FactorDis method

Figure 4. Scatter plot showing estimated against true chemical enhancements and metallicities for synthetic stars in our test data set. In the legend, linear refers to
abundances estimated by multiplying the latent with matrix A, and nonlinear refers to abundances estimated from the latent using a neural network. This figure was
obtained using the latent from a FaderDis model trained at disentangling [Teff, glog ]. For each chemical element, we have also estimated the rms error (RMSE), the
standard deviation of the residuals between predicted and true enhancements/metallicity.
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outperforms the PolyDis in terms of squared but not raw
residuals. As squared values are more sensitive to outliers, this
seems suggestive that the PolyDis method has comparatively
better overall reconstruction but struggles with representing
some portions of the data set.

The relative mean values reported in Table 3 are also largely
indicative of the distribution in the parameters of our library of
test spectra that we have generated. Simpler modeling

approaches likely perform very well when both the training
and test data are smaller in overall variability and for pairs of
stars that have nearer Teff and log g parameters. In this case, the
spectral variability due to the parameter and abundance labels
is nearer to a linear or low-order polynomial form (e.g., Ness
et al. 2015; Casey et al. 2016). In the regime where pairs of
stars have large differences in their Teff or log g, the move to
more complex models (or as an alternative, local linear models

Figure 5. For each panel, in the top plot, we show the spectra of two stellar chemical abundance twins (with differing Teff and log g), x1 and x2. In the middle plot, the
spectra of the second chemical abundance twin, x2, is shown with a spectra reconstructed by the decoder (D(E(x1, u1), u2)) using the other star’s latent z1 but the same
physical parameters u2. In the bottom plot, we show the corresponding residuals. The stellar parameters are shown above each panel (for conciseness, the [X/Fe]
vector is not shown). We can see that the spectra of chemical abundance twins are nearly indistinguishable after transforming them to a common physical parameter
(Teff and log g) parameterization.
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that build nonparametric models using nearest neighbors (e.g.,
Wheeler et al. 2021), may have higher return. These differences
can also be understood in terms of the differences between
methods at reconstructing spectra. In the PolyDis method,
spectra are recast to new physical parameters by adding
residuals to the polynomial fit. This transformation is not
parametric in the traditional sense; so, if two stars being
compared are similar to begin with, they will give a very small
reconstruction loss. For the case of pairs of identical spectra,
this would give a perfect reconstruction, even if the residuals
do not capture the chemical information. On the other hand, the
FactorDis and FaderDis methods involve decoding from a
lower dimensional representation; so, even identical stars will
have nonzero residuals. The difference thus boils down to
FactorDis and FaderDis being, by design, built for capturing
chemical information but not always (for our exercise)
reconstructing the stellar spectra, while the PolyDis method
can “cheat” at reconstructing stars. The FaderDis method does
not perform particularly well at this task. We believe this to be
linked to its training procedure, which involves reconstructing
noisy rather than clean data. To demonstrate that our method
performs better on chemically dissimilar stars, we have

recalculated our metrics on a data set restricted to stars with
high-temperature differences (see Table 4). On this partial data
set, the FactorDis method performs better across the board, and
the PolyDis method performs worse than both FaderDis and
FactorDis, in terms of 〈MSE〉.

6. Discussion

We have developed a neural network architecture to remove
those factors of variation in stellar spectra that we want to
disregard from those that we care about. Here we want to
isolate the chemical abundances. Typically, chemical abun-
dances are measured from stellar spectra, which relies on
imperfect stellar models and does not fully utilize the full
amount of information across the entire spectral region. We
seek to develop approaches that circumvent limitations in our
current knowledge of stellar physics or incomplete models and
leverage large surveys by working as close to the observed data
space as possible.
We compared two deep-learning approaches and a simpler

polynomial model approximation for the task of removing Teff,
log g, and [Fe/H] from model mock stellar spectra, leaving
behind the intrinsic variation caused by chemical abundances.

Figure 6. This figure compares the reconstruction capacities of the three disentanglement methods for the metal-rich star shown in Figure 2. In the top panel, we show
the spectra of two chemical abundance twins, x1 and x2, for the first 256 wavelength bins. In the bottom panel, we show the residuals between the second twin, x2,
alongside the spectra of the first twin, x1, recast by the decoder (D(E(x1, u1), u2)) to the physical parameters u2 for the three disentanglement methods considered. The
mean residuals and associated standard deviation (per pixel across the full spectral range) are R = 0.0029 and σR = 0.0021 for FaderDis, R = 0.0011 and σR = 0.0009
for FactorDis, and R = 0.0034 and σR = 0.0023 for PolyDis.

Table 3
Average MSE between Two Chemically Identical Stars Transformed to Each

Other’s Physical Parameters for the Different Methods

Method 〈R〉 〈MSE〉

FactorDis 0.0021 1.26 × 10−5

FaderDis 0.0030 1.68 × 10−5

PolyDis 0.0018 1.50 × 10−5

Note. The quoted number assumes a data set of stars distributed following the
procedure as described in Section 4.1.

Table 4
Average Reconstruction between Two Chemically Identical Stars Transformed
to Each Other’s Physical Parameters for the Different Methods on a Restricted
Data Set Composed of Stellar Chemical Abundance Twin Pairs with at Least

500 K of Temperature Difference

Method 〈R〉 〈MSE〉

FactorDis 0.0027 2.13 × 10−5

FaderDis 0.0033 2.14 × 10−5

PolyDis 0.0029 3.33 × 10−5
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All three approaches perform well at generating a disentangled
representation of spectra. A reader might note that the mean
residual of the test data compared to the model, for all three
methods we investigate, is lower than a typical Poisson noise
level in observed spectra in large surveys (often S/N≈
>50–100 per wavelength). The value of this level of precision
and the importance of maximizing the precision comes when
working with large stellar ensembles. Galactic archeology
typically demands large numbers of stars where the sampling
precision of the population increases as (N)1/2. The sampling
error of the population itself at each wavelength becomes
smaller than the reconstruction precision for very large surveys.

We demonstrated the benefits of using a disentangled neural
network with a chemical abundance twin star recovery from
our 50,000 star test set. This is related to the pursuit of
chemical tagging, which is an extremely challenging aspiration
with galactic archeology—to find stars born together using
their identical abundances. Even if chemical tagging is
prohibited by field contamination, there is tremendous promise
in modeling the distribution of the most chemically similar
stars as a function of orbital properties or abundance density in
reconstructing galactic history (e.g., Kamdar et al. 2019;
Coronado et al. 2020; Price-Jones et al. 2020). When applying
our FaderDis approach to a synthetic data set of APOGEE-like
stars, we were able to identify the most chemically identical
stars from the ensemble, even with a moderate S/N. At an S/N
of 100, we were able to identify around 87% of the pairs of
stars. This compared to around 60% of the stars for our second
neural network approach, FactorDis, and around 40% for our
implementation of a polynomial representation to subtract
stellar parameters, PolyDis, at this S/N.

Our results obtained using synthetic model spectra are
particularly promising. However, these may not translate
directly to real survey data for a number of reasons. As our
data set was handcrafted, we were able to ensure that it
perfectly matched the stringent requirements of our method.
That is to say, we ensured perfect knowledge of all
nonchemical factors of variation and expressed these using a
deterministic parameterization that is statistically independent
from the chemical factors of variation. We examine here
whether these assumptions are accurate for actual stellar
surveys, and if not, how we might be able to modify our
method to accommodate these discrepancies.

6.1. Assumptions about Stellar Spectra

Our method involves removing all nonchemical factors of
variation. If our neural network is conditioned on an
incomplete set of nonchemical factors of variation u, our latent
will be contaminated by these when isolating chemical factors
of variation. For actual observations, these nuisance parameters
may arise from imperfect calibration, such as from telluric lines
or persistence in the detector or any other of a number of
systematics. In principle, we may be able to somewhat
counteract this phenomenon by restricting the dimensionality
of our latent. This would force the latent to only encode the
most important factors of variation. However, as some
abundances only have a minuscule impact on the overall
recorded spectral flux, we require very good knowledge of our
factors of variation. An alternative approach for accounting for
these systematics would be to add a disentanglement term
targeting them. However, this would require additional

infrastructure not built into this first demonstration of the
approach.
In our proof-of-concept experiments, we first modeled stars

using only the effective temperature Teff and surface gravity
glog as nonchemical factors of variation. These two

parameters should explain most of the nonchemical variance
in the spectral data. Indeed, many data-driven models have
been capable of accurately reconstructing spectra using these
parameters, plus overall metallicity [Fe/H] (i.e., Leung &
Bovy 2018), as these are responsible for the majority of
spectral variability. However, other parameters that are
independent of the chemical composition may also impact
the observed spectra and so may need to be included in our
conditioning parameters u. Stellar mass or age, for example,
while correlated with effective temperature and surface gravity
(Price-Jones & Bovy 2017), contains additional independent
predictive power for generating the spectra (Ness et al. 2016).
If this is indeed the case, it may be beneficial to include an
independent estimate of stellar mass. This could be achieved by
using a training data set of stars from asteroseismology surveys
with mass estimates. Stellar rotation may also affect stellar
spectra. These variations may, at least in part, be captured by
the micro- and macroturbulence parameters.
Beyond assuming knowledge of nonchemical factors of

variation, we have also so far assumed the ability to perfectly
estimate these, if known. In realistic scenarios, this may not be
easy. However, similarly to other data-driven methods, such as
Ness et al. (2016), our method requires precise but not
necessarily accurate parameter values. For example, our neural
network method should still be effective if a change of variable
is applied to any of the conditioning variables. Furthermore, we
do not account for the correlations between elements when we
generate our test data, which will reduce the dimensionality of
the spectra and effective sparsity of the data space.
Finally, even if we are unable to fully remove nonchemical

factors of variation from spectra, our neural network archi-
tecture may still be useful for traditional chemical abundance
estimation. Indeed, we may be able to reduce systematic
uncertainties in traditional abundance estimation methods by
recasting stars to a common temperature and surface gravity (as
shown in Section 5.4) before comparing to synthetic stellar
spectra. Similarly to differential analysis, this would serve to
restrict the number of factors of variation changing in stellar
spectra.

6.2. Assumptions Relating to Statistical Independence

Our approach assumes that abundances are statistically
independent from other factors of variation. In our experiments,
the synthetic spectral data set was generated so as to satisfy this
assumption. This assumption is not entirely unreasonable.
There is evidence that most stellar abundances should, at least
to first order, be independent from temperatures and surface
gravity (Jofré et al. 2019). Trends between abundances and
physical parameters have, in the past, been attributed to
systematic uncertainties and sometimes even been corrected for
(Valenti & Fischer 2005; Adibekyan et al. 2012). However,
overall metallicity does, at some level, affect stellar evolution
(e.g., see Gaia Collaboration et al. 2018a). Ultimately, this
assumption breaks down to some degree, and there is some
level of statistical dependency between metallicity and physical
parameters in observed spectra. Including overall metallicity in
the disentangled parameters, as in our experiments, mitigates
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this issue. Spectral synthesis approaches, including at low
resolution, typically derive a basic set of Teff, log g, and [M/H]
(or [Fe/H]) parameters (with errors), so all parameters,
including metallicity, are readily available to use in the
disentanglement architecture we have built. We might also
identify chemically identical stars by finding those stars sharing
both a common latent representation and a common metallicity.
Ultimately, accounting for any dependencies between abun-
dances and parameters will better disentangle the abundance
variations from stellar parameter variations in real spectra.
Large data sets may be leveraged to learn these dependencies.
Indeed, stellar processes like dredge-up and diffusion (Mas-
seron & Gilmore 2015; Martig et al. 2016) modify surface
abundances away from their birth values across evolutionary
states. Removing any trends caused by these processes would
result in a chemical representation closer to birth abundances,
which is ultimately preferable for using abundances for
chemical tagging pursuits.

6.3. Beyond Synthetic Spectra

There are a few challenges associated with applying our
method to real observations. Spectral bins in real observations
are sometimes flagged as untrustworthy, for example, due to
cosmic rays or persistence in the detector (see Jönsson et al.
2020). These are flagged for each APOGEE spectrum, and
individual pixels are correspondingly masked. Since our neural
network methodology requires all spectral bins as inputs, such
untrustworthy or missing data need to be imputed somehow, so
as to not impact the downstream learned representation.
Another more practical challenge with applying the method
to real observations is that it requires hyperparameter tuning,
and training the algorithm takes a day to run on specialized
hardware (GPUs). This makes iterative deployment slow.

7. Conclusion

Organizing stars by their chemical similarity and investigat-
ing the distribution of their other properties (e.g., orbits,
density) is a promising avenue for unraveling galactic evolution
(i.e., Ting et al. 2016; Kamdar et al. 2019; Coronado et al.
2020). Ranking stars by chemical similarity requires precise
chemical information for large numbers of stars. Chemical
similarity is typically determined using measured element
abundances. However, these measurements are subject to
inaccuracies and systematics that are inherited from incomplete
and approximate stellar models. As an alternative to deriving
abundances from spectra, using the variability of the spectra
themselves becomes possible and advantageous in the regime
of large stellar surveys. Data-driven deep-learning methods—
applied directly to the spectra themselves—find natural
applications here.

In this paper, we introduce a new deep-learning method for
extracting chemical information from spectra. This relies on
isolating chemical factors of variation from nonchemical
factors of variation through training a neural network using a
disentanglement loss. This method removes the need for
accurate and precise modeling of the chemical abundance
factors of variation in stellar spectra. Instead, it relies only on
the parameterization of the other primary sources of variability,
namely stellar parameters, including Teff and log g. This
requires conditioning a neural network on these factors, in
our case, Teff and log g (and also [Fe/H] for modeling only the

variation from abundance enhancements, [X/Fe]). We have
shown, using a synthetic set of spectra that we have generated,
that our method can be used to accurately identify and
distinguish chemically identical pairs of stars from a field
distribution, which is an aim of chemical tagging. We were able
to identify more than 85% of the pairs of chemical abundance
twins from a data set of 50,000 spectra generated at the
resolution of APOGEE and an S/N of 100 with 20
independently drawn chemical abundances ([X/Fe]). To do
this in practice (on real data) will require being able to estimate
all nonchemical factors of variation in the spectra very well. In
our analysis, as we wanted to demonstrate our method on a toy
data set with the fewest assumptions possible, we have treated
the metallicity as statistically independent from physical
parameters. For real observations, however, it may be
beneficial to account for their statistical dependency. As
chemical and physical parameters are believed to be indepen-
dent, or close to it, at fixed metallicity, we suggest learning a
representation in which metallicity is disentangled.
We note that our approach may also find utility in regimes

where analysis is hindered by a large number of molecular
bands in the spectra with uncertain atomic transition data that
render stellar models inaccurate. Our tests here are confined to
a very narrow range of Teff that is not dominated by molecular
features, but this may be a promising avenue for large survey
data like Sloan V that will observe bright, cool giants with
molecular features (Kollmeier et al. 2017).
In this paper, through experiments on a synthetic data set, we

have demonstrated the efficacy of our newly proposed method
for extracting chemical information from stellar spectra. These
experiments act as a proof of concept in a controlled
environment, where the data-generating process is perfectly
understood. This sets out the groundwork for applying such
representation learning methods to real observations. The
natural next steps of this line of work will be translating the
success found on synthetic spectra to real APOGEE observa-
tions. Because of the imprint of systematics on real stellar
spectra and other possible departures from our assumptions,
this will likely require further modifications and/or fine-tuning
of the approach. Such investigations are reserved for a future
paper. In a forthcoming paper (D. de Mijolla et al. 2021, in
preparation), we demonstrate on real APOGEE stellar spectra a
method similar but complimentary to this one for extracting
chemical information in a manner that is robust to instrumental
systematics.
Beyond our astronomical contributions, we hope that our

proposed methodology will find uses in other fields. Our
application of supervised disentanglement for identifying
observations sharing a common parameterization is a novel
method that could be adapted to other tasks. In particular, our
chemical tagging experiments and associated data sets could be
useful in comparing different supervised disentanglement
architectures, something that has so far been lacking in the
machine-learning community. We believe that our task of
evaluating how well a supervised disentanglement neural
network maps chemically identical stars to an identical latent
is particularly useful for assessing supervised disentanglement.
This is because it does not rely on training any secondary
networks and gives a single value that is directly indicative of
the level of disentanglement found in the latent. Our proposed
novel supervised disentanglement architecture has shown good
performance at chemical tagging–like pursuits and
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disentanglement that suggests that it may be a competitive
alternative to Fader disentanglement types of architectures.
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Appendix
Neural Network Training Details

We briefly review some implementation details useful for
reproducing the results in this paper. We have made our
repository open-source to aid in making our paper reproducible
and encourage readers to refer to the code for additional details.

Data set processing. We process the continuum-normalized
spectra by first multiplying the spectra by 4 and then
subtracting 3.5. This makes the spectra roughly occupy the
[−1, 1] range.

Neural network training. All quoted results use feed-forward
neural networks with self-normalized rectified unit activation
functions (Klambauer et al. 2017). All results are obtained
using the ADAM optimizer (Kingma & Ba 2015) with a
learning rate of 10−5. In the following, nbins= 7751 refers to
the number of spectral bins used, nconditioned= 2 or 3 is the
number of parameters the encoder is conditioned on, and
nz= 20 is the size of the autoencoder latent.

FactorDis architecture. Our FactorDis neural network has
the following architecture (including input and output layers).
Results can be reproduced with the loss-weighting term
λ= 10−4:

{ } ( )= +n n n
encoder dimensions

, 2048, 512, 128, 32, , A1zbins conditioned

{ } ( )= +n n n
decoder dimensions

, 512, 2048, 8192, , A2z conditioned bins

{ }
( )

= + +n n n
discriminator dimensions

, 4096, 1024, 512, 128, 32, 1 .
A3

zbins conditioned

FaderDis architecture. Our FaderDis neural network has the
following architecture (including input and output layers).
Results can be reproduced with the loss-weighting term
λ= 10−5. When training the auxiliary network, each disen-
tangled parameter was split into 10 discrete values, creating
100 equal-sized bins when disentangling two parameters and
1000 equal-sized bins when disentangling three:

{ } ( )= +n n n
encoder dimensions

, 2048, 512, 128, 32, , A4zbins conditioned

{ } ( )= +n n n
decoder dimensions

, 512, 2048, 8192, , A5z conditioned bins

{ } ( )= +n n
auxilary dimensions

, 512, 256, 10 . A6z
n

conditioned conditioned

Nonlinear chemical estimation. In Figure 4, neural networks,
taking latents z as inputs, are used as nonlinear estimators of
abundances. A separate neural network with the following

structure was trained for every chemical species:

{ } ( )= nnonlinear dimensions , 512, 256, 128, 1 . A7z
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