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� Abstract
Cytometry by time-of-flight (CyTOF) has emerged as a high-throughput single cell
technology able to provide large samples of protein readouts. Already, there exists a
large pool of advanced high-dimensional analysis algorithms that explore the observed
heterogeneous distributions making intriguing biological inferences. A fact largely
overlooked by these methods, however, is the effect of the established data
preprocessing pipeline to the distributions of the measured quantities. In this article,
we focus on randomization, a transformation used for improving data visualization,
which can negatively affect multivariate data analysis methods such as dimensionality
reduction, clustering, and network reconstruction algorithms. Our results indicate that
randomization should be used only for visualization purposes, but not in conjunction
with high-dimensional analytical tools. © 2019 The Authors. Cytometry Part A published by

Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
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Single cell cytometry allows the detection of cell components in a high-throughput
fashion. One of its latest versions is Cytometry by Time Of Flight (CyTOF) (1). The
advantage of CyTOF compared to traditional flow cytometry is that high atomic
weight metal reporters typically not found in a biological sample are employed for
cell tagging, allowing the quantification of more than 40 cell parameters simulta-
neously. Such large number of parameters enables this technology to provide multi-
variate data sets with emerging properties that are well suited to advanced
computational analysis (2,3). For example, unsupervised learning techniques like
clustering and dimensionality reduction are typically used for cell phenotyping (4,5).
In combination with statistical tests or supervised learning approaches, these
methods are also employed for associating phenotypes or clinical outcomes to rele-
vant cell subsets or protein markers (6,7). Clustering and dimensionality reduction
are also commonly employed to visualize patterns in the data, marker relationships
in the high-dimensional space or the phenotypic progression trajectories of cell sub-
sets (8). Very recently, network–based methods have also been applied on CyTOF
data, for automatic cell population identification (9) and the prediction of protein
signaling networks using automated causal discovery algorithms (10).

Despite the accelerated development of CyTOF-dedicated analysis methods,
there is still no well-established data preprocessing consensus. This is mainly because
the preceding standardization of experimental procedures is still in its infancy
(11,12). In general, there are at least three distinct sources of technical variation in
CyTOF. The first is the drop in the instrument sensitivity and the change in oxida-
tion rate over long sample running times that causes signal fluctuations (13). Second,
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the instrument sensitivity across the mass range of measure-
ment that also varies between different instruments (14). Third,
is the interference artifacts (spillovers) between mass detection
channels (15). Even though these sources of variation have
been described, most of the developed preprocessing methods
are still immature. On the other hand, there are some tasks
that have been adapted from flow cytometry data analysis
workflows. One such task is data randomization whose purpose
is to transform discrete measurement values into continuous
ones in order to aid the visualization of bivariate distributions.
These plots are typically used for the manual assignment of
cells to cell types—better known as gating (16).

Any systematic effect of CyTOF preprocessing tasks to the
distributions of the measured quantities has been largely over-
looked, particularly randomization. This is also evident from
the fact that in the majority of publications, the randomization
settings are nowhere reported. As a result, the faithful repro-
duction of the true distributions in public data is problematic.
In turn, the proper functioning of high dimensional analysis
methods developed on the basis of randomized data is also
questionable, because their consistency rests in the assumptions
made about the underlying data distributions.

In this article we test and discuss the effects of usual
CyTOF data preprocessing strategies to multivariate analyses.
We focus on randomization, the only routinely used
preprocessing task which apparently has no theoretical or
practical justification for computational analysis. We employ
in-house generated CyTOF data and compare results from

several multivariate analyses, namely, dimensionality reduc-
tion, clustering, and network reconstruction (17), before and
after applying randomization. Our results show that randomi-
zation heavily influences the results of multivariate analytical
methods. Furthermore, publicly available CyTOF data sets
appear to typically provide solely randomized data, which
cannot be easily reverted to a non-randomized state.

MATERIALS AND METHODS

CyTOF Data Preprocessing: From Raw Data to Data

Ready for Analysis

Generating data regarding each cell is a quite complex process
in CyTOF that involves raw measurements’ calibration, noise
subtraction, and cell detection tasks (18). Figure 1A,B give an
outline of this process. In turn, Figure 1C–D show the
succeeding preprocessing tasks arranged in a typical order for
data bivariate visualization and gating. In more detail, raw
(.FCS) CyTOF data initially consist of count values that indi-
cate the abundance of each measured protein per identified
cell. Then, because of the signal decay over time, the first
preprocessing task one needs to perform is data normaliza-
tion (Fig. 1C). Finck et al. have shown that this is possible by
injecting control beads to each biological sample (13). On this
basis, there are currently two normalization approaches: the
method presented in Finck et al. and the Fluidigm normalizer
built into the machine dedicated software. Both approaches
assume that the decline in machine sensitivity is a linear func-
tion of acquisition time and, so, multiplying the data in each

Figure 1. Preprocessing roadmap for data visualization and gating. (A) In dual count calibration the intensity values are used to predict the

true ion counts. (B) To identify cells (called cell events), the counts are summed and smoothed. A cell event (blue curve) is found when the

run of smoothed counts is larger than the noise threshold (dashed line) for more than 10 (by default) consecutive time intervals. The dual

counts before a cell event (red curve) are regarded as background noise and used for (optional) noise correction. The green triangles

indicate the abundance of a marker in that specific cell event. (C) Normalization corrects for signal decay over large machine running times.

(D) De-barcoding de-convolves the multiplexed experiments according to a binary barcoding scheme. (E) Data rescaling is performed using

the arcsinh transform to bring abundance distributions to comparable ranges and reveal patterns in the data. Randomization is applied to

smoothe striation patterns in low abundance distributions. [Color figure can be viewed at wileyonlinelibrary.com]
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cell by a time-dependent global standard will be correcting
signal fluctuations. Their difference lays in that the former
employs the median bead counts as global standard calculated
across experimental files to perform separate or batch sample
normalization while the latter employs reference values
unique to each lot of beads, as determined by the device man-
ufacturer, and can only be applied on a per sample basis.

A second task is cell de-multiplexing and filtering if, for
improving the quality of the data, several experiments are multi-
plexed in one sample tube (Fig. 1D) (19). This task, also known
as debarcoding, is necessary not only because cells need to be
assigned back to the experimental samples they correspond to,
but also because contaminating cross-sample information such
as low signal debris and cell doublets need to be filtered out.

The third task is data rescaling transformation to allow
their adequate representation across the full range of abun-
dance values (Fig. 1E). In general, protein markers tend to
have strongly skewed distributions with varying ranges of
abundance. Therefore, the inverse hyperbolic sine (arcsinh),
adjusted by a co-factor of five, is most frequently used
because it serves as a linear transform to abundances in the
low range and as a log transform in the high range, with a
smooth transition between them (20).

Fourth is randomization that it is performed to avoid the
poor display of low abundance distributions (Fig. 1E). Essen-
tially, CyTOF data contain high numbers of zero and close to
zero counts. As a result, bivariate plots show large numbers
of points piling-up around integer values creating striation
patterns. In turn, cell populations become difficult to delin-
eate during manual gating. The purpose of randomization,
then, is to spread the abundance values so that data resolution
are locally enhanced. There are three types of randomization.
Type 1, that is to spread every count number x evenly in the
interval (x-1,x) by use of a uniform distribution. Type 2, that
is to substitute every value x with a random number drawn
from a Gaussian density with mean x and user-defined stan-
dard deviation σ. Type 3, that is to spread every zero count
by use of a random number generated using the negative
absolute value of the Gaussian with mean zero and user-
defined variance σ that is, abs(N[0,σ]). Currently, the device
software (version 6.7.1014) offers applying Type 1 randomiza-
tion right after cell detection (Fig. 1B) and either Type 1 or
Type 2, and Type 3 separately after normalization (Fig. 1C).
Its default setting is to apply Type 1 randomization in both
cases.

There are also some tasks that we did not mention in
detail. These are: (1) the preprocessing tasks for generating
the data regarding each cell from raw measurements, namely,
dual count calibration, noise subtraction and cell detection
(Fig. 1A, B); (2) the detection of dead cells and cell doublets
or debris, which are filtered out through manual gating, and
the detection of data discontinuities due to discontinuous
sample injections to the machine, which can be resolved by
data concatenation; and (3) two important methods for batch
effect removal (21) and spillover correction (22) that may in
the future become commonly employed but have not reached
that point yet.

CyTOF Data Type: The Effect of Randomization

From these pre-processing tasks, randomization is the only
one not justified by any need of correcting possible biases or
providing a more precise quantification. It is rather a heuristic
regularly used to assist cytometry experts in improving bivari-
ate visualizations during gating. This task, however, consider-
ably changes the underlying data distributions. Initially, the
raw data are count data. Normalizing the counts subtly
changes their form from count to discrete since each count
value is multiplied by a continuous correction factor. De-
multiplexing and arcsinh transformation preserve this form
as they act only as a filtering and rescaling function, respec-
tively. Randomization, however, dramatically changes the data
because it injects unnecessary noise, essentially transforming
the data from discrete to continuous. How this change affects
the output of downstream analyses has not yet been resolved
and a systematic investigation is required.

High Dimensional Analyses

We selected a set of multivariate computing algorithms widely
used for dimensionality reduction, clustering and network
learning. Specifically, we exemplify the effect of randomiza-
tion on linear and nonlinear dimensionality reduction by
principal components analysis (PCA), t-stochastic neighbor-
hood embedding (tSNE) analysis (23), an extension of PCA
known as joint and individual variation explained (JIVE) (24)
and multidimensional scaling (MDS). The first two methods
are typically used for visualizing high dimensional phenotypes
in two or three dimensions. PCA distills the high dimensional
space by linearly transforming the data to a new coordinate
system whose coordinates explain the variance of the data in
descending order. tSNE seeks a low dimensional representa-
tion of the data that best preserves their geometry in the high
dimensional space. On the other hand, JIVE is capable of
identifying the amount of joint and individual structure char-
acterizing two data matrices. Finally, MDS is used for measur-
ing the level of similarity between different data sets.

Since clustering is very important in automated cell pop-
ulation identification we also tested the effect of randomiza-
tion on the robustness of the deterministic spanning-tree
progression analysis for density-normalized events (SPADE)
algorithm and a meta-clustering approach (5,25). SPADE is
the best-known clustering approach in CyTOF while the
meta-approach was best performing in a recent review (5).
Both algorithms perform an over-clustering step. Their inter-
nal mechanics, however, differ. In brief, SPADE initially per-
forms a density-based downsampling such that the generated
subset of data potentially encapsulates all possible cell pheno-
types. Then, it groups this subset into cell types by applying
k-means or hierarchical agglomerative clustering. The gener-
ated clusters are finally linked and visualized by use of a
minimum-spanning tree. The meta-clustering, on the other
hand, is a two-stage process by which the data are mapped
onto a large grid of points using self-organizing maps (SOM),
first. Because this mapping displays emergent properties, one
can perform further clustering operations. Therefore, meta-
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clustering is performed that groups the points in the grid and
leads to a reduced latent feature space.

Lastly, we evaluate the effect of randomization on net-
work learning by employing three reconstruction methods,
namely, relevance networks (RNs), the graphical Lasso
(GLasso) method, and the really fast causal inference (RFCI)
algorithm (26–28). All methods accept as input a matrix
whose rows refer to sample data (i.e., cells) and columns to
measured quantities (i.e., markers), and provide as output a
graph whose nodes represent the cell markers. Their inner
operation, however, and network semantics largely differ.
RNs simply quantify the mutual association between each
pair of proteins. If sufficiently strong, an undirected edge con-
nects the pair in the resulting graph. GLasso attempts to des-
ignate the partial correlations between pairs of markers that
are significantly different from zero when conditioned upon
all others. The result is also an undirected graph whose edges
indicate that the association between the nodes cannot be
explained by other variables. Lastly, RFCI is a constraint-
based, causal discovery method. Initially, it builds an undi-
rected graph whose edges define pairs of variables that remain
associated after conditioning on any other possible subset.
Then, a set of rules is used to mark the endpoints of each
edge based on the possible causal nature of the relationship,
that is, presence of a causal effect, attributed to unmeasured
latent quantities or unresolved (29). The resulting graph is
known as maximal ancestral graph (MAG); interested readers
are referred to (30) for further information.

Evaluation Parameters

In our evaluations we used the same set of data on peripheral
blood mononuclear cells (PBMCs) obtained from a sample of
one healthy donor, before and after randomization had been
applied. Data were preprocessed having the automatic ran-
domization disabled. For data normalization we used the
algorithm of Finck et al. whereas to remove cell doublets and
dead cells, the data were manually pre-gated (Supporting
Information Fig. S13). Both Type 1 and Type 2 randomization
were applied on the data. For Type 2 randomization we
substituted every value x with a random number drawn from
a Gaussian density centered at x and a standard deviation of
1, which is the default in the device software. Then, each mul-
tivariate analysis algorithm was applied in turn on both ran-
domized and non-randomized data using its default input
parameter values. Prior to each analysis the data were trans-
formed using the hyperbolic arcsin with a cofactor of five. To
investigate the reasonable limits of the effect of randomization
we also employ data preprocessed for bivariate visualization
and gating as shown in Figure 1. For this, we applied Type
2 randomization with a standard deviation of 0.3. We will
refer to this randomization scheme as the maximal
randomization type.

Finally, to ensure reproducibility and comparability of
results no downsampling of cells was performed. In addition,
for the algorithms that are sensitive to random starts like
tSNE or meta-clustering, we defined the same random seed
before each run. Supporting Information Table S1 lists the

availability of software implementations; for more details, the
interested reader is referred to the corresponding manu-
scripts. Supporting Information Table S2 indicates the
markers used in each multivariate analysis.

Evaluation Metrics

The agreement between dimensionality reduction results was
determined by visual inspection of the respective low dimen-
sional geometries. For clustering results we applied each algo-
rithm once on each data set and used the adjusted rand index
(ARI) and the F1 measure. The ARI is the adjusted-for-chance
form of the RAND Index (31). The Rand index, itself, spec-
ifies the probability of agreement between two partitions and
is defined as the percentage of pairwise assignments that are
true (positive or negative). Because the chance of random
agreement can be high, the baseline can be nonzero. To estab-
lish a proper baseline an adjustment-for-chance is possible
assuming the generalized hypergeometric distribution as the
null model. After correction ARI values range between −1
and 1 where, 1 indicates total agreement between two clusters
and zero or less than zero indicates that the agreement is
equal or less than what is expected if the two clusters were
drawn at random. The F1 measure, on the other hand, quan-
tifies the overlap between two subsets. It is defined as the
weighted harmonic mean of precision and recall for a single
cluster. Here, precision measures the proportion of cells in a
randomized cluster that are comprised of cells from a non-
randomized cluster. Respectively, recall measures the propor-
tion of cells in the non-randomized cluster that were found in
the randomized cluster. The F1 measure ranges from 0 to
1 where, 1 indicates that the assignment of cells to a given
cluster is exactly the same with no false positive or false nega-
tive events. To match the original and randomized clusters
we used the Hungarian algorithm on the calculated F1 mea-
sures as in (32).

To evaluate the effect on network reconstruction results
we apply each algorithm in turn on all data sets and compare
the obtained networks in terms of number of different edges or
structural hamming distance (SHD) (33,34). The first metric is
suitable for algorithms that output undirected graphs i.e. RNs
and GLasso, while the SHD is devised for comparing causal
networks, by counting the number of modifications (removing
or adding edges, changing endpoints) needed in order to tran-
sit from one network to the other. The SHD reduces to the
number of different edges for undirected graphs.

Data set

Ethics statement
Anonymized healthy donor buffy coats were purchased from
the Karolinska University Hospital (Karolinska Uni-
versitetssjukhuset, Huddinge), Sweden. Research was per-
formed according to the national Swedish ethical regulations
(ethical review act, SFS no. 2003:460).

Cell isolation, culture, and storage
PBMCs were isolated from buffy coats by Ficoll-based density
gradient centrifugation according to standard procedures,
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followed by monocyte depletion through plastic adherence and
platelet depletion by low speed centrifugation. PBMCs were then
cultured in RPMI medium containing 10% FCS at 37�C/5%
CO2 and to boost intracellular cytokine expression, PBMCs were
stimulated for 4.25 h with Phorbol 12-myristate 13-acetate
(10 ng/ml; Sigma-Aldrich, St. Louis, MO) and ionomycin
(375 ng/ml; Sigma Aldrich) in the presence of the protein trans-
port inhibitor Brefeldin A (1x BD GolgiPlug, BD Biosciences).
Cells were harvested by centrifugation, washed with PBS, and
fixed using PBMC fixation/wash buffer set (CytoDelics AB)
according to the manufacturer’s recommendations. Subse-
quently, cells were washed in FCS, resuspended in freezing
medium (10% DMSO, 90% FCS) and cryopreserved until use.

Sample preparation for mass cytometry
Samples were prepared according to standard procedures by the
SciLifeLab National Mass Cytometry facility in Stockholm
(Sweden, http://cytof.scilifelab.se/). In brief, cells were thawed
using an automated system (Biocision) in RPMI medium sup-
plemented with FCS, penicillin–streptomycin and benzonase
(Sigma-Aldrich), following which cells were resuspended in
CyFACS buffer (PBS with 0.1% BSA, 0.05% sodium azide and
2 mM EDTA). After thawing, samples underwent barcoding, Fc
receptor blocking, surface marker staining, permeabilization,
intracellular cytokine, and DNA staining, and addition of EQ
Four Element Calibration Beads (Fluidigm) as described in (35).
Cells were acquired on a CyTOF2 (Fluidigm) mass cytometer,
CyTOF software version 6.0.626 with noise reduction, a lower
convolution threshold of 200, event length limits of 10–150
pushes, a sigma value of 3, and flow rate of 0.045 ml/min.

Mass cytometry antibodies
Purified antibodies were obtained as carrier protein-free for-
mulations and then coupled to lanthanide metals using the
MaxPar X8 antibody conjugation kit (Fluidigm Inc.)
according to manufacturer’s recommendations. Alternatively,
metal-conjugated antibodies were purchased from Fluidigm.
The antibodies used for this study are listed in Supporting
Information Table S2.

RESULTS

Randomization Is Commonly Used in Public Datasets

but Not in a Principled Manner

To show the widespread use of randomization, we surveyed
the 100 most cited works in the field that employed or devel-
oped multivariate algorithms and recovered all 15 of them
whose data are available online (see Supporting Information
Table S3 for respective citations). Supporting Information
Figure S1 displays visual proof of randomization in these data
sets, signifying how widespread randomization is in public
data. Most notably, none of the 15 publications explicitly
stated that the provided data underwent randomization. To
the best of our knowledge, the only non-randomized public
data set has been announced in (36), during the preparations
of this article.

Supporting Information Figure S1 also shows that there
is no consensus as to how and at which stage randomization
is applied. For example, although Type 1 randomization
seems to have been used in all data sets, in some of them ran-
domization may have been applied twice; probably before and
after normalization. To illustrate the lack of consensus fur-
ther, we plotted the density of abundance values around the
origin for one marker from each of these data sets.
Supporting Information Figure S2 clearly shows the large var-
iability in the application of data randomization by the
community.

Randomization Effect on Data Dimensionality

Reduction

For assessing the effect of randomization on dimensionality
reduction, we first performed PCA. Figure 2A illustrates the
cell densities in the first two principal components when the
original and randomized data are used. Any difference is
almost indistinct. However, the variance that the first two
principal components explain is low and no more than 40%
in all cases (Supporting Information Fig. S3). For this reason,
we explored for linear decomposition differences by jointly
analyzing the non-randomized and each randomized data sets
using JIVE. Figure 2B depicts the aggregate variance decom-
position of the non-randomized and randomized data. The
joint structure is only 60–65% in all cases. As expected, the
noise injected on the data by randomization causes the resid-
ual structure to explain between 27 and 32% of the variance
in the following sequence: Type 1 (27,6%), Type 2 (28.6%)
and maximal randomization (31.1%). At the same time, about
10% was attributed to the residual structure without randomi-
zation in all cases.

Figure 2C illustrates the similarity between the non-
randomized and randomized data sets based on the MDS of
the median marker abundance values. As expected, the data
sets where Type 2 randomization was employed are closely
placed. The first dimension (MDS1) separates well the two
randomization types indicating that the effect of randomiza-
tion is expected to be similar between the Type 2 and the
maximal randomization and different between the latter two
and Type 1 randomization. On the other hand, the second
dimension (MDS2) separates the non-randomized from the
randomized data signifying the existence of a randomization
effect as in Figure 2B.

To further investigate the effect on dimensionality reduc-
tion we performed a nonlinear analysis using tSNE.
Figure 2D shows the cell density in the low dimensional
embeddings generated by the non-randomized and random-
ized data. Although the embedding geometries are similar,
several differences can be observed. Most importantly, the
contour lines of the non-randomized embedding indicate
numerous local maxima implying that it may be capturing
more cell subsets than the randomized ones. To get a better
view of this, we overlaid the density of each marker on the
respective embedding geometries. All markers analyzed are
shown in Supporting Information Figure S4 wherein the dis-
tribution of protein abundances between all cases are
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Figure 2. Effect of randomization on dimensionality reduction. (A, B) Effect on linear dimensionality reduction. (A) Depicts the cell density

in the first two principal components when the non-randomized and randomized data are employed. Color-coding and contour lines

denote any difference when the two data sets are independently decomposed. The result from the joint decomposition is shown in (B),

where, the percentages of the variability attributable to joint, individual, and residual structure is illustrated in purple, blue, and green,

respectively. (C) Multidimensional scaling plot showing the similarities between the nonrandomized and randomized data sets. (D, E)

effect on tSNE analysis. (D) Depicts the cell densities when the original and randomized variable space is reduced down to two

dimensions. Color-coding and contour lines capture the local differences between the embeddings. For example, the more the number of

peaks in the embedding, the more cell populations it may be capturing. The columns in (E) depict the spatial distribution of four different-

sized groups on each low dimensional geometry. In particular, the color-coded abundance of the expression of CD3ε+ (large-sized group),

CD8α+ (medium-sized group), IFNγ+ (smallsized group) and CD161 (very-small-sized group) is shown. [Color figure can be viewed at

wileyonlinelibrary.com]
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comparatively displayed. A selection of them is shown in
Figure 2E; namely, CD3ε (general T cell marker), CD8α
(combined with CD3, a generic cytotoxic T cell marker),
IFN-γ (cytokine produced by subsets of natural killer
(NK) cells, NK-T cells (NKT), cytotoxic [CD8+], and helper
[CD4+] T cells) and CD161 (cell surface marker expressed by
most NK and NKT cells, but also conventional T cell subsets).
The first example in Figure 2E shows a large population such
as T cells (CD3ε+). As expected from Figure 2D, the density
of CD3ε+ cells in the randomized embeddings features seem-
ingly modest fluctuations compared to the non-randomized
one. However, in the maximal randomization setting subsec-
tions of high protein abundance are difficult to locate by
visual inspection. This happens because the injection of noise
widens the statistical distributions of abundance values caus-
ing the topological arrangement of cells in high dimensions
to become more homogenous. Therefore, fewer T cell subsets
(regarding CD3 expression levels) can be visually defined
from this low dimensional embedding, although the overall
structure to generally assign “T cells” by being “positive” for
CD3 (irrespective of the expression level) is similar in both
randomized and non-randomized cases. The second example
illustrates the impact on the delineation of cytotoxic T cells
(CD8α+CD3ε+). Here, a subset of cells from this population
appears to progressively detach, ultimately becoming a distant
neighborhood in the maximal case implying that these cells,
in high dimensions, share more characteristics with another
cell type. In many cases, such distinction is desirable and the
co-expression of IFN-γ and CD161, shown in the next two
examples, suggests that NKT cells may be one of these sub-
populations. However, the progression of the phenotypic rela-
tionships between immune cell types is not maintained here.
In addition, the overlap between the respective figures indi-
cates that not all cells belonging to the distant CD8α+ neigh-
borhood are CD8 NKT cells. In fact, a closer inspection
shows that this neighborhood is a mixture of CD8 NKT cells
and cells from other dimmer subpopulations that are shut
away. These complications do not appear in the non-
randomized case where a smooth phenotypic transition of
CD8 T cells is shown. A similar smooth transition is also
shown in Type 1 and Type 2 results. However, in the Type
1 case a subset of IFN-γ expressing cells appears to have been
separated from the rest. Another example where the study of
dim lymphocyte populations is complicated is shown by the
distribution of CD161. In the non-randomized case, as well as
Type 1 and Type 2 case, CD161+ cells appear as a phenotypi-
cally connected set of subpopulations extending to CD3/CD8
expressing cells and CD3 expressing and IFN-γ producing
cells. In the maximal case, however, CD161+ cells appear,
again, as two distant neighborhoods whose interpretation is
visually problematic.

Randomization Effect on Data Phenotyping

Figure 3 depicts the output of SPADE when the surface
marker data are employed and the desired number of clusters
is set to 300. The calculated values for the ARI are 0.124,
0.121, and 0.06 for Type 1, Type 2 and maximal

randomization while for the average F1-measure are 0.243,
0.237 and 0.13, respectively. Such low values indicate large
discrepancies between the randomized and non-randomized
input results. Because these low values may be somewhat
expected due to over-clustering, we also checked the effect of
the number of clusters on this metrics. Supporting Informa-
tion Figure S5 illustrates that in the range of 50–500 clusters
both indexes monotonically decrease starting with an F1 score
value of about 0.5 and for the ARI, 0.4. These results suggest
that randomization has a large effect on SPADE clustering.

As an example, Figure 3 illustrates the effect of randomi-
zation on SPADE analysis. On a cell population level,
Figure 3A displays the topological distribution of clusters for
five color-coded populations that we delineated from the
marker expressions shown in Supporting Information
Figures S6–S9; that is, CD3ε+CD8α− and CD3ε+CD8α+ T
cells; CD19+ B cells; CD11c+HLA-DR+CD3ε− Monocytes/
Macrophage/Dendritic cells; and CD161+CD3ε−HLA-DR−

NK cells. Each column illustrates the cluster topology for each
subpopulation when the non-randomized and randomized
data are used, respectively. Even in the case of just these five
broader populations, the F1 measure and ARI range between
0.94 and 0.87 (Type 1 randomization) to 0.87 and 0.77 (maxi-
mal randomization), respectively. Beside the discrepancies
indicated by the ARI and average F1-measure, several contra-
dictions are also visible by eye between the tree topologies.
Particularly, CD8α+ T cells appear phenotypically
uncorrelated to the rest of the T cells (CD3ε+CD8α−) when
the maximally randomized data are utilized, but not when the
non-randomized or Type 1- and Type 2-randomized data are
used. Interestingly, after Type 2 randomization the CD8α+ T
cells are split into two CD3ε+ branches. The fact that the right
branch is closer to the CD161+CD3ε−HLA-DR− NK cells
suggests that some of these clusters may denote CD8+ NK T
cells. Such phenotypically correct case, is not shown in the
non-randomized or Type 1 randomized case. On the other
hand, the number of clusters attributed to B cells (CD19+)
and Monocytes/Macrophage/Dendritic cells (CD11c+HLA-
DR+) are becoming drastically less as Type 1, Type 2 and
maximal randomization are applied, in favor of T cells. This
suggests that the chances of identifying interesting, rare sub-
populations between the latter two populations may become
lower when randomization is applied on the data. To examine
this, we show in Figure 3B the distribution of the expression
of a major marker related to each subpopulation. As expected
from Figure 3A, the resolution of B cells (CD19+) and Mono-
cytes/Dendritic cells (CD11c+) into subpopulations has
become particularly lower after randomization. Regarding
CD11c+ cells, in particular, one can potentially distinguish
Monocyte-derived Dendritic cells from other Monocyte/Mac-
rophage populations that also express this marker. When,
however, maximal randomization is applied this becomes
infeasible. Finally, in the case of dim markers like CD161 the
effect of randomization has an even stronger impact as the
levels of noise injected on its values induces a lot more clus-
ters all over the SPADE tree to have comparable expression
values compared to the original case, particularly after the
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Figure 3. Effect of randomization on SPADE analysis. Each subplot depicts five cell populations: T cells, CD3ε+ CD8α- (purple) and

CD3ε+ CD8α+ (orange); B cells CD19+ (blue); monocytes/macrophage/dendritic cells CD11c+HLA-DR+CD3ε- (yellow); and NK cells

CD161+CD3ε-HLA-DR- (green). The first row (A) illustrates the cluster topology for each subpopulation when the non-randomized and

randomized (Type 1, Type 2, and extreme) data are used, respectively. In (B) each row shows the distribution of the expression of a major

marker related to each subpopulation. [Color figure can be viewed at wileyonlinelibrary.com]
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maximal randomization. This, shows that the identification of
CD161+ cell subsets can become very complicated.

To illustrate this effect more quantitatively on a per
marker basis, we matched the clusters between the two results
and calculated the log2 fold-change in average marker expres-
sion per matched cluster. Supporting Information Figure S10
illustrates that the average abundance difference may vary
between one and eight on the log2 scale for many clusters and
markers in all randomization cases; especially for CD11c,
CD8a, CD3e, CD27, and CTLA-4. Similarly, to the previous
results, Type 1 randomization seems to have the less signifi-
cant effect. These results further suggest that randomization
has a major effect on the SPADE clustering results.

As a second example of the effect of randomization on
cell phenotyping we performed meta-clustering with SOM
on all lineage markers, as in SPADE. According to (37) the
strategy is, first, to perform SOM and over-cluster cells
around 100 grid points and, then, stratify them into
20 meta-clusters. Figure 4B shows the distributions of the
F1-measure and ARI after performing 100 repeats of this
procedure. These results show that the correspondence
between the non-randomized data and the Type 1, Type
2 and maximally randomized ones progressively drops. Par-
ticularly, we found that the average ARI was 0.83, 0.75, and
0.72 and the average F1-measure was 0.89, 0.80, and 0.78

after applying Type 1, Type 2 and maximal randomization,
respectively. Again, this shows that data clustering analysis
results may have strong differences.

To assess the meta-clustering further, we overlaid the
results on the tSNE plots shown in Figure 2D,E. Each point
in Figures 4A is color-coded according to matched meta-clus-
ters. As before, the geometry and topology of cells in large-
sized clusters are somewhat similar whereas smaller-sized
clusters show several discrepancies. As expected, the non-
randomized data generate clusters that can be visually sepa-
rated from each other conveniently allowing the exploration
of more cell subpopulations than in the randomized case. The
richness of biological information enclosed in the non-
randomized data is particularly shown by the fact that cells in
clusters 5 and 10 are each split into several sub-clusters at dis-
tant neighborhoods implying that they may enclose cells with
somewhat different marker profiles. In contrast, these sub-
clusters start converging to a single cluster after randomiza-
tion. For example, cluster 5 initially shows three subclusters
that become two in the Type 1 randomized case and one in
the rest. These mean that the original clusters capture infor-
mation about more than one cell subset and, hence, increas-
ing the number of metaclusters may leverage potential
subpopulations. Furthermore, cluster 5 encompasses 7.84% of
the total number of cells in the non-randomized case while,

(A)

(B)

Figure 4. (A) Depicts the clustering result using meta-clustering with SOM when the non-randomized and randomized data sets are

employed, respectively. Meta-clusters between the results are matched and each point in the graphs has been color-coded accordingly.

Some clusters (e.g. 5) are spread into more than one well-separated neighborhoods showing that this particular cluster contains

information about more than one cell subset. Such observation implies that the selected data stratification is not strong enough to

capture the full range of cell subsets. (B) Shows the distribution of the F1-measure and ARI after 100 repeats. [Color figure can be viewed

at wileyonlinelibrary.com]
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subsequently, it drops to around 2% after randomization
(see Supporting Information Fig. S11). This shows that ran-
domization causes the misplacement of cells into other con-
founded, large-sized clusters.

To evaluate the robustness of the effects of randomiza-
tion, we replicated two maximally randomized data sets and

performed both SPADE and meta-clustering analyses as
before. Selected results are shown in Supporting Information
Figure S14. In general, the F1 score and ARI values were
consistent among all replicates. Accordingly, SPADE and
meta-clustering outputs were robust to the randomness of the
artificial noise. Interestingly, the SPADE result using one

Table 1. Results of the network analyses. Different methods were applied for deriving networks from CyTOF data in two different

configurations, namely, non-randomized (NR) and randomized (R). For each case, method and configuration the number of detected

edges is shown. Differences between results in the two configurations are summarized as the total number of different edges, as well as

the number of edges found using one configuration but not in the other. Differences between networks are also quantified using the

structural hamming distance (SHD) metric (see text for details on this metric)

RANDOMIZATION METHOD NR EDGES R EDGES DIFFERENT EDGES NR EDGES NOT IN R R EDGES NOT IN NR SHD

RNs 195 192 3 3 0 3
Type 1 GLasso 167 163 4 4 0 4

rFCI 172 162 38 24 14 88
RNs 195 162 33 33 0 33

Type 2 GLasso 167 151 22 19 3 22
rFCI 172 154 46 32 14 109
RNs 195 133 62 62 0 62

Maximal GLasso 167 150 31 24 7 31
rFCI 172 172 64 32 32 132

Figure 5. Differences across the networks identified by GLasso using the non-randomized and Type 2 randomized configuration. Edges

found in both configurations are reported as solid, gray lines. A blue dashed line indicates an edge found in the non-randomized data but

not in the randomized ones; vice versa for the green dashed lines. [Color figure can be viewed at wileyonlinelibrary.com]
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replicate, correctly shows only two small subpopulations of
CD3ε+CD8α− and CD3ε+CD8α+ cells to be separated toward
NK cells CD161+CD3ε−HLA-DR−, in contrast to the other
replicate and the main result shown on Figure 3. This further
illustrates the uncertainty induced by randomization on mul-
tivariate cell phenotyping results.

Randomization Effect on Network Analysis

We also evaluated the effect of randomization on network
structure learning by employing the RNs, GLasso and rFCI
algorithms. Table 1 reports the results obtained by applying
each network reconstruction method on the non-randomized
and randomized CyTOF data configurations. The artificially
added noise obfuscates pairwise associations, leading the RN
method to identify in the randomized data only a subset of
the edges identified in the non-randomized data. The more
intense the noise, the higher the number of edges missed in
the randomized data. A similar trend is observed also for the
other two network analysis methods. Notably, randomization
not only obfuscates pairwise correlations but also creates
spurious associations in both GLasso and rFCI networks, as
indicated by the presence of edges detected in the randomized
data but not in the non-randomized ones. Finally, the SHD
is considerable higher than the number of different
edges for the rFCI networks, indicating a substantial number
of edges with wrong orientation in the networks from
randomized data.

Figure 5 graphically depicts the differences between the
GLasso networks identified in the non-randomized data and
in the randomized (Type 2 default) data. Common edges are
depicted with solid gray lines, while blue dashed lines indicate
edges identified only in the non-randomized data and green
dashed lines edges identified only in the randomized data.

DISCUSSION

Randomization Is Largely Overlooked by both Data

Analysts and Method Developers

CyTOF is a disruptive technology with great potentials but as
in any novel cell measuring method the standardization of
data quality control is a slow process. It is, however,
extremely important to reach to a consensus soon because
only in this way good quality data will be generated and, sub-
sequently, good quality computational algorithms will be
developed. Unfortunately, such discussion has attracted only
little attention. In fact, most CyTOF data prepreprocessing
tasks are currently heuristic with only few of them being
based on rigorous mathematical grounds. For example, cell
data generation from raw measurements is based on
arbitrarily selected switchover thresholds (shown in Fig. 1B).
Similarly, data transformation is based on an arbitrary chosen
co-factor that defines the range of values over which the data
are linearly or logarithmically rescaled, neglecting how this
may affect the statistical properties of each of the underlying
marker distributions. On the other hand, data normalization
has received some systematic investigation; however, the
choices for the analyst are limited to only two methods that

assume the noise is linear. Clearly, CyTOF data preprocessing
is still in its infancy and focused research on these issues is
urgently required.

Our main focus has been on randomization because it is
the only unjustifiable task for computational analysis. What is
alarming about randomization is that it is a heuristic
borrowed “as is” from flow cytometry data analysis practices
and is being applied by default by the device software. Despite
the fact that the software allows reprocessing of the raw data
files to remove or adjust various kinds of preprocessing, the
proper use of randomization has received attention by only a
small part of the community. Particularly, the effects of ran-
domization to CyTOF manual gating were discussed in a
Cytoforum (http://cytoforum.stanford.edu) post back in 2013
and also, briefly, in 2014 (38,39). Then, another post from
2015 in the same forum discussed about the problems caused
by the application of data randomization to multidimensional
analysis (40). However, the discussion did not reach to a clear
consensus rather to some arbitrary recommendations without
any strong proof. The general lack of awareness that probably
exists until today is seen in a more recent post from 2017
where the issue is brought up again because a clustering anal-
ysis generated some uninterpretable cell populations (41).
What is even more alarming is that despite these discussions
over the years the vast majority of high-dimensional algo-
rithms in the field have been developed based on randomized
data. This is reflected by our literature survey for the most
cited works that proves that public data sets have been ran-
domized in one way or another. One could argue that the
randomized abundances could be converted back to their
original discrete values if the randomization scheme is
known. In this way, the algorithms’ robustness against ran-
domization can be evaluated. To the best of our knowledge,
however, besides the normalization method and the rescaling
transform employed, the exact randomization settings with
which the publicly available data sets were preprocessed or
the assumptions under which the use of randomized data are
justified, are nowhere reported.

Randomization May Significantly Affect Downstream

High-Dimensional Analyses

We have demonstrated the effect of randomization on a wide
range of algorithms that are typically used for data visualiza-
tion, cell phenotyping, and the reconstruction of protein net-
works. In principle, randomization should have no noticeable
effect on bivariate visualizations used typically during gating,
other than alleviating the striation patterns. Accordingly, no
appreciable effect on descriptive statistics is expected assum-
ing that the number of data samples is large (e.g., number of
cells >10 K). For instance, assuming a large number of cells
Type 1 randomization will shift the data by an average of
−0.5 while Type 2 randomization will have no significant
effect. In contrast, as the number of cells drops, significant
discrepancies may appear. Our findings after applying three
different randomization strategies pointed out several signifi-
cant discrepancies in every analysis method when the non-
randomized or randomized data are used as input. Since any
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two configurations differ only on whether the randomization
was performed or not, any difference found in the results has
been due solely to the noise artificially introduced in the data
and does not reflect any underlying biological mechanism. As
expected, the Type 1 randomization we employed conferred
the smallest effect among the three cases we examined while
the maximal randomization case the largest ones. Regarding
maximal randomization, we should emphasize that
Supporting Information Figures S1 and S2 clearly depict that
there is no consensus neither as to what type of randomiza-
tion is typically used nor as to how many times it is applied
during data preprocessing. Therefore, even if the maximal
randomization is not default as Type 1 is, it stands as a rea-
sonable case to illustrate the limits of the potential effects.

Our results from linear dimensionality reduction using
PCA showed that the effect of randomization in data visuali-
zation could be somewhat small. However, a more detailed
analysis with JIVE revealed that the useful biological variance
of the data becomes considerably corrupted after any ran-
domization. In contrast to PCA, an MDS plot between the
median abundance values illustrated differences between not
only the non-randomized and the randomized cases, but also
between the different randomization strategies. Accordingly,
tSNE nonlinear analysis indicated considerable effects of ran-
domization on the topology of the low dimensional embed-
dings. On top of that, it showed that dim cell markers and
small-sized cell groups could be largely affected by this heu-
ristic rendering the stratification of the data into several cell
subsets difficult and the subsequent detection of rare cell sub-
populations potentially improbable. This fact is further
supported by the output of cell phenotyping using clustering.
SPADE analysis, in particular, showed that extensive random-
ization might severely confound the interpretation of the out-
put by corrupting the resolution of the data. Of note, is the
contradiction between the different randomization strategies
where the CD8α+ T cells get split into two branches raising
important implications regarding the recovered phenotypical
progression of cells. Similarly, meta-clustering revealed that
randomization may conceal important phenotypic informa-
tion required for further stratification of cells. Furthermore,
because the output of multivariate analyses can be sensitive to
random starts, we employed the deterministic version of
SPADE and specified the same random seed during meta-
clustering. However, randomization is by itself stochastic and,
hence, the output can also be sensitive to the randomness of
the added noise. Our results on replicate data sets have shown
consistent randomization effects both on the level of F1 score
and ARI and the potential misinterpretation of multivariate
cell phenotyping analysis.

Along the same lines, the networks identified from ran-
domized and original data are quite different. This is expected
because the negative effect of measurement error on network
reconstruction is well-known in the literature (42). The most
apparent effect is the attenuation of associations, resulting in
a lower number of detected edges in the randomized data
across all methods (Table 1). Another, more subtle effect is
the possible inflation of partial correlations. Two

measurements A and B may show a significant univariate
association |ρA, B|>0 which disappears when conditioning on
a set C of other variables, that is, ρA, B j C = 0. If measurement
error is added to the variables, the set C may not convey
enough information for explaining the correlation between A
and B, and a spurious correlation |ρA, B j C| > 0 may be
detected (43). In our experiments this effect is a probable
explanation for the edges detected in the randomized data but
not in the non-randomized by the GLasso and rFCI methods.
Some specific methods for correcting the effect of measure-
ment errors in network reconstruction have been recently
proposed (44,45) however avoiding the artificial introduction
of this type of noise remains of paramount importance.

Recommendations

We here have described current CyTOF data preprocessing
methodologies with emphasis on randomization. We showed
that this task corrupts the data in ways such that they lead to
unreliable biological inferences. The biological results we have
shown do not necessarily apply to all CyTOF data sets.
Rather, they are indicative of the minor and major implica-
tions that randomization may confer on the multidimensional
data analyses. On such basis, our recommendation is to avoid
as much as possible the use of randomization when analyzing
CyTOF data or when developing new multivariate analysis
tools. In general, to avoid potential pitfalls the systematic
study of all preprocessing steps is recommended. Another
recommendation we leave as future work, is to evaluate the
effect of randomization relative to sample-to-sample and lab-
to-lab variability (46). This variability is independent of the
noise injected by randomization. However, it would be useful
to examine the combined effect on the data and provide
means to control for it. Furthermore, a detailed assessment of
the steps prior to cell data (.FCS) processing is also required
in order to evaluate how standard practices may be affecting
downstream analysis.

Regarding the development of tools, we also recommend
that these should be taking into account the fact that CyTOF
data are initially count data or at least discrete and, so,
processing should take place under certain mathematical
assumptions. Finally, the importance of open-data policies in
life science is widely acknowledged, and their positive impact is
provably relevant (47). Thus, we recommend that scientific
works using CyTOF data should always provide their raw data,
along with a clear description of all preprocessing steps used
for their analysis, in order to ensure replicability, re-usability
and the correctness of future analysis. Scripts and data files to
reproduce the preceding results are available from GitHub
(https://github.com/mensxmachina/CyTOF-Randomization)
and FlowRepository (repositories FR-FCM-Z2ZW, FR-FCM-
Z24G, FR-FCM-Z28H).
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