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Abstract 

Industrial biotechnology is currently synonymous with heterotrophic processes 

that rely on bacterial, yeast, insect or mammalian cells to biosynthesise products of 

interest. Microalgae are of substantial biotechnological interest due their polyphyletic 

nature which grants them access to a wide array of high-value metabolites and their 

ability to grow under a variety of trophic strategies, including phototrophy. Despite 

significant process development and optimisation efforts, the full potential of these 

photosynthetic organisms has yet to be realised.  

One of the most impactful process parameters when cultivating microalgae is 

light. It is essential for phototrophic growth and remains highly influential on 

mixotrophic growth. Indoor cultivations relying on artificial light allow full control of 

illumination conditions. The advent of LED lights has lowered the costs and improved 

the flexibility of such installations. Specifically, the spectral composition of LED lights can 

be accurately and dynamically tailored to the needs of the culture. Spectral composition 

is known to exert regulatory control over the cell cycle and can affect the cell’s 

biochemical make up. 

The effects of illumination strategy on the model microalgae Chlamydomonas 

reinhardtii were characterised at three different levels (a) growth kinetics, (b) 

biochemical composition and, (c) transcriptional activity at key carbon nodes. To obtain 

the transcriptional data, RNA extraction protocols were compared and optimised. 

Additionally, a suite of candidate reference genes was validated to ensure accurate gene 

expression normalisation was possible in reverse transcriptase quantitative real-time 

polymerase chain reaction (RT-qPCR) studies. The growth kinetics and biochemical 

composition data obtained served as inputs for a previously published genome scale 

metabolic model. An algorithm was developed to approximate the default biomass 

composition in the model to experimental data in an effort to increase the fidelity of the 

simulations. The flux distributions obtained thereafter helped to describe the distinct 

metabolic fingerprints created under different trophic and illumination strategies. 
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Impact statement 

The research described in this thesis aims to serve as the baseline for both 

academia and industry and enable the incorporation of monochromatic illumination 

strategies in microalgal cultivation strategies.  

Given the drive towards high-value products from microalgae in the industrial 

biotechnology industry, the use of artificial illumination is destined to become more 

widespread. As such setting the baseline for the effects of narrow spectral band 

illumination on a model microalga like Chlamydomonas reinhardtii is bound to benefit 

future uses of artificial illumination in microalgae cultivation.  

The novel reference genes identified and validated to be stable across different 

colours of light and types of growth can now be used in future studies to understand the 

gene expression of C. reinhardtii when grown under different colours of light. This could 

help accelerate product development by uncovering previously unattainable insights. 

The biomass optimisation algorithm developed is applicable to any genome scale 

metabolic model and therefore its impact spread beyond the metabolic modelling of 

microalgae to that of any microorganism. As well as impacting industrial biotechnology, 

the algorithm can be used in human cancer models to improve the fidelity of disease 

evolution simulations and hence inform therapy development.  
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Nomenclature 

a Effective bandwidth lower limit (µmolph m-2 s-1) 

b Effective bandwidth upper limit (µmolph m-2 s-1) 

c Optimisation objective weight vector of a linear programming 

optimisation problem 

𝐶𝑎
𝑏 Effective bandwidth coefficient (µmolph m-2 s-1) 

Cc Carotenes concentration (µgCc mL-1) 

Chla Chlorophyll a concentration (µgChla mL-1) 

Chlb Chlorophyll b concentration (µgChlb mL-1) 

Cjh Stoichiometric coefficient of constituent j in experimental condition h 

(g gDCW-1) 

Ckih Sum of the stoichiometric coefficients of all constituents in a 

macromolecular group (g gDCW-1) 

Cs Substrate concentration (mmol L-1) 

Cx Xanthophylls concentration (µgCx mL-1) 

Eih Sum of macromolecular groups (g gDCW-1) 

gC Grams of carbon in metabolite (w/w)  

GCh Ghost carbon fraction in condition h (g gDCW-1) 

GCVih Proportion of GC in condition h attributable to Vih macromolecular 

group 

Gi See Ckih 

Gih,LB Macromolecular group h contribution to biomass dry weight, lower 

bound (g gDCW-1) 

Gih,UB Macromolecular group h contribution to biomass dry weight upper 

bound (g gDCW-1) 
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L(λ) Photon flux as a function of wavelength (µmolph m-2 s-1 nm-1) 

MWj Molecular weight of constituent j (mol g-1) 

qs Specific uptake rate of substrate (µmol 1000cells-1 h-1) 

rs Volumetric uptake rate of substrate (µmol L-1 h-1) 

S Stoichiometric matrix of a genome scale metabolic model 

TotalChl Total chlorophyll concentration (µgTotChl mL-1) 

v Flux vector of a genome scale metabolic model 

Vih Average quantity of macromolecule i in experimental condition h (g 

gDCW-1) 

vlb Lower bound for metabolic flux rate (mmol gDCW-1 h-1) 

vub Upper bound for metabolic flux rate (mmol gDCW-1 h-1) 

YC/NH4+ Observed yield of cells on ammonium (cells pmolNH4+ -1) 

YX/NH4+ Observed yield of biomass on ammonium (gX mmolNH4+ -1) 

Z Optimisation objective of a linear programming optimisation problem 

μmax Maximum specific growth rate (h-1) 
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CHAPTER 1 

Introduction 

The advent of modern industrial biotechnology was the latter part of the 20th 

century when advancements in fermentation technologies and recombinant gene 

expression techniques combined to enable the production of highly purified enzyme 

preparations in large quantities. Today industrial biotechnology is the cornerstone of 

the biopharmaceutical industry and it plays an important role in a wide variety of other 

sectors like agriculture, environmental remediation, specialty chemicals, detergents and 

textiles. Industrial biotechnology enables these sectors to implement green chemistry 

solutions and focus on corporate social responsibility. The combined revenues from 

industrial biotechnology operations across Europe and the US reached US$139 billion in 

2016 (EY, 2017) and the global market size of monoclonal antibodies alone is expected 

to reach between US$137-200 billion by 2022 (Grilo and Mantalaris, 2019). Continued 

growth and expansion of these sectors means opportunities in industrial biotechnology 

have the potential to become profitable investments.  

While mammalian and stem/T-cell culture systems are dominating the market in 

terms of annual revenue, shifts in legislation and the push towards a more sustainable, 

environmentally friendly economy have shifted focus towards crop, fungal and algae 

based processes (Gavrilescu and Chisti, 2005; Gupta, Sharma and Beg, 2013; Mohan et 

al., 2016). Microalgae are a highly diverse phylogenetic group of eukaryotic single celled 

organisms with photosynthetic capabilities (Blaby-Haas and Merchant, 2019) which can 

grow in culture with only light, water, CO2 and salts. Therefore, they represent an 

opportunity to cheaply produce many of the commercially relevant products derived 

from the industrial biotechnology sectors mentioned above.  

Mass cultivation research efforts have trended around whole biomass products 

for human consumption, biofuels and more recently high-value metabolites and 

recombinant proteins. Mainly industrial but also research efforts have veered away from 
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biofuels in recent years due to their low potential for short- and mid-term success 

(Majidian et al., 2018). Microalgae and products thereof are often touted as sustainable 

and renewable replacements for fossil fuel fractional distillation derivatives. Whilst this 

is in theory possible, staying true to environmentally friendly labels becomes 

increasingly expensive at the scales required for commodity products like biofuels, 

bioplastics, and whole biomass products. Operating industrial scale open systems 

increases the amount of concentrated CO2 required to sustain optimal levels in the 

culture and increases the risk of contamination. Additionally, the sustainability of the 

process can be questionable if an efficient nitrogen biofixation capacity is not co-

developed alongside the microalgal bioprocess in question (Chisti, 2013). Meanwhile, 

large closed systems incur added costs and the complexity of designing efficiently 

illuminated photobioreactors (Blanken et al., 2013).  In both types of system low yields 

lead to high water content that is energetically expensive to deal with in downstream 

processing (Fasaei et al., 2018). 

Although high bioprocessing costs might be prohibitive for the algae based 

production of commodity chemicals, other classes of products like high-value specialty 

chemicals, bioactive metabolites and recombinant proteins for industrial or 

biopharmaceutical applications are still actively pursued due to their excellent prospects 

(Dyo and Purton, 2018). However, these applications are still struggling to reach the 

technology transfer threshold required to leave the lab bench and reach industrial 

viability. Such barriers to profitability have been surmounted in other biotechnology 

sectors by incremental and disruptive developments alike. For example the monoclonal 

antibody (mAb) industry has grown exponentially since its inception by trending away 

from murine mAbs towards humanised, chimeric and fully human mAbs (Grilo and 

Mantalaris, 2019). More recently in the area of cell and gene therapy, two autologous 

chimeric antigen T-cell therapies are already being commercialised, but their 

manufacturing costs are prohibitive. To circumvent this, Phase I clinical trials for 

allogeneic therapies are underway and their promise to unlock economies of scale may 

enhance the prospects of this type of therapies (Panagopoulou and Rafiq, 2019). The 

near future of industrial production in microalgae may veer towards high-value products 

manufactured indoors at moderate scale where a high degree of control can be exerted 
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over the culture. This type of medium-scale manufacturing will benefit from advances 

in upstream bioprocessing control that enhance productivity. To that end, culture 

illumination presents itself as an easy to control critical process parameter that can be 

adjusted to influence microalgal physiology, gene expression and metabolism as 

desired. 

Artificial illumination is one of the main cost drivers in indoor closed systems 

(Blanken et al., 2013). Light emitting diodes (LEDs) are cheaper, more energy efficient, 

more durable, and offer a higher degree of design flexibility and control compared to 

fluorescent and halogen lamps (Schulze et al., 2014). Their advantages over traditional 

light sources make them a superior choice for indoor microalgae bioprocess 

installations. LEDs allow for simple control of intensity, spectrum and frequency of 

photons delivered to a photobioreactor. While pH and temperature can be controlled 

to a certain extent in closed photobioreactors, their narrow operating windows to 

maintain optimal biomass production levels leave comparatively less room for 

optimisation than light. Therefore, optimisation of LED illumination is essential to reap 

the maximum potential from microalgal cultures.  

The photosynthetically active radiation (PAR) region lies on the visible light portion 

of the electromagnetic spectrum between 400 to 700 nm. LEDs can produce narrow 

peak light with a spectral composition spanning < 10nm making it possible to study the 

effects of discrete portions of the PAR region on microalgae. Studies utilising 

monochromatic light and light blends to grow crop plants have shown that light 

spectrum has significant impact on plant morphology and growth (Pattison et al., 2018). 

Similarly, spectral composition has been shown to impact microalgae biochemical 

composition, morphology and cell cycle  (Oldenhof, Zachleder and Van Den Ende, 2004a; 

Baer et al., 2016; Wagner, Steinweg and Posten, 2016; Xu and Harvey, 2019b).  

The requirements of the industry, as well as the trends in upstream bioprocessing 

outlined above position LED illumination strategies as a crucial process parameter to 

optimise for cost-effective manufacturing of high value products from microalgae. Our 

understanding of metabolic responses to different illumination strategies is 

rudimentary, therefore the need arises to fully characterise the effects of 
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monochromatic illumination on the biochemical composition, gene expression and 

metabolic response of microalgae.  

1.1. Aim & Objectives 

The aim of this thesis is to characterise the effects of narrow band monochromatic 

illumination on microalgae under different trophic strategies. A combined experimental 

and modelling approach is utilised to develop understanding at the physiological, 

metabolic and gene expression level. The experimental data acquired are used to 

constrain a genome scale metabolic model that is used to analyse key differences in 

metabolic responses under the explored conditions. The results presented herein can 

be used to inform microalgal process design and optimisation efforts particularly around 

the benefits and trade-offs of wavelength customisation. 

The above aim has been broken down into a series of scientific objectives outlined 

below. 

1. Outline of relevant scientific literature (Chapter 2) 

The scientific literature relevant to the topics discussed in this thesis is covered 

in Chapter 2. The cellular biology of microalgae and phototrophic metabolism 

are introduced followed by the utilisation of artificial illumination in 

microalgae cultivation. Subsequently, metabolic modelling is introduced with 

a focus on stoichiometric models and microalgal applications. 

2. The effects of illumination and trophic strategy on cell physiology and 

biochemical composition in Chlamydomonas reinhardtii (Chapter 3) 

The microalgae Chlamydomonas reinhardtii is employed in Chapter 3 and the 

remainder of this thesis as a baseline for green microalgal physiology and 

metabolism due to its status as a model organism. Batch cultures of C. 

reinhardtii illuminated with white and monochromatic light emitting diodes 

(LEDs) are characterised. Two growth modes are studied: photoautotrophic 

and mixotrophic. Biomass productivity, nutrient consumption, cell size and 

macromolecular composition of the biomass are studied. The differences 
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identified from these analyses validate the original hypothesis that constant 

illumination with narrow wavelength LEDs has significant effects on C. 

reinhardtii physiology and metabolism. 

3. Development of reliable tools for the evaluation of key physiological 

differences at the transcriptional level in Chlamydomonas reinhardtii 

(Chapter 4) 

To obtain a deeper understanding of the physiological and metabolic 

differences observed in Chapter 3, these conditions were evaluated at the 

transcriptional level using reverse transcriptase quantitative real-time 

polymerase chain reaction (RT-qPCR). To enable this study, a robust RNA 

extraction protocol is developed and optimised. Additionally, ten candidate 

reference genes are evaluated for their suitability under the experimental 

conditions of Chapter 3. These tools are combined to obtain high quality RNA 

and perform high-fidelity RT-qPCR assays on four central carbon metabolism 

genes and an additional two genes with promoter and/or 3’/5’-untranslated 

region (UTR) previously utilised to express recombinant proteins in C. 

reinhardtii. These assays can be used as a proxy to study the carbon flux 

patterns in carbon fixation, the TCA cycle, the glyoxylate cycle and fatty acid 

synthesis under both autotrophic and mixotrophic conditions during the 

exponential growth phase of a batch culture. 

4. Model based analysis of the diverse metabolic phenotypes that arise in C. 

reinhardtii under a variety of trophic and illumination strategies (Chapter 5) 

In Chapter 5, a previously published genome scale metabolic reconstruction 

(GeM), iRC1080 (Chang et al., 2011) is utilised to perform a detailed analysis of 

the underlying metabolic reconfiguration/response required to enable/realise 

the macroscopic and transcriptomic changes observed in Chapters 3 & 4 

respectively. A key challenge that limits the use of GeMs to study diverse 

environmental and phenotypic conditions is their reliance on a predefined, 

fixed biomass composition which has either been derived under a very narrow 

set of experimental conditions or more frequently has been carried over from 
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a related organism. To overcome this key limitation, a novel algorithm is 

developed to fine-tune the biochemical composition of GeMs, based on 

proximal analysis data. This significantly increases the accuracy of GeMs when 

used to study phenotypically disparate conditions. Finally, a combination of 

Flux Balance Analysis (FBA), Monte Carlo sampling and Multivariate Analysis 

(MVA) techniques are employed to identify key metabolic differences between 

a set of diverse trophic and illumination strategies. 

5. Concluding remarks and future research directions  (Chapter 6) 

Chapter 6 contains a discussion summarising the main scientific outcomes of 

this thesis. Finally, a series of future research directions are proposed to build 

upon the knowledge gained herein. The value added of targeted metabolomic 

studies on a particular macromolecular group like lipids is discussed in the 

context of new illumination strategies derived from insights of this thesis. The 

application of the biomass optimisation algorithm developed in Chapter 5 to 

other microalgae GeMs is also posited. 
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CHAPTER 2 

Outline of relevant scientific literature 

A contemporary context for the original work presented in this thesis is set in this 

chapter through the critical review of relevant scientific literature. The foundations of 

microalgal physiology are discussed in section 2.1. An appraisal of microalgal cultivation 

modes with a focus on the effects of different illumination strategies serves to highlight 

the potential for light to be harnessed as a tuneable process factor to maximise 

bioprocessing objectives. Finally, in section 2.3 previous applications of microalgal 

constraint-based metabolic modelling and the insights this type of modelling can 

provide are discussed. 

2.1. Phototrophic cell biology 

Microalgae are responsible for ~50% of carbon fixation worldwide (Field et al., 

1998) and they occupy a wide variety of ecological niches, which has given rise to the 

over 40,000 published species, with at least the same amount thought to be 

undiscovered (Guiry, 2012). The massive phenotypic and genotypic diversity found in 

phytoplankton is explained by their evolutionary history. Ancestral prokaryotes with 

photosynthetic capabilities, known as cyanobacteria, mark the beginning of the journey 

towards contemporary photosynthetic diversity. They appeared in the early Proterozoic, 

circa 1.8 billion years ago and their photosynthetic mechanism remains essentially 

unchanged. The evolution of photosynthetic capabilities is postulated to have been 

propitiated, much like the advent of eukaryotes, from an endosymbiotic event (Martino 

et al., 2007; Merchant et al., 2007).  

In this case, endosymbiosis refers to the event where a unicellular organism 

absorbs another unicellular organism and the resulting entity displays physiological 

traits previously unique to each individual. According to this theory, primary 

endosymbiosis resulted in a primitive eukaryotic ancestor with photosynthetic 

capabilities. Further evolution resulted in four distinct phyla Chlorophytae, 



27 
 

Glaucophytae, Rhodophytae and Streptophytae (Figure 1.1). Meanwhile diatoms are 

postulated to have emerged from a secondary endosymbiotic event (Bowler, Vardi and 

Allen, 2010). 

 

Figure 2.1 Evolutionary relationships of the different microalgal lineages thought to have 

evolved from various symbiotic events. Example species belonging to each phylum are 

listed. (Adapted from Merchant et al. 2007). 

Cyanobacteria and the phyla that evolved thereafter can be classified by the 

membrane structure enclosing their photosynthetic apparatus. On one extreme, 

prokaryotes lack such structure and their thylakoid membranes are in direct contact 

with the cytosol, usually stretching along the geometry of the cell (Vothknecht and 

Westhoff, 2001). Glaucophytes are fresh water microalgae hypothesised to be in 

between cyanobacteria and eukaryotic photosynthetic organisms (Yusa, Steiner and 
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Löffelhardt, 2008). A peptidoglycan layer surrounds the cyanelle (Herdman and Stanier, 

1977), isolating it from the cytosol but not quite forming the so-called envelope found 

in red and green algae. Furthermore red and green algae each have characteristic 

thylakoid membrane topologies and light-harvesting pigment compositions (Wellburn, 

1987). 

Within this large diversity, Chlamydomonas reinhardtii is one of if not the most 

thoroughly studied species of eukaryotic microalgae (Harris, 2001; Pröschold, Harris and 

Coleman, 2005; Rasala and Mayfield, 2010). It was first described in 1888 (Dangeard, 

1888) and belongs to a subgroup of the class Chlorophyceae (Proschold et al., 2001). C. 

reinhardtii cellular structure and metabolism are reviewed in detail in the following sub-

sections. 

Cell structure 

Chlamydomonas species have two flagella that sprout from the anterior side of 

the cell and are connected to the basal bodies. They are equal in length and are crucial 

for the physiology and metabolism of the cell as they enable phototactic (Buder, 1919) 

and chemotactic (Ermilova, Zalutskaya and Gromov, 1993; Ermilova et al., 1996) 

responses. Without flagella, cells lose a major competitive advantage in the water 

column and cannot reposition to maximise light absorption or nutrient uptake 

opportunities. When grown on solid agar-media flagella may not develop however this 

key structural component is recovered when the cells are transferred to liquid medium 

(Harris, 2013). 

The extensive diversity of microalgal taxa is exemplified by the different types of 

cell walls that have evolved across them. For example, diatoms are covered by a hard 

shell composed primarily of silica (Finkel et al., 2005), whilst prasinophytes, a taxon of 

green marine microalgae are surrounded by thousands of scales primarily composed of 

neutral and acidic sugars (Domozych et al., 2012) and some species like Dunaliella salina 

lack a rigid cell wall completely (Oren-Shamir, Pick and Avron, 1990). The 

Chlamydomonas reinhardtii cell wall is composed of two types of crystalline 

glycoproteins, hydroxyproline-rich glycoproteins and glycine-rich glycoproteins 

(Goodenough and Heuser, 1985). Foundational studies spanning from the early 70s to 
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the 90s uncovered the structural make-up of the cell wall (Roberts, 1974; Adair and 

Snell, 1990). Although originally described as a seven layer ultrastructure (layers named 

W1-W7), it is now commonly accepted that the electron transparent layers W3 and W5, 

are spaces rather than true wall components. Nevertheless, the remaining layers are 

described with the original nomenclature. Hydroxyproline-rich glycoproteins are 

essential for correct assembly of the cell wall ultrastructure in C. reinhardtii as evidenced 

by a recent RNA interference study showing that silencing of a prolyl 4 hydroxylase gene 

resulted in a C. reinhardtii phenotype lacking layers W2, W4 and W6 (Keskiaho et al., 

2007). Wall-deficient mutants were first isolated in the 70s (Davies and Plaskitt, 1971) 

and have since become invaluable as they allow for the use of low-cost simple methods 

for recombinant DNA transfection (Kindle, 1990; Madagan, 1998).  

As all eukaryotic cells, C. reinhardtii cells have membrane bound organelles 

including a nucleus with a well differentiated nucleolus enveloped by a double 

membrane. The nuclear envelope is continuous with the endoplasmic reticulum where 

proteins are synthesized and one or several Golgi apparatuses are characteristically 

found in proximity as well (Harris, 2013).  
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Figure 2.2 Schematic diagram of the Chlamydomonas reinhardtii cell structure. Major 

organelles are labelled, and the inner cross section of the flagellum is detailed (From 

Merchant et al. 2007). 

The morphology of mitochondria varies depending on the growth regime the cells 

are subjected to, exemplifying the metabolic plasticity of this organism. Cells grown 

photoautotrophically, particularly  under continuous light, are more prone to develop 

elongated and connected mitochondria that differ from the classical small, single-unit 

organelle usually found in other organisms (Arnold and Schimmer, 1972). The classical 

morphology is more common in mixotrophically grown cells. Curiously mitochondria 

change morphology throughout the cell cycle. Small units come together to form 

elongated and branched mitochondria which diffuse to smaller units further along the 

cell cycle (Blank and Arnold, 1980; Gaffal, 1987).  



31 
 

Peroxisomes are a specialised type of organelle and play a central role in 

mixotrophic metabolism although their rigorous existence as specialised microbodies in 

C. reinhardtii had been a matter of debate until recently. Lauersen and colleagues (2016) 

identified the subcellular localisation of isoform specific enzymes for 5 out of the 6 

associated with the glyoxylate cycle (Lauersen et al., 2016). Fatty acid β-oxidation has 

also been shown to occur within C. reinhardtii peroxisomes (Kong et al., 2017). 

The number of peroxisomes per cell may vary with time and growth conditions but 

the number of chloroplasts per cell is always one. The chloroplast is a cup shaped 

membrane bound organelle which surrounds the nucleus. Like the nucleus the 

chloroplast membrane is an envelope formed by an outer and an inner membrane. The 

chloroplast lumen also known as the stroma contains soluble enzymes and chloroplast 

ribosomes. Three distinct elements can be found within the chloroplast lumen: the 

pyrenoid, the eyespot and several stacks of thylakoid membranes.  

The pyrenoid was thought to be composed of two enzymes (a) ribulose-1,5-

bisphosphate carboxylase/oxygenase large and small subunits (rubisco; rbcL; RBCS); (b) 

rubisco activase (RCA1) (Vladimirova, Markelova and Semenenko, 1982; McKay, Gibbs 

and Vaughn, 1991). Recently it has been proposed that a third protein component, 

Essential Pyrenoid Component 1 (EPYC1) is also present in relatively large quantities 

with ratios of ~1:6 and ~1:1 with rbcL and RBCS respectively (Mackinder et al., 2016). 

The fact that key structural components are still being discovered for such a prominent 

cellular component shows how much is still to be learned about Chlamydomonas 

reinhardtii and microalgal cell structure in general.  

The eyespot acts as a cell antenna and is directly responsible for co-ordinating 

responses to light like phototaxis. It is connected to the flagella at the distal extremities 

of the flagellar roots towards the central part of the cell. At least two layers of dense 

hexagonal pigment granules composed mainly of carotenoids and rhodopsins are 

intercalated by thylakoid membranes (Harris, 2013). The photoreceptors found in the 

eyespot are so sensitive that even absorption of single photons can cause changes in 

swimming direction (Hegemann and Marwan, 1988). Net positive and negative 

phototaxis can be observed in response to changes in the relative position of the light 
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source (Harris, 2001). The receptor responsible for phototaxis in C. reinhardtii is 

rhodopsin (Foster and Smyth, 1980) Interestingly a blue and red-light regulated 

photoreceptor protein, CrCRYa, has been recently discovered in C. reinhardtii (Beel et 

al., 2012). This newfound cryptochrome is the first evidence of red-light regulated 

metabolism in the model algae. The discovery of CrCRYa means other red light-regulated 

photoreceptors might yet remain undiscovered in C. reinhardtii. Such red/far-red light 

activated photoreceptors are typically referred to as phytochromes and are common in 

both higher plants like Arabidopsis thaliana (Clack, Mathews and Sharrock, 1994) and 

cyanobacteria like Fremyella diplosiphon (Wiltbank and Kehoe, 2016). 

Cell cycle 

Chlamydomonas reinhardtii is a haploid microalgae species with a nuclear genome 

made up of 17 chromosomes (Merchant et al., 2007; Blaby et al., 2014); it additionally 

has multiple copies of its single plastome chromosome in the chloroplast (Turmel, 

Lemieux and Lee, 1980). C. reinhardtii cells can exist in two distinct states, under nutrient 

replete conditions cells will be in a haploid vegetative state and reproduce by multiple 

fission (Bišová and Zachleder, 2014). Vegetative is commonly used to differentiate cells 

that are actively growing and dividing from inert spores. Under nutrient depleted or 

other harsh environmental conditions like extremely low temperatures, C. reinhardtii 

can form diploid zygospores that are able to survive extreme environments and ensure 

the future proliferation of the organism (Harris, Stern and Witman, 2009). C. reinhardtii 

zygospores must germinate into haploid gametes before sexual reproduction via meiosis 

can occur (see Beck and Haring, 1996; Umen and Goodenough, 2001; Suzuki and 

Johnson, 2002; Sekimoto, 2017). 

Cell proliferation in the experiments described in this thesis is assumed to be 

predominantly via multiple fission of vegetative cells and is described in further detail 

here. Multiple fission is comprised of 4 distinct phases namely, growth (G1), DNA 

replication (S), mitosis (M) and hatching (Figure 2.3). During G1, under optimal growth 

conditions, the C. reinhardtii cell volume can increase by more than 10 times (Cross, 

2020). Rapid transitions between the S and M phases lead to the production of a variable 

number of daughter cells, 2n where n is the number of complete S/M cycles, depending 
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on the final cell size at the end of G1.This means that a single vegetative C. reinhardtii 

cell can spawn 2, 4, 8 or 16 daughter cells.  

 

Figure 2.3 Overview of the Chlamydomonas reinhardtii cell cycle. A vegetative cell grows 

until it reaches a critical size and loses its flagella. After which it enters several cycles of 

DNA replication and cell division within a sporangium formed from the original mother 

cell’s cell wall. Once daughter cells reach a critical size the S/M cycles cease, flagella 

regrow and sporangin is released so the daughter cells can hatch. G1, growth phase; 

S/M, DNA replication / mitosis; H, hatching. 

The cell is said to reach a commitment point during G1 after which it will complete 

at least one S/M cycle. This cell cycle commitment point was speculated to be composed 

of a sizer mechanism preventing small cells from entering S/M phases and an 
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endogenous timer linked to the natural diel cycle (Donnan and John, 1983). However, 

more recent studies have shown the influence of light intensity and growth rate to be 

the driving factors behind the length of G1 (Matsumura, Yagi and Yasuda, 2003; Vitova 

et al., 2011). Therefore, the time-point considered as the commitment point and 

subsequent cell division are postulated to be independent of an endogenous timer. A 

mechanistic model proposed by Heldt and colleagues (2020) describes the effect of light 

extending the duration of G1 and vegetative cells as being either in a permissive or non-

permissive state for cell division (Heldt et al., 2020). Consensus with the model 

predictions has been found in a gene expression study looking at cyclin-dependent 

kinase and other classical cell-cycle regulator pathways (Cross, 2020). 

Interestingly, in both multiple fission and sexual reproduction, C. reinhardtii 

eventually loses its cell wall. In multiple fission this is caused at the end of the cell cycle 

when the daughter cells hatch out of the sporangium formed from the original mother 

cell’s cell wall. Sporangin is the enzyme responsible for the cell wall breakdown, localised 

to daughter cell flagella (Kubo et al., 2009). On the other hand, during sexual 

reproduction of C. reinhardtii gametes, gametolysin is released into the culture media 

by the microalgal cells promoting the shedding of the cell wall and aiding in the 

attachment of two gametes mediated by agglutinins (Matsuda et al., 1985). 

Cell metabolism 

Metabolism is the amalgamation of all the biochemical reactions occurring in 

tandem inside a living cell (Stephanopoulos, Aristidou and Nielsen, 1998). It describes 

(a) catabolism, the breakdown of molecules or molecular complexes into smaller 

molecules thus releasing energy, and (b) anabolism, the utilisation of lower energy 

molecules and the energy released by the breakdown of ATP to build higher energy 

more complex molecules like DNA, lipids, polysaccharides and proteins which make-up 

the biomass of living organisms. 

Chlamydomonas reinhardtii is a facultative phototroph species of microalgae. It 

can grow (a) autotrophically in light with CO2 as the sole carbon source, (b) 

mixotrophically in light with acetate as the main source of (organic) carbon and (c) 

heterotrophically in the dark with acetate as the main source of (organic) carbon. The 
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metabolic plasticity of microalgae makes them highly versatile microorganisms able to 

survive in a wide variety of environmental conditions. The following sub-sections detail 

the metabolic pathways that enable autotrophic and mixotrophic growth in C. 

reinhardtii and their connection to cellular physiology and biomass composition. 

Photosynthesis – Light dependent reactions 

Photosynthesis plays an important role in autotrophic and mixotrophic growth. It 

can be divided into two main stages (a) the light dependent reactions and (b) carbon 

fixation also referred to as the Calvin-Benson cycle. The three net products of the light 

dependent reactions of photosynthesis are oxygen, ATP and NADPH. Light is absorbed 

at the two types of photosystem (PS) found in the thylakoid membrane of the 

chloroplast, PSI and PSII. Photosystems are protein-pigment complexes made up of 

specialised proteins like light harvesting complex proteins (LHCPs), light harvesting 

pigments (chlorophylls) and accessory pigments (carotenoids). These components are 

assembled into peripheral light harvesting antennae that funnel absorbed light energy 

in the form of excited state electrons to the photochemical reaction centres of each 

photosystem. Excited electrons travel down the electron transport chain in the thylakoid 

membrane in either linear electron flow (LEF) or cyclic electron flow (CEF).  

Linear electron flow starts with absorption of photons by the proximal antenna 

complexes of PSII which funnel an excited electron to the primary electron donor P680 

forming the unstable form P680*. This form of the primary electron donor transfers a 

high-energy electron to the primary acceptor molecule pheophytin a which in a quasi-

instantaneous transition passes the electron on to a plastoquinone molecule at site QA 

and finally the electron reaches a plastoquinone molecule at site QB. Meanwhile the 

electron-deficient P680+ is reduced by the oxidation of water to O2 catalysed by the 

oxygen evolving complex (OEC). Once the plastoquinone at QB is fully reduced to 

plastoquinol, it leaves PSII and reaches the cytochrome b6f complex where it is fully 

oxidised, resulting in a net transfer of protons into the thylakoid lumen supporting the 

build-up of a proton gradient from the lumen down to the stroma. The electron donated 

from plastoquinol eventually reaches plastocyanin and/or cytochrome c6. Both these 

electron donors can release an electron to the primary electron acceptor in PSI, P700. 
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However, by the time the electron has travelled down the electron transport chain from 

PSII to PSI, it is at a lower energy state. Therefore, the electron transfer from P700 to 

ferredoxin is catalysed by the absorption of another photon. Ultimately ferredoxin 

enables NADP+ reductase to catalyse the reduction of NADP+ into the coveted NADPH, 

the source of reducing power required for inorganic carbon fixation (Figure 2.4A). Redox 

reactions throughout the electron transport chain produce a net accumulation of H+ in 

the thylakoid lumen. This H+ travels down a concentration gradient through ATP 

synthase driving oxidative phosphorylation. All in all, LEF produces ATP and NADPH in a 

2.6:2 ratio (Takahashi et al., 2013). 

Cyclic electron flow does not produce NADPH as the excited electrons at P700* in 

PSI are donated back to plastoquinone and the cytochrome b6f complex as opposed to 

ferredoxin (Figure 2.4B). Net ATP production is maintained as the redox reactions 

(upstream of PSI) responsible for the build-up of H+ are unaffected. This type of electron 

flow is controlled by the reducing potential of the chloroplast stroma. It can be thought 

of as a complimentary supply of ATP to the LEF derived ATP, completing the strict 3.2:2 

ratio of ATP:NADPH required by the Calvin Benson cycle (Takahashi et al., 2013). 

Additionally  and Environmental conditions like high light (Nama et al., 2019)  and lack 

of certain nutrients (sulphur –; phosphorous, (Kamalanathan et al., 2016))  cause 

reactions at the acceptor side of PSI to become limiting, triggering a large increase in 

proton potential within the chloroplast lumen. The excess H+ that is not ported through 

ATP synthase is instead employed in non-photochemical quenching of chlorophyll 

fluorescence (Peers et al., 2009), a photoprotective mechanism resulting in the de-

excitation of chlorophyll and overall reduced photosynthetic yield. CEF is also thought 

to have a regulatory role in hydrogen production as C. reinhardtii CEF-impaired mutants 

have been found to overproduce hydrogen under sulphur deprivation conditions in 

comparison to wildtype (Tolleter et al., 2011). 
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Figure 2.4 Schematic diagram of photosynthesis light dependent reactions. (A) Linear 

electron flow; (B) Cyclic electron flow. PSII, photosystem II; Pq, 

plastoquinol/plastoquinone; Cyt, cytochrome b6f complex; Pc, plastocyanin; PSI, 

photosystem I; Fd, ferredoxin. Adapted from www.khanacademy.com. 
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Photosynthetically active radiation (PAR) is comprised of the range of wavelengths 

within the visible light spectrum that can drive the light dependent reactions of 

photosynthesis (400 to 700 nm). The energy carried by a photon is directly proportion 

to its electromagnetic frequency (Equation 2.1) and can be calculated by Equation 2.2: 

𝑓 =
𝑐

𝜆
 (Eq. 2.1) 

𝐸 =
ℎ𝑐

𝜆
 

(Eq. 2.2) 

Where E is photon energy in W m-2; h is the Plank constant; c is the speed of 

light in a vacuum m s-1; 𝜆 is the wavelength in m; and f is the electromagnetic 

frequency of a photon in Hz. 

In terms of energy flux, photons with different wavelengths are different from 

each other (Equation 2.1 & 2.2). However, all photons in the PAR range can drive 

photosynthetic reactions therefore when referring to PAR range photons, 

photosynthetic photon flux (PPF, µmolph m-2 s-1) is the more common unit of measure. 

Although all photons within the PAR range can drive photosynthetic reactions, they are 

not all absorbed equally. For example blue photons (400-500 nm) can be absorbed by 

‘non-active’ secondary photoprotective pigments like the anthocyanins produced in 

deciduous trees’ leaves (Gould, 2004). In microalgae, carotenoids are very common 

secondary pigments that can absorb blue light. The efficiency of energy transmission 

between carotenoids and chlorophylls towards the photosystem reaction centres can 

be lower than between chlorophyll molecules (30-90% compared to up to 100%; (Cope, 

Snowden and Bugbee, 2014)). Such processes result in a loss of absorbed energy from 

blue light photons and therefore a lower yield on photon flux (YPF). Differentiating 

between absorbed photons of different wavelengths can be done by calculating the 

action spectrum of photosynthesis (rate of oxygen evolution divided by rate of rate of 

photon energy received; (McCree, 1971). To understand YPF for photons of different 

wavelengths, photon energy per wavelength and action spectrum can be combined with 

the absorption cross section of the microalgal cell (ax λ, Figure 2.5A).  



39 
 

The ax λ of C. reinhardtii grown in continuous turbidostat mode under different 

illumination conditions (1500 µmolph m-2 s-1 of Warm white-, yellow-, deep red-, orange-

red- and blue- light emitting diodes) has been shown to not vary significantly (Figure 

2.5B, (Mooij et al., 2016)). This suggests that under non limiting light the wavelength of 

absorbed photons is not of major importance in quantum terms. 

 

Figure 2.5 C. reinhardtii light absorption profile compared to LED illumination sources. 

(A) LED illumination sources of differing peak wavelength; (B) C. reinhardtii optical 

absorption cross section measured under different LED illumination sources during 

continuous turbidostat cultures at 1500 µmolph m-2 s-1). Iph/λ, normalised photon flux 

for each wavelength (µmol m-2 s-1 nm-1); ax λ, biomass absorbance cross section (m2 g-

1). Adapted from Mooij et al. 2016. 

Redox balance and photoprotective mechanisms 

Light-driven electron flux down the electron transport chain (ETC) of the 

chloroplast produces reducing power in the form of NADPH and energy-providing ATP 
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to power cellular activity. However, it also produces a dangerous by-product in the form 

of dioxygen which can receive energy from a chlorophyll molecule in its triplet excited 

state and become a harmful reactive oxygen species (ROS) molecule (S. K. Wang et al., 

2014). As ever, cellular homeostasis depends on the balance of interconnected 

metabolic processes functioning in unison. Under environmentally favourable 

conditions, the reducing power generated in the chloroplast ETC is used to power 

anabolic reactions and the redox balance of the ETC is maintained ensuring the 

clearance of dioxygen and ROS. However, the plastoquinone pool can become over-

reduced under unfavourable conditions, such as high light or nutrient deprivation, as 

the electrons produced cannot be unloaded leading to a stall in the proton gradient 

build-up across the membrane and no more ATP being produced (Allen, 2003). Such an 

over-reduced state can lead to the accumulation of harmful ROS and put the cell into a 

hyperoxidant state (Hansberg and Aguirre, 1990). 

Various cellular responses have evolved over time to maintain the redox balance 

in the chloroplast ETC under unfavourable conditions like nutrient deprivation and 

excess light. These include negative phototaxis, alternative electron flows, heat-

dissipation mechanisms known collectively as non-photochemical quenching, and 

production of antioxidants (all reviewed in Erickson, Wakao and Niyogi (2015)). Some of 

the cellular responses observed in the experiments presented in this thesis like the 

differences in cell size between illumination conditions may be explained as 

differentiation responses to avoid a hyperoxidant state and are further discussed in 

Chapter 3. 

Respiration via the mitochondrial alternative oxidase (AOX) forms part of such 

photoprotective mechanisms. It mediates non-energy conserving respiration by 

transferring electrons from ubiquinone directly to molecular oxygen (Finnegan, Soole 

and Umbach, 2004). It’s function in plants like Sauromatum guttatum is linked to 

thermogenic responses that help volatilise it’s scent to better attract pollinating insects 

(McIntosh, 1994). In plant pathogenic fungi like Botrytis cinerea it has been shown to be 

involved in virulence as well as vegetative development functions (Lin et al., 2019). 

Considering that AOX mediated respiration does not produce a net yield of ATP it can be 

seen as a wasteful sink of photosynthetically harvested electrons in microalgae. 
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However, it’s importance for photoprotection as a reducing power sink has been 

demonstrated in C. reinhardtii AOX mutants that struggle to survive under high light 

conditions (Kaye et al., 2019). In light of this information, photosynthetic efficiency 

optimisation efforts are better directed at the source of the problem, which is the 

oversaturation of the light harvesting apparatus, for example with reduced antenna-size 

mutants that have reduced specific light absorption capacity (Perrine, Negi and Sayre, 

2012). 

Carbon assimilation 

CO2 fixation is essential in autotrophic growth as it is the sole source of organic 

carbon required to generate new biomass. The ATP and NADPH produced in 

photosynthesis are the fuel molecules required to drive CO2 fixation in the chloroplast. 

This happens in the Calvin-Benson cycle and can be broken down into three stages 

(a)carbon fixation, (b) triose reduction and (c) ribulose bisphosphate (RuBP) 

regeneration.  

In C. reinhardtii mixotrophic metabolism, inorganic carbon fixation in the 

chloroplast is complemented by organic carbon assimilation by converting acetate to 

acetyl coenzyme-A (CoA). This can be achieved by two ways (a) in a single step via acetyl 

CoA synthetase (ACS) and (b) in two steps catalysed by acetate kinase (ACK) and 

phosphate acetyltransferase (PAT). Three isoforms have been found in C. reinhardtii; 

initially ACS2 located in the chloroplast (Terashima et al., 2010) and, more recently ACS1 

thought to be localised to the mitochondria exclusively and ACS3 located in peroxisomes 

(Lauersen et al., 2016). The strong evidence for ACS presence in the specialised 

peroxisomes suggests the single step conversion of acetate to acetyl-CoA via ACS is the 

preferred pathway for acetate assimilation in C. reinhardtii. Four out of the remaining 

five enzymes (citrate synthase, CIS2; isocitrate lyase, ICL1; malate synthase, MAS1, 

malate dehydrogenase, MDH) that make up the glyoxylate cycle were also localised to 

peroxisomes recently (Lauersen et al., 2016) cementing the centrality of the peroxisome 

in acetate assimilation. 

The glyoxylate cycle is a shortened version of the tricarboxylic acid (TCA) cycle 

where the two CO2 evolving steps (ketoglutarate to succinyl-CoA, Figure 2.6(3) and 
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succinyl-CoA to fumarate Figure 2.6(6)) and the linking reactions between them  are by-

passed to net a positive gain in organic carbon incorporated into cellular metabolism. In 

the glyoxylate cycle isocitrate is converted into glyoxylate and succinate (Figure 2.6(9)). 

The glyoxylate cycle can yield a succinate molecule for every two acetate substrates. 

Organic carbon assimilated as succinate is available for central carbon metabolism for 

example feeding into the TCA cycle as a substrate of succinate dehydrogenase (Figure 

2.6 (6)). 

 

Figure 2.6 Metabolic pathway diagram comparing the assimilation of uptaken acetate 

into central carbon metabolism via the tricarboxylic (TCA) cycle and the glyoxylate 

cycle. Orange arrows highlight reactions where acetate and or acetyl co-enzyme A are 

involved. Grey arrows highlight CO2 release. Purple arrows highlight the production of 

reducing equivalents NADH and FADH2. (A) acetyl Co-A synthase; (B) acetate kinase; 

(C) phosphate acetyltransferase; (1) citrate synthase; (2) aconitase; (3) isocitrate 

dehydrogenase; (4) α-ketoglutarate dehydrogenase; (5) succinyl-CoA synthetase; (6) 

succinate dehydrogenase (7) fumarate hydratase; (8) malate dehydrogenase; (9) 

isocitrate lyase; (10) malate synthase. 

Chlamydomonas reinhardtii is a facultative phototroph therefore it does not 

necessarily require light to grow if an organic carbon source like acetate is available. 
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Photosynthetic CO2 fixation and net O2 evolution are reduced in mixotrophic conditions 

as a metabolic re-configuration takes place and reliance on photosynthesis becomes less 

important for producing new biomass. Heifetz and colleagues (2000) observed a ~50% 

decrease in the fraction of carbon biomass resulting from photosynthesis when growing 

C. reinhardtii under saturating illumination conditions in the presence of acetate (Heifetz 

et al., 2000). The investigators found no decrease in PSII efficiency as measured by 

chlorophyll fluorescence indicating that the reduced O2 evolution observed in not 

necessarily due to a damaged electron transport chain; and more likely due to a 

reconfiguration of metabolism resulting in increased CEF (Chapman et al., 2015) in the 

presence of acetate. More recently, a study by Roach and colleagues (2013) employing 

spin-trapping electron paramagnetic resonance spectroscopy (Chapman and Dodd, 

1971) showed in-vitro and in-vivo that acetate treated PSII favoured direct non-radiative 

charge recombination events that cause photoinhibition and reduced O2 production 

(Roach, Sedoud and Krieger-Liszkay, 2013). Additionally, acetate conversion to acetyl-

CoA requires ATP and is therefore in direct competition with photosynthetic CO2 

fixation. Overall this metabolic plasticity and reconfiguration in the presence of acetate 

provide potential avenues for metabolic engineering to re-direct carbon flow towards 

biotechnologically relevant objectives like terpenoid (Wichmann, Baier, Wentnagel, Kyle 

J. Lauersen, et al., 2018) and recombinant protein (Fields, Ostrand and Mayfield, 2018) 

production. 

2.2. Microalgal cultivation 

Open culture systems 

Large scale microalgae culture systems fall into two main categories: open-

systems and closed-systems. Open-systems are based in natural water basins, artificial 

non-mixed ponds and artificial mixed ponds (circular / raceway ponds) and are almost 

exclusively installed outdoors. Raceway ponds are the most common open-system used 

in industry. Figure 2.7 shows the typical configuration of these systems. A closed oval 

shaped loop allows recirculation of the culture around the system. Culture depth is 

usually 100 – 300 mm (Williams and Laurens, 2010). In principle these artificial raceway 

ponds are a simple, relatively low cost option for large scale culture. However, the risk 
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of contamination limits the species that are suitable for this type of cultivation. Poor 

mixing results in sub-optimal light utilization and their open nature leads to massive 

evaporative losses. Illumination is dependent on sunlight which limits their geographical 

location and increases yield variability. Rainfall can also dilute nutrient and biomass 

content in the culture. Typically, CO2 demand is only met by atmospheric CO2, which is 

sufficient to sustain growth, but is nowhere near the optimum. Submerged gas spargers 

can be utilised to meet CO2 demand throughout the pond. 

Productivity is sacrificed in favour of lower capital expenditure costs and simplicity. The 

risk of contamination and the engineering barriers to controlling environmental 

parameters like temperature and mixing make this system unlikely to be worthwhile in 

the long-term. More modern iterations of the design improve power efficiency by 

replacing the paddle wheel with a propeller (Chiaramonti et al., 2013) or driving re-

circulation via aeration (Ketheesan and Nirmalakhandan, 2012). The low concentration 

of CO2 in atmospheric air (0.04% v/v) is limiting for microalgae growth. This has been 

proven by the use of industrial flue gas with a CO2 concentration (10% v/v) orders of 

magnitude larger than air successfully increasing CO2 fixation rates in open raceway 

ponds growing Chlorella vulgaris from 8.92 to 102.66 mg CO2 per litre per day 

concomitantly improving volumetric biomass yield by four fold (Yadav, Dubey and Sen, 

2020). Improved CO2 supply has also been engineered whereby the gas is pumped into 

a 1.5m sump in the pond and allowed to bubble towards the surface (Park, Craggs and 

Shilton, 2011). These improvements may drive down the cost per kilogram of biomass, 

but open-systems are still a long way away from providing the necessary control and 

Figure 2.7. (a) Medium scale raceway pond for research purposes (b) 

Cyanotech facility, Hawaii, USA. 
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reproducibility needed to make a robust bioprocess. This has proven to be acceptable 

for nutraceutical applications (see Chlorella sp, Spirulina platensis and Dunaliella salina) 

however as commercial applications of microalgae veer towards higher value products, 

and require highly controlled environments, closed-systems may be favoured by 

industry.  

Closed culture systems 

Closed systems are typically referred to as photobioreactors (PBRs). The main 

difference with open-systems is that the microalgal culture is not in direct contact with 

the atmosphere. This reduces the risk of contamination by preventing direct exchange 

with the surrounding environment. Open systems also require less pumping, this 

translates into lower power consumption costs and mitigates risk of biomass shearing. 

Different types of pumps have been found to have detrimental effects on biomass 

growth so the choice of pump is critical for success (Brindley Alías et al., 2004). Although 

PBRs are not insusceptible to contamination, their potential to remain axenic is a clear 

advantage over open-systems as it allows cultivation of non-extremophile species like 

C. reinhardtii which have shown promise in recombinant protein expression (Gimpel et 

al., 2015).  

PBR design categories are summarised in Table 2.1. PBRs can be made of glass or 

transparent plastic to allow light to travel through the reactor wall. The simplest design 

involves a polyethylene bag (sleeve) hung from a support. Mixing in these bags occurs 

by air bubbling. These are used in hatcheries and are also utilised by several companies 

involved in the nutraceuticals and cosmeceuticals industry (GreenSea, 2016; 

NOVAgreen, 2016). They are usually operated with some head-space where gas 

exchange can occur. PBRs can also be single phase whereby the whole reactor is filled 

with medium and gas exchange occurs in a separate gas exchanger. Lastly, mixing can 

be promoted by air bubbling as in sleeves or by a pumping system.  
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Table 2.1. Main design types of closed photobioreactors. 

 Category 

(i) Flat or tubular 

(ii) Horizontal, inclined, vertical or spiral 

(iii) Manifold or serpentine 

(iv) Hybrid 

(v) Floating 

(vi) Biofilm 

 

 

As well as offering a smaller risk of contamination, PBRs offer a highly controlled 

environment. Key operating parameters like temperature, ppCO2 and ppO2, pH and light 

intensity can all be controlled on-line and optimised for productivity. Conventional 

stainless steel vessels have a surrounding cooling jacket for temperature control. Due to 

the number of different PBR designs and their varied surface to volume ratios, there is 

no conventional way of controlling temperature. A common approach is to house the 

PBR in a greenhouse with appropriate air vents and a fan system that maintains a 

constant room temperature. Additionally, as demonstrated in a 5 m3 horizontal-tubular 

PBR operated in the south of France, temperature control systems can be linked with a 

water spraying system that nebulises water over the PBR achieving evaporative cooling 

(Muller-Feuga et al., 2012). Alternatively, partial immersion of a tubular PBR (25m3) in a 

temperature controlled water basin can be used to maintain a low  temperature as 

applied by the company Aquasearch in Hawaii, US (Huntley and Redalje, 2007). Internal 

heat exchangers can be used in flat-panel PBRs as shown by Tredici & Rodolfi (2004) and 

Hu & Sommerfeld (2010). 

Nutrient deficiency  

Inorganic nutrient deficiencies are employed in microalgal cultivations as a means 

to induce stress responses in microalgal cells that result in the accumulation of desirable 

molecules like triacylglycerides (TAGs) or photoprotective secondary pigments (J 

Msanne et al., 2012). Starving C. reinhardtii cells of nitrogen, sulphur, phosphorous or 

magnesium has been shown to trigger increased neutral lipid accumulation (Çakmak et 

al., 2014). Under industrial conditions, transesterification of these neutral lipids yields 
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two immiscible liquid fractions of glycerol and the methyl esters that can be further 

refined into biodiesel (Chisti, 2007).  

The field of microalgae-based biofuels traces its academic roots to the 1940s 

(Harder and von Witsch, 1942) and has certainly gathered a lot of attention throughout 

the past decades (Raheem et al., 2018). The spike in oil prices during the mid-2000s can 

be attributed as one of the causes for the large increase in venture capital and state 

funding available for biofuels research, particularly in the United States of America, 

where a plethora of companies were founded with the intention of commercialising 

microalgae-based biofuels (Su et al., 2017). However, commercial success has not yet 

materialised and many of these companies are now either defunct or have pivoted 

towards valorised biomass production and high-value products. A review on stakeholder 

outlooks concluded that many years of intensive research and a favourable investment 

environment are still needed to reach commercialisation (Oltra, 2011).  

A prolific researcher, Professor. Michael A. Borowitzka lamented the lack of 

learning from past failures exemplified in recent literature in his concluding remarks of 

a chapter detailing the history of energy from microalgae (Michael A Borowitzka, 2013). 

Ultimately, although inorganic nutrient deprivation is effective in triggering the 

accumulation of storage molecules, it has a negative effect on growth rate and biomass 

productivity, which is detrimental for commercial operations aiming at maximising 

productivity. With this in mind nutrient feeding strategies that maximise biomass 

production and are able to trigger the specific response required must be developed 

(Markou, Chatzipavlidis and Georgakakis, 2012).  

Another process parameter that has been shown to affect C. reinhardtii growth 

kinetics and cell morphology is pressure. Wagner and Posten (2017) found lower than 

atmospheric pressure conditions affected C. reinhardtii growth rate negatively, 

increased carbon dioxide uptake rates and did not discernibly affect oxygen production 

rates or cell viability (Wagner and Posten, 2017). These experiments were performed in 

the context of determining the suitability of C. reinhardtii as a source of oxygen during 

space missions. On a more down to earth note, the authors also investigated the effects 

of sudden pressure changes, in the range of 300 millibars, as might be experienced 
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during mass culture pumping in large scale installations. The lack of detrimental effects 

is promising for the use of C. reinhardtii in large scale industrial bioprocesses where the 

cells may traverse several pump-valve intersections. 

The effectiveness of employing stressful conditions to trigger the over-production 

of valuable metabolites in microalgae cannot be overstated. Although biofuels have not 

yet realised their commercial potential, other microalgal commercial ventures, 

particularly secondary pigment production, rely on successfully controlling such stress 

responses during upstream bioprocessing to maximise product yield. For example, 

natural astaxanthin is a coveted antioxidant for use in the aquaculture and nutraceutical 

industries. It can be produced, by many species of green microalgae under a plethora of 

different environmental stresses like high salinity and low pH (Orosa et al., 2001).  

The green microalgae species Haematoccocus pluvialis is a prodigious astaxanthin 

producer. The most suitable combination of environmental stressors has been 

demonstrated to be high light intensity combined with inorganic nitrogen deprivation in 

mixotrophic growth media (Orosa et al., 2001). A recent study by Focsan (2017) and 

colleagues has brought us a step closer to understanding the mechanism behind the 

unique photoprotective properties of astaxanthin. They used electron paramagnetic 

resonance (EPR) among other techniques to show the superior oxidation potential of 

astaxanthin and its esters compared to other carotenoids like β-carotene as well as its 

inability to aggregate in ester form (Focsan, Polyakov and Kispert, 2017). Although its 

photoprotective ability is unquestionable, research by Fábregras (2003) et al. 

demonstrated that the triggering factor for astaxanthin production is inorganic nitrogen 

deprivation and the resulting growth arrest. They suggested high light irradiance acts as 

a stimulant for nitrogen consumption, rather than a direct trigger of astaxanthin 

production. They also found that maximal specific astaxanthin level per cell was 

independent of cell density. However, the rate of astaxanthin accumulation was faster 

under high light conditions, indicating that astaxanthin accumulation rate is dependent 

on specific light availability (Fábregas et al., 2003). 

High light intensity can also be detrimental to microalgal productivity. For 

example, in the production of hydrogen with C. reinhardtii it was found that 300 µmolph 
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m-2 s-1 in combination with sulphur starvation were detrimental due to excessive 

photosystem II (PS II) photodamage, whereas a slightly lower light intensity of 200 

µmolph m-2 s-1 was optimal (Pyo Kim et al., 2006). The requirement of residual PS II 

activity during the anaerobic H2 production phase and its sensitivity to high irradiance 

explains the negative impact exerted by too much light (Antal et al., 2003). The 

synergistic and detrimental effects of high light irradiance in combination with other 

stressors, alongside its direct correlation with biomass productivity make light a complex 

critical process parameter (CPP). 

Illumination in closed culture systems 

Closed-system photobioreactors (PBRs) typically have higher capital expenditure 

costs than open cultivation systems. As such, they are not typically employed for 

commercial production of nutraceuticals except in heterotrophic fermentations for 

specialty ω-3 oil production (Winwood, 2013). However, closed PBRs provide a more 

controllable environment in which batch to batch variability and risk of batch failure are 

lower compared to open systems (Richardson et al., 2014). Due to the considerable 

innovation and engineering effort required to develop these systems, companies do not 

advertise their manufacturing set-up very often. However, a potential indicator of the 

recent increase in interest in these systems is the number of patents that mention them. 

A Google Patents® search for patents containing the terms “closed photobioreactor” 

found 3,054 results as of 02/02/2016. The same search, filtering results for patent 

priority date before 02/02/2010 found 1,603 results and only 149 results were found 

when filtering with a priority date of 02/02/2000. The exhaustive literature review 

performed in this work did not find any published experimental studies of large scale 

microalgae cultivation with artificial illumination. From a theoretical perspective, a 

published techno-economic analysis found the use of artificial illumination at 

commercial scale increases the costs by 25.3 $ kgDCW-1 (Blanken et al., 2013) and 

recommends to avoid artificial illumination except when producing exceptionally 

lucrative goods. A life cycle assessment comparing sunlight and artificially illuminated 

production of astaxanthin in H. pluvialis found that the increased productivity achieved 

with artificial illumination of flat panel bioreactors resulted in the bioprocess setup with 

the lowest environmental impact across all categories evaluated (Pérez-López et al., 



50 
 

2014). The lack of published materials in this topic does not invalidate the potential 

benefits and rewards to be reaped from optimising illumination strategy in microalgal 

cultivation as demonstrated by the flourishing of commercially successful vertical 

farming applications in the horticulture industry (Kalantari et al., 2017; Al-Kodmany, 

2018). 

Illumination customisation approaches 

The US food and drug administration’s (FDA) principles of quality by design (QbD) 

describe the criticality of product attributes and process parameters as a continuum 

rather than a binary state (FDA, 2011). These principles have been globalised by the 

international council for harmonisation’s Q8/Q9/Q10 directives (ICH, 2006, 2009b, 

2009a) and are a currently required for the successful development of any 

biopharmaceutical manufacturing process. The ICH Q8 directive defines critical quality 

attributes (CQAs) as “a physical, chemical, biological, or microbiological property or 

characteristic that should be within an appropriate limit, range or distribution to ensure 

the desired product quality” and critical process parameters (CPPs) as “a process 

parameter whose variability has an impact on a critical quality attribute and therefore 

should be monitored or controlled to ensure the process produces the desired quality”.  

This language is commonly used in the biopharmaceutical development space, but 

it can be applied to any bioprocessing project. Thus, the process parameters of a 

microalgal culture can be appraised too. The intrinsic connection between CQAs and 

CPPs means their number and criticality will be unique to each bioprocess. However, 

most if not all process parameters can be evaluated for their impact on CQAs of any 

product. The impact of certain parameters on product quality attributes has previously 

studied in a systematic manner. For example, the heat tolerance of photosynthesis at 

elevated temperatures (35-45°C) was studied in a C. reinhardtii mutant with impaired 

plastidic fatty acid desaturation properties (Sato et al., 1996). This study found that PSII 

in thylakoid membranes with a higher proportion of desaturated lipids had a higher heat 

tolerance than the wild type (Sato et al., 1996). The effect of temperature on lipid profile 

for biofuel production was studied in C. reinhardtii at temperatures ranging from 17-

38°C. and 32°C was found to produce the best lipid profile (James et al., 2013). The 
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effects of temperature fluctuation are of great importance in outdoor cultures. A review 

focusing on the effects of global warming across different potential microalgal 

cultivation sites was written by Ras and colleagues (2013). The effects of pH on hydrogen 

photoproduction were studied in sulphur deprived C. reinhardtii cultures between pH 

6.5 – 8.2. The optimum pH for H2 evolution was 7.3-7.9 and it coincided with the optimal 

pH for residual activity of PSII, essential for H2 production. A wide range of pH values, 

from pH 5 – 10, was tested for growth and lipid accumulation in the marine microalgae 

Nannochloropsis salina and pH 8 and 9 were both found to be equally good (Bartley et 

al., 2014). On the other hand the fresh water species Chlorella sorokiniana was found to 

have the highest growth rate and lipid profile for biofuel production at pH 6 (Qiu et al., 

2017). 

This thesis argues that light should be considered as a CPP of all microalgal 

manufacturing bioprocesses operated in autotrophic or mixotrophic mode. Its 

essentiality to drive photosynthetic reactions and enable inorganic carbon fixation 

makes it all important. Additionally, it is a very complex parameter as it is multifaceted 

with many important aspects to be taken into account. Photon flux density also called 

light intensity is one of the most commonly studied attributes of light with respect to 

microalgal cultivation. Light dark cycles have been studied in terms of diel cycle, which 

is the portion of time over a 24 hour period that the culture is illuminated or left in the 

darkness, and in terms of flashing light, when light dark cycles are continuous at a high 

frequency. Finally, light spectrum customisation is achieved with light filters or artificial 

light sources like LEDs and serves to control the wavelength of photons reaching the 

culture. The following subsection summarises studies found in the literature for each of 

these attributes with a specific focus on light spectrum customisation. 

Photon flux density (PFD) commonly referred to as light intensity has a big 

influence on the light distribution within a photobioreactor. Light intensities reported in 

literature span a wide range from low light conditions at 50 µmolph m-2 s-1 (Wagner, 

Steinweg and Posten, 2016)to high light conditions of up to 2500 µmolph m-2 s-1 (S. K. 

Wang et al., 2014). Generally as light intensity increases so will microalgal growth rate 

up to a saturation point, after which further increases in intensity will have no effect on 

growth rate (Carvalho et al., 2011). Conversely, extremely high light intensities can be 



52 
 

detrimental to growth due to photodamage of the chloroplast ETC and chloroplast ETC 

over-reduction, although the deleterious effects of high light are mitigated in 

mixotrophic conditions (Fischer, Wiesendanger and Eggen, 2006). Increasing light 

intensity has been found to shorten the duration of the cell cycle of C. reinhardtii from 

73 to 10h and the average number of daughter cells per mother cell increased from 2 to 

14 (Bonente et al., 2012). 

Diurnal cycles have profound evolutionary links with microalgal metabolism due 

to natural sunlight day/night cycles. A transcriptomic study of C. reinhardtii with samples 

taken every 3 hours of a 12/12 light/dark cycle revealed close correlation of at least 80% 

of measured transcripts from all parts of cellular metabolism with the light dark period 

(Zones et al., 2015). The differences between light/dark cycle and constant illumination 

strategies have not been systematically studied in C. reinhardtii from a bioprocessing 

perspective. A study on Neochloris abundans concluded that the cell cycle 

synchronisation provided by cultivation in a constant length light/dark cycle was 

beneficial to biomass accumulation (de Winter et al., 2017) although a higher amount 

of starch per gDCW was found in continuously illuminated cultures probably due to the 

lack of dark phase oxidative respiration. Different lengths of light/dark cycle durations 

were investigated in Tetradesmus obliquus. Cell division was again synchronised by the 

light/dark cycle however it was not affected by the length of the light phase as cell 

division was found to start ~14 hours after the start of the day regardless of the length 

of the day .(León-Saiki et al., 2018) 

Narrow wavelength illumination 

The effects of spectral composition on microalgal physiology have been reported 

for a variety of species. An obvious candidate for this area of research is H. pluvialis due 

to its overproduction of astaxanthin under stress (Fábregas et al., 2003). This red 

microalga was cultivated in a two-stage continuous light regime with red LEDs employed 

during the growth phase and a switch to blue LEDs used to induce astaxanthin 

production once the required biomass concentration was reached (Lababpour et al., 

2004). In 55 mL cultures, at an incident light intensity of 3.8-12 µmolph m-2 s-1 this two-
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stage illumination strategy demonstrated the potential of light quality control during a 

bioprocess to easily have a major impact on culture productivity.  

Another natural candidate for spectral composition experiments is Dunaliella 

salina which similarly to H. pluvialis can overproduce a valuable antioxidant, β-carotene, 

when placed under stressful culture conditions (Borowitzka and Borowitzka, 1990). D. 

salina cultures grown in nutrient replete media and illuminated with high intensity red 

light (1000 µmolph m-2 s-1) grow at the same rate as white and blue light illuminated 

cultures and yield a higher β-carotene content (Xu and Harvey, 2019a). D. salina 

naturally produces two stereoisomers of β-carotene, an all-trans form, and a 9-cis form 

with much higher antioxidant activity making it more valuable for pharmaceutical 

applications. The 9-cis:all-trans β-carotene ratio has been found to be  5 times higher 

after 48 hours in red light illuminated cultures compared to blue light illuminated 

cultures (Xu and Harvey, 2019b). The influence of red light on β-carotene production 

and isomerisation is hypothesised to be effected by red light controlled phytochrome 

regulation of phytoene synthase and β-carotene isomerases (Xu and Harvey, 2019b). 

Rather than focusing on a single light wavelength, some spectral composition 

studies have explored the effects of light combinations on microalgal physiology. Baer 

(2016) and colleagues mixed red, green and blue LED lights in different proportions, at 

a constant photo flux of 100 µmolph m-2 s-1 to explore 15 unique spectral compositions 

and their effects on the biomass productivity of C. reinhardtii. Additionally, 

phycobiliprotein production in Galdieria sulphuraria and Porphyridium purpureum was 

also recorded. As expected from such an array of species, the optimum light blends for 

biomass productivity were different for each of them. The optimum red:green:blue 

(R:G:B) light ratio for C. reinhardtii was reported to be 80:10:10 and the biomass 

productivity rate under this spectral composition was 176% better than a 20:40:40 

control. Interestingly the optimal R:G:B light ratio for biomass productivity matched the 

optimal R:G:B light ratio for phycobilin production in P. purpureum  but not in G. 

sulphuraria (Baer et al., 2016). Matching the optimum conditions for biomass 

production with those of the product of interest is a great step towards maximising 

bioprocess yield. 
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Red and blue light blends were compared to white, red, blue and green LED 

illumination conditions in a study that calculated photo conversion efficiency (PCE) in C. 

reinhardtii phototrophic cultures illuminated at different photon flux densities (Wagner, 

Steinweg and Posten, 2016). The authors found the highest PCE was achieved with a 

90:10 ratio of red light photons to blue light photons at the lowest photon flux density 

used in the study 25 µmolph m-2 s-1. Additionally, the authors found 150 µmolph m-2 s-1 to 

be saturating for the photosynthetic apparatus of the microalgae, causing PCE values to 

be very similar between the different illumination conditions tested (Wagner, Steinweg 

and Posten, 2016). Although the study found significant differences in cell size and 

pigment composition between the different illumination conditions, the same calorific 

value was attributed to all conditions for the calculation of PCE. The results might 

therefore not reflect the true energetic value of the biomass under different light 

conditions given the plasticity of macromolecular biomass groups in microalgae.  

An alternative approach for correlating biomass productivity to biomass specific 

light absorption in C. reinhardtii cultures was taken by de Mooij (2016) and colleagues. 

Their continuous culture turbidostat approach tested different monochromatic lights at 

a fixed light intensity of 1500 µmolph m-2 s-1, where the dilution rate was a function of 

light intensity transmitted through the culture. By maintaining the biomass 

concentration in the reactor high enough that the transmitted light intensity remained 

constant at 10 µmolph m-2 s-1, they ensured the rate of photosynthesis was maintained 

higher than the rate of respiration in the cell culture. This is known as the photosynthetic 

compensation point and ensures maximal photosynthetic productivity can be achieved 

(Takache et al., 2010). Their results show that yellow light had the lowest biomass 

specific light absorption rate , hence the lowest amount of light energy dissipation as 

heat, and it resulted in the highest biomass productivity (Mooij et al., 2016). White light 

showed very similar absorption efficiency and biomass productivity as yellow light. 

Meanwhile, red and blue monochromatic lights resulted in the lowest biomass 

productivity figures. This was attributed to their high biomass specific light absorption 

rate leading to oversaturation of the photosystems and a waste of absorbed light energy 

dissipated as heat (Mooij et al., 2016). Interestingly, the dilution rate for blue light was 

the highest even though biomass concentration remained low, indicating a very low PCE 
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under those illumination conditions. The authors hypothesise that different colours of 

light can be effectively used to control the degree of over-saturation in a microalgal 

culture, preventing extensive photodamage and maximising biomass productivity. 

2.3. Metabolic modelling 

A cell culture process is comprised of at least two interacting systems: the cell 

population and the medium it is growing in which is effectively the surrounding 

environment. These two systems interact with each other making cell culture processes 

very complicated. The cell population is composed of a heterogeneous mixture of cells 

at different stages of the cell cycle. Within each individual cell, homogeneity is not 

guaranteed as metabolites will have particular localisations. In microalgae, the 

chloroplast is a large, membrane rich organelle which is typically localized at one pole of 

the cell as found in C. reinhardtii; making one pole of the cell rich in membrane lipids 

whilst the other pole may house the nucleus and its dense mixture of nucleic acids. 

Catabolic and anabolic processes consume substrates and produce secondary 

metabolites and heat respectively. Thus, over time, the cells affect the extracellular 

environment and medium composition. Substrate consumption may affect an acid-base 

equilibrium in the medium which in turn has an effect on medium pH and consequently 

cell growth kinetics. An example of this is when ammonium is used as the nitrate source 

in microalgal media. Ammonium uptake results in a decrease in pH in non-adequately 

buffered media (Scherholz and Curtis, 2013). Many biochemical interactions occur inside 

any given cell at any moment in time. These are coupled to regulation and control 

mechanisms, increasing the complexity of the intracellular environment even further. 

These mechanisms allow cellular adaptation to change in the environment further 

increasing the heterogeneity of the system.  

The cellular environment is not simple either. It may be comprised of several 

phases, has a changing chemical composition over time and its temperature, pH and 

rheological properties are subject to change too. The medium can consist of two 

immiscible liquid phases or, more typically, a liquid phase with gas bubbles running 

through it. The medium’s composition varying over time can also be due to reactions 

between accumulated products and other media components. Viscosity also plays an 
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important role in high cell density cultures where gas mass transfer may be negatively 

impacted as the culture progresses. Due to reactor geometry and mixing, local 

environments may exist within the reactor. These local environments will impact cell 

growth kinetics differently than the bulk of the medium. As PBR design is not 

standardised and all closed systems have a degree of customisation, particular growth 

regimes may not be reliable across designs.  

Complicating things further, microalgal cell culture processes have an additional 

factor to take into account that is not required for heterotrophic cultures: light. Under 

nutrient saturation conditions, light can become a limiting factor for microalgal 

productivity (Kirk, 1994). Light intensity is quantitatively described as photon flux 

density (PFD), measured in 𝜇𝑚𝑜𝑙 of photons. m-2. s-1. It can negatively impact 

productivity at both extremes of the intensity range. An early description of the 

relationship between light irradiance and specific growth rate μi by Goldman (1979) 

concluded that PFDs below the compensation light irradiance point (Ik / Ic depending on 

publication) are not sufficient for CO2 fixation and cell maintenance, thus stunting 

growth. At the other end of the spectrum, when irradiance is very high, photo-inhibition 

can cause overproduction of O2 free radicals and cellular damage (Belay and Fogg, 1978).  

As mentioned above, local environments with sub-optimal conditions may form 

within the PBR and light is no exception. Even with relatively short path lengths, self-

shading becomes an issue in PBRs as the cells closer to the surface absorb most of the 

incident light thus creating an inwards light gradient that finishes with a virtually dark 

zone at the end of the light path. This light gradient and its effect on photosynthetic 

efficiency (PE) must be accurately described in the model with appropriate 

mathematical expressions to ensure model accuracy.  

The previous paragraphs aim to illustrate the complexity of cell culture processes 

and the interactions between their different systems and factors. Given their 

complexity, it is not trivial to attempt to describe them mathematically in full detail. 

Therefore, assumptions and controlled parameters are used to simplify them into more 

tractable mathematical problems. 
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Models describing cellular processes were classified by Fredrickson et al. (1970) as 

having structure or lack thereof, and being segregated or unsegregated, thus creating 

four sub-categories. Structure can describe both the physical and biochemical 

properties of the system being modelled. The cell can be physically structured by 

compartmentalisation of processes for example localizing particular reactions to their 

respective organelles. Biochemical structure is understood as the description of the cell 

contents as varied biochemical species that react with each other to form other species. 

Segregated models account for the heterogeneity encountered in cell populations 

(Bertucco et al., 2015). On the other hand, unsegregated models treat all cells as equals 

thus veering towards the “average cell” definition model (Schuetz, Kuepfer and Sauer, 

2007).  

Such biological models can also be discretised into stochastic or deterministic 

models and static or dynamic models. A model is considered stochastic when its inputs 

take into account the inherent variability of the modelled system through a probabilistic 

distribution. On the other hand, deterministic models rely on experimentally verified 

cause and effect relationships and therefore tend to be limited towards the most 

probable outcomes. Static models employ algebraic equations to describe cellular 

processes as they are at a particular instance in time whilst dynamic models are formed 

by a series of differential algebraic equations that can be resolved over time. Overall, 

dynamic models can account for the kinetics of a biological system over time but are 

more computationally demanding than static models. 

The various mathematical approaches developed to model cell culture processes 

are briefly reviewed in Table 1 of Bordbar et al., (2014). Constraint based modelling is 

the main focus of the remainder of this chapter as it was employed to characterise the 

impact of different illumination and trophic strategies on the metabolic phenotype of C. 

reinhardtii. 

2.3.1. Constraint based modelling – Flux balance analysis 

The type of metabolic modelling performed in this thesis is flux balance analysis 

(FBA), a constraint based modelling approach used for large genome-scale metabolic 

network models (GeMs) (Orth, Thiele and Palsson, 2010). The advent of next generation 
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sequencing has propelled genome annotation efforts (Reijnders et al., 2014). These 

sequences can be used to build constraint-based models, known as GEMs, describing all 

metabolic reactions known in an organism. Generating GEMs was once a laborious and 

painstakingly long process, highly dependent on manual curation, however, automation 

platforms are now widely available to improve and streamline model development 

(Agren et al., 2013; Hamilton and Reed, 2014). In 2010 there were metabolic models 

available for 35 different organisms and that number has grown even bigger in recent 

years with several microalgal species models included (Baroukh et al., 2015; Broddrick, 

2016). 

Flux balance analysis is centred around metabolic stoichiometry and mass balance. 

A stoichiometric matrix (Figure 2.8) is used in FBA to constraint the maximum and 

minimum number of metabolites that can flow through the metabolic network. 

Additionally, the amount of metabolic flux allowed to flow through the reactions 

described in the metabolic network can be constrained with upper and lower bounds. 

The combination of these two types of constraints defines the rate at which metabolites 

are produced and consumed within the network (McCloskey, Palsson and Feist, 2013). 

The final component of FBA is the objective function, an optimisation objective subject 

to the previously mentioned mass balance and flux constraints that can be maximised 

or minimised to find the optimum fluxes of all reactions in the network. 
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Figure 2.8 The stoichiometric matrix, S. The matrix is made up of m metabolites and 

n reactions. Each matrix element (sij) in S is therefore a stoichiometric coefficient of 

the ith metabolite in the jth reaction. 1, reaction product; 0, metabolite does not 

participate in this reaction; -1, reaction substrate.  

 

Flux balance analysis is performed under the quasi-steady state assumption as 

follows: 

𝑑𝑋𝑖
𝑑𝑡

=∑𝑆𝑖,𝑗𝑣𝑗, 𝑓𝑜𝑟𝑖 = 1,… ,𝑚

𝑛

𝑗=1

 
(Eq. 2.3) 

Where dXi/dt is the m · i column vector of time derivatives of all 

intracellular metabolites, Si,j is the stoichiometric coefficient for the ith 

metabolite and jth reaction and νj is the reaction rate of the jth 

reaction. In simplified terms: 

 

𝑑𝑋

𝑑𝑡
= 𝑆 ∙ 𝑣 

(Eq. 2.4) 

Where dX/dt is the change of all metabolites over time, S is the 

stoichiometric matrix and v the reaction flux vector. As mentioned 

above, FBA is performed under the quasi-steady state assumption, 

whereby the timescale of dX/dt becomes negligible in comparison to 

the rate of reaction term Sv (Orth, Thiele and Palsson, 2010) as follows: 

 

𝑆 ∙ 𝑣 = 0 (Eq. 2.5) 
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Biological systems tend to have more reactions than metabolites, this makes FBA 

problems underdetermined and results in them having multiple solution instead of a 

unique solution (Kiparissides and Hatzimanikatis, 2017). Three main types of constraints 

can be added into a GeM to reduce the number of possible solutions (a) physio-chemical 

constraints, (ii) spatial or topological constraints, (c) environmental constraints for a 

particular experimental condition (d) regulatory constraints (Price, Reed and Palsson, 

2004). 

Linear programming (LP) is typically used when solving an FBA problem (Lewis et 

al., 2010) to obtain solution to an optimisation problem where the objective is 

formulated as a set of weights for each reaction in the model ascribed to be maximised 

or minimised: 

𝑍 = 𝑐 ∙ 𝑣 (Eq. 2.6) 

Where Z is the optimisation objective; c represents a weighted 

vector of coefficients for all the fluxes described by Z and v a vector of 

the corresponding fluxes. 

 

In FBA, it is assumed that cells gear their metabolism towards a singular, 

overarching metabolic objective such as maximisation of biomass or ATP (Price, Reed 

and Palsson, 2004). This can be formulated as a linear programming (LP) optimisation 

problem: 

𝑚𝑖𝑛/max⁡(𝑍) (Eq 2.7) 

𝑠. 𝑡.⁡⁡⁡⁡⁡𝑆⁡ ∙ 𝑣 = 0 (Eq 2.8) 

𝑣𝑢𝑏 ≥ 𝑣 ≥ 𝑣𝑙𝑏 (Eq 2.9) 

Where Z corresponds to the flux or fluxes through the reaction or 

reactions that conform the optimisation objective subject to mass balance 

(Eq. 2.8) and inequality (Eq. 2.9) constraints. The set of inequality 

constraints described in Equation 2.9 determines the minimum or lower 

bound (vlb) and the maximum or upper bound (vub) of flux permissible 

through each reaction. 
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During growth in nutrient replete conditions and in the absence of any extrinsic 

stress factors, cell proliferation is a universal evolutionary pressure shared by all living 

organisms. As such, the biomass equation is a commonly used objective function in FBA 

simulations (Senger, 2010; Chapman et al., 2015). An overview of the steps described 

above can be found in Figure 2.9. 
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Figure 2.9 Full summary of the flux balance analysis methodology. (a) Reconstruction 

of an annotated genome sequence into a metabolic network; (b) The stoichiometric 

matrix formed by n reactions and m metabolites (m x n); (c) Definition of the quasi-

steady state assumption; (d) Definition of the objective function, made up of 

weighted contribution, c, of chosen reaction fluxes, v; (e) Solving the defined linear 

problem to maximise the objective function Z. Taken from Orth, Thiele and Palsson, 

(2010). 
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2.3.2. Microalgae FBA 

GeM light input 

Flux balance analysis (FBA) is an established modelling technique used to simulate 

the intracellular flux distribution of cells growing in steady or semi-steady state with a 

genome scale metabolic model (GEM) (Orth, Thiele and Palsson, 2010). Modelling 

phototrophic metabolism with FBA has been limited by the difficulty of accurately 

describing the amount of light absorbed by the modelled organism (Baroukh et al., 

2015). A non-mechanistic approach to constrain the light reactions of a phototrophic 

GEM is typically applied by explicitly defining the bounds for the growth rate and CO2 

uptake rate reactions alongside any other reactions for which experimentally 

determined uptake and secretion rates are available. Once the multi-dimensional 

solution space has been constrained in this manner, the objective function of the 

optimisation problem is postulated as a minimisation of the flux through the light 

reaction (Shastri and Morgan, 2005; Hendry et al., 2016). The underlying assumption of 

this approach is that only the required light energy to produce enough ATP to fuel the 

measured rate of carbon fixation is metabolised by the microalgal cell. However, this 

results in the flux of photon utilising reactions to be linearly dependent on the 

stoichiometry of ATP maintenance defined in the GEM.  

The stoichiometry of ATP maintenance in a GEM is the sum of the ATP demanded 

by growth associated and non-growth associated processes. Non-growth associated ATP 

maintenance encompasses all biomass substrate polymerisation processes as well as 

formation of nucleic acids. Non-growth associated ATP maintenance.  

A mechanistic approach was used to develop the light absorption reactions in 

iRC1080 - the C. reinhardtii GEM employed in this chapter (Chang et al., 2011). The aim 

of the authors was to accurately differentiate the stoichiometry of light photons 

absorbed according to the spectral distribution of the light source modelled. This is 

achieved by first defining the effective spectral bandwidth of each photon utilising 

reaction in the model. Specific metabolites are assigned to each bandwidth, grouping 

certain portions of the photosynthesis active radiation (PAR) range. Each light source is 

then assigned its unique reaction, termed “PRISM_light_source_x”. The stoichiometry 
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of these reactions is defined by the ratio of photon flux at the determined wavelength 

range and the total photon flux emitted by the light source (Chang et al., 2011). Two 

additional conversion factors are included to account for dimensions and optical 

properties of the cell.  

Attempts to achieve greater fidelity with respect to photo-metabolism have taken 

the mechanistic approach utilised by Chang et al. (2011) a step further by taking into 

account the chlorophyll-normalised optical absorption cross-section(Broddrick et al., 

2019). Doing so enables the clear definition of effective absorption and voids the need 

to include the conversion factors mentioned above. This approach has also been used 

for purely kinetic simulations in Chlamydomonas reinhardtii  and Chlorella sorokiniana 

models (Blanken et al., 2016). The GEM study by Broddrick et al. (2019) also included a 

stoichiometric description of photodamage and the metabolic costs to repair the D1 

subunit of photosystem II. Additionally, it incorporated the unique energy transfer 

efficiencies of each photosynthetic pigment. This approach could be applied to GEMs of 

other photosynthetic organisms provided the physiological information for the 

experimental conditions studied is available in the literature or can be obtained 

experimentally (Tibocha-Bonilla et al., 2018). 

Application of FBA with microalgae GeMs 

The first microalgal genome scale metabolic reconstruction ever completed was a 

central carbon metabolism model of Chlamydomonas reinhardtii. The metabolic 

network is comprised of 484 metabolic reactions and 458 intracellular metabolites 

(Boyle and Morgan, 2009). The biomass equation was derived from experimental data 

included in the publication. The authors simulated growth under nutrient replete 

conditions in all three possible trophic modes (a) autotrophic, (b) mixotrophic and (c) 

heterotrophic. The authors observed that carbon efficiency is higher in autotrophic and 

mixotrophic conditions than in heterotrophic conditions. Although its biomass equation 

only contains macromolecules and its lipid metabolism is not as detailed as models 

published after it, it is a useful reconstruction, with several intracellular compartments 

simulating organelles, which can be used to simulate several growth conditions.  
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The biomass reaction of microalgal GeMs has been used as an objective function 

in several FBA studies. The effects of light absorption and CO2 uptake rate on oleic acid 

production in Chlorella protothecoides were explored with a combined FBA and 13C 

metabolic flux study comparing photoautotrophic and heterotrophic growth conditions 

(Wu et al., 2015). Both techniques highlighted the low activity of the tricarboxylic acid 

(TCA) cycle in phototrophic conditions and its high activity in heterotrophic conditions 

contributing to a better understanding of oleaginous algae metabolism. Chapman and 

colleagues studied the effects of acetate on photosynthesis, their predictions matched 

experimental observations of photosynthetic downregulation and increased flux 

through cyclic electron flow reactions during mixotrophic growth (Chapman et al., 2015, 

2017). Evaluation of metabolic configurations in microalgae is a common application of 

FBA GeM and has been further reviewed by Baroukh et al. (2015) and Tibocha-Bonilla et 

al. (2018).  

The inability of FBA to capture the variations in flux over time during light/dark 

cycles has prompted researchers wanting to study such scenarios to employ dynamic 

flux balance analysis (dFBA). This implementation of FBA combines traditional 

constraint-based modelling with some form of kinetic modelling. Flassig and colleagues 

combined kinetic equations describing average biomass specific light intensity, the 

lower bound of nitrate uptake as well as several pigment accumulation dynamics; with 

a modified version of the C. reinhardtii GeM iRC1080 to predict β-carotene accumulation 

(Flassig et al., 2016). Their validated model was then used to predict optimum light 

intensity and nitrogen feeding rate for a fed-batch culture. The optimal conditions 

predicted by the model were validated in a an experiment that yielded 2.1 times higher 

β-carotene per gDCW the standard fed-batch conditions (Flassig et al., 2016). This study 

demonstrates the great potential for metabolic modelling to be employed in the 

optimisation of illumination and trophic strategies for microalgal cultivation. 
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CHAPTER 3 

The effects of illumination and trophic strategy on 

cell physiology and biochemical composition in 

Chlamydomonas reinhardtii  

3.1. Introduction 

Microalgae are found in highly diverse habitats ranging from hypersaline water 

reserves like the Dead Sea (Oren, 2014) to fresh water (Celewicz-Gołdyn and Kuczyńska-

Kippen, 2017)  and soil (Sack et al., 1994; Pushkareva, Johansen and Elster, 2016). Each 

habitat presents its own seasonal and even daily variations in environmental conditions. 

In order to maintain their competitive advantage under uncontrollable environmental 

changes, microalgae have evolved great metabolic plasticity. The ability to grow and 

reproduce following diverse trophic strategies is key for survival of microalgal species. 

Chlamydomonas reinhardtii can grow phototrophically by producing the ATP and 

reducing equivalents required to fix carbon dioxide into bioavailable organic carbon 

skeletons via the Calvin-Bensson cycle; it can also grow mixotrophically whereby the 

reliance on photosynthetically fixed carbon diminishes as an organic carbon source is 

readily available; and it can also grow heterotrophically in the absence of light provided 

a suitable organic carbon source is available (Harris, 2009).  

Chlamydomonas reinhardtii growth under different trophic strategies relies on 

alternative sets of metabolic pathways (Johnson and Alric, 2012, 2013). It follows that 

physiological differences can be expected to affect culture productivity. For example, 

recombinant production of the sesquiterpene bisabolene, a biotechnologically relevant 

biodiesel precursor, in C. reinhardtii was found to be 2.8 times higher in mixotrophic 

conditions compared to phototrophic conditions (Wichmann, Baier, Wentnagel, Kyle J 

Lauersen, et al., 2018). Although mixotrophic conditions are often associated with 

higher productivity, this can be due to autotrophic cultures having poor light conditions 
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leading to early photo-limitation; and the lack of pH control in most flask-based 

autotrophic microalgae experiments published in literature, coupled with better 

buffering of commonly employed mixotrophic media like tris-acetate phosphate 

medium (TAP) compared to minimal media (Scherholz and Curtis, 2013). 

Light is a critical process parameter in both phototrophic and mixotrophic growth 

conditions. This chapter focuses on evaluating the effects of lights with different narrow-

wavelength distributions on the physiology of C. reinhardtii. The productivity of this 

microalgae under several colours of high intensity narrow wavelength LED illumination 

has been examined in phototrophic conditions with continuous cultures under yellow 

light resulting in the highest biomass productivity, although it required supplementation 

with minimal amount of blue photons  (Mooij et al., 2016). Such supplementation of 

yellow light with blue light brings the resulting wavelength distribution closer to that of 

white LED light and hints at the importance of blue LED light regulation in key cellular 

processes. 

Chlamydomonas reinhardtii´s vegetative cell cycle produces a variable number of 

daughter cells as explained in detail in Chapter 2 (Donnan and John, 1983). This flexibility 

means multiple fission can be affected by environmental conditions such as wavelength 

distribution of the incident light source. Cultivation studies using halogen lamps and 

narrow band glass filters to irradiate C. reinhardtii  cells with only red or blue photons 

showed that, under blue light, cells reached a larger size before starting to divide 

compared to red light (Oldenhof, Zachleder and Van Den Ende, 2006). Interestingly, 

shifting from blue to red illumination once cells had attained a larger size than would be 

possible under red light precipitated cell division, suggesting direct regulation of cell 

division by blue light (Oldenhof, Zachleder and Van Den Ende, 2006).  

The biomass of microalgae can be valorised in different ways ranging from 

commercialising full biomass products to fractionation and purification to retain only 

the desired component (Borowitzka, 1999). Modifying the biomass composition of C. 

reinhardtii to maximise the production of a desired product can be achieved by altering 

macronutrient availability such as reduced nitrogen to increase neutral lipid 

accumulation (Siaut et al., 2011) and reduced sulphur to induce biohydrogen production 
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(Ghirardi et al., 2000). In the case of lipid production, acetate availability has been shown 

to improve lipid productivity (Davey et al., 2014). Given the inferred regulatory effects 

of narrow band illumination on cellular metabolism as well as the centrality of light 

quality to microalgal biomass production it can be hypothesised that this CPP can be 

used to modify the biomass composition of C. reinhardtii. However, when it comes to 

the effects of narrow peak illumination on the biomass composition of C. reinhardtii 

there is a clear gap in the literature. The batch culture experiments described and 

discussed in this chapter are an initial attempt to define the characterised space of C. 

reinhardtii batch cultivations with respect to the effect of two CPPs, light spectral 

composition and trophic growth strategy, on typical bioprocessing objectives. 

3.2. Aim & Objectives 

The aim of this chapter is to characterise and compare the effect of narrow band 

illumination at two extremes of the photosynthetically active radiation (PAR) range on 

the physiology of C. reinhardtii in batch cultures with two different trophic strategies 

(phototrophic and mixotrophic). This can be broken down into the following scientific 

objectives: 

• Evaluate the effect of wavelength and trophic strategy on C. reinhardtii growth 

and nutrient uptake kinetics periodically for 136 hours 

• Evaluate the effect of wavelength and trophic strategy on C. reinhardtii cell size 

in the exponential growth and stationary phases of a batch culture 

• Evaluate the effect of wavelength and trophic strategy on C. reinhardtii 

macromolecular composition in terms of total soluble carbohydrates, lipids, 

proteins and pigments periodically for 136 hours 

• Form hypotheses to explain the differences observed in C. reinhardtii growth and 

nutrient uptake kinetics alongside the changes observed in biochemical 

composition and cell size during a batch culture through the holistic lens of 

interconnected cellular metabolism 
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3.3. Materials and experimental methods 

Batch culture experiments were carried out to characterise the impact of different 

illumination and trophic strategies on the growth kinetics, biochemical composition and 

cell size distribution of C. reinhardtii. All experiments were carried out in biological 

duplicates due to resource constraints using an ALGEM Environmental Modelling Lab 

scale Photobioreactor (Algenuity, Bedfordshire, UK). This flask bioreactor system 

provides a robustly stable culture environment maximising experimental replicability.  

Analytical measurements were performed in triplicates to maximise the accuracy of the 

limited biological replicates available. The following sections describe the materials and 

experimental methods employed throughout all batch culture experiments reported in 

this thesis. 

3.3.1. Cell culture 

Chlamydomonas reinhardtii strain 11/32c was obtained from the Culture 

Collection of Algae and Protozoa (CCAP; Oban, Scotland). All batch culture experiments 

reported in this thesis were carried out in duplicate in 1L Erlenmeyer flasks with a 500 

mL working volume. The flasks where housed inside an ALGEM Environmental Modelling 

Lab scale Photobioreactor (Algenuity, Bedfordshire, UK) at 25°C. Cultures were grown 

under continuous illumination at 400 µmolph m-2 s-1 for the duration of the experiment. 

Experimental cultures were maintained at 25°C, continuously aerated at 3 mL L-1 min-1 

with an aquarium pump (Airtek, Germany) and 5% CO2-enriched air was supplied on 

demand to maintain pH at 7±0.1 by automatic opening/closing of a solenoid valve. All 

experimental cultures were inoculated at a starting concentration of approximately 1 x 

106 cells mL-1.  

Two different media were utilised in the experiments described in this thesis. 

Phototrophic growth, defined as promoting growth exclusively from the uptake of 

photons and exogenous inorganic carbon was achieved with modified M8a media 

(Kliphuis et al., 2010), hereby referred to as M8a. The nitrogen source used was 

ammonium, diluted to the same concentration found in commonly used TAP media 

(Sager and Granick, 1953) of 7.48 mM. Mixotrophic growth, defined as growth resulting 
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from a combination of phototrophic mechanisms and the catabolism of exogenous 

organic carbon was achieved with M8a enriched with acetic acid and Tris base added to 

concentrations of 17 mM and 20 mM respectively. The concentrations of these additions 

were chosen to replicate the commonly used Tris-acetate phosphate (TAP) medium.  

Mixotrophic growth medium will hereby be referred to as M8a.Ac. 

Stock maintenance and seed cultures 

Liquid stock cultures in 25 mL T-flasks (Corning®, Merck, Germany) with a 5 mL 

working volume of M8a were stored in a KWBF illuminated incubator (Binder, Germany). 

The temperature was maintained at 20°C and illumination ran through a 12 hours on / 

12 hours off diel cycle at 100 µmolph m-2 s-1. Liquid stock cultures were diluted with fresh 

media into sterile T-flasks every 4 to 6 weeks. Seed cultures were inoculated with 3 mL 

of stock culture in 400 mL of fresh M8a for phototrophic and M8a.Ac for mixotrophic 

experiments. Incident light intensity for all seed cultures was linearly increased during 

the first 48h until 400 µmolphm-2
s-1 and was subsequently kept constant for up to 84h. 

Identical pH control, temperature and gas flow conditions as described above for 

experiment cultures were used as well as condition specific wavelength selection. This 

was done to ensure seed cultures were pre-acclimatised to the experimental conditions 

with the objective of minimising the lag phase after inoculation. 

Illumination conditions 

The emission spectra of white, red (640-670nm) and blue (440-480 nm) light, 

supplied at equivalent photon flux, by the LEDs incorporated in the ALGEM bioreactor 

system is shown in Figure 3.1. These can be compared directly with Figure 2.5 to 

understand the overlap between the emission spectra of the LED lights employed in the 

experiments described in this thesis and the absorption spectra of C. reinhardtii cells as 

reported in literature. The main light absorbing pigments in C. reinhardtii are chlorophyll 

a and b which absorb maximally in the blue region at 372nm and 392nm respectively 

and in the red region at 642nm and 626nm respectively (Milne et al., 2015).  
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Figure 3.1. Normalised spectra of white, red (640-670nm) and blue (440-480 nm) light, 

supplied at equivalent photon flux, by the LEDs incorporated in the ALGEM bioreactor 

system. 

3.3.2. Sampling and analysis 

Culture productivity 

Culture productivity was evaluated through optical density, cell concentration and 

dry cell weight measurements. Optical density (OD) at 750 nm was measured as the 

amount of light scattered by cells in suspension in a GENESYS 10S UV/Vis 

Spectrophotometer (ThermoScientific) blanked with distilled water. The higher the cell 

concentration, the more light is scattered before reaching the detector. When the OD 

measured was higher than 0.6, a 1 in 10 dilution was performed and the measurement 

was re-done to account for the loss of linearity in the relationship between particle 
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concentration and light attenuation at high concentrations. Cell concentration was 

manually counted with a Bright-Line haemocytometer (Merck, US) under a light 

microscope (Carl Zeiss, Germany). Cell samples were diluted in distilled water and 

Lugol’s solution (Sigma-Aldrich) for immobilisation. Dry cell weight was measured by 

filtering a known volume of culture on a pre-weighed 47mm glass microfiber GF/C filter 

(Sigma-Aldrich) under a gentle vacuum. Distilled water was filtered over the sample to 

wash off inorganic salts. The filters were dried for 24h at 70°C and weighed again. Dry 

cell weight was also measured by centrifuging a known volume of culture in a pre-

weighed 2 mL Eppendorf tube. The supernatant was discarded, and the pellet was 

freeze-dried in a LyoStar 3 (BPS) freeze dryer. Following freeze drying, the tube was re-

weighed. 

The maximum specific growth rate was calculated between 0 hours of batch 

culture and 48 hours of batch culture from OD750 measurements as per equation 3.1: 

𝜇𝑚𝑎𝑥 =
ln⁡(𝑂𝐷75048ℎ − 𝑂𝐷7500ℎ)

𝑡48ℎ − 𝑡0ℎ
 

(Eq. 3.1) 

 

 

 

Where μmax is the maximum specific growth rate between 0 and 48 hours of batch 

culture. 

Cell weight 

Two approaches were employed to estimate cell weight. Measured cell weight 

was calculated from the weight difference of a GF/C filter before and after filtering a 

known volume of culture and drying for 24h in a 70˚C oven. The dry cell weight per unit 

volume of culture measured was processed as per equation 3.2: 

(𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ⁡1)⁡ 

𝑐𝑒𝑙𝑙⁡𝑤𝑒𝑖𝑔ℎ𝑡⁡ = ⁡
𝑑𝑟𝑦⁡𝑐𝑒𝑙𝑙⁡𝑤𝑒𝑖𝑔ℎ𝑡⁡𝑝𝑒𝑟⁡𝑢𝑛𝑖𝑡⁡𝑣𝑜𝑙𝑢𝑚𝑒⁡𝑜𝑓⁡𝑐𝑢𝑙𝑡𝑢𝑟𝑒

𝑐𝑒𝑙𝑙⁡𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑝𝑒𝑟⁡𝑢𝑛𝑖𝑡⁡𝑣𝑜𝑙𝑢𝑚𝑒⁡𝑜𝑓⁡𝑐𝑢𝑙𝑡𝑢𝑟𝑒
 

(Eq. 3.2) 
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The second method was the sum of macromolecular components, this assumes a 

cell is composed of only the components measured carbohydrates, lipids, pigments and 

proteins, as well as nucleic acids, values for which were obtained from literature (Chang 

et al., 2011). 

(𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ⁡2) 

𝑐𝑒𝑙𝑙⁡𝑤𝑒𝑖𝑔ℎ𝑡⁡ = ⁡∑𝑀𝑎𝑐𝑟𝑜𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟⁡𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 
(Eq. 3.3) 

Where macromolecular components is the total carbohydrates, lipids, pigments 

and proteins measured + DNA/RNA fraction obtained from literature (Chang et al., 

2011) 

Given the small sample volume available in these experiments and the good 

correlation of OD750 nm data and dry cell weight measurements (Figure 3.2) from all 

the experimental conditions explored in this thesis, OD750nm data and cell 

concentration were employed to convert the time series of macromolecular component 

picogram per cell data to picogram per picogram of dry cell weight.  



74 
 

 

Figure 3.2. C. reinhardtii OD 750 nm vs dry cell weight (DCW - g/L) measurements 

across all experimental conditions studied. Each point represents the average of three 

technical replicates. Error bars of +/-1 SD are smaller than plotted point. 

 

The slope of the linear fit was used to convert OD 750 nm values to dry cell weight 

as per equation 3.4: 

𝑋 = 0.661 ∙ 𝑂𝐷750 (Eq. 3.4) 
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Where 𝑋 is dry cell weight (gL-1) and OD750 is the OD750 nm measurement. 

Extracellular nutrient analysis 

The concentration of extracellular ammonium and acetate was measured on a 

customised CubianXC system (Optocell, Germany). 2 mL culture aliquots were 

centrifuged at 10,000 g for 1 minute and the supernatant was syringe filtered into a 2 

mL Eppendorf tube and stored at -20°C prior to analysis. The chemistry of the 

spectrophotometric detection of ammonium involves its combination with α-

ketoglutarate and NADPH in the presence of glutamate dehydrogenase (GLDH) to yield 

glutamate and NADP+. This reaction results in a decrease in absorbance at 340 nm for 

which a calibration is automatically performed by the instrument. The acetate assay 

chemistry is proprietary (Optocell, Germany).  

The observed biomass yield on ammonium was calculated using equation 3.5: 

𝑌𝑋/𝑆 ⁡= ⁡
𝑋136ℎ − 𝑋0ℎ
𝑆136ℎ − 𝑆0ℎ

 
(Eq. 3.5) 

Where 𝑌𝑋/𝑆 is the observed biomass yield on substrate (gDCWgsubstrate
-1).  

The observed cell yield on substrate was calculated for 𝑁𝐻4
+and acetate using 

equation 3.6: 

𝑌𝐶/𝑆 ⁡= ⁡
𝐶136ℎ − 𝐶0ℎ
𝑆136ℎ − 𝑆0ℎ

 
(Eq. 3.6) 

 

Where 𝑌𝐶/𝑆 is the observed cell yield on substrate with units of 1x106 cells 

mgsubstrate
-1. Observed substrate yields calculated were 𝑁𝐻4

+and acetate. 

Pigments analysis 

The pigment quantity per cell was determined by spectrophotometric 

measurements after dimethylformamide (DMF) extraction. 1 mL culture aliquots were 

spun down at 12,000 g and 4°C. Pellets were stored at -80°C for up to 3 months prior to 

analysis. Solvent resistant BRAND® UV cuvettes (Merck, Darmstadt, Germany) were 
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employed. Equations 3.7 to 3.9 (Inskeep and Bloom, 1985) were used to calculate the 

chlorophyll a, chlorophyll b and total chlorophyll (μgpigment mL-1) in the sample. 

Carotenoid content (μgpigment mL-1) was calculated using equation 3.10 (Wellburn, 1994): 

𝐶ℎ𝑙𝑎 = 12.70𝐴664.5 − 2.79𝐴647 (Eq. 3.7) 

𝐶ℎ𝑙𝑏 = 20.70𝐴647 − 4.62𝐴664.5 (Eq. 3.8) 

𝑇𝑜𝑡𝑎𝑙𝐶ℎ𝑙 = 17.90𝐴647 + 8.08𝐴664.5 (Eq. 3.9) 

𝐶𝐶 + 𝐶𝑥⁡ =
1000𝐴480 − 2.14𝐶ℎ𝑙𝑎 − 70.16𝐶ℎ𝑙𝑏

245
 

(Eq. 3.10) 

Chla stands for chlorophyll a, Chlb stands for chlorophyll b and TotalChl stands for 

total chlorophyll. Cc stands for carotenes fraction of carotenoids and Cx stands for 

xanthophylls fraction of carotenoids. 

Carbohydrates assay 

The carbohydrate quantity per cell (pgcarbohydrate cell-1) was determined with a 

modified version of the Phenol-Sulfuric acid (PHS) method (Dubois et al., 1956). The 

assay was scaled down to process smaller amounts of biomass in 200 uL tubes. Aliquots 

containing 5 x106 cells were spun down at 12,000 g and 4°C. Pellets were stored at -

80°C prior to analysis. The method’s chemistry is as follows. Sulphuric acid hydrolysis 

breaks down carbohydrates into their monomeric subunits. Mixed with 5% phenol 

solution (w/v) and concentrated sulphuric acid (98%) (v/v) a coloured aromatic complex 

between the reducing sugar and phenol is formed. The quantity of aromatic complex 

formed can be calculated by measuring the absorbance of the resulting mixture at 485 

nm and comparing it to glucose standards.  

Lipids assay 

The lipids fraction of the biomass’ biochemical composition was determined with 

a modified version of the Sulpho-Phospho-Vanillin (SPV) method (Van Handel, 1985). 

After performing a manual cell count as described above, aliquots containing 5106 cells 

were spun down at 12,000 g and 4°C. Pellets were stored at -80°C for up to 3 months 

prior to analysis. The method’s chemistry is as follows. Lipids are extracted in a 

methanol:dichloromethane (MeOH:DCM; 1:1 v/v) system. An aliquot of the extract is 
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evaporated in a microwell plate. Concentrated sulphuric acid and high temperature are 

used to oxidize the extracted lipids into water soluble sulfonic acid derivatives. After 

cooling, a vanillin-phosphoric acid solution is added to produce a chromophore. The 

quantity of chromophore formed can be calculated by measuring the absorbance of the 

resulting mixture at OD 540 nm and comparing it to rapeseed oil standards.  

Proteins assay 

The proteins fraction of the biomass’ biochemical composition was determined 

with a modified version of the Lowry assay (Lowry et al., 1951; Slocombe et al., 2013). 

After performing a manual cell count as described above, aliquots containing 5106 cells 

were spun down at 12,000 g and 4°C. Pellets were stored at -80°C for up to 3 months 

prior to analysis. The method’s chemistry is as follows. Protein is extracted using heat 

(95°C) and trichloroacetic acid (TCA). Copper ions in Lowry D solution form bonds with 

the peptide bonds of the extracted proteins under alkaline conditions. This results in 

monovalent copper cations that react with the added Folin-Ciocalteu’s reagent to 

produce a chromophore. The quantity of chromophore formed can be calculated by 

measuring the absorbance of the resulting mixture at OD 600 nm and comparing it to 

bovine serum album (BSA) standards.  

Cell size distribution 

Cell size distribution was measured from fresh samples on a CASY (Merck, US). The 

measurement principle of the instrument relies on aspirating cells through a capillary 

tube with a pore that has a pulsed low voltage field going between two platinum 

electrodes.  The electrolyte-filled pore has a defined electrical resistance which changes 

by the displacement of electrolyte caused by the passage of cells. The change in 

electrical resistance corresponds to the volume of the cell which is modelled as a perfect 

sphere. A diameter-linear size distribution is calculated from the linear-volume 

distribution originally measured by the instrument. 

Experimental condition nomenclature 

To facilitate the reader’s experience throughout this Chapter and the rest of this 

Thesis, experimental conditions will be referred to as a combination of the illumination 
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and trophic strategy employed. For example, cells grown under white LED illumination 

in autotrophic M8a medium will be referred to as WA. Conversely, cells grown under 

red LED illumination in mixotrophic M8a.Ac media will be RX and so on for a total of six 

possible combinations of illumination and trophic strategy (Table 3.1). 

Table 3.1. Reference guide to the experimental conditions studied in this thesis. W, 

white LED light; R, red LED light; B, blue LED light. A, autotrophic medium (M8a); X, 

mixotrophic medium (M8a.Ac) see section 3.3.1 for media compositions. 

 
LED light 

White Red Blue 

G
ro

w
th

 m
ed

ia
 

M8a WA RA BA 

M8a.Ac WX RX BX 

 

3.4. Results 

3.4.1. Growth kinetics and cell physiology in phototrophic and mixotrophic 

batch cultures 

Under phototrophic conditions, there is no organic carbon source in the medium 

and all organic carbon available to the cell is produced in the chloroplast by carbon 

fixation (Raven, 1974). Light is the main driver of carbon fixation as the photons supplied 

to the microalgal cell enable the generation of the ATP required for the Calvin-Benson 

cycle via oxidative phosphorylation in the chloroplast. When the wavelength, and 

therefore the energy of the photons supplied changes, so does the availability of 

photons throughout the culture volume. The biomass concentration and the absorption 

profile of the cell in conjunction with the light’s spectral composition determine the 

spectral composition and photon availability across the culture volume. Since C. 

reinhardtii cells do not absorb photons evenly across the photosynthetically active 
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radiation (PAR) range it follows that the amount of light absorbed in a culture will be 

different depending on the light’s spectral composition. 

Culture productivity was evaluated by daily measurements of OD 750 nm and cell 

concentration as explained in section 3.3.2. Figure 3.3 shows the growth profiles of C. 

reinhardtii batch cultures for the six experimental conditions studied (WA, RA, BA, WX, 

RX and BX). Trophic growth mode was either phototrophic (M8a medium) or 

mixotrophic (M8a.Ac medium) and constant LED illumination was either white, red or 

blue as detailed in section 3.3.1. When evaluating cell growth kinetics, it is important to 

distinguish between OD 750 nm measurements (Figure 3.3 A & B) and cell concentration 

measurements (Figure 3.3 C & D). Optical density measurements at 750nm are a more 

accurate approximation of biomass concentration, commonly measured as dry cell 

weight (gDCW L-1). This is due to cellular volume not being considered by cell 

concentration measurements, whereas OD 750 nm data are affected by both cellular 

volume and number. On the other hand, cell concentration measurements allow the 

tracking of changes to cell cycle duration and the derivation of other significant 

properties such as cell weight. The existing literature on the effects of narrow 

wavelength illumination on the cell cycle and cell size of microalgae (Wilhelm, Kramer 

and Wild, 1985; Oldenhof, Zachleder and Van Den Ende, 2006; Kim et al., 2014) justifies 

such a holistic approach to the evaluation of growth dynamics. 

Tracking culture productivity with both metrics is particularly important when 

comparing different growth conditions that might affect cell physiology as they can help 

to determine the causes of any observed changes in product yield. These can be either 

a change in biomass productivity, biomass specific product yield or a combination of 

both. However, a change in one may affect the other and the trade-off must be 

evaluated against the bioprocess objective. In a batch versus fed-batch comparison 

study of green fluorescent protein (GFP) production in C. reinhardtii, total GFP produced 

was higher in the fed-batch strategy due the higher biomass concentration achieved 

(Fields, Ostrand and Mayfield, 2018). However, the cell specific GFP content was 

statistically significantly higher in the batch culture (p < 0.05). This was accompanied by 

a morphological change that increased the cell weight of fed-batch grown C. reinhardtii 

and is a good example of process parameters affecting cell physiology and product yield. 
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In all microalgal bioprocesses, and especially when the product will be ingested or 

otherwise come into contact with humans, the importance of total product produced is 

undeniable however in many cases it will be equalled or superseded by product quality 

(Michael A. Borowitzka, 2013). Given the likelihood of cell dimensions and cell cycle to 

differ between these experiments, it is important to characterise both OD 750 nm and 

cell concentration profiles. 

Biomass accumulation 

Chlamydomonas reinhardtii batch cultures grown in autotrophic conditions 

(Figure 3.3 A & C) had an average final biomass concentration of WA (1.33 gDCW L-1), 

RA (1.10 gDCW L-1), BA (0.775 gDCW L-1) at 136 hours as measured by the dry biomass 

method described in section 1.3.2. A one factor ANOVA followed by Tukey’s HSD test 

determined there was a statistically significant difference between each condition’s final 

biomass concentration (N=4, p < 0.05). This is in agreement with previous studies 

comparing monochromatic illumination to white LED lights that found maximum 

biomass productivity is achieved with balanced light spectra similar to white LED light 

(Baer et al., 2016; Mooij et al., 2016).  

When C. reinhardtii is grown in acetate containing media like M8a.Ac, its 

metabolism shifts to mixotrophy and the influence of photosynthesis on biomass 

productivity is comparatively reduced (Heifetz et al., 2000). No statistically significant 

difference was found in the final biomass concentration of WX (1.51 gDCW L-1) and 

RX(1.33 gDCW L-1) cultures (N=4, p < 0.05), supporting the above (Figure 3.3 B & D). The 

relatively poor performance under blue light seen in phototrophic cultures was 

improved in BX (1.03 gDCW L-1), although this was not enough to bring it to parity with 

the other two light conditions.  
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Table 3.2. C. reinhardtii biomass concentration at 136 hours of culture derived from 

the linear relationship between OD750 and dry cell weight plotted in Figure 3.2. W, 

white LED light; R, red LED light; B, blue LED light. A, autotrophic medium (M8a); X, 

mixotrophic medium (M8a.Ac) see section 3.3.1 for media compositions. 

  WA RA BA WX RX BX 

Average 

Biomass 

concentration 

from 88 - 136 

h (gDCW L-1) 

Culture 1 1.35 1.12 0.78 1.55 1.22 0.97 

Culture 2 1.31 1.08 0.77 1.48 1.44 0.94 

 

 

Overall, the results from autotrophic and mixotrophic conditions show that blue 

light is sub-optimal for batch cultivation of C. reinhardtii under constant illumination at 

constant photon flux with a relatively deep light path. One of the reasons for this is the 

poor efficiency with which C. reinhardtii utilises the energy (ATP) and reducing power 

(NADPH) from photosynthesizing blue light to produce new biomass via carbon fixation 

as reported by De Mooij (2016) and colleagues in continuous cultures. The low biomass 

productivity observed in BA cultures is partially remedied in BX due to the reliance on 

heterotrophic acetate metabolism. 
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Figure 3.3. C. reinhardtii batch growth kinetics under a variety of trophic and 

illumination strategies. (A and C) Autotrophic growth in M8a; (B and D) mixotrophic 

growth in M8a.Ac, black arrow indicates acetate depletion from the culture medium. 

(A and B) Biomass Concentration (measured at OD 750) (C and D) Cell concentration 

(CellsmL-1). W, white LED light; R, red LED light; B, blue LED light. Biological duplicates 

(N=2) plotted. 

 



83 
 

The influence of LED light colour on final cell concentration followed a similar 

trend as OD 750 nm in both trophic modes studied suggesting that OD 750 nm and cell 

concentration are analogous to each other and either could be used as a proxy for dry 

cell weight. However, the correlation between these two variables is dependent on cell 

physiology remaining constant. It can be deduced from Figure 3.3 that the cell 

physiology of C. reinhardtii does not remain constant between the two trophic modes 

studied. The OD 750 nm growth profiles for each LED light colour are similar between 

autotrophic and mixotrophic cultures, however this does not hold true for cell 

concentration.  

The normalised ratio of OD 750 nm to viable cell concentration can be used to 

identify changes in the cell mass to cell number relationship between different trophic 

strategies (Figure 3.4). Consequently, cells grown under blue LED light were found to 

remain largely unaffected by trophic mode selection, whilst larger changes were 

observed for cells grown under white and red LED light. Furthermore, the final biomass 

in terms of OD 750 nm for each light was statistically significantly higher in mixotrophic 

than phototrophic conditions (N=4, p < 0.05). In terms of cell concentration under white 

and red LED light, this relationship was inverted, with phototrophic cultures producing 

a significantly larger final cell yield (N=4, p < 0.05). Blue light producing lower final 

biomass and cell yields indicates that it is sub-optimal for growing C. reinhardtii in batch 

cultures with a constant illumination strategy. 
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Figure 3.4. Normalised C. reinhardtii OD750 : Cell concentration ratio under a variety of 

trophic and illumination strategies. W, white LED light; R, red LED light; B, blue LED light. 

A, autotrophic medium (M8a); X, mixotrophic medium (M8a.Ac). 

Maximum specific growth rate  

The maximum specific growth rate (μmax) calculated from OD 750 nm 

measurements (Equation 3.1) during the exponential growth phase is a measure of 

biomass productivity. The inclusion of organic carbon in mixotrophic cultures had the 

biggest positive effect on μmax in BX where a 28% increase was observed (as calculated 

from the average of the values for individual flasks presented in Table 3.3). Meanwhile 

in WX and RX the difference in μmax between trophic strategies was -5% and 3% 

respectively. These results indicate that under constant environmental conditions 

where wavelength distribution of available light is not limiting (temperature, pH and 

light intensity) trophic strategy has little impact on μmax in batch cultures. This 

observation matches previously published results across a range of acetate 

concentrations and at a relatively high irradiance (600 μmolph m-2s-1) ( (Heifetz et al., 

2000). Electron paramagnetic resonance (EPR) spectroscopy has shown that cells grown 

in a mixotrophic regime produce fewer reactive oxygen species due to a direct effect of 

acetate on the quantum state of photosystem-II (PSII) (Roach, Sedoud and Krieger-

Liszkay, 2013). Roach and colleagues (2013) they hypothesised that acetate replaces the 

bicarbonate associated to the non-heme iron atom in photosystem II particles changing 
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the environment of the two secondary quinone acceptors positively impacting charge 

recombination events and photoinhibition in the chloroplast. Blue light photons carry 

more energy and can cause photoinhibition at lower irradiances than red or white light 

(Yan et al., 2016). The lower productivity of BA cultures could be due to higher 

photoinhibition. This would be reduced in the presence of acetate and could explain the 

increased μmax observed in BX cultures. 

Table 3.3 Maximum biomass growth rate (μmax) of C. reinhartdtii cultured under 

different illumination and trophic strategies. Values calculated according to Equation 

3.1. W, white LED light; R, red LED light; B, blue LED light. A, autotrophic medium 

(M8a); X, mixotrophic medium (M8a.Ac). 

  WA RA BA WX RX BX 

µexp 

(h-1) 

Culture 1 0.076 0.054 0.042 0.064 0.055 0.056 

Culture 2 0.069 0.056 0.040 0.074 0.058 0.050 

 

 

White light resulted in the highest μmax on average, followed by red light and finally 

blue light (Table 3.3). This suggests that at moderate light intensities a combination of 

wavelengths is more beneficial for fast growth than a narrow portion of the PAR range 

alone. 

Nutrient uptake 

The stationary phase is reached when the rate of cell proliferation is equal to the 

rate of cell death (Doran, 2013). This can be triggered by a growth factor becoming 

limiting. RA and BA cultures reached the stationary phase after 64 hours of cultivation 

whilst WA cultures reached it after 88 hours (Figure 3.3 C). Ammonia was fully depleted 

in WA cultures by the time they reached stationary phase. In contrast, there were 
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measurable amounts of ammonia left in RA and BA cultures when they reached the 

stationary phase. However, the levels reached could be low enough to become limiting, 

partially explaining the earlier transition to stationary phase under red and blue light in 

autotrophic conditions. Meanwhile WX, RX and BX cultures all reached the stationary 

phase after 64 hours of culture. This synchronisation could be linked to the depletion of 

acetate occurring at the same time under all three lights (Figure 3.5 C). Once the main 

organic carbon source is depleted from the medium, cells could theoretically switch to 

phototrophic growth and continue proliferating. The rate of acetate consumption in 

mixotrophic cultures (qac, Table 3.4) was nearly identical under all studied wavelengths 

irrespective of the observed biomass growth rate. Values calculated based on acetate 

concentrations between t1 = 0h and t2 = 48h.  

Table 3.4 Acetate uptake rate in C. reinhardtii cultures grown in M8a.Ac medium. Values 

calculated according to equation 3.1. W, white LED light; R, red LED light; B, blue LED 

light. A, autotrophic medium (M8a); X, mixotrophic medium (M8a.Ac). 

  WX RX BX 

qAc 

(mM h-1) 

Flask 1 0.363 0.369 0.370 

Flask 2 0.361 0.370 0.370 

 

Nitrogen uptake is a key physiological parameter to monitor in microalgal cultures 

as it is an essential nutrient with key roles in protein, lipid and nucleic acid metabolism 

and therefore has a big influence on culture productivity (Fernandez, Llamas and Galvan, 

2009). The nitrogen source in both autotrophic and mixotrophic cultures was 

ammonium, its uptake profile is displayed in Figure 3.5 A&B. Maximum nitrogen uptake 

rate (VmaxN) has been found to scale isometrically with cell volume over several orders 

of magnitude and different species of microalgae (Marañón et al., 2013). The authors 

concluded that the limiting factors for µmax are cell size and the conversion of nutrients 

into biomass rather than VmaxN. This is logical as availability of intracellular N is not the 

only limiting factor during cell growth and other metabolic pathways like oxidative 
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phosphorylation or the Calvin cycle can become the bottleneck to increased µmax too. 

The depletion rate of ammonia followed a similar trend across all illumination modes 

for mixotrophically grown cultures (Figure 3.5 B) with ammonia concentration falling 

below detection limits after 68 hours of culture. In contrast, the concentration profile of 

ammonia in phototrophically grown cultures was found to vary with light colour. 

Ammonium was depleted after 64h in white light, 88h in red light and not at all in blue 

light reaching a minimum value of 0.5 mM at the end of the experiment. A closer 

observation of the experimental trends (Figure 3.5 A&B) indicates that the difference in 

ammonia depletion between WA and RA is likely overestimated due to time between 

experimental measurements and highlights a flaw in experimental design that could be 

remedied by reducing the time interval between extracellular nutrient measurements 

thus obtaining a more precise time of ammonia depletion. 

To quantify the differences in nitrogen assimilation into biomass, the observed 

yield of biomass on ammonium (𝑌𝑋/𝑁𝐻4+) and the observed yield of cells on ammonium 

(𝑌𝐶/𝑁𝐻4+) at the beginning of the stationary phase were calculated (Table 3.5). The onset 

of the stationary phase, indicated by the cessation of net cell division, did not necessarily 

coincide with the exhaustion of ammonium in the media. In WA and WX cultures, 

ammonium was exhausted after up to 64h whilst the stationary phase begun after 88h. 

In RA cultures ammonium was exhausted after up to 64h whilst in RX it was exhausted 

after up to 88h, meanwhile the stationary phase began after 64h in both trophic modes. 

This suggests that N was not the first growth-limiting factor in RX cultures. Under blue 

light, ammonium was only exhausted in BX whilst in BA the average final concentration 

remained at 0.57 mM. Additionally, it was hard to differentiate between exponential, 

linear and stationary phase in the growth profile of BA experiments as growth under this 

light was sub-optimal and a clear sigmoid profile was not apparent (Figure 3.3 A). 

The same total amount of ammonium was consumed under white and red light in 

both trophic modes as concentration dipped below the limit of quantification between 

64 – 88 hours into the culture. By the end of the experiment there were still quantifiable 

levels of ammonium in the medium of BA cultures of 0.57 mM. Although the same 

amount of ammonium was consumed across all conditions except blue phototrophic, 

there were statistically significant differences in final biomass yield and final cell yield 
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between trophic modes (under the same light). 𝑌𝑋/𝑁𝐻4+ ⁡and⁡𝑌𝐶/𝑁𝐻4+reflect those 

differences and emphasise the differing nitrogen requirements of C. reinhardtii under 

the conditions studied. 

Table 3.5. Observed yield of biomass on ammonium (𝑌𝑋/𝑁𝐻4+, gX gNH4
+-1) and 

observed yield of cells on ammonium (𝑌𝐶/𝑁𝐻4+, 1x106cells mgNH4
+-1) in phototrophic 

and mixotrophic cultures under white red and blue LED light. Calculated according to 

Equation 3.5 and 3.6 respectively. 
 

 𝒀𝑪/𝑵𝑯𝟒
 𝒀𝑿/𝑵𝑯𝟒

 

 (1x106cells mgNH4
+-1) (gX gNH4

+-1) 

λ 
 

Trophic 
mode 

Flask 1 Flask 2 Average Flask 1 Flask 2 Average 

W A 414 449 432 12.8 12.6 12.7 

R A 329 322 325 10.8 10.3 10.6 

B A 115 98 107 7.72 7.48 7.6 

CV(%)    57.6   24.9 

W X 185 207 196 16.0 16.1 16.0 

R X 191 179 185 10.6 12.8 11.7 

B X 153 131 142 11.3 9.77 10.5 

CV(%)    16.4   22.7 

 

Coefficients of variation (CV) from the observed yield values in Table 3.5 show that 

the biggest variance in⁡𝑌𝐶/𝑁𝐻4 between illumination strategies within a trophic mode 

was 57.6%. In mixotrophically grown cultures, the CV of⁡𝑌𝐶/𝑁𝐻4 was only 16.4%, 

suggesting that the influence of light colour on 𝑌𝐶/𝑁𝐻4 was less pronounced in this 

trophic mode. This matches the conclusions drawn from Figure 3.5 and suggests a 

different nitrogen utilisation per cell in WA, RA and BA cultures. This could be due to 

changes in cell size leading to differences in volume specific N requirements (Marañón 

et al., 2013) or changes in cellular metabolism resulting in a different macromolecular 

composition under each light. The CVs calculated for 𝑌𝑋/𝑁𝐻4  in phototrophic and 

mixotrophic mode were 24.9% and 22.7% respectively. 𝑌𝑋/𝑁𝐻4  did not follow the same 

pattern of variation between lights in each trophic mode as 𝑌𝐶/𝑁𝐻4and instead the 

variation remained similar between modes. This suggests that the differences observed 

in⁡𝑌𝐶/𝑁𝐻4 are mainly due to cell size differences between the trophic modes and not due 
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to a re-routing of assimilated N causing biochemical composition differences between 

the same light in each trophic mode. This holds true for white and blue light as they both 

have the largest and smallest observed yield values respectively (Table 3.5). However, 

RX cultures had a⁡𝑌𝑋/𝑁𝐻4closer to the BA/BX average than the WA/WX average. A 

hypothesis can be formulated here considering whether RX cultures had a different 

biochemical composition than RA cultures. Biochemical composition differences are 

studied in the following sections. 
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Figure 3.5 C. reinhardtii nutrient uptake kinetics under a variety of trophic and 

illumination strategies. (A) Ammonium uptake in autotrophic growth in M8a; (B and 

C) Ammonium and acetate uptake respectively in mixotrophic growth in M8a.Ac. W, 

white LED light; R, red LED light; B, blue LED light. Biological duplicates (N=2) plotted.  

  

Cell weight 

The two methods employed to estimate cell weight (Section 3.3.2) do not produce 

the exact same value for each sample analysed as can be seen in Table 3.6. This can be 
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due to accumulated errors from cell concentration measurements, dry biomass 

measurements and measurement errors in the biochemical assays themselves. 

Additionally, it must be pointed out that the ash content of the cells was not 

experimentally measured. Published ash values for C. reinhardtii cultivated in a variety 

of experimental conditions are very similar between conditions in each paper but vary 

significantly between publications. Values from 4% to 20% of dry biomass weight have 

been reported (Kliphuis et al., 2011; Kebelmann et al., 2013). This might be due to the 

typically small culture volumes involved in these studies affecting the amount of 

biomass available for ash measurements. Sample volume has been found to be a 

determinant factor in ash measurement reproducibility in microalgae (Liu, 2019). G 

The measured biomass and the sum of macromolecular components methods do 

not equate to each other, and this can lead to speculation on the validity of the 

macromolecular assay measurements. However, both methods of cell weight 

measurement correlate well in most instances across all experimental conditions at two 

different growth phases, improving our confidence on the validity of the 

macromolecular assays. Firstly, the samples analysed can be divided into four cases 

specified by culture time and trophic mode. Within each case, the cell weight ranking 

between lights remains the same with both methods in three out of four cases. The 

discordant case is samples from 48h in mixotrophic conditions. Here, cell weight 

calculated from measured dry cell weight suggests cells grown under red light are 

heavier than cells grown under blue light and the opposite is true when cell weight is 

calculated from the sum of macromolecular components. However, in this comparison, 

cells grown under red light had the biggest percentage difference in cell weight between 

the two methods, 49.1%. This larger discrepancy suggests at least one of the two 

measurements had higher inaccuracy than average. The additional steps required to 

calculate a cell weight value from the addition of macromolecular components result in 

a larger compounded error and therefore the cell weight calculated with this method is 

likely to be an outlier. 

Secondly, the percentage change in cell weight from 48h to 136h is comparable 

for most samples across both methods (Table 3.6). Only mixotrophic cultures under red 

and blue light show larger discrepancies between the two methods. In the case of red 
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light mixotrophic cultures this is likely due to the accumulated error in the sum of 

macromolecular components at 48h. In the case of blue mixotrophic light, examining 

the differences between time points for each method, the differences are similar in 

magnitude but opposite in direction. According to the measured dry cell weight method, 

the cells decreased in weight between 48h and 136h whereas the opposite is true 

according to the sum of macromolecular components method. This equates to a 19.6% 

absolute difference in Table 3.7 even though the difference between time points in each 

method is around 10% only. The two very distinct methods of measuring cell weight 

agreed well, thus increasing the validity of proximal analyses discussed in this chapter. 
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Table 3.6. Comparison of two methods for estimating cell weight. Method 1 measured cell weight from a known culture volume. Method 2 

calculated cell weight from the sum of macromolecular components. 

 48h 136h 

Condition Measured dry 

cell weight 

(pgDCW cell-1) 

Sum of 

macromolecular 

components 

(pg cell-1) 

Percentage 

difference 

between 

methods (%) 

Measured dry 

cell weight 

(pgDCW cell-1) 

Sum of 

macromolecular 

components 

(pg cell-1) 

Percentage 

difference 

between 

methods (%) 

WA 60.8 45.9 24.5% 29.5 25.3 14.2% 

RA 38.9 33.9 12.9% 39.4 32.3 18.1% 

BA 67.7 54.3 19.8% 48.7 41.4 15.0% 

WX 105 81.0 23.0% 57.7 47.0 18.6% 

RX 72.4 36.9 49.1% 40.2 26.0 35.2% 

BX 65.6 50.1 23.7% 61.5 56.8 7.69% 
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Table 3.7. Cell weight percentage difference between 48h and 136h compared between different cell weight analysis methods. 

 Measured dry cell weight Sum of macromolecular components Absolute percentage 

difference between 

methods (%) 

Condition Cell weight percentage difference between 48h and 136h (%) 

WA -51.5% -44.9% 6.60% 

RA 1.29% -4.72% 6.01% 

BA -28.1% -23.8% 4.31% 

WX -45.0% -42.0% 3.07% 

RX -44.5% -29.5% 14.9% 

BX -6.25% 13.4% 19.6% 
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Average cell size distribution 

Statistically significant differences were found between the average final cell 

concentrations of WA (4.60 x 106 cells mL-1), RA (3.44 x 106 cells mL-1) and BA (1.11 x 106 

cells mL-1) cultures (N=4, p < 0.05) as seen in Table 3.8. In contrast, the final cell weight 

in phototrophic mode was highest under blue light followed by red light and finally white 

light 3.2). Final cell concentration and cell weight were inversely proportional to each 

other in phototrophic mode. If cell density remained constant, the changes in cell weight 

would be proportional to changes observed in cell size as per equation 3.11. 

Table 3.8. Average cell concentration at 136 hours of culture under a variety of trophic 

and illumination strategies. W, white LED light; R, red LED light; B, blue LED light. A, 

autotrophic medium (M8a); X, mixotrophic medium (M8a.Ac) see section 3.3.1 for 

media compositions. Individual flask (N) data reported for 2 timepoints (n) (n = 2, N = 

1). 

  WA RA BA WX RX BX 

Average cell 

concentration 

from 88 - 136h  

(107cells mL-1) 

Culture 1 4.53 3.44 1.11 2.17 2.16 1.32 

Culture 2 4.60 3.43 1.06 2.15 2.10 1.33 

 

 

 

𝜌 =
𝑚

𝑉
 (Eq. 3.11) 

Where 𝜌 is density of a cell, 𝑚 is mass of a cell and 𝑉 is the 

volume of a cell. 

 

 

Cell weight decreased from 48h to 136h in all cultures except in RA and BX cultures 

where it remained stable. For those conditions where cell weight decreased (WA, BA, 

WX, RX), the average percentage decrease was of 42.3% when measured from a known 



96 
 

volume of culture versus 35.0% when measured as the sum of macromolecular 

components (Table 3.7).  

Cell weight is an important physical property in bioprocessing as it is tightly linked 

to macromolecular composition and cell size (Chapman and Gray, 1981). 

Macromolecular composition is particularly important in microalgal bioprocesses where 

several classes of macromolecules or even the entirety of the cellular mass are often the 

product of interest. The shear sensitivity of a cell determines its resilience during culture 

and the ease of product recovery during downstream processing (Voulgaris et al., 2016). 

Shear sensitivity is a function of many properties, including cell size (Rayat, Micheletti 

and Lye, 2010; Rayat et al., 2016). Therefore, modelled cell viability or cell disruption 

rate in a particular unit operation could be affected by changes in cell size. Cell size 

distribution (CSD) was measured to improve our understanding of the factors causing 

cell weight differences under the conditions studied. 

All the cell size distributions of cells grown under white and red light approximate 

a narrow peak normal distribution. Comparing the mode between 48h and 136h of all 

white and red light conditions (Figure 3.6 and Figure 3.7), the average percentage 

difference is only -4%.  Assuming a constant 𝜌, the CSDs do not reflect the large 

percentage cell weight decreases seen from 48h to 136h either (Figure 3.6 and Figure 

3.7). A similar analysis is not advisable for cells grown under blue light as their CSDs are 

closer to a bimodal distribution indicating at least two distinct cell populations with 

different cell sizes. 

The same CSD data was plotted grouped by trophic mode in Figure 3.9 and Figure 

3.10 to accentuate the differences observed in cell size between lights at each time 

point. The increased similarity in cell size distribution at 136h seen in mixotrophic 

cultures (Figure 3.10) compared to phototrophic cultures (Figure 3.9) is a similar trend 

to that observed in the final cell concentration data (Table 3.8). Both point towards a 

dampening of the differential effects of wavelength selection on C. reinhardtii 

metabolism in mixotrophic growth conditions. This is a step towards rejecting the null 

hypothesis that impact of wavelength selection is the same in phototrophic and 

mixotrophic growth conditions. From a bioprocessing optimisation perspective, 
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wavelength selection should have a higher priority in phototrophic cultivations. 

However, mixotrophic metabolism also relies on photosynthesis to produce the ATP 

necessary for acetate assimilation (Johnson and Alric, 2012) and the potential benefits 

from a customised wavelength strategy should not be ignored. 
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Figure 3.6 C. reinhardtii cell size distribution at two time-points of a batch culture 

under white LED light and a variety of trophic strategies. (A) 48 hours of batch culture 

corresponding to the mid-exponential growth phase; (B) 136 hours of batch culture 

corresponding to the late stationary phase. W, autotrophic culture in M8a; WX, 

mixotrophic culture in M8a.Ac. Single representative sample plotted (N=1).  
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Figure 3.7. C. reinhardtii cell size distribution at two time-points of a batch culture 

under red LED light and a variety of trophic strategies. (A) 48 hours of batch culture 

corresponding to the mid-exponential growth phase; (B) 136 hours of batch culture 

corresponding to the late stationary phase. R, autotrophic culture in M8a; RX, 

mixotrophic culture in M8a.Ac. Single representative sample plotted (N=1). 
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Figure 3.8. C. reinhardtii cell size distribution at two time-points of a batch culture 

under blue LED light and a variety of trophic strategies. (A) 48 hours of batch culture 

corresponding to the mid-exponential growth phase; (B) 136 hours of batch culture 

corresponding to the late stationary phase. B, autotrophic culture in M8a; BX, 

mixotrophic culture in M8a.Ac. Single representative sample plotted (N=1). 
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Figure 3.9. C. reinhardtii cell size distribution at two time-points of a batch culture 

under a variety of illumination strategies in autotrophic M8a media. (A) 48 hours of 

batch culture corresponding to the mid-exponential growth phase; (B) 136 hours of 

batch culture corresponding to the late stationary phase. W, white LED light; R, red 

LED light; B, blue LED light. Single representative sample plotted (N=1). 
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Figure 3.10. C. reinhardtii cell size distribution at two time-points of a batch culture 

under a variety of illumination strategies in mixotrophic M8a.Ac media. (A) 48 hours 

of batch culture corresponding to the mid-exponential growth phase; (B) 136 hours of 

batch culture corresponding to the late stationary phase. WX, white LED light; RX, red 

LED light; BX, blue LED light. Single representative sample plotted (N=1). 
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3.4.2. Biochemical composition in phototrophic and mixotrophic batch cultures 

The main macromolecular components of C. reinhardtii biomass are 

carbohydrates, lipids and proteins. Most, if not all the carbon fixed in the Calvin-Benson-

Bassham cycle or assimilated via the catabolism of acetate will be used as a building 

block for those macromolecular groups. Nucleic acids also form an essential part of the 

biochemical make-up but they were assumed to stay constant in all conditions (Chang 

et al., 2011). Finally, pigments fall under the broad category of lipids, but were measured 

separately due to their central role in light absorption and the emphasis of this study on 

the effects of narrow band illumination on biochemical composition.  

The following sub-sections present the changes in percentage contribution to the 

biochemical composition of the cell of each macromolecular group measured 

throughout the culture under white, red and blue light in two trophic growth modes. 

Carbohydrate 

The main carbohydrate component of C. reinhardtii cells is glucose in the form of 

starch (Choi, Nguyen and Sim, 2010) although a great variety of other monosaccharides 

are produced by the microalgae as observed in the breakdown of cell wall fractions 

(Harris, 2001). Starch is a direct sink for photosynthetically fixed carbon exiting the 

Calvin-Benson cycle via gluconeogenesis and for succinate derived from the glyoxylate 

cycle during acetate assimilation (Johnson and Alric, 2012). Additionally, just like neutral 

lipids, starch is an energy storage molecule produced in excess by C. reinhardtii under N 

limitation conditions (Siaut et al., 2011; J Msanne et al., 2012).  

Figure 3.11 A shows that the carbohydrate content of the biomass in phototrophic 

conditions had a pronounced difference in profile for RA, WA and BA cultures. RA 

cultures maintained a higher carbohydrate content than the other two lights throughout 

the exponential growth phase. The similar growth and nutrient assimilation profiles for 

WA and RA cultures (Figure 3.3 A&C and Figure 3.5 A) suggest that similar amounts of 

carbon were fixed per gDCW in both conditions. As carbohydrate production is 

intrinsically linked to carbon fixation, it seems like the higher percentage accumulation 

of carbohydrates in RA cultures could be due to the smaller cell size developed under 
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those conditions (Figure 3.7 A). Carbohydrate increase and nitrogen depletion occurred 

concomitantly in WA cultures as expected (Johnson and Alric, 2013). Interestingly, RA 

cells saw a decrease (from 24% g gDCW-1 at 48 hours to 10% g gDCW-1 at 88h) in 

carbohydrate content coinciding with nitrogen depletion followed by a similar uptick 

(21% g gDCW-1) in the late stationary phase. The carbohydrate content in BA cells was 

stable during the growth phase (around 10% g gDCW-1) and decreased slowly during the 

stationary phase. BA cells did not exhaust all the ammonia in M8a (Figure 3.5 A) and 

therefore a large increase in carbohydrate content during the stationary phase would 

have been unexpected. However, the decline seen (down to 6% g gDCW-1 at 136 hours) 

suggests BA cells had to expend their carbohydrate reserves for energy production in 

lieu of photosynthesis and carbon fixation. This is agreement with the poor growth seen 

in that experimental condition too. 

The carbohydrate content followed very similar patterns WX and BX cultures 

(Figure 3.11 B). Under both lights, carbohydrates remained stable during the growth 

phase and increased during the early stationary phase. The path from assimilated carbon 

to starch is longer in mixotrophic than in autotrophic metabolism due to intracellular 

localisation of the pathways involved, namely the glyoxylate cycle and the Calvin-Benson 

cycle respectively (Lauersen et al., 2016). This could explain the lack of carbohydrate 

content increase during growth seen in WX and BX cultures. As with phototrophic 

cultures, there was a higher maximum carbohydrate content in the biomass of WX 

cultures (31% g gDCW-1 at 112h) compared with BX cultures (11% g gDCW-1 at 88h), even 

though the rate of acetate assimilation was the same for both conditions. Such disparity 

between lights seen in both phototrophic and mixotrophic conditions suggests the 

effects of light wavelength on carbohydrate content are independent of the growth 

mode. Given the similar growth patterns between growth modes under each of the two 

lights, the difference in carbohydrate content could be due to the differences in biomass 

accumulation seen between white and blue light illuminated cultures. RX cells reached 

peak carbohydrate content at 16h of culture (26% g gDCW-1) after which the 

carbohydrate content decreased steadily, finally stabilising at the same amount as BX 

cells at 120h (9% g gDCW-1). This contrasts with RA cells which peaked at the end of the 
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stationary phase, with a carbohydrate percentage fraction of biomass four times larger 

than BA cultures at 136h.  
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Figure 3.11. C. reinhardtii carbohydrate fraction as a percentage of biomass dry 

weight (w/w) over time. (A) Phototrophic batch cultures in M8a. (B) Mixotrophic 

batch cultures in M8a.Ac. Biological replicates plotted individually (Flask A – squares. 

Flask B – circles) Average plotted as a continuous line. W, white LED light; R, red LED 

light; B, blue LED light. 

 

Lipids 
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Wild-type C. reinhardtii has been shown to turn to autophagous behaviour, 

breaking down inner membrane structures rich in polar lipids, under N-deprivation 

conditions in order to produce fatty acid precursors necessary for neutral lipid 

(triacylglycerides) production (Davey et al., 2014). The study also concluded that the 

breakdown of polar lipids was mitigated in mixotrophic conditions thanks to the direct 

production of acetyl-CoA from acetate (Davey et al., 2014). The starting N concentration 

and the pH at the time of N depletion have been shown to affect final TAG yield (Gardner 

et al., 2011) therefore the culture strategy chosen to arrive at N depletion is important. 

A prevalent strategy in literature for studying neutral lipid productivity in N-limited 

conditions is starting at a low-N concentration as opposed to zero-N; as the negative 

effects on growth when the latter strategy is employed are too detrimental to TAG yield 

(Stephenson et al., 2010; Davey et al., 2014; Kamalanathan, Gleadow and Beardall, 

2017). 

An exceptional increase in lipid as a percentage of dry cell weight was not expected 

as increases in neutral lipid content have been shown to be offset by the decrease in 

polar lipid content during nitrogen starvation in photoautotrophic conditions (Davey et 

al., 2014). WA cultures were the only autotrophic condition that saw an increase in lipid 

content between the growth phase and the stationary phase (from 20% g gDCW-1 to 

28% g gDCW-1. Given that total lipids were measured and assuming the autophagous 

behaviour described in literature was maintained, the increase seen could be due to 

neutral lipids produced during the culture in phototrophic conditions (Figure 3.12 A).  

The percentage lipid content in WX cultures dipped during the growth phase (from 

40% g gDCW-1 at 0 hours to 12% g gDCW-1 at 48h) and increased to 20% g gDCW-1 

remaining stable from 88h onwards (Figure 3.12 B). A larger increase was seen in BX 

cultures (from 8% g gDCW-1 at 48 hours to 23% g gDCW-1 at 88h) which coincided with 

nitrogen and acetate depletion. Considering that BX cultures had a lower carbohydrate 

percentage than WX in the stationary phase (Figure 3.11 B), it seems that BX cultures 

directed more carbon towards lipid production whilst WX cells favoured carbohydrates. 

Just as with carbohydrates, the lipid content in RX cultures followed a similar pattern as 

in RA cultures showing that under red light the trophic growth mode seems to have less 



108 
 

of an impact on carbon storage allocation than under white and blue light (Figure 3.12 

A&B).  
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Figure 3.12. C. reinhardtii lipid fraction as a percentage of biomass dry weight (w/w) 

over time. (A) Phototrophic batch cultures in M8a. (B) Mixotrophic batch cultures in 

M8a.Ac. Biological replicates plotted individually (Flask A – squares. Flask B – circles) 

Average plotted as a continuous line. W, white LED light; R, red LED light; B, blue LED 

light. 
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Protein 

Protein content was positively correlated with growth in phototrophic cultures 

under all three lights (Figure 3.13 A). This was expected as during growth cells need to 

produce a large quantity of enzymes to maintain all cellular functions operational. 

Additionally, the Chlamydomonas cell wall is made up of glycoproteins rich in 

hydroxyproline and constantly dividing cells need higher amounts of cell wall 

components than non-dividing cells (Harris, 2013). Upon entering the stationary phase 

after depletion of nitrogen and as specific photons available per cell decrease due to the 

increased biomass concentration (Figure 3.3), overall protein content decreased in all 

cultures. Mixotrophic experiments had a much more stable protein content under all 

lights throughout the culture (Figure 3.13 B). This stable profile makes mixotrophic 

cultures conditions more appealing for microalgae marketed as nutritional supplements 

as protein content is an important quality attribute of those products (Gellenbeck, 

2012). However, a well-controlled autotrophic culture harvested at peak protein 

content would yield a higher specific protein content and therefore be more beneficial 

to producers. 

It must be noted that the Chlamydomonas reinhardtii cell wall has a high content 

of hydroxyproline-rich glycoproteins (Roberts, Gurney-Smith and Hills, 1972; Adair and 

Snell, 1990). Due to the lack of an amine linkage of this moiety on cell wall glycoproteins, 

the assay employed to measure protein content in this chapter would not capture the 

hydroxyproline content of the cell wall. This limitation of the experimental method 

chosen may be the reason for the lower than expected protein measurements obtained 

and could be remedied by employing liquid chromatography mass spectrometry 

methods (Ichikawa et al., 2010).  
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Figure 3.13. C. reinhardtii protein fraction as a percentage of biomass dry weight (w/w) 

over time. (A) Phototrophic batch cultures in M8a. (B) Mixotrophic batch cultures in 

M8a.Ac. Biological replicates plotted individually (Flask A – squares. Flask B – circles) 

Average plotted as a continuous line. W, white LED light; R, red LED light; B, blue LED 

light. 
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Pigments 

Pigments are the biomass component with the most reported data in the context 

of spectral composition studies. Their light absorbing properties tie them metaphysically 

to irradiance within a bioreactor and they are the main contributor to mutual shading 

effects (Burlew, 1953; Zittelli et al., 2013). The functional role of chlorophylls in energy 

generation via photosynthesis (Perrine, Negi and Sayre, 2012) and of carotenoids in both 

photosynthesis and photo-protection (Hashimoto et al., 2015) form an intrinsic link 

between light quality, pigments and microalgae metabolism. When culturing specialist 

producer species like D. salina and H. pluvialis, the focus lies on carotenoids like β-

carotene and astaxanthin (Katsuda et al., 2004; Xu and Harvey, 2019a) whilst 

chlorophylls have been primarily monitored in C. reinhardtii and Chlorella vulgaris 

studies (Mohsenpour, Richards and Willoughby, 2012; Wagner, Steinweg and Posten, 

2016). 

During the exponential growth phase, BA cultures produced the highest amount 

of total pigments per gram of biomass (peaked at 5.5% g gDCW-1 at 48 hours; Figure 3.14 

A&B). Photosynthetic electron flow (EF) is reconfigured between autotrophic and 

mixotrophic growth, as cyclic EF increases and linear EF decreases. Cyclic EF around PSI 

recycles NADPH whilst enabling oxidative phosphorylation and the production of ATP 

for acetate assimilation (Johnson and Alric, 2013). This reconfiguration of 

photosynthetic stoichiometry is not reflected in the total pigment content of C. 

reinhardtii suggesting that other factors regulate pigment content. Another factor that 

can affect pigment content is the compatibility of the impingent light spectrum with the 

cell’s specific pigment absorption spectrum as this will dictate how much light is 

absorbed per cell. Poorly absorbed light wavelengths could lead to an overproduction 

of pigment to capture as much light as possible. This holds true at a very low light 

intensity of 25 µmolph m-2 s-1 where red and blue light illuminated cultures were shown 

to accumulate less pigments compared to white light illuminated cultures (Wagner, 

Steinweg and Posten, 2016). However, chlorophyll a and b have their peak absorption 

in the blue region (420-450 nm) and blue light cultures in both trophic strategies 

produced the highest amount of pigment per gram of biomass. Similar results were 

obtained in cultures that controlled for specific light absorption using a turbidostat, 
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including no changes in the cross-section absorption spectrum of C. reinhardtii between 

different monochromatic lights (Mooij et al., 2016). Another study with C. reinhardtii 

and monochromatic LEDs obtained the same results (Ajayan et al., 2019). This suggests 

pigment content is subject to regulation by other factors apart from light quality.  

A decrease in total pigment content in the stationary phase of batch cultures is 

typically linked to the exhaustion of inorganic nitrogen in the media and cessation of cell 

division leading to the recycling of the photosynthetic apparatus for production of 

storage macromolecules (Davey et al., 2014; Ajayan et al., 2019). It is interesting to note 

that even for cultures where ammonium was depleted at the 72h mark (Figure 3.5 A&B), 

there was no pigment loss registered in the late stationary phase at 136h (Figure 3.14 

A&B). Assimilation of inorganic nitrogen in the form of nitrate or ammonia by microalgae 

results in a net proton imbalance (Scherholz and Curtis, 2013) which leads to significant 

pH deviations in non-pH controlled autotrophic cultures. The studies that report a loss 

of pigmentation upon the depletion of nitrogen are not pH controlled so active growth 

can be assumed to lead to a large pH difference from the start to the end of the culture. 

Given the tight pH control in our experiments it can be expected that culture conditions 

are more favourable for cell homeostasis at the 136h mark than they would be in a non-

pH-controlled system and this could be linked to the lack of pigment loss. Additionally, 

BX cultures showed an increased amount of percentage pigments in the late stationary 

phase compared to the mid-exponential growth phase (from 2.5% g gDCW-1 at 48 hours 

to 5.5% g gDCW-1 at 136h). Overall, the pigments fraction of biomass was different for 

each light but comparable between trophic modes. This corroborates the maintained 

relevance of photosynthetic activity during mixotrophic growth discussed in section 3.4. 
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Figure 3.14. C. reinhardtii pigment fraction as a percentage of biomass dry weight (w/w) 

over time. (A) Phototrophic batch cultures in M8a. (B) Mixotrophic batch cultures in 

M8a.Ac. Biological replicates plotted individually (Flask A – squares. Flask B – circles) 

Average plotted as a continuous line. W, white LED light; R, red LED light; B, blue LED 

light. 
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Figure 3.15. Chlorophyll content and composition during an entire batch culture. (A,B) 

Chlorophyll content as a percentage of total biomass. (C,D) Chlorophyll a to chlorophyll 

b ratio. The two biological replicates (n=2) are indicated by squares (Flask 1) and circles 

(Flask 2) respectively. Solid lines indicate the average across the biological replicates for 

each condition. Black symbols and lines used for white light; Red symbols and lines used 

for red light 640-670nm; Blue symbols and lines used for blue light 440-480nm.  

Microalgae have evolved in multi-species habitats where absorbing more light 

than necessary is a desirable evolutionary trait due to the competition for available light 

with other species. However, this can lead to the over-absorption of light in high light 

environments and thus a decrease in photoconversion efficiency (PCE). This is not a 

desirable trait for industrialisation as maximising PCE should lead to maximised process 

yields. It has been found in literature that the chlorophyll a to chlorophyll b ratio (chl a/b 

ratio) is inversely correlated with the percentage of photosystem II (PSII) saturation and 

therefore light absorption capacity of microalgae (Perrine, Negi and Sayre, 2012). We 

found the chl a/b ratio in WA cultures (between 2.2 and 2.7; Figure 3.15 A) to be in the 
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same range as previously published results (Polle, Kanakagiri and Melis, 2003). 

Interestingly, the chl a/b ratio was higher in RA cells than WA and BA cells throughout 

the whole batch culture (Figure 3.15 A). This mimics previously published results for 

Chlorella sp (Senge and Senger, 1991) and suggests that the photosynthetic apparatus 

is altered under a lack of short wavelengths of the PAR spectrum such as narrow band 

blue LED light. Thus, higher PCE can be expected under red light illumination in mass 

cultivation conditions. RX cultures maintained a higher chl a/b ratio than cultures under 

the other two light conditions (Figure 3.15 B). Whilst under phototrophic conditions the 

chl a/b ratio peaked during exponential growth under all three lights, in mixotrophic 

conditions each light resulted in a unique pattern. 

3.5. Discussion 

Biomass accumulation and nutrient uptake kinetics 

The choice of wavelength distribution affected the final biomass accumulated 

after 136 hours of batch culture in autotrophic conditions (Table 3.2). From an energetic 

perspective, the wavelength of a photon is inversely proportional to the energy 

transmitted by said photon. The lowest energy photons in the PAR range are red. Their 

relatively low energy suffices to drive the required electron excitation at the reaction 

centres of PSII and PSI for photosynthesis to take place. Therefore, the additional energy 

supplied by incident light on WA cultures does not explain the increased biomass yield 

seen in white light cultures (Table 3.5). It could explain the poor performance of blue 

light cultures as they would have received the largest energetic photon flux per cell at 

the early stages of the experiment, and this might result in increased photodamage 

compared to the other two light conditions. However, light is a complex critical process 

parameter (CPP) and the energetic perspective is not the only facet of import when 

evaluating the effect of illumination on a microalgal culture. The specific absorption 

profile of the microalgae pigments as well as biomass concentration will also play a large 

role in determining the specific amount of energetic photon flux absorbed per cell 

(Blanken et al., 2013, 2016). 
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From a metabolic regulation perspective, blue light is a key component of the 

incident light wavelength-distribution due to the crucial role of phototropin in the 

expression of pigment biosynthesis-related genes, eyespot size regulation and 

expression of other photoreceptors (Kianianmomeni and Hallmann, 2014). In a seminal 

study by Petroutsos and colleagues (2016) it was shown that enhanced thermal 

dissipation via high-energy quenching (qE) is dependent on detection of blue light by a 

phototropin in C. reinhardtii. The regulatory importance of blue light could explain the 

increased biomass production of phototrophic C. reinhardtii cultures illuminated with 

the balanced wavelength distribution of white LEDs compared to the narrow wavelength 

distribution of red LEDs. The balanced wavelength distribution of white LEDs is typically 

made-up of a blue wavelength peak and a broad shoulder encompassing the reminder 

of the visible light spectrum, this enables the correct regulation of the aforementioned 

areas of metabolism improving the viability of a microalgal culture. Interestingly a blue 

and red-light regulated photoreceptor protein, CrCRYa, has been recently discovered in 

C. reinhardtii (Beel et al., 2012). This newfound cryptochrome is the first evidence of 

red-light regulated metabolism in the model algae. The discovery of CrCRYa means other 

red light-regulated photoreceptors might yet remain undiscovered in C. reinhardtii. Such 

red/far-red light activated photoreceptors are typically referred to as phytochromes and 

are common in both higher plants like Arabidopsis thaliana (Clack, Mathews and 

Sharrock, 1994) and cyanobacteria like Fremyella diplosiphon (Wiltbank and Kehoe, 

2016). 

The reduced influence of light quality in mixotrophic cultures is a novel 

observation obtained from this set of experiments. The identical acetate uptake rates 

observed between the three mixotrophic conditions (Figure 3.5 C) indicate they would 

all reach the same final biomass concentration. However, the lower final biomass 

concentration of blue light cultures shows that once the organic carbon source is 

exhausted, the importance of the incident light spectrum on metabolism is re-instated 

as cells switch to autotrophic metabolism in a very short time just as the switch from 

cell duplication to energy accumulation observed under stress conditions described in 

Chapter 2. During the final autotrophic growth phase of mixotrophic cultures the 

influence of blue light on the cell cycle may also affect the final biomass concentration 
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in BX. C. reinhardtii cells are thought to progress through a cell division commitment 

check point during the vegetative cell cycle (Münzner and Voigt, 1992; Cross and Umen, 

2015). The time taken to reach this commitment point determines the final cell size 

before cell division as well as the total number of cell divisions within a cell cycle. Blue 

light has been shown to delay the commitment point, allowing for increased cell size 

thus extending the total length of the cell cycle too (Oldenhof et al., 2004; Oldenhof, 

Zachleder and Van Den Ende, 2006). 

A slight lag phase up to 16 hours of culture was only observed in the cell 

concentration measurements of mixotrophic cultures (Figure 3.3 D). This indicates that 

cells in M8a.Ac took longer to resume their cell division upon inoculation compared to 

cells inoculated in M8a. This lag also influenced the final cell concentration. The final 

24h of the linear growth phase preceding stationary phase were more productive for 

M8a cultures compared to M8a.Ac cultures. This might be due to the depletion of 

acetate triggering a more abrupt metabolic reconfiguration, forcing cellular metabolism 

towards storage molecule production as opposed to a switch towards phototrophic 

growth metabolism. M8a cultures on the other hand grew phototrophically throughout 

and as biomass concentration increased and specific light available decreased, they 

transitioned to stationary phase metabolism. 

The reduction in cell proliferation rate after acetate exhaustion could be due to 

several factors combined. The biomass concentration reached in mixotrophic cultures 

at 64 hours (Figure 3.3 D) was high enough for light levels to be limiting as demonstrated 

by autotrophic cultures not growing exponentially at such concentrations (Figure 3.3 C). 

Additionally, ammonium was also exhausted after up to 64 hours in WX, RX and BX 

cultures, although there is abundant literature on intracellular nutrient quotas in 

microalgae and the uncoupling of nutrient depletion and growth arrest (Droop, 1968; 

Benavides et al., 2015). Another factor could be the metabolic reconfiguration required 

to switch from mixotrophic to phototrophic metabolism, which would potentially delay 

the re-initiation of cell proliferation (Johnson and Alric, 2012). 
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Linking cell size and biomass distribution to photoprotection 

The effect of wavelength selection on cell size of C. reinhardtii has been 

documented in literature in the context of cell cycle regulation (Oldenhof, Zachleder and 

Van Den Ende, 2004b, 2006). The experiments presented in this chapter corroborate the 

increase in average cell size of C. reinhardtii under blue LED illumination and the 

decrease in average cell size under red LED illumination compared to white LED 

illumination (Figures 3.4-3.8). A hypothesis for the increased growth rate observed 

under red LED light illumination versus blue LED illumination (Table 3.3) is related to cell 

size and the risk of electron transport chain over-reduction (Hansberg and Aguirre, 

1990). The regulatory effects of blue LED light leading to a longer cell cycle and thus a 

larger average cell size during vegetative growth result in a lower risk of oxygen 

penetration into the microalgal cell. On the other hand, smaller cells resulting from red 

LED illumination have a risk of becoming oversaturated with oxygen. Dangerous reactive 

oxygen species (ROS) are created when oxygen receives energy from excited chlorophyll 

molecules in the chloroplast leading to the creation of 1O2; and H2O2, (O2
˙−), and OH˙ are 

formed by direct electron transfer from either the photosystem I reaction centre or 

reducing equivalents like NADPH (Erickson, Wakao and Niyogi, 2015). To avoid over 

accumulation of ROS, small cells must expend reducing equivalents at a faster rate than 

larger cells, thus driving faster anabolism and cell growth rate. 

As noted above, the influence of wavelength selection on C. reinhardtii physiology 

was dampened under mixotrophic conditions. This dampening was not evident in cell 

size measurements in the exponential growth phase (Figure 3.9 A). However, it resulted 

in closer cell sizes between different illumination conditions in the late stationary phase 

in mixotrophic cultures (Figure 3.10 B) than in autotrophic cultures (Figure 3.9 A). The 

exhaustion of acetate at 48 hours triggered an early reduction in cell division rate under 

white and red light (Figure 3.5 C). This resulted in a significant disparity in average final 

cell concentrations between trophic modes under these two lights (Table 3.8). However, 

it did not immediately trigger senescence, the OD 750 nm profile attests to continued 

productivity potentially indicating that a metabolic shift towards increased production 

of storage molecules occurred. Carbohydrate content increase after 72 hours in WA and 

RA cultures as did lipids in WA cultures. Lipid production acts as an electron sink 
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preventing over-reduction of the electron transport chain when nitrogen depletion 

prevents photosystem repair and there is an over accumulation of reducing equivalents 

in the chloroplast as not enough ATP is produced to drive the Calvin Benson cycle and 

drain maintain ETC homeostasis (Hansberg and Aguirre, 1990; Erickson, Wakao and 

Niyogi, 2015).  

 Limitations of experimental design 

Measurements of the macromolecular components are reported in literature with 

varying degrees of detail. Biochemical assays like the ones described in the methods 

section of this chapter are typically employed to obtain estimates for the total amount 

of each component. Further detail, the molecular composition of said macromolecules, 

can be obtained with various analytical methods like high-performance liquid 

chromatography (HPLC), thin layer chromatography (TLC), gas chromatography (GC) and 

mass spectrometry (MS), each with their own limitations (Lisec et al., 2006; Del Val et 

al., 2013; Kobayashi et al., 2013). Increased resolution can be informative however a 

single analytical method does not fit all and the development of protocols for each 

method fell outside the remit of this thesis. When estimating macromolecular 

composition, some studies do not attempt a mass balance to reconcile the measured 

constituents with the total weight per cell as not all constituents are measured (Xia and 

Gao, 2005; Faraloni et al., 2011). When a mass balance is included, the difference is 

typically less than 5% (Ike et al., 1997; Wagner et al., 2010). In some cases, not all 

macromolecular groups are measured. A perfect mass balance is assumed in order to 

calculate the remainder of the cell’s weight (Boyle and Morgan, 2009). 

The biochemical assays described in the methods section of this chapter were 

scaled down from their classical counterparts to reduce biovolume required per assay. 

This increased the feasible number of assays per experiment whilst keeping sampled 

volume to a minimum. It also increased throughput as they were performed in 96 well 

plates, paving the way for automation of these non-trivial techniques. However, the 

small culture volumes employed were not measurable by standard dry cell weight 

techniques. In traditional cell culture experiments, obtaining percentage dry weight 

measurements of macromolecules with these assays was possible due to the large 
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amount of starting material utilised. The scaled down versions developed in this thesis 

involved a conversion from g macromolecule per cell to g macromolecule per g dry cell 

weight. The errors associated with the cell concentration measurement and each of the 

assays were compounded into relatively large discrepancies compared to those seen in 

literature between the measured dry cell weight per volume of culture and the sum of 

each macromolecular component measured as explained in the materials and 

experimental methods section. Such discrepancies are certainly a limitation of the 

methods employed and could be remedied in future work by scaling down dry cell 

weight measurements. Freeze-drying small pelleted aliquots could be a viable 

alternative to the filtration and oven drying method commonly employed which 

requires prohibitive amounts of biomass in the context of limited biovolume availability. 

3.6. Conclusions 

The systematic evaluation of the effects of monochromatic illumination and 

trophic mode on the physiology and biochemical composition of C. reinhardtii presented 

in this chapter offers a well-rounded base line to inform early process development 

efforts and further monochromatic illumination studies. The balanced light spectrum of 

white LEDs resulted in a higher maximum growth rate and superior biomass 

accumulation when compared to either extreme of the PAR range in pH controlled 

autotrophic conditions. When an organic carbon source was present in the medium, the 

more energy efficient red LEDs resulted in a final biomass concentration comparable to 

white LEDs, although the maximum growth rate was 22% higher under white LEDs (Table 

3.3). The trade-off between the energy cost savings accrued from red LEDs versus the 

time taken to reach a high enough biomass concentration could be an important factor 

to consider when selecting an illumination strategy. The poor performance of BA 

cultures in terms of µmax (Table 3.3) and final biomass concentration (Figure 3.3 A&C) 

was remedied in BX cultures where at least µmax was comparable to RA and RX cultures 

(Table 3.3). Optimisation of mixotrophic culture conditions under blue LED lights could 

make the illumination strategy a viable option.  

There was great similarity in nutrient assimilation rates for both inorganic nitrogen 

and organic carbon between all conditions. However, there were significant differences 
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in cell concentration (Figure 3.3 C) and cell size (Figure 3.9) which resulted in the yield 

of cells on nitrogen (𝑌𝐶/𝑁𝐻4+) to vary significantly between WA (432 x 106cells mgNH4
+-

1), RA (325 x 106cells mgNH4
+-1) and BA (107 x 106cells mgNH4

+-1) cultures. The holistic 

perspective achieved by combining the cell concentration, nutrient uptake and cell size 

data, helps formulate the hypothesis that the effect of illumination wavelength on 

𝑌𝐶/𝑁𝐻4+ values in autotrophic culture is linked to metabolic differences between the 

cultures. 

The proximal analysis of C. reinhardtii biomass throughout a batch culture is 

seldom reported in a time-dependent manner for all major components. Such 

granularity uncovered insights into the effects of monochromatic illumination on 

microalgae metabolism at different stages of the batch culture. Admittedly these 

experiments performed in batch mode are not the ideal design to answer fundamental 

questions about the relationship between absorption of light at different wavelengths 

and its effects on metabolism. Continuous cultures performed in turbidostat mode 

where specific light absorption per cell is kept constant (Mooij et al., 2016) would 

provide more comparable conditions from a specific light absorption perspective. 

However, for the purpose of investigating the effects of constant illumination at a 

constant intensity these experiments helped identify metabolic differences between the 

conditions studied as discussed in Section 3.5. 
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CHAPTER 4 

Development of reliable tools for the evaluation of key 

physiological differences at the transcriptional level in 

C. reinhardtii 

4.1. Introduction 

Freshwater microalgae, like Chlamydomonas reinhardtii, have evolved an extensively 

versatile metabolism that increases their chances of survival in diverse environmental 

conditions in the presence (mixotrophy) or absence (autotrophy) of a readily available source 

of nutrients (Grossman et al., 2007). Due to this metabolic plasticity, and despite significant 

research efforts, our knowledge of algal metabolism remains nascent, relative to other crops, 

and our control over biomass composition remains rudimentary (Jungandreas et al., 2014). 

One of the main reasons that fully understanding algal metabolism and how it responds to 

varying environmental and bioprocessing conditions is far from trivial is the uniqueness of 

incident light as a critical process parameter. The effects of light on microalgal physiology are 

mediated by a variety of specialised, light harvesting and light sensing molecules. 

Chlorophylls, carotenoids, rhodopsins, phototropins and cryptochromes each have a unique 

absorption spectrum and are involved in different cellular processes like photosynthesis, 

phototaxis (Sineshchekov, Jung and Spudich, 2002) or cell cycle control (Huang and Beck, 

2003; Müller et al., 2017).  

In addition, light in and of itself is complex in nature as it can vary in terms of intensity, 

photoperiod and spectral composition. Light intensity has a well-documented and 

characterised positive effect on biomass growth both under phototrophic and mixotrophic 

conditions (Ooms et al., 2016). However, excessively high light intensities have been shown 

to trigger stress responses, like carotenoid production, in a number of algal species 

(Steinbrenner and Linden, 2003; Lamers et al., 2008) or even completely inhibit growth 
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(photoinhibition)(Carvalho et al., 2011). Phototrophic studies on biomass growth of C. 

reinhardtii have shown that below saturating light levels (25 – 100 μmolph m-2 s-1), illumination 

with red and red-blue light can achieve a higher biomass yield on photons compared to white 

light (Wagner, Steinweg and Posten, 2016). However, at or above saturating light intensities 

(>1500 μmolph m-2 s-1) the yield of biomass on photons was found to be inversely proportional 

to the specific photon absorption rate. Consequently,  illumination at wavelengths considered 

to be sub-optimal due to their relatively low specific absorption rate (e.g. illumination with 

yellow and warm white light) has been found to yield higher biomass yields than red or blue 

light at high light intensities (Mooij et al., 2016).  

The advent of light emitting diodes (LEDs) has enhanced our ability to accurately control 

several properties of incident light, beyond intensity, and investigate their effects on biomass 

growth and biochemical composition (Pattison et al., 2018). This has enabled in depth 

investigations of the effects of the frequency and duration of light/dark cycles, spanning 

timescales from milliseconds  to hours (diel-cycle) (Amini Khoeyi, Seyfabadi and 

Ramezanpour, 2012; S. K. Wang et al., 2014; Abu-Ghosh et al., 2016). Studies on the impact 

of light quality on biomass composition, primarily focused on pigment and/or lipid content in 

specialised producer species like Haematoccocus. pluvialis and Phaeodactylum tricornutum 

[16], have shown a variety of possible responses across species. Therefore, there is a need to 

understand the diverse and complex effects of the spectral composition of incident light on 

microalgal physiology and metabolism.  

Associating gene expression profiles with changes in microalgal physiology under 

narrow band illumination can help unravel the specific effects of discrete regions of the 

photosynthetically active radiation (PAR) region of the visible light spectrum (400 – 750 nm). 

However, relative quantification of reverse transcription-quantitative real time polymerase 

chain reaction (RT-qPCR) measurements requires the existence of a set of reference genes 

with stable expression profiles across a variety of culture conditions. A number of studies have 

previously proposed candidate reference genes for C. reinhardtii with no clear consensus 

available in the literature due to the limited number of experimental conditions examined in 

each study (Rosic et al., 2011; Liu et al., 2012; Guo, Lee and Ki, 2013). A comprehensive study 
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of the stability of four candidate reference genes under nitrogen deprivation both in 

photoautotrophic and mixotrophic conditions was recently published (Smith and Gilmour, 

2018), however is limited to only white light illumination. An extensive transcriptomic analysis 

of C. reinhardtii gene expression under a variety of nutrient depletion conditions has been 

recently published (Schmollinger et al., 2014). 

Given the biotechnological potential of triggering desired responses in a microalgal 

culture by utilising a tailored spectral composition, this study investigates the effects of 

wavelength selection and trophic strategy on gene expression in C. reinhardtii. The genetic 

responses elicited by monochromatic LEDs with narrow peak intensities at the two extremes 

of the PAR range (Blue, 440-480nm and Red, 640-670nm) under phototrophic and 

mixotrophic conditions were compared against white light control cultures. A set of 10 

candidate reference genes was compiled from literature and their stability was assessed 

across all 6 experimental conditions. The novel reference genes identified herein, coupled 

with dynamic biomass and pigment content measurements, were used to evaluate the effect 

of wavelength and trophic strategy induced changes at key metabolic nodes. Finally, the 

expression levels of promoter genes and/or 5’-/3’-untranslated regions (5’-/3’-UTR) 

previously targeted for the expression of recombinant proteins in C. reinhardtii were 

characterised to discern favourable illumination conditions and trophic strategies.  
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4.2. Aim & Objectives 

The aim of this chapter is to characterise and compare the effect of narrow band 

illumination at two extremes of the photosynthetically active radiation (PAR) range on the 

central carbon metabolism gene expression of C. reinhardtii in batch cultures with two 

different trophic strategies (phototrophic and mixotrophic). This can be broken down into the 

following scientific objectives: 

• Optimise the cell lysis step of ribonucleic acid (RNA) extraction from C. reinhardtii cell 

pellets for maximisation of yield, integrity and purity of extracted RNA 

• Compare the expression stability of a panel of literature based and novel reference 

genes (10 in total) to validate future RT-qPCR studies 

• Evaluate the effect of wavelength and trophic strategy on gene expression at key 

metabolic nodes – the Calvin-Benson cycle, tricarboxylic acid (TCA) cycle, glyoxylate 

cycle and fatty acid synthesis. 

• Evaluate the effect of wavelength and trophic strategy on gene expression of 

commonly used in recombinant protein expression with C. reinhardtii 

4.3. Materials and methods 

4.3.1. Ribonucleic acid (RNA) extraction 

Initial ribonucleic acid extraction efforts were performed with RNeasy spin-column 

extraction kit (Qiagen, UK) following the manufacturer’s instructions. As discussed in section 

4.41 extraction yield was lower than expected and optimisation experiments resulted in the 

final RNA extraction protocol described below. 

Final RNA extraction protocol 

Samples containing 5 x 106 cells were centrifuged for 5 minutes at 12,000g (Eppendorf 

5415, Cambridge, UK) under constant temperature (4°C). The supernatant was aspirated and 

discarded, and the cell pellet was stored at -80°C for up to 4 months until further processing. 

RNA extraction was performed in 2 mL MaXtract High Density Tubes (Qiagen, Venlo, 
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Netherlands) using TRIzol® (Invitrogen, Carlsbad, US) and following the manufacturer’s 

instructions. GlycoBlue™ Coprecipitant (Invitrogen, Carlsbad, USA), dissolved in 50 µL of 

RNase-free TE buffer (Sigma-Aldrich®), was used to stain the nucleic acid pellet. 

Contaminating gDNA was removed with RNase-free DNase (Qiagen, Venlo, Netherlands) 

according to the manufacturer’s protocol. RNA integrity was assessed with a 1% ethidium 

bromide stained agarose gel in TBE buffer. RNA purity and concentration were assessed using 

a NanoDrop spectrophotometer (Thermo Fisher). Ratios of absorbance readings at 260/280 

nm and 230/260 nm ratios displayed little variability (2±0.1) and indicated a lack of phenol 

contamination from the TRIzol based extraction. 

4.3.2. Primer design  

Gene primers for RT-qPCR were designed following the Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Gene sequences 

were obtained from the Chlamydomonas reinhardtii genome v5.5 in the Phytozome database 

(Goodstein et al., 2011).A custom set of parameters prioritising primer pairs that span intron-

exon junctions was used to select primer sequences in primer3 (Untergasser et al., 2012). 

Primer quality was assessed with PCR Primer Stats (Stothard, 2000). Melt curve analysis with 

no template controls (NTC), no reverse transcription controls (NRT) and positive controls was 

used to ensure each primer pair gave rise to a single, well-defined peak from extracted RNA. 

Serial and linear dilutions were used to establish the log-linear dynamic range for each primer 

pair and primer efficiency. Starting RNA and primer mix concentrations were optimised over 

three orders of magnitude (1.5-150 ng µL-1 and 0.9-90 µM respectively). 

4.3.3. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) 

RT-qPCR was carried out with a Luna®Universal One-Step RT-qPCR Kit (New England 

Biolabs, MA, US) on a CFX 96 connect Real-Time PCR System (Bio-Rad, CA, US). Individual RT-

qPCR reactions had a total volume of 20 µL made up of 10 µL Luna Universal One-Step 

Reaction Mix (2X), 1 µL Luna WarmStart® RT Enzyme Mix (20X), 2 uL forward and reverse 

primer mix (9 µM), 5 µL RNA (75 ng) and 2 µL Nuclease-Free Water. Thermal cycling was 

programmed according to the kit manufacturer’s instructions. In short, 1 cycle of reverse 
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transcription at 55°C for 10 minutes followed by 1 cycle of initial denaturation at 95°C for 1 

minute and 40 cycles of denaturation and extension at 95°C (for 10 seconds) and 60°C (for 30 

seconds) respectively. A 60-95°C melt curve was generated to evaluate primer specificity and 

gDNA contamination.  

4.3.4. Reference gene selection and statistical analysis 

A panel of 10 candidate reference genes was compiled from literature (Table 4.1). A set 

of six diverse experiments including combinations of three different wavelengths and two 

different trophic strategies was designed to evaluate stability in expression levels. Expression 

levels of the candidate genes (Table 4.1) were measured by RT-qPCR with samples taken 16, 

48 and 136h hours post inoculation and analysed with the qBase+ software package 

(Biogazelle). The geNorm algorithm (Vandesompele et al., 2002; Hellemans et al., 2007) was 

used to calculate the coefficient of variation of the normalised reference gene expression 

levels (CV) and the geNorm stability M-value (M) was used to rank candidate reference genes 

from least to most stable. Gene expression data were further analysed by performing 3 (W, 

R, B) by 2 (A, X) factorial ANOVAs to evaluate main and interaction effects of wavelength and 

trophic strategy on the average relative expression of each gene of interest. Multiple 

comparisons with Benjamini-Hochberg correction were performed in the statistical software 

R (version 3.6.1). 
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Table 4.1 List of candidate reference genes monitored in this study with RT-qPCR. 

Gene Gene name Forward Primer (5’-3’) Reverse Primer (5’-3’) Used as 
reference 
gene in 

Phytozome ID 

ATPD ATP synthase delta chain, chloroplastic GTTCCTGATCGCCAAGAAGC GAGTCAATCACGGGCTTCAG This study Cre11.g467569.t1.1 
RPL-19 Ribosomal protein (large subunit) 19 CCTGAAGAAGTACCGCGACTC AACACGTTACCCTTGACCTTCA Liu12 Cre02.g075700.t1.2 
RACK1 Receptor of activated protein kinase C  AAGACCATCAAGCTGTGGAACA TTCCAGACCTTGACCATCTTGT Siaut07,Beel12  Cre06.g278222.t1.1 
RPS-10 Ribosomal protein (small subunit) 10 CTGGTGACTGAGCGCTTCT GGGCGGTTGGACTTCTTCA Siaut07,Liu12 Cre09.g411100.t1.2 
ch3-II Histone H3 GAGATTGCCCAGGACTTCAAGA GATGTCCTTGGGCATGATGGTC This study Cre17.g708700.t1.2 
psaD Photosystem I reaction centre subunit II GACACTCCCAGCCCGATTTTC CCAGGTGATGACGTAGAACTCC This study Cre05.g238332.t1.1 
ACX1 Acetyl-CoA carboxylase subunit α AGCAAGACTCTGGTTAGCGATG CCCAAAGCGAGACAGGATAGTG This study Cre12.g519100.t1.2 
PSRP- Plastid specific ribosomal protein (small 

subunit) 1 
GCAAGAAGGAGCAGAAGGTAGA TCCTTGATCTTCTGGAGCTTGG This study Cre05.g237450.t1.2 

STA1 ADP-glucose pyrophosphorylase large 
subunit 1 

CTCGGTGCTGTCCATCATTCT GTTCAGGGAGGTCGAGTTGAA This study Cre13.g567950.t1.2 

DLA3 Dihydrolipoamide acetyltransferase 
component of pyruvate dehydrogenase 

TTCTGTCTCGGTGCTTCTCAGG TCGTCCTGGTTTTCAAATGCCA This study Cre06.g252550.t1.1 

RBCS Ribulose bisphosphate carboxylase small 
subunit 

ACCCCGGTCAACAACAAGATG GTCGTAGTACAGGCAAGACACG NA Cre02.g120150.t1.2 

FUM1 Fumarate hydratase AGAACTGCATCAAGAAGGTGGA AGAAGTCGTTACCCTTGTCGTC NA Cre06.g254400.t1.1 
MAS1 Malate synthase CCCAACGGCAAGGTCTACAG CAGCGTTGTGGAAGAAGAACAG NA Cre03.g144807.t1.1 
KAS2 3-oxoacyl-[acyl-carrier-protein] synthase CTCACAAAGTTTCCTCGGCAAG CGCCTTCTCAGTCTTGGAAATG NA Cre07.g335300.t1.2 
atpA ATP synthase subunit alpha GCAATGCGTACTCCAGAAGAAC CGAGCAATACCGTCACCTACTT NA 2717041d 
HSP70A Heat shock protein 70A CCAAGAACCAGGTCGCTATGAA ACCTTCTCCTCGTTCTTGTAGG NA Cre08.g372100.t1.2 
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4.4. RNA extraction optimisation 

The need to optimise the RNA extraction method employed in this chapter arose 

from the amount of RNA required to perform the reference gene study and the 

transcriptional activity study that followed. Initial RNA extraction experiments produced 

RNA yields 100 times lower than theoretical yields calculated from literature values 

(Valle, Lien and Knutsen, 1981). Evaluation of the initial results prompted the testing of 

different streams from the RNeasy spin column extraction kit workflow. No abrupt 

losses of nucleic acid content were detected between streams of consecutive steps 

prompting the hypothesis that there was insufficient cell lysis during the incubation with 

lysis buffer step. Four lysis techniques were initially compared, (a) mechanical lysis with 

a probe sonicator, (b) mechanical lysis by vortexing with glass beads, (c) sonic lysis with 

adaptive focused acoustics (AFA), and (d) chemical lysis with phenol- chloroform (Trizol) 

extraction. The aim of this optimisation study was to maximise RNA yield in a robust and 

reproducible manner. 
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Figure 4.1 Initial RNA extraction optimisation study focusing on the cell lysis step. RNA 

was extracted from C. reinhardtii cell pellets (5 x 106 cells; N=3). 

 

The highest recovery was achieved with Trizol (1.3 µgRNA 1x106 cells-1) and AFA (1 

µgRNA 1x106 cells-1). AFA was more reproducible as it had a significantly smaller CV 

(17%) than Trizol (60%) (Figure 4.1) however the integrity of the extracted RNA was 

questionable according to gel electrophoresis results (Figure 4.2). The gel was loaded 

normalised by RNA quantity according to nanodrop quantification. The streaking seen 

between the 18S and the 16S bands of the AFA lane suggest nucleic acid fragmentation 

that should be avoided in RT-qPCR RNA preparations. AFA is commonly used for DNA 

shearing in NGS sample preparation so this was always a known risk. Meanwhile the 

well-defined bands seen in the Trizol lane suggest this method does not cause 

fragmentation issues.  
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Figure 4.2 Gel electrophoresis of C. reinhardtii RNA extractions employing different 

lysis techniques. (gDNA, genomic DNA; 18S, 18S rRNA; 16S, 16S rRNA). 

 

The gel electrophoresis integrity check confirmed that probe sonication and 

vortexing with glass beads are not suitable RNA extraction methods. AFA showed good 

reproducibility and better integrity than probe sonication. Trizol did not show good 

reproducibility but it had the highest extraction yield (Figure 4.1) Therefore the second 

round of optimisation was performed with AFA and Trizol. The AFA treatment time was 

decreased from 30s to 15s and Trizol extraction was performed in MaXtract tubes 

specifically designed for this purpose instead of regular Eppendorf tubes. Figure 4.3 

shows there was a slight increase in RNA extracted with Trizol (1.4 µgRNA 1x106 cells-1) 

and the variability decreased significantly down to a CV of 9%. Meanwhile there were 

no improvements in the AFA assisted extraction.  
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Figure 4.3 RNA extraction optimisation study focusing on the cell lysis step. RNA was 

extracted from C. reinhardtii cell pellets (5 x 106 cells; N=3). 

Finally, the original Trizol extraction method was compared to the Trizol extraction 

using MaXtract tubes in terms of purity. As can be seen in Figure 4.4 where the RNeasy 

extraction kit is used a purity standard, the Trizol extraction method using MaXtract 

tubes produces a much closer purity profile to the standard than the original Trizol 

extraction. The integrity (Figure 4.2), yield (Figure 4.3) and purity (Figure 4.4) achieved 

with the Trizol extraction method using MaXtract tubes was considered satisfactory for 

the following RT-qPCR studies. 
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Figure 4.4 RNA purity analysis. (A) Comparison between Trizol extraction performed 

in 2 mL Eppendorf tubes and RNA extraction performed with RNeasy spin column kit. 

(Both extractions N=1) (B) Comparison between Trizol extraction performed in 2 mL 

MaXtract tubes and RNA extraction performed with RNeasy spin column kit (Trizol 

extraction N=5; RNeasy extraction N=1). RNA was extracted from C. reinhardtii cell 

pellets (5 x 106 cells). 

 

4.5. Expression Stability 

Relative quantification of gene expression via RT-qPCR requires the determination 

of one (or more) reference genes which are expected to maintain a stable expression 
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level across all experimental conditions examined (Shipley, 2006). The panel of 

candidates genes (Table 4.1) investigated in the present study reflects three distinct 

selection criteria: (a) genes extensively used as reference genes in relevant scientific 

literature (RACK1, RPL19, CH3-I and RPS10 (Siaut et al., 2007; Beel et al., 2012; Liu et al., 

2012; Kianianmomeni and Hallmann, 2013; Adelfi et al., 2014)), (b) genes with functional 

similarities to widely used reference genes  (PSRP-1, psaD and ATPD (Li et al., 2018)) and, 

novel in this study, (c) genes involved in central carbon metabolism due to its vital role 

in cellular function under most relevant experimental conditions (DLA3, ACX1 and STA1). 

Gene expression was measured at three time points (16, 48 and 136h post inoculation) 

for each of the six possible combinations of wavelength (W, R, B) and trophic strategy 

(A, X).  

Raw RT-qPCR data is evaluated in terms of quantification cycle (Cq), which is the 

number of amplification cycles required for a RT-qPCR reaction’s fluorescence to surpass 

a defined threshold. This is inversely correlated to the specific cDNA template present 

in the reaction. The 10 genes evaluated displayed a wide range of average Cq values (𝐶𝑞̅̅ ̅) 

with ATPD at the low end (𝐶𝑞̅̅ ̅ = 14) and DLA3 with at the high end of the range (𝐶𝑞̅̅ ̅ = 22). 

An overview of all Cq ranges measured for candidate reference genes under all 

experimental conditions examined in this chapter is presented in Figure 4.5. 

Interestingly the Cq value for ATPD was also found to have lowest variability across all 

conditions while the Cq values for PSRP-1, chosen for its similarity to canonical ribosomal 

protein genes utilised as reference genes throughout literature, varied significantly 

between conditions. Given its exclusively plastidic localisation, it is possible that 

ribosomal activity in the chloroplast is, at least partially, regulated at the transcriptional 

level in response to changes in the quality of incident light. 
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Figure 4.5. Mean Cq of candidate reference genes studied. (n = 6, error bars represent 

minimum and maximum Cq). 

Prior to the development of sophisticated data analysis algorithms and the 

widespread availability of  real-time PCR systems, relative quantification was primarily 

based on a single reference gene derived either from literature or through simple, yet 

effective, log-linear models (ΔΔCq) (Livak and Schmittgen, 2001; Pfaffl, 2001). However, 

current state of the art for comparison of gene expression across widely varying 

conditions or cell lines involves the use of sophisticated algorithms that employ two or 

more genes to normalise gene expression measurements (Derveaux, Vandesompele and 

Hellemans, 2010). The geNorm algorithm, used in the present study, has been 

successfully applied to a wide variety of organisms (Cortleven et al., 2009; Rosic et al., 

2011; Cankorur-Cetinkaya et al., 2012). The algorithm uses pairwise variation (Vn/n+1) 

to evaluate the number of reference genes required to achieve an accurate 

normalisation factor (M) which will remain stable across all experimental conditions and 
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cell lines studied (Vandesompele et al., 2002; Hellemans et al., 2007). Analysis of the 

results indicated that ACX1 and psaD form the most stable pair of genes with a V2/3 value 

lower than the recommended threshold (<0.15) (Vandesompele et al., 2002) indicating 

that additional reference genes are not required.  

ACX1 encodes the α-carboxyltransferase subunit of the multimeric acetyl 

coenzyme A (acetyl-CoA) carboxylase (ACCase) and has been shown to be expressed in 

co-ordination with the other subunits in Arabidopsis thaliana (Ke et al., 2000) and C. 

reinhardtii (Goodenough et al., 2014). While significant variations in the expression 

levels of both the α- (Goodenough et al., 2014; Smith and Gilmour, 2018) and the β- 

(Ramanan et al., 2013) carboxyltransferase subunits have been reported in nitrogen 

starved cells, expression levels of ACX1 have been shown to remain stable under 

nitrogen replete conditions, in agreement with the findings in the present study.   

The psaD gene encodes subunit II of photosystem I (PSI), an essential component 

for PSI accumulation in Arabidopsis thaliana (Ihnatowicz et al., 2004) and key to the 

efficient functioning of PSI in Synechocystis sp (Chitnis, Reilly and Nelson, 1989). A highly 

expressed constitutive gene, its promoter element has always remained relevant in 

recombinant protein expression studies in C. reinhardtii (Fischer and Rochaix, 2001; 

Baier, Wichmann, et al., 2018). Light intensity and light quality have been shown to 

affect the pigment content and composition of microalgal cells but, to the extent of our 

knowledge, none of the available studies tested the expression levels of psaD under 

monochromatic illumination. It is not particularly surprising that a gene expressing an 

essential PSI subunit presents robust expression across the conditions studied in the 

present study as essential photosynthetic components are commonly controlled by 

post-translational regulatory processes such as epistasis of synthesis (CES) (Choquet and 

Wollman, 2009). 

4.6. Gene expression under different illumination and trophic 

strategies 

Batch cultures of C. reinhardtii 11/32C were grown for 136h under constant 

illumination at three different wavelengths (W, R, B) using media with (X) and without 
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(A) a readily available organic carbon source. Daily biomass measurements (OD 750 nm) 

were used to estimate growth rate during the exponential growth phase (μmax, Table 

3.3, Figure 3.3 A&B). In agreement with findings from other studies (Mooij et al., 2016), 

white light illumination was found to have the highest growth rate in both trophic 

strategies. Interestingly, under the constant environmental conditions considered in the 

present study (pH, temperature and light intensity), the presence of an organic carbon 

source had a significant impact on biomass growth only under blue light illumination. In 

contrast, the addition of a carbon source under white light illumination (WX) resulted in 

5% reduction in μexp compared to (WA). The rate of acetate consumption in mixotrophic 

cultures (qac, Table 3.4) was nearly identical under all studied wavelengths irrespective 

of the observed biomass growth rate. Acetate was fully extinguished from the media 

within the first 48 hours post inoculation in all mixotrophic conditions. 

The expression levels of a panel of genes selected based on their metabolic 

function (Table 4.1) were measured and analysed for each of the six experimental 

conditions described above. Gene expression levels for central carbon metabolism 

genes were estimated by averaging values obtained from two samples taken during the 

exponential growth phase (16h and 48h). The expression level of promoter genes was 

evaluated at three different time points (16h, 48h and 136h) throughout the culture. In 

the sections that follow, gene expression results are presented and discussed grouped 

by metabolic pathway. 

Photosynthesis – Inorganic carbon fixation 

The ribulose-1, 5-bisphosphate carboxylase oxygenase (RUBISCO) found in C. 

reinhardtii is a hexadecamer composed of eight small sub-units (SS) and 8 large sub-

units (LS). Two variants of the small sub-unit of RUBISCO have been identified in the 

Chlamydomonas nuclear genome (RBCS1 and RBCS2) (Khrebtukova and Spreitzer, 1996). 

While their peptide products differ by only four amino acids and are functionally 

redundant (Khrebtukova and Spreitzer, 1996), their expression is dependent both on 

trophic strategy and the presence or absence of light (Goldschmidt-Clermont, 1986; 

Goldschmidt-Clermont and Rahire, 1986). The primer pair designed and used in this 

study (Table 4.1) amplifies both sub-unit variants (RBCS1 and RBCS2) to enable the 
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evaluation of overall RBCS expression irrespective of individual sub-unit related 

dependences (Figure 4.6). Wavelength selection had a statistically significant effect (p < 

0.01) on the average expression level of RBCS with average expression levels under red 

light (R) being significantly higher compared to both white (W) and blue (B) light in both 

trophic conditions (A, X). In addition, the average RBCS expression in cultures grown 

under blue light (B) was significantly higher (p < 0.05) than those grown under white 

light (W) in both trophic conditions. It is worth noting that the macroscopically observed 

biomass growth rate (Table 3.3) does not appear to be strongly correlated with RBCS 

expression levels. Under both trophic strategies, (R) illuminated cultures displayed 

statistically significant higher RBCS expression levels than (W) illuminated cultures, 

however resulted in lower growth rate values.  Similarly, low levels of RBCS expression 

measured in B and W cultures resulted in substantially different growth rates (Table 3.3). 

These differences were observed in both trophic conditions and the presence of an 

external carbon source did not seem to have a significant impact on RBCS expression 

levels. 
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Figure 4.6. Carbon fixation related gene expression in the exponential growth phase. 

Average Ribulose bisphosphate carboxylase small subunit (RBCS) gene expression 

from 16 h – 48 h (n = 4, error bars represent SEM, different error bar labels indicate 

statistically significant differences between conditions, p < 0.05). W: white light, R: red 

light 640-670nm, B: blue light 440-480nm, A: phototrophic growth in M8a, X: 

mixotrophic growth in M8a.Ac. 

 

In order to further understand the implications of these results, cell size 

distribution during the mid-exponential growth phase (48h) was measured for all 

conditions (Figure 3.9 A and Figure 3.10 A). In both trophic conditions examined, cells 

grown under constant red light illumination had a smaller average diameter, while cells 

grown under constant blue light illumination had a larger average diameter when 

compared to control cultures grown under white light. The growth rate data (Table 3.3), 

calculated using optical density measurements (750nm), coupled with the cell size 

distribution data (Figure 3.9 A and Figure 3.10 A). indicate that wavelength selection has 

an impact on the cell cycle (Oldenhof et al., 2004; Oldenhof, Zachleder and Van Den 

Ende, 2006). The balanced combination of long- and short-wavelengths making up white 

light results in the fastest biomass production under both phototrophic (WA) and 

mixotrophic (WX) conditions. Additionally, an average cell cycle length is maintained and 
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consequently cell size remains in-between the smaller cells produced by (R) and the 

larger cells produced by (B) in both trophic strategies. The upregulation of RBCS under 

red light indicates an increased need for energy generation, likely required to operate a 

shorter cell cycle and maintain a rapid duplication rate. On the other hand, cells grown 

under blue light had lower RBCS expression levels (Figure 4.6), a lower apparent growth 

rate (Table 3.3) and the largest observed average cell diameter (Figure 3.9 A and Figure 

3.10 A). These results suggest that blue light illumination leads to larger cells on average 

with a longer or arrested cell cycle while red light illumination leads to smaller, rapidly 

dividing cells. However, in terms of overall biomass yield (in gDCW/L) both extremes of 

the PAR spectrum underperform when compared to white light illumination. 

Chlorophyll (Chl) a/b measurements (Figure 3.15) revealed a statistically 

significant higher Chl a/b ratio in cultures grown under red light (RA, RX). The Chl a/b 

ratio has been previously inversely linked to PSII antenna size due to Chl b’s preference 

for binding to peripheral antenna complexes (Perrine, Negi and Sayre, 2012). Moreover, 

in agreement with previous studies (Wagner, Steinweg and Posten, 2016), the specific 

amount of Chl b per pg of biomass was significantly lower under red light illumination . 

Given that incident light intensity was kept constant across all experimental conditions, 

this further supports the hypothesis stated above, that red light illumination leads to a 

shortened cell cycle. High values of the Chl a/b ratio, coupled with a smaller antenna 

(Perrine, Negi and Sayre, 2012) and average cell size (Figure 3.9 A and Figure 3.10 A) 

result in reduced surface area for absorption of photons and increased photosynthetic 

efficiency as well as reduced mutual shading across the light path. These effects combine 

to increase the proportion of cells in the culture receiving enough light to maintain a 

high growth rate. Consequently, the implied increase in light utilisation efficiency under 

red light illumination would result in an increased demand for Calvin-Benson cycle (CBC) 

enzymes like RUBISCO, and potentially increased gene expression as has been observed 

in the present study (Figure 4.6), to fulfil the increased demand. When considering the 

monochromatic conditions of this study in isolation, there is a strong positive correlation 

between biomass growth rate and RBCS expression in the autotrophic conditions that is 

lost in the mixotrophic regime. This suggests that the availability of an organic carbon 

source and the resulting switch to mixotrophic metabolism reduce the relevance of 



142 
 

photosynthetically generated metabolic resources in biomass growth rate 

maximisation. This is not apparent in growth under white light, possibly due to its more 

varied spectral distribution resulting in optimal phototrophic growth at a lower light 

utilisation efficiency compared to monochromatic illumination. 

 

Acetyl Coenzyme A catabolism 

Acetate uptake rates (Table 3.4) were found to be independent of wavelength 

selection and biomass growth rate. However, when comparing biomass growth across 

trophic strategies for the same wavelength selection, differences in metabolic behaviour 

can be observed. In cultures grown under constant white light (WA, WX) and red light 

(RA, RX) illumination, the addition of acetate as a carbon source resulted in a relatively 

small change in biomass growth rate (Table 3.3). This suggests that under appropriately 

controlled conditions phototrophic growth under each of these two lights is nearly 

optimal. It seems that introducing an organic carbon source under these conditions does 

not result in an increased rate of biomass production. In contrast, for cultures grown 

under blue (BA, BX) light, the addition of acetate resulted in a substantial increase of the 

growth rate. Interestingly, RBCS expression levels remained similar across the different 

trophic strategies (WA, WX, RA, RX and BA, BX; Figure 4.6), indicating no drastic change 

in the rate of carbon fixation from photosynthesis. Therefore, under white and red 

illumination the additional carbon uptaken in the form of acetate must be assimilated 

through a different metabolic pathway, one not directly linked to biomass growth. The 

presence of acetate is known to trigger  a reconfiguration of C. reinhardtii metabolism 

as the inorganic carbon fixation of photosynthesis is complimented by the organic 

carbon assimilation of acetate via its conversion to acetyl-CoA (Johnson and Alric, 2012).  

In nutrient replete mixotrophic conditions acetyl-CoA is preferentially produced in 

a single enzymatic step catalysed by acetyl-CoA synthase (ACS) (Singh et al., 2014). ACS 

homologs have been identified in several cellular compartments (ACS1 - cytosol ACS2 - 

plastid, ACS3 - glyoxysomes and mitochondria) (Terashima et al., 2010; Lauersen et al., 

2016). Consequently, this metabolic plasticity enables the cells to repurpose assimilated 
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acetate to drive different metabolic pathways by channelling it to the appropriate 

cellular compartments. As can be seen in Figure 4.8, Acetyl-CoA is primarily utilised in 

fatty acid chain formation (cytoplasm), in the glyoxylate cycle (glyoxysome) and in the 

TCA cycle (mitochondria). Differences in transcriptional activity between 

photoautotrophic and mixotrophic metabolism may elucidate the fate of acetate 

derived carbon assimilated during mixotrophic growth. Therefore, the expression level 

of enzymes exclusive to each of the three main metabolic pathways that consume 

acetyl-CoA was evaluated for all experimental conditions. 
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Figure 4.7. An overview of acetate metabolism in C. reinhardtii and gene expression 

monitored at key carbon nodes of acetate metabolism. (A) The various subcellular 

locations and metabolic pathways acetate can be catabolised in. Gene expression of 

enzymes involved in reactions highlighted in orange and redox cofactors highlighted 

in purple. (B-D) Average gene expression from 16 h – 48 h of fumarate hydratase 

(FUM1), malate synthase (MAS1) and 3-oxoacyl-[acyl-carrier-protein] synthase (KAS2) 

respectively (n = 4, error bars represent SEM, different error bar labels indicate 

statistically significant differences between conditions, p < 0.05). W: white light, R: red 

light 640-670nm, B: blue light 440-480nm, A: phototrophic growth in M8a, X: 

mixotrophic growth in M8a.Ac. 

 

Tricarboxylic Acid Cycle  

The TCA cycle produces reducing equivalents for oxidative phosphorylation and is 

a vital metabolic process in non-photosynthetic organisms which produce the bulk of 

their cellular ATP in mitochondria. In contrast mitochondrial respiration rates in nutrient 

replete phototrophic and mixotrophic conditions average approximately 10-15% of 
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gross photosynthetic rates across many phyla of microalgae including chlorophytes like 

C. reinhardtii (Raven and Beardall, 2016). In fact, several genes exclusive to the TCA cycle 

have been reported as non-essential for the growth of photosynthetic organisms (Rubin 

et al., 2015). Consequently, the availability of an organic carbon source is not expected 

to have a significant impact on the activity of TCA genes. To verify the validity of the 

above hypothesis, the expression level of the TCA exclusive FUM1 gene, which encodes 

the enzyme fumarate hydratase that catalyses the reversible hydration of fumarate to 

malate (Figure 4.8A) was measured across all experimental conditions. 

The addition of acetate had no impact on FUM1 expression in cultures grown 

under white and red light (WA, WX and RA, RX; Figure 4.8B). In fact, FUM1 expression 

levels were statistically similar across all four conditions (WA, WX, RA, RX; Figure 4.8B). 

This indicates, as expected, that there is no correlation between biomass growth (Table 

3.3) and TCA cycle activity (assessed through the expression levels of FUM1 in the 

present study) in the nutrient replete conditions considered herein. Wavelength 

selection on the other hand, had a statistically significant effect on the expression level 

of FUM1 (Figure 4.8B). Specifically, FUM1 expression was significantly lower in 

phototrophic cultures grown under blue light (BA). Interestingly, in cultures grown under 

blue light (BA, BX; Figure 4.8B) the addition of acetate in the media led to an increased 

average expression level for FUM1. The increased expression level under blue light 

corresponded to an increased biomass growth rate (BX, Table 3.3) indicating that the 

additional carbon might be channelled towards mitochondrial respiration and ATP 

synthesis(Millar et al., 2011). The positive correlation between FUM1 expression and 

biomass growth rate for cultures grown under blue light suggests that in the presence 

of a readily available carbon source cellular growth could rely on TCA cycle activity and 

heterotrophy. 

Glyoxylate Cycle  

Algae can preferentially utilize acetate as a carbon source due to the availability 

of an abbreviated version of the TCA cycle, sharing five of the eight TCA cycle enzymes, 

known as the glyoxylate cycle. This enables them to bypass the two decarboxylation 

steps found in the TCA cycle and enables the biosynthesis of macromolecules from 
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simple C2 carbon compounds (Silverberg, 1975; Lauersen et al., 2016). The preferential 

use of the glyoxylate cycle in the presence of a C2 organic acid has been recently 

investigated using a genome scale metabolic model of C. reinhardtii metabolism under 

nutrient replete mixotrophic and phototrophic conditions (Chapman et al., 2015). 

Although qualitative in nature, the results suggested a substantially increased flux 

through the glyoxylate cycle in the presence of a C2 organic acid. This theoretical model 

based approach was able to accurately predict the experimentally observed change in 

oxygen evolution rate between the two conditions (Chapman et al., 2015). In the 

present study, the expression of a glyoxylate cycle exclusive gene, MAS1, was measured 

across all experimental conditions. The MAS1 gene encodes malate synthase, an enzyme 

that catalyses the formation of malate (C4) from glyoxylate (C2) and acetyl-CoA (C23 – 

Figure 4.8A). 

Surprisingly, the presence or absence of acetate had a statistically significant effect 

on MAS1 expression levels only in cultures grown under blue light (BA, BX; Figure 4.8C). 

The 1.5-fold upregulation (p < 0.01) of MAS1 in mixotrophic cultures grown under blue 

light (BX) did not result in an increased biomass growth rate (Table 3.3). In conjunction 

with the observed upregulation of the TCA exclusive FUM1 in mixotrophic growth 

conditions (BA, BX; Figure 4.8C), these results seem to indicate that carbon derived from 

acetate can help supplement biomass growth rate in non-optimal light conditions. No 

significant change in MAS1 expression levels was detected between phototrophic and 

mixotrophic conditions for cultures grown under white and red light (WA, WX and RA, 

RX; Figure 4.8C). This is in contrast to previous studies (Hayashi et al., 2014)(Smith and 

Gilmour, 2018) where an upregulation of glyoxylate cycle genes was observed following 

the addition of acetate. One possible explanation is that MAS1 expression levels are not 

linked to flux through the glyoxylate cycle in non-growth inhibited, constantly 

illuminated cultures (WA, WX, RA, RX) due to regulation occurring primarily by enzyme 

phosphorylation (H. Wang et al., 2014). In fact, no correlation between growth (Table 

3.3) and MAS1 expression (Figure 4.8C) was found for cultures grown under white and 

red (WA, WX and RA, RX) light in the present study. Finally, wavelength selection was 

found to have a significant effect on MAS1 expression levels (Figure 4.8C), with cultures 

grown under red light having a higher average expression level (p < 0.05). 
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Fatty Acid Synthesis  

Acetyl-CoA derived from assimilated acetate in mixotrophic cultures can be 

channelled towards fatty acid biosynthesis which is driven by the heterogeneous fatty 

acid synthase (FAS) enzyme complex in the chloroplast (Riekhof and Benning, 2009). The 

fatty acids generated can increase the cell’s intracellular free fatty acid (FFA) pool or 

they can be incorporated into one of the many lipid classes produced by C. reinhardtii 

(Li-Beisson, Beisson and Riekhof, 2015). A multi-omics study found that protein levels of 

enoyl-ACP reductase were reduced during nitrogen deprivation, alongside a transient 

decrease in all FAS complex related transcripts during the first 12 – 48 hours 

(Schmollinger et al., 2014). However, in the nutrient replete conditions of this study, 

where highly differing growth rates were observed between conditions it would be 

interesting to follow the gene expression of FAS complex related transcripts as a 

preliminary indicator of changes in macromolecular composition at a cellular level and 

in the assimilation of acetate derived carbon. The gene KAS2 encodes 3-ketoacyl-ACP 

synthase (KAS), the third enzyme in the FAS complex, which adds two carbons per FAS-

cycle to the growing acyl-ACP chain using malonyl-ACP as its substrate (Figure 4.8A). 

Trophic strategy selection had an impact on KAS2 expression level in cultures 

illuminated under white and red light (WA, WX and RA, RX; Figure 4.8D). In both cases, 

KAS2 expression was upregulated in the presence of acetate in the media, though the 

change in expression level was statistically significant only for cultures grown under red 

light (p < 0.05). The highest KAS2 expression level was observed in mixotrophic cultures 

grown under red light (RX; Figure 4.8D), while KAS2 expression levels remained constant 

across cultures grown in white (WX) and blue (BX) light. In contrast, KAS2 expression 

levels remained constant, irrespective of trophic strategy, in cultures grown under blue 

light (BA, BX; Figure 4.8D).  

This suggests that under blue light, an increase in fatty acid production is not 

required to achieve the observed increase in biomass growth rate (Table 3.3). On the 

other hand, there was no change in biomass growth rate observed between trophic 

strategies in cultures grown under red light (R, Table 3.3). Meanwhile a statistically 

significant increase in KAS2 expression was observed in red light mixotrophic cultures 
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(RX; Figure 4.8D). One possible explanation could be that in cultures grown under red 

light with a smaller average cell size (Figure 3.9 A and Figure 3.10 A) but otherwise 

comparable biomass growth rate (Table 3.3), the assimilated acetate in the form of 

acetyl-CoA is preferentially funnelled towards fatty acid production. This would lead to 

an increased production rate for membrane-lipids, necessary to support the shorter cell-

cycle with more cell divisions per unit time for cells grown under red light. Previous 

studies have shown that the autophagous degradation of membrane lipids for TAG 

production under nitrogen starvation is less pronounced in mixotrophic C. reinhardtii 

cultures grown in white light (Davey et al., 2014) further hinting at an increased flux of 

acetyl-CoA towards fatty acid synthesis during mixotrophy.  

The gene expression data discussed in the preceding sections is summarised in 

Figure 4.9. Mixotrophic cultures grown under constant red light illumination had the 

highest average fold expression for all genes considered thus far. However, this did not 

translate directly into an increased biomass growth rate as could have been expected 

given the nature of the genes investigated. This indicates that despite similarities in the 

observed biomass growth rates across conditions considered herein (Table 3.3), the 

macromolecular composition of cells will change depending on the utilised trophic and 

illumination strategy. 
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Figure 4.8. Summary of average gene expression level compared across multiple light 

and media conditions. The colour scale is normalised in each row as the data reflects 

average fold change in gene expression and is not directly comparable between genes 

(n = 4). W: white light, R: red light 640-670nm, B: blue light 440-480nm, A: 

phototrophic growth in M8a, X: mixotrophic growth in M8a.Ac. 

 

Recombinant protein promoter genes 

In recent years, a number of sophisticated genome editing technologies have been 

adapted to microalgae (Jeon et al., 2017). C. reinhardtii, often referred to as the model 

microalgae, has the most complete algal genome editing toolbox however genetic 

engineering techniques are being developed for other type of algae as well (Nymark et 

al., 2016; Taunt, Stoffels and Purton, 2018). Recombinant protein expression in C. 

reinhardtii has been attempted by integration of the recombinant genes into either the 

chloroplast (Fletcher, Muto and Mayfield, 2007) or the nuclear genome (Rasala and 

Mayfield, 2015). Each approach has its own benefits and limitations, with no clear 

consensus on an optimal strategy due to a lack of bioreactor (or larger) scale studies. As 
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algal genome editing technologies mature, process development for recombinant 

protein expression will have to explore candidate promoters and culture conditions that 

lead to optimal transcriptional activity. In order to understand the magnitude of the 

impact process conditions can exert on transcriptional activity, the expression of a series 

of genes with promoters and/or 5’/3’ UTR(s) that have been previously used to facilitate 

recombinant gene expression in C. reinhardtii (Table 4.1) was evaluated across all 

experimental conditions. Bearing in mind that transcription and translation do not 

necessarily correlate well, some high level conclusions can be drawn from the data 

presented below. 

Ribulose bisphosphate carboxylase small chain (RBCS) 

RBCS2 is routinely used as a constitutive promoter for nuclear transgene 

expression in tandem with HSP70A (Schroda, Blöcker and Beck, 2000; Rasala et al., 2014; 

Baier, Kros, et al., 2018). RBCS expression was upregulated in both phototrophic and 

mixotrophic cultures grown under red light illumination (RA, RX; Figure 4.6A). Figure 

4.10A presents RBCS expression data for an additional time point in the late stationary 

phase of the culture. In agreement with the results of Figure 4.6, RBCS expression is 

upregulated significantly for cultures grown under red light (RA, RX; Figure 4.10A). 

Interestingly, there is a large increase in RBCS expression during the stationary phase 

(136h) for both mixotrophic and phototrophic cultures grown in red light. These results 

suggest that red light illumination would be preferable for recombinant protein 

synthesis when RBSC2 is used as a constitutive promoter. 

Heat shock protein 70A (HSP70A) 

HSP70A encodes a heat-shock protein, transcriptionally controlled through 

elevated temperatures and light (Schroda, Blöcker and Beck, 2000). It has been used as 

a transcriptional activator of other promoters, most commonly RBCS2 and recently 

RBCS2 with RBCS2 introns interspersed in the recombinant gene coding sequence (Baier, 

Wichmann, et al., 2018). In photoautotrophic cultures, a notable increase in expression 

was only observed during the stationary phase (136 h) of cultures grown in red light 

(Figure 4.10B). HSP70A expression levels were higher in the stationary phase of 
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mixotrophic cultures across all wavelengths with a notable 6-fold increase (p < 0.05) 

observed in cultures grown under blue light illumination (Figure 4.10B).  

Adenosine triphosphate synthase subunit alpha (atpA) 

Assembly of chloroplastic ATP-synthase requires subunits encoded in both the 

nuclear and the chloroplast genomes (Finazzi, Drapier and Rappaport, 2009). The gene 

atpA is native to the plastome and encodes sub-unit alpha of the CF1 complex (Levy, 

Kindle and Stern, 1997). Its 5’UTR and promoter coding regions have been used to drive 

both nuclear (Ishikura et al., 1999; Kasai et al., 2003; Michelet et al., 2011) and plastid 

(Bertalan et al., 2015; Braun-Galleani, Baganz and Purton, 2015) gene expression. 

Cultures grown under white light illumination had the lowest levels of atpA expression 

across all conditions examined (Figure 4.10C). Interestingly, trophic strategy had a 

significant impact on atpA expression only in cultures grown under red light where a 5.5 

fold upregulation was observed in mixotrophic cultures during the mid-exponential 

phase (16 h and 48 h).  These results confirm that culture time, trophic strategy and 

wavelength selection can all have a significant impact on the transcriptional activity of 

promoters and should be considered as critical process parameters during process 

development and optimisation. 
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Figure 4.9 Average 

gene expression of (A) 

ribulose bisphosphate 

carboxylase small 

subunit – RBCS, (B) 

heat-shock protein 

70A – HSP70A and (C) 

ATP synthase subunit 

alpha (atpA) 

respectively, from 16 

h –48 h (Exponential 

Phase, n = 4, error 

bars represent SEM) 

and 136 h (Stationary 

Phase) (n = 2, error 

bars represent min 

and max expression). 

W: white light, R: red 

light 640-670nm, B: 

blue light 440-480nm, 

A: phototrophic 

growth in M8a, X: 

mixotrophic growth in 

M8a.Ac. 
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4.7. Conclusions 

The expression profiles of a total of 16 genes (Table 4.1) were monitored across C. 

reinhardtii cultures grown under two different trophic strategies and three different 

wavelengths. This enabled the identification of novel reference genes (psaD and ACX1) 

with significantly improved expression stability compared to commonly used reference 

genes, across the diverse set of conditions explored herein. The analysis of the 

expression profiles of representative genes from key metabolic pathways revealed that 

trophic strategy and wavelength selection have an impact on some (RBCS – 

photosynthesis, MAS1 – glyoxylate cycle, KAS2 – fatty acid synthesis) but not all (MAS1 

– TCA cycle) aspects of central carbon metabolism in algae. Specifically, wavelength 

selection was found to have an impact on photosynthetic efficiency and (as indicated by 

cell size distribution data) the cell cycle. Moreover, based on the set of gene expression 

profiles examined in the present study, assimilated acetate was found to be primarily 

channelled towards fatty acid synthesis, particularly in cultures grown under red light 

illumination. Finally, the expression profiles of three commonly used promoters for the 

expression of recombinant proteins was evaluated across all experimental conditions 

and revealed that culture time, trophic strategy and wavelength selection should be 

considered as critical process parameters during process development and 

optimisation. This is the first, to the extent of our knowledge, extensive experimental 

investigation of the effects of wavelength selection and trophic strategy on gene 

expression in green algae and will hopefully serve as a baseline reference point for 

future studies.  
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CHAPTER 5 

Model based analysis of the diverse metabolic 

phenotypes that arise in C. reinhardtii under a 

variety of trophic and illumination strategies  

In Chapters 3 and 4 the effects of wavelength and trophic strategy selection on the 

biomass productivity, cellular physiology and gene expression of C. reinhardtii were 

evaluated. The choice of narrow wavelength versus broad spectrum illumination, as well 

as trophic strategy were shown to have a significant impact across all the levels explored. 

In this chapter, a systematic analysis of the experimental data obtained in Chapters 3 

and 4 using an experimentally validated Genome Scale Metabolic model (GeM) for C. 

reinhardtii (iRC1080; Chang et al., 2011) is presented. Initially the GeM is manually 

curated based on the latest scientific literature and in-house developed computational 

techniques to update reaction stoichiometries and remove inactive reactions. The 

curated model is constrained to accurately reflect each of the experimental conditions 

discussed in Chapters 3 and 4. In order to better capture and analyse changes in 

biochemical composition using metabolic modelling techniques, a novel biomass 

curation algorithm is developed and evaluated. Finally, the emergent metabolic 

configuration for each condition is analysed using Markov-chain based sampling 

techniques and key metabolic differences between experimental conditions are 

identified using multivariate data analysis (MVDA).  

5.1. Introduction 

Metabolism is the amalgamation of all the biochemical reactions occurring in 

tandem inside a living cell. Genome scale metabolic network models (GeMs) are 

mathematical reconstructions of all metabolic reactions encoded in an organism’s 
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genome and can be used to simulate specific growth conditions and analyse the 

resulting cellular phenotype (Orth, Thiele and Palsson, 2010). Additional layers of 

mechanistic and regulatory information can be incorporated into such models by 

complementing the reconstructed network with other -omics data like metabolomics, 

transcriptomics and proteomics (Chang et al., 2010; Lewis et al., 2010; Bonde et al., 

2011). Cellular metabolism simulated in a GeM is assumed to be in a quasi-steady state 

whereby the total sum of any compound being produced must equal the total sum being 

consumed, resulting in no net accumulation or depletion of metabolites. By assuming 

that the cell operates towards optimising a particular aspect of its behaviour, usually 

growth, GeMs can be used to formulate a linear programming (LP) optimisation problem 

which can be solved to calculate the flow of metabolites throughout the entire network 

described. 

The applications of GeMs are as varied as the types of organisms for which they 

have been developed. Constraint-based modelling has helped in the identification of a 

new anti-malarial drug candidate by finding essential enzymes in Plasmodium 

falciparum (Plata et al., 2010) and in further understanding the metabolic differences 

between white and brown human adipocyte cells (Ramirez et al., 2017). GeMs for 

photosynthetic organisms have also been published in recent years and a 2015 review 

article by Baroukh and colleagues reported 19 models for 3 species of cyanobacteria and 

2 species of eukaryotic microalgae (Baroukh et al., 2015). The review highlights key 

differences in the level of metabolic detail and compartmentalisation between 

published GeMs. The GeM utilised throughout this chapter, iRC1080, is praised for its 

attention to detail across lipid metabolism and the breakdown of its biomass equation 

(Chang et al., 2011). 

Flux balance analysis (FBA) is a well-established constraint-based modelling 

approach (Orth, Thiele and Palsson, 2010) in which all mass flow (flux) through a 

metabolic network is restricted by biomass productivity and extracellular uptake and 

secretion rates (vEX). The backbone of this approach is the mathematical representation 

of reaction stoichiometry within a GeM in the form of a large and sparse stoichiometric 

matrix. Under the assumption that all fluxes through the metabolic network are 

governed by a global cellular objective, a LP optimisation problem is solved to maximise 
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or minimise the predefined objective. Typically, a hypothesis is formulated based on the 

metabolic conditions and phenotype being studied to inform the selection of a cellular 

objective. For example, using FBA to better understand the metabolic effects of 

antibiotics on Mycobacterium tuberculosis, Montezano and colleagues postulated that 

under antibiotic stress, the cell´s objective is survival rather than growth. Therefore they 

devised a method to align proteomics data to reactions in the GeM and assign 

percentage contribution of each reaction to the cellular objective (Montezano et al., 

2015). Constraint based modelling also accounts for the energetic requirements of a 

metabolic state. A study of E. coli transfected with a β-lactamase expressing plasmid 

postulated that the unnatural burden exerted by the production of recombinant protein 

on metabolism results in a change of cellular objective, and concluded that setting 

maximisation of maintenance energy expenditure as the cellular objective results in a 

more accurate predictions of the resulting flux distribution (Ow et al., 2009). The 

diversity of phenotypes studied with FBA has led to the use of many different 

optimisation objectives and in turn, to the meta-analysis of those objective functions 

(Feist and Palsson, 2010; García Sánchez and Torres Sáez, 2014). Overall, the appraisal 

of an objective function is highly dependent on a large number of qualitative and 

quantitative factors like the number of experimentally determined extra- and 

intracellular fluxes, as well as the methodologies employed to calculate them 

(Gianchandani et al., 2008).  

Despite the number of different metabolic objectives devised in literature, cell 

growth remains a relevant objective in many cases. During growth in nutrient replete 

conditions and in the absence of any extrinsic stress factors, cell proliferation is a 

universal evolutionary pressure shared by all living organisms. This makes the 

maximisation of the specific growth rate an obvious candidate to assign in FBA studies. 

This usually translates into maximisation of the flux through a reaction that incorporates 

all the building blocks and biosynthetic energy molecules required to generate biomass 

content from metabolic precursors thus produces the theoretical growth rate predicted 

by FBA (Feist and Palsson, 2010). Therefore, the level of detail incorporated in the 

biomass reaction of each GeM will have a huge impact on the quality and accuracy of 

the resulting flux distributions when cellular growth is set as the objective.  
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Most GeM simulations assume the primary objective of the cell is biomass 

production (Price, Reed and Palsson, 2004). This is described in the model by a reaction 

termed the biomass equation that includes the growth- and non-growth associated 

maintenance costs as well as a stoichiometric definition of the cell’s biochemical 

composition. Feist and Palsson (2010) described three categories of increasing 

complexity to describe different levels of granularity in a biomass equation. The basic 

level incorporates only macromolecular groups and ideally their constituent 

components. The intermediate level includes the biosynthetic energy required to 

produce those building blocks as well as polymerisation by-products such as water and 

diphosphate. A third level of detail termed ‘advanced biomass equations’ which contains 

vitamins, elements and cofactors was also described. The authors suggested separating 

an ‘essential biomass’ equation, containing the minimally functional content of the cell 

as inferred from knock-out studies, from non-essential components whenever possible 

(Feist and Palsson, 2010).Such level of detail is not usually reached in published GeMs. 

However, if the biomass equation does not accurately represent the cell’s biochemical 

composition, the flux distributions obtained from solving the optimisation problem may 

not accurately account for the metabolic and energetic costs of producing biomass 

(Dikicioglu, Kırdar and Oliver, 2015). It was concluded in chapter 3 that the biochemical 

composition of a C. reinhardtii cell changes depending on the growth phase, wavelength 

choice and trophic growth mode it is in. Therefore, it is necessary to be able to update 

the model’s biomass equation in accordance to the experimentally determined 

composition in order to maximise the fidelity of the simulated flux distributions. 

The effects of modifying the stoichiometry of the biomass equation on predicted 

flux distributions have been extensively studied in the literature (Senger and Nazem-

Bokaee, 2013; Dikicioglu, Kırdar and Oliver, 2015; Levering et al., 2016). Dikicioglu and 

colleagues (2015)  carried out a systematic evaluation of mutant phenotype gene 

essentiality predictions in a yeast GeM by varying each component of the biomass 

equation two fold in nutrient replete and various nutrient limited conditions (Dikicioglu, 

Kırdar and Oliver, 2015). Their analysis demonstrated that experimentally determined 

changes to the biomass composition of Saccharomyces cerevisiae caused by genetic 
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mutations must be reflected in the biomass equation to accurately predict the metabolic 

flux distribution of the mutant phenotype.  

Senger and Nazem-Bokaee (2013) proposed an unsupervised approach to 

determine the optimal biomass composition for a given phenotype of E. coli by 

employing a genetic algorithm (Senger and Nazem-Bokaee, 2013). They constrained the 

E. coli GeM with experimentally determined values for all uptake and secretion rates 

and posited that any additional efflux of metabolites required to satisfy the model’s 

mass balance should be of negligible magnitude. In effect, they termed these additional 

secretion fluxes as total unconstrained fluxes (TUX) and set minimisation of TUX as the 

fitness function for the genetic algorithm. This approach diverges from the rest because 

it does not rely on the variability of experimentally determined biochemical composition 

data to set the bounds of the optimisation problem. Instead the allowable range for each 

stoichiometric component arbitrarily to +/-50% of the value in the original biomass 

equation. However, if any component of the biomass equation differs by more than 50% 

in the experimental condition studied this method would not be able to capture the real 

biomass composition. 

Levering and colleagues employed Fourier-transform infrared spectroscopy (FTIR) 

to generate high-throughput measurements of Phaeodactylum tricornutum biomass 

composition at different culture time points and experimental conditions (Levering et 

al., 2016). These experimental measurements were the basis of condition specific 

biomass equations substituted into the P. tricornutum GeM to simulate different 

experimental conditions. This is an optimal pipeline, however the number of 

experiments required to develop and validate high fidelity FTIR linear models for each 

biomass component is not trivial (Mayers, Flynn and Shields, 2013). Literature values for 

macromolecular distribution of C. reinhardtii biomass grown in nutrient replete 

conditions vary significantly between publications (Appendix I). Such variability is 

possibly due to three main factors. Firstly, the wide array of methods available for 

proximal analysis, secondly the accuracy of the method employed and thirdly the 

metabolic plasticity of C. reinhardtii. Whilst remaining impactful, the true change in 

biomass composition between experimental conditions may be relatively small and 

could be hard to determine if the experimental methods are not harmonised between 
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studies and the accuracy of each method used is not comparable. The lack of full mass 

balance closure encountered in the results presented in Chapter 3 of this thesis 

prompted the development of a novel algorithm capable of reconciliating the biomass 

equation in GeMs using a small number of routinely available experimental 

measurements while accounting for significant levels of experimental uncertainty. The 

following section details the aim and objectives of this chapter. 

5.2. Aim & Objectives 

The aim of this chapter is to perform a rigorous model based analysis of the effects 

of illumination and trophic strategy selection on cell physiology and biochemical 

composition in Chlamydomonas reinhardtii in order to maximise the amount of 

information extracted from the available experimental data presented in Chapters 3 and 

4. This can be broken down into the following scientific objectives: 

• Manually curate the latest available C. reinhardtii GeM (iRC1080, Chan et al 

2011) to update reaction stoichiometry and remove inactive reactions 

• Constrain the GeM using carbon constrained FBA (ccFBA, Lularevic et al., 2019) 

in order to accurately simulate each of the experimental conditions presented 

in Chapters 3 and 4 

• Develop and validate a novel algorithm able to adapt the stoichiometry of the 

biomass equation in GeMs to accurately reflect changes in biochemical 

composition (termed biomass optimisation algorithm or BMO algorithm in the 

remainder) 

• Incorporate the BMO within a comprehensive GeM analysis workflow using 

Markov-chain based sampling and Multivariate Data Analysis (MVA) techniques 

to analyse the metabolic phenotype of the curated iRC1080 GeM and identify 

key metabolic differences between the examined conditions 

• Compare the emergent metabolic phenotypes obtained from the FBA studies 

with previously published data 
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5.3. Methodology 

5.3.1. Genome-scale metabolic model and experimental data 

The latest metabolic network reconstruction for Chlamydomonas reinhardtii 

(iRC1080; Chang et al., 2011) was used in this Chapter so as to guarantee all simulations 

were performed on an extensively curated and validated Genome Scale Metabolic 

model (GeM). The iRC1080 pre-processing involved removal of inactive reactions, light 

reaction stoichiometry adjustment and incorporation of experimental constraints, and 

is described in further detail in the following sections. 

The same experimental conditions evaluated in Chapters 3 and 4 were explored in 

this Chapter. These were autotrophic growth in M8a medium under white, red and blue 

LEDs (referred to throughout this chapter as WA, RA and BA respectively) and 

mixotrophic growth under white, red and blue LEDs (referred to throughout this chapter 

as WX, RX and BX respectively). Growth rate, nutrient uptake rate and biomass 

composition data averaged between the 16 and 48 hour timepoints from the 

experimental cultures described in Chapter 3 were specifically used to constrain the 

GeM and simulate cells in the mid-exponential growth phase of a batch culture as 

described below. 

5.3.2. Flux Balance Analysis 

Constraint based methods for metabolic modelling (Bordbar et al., 2014) like flux 

balance analysis (FBA), condense cellular metabolism into a sparse matrix S of size (m x 

n) referred to as the stoichiometric matrix. Each row (m) in S stands for a unique 

metabolite, while each column (n) represents an individual reaction. Each matrix 

element (sij) in S is therefore a stoichiometric coefficient of the ith metabolite in the jth 

reaction. Metabolic flux (typically in mmol gDCW-1 h-1) through the metabolic network 

represented by S is represented in a (n x 1) vector v. Under the assumption of quasi-

steady state, whereby the total amount of any compound being produced in the 

network is equivalent to the total amount being consumed, a mass balance across S 

yields Equation 5.1 (Orth, Thiele and Palsson, 2010): 
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𝑆⁡ ∙ 𝑣 = 0 (Eq 5.1) 

 

The system of equations resulting from Equation 3.1 is underdetermined as there 

are typically more reactions than metabolites in S. Consequently, a unique solution 

cannot be determined. In FBA, it is assumed that cells gear their metabolism towards a 

singular, overarching metabolic objective such as maximisation of biomass or ATP (Price, 

Reed and Palsson, 2004). This can be formulated as a linear programming (LP) 

optimisation problem: 

𝑚𝑖𝑛/max⁡(𝑍) (Eq 5.2) 

𝑠. 𝑡.⁡⁡⁡⁡⁡𝑆⁡ ∙ 𝑣 = 0 (Eq 5.3) 

𝑣𝑢𝑏 ≥ 𝑣 ≥ 𝑣𝑙𝑏 (Eq 5.4) 

 

Where Z corresponds to the flux or fluxes through the reaction or reactions that 

conform the optimisation objective subject to mass balance (Eq. 5.3) and inequality (Eq. 

5.4) constraints. In this Chapter, the biomass objective in all FBA simulations was 

maximisation of biomass. The set of inequality constraints described in Equation 5.4 

determines the minimum or lower bound (vlb) and the maximum or upper bound (vub) 

of flux permissible through each reaction. 

In this Chapter, flux balance analysis was performed with the constraint-based 

reconstruction and analysis toolbox (COBRA) in Matlab R2019b. The experimental 

constraints applied to iRC1080 are listed in Appendix II. 

5.3.3.  Model pre-processing 

Adjustment of light reaction stoichiometry 

The light input reactions are called PRISM reactions in iRC1080 (Chang et al., 2011). 

Each reaction describes the spectral distribution of the light source. The visible light 

spectrum is divided into effective bandwidth regions. The derivation of stoichiometric 

coefficients for each region corresponds to the ratios of photon flux in the defined 
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region to the total photon flux in the visible spectrum emitted by a given light source 

(Figure 5.1 A and B). The PRISM reactions were thus updated to accurately describe the 

incident light derived from the light source used for the experiments presented in 

Chapters 3 and 4 (Table 5.1).  

Table 5.1. Custom PRISM reactions for iRC1080. Stoichiometry derived using Chang et 

al. 2011 methodology and ALGEM LED spectra. 

Photon region 

(nm) 

White LED Red LED Blue LED 

 iRC1080 Algem iRC1080 Algem iRC1080 Algem 

 Effective bandwidth coefficient (µmolph m-2 s-1) 

406-454 0.00711 0.0272  0 - 0.279 

378-482 0.0459 0.157  0 - 0.916 

 417-472 0.0274 0.115  0 - 0.808 

451 – 526 0.152 0.262  0 - 0.807 

608 – 666 0.257 0.263 0.266 0.266 - 0.00656 

659 – 684 0.0703 0.0721 0.660 0.660 - 0.00263 

662 - 691 0.0753 0.0813 0.725 0.725 - 0.00296 
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Figure 5.1 Derivation of light reactions in iRC1080. The photon flux from wavelengths a 

to b is normalized by the total visible photon flux from 380 to 750 nm to yield the 

effective spectral bandwidth coefficient C. The coefficients for each range are compiled 

into a single prism reaction for a given light source, representing the composition of 

emitted light as defined by photon-utilizing metabolic reactions. Equation variables are 

defined at the top of the figure (Adapted from Chang et al., 2011). 
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Removal of dead-end metabolites and inactive reactions 

By design, the application of constraint-based modelling techniques such as FBA 

leads to underdetermined problem formulations as the number of unknowns 

(intracellular metabolic fluxes) greatly exceeds the number of known variables (usually 

a subset of the exchange fluxes vex) (Orth, Thiele and Palsson, 2010). The 

underdetermined nature of GeMs results in an infinite number of potential flux 

distributions being able to achieve the same value for the objective function. The lack of 

a unique solution manifests into a multi-dimensional space of equally optimal solutions, 

comprising as many dimensions as reactions in the model. The vertices of this multi-

dimensional space are delimited by the maximum and minimum flux that each reaction 

can carry whilst attaining a certain value for the optimisation objective. The larger the 

solution space, the higher the uncertainty in accurately predicting basic reaction 

properties including reaction directionality (Kiparissides and Hatzimanikatis, 2017). 

Therefore, the first step in the GeM analysis workflow followed in this thesis is the 

removal of so-called blocked reactions (Angeles-Martinez and Theodoropoulos, 2016). 

These reactions are not able to carry flux when set as the optimisation objective, even 

when the model is given infinite access to substrates and the ability to secrete an infinite 

amount of by-products. This is implemented by relaxing the bounds for all extra- and 

intra- cellular reactions to an arbitrarily large value and performing FVA: 
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𝑍 = 𝑐𝑣 (Eq. 5.5) 

𝑚𝑖𝑛/max⁡(𝑍𝑖) (Eq. 5.6) 

𝑠. 𝑡.⁡⁡⁡⁡⁡𝑆𝑣 = 0 (Eq. 5.7) 

𝑣𝑢𝑏 ≥ 𝑣⁡ ≥ ⁡𝑣𝑙𝑏 (Eq. 5.8) 

𝑣𝑢𝑏 = 100, 𝑣𝑙𝑏 =⁡−100 (Eq. 5.9) 

Where Z is the objective function and the index (i) indicates the position 

of a reaction in vectors c, v, 𝑣𝑢𝑏and 𝑣𝑢𝑏. S denotes the stoichiometric 

matrix of the GeM. Vector c determines the reaction, or combination of 

reactions, that will be maximised or minimised by the optimisation 

problem. By default, a value of (1) or a value of (-1) is input in position 

(i) to minimise or maximise the flux through reaction (i) respectively. All 

other entries in vector c are 0. Vector (𝑣𝑈) contains the upper and 

vector (𝑣𝐿) contains the lower bound for all reactions in the model. 

These values are predetermined based on experimental or literature 

data. 

 

 

 

Following this methodology, a total of 544 reactions and consequently 576 

metabolites were removed from the model as they were not able to carry any flux. This 

yielded a new S composed of 1647 reactions by 1130 metabolites. 

5.3.4. Biomass optimisation algorithm 

The BMO algorithm developed in this chapter relies on a type of stochastic global 

optimisation (GO) method called enhanced scatter search (eSS) (Chachuat, Singer and 

Barton, 2006). The AMIGO2 toolbox (Egea et al., 2009) was used to implement the eSS 

algorithm in Matlab R2016b. The eSS algorithm requires a fitness function and variable 

constraints. In brief, maximum and minimum constraints were calculated for each 

macromolecular group making up the biomass reaction from the experimental data 

presented in Chapter 3. The fitness function evaluated by the eSS algorithm was the 

combination of two objectives. First, minimisation of the difference between the 

experimentally observed maximum specific growth rate (μmax) and the FBA simulated 



166 
 

μmax. Secondly, minimisation of the difference between 1 and the sum of all biomass 

equation stoichiometric coefficients converted to g gDCW-1. The following sub-sections 

describe these steps in detail. 

Classifying biomass equation constituents 

The three original biomass equations in iRC1080 are composed of 171 unique 

metabolites (See Appendix III for the complete list) plus the energy balance of ATP, ADP, 

inorganic phosphate and water. These 171 metabolites were divided into 10 

macromolecular groups as listed in Table 5.2. The groups were then classified as (a) 

constant, whereby the proportion of dry cell weight assigned to the group was assumed 

to not change between the experimental conditions studied, and (b) variable, groups of 

which experimental data was obtained in Chapter 3 and were found to differ between 

the experimental conditions studied. 

Table 5.2 Classification of iRC1080 biomass equation constituent metabolites into the 

macromolecular groups that make up C. reinhardtii biomass. 

Macromolecular group Number of constituent 

metabolites 

Type 

Carbohydrates 4 Variable 

Chlorophyll A 1 Variable 

Chlorophyll B 1 Variable 

DNA 4 Constant 

Glycerol 1 Constant 

Lipids 125 Variable 

Xanthophylls 8 Variable 

Protein 21 Variable 

RNA 3 Constant 

VFA 3 Constant 
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Calculating upper and lower bounds for the eSS algorithm 

In the biomass equation, the stoichiometric coefficients of the constituents are 

mmol gDCW-1. These must be converted to g gDCW-1 for calculating the adjusted 

stoichiometric coefficient value of each constituent, according to the changes in 

percentage contribution to the total dry cell weight of the macromolecular group the 

constituent belongs to: 

𝐶𝑗ℎ =⁡
𝑀𝑊𝑗 ∙ 𝑆𝐶𝑗ℎ

1000
 (Eq. 5.10) 

Where Cjh is the stoichiometric coefficient of constituent j in 

experimental condition h in g gDCW-1; MWj is the molecular weight of 

constituent j in mol g-1; SCjh is the stoichiometric coefficient of 

constituent j in mmol gDCW-1. 

 

  
 

 Within each macromolecular group, all constituents were given equal weighting 

therefore the original stoichiometric distribution within a group was not altered by the 

BMO algorithm: 

𝑑𝑗𝑖ℎ =⁡
𝐶𝑗ℎ

∑ 𝐶𝑘𝑖ℎ
𝑛
𝑘=1

=⁡
𝐶𝑗ℎ

𝐺𝑖ℎ
 (Eq. 5.11) 

Where djih is the proportion of constituent j in group i in experimental 

condition h (as a % w/w); n is the total number of constituents in group 

i; Ckih is the sum of the stoichiometric coefficients of all constituents in 

macromolecular group i under condition h also equivalent to Gi in g 

gDCW-1. 

 

 

For example, the carbohydrates group is made up of arabinose, galactose, 

mannose and starch in a g gDCW-1 ratio of 1.00:1.33:0.63:0.01. Although the percentage 

contribution of carbohydrates to the total dry cell weight changes between conditions, 

the ratio of arabinose:galactose:mannose:starch remains constant in all new biomass 

reactions generated by the BMO algorithm. 
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The upper and lower bounds used in the BMO algorithm for each G were 

calculated from the experimental data in Chapter 3 (Figure 3.11 – 3.14) as follows: 

 First the sum of macromolecular groups was calculated from the 

average macromolecular composition at 16 hours of batch culture. 

𝑉𝑖ℎ̅̅ ̅̅ = ⁡
∑ 𝑉𝑘𝑖ℎ
𝑛
𝑘=1

𝑛
 (Eq. 5.12) 

𝐸𝑖ℎ =⁡∑ 𝑉𝑘𝑖ℎ̅̅ ̅̅ ̅
𝑧

𝑘=1
 (Eq. 5.13) 

Where 𝑉𝑖ℎ̅̅ ̅̅  is the average quantity of macromolecule i at 16 hours of 

batch culture in experimental condition h in g gDCW-1; n is the total 

number of biological replicates; 𝐸𝑖ℎis the sum of macromolecular 

groups in g gDCW-1; z is the total number of macromolecular groups. 

 

 



169 
 

Next the ghost carbon fraction of each experimental condition was 

calculated: 

𝐺𝐶ℎ = 1 − 𝐸𝑖ℎ (Eq. 5.14) 

Where 𝐺𝐶ℎis the ghost carbon fraction in g gDCW-1 in condition h.  

Each 𝑉𝑖ℎ̅̅ ̅̅ was normalised to each 𝐸𝑖ℎ and the normalised 𝑉𝑖ℎ̅̅ ̅̅ were 

multiplied by their corresponding 𝐺𝐶ℎto distribute the 𝐺𝐶ℎacross each 

𝑉𝑖ℎ̅̅ ̅̅ according to their relative measured quantity: 

𝐺𝐶𝑉𝑖ℎ̅̅ ̅̅ ̅ =⁡(
𝑉𝑖ℎ̅̅ ̅̅

𝐸𝑖ℎ
) ∙ 𝐺𝐶ℎ⁡ (Eq. 5.15) 

Where 𝐺𝐶𝑛𝑉𝑖ℎ̅̅ ̅̅ ̅̅ ̅is the proportion of GC in condition h attributable to 

𝑉𝑖ℎ̅̅ ̅̅ macromolecular group. 

 

Finally, the upper and lower bounds for each G was calculated: 

𝐺𝑖ℎ𝑈𝐵 =⁡𝑉𝑖ℎ̅̅ ̅̅ + ⁡𝐺𝐶𝑉𝑖ℎ̅̅ ̅̅ ̅ 

𝐺𝑖ℎ𝐿𝐵 =⁡𝑉𝑖ℎ̅̅ ̅̅ −⁡𝐺𝐶𝑉𝑖ℎ̅̅ ̅̅ ̅ 

 

 

(Eq. 5.16) 

(Eq. 5.17) 

Where 𝐺𝑖ℎ𝑈𝐵and 𝐺𝑖ℎ𝐿𝐵are the upper and lower bounds set in the BMO 

algorithm for each macromolecular group in each experimental 

condition. 

 

 

Fitness function of the eSS algorithm 

The fitness function evaluated by the eSS algorithm was the combination of two 

objectives. First, minimisation of the difference between the experimentally observed 

maximum specific growth rate (μmax) and the FBA simulated μmax. Secondly, 

minimisation of the difference between 1 and the sum of all biomass equation 

stoichiometric coefficients converted to g gDCW-1: 
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𝜇𝑑𝑖𝑓𝑓,ℎ = [(𝜇𝑒𝑥𝑝,ℎ − 𝜇𝐹𝐵𝐴,ℎ) ∙ 𝜇𝑒𝑥𝑝,ℎ]
2
 (Eq 5.18) 

𝐺𝑑𝑖𝑓𝑓,ℎ =⁡(∑ 𝐺𝑘𝑖ℎ
𝑛

𝑘=1
) − 1 (Eq 5.19) 

𝑓 = 𝜇𝑑𝑖𝑓𝑓,ℎ + 𝐺𝑑𝑖𝑓𝑓,ℎ (Eq 5.20) 

Where 𝜇𝑒𝑥𝑝,ℎis the biomass growth rate at 16 hours of batch culture 

and 𝜇𝐹𝐵𝐴,ℎis the predicted biomass growth rate both in h-1; f is the 

fitness function of the eSS algorithm. 

 

 

Complete formulation of BMO algorithm 

The BMO algorithm is formed by combining the modules described in the previous 

sections. A GO problem can be formulated and solved with the eSS algorithm (Egea et 

al., 2007): 

min⁡(𝑓) (Eq 5.21) 

𝑠. 𝑡. 𝐺𝑖ℎ𝐿𝐵 ≥ 𝐺𝑖ℎ ≥ 𝐺𝑖ℎ𝑈𝐵 (Eq 5.22) 
 

Every iteration of the eSS algorithm searches through the solution space of Gih 

combinations and produces a solution vector of Gih values that is converted into 

individual Cjh and then SCjh used to update the biomass equation of the GeM. The GeM 

is then solved, and f is evaluated. Once the value of f converges on a minimum, a matrix 

made up of eSS solution vectors is analysed and the solution vector with the smallest f 

is selected. 

5.3.5. Carbon constraining 

An algorithm to further constrain the FBA solution space of the GeM by 

constraining intracellular fluxes of the model based on an elemental balance of carbon 

(Lularevic et al., 2019) was employed. The aim of carbon constraining is to reduce the 

size of the resulting solution space by removing physiologically infeasible flux values. 

This is achieved by imposing a limit on the permissible flux through each intracellular 

reaction based on the amount of carbon atoms uptaken by the cell under each 

experimental condition studied. In autotrophic simulations this constraining was 

governed by the flux through the CO2 extracellular exchange (EX_CO2) reaction in 
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iRC1080 whereas in mixotrophic simulations it was the sum of fluxes through EX_CO2 

and the acetate extracellular exchange reaction (EX_AC). 

5.3.6. Model based analysis workflow 

The published version of iRC1080 required curation and reduction pre-processing 

steps to maximise the efficiency of the solution space sampling and multivariate analysis 

methods described in the following sections. The workflow summarised in Figure 5.2 

was explained in detail in sections 5.3.3, 5.3.4 and 5.3.5. The processed iRC1080 version 

is referred to from here on with a combination of the experimental condition it simulates 

and the biomass equation it utilises to do so. For example, the iRC1080 version that 

simulates white autotrophic growth with the original biomass equation is referred to as 

WA OGBM and the version that simulates the same experimental conditions with the 

newly generated biomass equation is referred to as WA BMO. 
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Figure 5.2 

Complete GeM 

processing 

workflow. The 

original 

iRC1080 model 

is first curated 

and reduced. 

This is followed 

by updating of 

the biomass 

equation using 

the BMO 

algorithm. 

Finally, the 

model is 

carbon 

constrained 

using ccFVA 

and the 

processed 

iRC1080 is 

ready for 

multivariate 

analysis. 

5.3.7. Solution space sampling 
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After model curation, the application of ccFVA to accurately constrain intra- and 

extra- cellular reaction bounds and BMO to accurately update the stoichiometry of the 

biomass reaction the model can be used to simulate metabolism under a given set of 

experimental conditions. As mentioned above, due to the underdetermined nature of 

FBA problem formulations a single point solution is of little value. Instead, Markov-chain 

based random sampling techniques are routinely used to retrieve a statistically 

representative sample of flux distributions from the resulting optimal solution space. 

Analysis of this sample of optimal flux distributions is routinely used to enhance 

behavioural understanding of the metabolic state under a given set of physiological 

conditions (Mo, Palsson and Herrgard, 2009; Schellenberger and Palsson, 2009; Shlomi 

et al., 2011). Each of the six experimental conditions presented in Chapters 3 and 4 was 

uniformly sampled using the ACHR sampler included in the COBRA toolbox 

(Schellenberger et al., 2011). As ACHR sampling is computationally intensive, prior to 

sampling all experimental conditions an analysis to determine the minimum number of 

sampled flux distributions was conducted (Figure 5.3). Computing 500,000 samples is 

conventionally accepted as sufficient when exploring the solution space of such a GeM. 

As can be seen in Figure 5., the incremental gain in sample coverage (Sariyar et al., 2006) 

after 500,000 samples does not justify the additional computational and time expense 

required to achieve it thus it was decided to perform all sampling at 500,000 samples 

per condition. 
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Figure 5.3 Solution space percentage coverage (Sariyar et al., 2006) as a function of 

number of samples taken for the flux distribution of a single condition using the GeM 

iRC1080 model. WAMM, white autotrophic condition constrained with FVA bounds 

only; WABM, white autotrophic condition constrained with FVA and carbon constraining 

bounds. 

 

5.3.8. Multivariate data analysis by principal component analysis (PCA) 

Principal component analysis (PCA) is a multivariate analysis technique that 

simplifies a K-dimensional dataset by reducing its dimensionality. Standard deviation, 

covariance and singular value decomposition are employed to do so. This technique 

produces K new dimensions based on the maximum variance of the original dataset. The 

new dimensions termed principal components (PCs) and are derived from a linear 

combination of the original variables. Each PC is made up of K coefficients called loadings 

and the transformed data points in the new dimensionality are called scores (Sariyar et 

al., 2006; Worley, Halouska and Powers, 2013). In this chapter, PCA was used on the 

Monte-Carlo (MC) samples generated with the ACHR algorithm. Each column in the MC 

samples matrix represents a reaction in the GeM and each row represents a sampled 
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flux distribution. In this chapter, the MC samples of two or more simulations (i.e. GeMs 

with different biomass equations or nutrient uptake bounds) were combined into one 

matrix. The rows (each row is a single sampled flux distribution also referred to as a 

sample) of the newly constructed matrix were shuffled at random to prevent any 

systematic errors or bias.  

A sample ID vector was generated to preserve each sample’s simulation conditions 

(eg. WA or WX). As PCA problems tend to contain many variables, there is a chance that 

some variables will have very different scales. The data is commonly mean centred to 

remove such bias before comparing variables to each other. This was done by 

subtracting the mean of each column in the MC samples matrix from each respective 

flux value and dividing the result by the column’s standard deviation. The covariance 

matrix was calculated followed by singular-value decomposition (SVD). In SVD, X equals 

USVT, where X is the covariance matrix, U contains the left singular vectors, the diagonal 

of the S matrix is composed of the eigenvalues and VT contains the right singular vectors 

also referred to as loadings. Multiplying the loadings by the original data matrix 

produces the scores, with K coordinates according to the number of PCs. A diagram 

summarising the data processing described above can be seen in Figure 5.4. For more 

information please refer to “Multivariate Analysis in Metabolomics” by Worley and 

Powers (2013).
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Figure 5.4. Schematic overview of PCA 

and data pre-processing. A) MC 

samples matrices of size p-by-n (p 

samples and n reactions) of different 

simulations. As an example, WA 

constrained with the original biomass 

equation (grey) and WA constrained 

with the newly generated biomass 

equation (green) are combined into a 

single matrix. This operation is scalable 

to any number of experimental 

conditions. B) Randomizing the full 

sample matrix by scrambling rows and 

creation of a sample ID vector (x-by-1) 

that maintains the connection of each 

sample to the original matrix it belongs 

to. C) Data is mean centred and scaled. 

D) Evaluation of the covariance matrix 

from the processed samples matrix. E) 

Singular-value decomposition. F) 

Loadings are used to project the 

original mean centred and scaled data 

onto a new hyperplane where the axes 

correspond to the generated principal 

components. 
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5.4. Biomass equation optimisation 

Experimental data from Chapter 3 shows Chlamydomonas reinhardtii develops 

different physiologies under monochromatic illumination in autotrophic and in 

mixotrophic media. Significant alterations to biomass composition during a batch 

culture could signal some degree of divergence in central carbon metabolism between 

experimental conditions. The gene expression data from Chapter 4 also shows trophic 

strategy and wavelength selection have an impact on photosynthesis, the glyoxylate 

cycle and fatty acid synthesis. In this chapter, the biomass equation of a state-of-the-art 

genome scale metabolic model (GeM) is adjusted according to experimental 

measurements (presented in Chapter 3) to reflect the known physiological changes in 

the model structure; in an effort to corroborate the transcriptional data presented in 

Chapter 4 and obtain previously unknown insights on the effect of trophic strategy and 

wavelength selection on the metabolism of C. reinhardtii.  

The direct and indirect impact of such experimental measurements on seemingly 

unrelated metabolic subsystems can be predicted by FBA. A recent example of this was 

showcased in the publication of a GeM of the diatom Phaeodactylum tricornutum that 

predicted a previously unknown glutamine-ornithine shunt that transfers reducing 

equivalents from the chloroplast to the mitochondria (Levering et al., 2016). However, 

as explained in the introduction of this chapter, high confidence flux predictions are 

dependent on the biomass composition being accurately reflected during the 

simulation. 

Macromolecular composition 

Three biomass equations with unique stoichiometries were originally included in 

the iRC1080 model to describe the cellular biomass composition under autotrophic, 

mixotrophic and heterotrophic growth. The biomass equations in iRC1080 were derived 

from literature by the authors of the model using previously reported methods (Förster 

et al., 2003; Chavali et al., 2008; Chang et al., 2011). The proportion of dry weight 

biomass attributed to each macromolecular group from carbohydrate, chlorophyll, DNA, 

volatile fatty acid, glycerol, lipid, protein, RNA and xanthophyll was broken down into 
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subtypes wherever possible. For example, protein composition was divided into amino 

acid distribution (Boyle and Morgan, 2009). As such each macromolecular group listed 

above is represented in the biomass equation by at least two metabolites, except 

glycerol (see Appendix III for complete breakdown of biomass equation components). 

The original biomass equations for autotrophic and mixotrophic growth only differed in 

pigment content.  

An updated biomass composition was derived using the BMO algorithm developed 

herein and presented in section 5.3.2 for each experimental condition. A visual 

representation of the macromolecular distribution of (a) the original iRC1080 biomass 

reaction (Figure 5.5A; Figure 5.6A), (b) the experimentally measured macromolecular 

composition for each experimental condition (Figure 5.5B, D and F; Figure 5.6B, D and 

F) and (c) the BMO derived biomass reaction (Figure 5.5C, E and G; Figure 5.6C, E and G) 

is presented in Figures 5.5 and 5.6 for phototrophic and mixotrophic conditions 

respectively. It is apparent that the original biomass reaction in iRC1080 varies 

significantly from the experimental data in terms of macromolecular composition.  

In the original iRC1080 biomass equation carbohydrates account for 57.52% of the 

dry cell weight (Figures 5.5A and 5.6A). In contrast, the experimentally measured 

carbohydrate fraction was found to vary between ~5% and ~33% of DCW under the 

conditions examined (Figure 3.11). Such a large proportion of the dry cell weight 

attributed to carbohydrates is usually seen under nitrogen starvation which elicits a 

stress response that triggers the production of energy storage molecules (James et al., 

2011; Davey et al., 2014). Therefore, using the original biomass reaction from iRC1080 

to simulate nutrient replete, mid -exponential growth would lead to significant 

deviations from reality (Joseph Msanne et al., 2012).  

Similarly, in terms of protein content, the original iRC1080 biomass reaction 

accounts for a fixed biochemical composition comprising 14.91% DCW of proteins. 

However, under the experimental conditions considered in the present thesis, protein 

content was found to vary significantly with trophic mode, illumination wavelength and 

culture time ranging from as low as ~15% to as high as ~50% of DCW (Figure 3.13). 

Therefore, the original iRC1080 biomass reaction was in agreement with experimental 
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data in terms of the measured fraction of proteins in dry biomass for only one out of the 

6 conditions considered (RX, Figure 3.13 B). However, as summarised in Table 3.7, RX 

had the largest discrepancy between total weight calculated from the sum of proximal 

analysis measurements (36.9 pg cell-1) and dry cell weight measurements (72.4 pgDCW 

cell-1). Therefore, the BMO algorithm redistributed an additional 48.90% of ghost carbon 

and protein finally accounted for 37.13% of dry weight in the RX BMO (Figure 5.6E). 

Growth rate is widely regarded as a good correlate to protein synthesis and expression 

(Dennis and Bremer, 1974; Scott et al., 2010) and these newly generated BMOs are a 

representation of actively growing cells therefore an increase in the proportion of 

protein is not unexpected. 

The 12.57% of dry cell weight accounted for by lipids in the original iRC1080 

biomass reaction matched 5 out of the 6 experimental conditions considered (WA, BA, 

Figure 3.11 A; WX, RX, BX, Figure 3.11 B). Consequently, the percentage change in lipids 

between the OGBM and the BMO biomass reactions was relatively small compared to 

the other macromolecular groups (Figure 5.5 and Figure 5.6). The close initial agreement 

between OGBM and experimental results, and the fact that lipid content of C. reinhardtii 

cells is relatively low and stable throughout nutrient replete growth (Davey et al., 2014) 

was accurately captured by the BMO. Drastic increases in lipid content, particularly 

neutral lipids, are triggered by continued cultivation in nutrient deplete conditions 

(Wang et al., 2009), given how the BMO coped with disparate experimental data 

compared to the OGBM with other macromolecular groups, it should be able to model 

such nutrient deprived conditions accurately too.  

The pigment content is broken down into chlorophyll a, chlorophyll b and 

xanthophylls for the purposes of this discussion. The chlorophyll a and b proportions of 

the OGBM were derived (Chang et al., 2011) from a previous study where chlorophyll a 

and b content was measured in an effort to derive a biomass equation for a smaller GeM 

that focused on central carbon metabolism (Boyle and Morgan, 2009). The chlorophyll 

a/b ratio in both iRC1080 and the smaller GeM is 0.60 indicating a larger content of 

chlorophyll b than chlorophyll a per cell. The opposite is true for our experimental 

measurements as presented in Figure 3.15, whereby the chlorophyll a/b ratio never 

dipped below 2. Our experimental results are similar to others published in literature 
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(Polle et al., 2000; Bonente et al., 2012; Perrine, Negi and Sayre, 2012). The chlorophyll 

a/b ratio in the BMOs ranges from 1.12 – 2.97. The chlorophyll b content is the same 

across all BMOs (0.59%, Figure 5.5 B-G and Figure 5.6 B-G), this value may be regarded 

as an artefact of the model processing workflow. There could be a futile cycle (Santos, 

Boele and Teusink, 2011) involved in the chlorophyll b synthesis reactions that 

equivocally constrained the feasible bounds for flux through chlorophyll b synthesis 

reactions resulting in a narrower solution space leading to the same percentage value in 

every biomass equation.  

The xanthophyll contribution as a percentage of dry cell weight in all BMOs was 

an order of magnitude larger than expected from experimental results (Appendix IV). 

This is due to erroneous bounds having been set for the scatter-search algorithm 

optimisation. Overall, pigments account for less than 6% of the total dry cell weight 

across all newly generated biomass equations so the impact of such discrepancies on 

the metabolic network is not expected to overly skew the subsequent analyses. 

Additionally, the coefficient of variance calculated across all conditions is within the 

same order of magnitude between the experimental results and the BMOs for every 

macromolecular group except chlorophyll b. This supports the assumption that the 

scatter search optimisation is not biased towards any macromolecular group and 

highlights the error in chlorophyll b content as discussed above. 
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Figure 5.5  

C. reinhardtii biomass 

composition (g gDCW-

1) at 16 hours of 

autotrophic batch 

culture in M8a under 

a variety of 

illumination 

strategies. (A) Original 

autotrophic growth 

iRC1080 biomass 

equation; (B,D,F) 

Experimental data for 

WA, RA and BA 

respectively; (C,E,G) 

BMO generated data 

for WA, RA and BA 

respectively. 
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Figure 5.6  

C. reinhardtii biomass 

composition (g gDCW-

1) at 16 hours of 

mixotrophic batch 

culture in M8a.Ac 

under a variety of 

illumination 

strategies. (A) Original 

mixotrophic growth 

iRC1080 biomass 

equation; (B,D,F) 

Experimental data for 

WX, RX and BX 

respectively; (C,E,G) 

BMO generated data 

for WX, RX and BX 

respectively. 
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Table 5.3 C. reinhardtii biomass composition (g gDCW-1) at 16 hours of batch culture under a variety of trophic and illumination strategies. The 

original autotrophic and mixotrophic biomass equations are compared to the experimental data and the BMO algorithm generated biomass 

equations. Only variable macromolecular groups (as defined in Table 5.2) are displayed. 

 Carbohydrates Chlorophyll a Chlorophyll b Lipids Proteins Xanthophylls ‘Ghost 

carbon’ 

Autotrophic iRC1080 57.52 0.90 1.50 12.57 14.91 0.29 - 

WA Exp WA BMO 7.50 8.69 2.34 0.80 0.78 0.59 15.14 18.49 35.01 53.51 0.69 3.43 24.32 - 

RA Exp RA BMO 21.14 21.53 1.84 0.66 0.48 0.59 20.05 23.58 28.59 33.42 0.39 2.43 12.67 - 

BA Exp BA BMO 9.40 11.58 3.27 1.66 1.14 0.59 15.92 15.78 35.63 49.06 0.51 3.48 19.57 - 

 

Mixotrophic iRC1080 57.52 0.70 1.30 12.57 14.91 0.002 - 

WX Exp WX BMO 14.56 16.53 1.72 0.65 0.64 0.59 13.42 17.31 31.99 46.33 0.32 2.99 24.32 - 

RX Exp RX BMO 7.20 16.60 1.62 0.82 0.48 0.59 11.14 26.10 15.73 37.13 0.36 2.00 12.67 - 

BX Exp BX BMO 9.20 12.71 2.70 1.75 1.14 0.59 16.91 16.76 31.44 50.40 0.24 3.18 19.57 - 
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Multivariate analysis of flux samples 

Separation of the solution space 

After processing the original iRC1080 model and generating condition specific 

biomass equations, Monte Carlo (MC) sampling of the optimal solution space was 

performed generating 500,000 solution vectors per condition. Each condition was 

sampled with the original iRC1080 (OGBM) and the BMO derived biomass equation to 

determine whether the changes made to biomass composition would impact the 

resulting flux distributions. The large number of solution vectors obtained is impractical 

to inspect manually as each of them describes the flux through 1647 unique reactions. 

Therefore, a multivariate analysis method was chosen to reduce the dimensionality of 

the problem to a more tractable number in order to be able to identify key differences. 

Principal component analysis (PCA) was chosen as it is an unbiased way of calculating 

the contribution of multiple variables to the overall variability of a dataset (Jackson, 

1991). PCA can be used to discern whether most of the variability observed is due to 

model uncertainty or metabolic differences between the conditions compared. Figure 

5.7 shows the score plots for each experimental condition. Two distinct clusters can be 

observed in each score plot where grey points represent samples retrieved using the 

original iRC1080 biomass reaction, whereas green points represent samples retrieved 

using the BMO biomass reaction. The BMO updated biomass reaction results in a clearly 

separated and distinct metabolic configuration in every case. Based on the results of 

Figures 5.5 and 5.6, this should more closely reflect the experimental conditions being 

modelled.  
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Figure 5.7 PCA score plots of all experimental conditons. A total of 1x106 points are 

plotted on each graph with 5x105 points per condition. OGBM scores are shown in grey 

and BMO scores are shown in green. All scores are plotted on principal component 1 

(PC1) and principal component 2 (PC2). (-A) Autotrophic growth in M8a; (-X) Mixotrophic 

growth in M8a.Ac; (W-) White LED light; (R-) Red LED light; (B-) Blue LED light. 

 

Principal components are numbered in order of decreasing variance such that PC1 

captures the most variance and this decreases until the total variance is cumulatively 

described by all components. PC1 captured between 14.63% (BA) and 24.65% (RA) of 

the total variance (Figure 5.8B illustrates this for the PCA of WA OGBM / WA BMO). 95% 

of the total variance was captured by the first 290 PCs on average (Figure 5.8A illustrates 

this for the PCA of WA OGBM / WA BMO). The top 5 PCs were checked for separability 

but only PC1 showed good separation between scores of each biomass equation. As 

expected from these observations, the total variance captured by PC1 was an order of 

magnitude larger than that captured by PC2 in the PCA of WA OGBM / WA BMO. 
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Figure 5.8 Principal component contribution to total variance. All data plotted were 

retrieved from the PCA of WA OGBM / WA BMO flux samples. (A) Cumulative variance 

described by each principal component. (B) The individual contribution of each of the 

first 10 principal components to the total variance of the flux sample data. 
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Principal components are vectors generated from linear combinations of the 

original variables (ie. the model reactions), represented as new axes along which to 

describe the original variables. The coordinates for each score on these new axes 

depend on the raw flux values of the score’s solution vector and the loadings of each PC 

used in the plot. Loadings are the coefficients of these new axes (ie. the PCs), their 

magnitude describes the contribution of the original variable to the new axis. Hence, the 

larger the numerical value of a loading, the larger the contribution of the represented 

variable to the separation of the scores on the plot. In Figure 5.7 the scores plotted from 

samples of the solution space of iRC1080 OGBM and iRC1080 BMO (for all experimental 

conditions studied; WA, RA, BA, WX, RX, BX) are fully separated along PC1. Therefore, 

the largest loadings of PC1 correspond to the most important reactions for describing 

the differences between the metabolic configurations of iRC1080 OGBM and iRC1080 

BMO. To define what constitutes a ‘large loading’, the absolute positive value of all 

loadings was calculated, and each absolute loading was divided by the largest loading in 

the PC (Figure 5.9A). This normalisation of the data allowed for the selection of loadings 

at least 70% as big as the largest loading in each PC. The large loadings in PC1 of the WA 

OGBM / WA BMO PCA are highlighted inside red boxes in Figure 5.9B. 

The analysis of top loadings reduced the number of reactions to investigate from 

the total 1586 reactions used to build each PCA model to 220 reactions on average 

across all conditions. Each reaction is part of a subsystem which groups reactions 

together by metabolic function at the model’s authors’ discretion. Analysing the top 

loadings at the subsystem level gives a good overview of the areas of cellular metabolism 

that are most important in describing the metabolic changes caused by altering the 

biomass equation of iRC1080. In the top 218 loadings of the PC1 of WA OGBM / WA 

BMO, there were 37 unique subsystems. Of these 37 subsystems, 20 were directly linked 

with synthesis of biomass precursor metabolites, accounting for 161 out of the 218 top 

reactions analysed. This was not entirely unexpected as the only difference between the 

two models used to generate this PCA was the stoichiometry of the biomass equation. 

The top loadings of each PCA displayed in Figure 5.6 were analysed. They all contained 

the same 161 biomass precursor related reactions (Appendix V). This is due to the fact 

that each PCA was comparing 1,000,000 scores out of which 500,000 used a GeM with 
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the same biomass equation. Although other condition specific constraints were 

employed, there was little difference between iRC1080 OGBM scores of different 

experimental conditions. Therefore, the following section will discuss the results of the 

WA OGBM / WA BMO PCA and the discussion is representative of the remaining PCAs. 
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Figure 5.9 Top loadings analysis. All data plotted were retrieved from the PCA of WA 

OGBM / WA BMO flux samples. (A) Normalised absolute loadings of principal 

component 1 (PC1). Loadings with an absolute magnitude at least 70% of the largest 

loading in PC1 were considered highly influential in the separation of WA OGBM and WA 

BMO score clusters. (B) Loadings plot where PC1 loadings considered highly influential 

are termed high loadings and highlighted inside red boxes. 
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Analysis of top loadings in PC1 & PC2 

The value of a loading within a PC describes the loading’s influence on the value 

of each score plotted along that PC. For example, a large positive loading in PC1 of Figure 

5.9B indicates that large positive scores in PC1 (Figure 5.7WA) had a larger than average 

flux through the reaction described by that loading, and therefore that reaction carried 

a higher than average flux in WA OGBM simulations compared to WA BMO simulations.  

On a loadings scatter plot, each axis corresponds to a PC and the influence of each 

loading on the scores along those PCs can be easily visualised. Figure 5.10A-D shows the 

loadings plot for WA OGBM and WA BMO; each panel highlights the loadings for each 

of the 21 synthesis of biomass precursors (pBM) subsystems. Figure 5.10A highlights the 

top loadings of carbohydrate constituent synthesis related subsystems like galactose 

metabolism, fructose and mannose metabolism, and starch metabolism. Most reactions 

have large positive loadings as expected due to the larger percentage (w/w) 

carbohydrate in the original biomass equation. The loadings with large negative values 

highlight the intricacy of top loadings analysis in PCA of GeM models. Reactions in the 

GeM stoichiometric matrix are made up of rows of stoichiometric coefficients with non-

zero values in the rows corresponding to metabolites that participate in the reaction. 

Irreversible reactions will always have substrates with negative stoichiometric 

coefficients and products with positive stoichiometric coefficients. However, in 

reversible reactions, the substrate and product definitions depend on the value of the 

flux (>0 or <0) carried by the reaction. Hence, conclusions cannot be drawn solely from 

loadings values and must be cross-checked against the stoichiometric matrix S to fully 

contextualise what a larger or smaller than average flux through a reaction means.  This 

was the case across several of the subsystems highlighted in Figure 5.10, and particular 

examples are further explained next.
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Figure 5.10 Top loadings analysis. All data plotted were retrieved from the PCA of WA OGBM / WA BMO flux samples.  (A-D) Loadings plots 

where highlighted loadings belong to biomass precursor (pBM) synthesis related subsystems; (A) Carbohydrate pBM synthesis related.
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[Figure 5.10 legend continued] subsystems; (B) Pigments pBM synthesis related 

subsystems; (C) Lipids pBM synthesis related subsystems; (D) Protein pBM synthesis 

related subsystems 

The large negative loading highlighted in the starch and sucrose metabolism 

subsystem (Figure 5.10A) could be erroneously interpreted as a carbohydrate synthesis 

related reaction behaving in the opposite manner to the rest and carrying a larger than 

average flux towards carbohydrate synthesis in the GeM with the newly generated 

biomass equation. However, it relates to UDP-glucuronate 4-epimerase (UGE) (Equation 

5.23), a reversible reaction with a negative median flux value of -0.00833 mmol gDCW-1 

h-1  (CC) and -0.000209 mmol gDCW-1 h-1 (BM) calculated from each set of 500,000 

solution vectors sampled from each GeM plus biomass equation combination. By 

examining the flux carried by the reaction and its stoichiometric coefficients in S, it 

becomes evident that the product of the reaction in the simulations performed is UDP-

glucuronate. After a decarboxylation step, UDP-glucuronate is converted into UDP-D-

xylose which in turn can be converted into UDP-L-arabinose. UDP-L-arabinose can then 

be broken down into UDP and L-arabinose thus completing the conversion of UDP-D-

glucuronate into a biomass equation precursor metabolite. 

𝑢𝑑𝑝 − 𝐷 − 𝑔𝑙𝑢𝑐𝑢𝑟𝑜𝑛𝑎𝑡𝑒[𝑐] ⁡<=> ⁡𝑢𝑑𝑝 − 𝐷 − 𝑔𝑙𝑎𝑙𝑎𝑐𝑡𝑢𝑟𝑜𝑛𝑎𝑡𝑒[𝑐] 
 
Where [c] stands for cytosol localised metabolite. Reaction listed as 
defined in iRC1080. 

(Eq 5.23) 

 

The other large negative loading found in the carbohydrate synthesis related 

subsystems codes for D-mannose aldose-ketose-isomerase (MAKI) (Equation 5.24). A 

reversible reaction, in this case the left-hand side metabolite is a biomass precursor 

directly. What makes this reaction more interesting than UDP-glucuronate 4-epimerase 

is the median flux determined for each GeM plus biomass equation combination. The 

GeM with the original biomass equation carried a negative median flux of -0.00107 

mmol gDCW-1 h-1 and the newly generated biomass equation resulted in a positive 

median flux of 0.00359 mmol gDCW-1 h-1. This means that the direction of flux through 

MAKI was reversed in at least 50% of solution vectors generated for WA BMO. Reversing 

the direction of MAKI results in less mannose being available for the biomass equation 
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reaction aligning the flux reversal with the lower quantity of carbohydrates in the newly 

generated biomass equation. It also results in more β-D-fructose being generated which 

can being transformed directly into D-glucose for glycolysis/gluconeogenesis by α-D-

glucose aldose-ketose-isomerase (AGAKI); or it can enter glycolysis/gluconeogenesis in 

its phosphorylated form, β-D-fructose 6-phosphate. 

𝑚𝑎𝑛𝑛𝑜𝑠𝑒[ℎ] <=> β − D − fructose[ℎ] 
 
Where [h] stands for chloroplast localised metabolite. Reaction listed as 
defined in iRC1080. 

(Eq 5.24) 

 

While the carbohydrate content in the BMO algorithm generated biomass 

reactions was smaller than in the original iRC1080 biomass reaction, the opposite is true 

for the lipids proportion of the dry cell weight (Figure 5.5 and 5.6). As expected from 

this, most reactions in the top loadings of WA BMO / WA OGBM PCA belonging to lipid 

precursor synthesis subsystems have large negative loadings values showing the flux 

through lipids synthesis reactions was larger than average in WA BMO (Figure 5.10C). 

However, there were five exceptions where the loadings had large positive values 

indicating these lipid related reactions had larger than average fluxes in WA OGBM 

instead (Equations 5.24 – 5.28). One of them was glycerol-3-phosphate oxidase, a 

reaction grouped in the glycerophospholipid metabolism subsystem. It is a reversible 

reaction with a positive median flux in both WA OGBM and WA BMO indicating 

production of glycerol 3-phosphate from dihydroxyacetone. The larger gluconeogenic 

fluxes in WA OGBM result in a larger pool of available dihydroxyacetone, enabling a 

higher flux through glycerol-3-phosphate oxidase explaining its large positive loading 

value.  

𝐷𝐻𝐴𝑃[ℎ] + 𝐻2𝑂2[ℎ] ⁡<=> 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 − 3𝑃[ℎ] +⁡𝑂2[ℎ] (Eq. 5.24) 

Where DHAP is dihydroxyacetone; [h] stands for chloroplast localised 

metabolite. Reaction listed as defined in iRC1080. 
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Two digalactosyldiacylglycerol galacto-hydrolase and -synthase reaction pairs 

(18:1(9Z)/16:0), (18:1(9Z)/16:0(9Z)) all had large positive loading values, but the species 

of monogalactosyldiacylglycerol lipid (mgdg) involved in these reactions (as a product of 

hydrolases; as a substrate for synthases) is not a biomass precursor metabolite. 

However, this mgdg is a substrate in an omega-6 desaturase reaction that produces 

mgdg-(1829Z12Z160) which is present in the biomass equation. The omega-6 

desaturase reaction does have a negative loading value, as expected. In summary, 

reactions directly linked to biomass equation precursor metabolites follow the expected 

trend of loadings value and change in percentage contribution of the macromolecule 

they link to, whilst reactions in the same subsystems but not involved directly with 

biomass equation metabolites, may not, as other metabolites present may be linked to 

other metabolic sub-networks and be influenced by multiple macromolecular groups. 

mgdg1819Z160[h] + ⁡udp − galactose[h] → ⁡dgdg1819Z160[h] ⁡+ ⁡h[h] ⁡+ ⁡udp[h]⁡  
 
mgdg1819Z1619Z[h] + ⁡udp − galactose[h] → ⁡dgdg1819Z16019Z[h]⁡+ ⁡h[h] ⁡+ ⁡udp[h]  
 
dgdg1819Z1619Z[h] + ⁡h2o[h] → ⁡galactose[h] ⁡+ ⁡mgdg1819Z1619Z[h]  
 
dgdg1819Z160[h] + ⁡h2o[h] → ⁡galactose[h] ⁡+ ⁡mgdg1819Z160[h]  
 
(Eqs 5.25 – 5.28) 
 

Where mgdg stands for monogalactosyldiacylglycerol, dgdg stands for 

digalactosyldiacylglycerol and [h] stands for chloroplast localised metabolite. Reaction 

listed as defined in iRC1080. 

 

Percentage (w/w) proteins were higher in the newly generated biomass equation 

in all cases. Correspondingly, all but one of the top loadings belonging to protein 

synthesis related subsystems had large negative values (Figure 5.10D). The errant 

loading corresponds to nitric oxide synthase (Eq 5.29). This reaction degrades L-arginine, 

a biomass precursor into L-citrulline and nitric oxide. L-citrulline is not a biomass 

precursor. A large positive flux through this reaction would reduce the amount of L-

arginine available for biomass generation and therefore it makes sense for the 

corresponding loading value to be positive; as the increase in percentage (w/w) protein 
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in the newly generated biomass equation results in a decrease in flux carried by amino 

acid degradation reactions like nitric oxide synthase. 

L − arginine[c] + ⁡NADPH[c] + ⁡O2[c] → ⁡L − citrulline[c] ⁡+ ⁡2H[c] ⁡+ ⁡NADP[c] ⁡+ ⁡NO[c]  

 
(Eq 5.29) 
Where [c] stands for cytosol localised metabolite. Reaction listed as defined in iRC1080. 

 

All pigment synthesis related top loadings followed the pattern expected from the 

decrease in percentage (w/w) chlorophyll a and b and the increase in percentage (w/w) 

xanthophylls between the original biomass equation and the newly generated biomass 

equation (Figure 5.10B).  

The remaining 16 subsystems accounted for 54 reactions; their loadings values are 

shown in Figure 5.11. It is of interest to note that at least 25% of the top loadings don’t 

belong to biomass precursor synthesis subsystems. This shows that changing the 

biomass equation stoichiometry has far reaching effects beyond biomass precursor 

synthesis subsystems. It is a promising sign for discovering metabolic differences 

between experimental conditions using the same GeM framework model and condition 

specific biomass composition data as well as nutrient consumption data. 
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Figure 5.11 Top loadings bar chart. All data plotted were retrieved from the PCA of WA OGBM / WA BMO flux samples. All 54 top loadings of the 

16 non biomass precursor (nBM) synthesis related subsystems found in PC1. PPP, pentose phosphate pathway; 1C, 1-carbon by folate 

metabolism. 
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5.5. Multivariate analysis of experimental conditions after BMO 

processing 

In the previous section, PCA was used to evaluate the flux distributions of two 

metabolic networks that only differed in their biomass equation stoichiometry. Clear 

separation of PCA scores belonging to each network was achieved. In this section, the 

iRC1080 model is constrained with the newly generated, condition specific biomass 

equations and experimentally determined nutrient uptake rates. These final iterations 

of a curated GeM, with experimental condition specific adaptations of the GeM biomass 

equation are a closer representation of the experiments performed in Chapter 3 and 4 

than the published iRC1080 as is. The distinct metabolic configurations sampled capture 

the macroscopic differences in biomass equation stoichiometry between the 

experiments. The following analysis explores what other metabolic differences arise 

between the observed phenotypes by exploring the latent variables (loadings) 

highlighted in PCA. 

Multivariate analysis of flux samples 

Separation of the solution space 

The autotrophic condition experimentally determined bounds used to constrain 

iRC1080 were ammonium uptake rate and biomass growth rate between 0 and 48h of 

batch culture. Figure 5.12 shows the score plot for the three mixotrophic conditions, WA 

BMO, RA BMO and BA BMO. Three distinct clusters can be observed where grey points 

represent samples retrieved from WA BMO, red points represent samples retrieved 

from RA BMO and blue points represent samples retrieved from BA BMO. PC1 clearly 

separated all conditions whilst PC2 separated WA BMO from BA BMO and RA BMO. This 

suggests some underlying differences between WA BMO and the other two conditions 

being captured by PC2. 
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Figure 5.12 PCA score plots of autotrophic growth simulations under a variety of 

illumination conditions using BMO algorithm generated biomass equations. A total of 

1.5x106 points are plotted with 5x105 points per condition. WA BMO scores are shown 

in grey; RA BMO scores are shown in red; BA BMO scores are shown in blue. All scores 

are plotted on principal component 1 (PC1) and principal component 2 (PC2). (-A) 

Autotrophic growth in M8a; (W-) White LED light; (R-) Red LED light; (B-) Blue LED light. 

The mixotrophic condition experimentally determined bounds used to constrain 

iRC1080 were ammonium uptake rate, acetate uptake rate and biomass growth rate 

between 0 and 48h of batch culture. Figure 5.13 shows the score plot for the three 

mixotrophic conditions, WX BMO, RX BMO and BX BMO. Three distinct clusters can be 

observed where grey points represent samples retrieved from WX BMO, orange points 

represent samples retrieved from RX BMO and blue points represent samples retrieved 

from BX BMO. PC1 separated BX BMO scores from the other two conditions whilst PC2 

separated WX BMO and RX BMO. This suggests some underlying similarity between RX 

BMO and BX BMO not shared by WX BMO being captured by PC2. 
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Figure 5.13 PCA score plots of mixotrophic growth simulations under a variety of 

illumination conditions using BMO algorithm generated biomass equations. A total of 

1.5x106 points are plotted with 5x105 points per condition. WX BMO scores are shown 

in light grey; RX BMO scores are shown in orange; BX BMO scores are shown in light 

blue. All scores are plotted on principal component 1 (PC1) and principal component 2 

(PC2). (-X) mixotrophic growth in M8a.Ac; (W-) White LED light; (R-) Red LED light; (B-) 

Blue LED light. 

Analysis of pBM top loadings in PC1 & PC2 

The loadings of the PCA score plots shown in Figure 5.12 and Figure 5.13 were 

investigated separately and comparisons between them were drawn when pertinent. 

Loadings with an absolute value ≥70% of the highest loading in PC1 and PC2 were 

considered high loadings as in the previous section. High loadings were evaluated as 

important contributors to the separation of scores along each PC. The total number of 

high loadings and their association to biomass precursor (pBM) subsystems is 

summarised in Table 5.4. 
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Table 5.4 Top loadings and subsystems distribution in the first two principal 

components (PC1 and PC2) of the PCA performed on  autotrophic and mixotrophic 

growth under white, red and blue LED illumination. 

Autotrophic PCA 

 Subsystems High loadings 

pBM Other pBM Other 

PC1 15 (54%) 13 (46%) 151 (77%) 44 (23%) 

PC2 12 (60%) 8 (40%) 45 (69%) 20 (31%) 

Mixotrophic PCA 

 Subsystems High loadings 

 pBM Other pBM Other 

PC1 28 (54%) 24 (46%) 195 (65%) 103 (35%) 

PC2 12 (57%) 9 (43%) 32 (59%) 22 (41%) 
 

.  

The proportion of top loadings belonging to pBM subsystems is dominant along 

both PC1 and PC2 in the autotrophic PCA (77% and 69%) and mixotrophic PCA (65% and 

59%). This indicates that even when comparing across three different experimental 

conditions with differing constraints across illumination, growth rate and nutrient 

uptake rates, the majority of the separation of scores along each PC is due to differences 

in pBM fluxes. This reflects the weight of the biomass reaction when it is selected as the 

sole biomass optimisation objective. 

Most pBM top loadings in PC1 and PC2 of the PCA performed with autotrophic 

conditions did not show major differences in median flux values beyond the changes in 

scale expected from the differences in biomass equation composition of each condition. 

An exception was the redox reaction catalysed by glyceraldehyde oxidoreductase 

(GLYALDOR, Equation 5.29) found in the ‘glycerolipid metabolism’ subsystem.  
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glycerate − R[c] ⁡+ ⁡2H[c] ⁡+ ⁡NADH[c] ⁡⁡<=> ⁡glyceraldehyde[c] ⁡+⁡H2O[c] ⁡+ ⁡NAD[c]  

(Eq 5.29) 

Where [c] stands for cytosol localised metabolite. Reaction listed as defined in 

iRC1080. 

 

This reversible reaction had a positive median flux in WA BMO and RA BMO 

samples (1.23 x 10-3 mmol gDCW-1 h-1 and 4.10 x 10-3 mmol gDCW-1 h-1) and a negative 

median flux in BA samples (-6.27 x 10-6 mmol gDCW-1 h-1). The reversal in directionality 

suggests glyceraldehyde is used as a substrate to produce reducing power and glycerate 

carbon backbones under blue light. Glycerate can be phosphorylated to glycerate-2-

phosphate in glycolysis or glycerate-3-phosphate in serine synthesis (Bartsch, 

Hagemann and Bauwe, 2008). Conversely, under white and red light, glycerate serves as 

precursor for glyceraldehyde biosynthesis. Glyceraldehyde can be converted into 

glycerol and then glycerol-3-phosphate, a substrate for glycerolipid synthesis (Riekhof 

and Benning, 2009). The lipid content (w/w) at 48 hours as seen in Figure 3.12 A (WA 

20%, RA 27% and BA 17%) matches the preference for a lipid related precursor 

(glyceraldehyde) in WA BMO and RA BMO samples compared to BA BMO samples. Such 

insight could inform further experimentation with GLYALDOR mutants under white and 

red light to determine whether the overexpression of glyceraldehyde oxidoreductase 

could improve lipid accumulation in nutrient replete conditions. 

No pBM top loadings in PC1 and PC2 of the PCA performed with mixotrophic 

conditions showed any major differences in median flux values beyond the changes in 

scale expected from the differences in biomass equation composition of each condition. 

This could be expected from the similarity in biomass composition between WX BMO, 

RX BMO and BX BMO. Whilst not being equal, there are no drastic differences between 

the biomass reactions that would prompt a significant change in flux direction across 

pBM subsystems and reactions.  

Analysis of nBM top loadings in PC1 & PC2 

All but two of the non-biomass (nBM) high loadings of PC1 in the autotrophic PCA 

corresponded to transport reactions. Transport reactions are reactions that enable 
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metabolite transport between compartments without any biochemical transformation 

occurring. GeM model compartments are formal structures used to distinguish between 

metabolites located in different intracellular organelles of the modelled cell. Thus, a 

transport reaction for water is present in the model to allow the movement of water 

molecules between the cytosol and the chloroplast. Of higher metabolic relevance were 

the two non-transport reactions found in the non-pBM high loadings of PC1. These were 

6-phosphogluconolactonase (PGDh, Equation 5.X) and 6-phosphogluconate 

dehydrogenase (PGDHh, Equation 5.X).  

6 − phospho − D − glucono − 1,5 − lactone[h] ⁡+⁡H2O[h]⁡⁡−> ⁡6 − phospho − D − gluconate[h] ⁡+ ⁡H[h] 

6 − phospho − D − gluconate[h] + ⁡NADP[h]⁡−> ⁡D − ribulose − ⁡5 − phosphate⁡⁡ + ⁡CO2[h] + ⁡𝑁𝐴𝐷𝑃𝐻[ℎ] 

(Eq 5.30 – 5.31) 

Where [h] stands for chloroplast localised metabolite. Reactions listed as defined in 

iRC1080. 

These two reactions form part of the oxidative phase of the pentose phosphate 

pathway (PPP) which is a secondary source of reducing power in photosynthesising cells 

grown in autotrophic and mixotrophic conditions (Klein, 1986). The ribulose-5-

phosphate (ru5p) produced by PGDHh can feed ribose sugar metabolism for DNA and 

RNA synthesis as well as amino acid synthesis (Kruger and von Schaewen, 2003). Some 

portion of the ru5p generated in the PPP is also directed into ribulose-1,5-bisphosphate 

regeneration in the Calvin Benson cycle. Both reactions had equally high absolute 

normalised loadings values in the PC1 of the PCA performed on autotrophic conditions 

(Figure 5.12 A) and the PC2 of the PCA performed on mixotrophic conditions (Figure 5.13 

B) of 74.50% of the largest loading.  

The large negative value of the loadings in the PC1 of the PCA performed on 

autotrophic conditions indicates the flux through the reactions was larger than average 

in BA BMO samples (Figure 5.12). The large negative values of the loadings in the PC2 of 

the PCA performed on mixotrophic conditions indicate the flux through the reactions 

was larger than average in RX BMO samples (Figure 5.13). As they comprise a linear 

pathway, the median flux through both reactions was the same, however it differed per 

experimental condition as detailed below.  
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A  metabolic flux analysis (MFA) study in Chlorella pyrenoidosa found PPP reactions 

carried a larger flux in cells grown in mixotrophic conditions compared to cells grown in 

autotrophic conditions (Yang, Hua and Shimizu, 2000). The median flux through PGLh 

and PGDHh mirrored the literature under red light; it was an order of magnitude higher 

in RX BMO (0.053 mmol gDCW-1 h-1) than RA BMO (0.0057 mmol gDCW-1 h-1). Flux 

through the two reactions remained comparable between WA BMO (0.016 mmol gDCW-

1 h-1) and WX BMO (0.014 mmol gDCW-1 h-1). The difference in modelled growth rate 

under red light between autotrophic (RA BMO - 0.055 h-1) and mixotrophic (RX BMO - 

0.057 h-1) simulations was smaller than for white light simulations (WA BMO - 0.073 h-1; 

WX BMO – 0.069 h-1). Thus, the difference in PPP flux between RA BMO and RX BMO 

seems to be a result of the distinct metabolic re-configuration generated with each 

experimental condition. A study on NADPH-producing PPP enzymes in the diatom 

Fistulifera solaris showed that overexpression of such enzymes results in increased lipid 

accumulation under phototrophic conditions. Equally, RX BMO has 2.52% (w/w) higher 

lipid content than RA BMO whilst WX BMO has 1.18% (w/w) lower lipid content than 

WA BMO. 

On the other hand, the median flux through PGLh and PGDHh in BA BMO (0.023 

mmol gDCW-1 h-1) was an order of magnitude higher than in BX BMO (0.0044 mmol 

gDCW-1 h-1). The simulated growth rate in BA BMO (0.041 h-1) was lower than in BX BMO 

(0.053 h-1). According to MFA data from literature, the flux through the PPP should be 

higher in mixotrophic cultures, and a larger growth rate is accompanied by an increased 

demand for reducing power, DNA, RNA and protein precursors. The reversal of the 

growth rate to PPP flux correlation in BA BMO and BX BMO demonstrates the unique 

metabolic configurations captured by the curated GeM and warrants further 

experimental studies to validate these simulations. Increased flux through PPP would 

generate a pool of NADPH that could be redirected towards other reduction power 

requiring pathways like carbon fixation or lipid biosynthesis. 

5.6. Conclusions 

The need for a biomass equation optimisation algorithm is formed of three tenets. 

Firstly, the metabolic plasticity displayed by microalgae that results in varying biomass 
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distribution profiles across experimental conditions, and throughout the course of an 

experiment, makes custom biomass equations essential for maximising GeM simulation 

fidelity. Secondly, the variance accumulated from the use of different experimental 

techniques to measure each component of the biomass. Thirdly, the centrality of the 

biomass equation as a single optimisation objective in FBA simulations, makes it 

arguably the most important reaction in a GeM model due to its influence in the overall 

metabolic distribution.  

The BMO algorithm developed in this chapter successfully updates the biomass 

equation of a GeM within the limits set by experimental measurements whilst 

minimising the difference between simulated and experimental growth rate. The 

tailored BMOs resulted in distinct metabolic configurations for each experimental 

condition. The multivariate analysis performed with PCA confirmed each experimental 

condition with a newly generated BMO gave rise to distinct phenotypes (Figure 5.7, 

Figure 5.12 and Figure 5.13). In Section 5.4.1, by comparing the original biomass 

equation to each BMO generated it was demonstrated that the newly generated BMOs 

affect fluxes related to biomass precursor synthesis. However, the changes observed 

were proportionally equal across different subsystems of the same macromolecular 

component due to the available experimental data. To obtain more granularity and 

insights into metabolic changes of each biomass precursor synthesis subsystem, higher 

resolution data like that obtained from lipidomics studies (Levering et al., 2016) or 

amino acid distribution analysis would be required (Kliphuis et al., 2012). 

The motivation for engineering highly specific stoichiometric constraints in GeMs 

is to minimise the number of possible solutions in a simulation. A reduction in solution 

space is necessary due to the heavily underdetermined nature of this type of models 

(Schellenberger and Palsson, 2009). To the best of my knowledge this is the first time 

such separation of solution space between different experimental conditions has been 

achieved in a microalgal GeM. Previously published work only performed flux balance 

analysis and flux variability analysis (Kliphuis et al., 2012; Chapman et al., 2015; Levering 

et al., 2016) which provide a single non-unique solution and extreme (minimum and 

maximum) values respectively. Central carbon metabolism did not majorly feature in the 

top loadings of the autotrophic or mixotrophic PCAs. This suggests a high robustness of 
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central carbon metabolism to the wavelength and trophic strategy choices explored in 

this thesis. A similar study in Arabidopsis thaliana found central carbon metabolism has 

very little sensitivity between GeMs of the same organism and different biomass 

equations (Yuan et al., 2016). Nevertheless, the Monte Carlo sampling performed in this 

chapter produced flux distributions between the maximum and minimum values of the 

solution space for each reaction in the model. These flux distributions served as the 

input data for PCA which in turn highlighted otherwise not readily identifiable reactions 

like GLYALDOR and PGDHh as relevant for distinguishing between the metabolic 

configurations of each experimental condition. Such insights into the differences in 

metabolic configuration caused by the choice of wavelength and trophic strategy in a C. 

reinhardtii batch culture serve to inform novel hypotheses and future experimentation 

efforts. 
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CHAPTER 6 

Conclusions & Future directions 

A systematic characterisation of the effects of narrow band monochromatic 

illumination on microalgae under different trophic strategies was presented in this 

thesis. A combined experimental and modelling approach was utilised to develop 

understanding at the physiological, metabolic and gene expression level. Literature 

observations like the influence of narrow-peak red and blue light emitting diode (LED) 

illumination on C. reinhardtii cell size and cell cycle were confirmed in Chapter 3. Legacy 

macromolecule quantification assays were scaled-down to reduce biovolume required 

to generate macromolecular composition data (Chapter 3). These assays enabled novel 

discoveries like the preferential allocation of carbon towards carbohydrates (RA) or 

lipids (BA) in the late stationary phase of batch cultures (Chapter 3).  

Ribonucleic acid (RNA) extraction from C. reinhardtii cells was optimised to 

improve the yield and purity of the extracted nucleic acids (Chapter 4). This enabled a 

reference gene evaluation study to determine the suitability of legacy and novel 

reference genes for real time quantitative polymerase chain reaction (RT-qPCR) studies. 

Ultimately, the psaD (Photosystem I reaction centre subunit II) gene and ACX1 (Acetyl-

CoA carboxylase subunit α) gene were chosen as optimal reference genes for RT-qPCR 

studies of C. reinhardtii under different illumination and trophic strategies. The selected 

reference genes were employed to evaluate differences at the transcriptional level 

between different illumination and trophic strategies in several areas of central carbon 

metabolism like photosynthesis (Ribulose bisphosphate carboxylase small subunit; RBCS 

gene) or the tricarboxylic acid cycle (fumarate hydratase; FUM1) among others (Chapter 

4).  

After the systematic experimental characterisation, a modelling effort was 

employed to further discern the metabolic differences between the experimental 

conditions studied (Chapter 5). The latest genome scale metabolic network model 
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(GeM) was updated and curated to perform metabolic simulations. A biomass 

optimisation algorithm (BMO) was developed to adapt the stoichiometry of the biomass 

equation in the GeM to accurately reflect changes in biochemical composition observed 

in Chapter 3 (Chapter 5). The resulting metabolic simulations allowed for the clear 

separation of metabolic configurations resulting under each experimental condition 

using multivariate analysis. 

Every chapter mentioned contains a results and discussion section as well as a 

conclusions section. This chapter aims to provide the reader with future research 

directions to further our understanding of the effects of illumination and trophic 

strategy on microalgae and utilise narrow peak LEDs effectively in microalgal culturing. 

6.1. Advanced characterisation of the effects of illumination and 

trophic strategy on microalgae cultivation 

The experimental characterisation carried out in Chapter 3 and Chapter 4 was 

aimed at providing a baseline of knowledge on the effects of illumination and trophic 

strategy selection on batch cultures of C. reinhardtii and hopefully a representation of 

such effects on green algae metabolism in general given this species’ status as a model 

algae. To further confirm the relevance of the biomass composition differences 

observed it would be highly advisable to perform a series of continuous culture 

experiments in turbidostat mode, hence controlling for the specific photon energy 

delivered per cell. The biomass composition experiments performed in Chapter 3 were 

non-targeted assays measuring various molecular groups many conformed by a plethora 

of intracellular species. A more targeted approach in pre-selected experimental 

conditions would provide an additional layer of context. For example, a novel 

illumination strategy that could be designed based on the results presented in Chapter 

3 to maximise lipid yield. This strategy would involve initial culture illumination with red 

LEDs to maximise cellular proliferation rate followed by a switch to blue LEDs once the 

target cell density has been achieved to maximise lipid content in g gDCW-1. Exploring 

the distribution of lipid species using thin-layer chromatography (TLC) and liquid 

chromatography mass spectrometry methods (LC-MS) for a comprehensive lipidomic 
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study would ensure the illumination switch mid-culture did not have a negative impact 

on the desirability of the lipid species biosynthesised. 

There are a plethora of RNA sequencing (RNA-seq) studies on various metabolic 

shifts in C. reinhardtii (Gonzalez-Ballester et al., 2010; Kropat et al., 2012; Blaby et al., 

2013; Winck, Páez Melo and González Barrios, 2013). However, there is a marked gap in 

literature regarding the adaptation to phototrophic conditions once the organic carbon 

source is depleted in an otherwise nutrient replete medium. Studies on this topic would 

provide valuable metabolic information and inform potential commercial cultivation 

strategies and bioprocessing decisions. With enough knowledge about the mixotrophic 

to phototrophic metabolic transition, a low organic carbon strategy could be envisaged 

to minimise costs and risk of contamination whilst allowing a timely arrival at a high 

enough biomass concentration for phototrophic growth to continue at a similar rate 

after the depletion of the organic carbon source. 

6.2. Advanced metabolic modelling of microalgal metabolism 

The GeM processing workflow developed in Chapter 5 successfully updated the 

biomass equation of the model to accurately represent experimental data and 

constrained the solution space significantly with carbon constraining (Lularevic et al., 

2019). However, elemental constraints based on carbon could be complimented in a 

future implementation of the workflow by additional constraints based on nitrogen or 

phosphorous uptake. This would potentially constrain the solution space further, 

reducing model uncertainty and rendering the Monte Carlo samples derived from it 

more informative with regards to reaction directionality. The robustness of central 

carbon metabolism between the simulations of different experimental conditions was 

surprising due to the physiologic and transcriptional differences found in Chapter 3 and 

Chapter 4. The BMO algorithm could be further refined by employing more detailed 

biomass composition data inputs, hence achieving resolution at the intra-

macromolecular group level. Such simulations would better conclude whether the 

robustness of central carbon metabolism observed in the simulations of Chapter 5 was 

a true result or an artefact of the resolution of the macromolecular data input in the 

BMO algorithm without resorting to extensive carbon-14 radiolabelling experiments. 
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Constraining the biomass equation at its most basal level would unlock the predictive 

power of the GeM further and could provide novel understanding on the effect of 

illumination and trophic strategy on the metabolic configuration of microalgae. This 

modelling workflow is not restricted to C. reinhardtii and could be applied to other 

existing microalgae GeMs (Phaeodactylum tricornutum, (Levering et al., 2016); 

Nannochloropsis gaditana (Ahmad, Srivastava and Ali, 2017); N. salina, (Loira et al., 

2017) and; Chlorella vulgaris (Zuñiga et al., 2016)). 

6.3. Concluding remarks 

The systematic characterisation of the effects of narrow band monochromatic 

illumination on microalgae under different trophic strategies presented in this thesis 

sets a knowledge baseline to be expanded upon. It complements previous works like the 

studies on C. reinhardtii biomass productivity under various illumination strategies in 

continuous culture (Mooij et al., 2016) and provides tools like the newly identified 

reference genes for RT-qPCR (Chapter 4)and the BMO algorithm (Chapter 5) that can be 

easily employed in future studies. As policy reform directs industrial biotechnology 

efforts towards more sustainable processes, the prominence of microalgae will 

undoubtedly keep increasing. However, without significant bioprocess optimisation 

efforts, a repeat of the slow progress and dismal success shown by industrial microalgae-

based biofuel efforts is entirely possible. I am hopeful that the results and tools 

presented in this thesis will add a valuable kernel of knowledge towards advancing 

microalgal bioprocessing in the future. 
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Appendix I 

 

Figure I.1 Disparity in published C. reinhardtii GeM biomass equation compositions. 
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Appendix II 

Table II.1 FBA constraints used to simulate autotrophic conditions under different 
illumination conditions. 

 

Reaction Lower bound Upper bound 

 (mmol gDW-1 h-1) (µmax in h-1) 

White Phototrophic 

White_Light 115 202 

'EX_nh4(e)' -0.306 -0.291 

'EX_co2(e)' -4.06 -3.32 

Biomass_Chlamy_auto 0.069 0.076 

Red Phototrophic 

Red_Light 45.0 116 

'EX_nh4(e)' -0.238 -0.211 

'EX_co2(e)' -4.06 -3.32 

Biomass_Chlamy_auto 0.054 0.056 

Blue Phototrophic 

Blue_Light 89.9 398 

'EX_nh4(e)' -0.451 -0.418 

'EX_co2(e)' -4.06 -3.32 

Biomass_Chlamy_auto 0.040 0.042 
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Table II.2 FBA constraints used to simulate mixotrophic conditions under different 
illumination conditions. 

 

Reaction name Lower bound Upper bound 

 (mmol gDW-1 h-1) (µmax in h-1) 

White Mixotrophic 

White_Light 130 380 

'EX_nh4(e)' -2.87 -2.36 

'EX_co2(e)' -4.06 -3.32 

EX_ac(e) -4.38 -2.39 

Biomass_Chlamy_mixo 0.064 0.074 

Red Mixotrophic 

Red_Light 42.4 117 

'EX_nh4(e)' -1.27 -1.08 

'EX_co2(e)' -4.06 -3.32 

EX_ac(e) -0.730 -0.717 

Biomass_Chlamy_mixo 0.055 0.056 

Blue Mixotrophic 

Blue_Light 38.8 124 

'EX_nh4(e)' -1.78 -1.24 

'EX_co2(e)' -4.06 -3.32 

EX_ac(e) -3.00 -2.43 

Biomass_Chlamy_mixo 0.050 0.056 
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Appendix III 

Table III.1 Original autotrophic and mixotrophic growth biomass equations in iRC1080. 

MetID Stoich 

Auto 

StoichMixo Group 

arab-L[c] -5.2E-01 -5.2E-01 Carbohydrate 

gal[c] -7.0E-01 -7.0E-01 Carbohydrate 

man[c] -3.3E-01 -3.3E-01 Carbohydrate 

starch300[h] -6.4E-03 -6.4E-03 Carbohydrate 

chla[u] -1.0E-02 -7.8E-03 Chlorophyll A 

chlb[u] -1.7E-02 -1.4E-02 Chlorophyll B 

datp[c] -2.2E-03 -2.2E-03 DNA 

dctp[c] -3.9E-03 -3.9E-03 DNA 

dgtp[c] -3.9E-03 -3.9E-03 DNA 

dttp[c] -2.2E-03 -2.2E-03 DNA 

glyc[c] -1.2E-02 -1.2E-02 Glycerol 

asqdca18111Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdca1819Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdca1829Z12Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdca1839Z12Z15Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdpa18111Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdpa1819Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdpa1829Z12Z160[c] -1.2E-03 -1.2E-03 Lipid 

asqdpa1839Z12Z15Z160[c] -1.2E-03 -1.2E-03 Lipid 

dgdg1819Z160[h] -1.7E-03 -1.7E-03 Lipid 

dgdg1819Z1617Z[h] -3.0E-04 -3.0E-04 Lipid 

dgdg1819Z1619Z[h] -3.0E-04 -3.0E-04 Lipid 

dgdg1819Z1627Z10Z[h] -4.0E-04 -4.0E-04 Lipid 

dgdg1819Z1634Z7Z10Z[h] -2.0E-04 -2.0E-04 Lipid 

dgdg1819Z1637Z10Z13Z[h] -2.0E-04 -2.0E-04 Lipid 

dgdg1829Z12Z160[h] -3.3E-03 -3.3E-03 Lipid 

dgdg1829Z12Z1617Z[h] -3.0E-04 -3.0E-04 Lipid 

dgdg1829Z12Z1619Z[h] -3.0E-04 -3.0E-04 Lipid 

dgdg1829Z12Z1627Z10Z[h] -5.4E-04 -5.4E-04 Lipid 

dgdg1829Z12Z1634Z7Z10Z[h] -2.7E-04 -2.7E-04 Lipid 

dgdg1829Z12Z1637Z10Z13Z[h] -2.7E-04 -2.7E-04 Lipid 

dgdg1839Z12Z15Z160[h] -2.4E-03 -2.4E-03 Lipid 
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dgdg1839Z12Z15Z1627Z10Z[h] -5.4E-04 -5.4E-04 Lipid 

dgdg1839Z12Z15Z1634Z7Z10Z[h] -7.4E-04 -7.4E-04 Lipid 

dgdg1839Z12Z15Z1637Z10Z13Z[h] -7.4E-04 -7.4E-04 Lipid 

dgdg1839Z12Z15Z1644Z7Z10Z13Z[h] -2.7E-04 -2.7E-04 Lipid 

dgts16018111Z[c] -7.7E-05 -7.7E-05 Lipid 

dgts1601819Z[c] -7.7E-05 -7.7E-05 Lipid 

dgts1601829Z12Z[c] -1.1E-03 -1.1E-03 Lipid 

dgts1601835Z9Z12Z[c] -3.9E-03 -3.9E-03 Lipid 

dgts1601845Z9Z12Z15Z[c] -2.1E-03 -2.1E-03 Lipid 

dgts18111Z18111Z[c] -7.4E-05 -7.4E-05 Lipid 

dgts18111Z1819Z[c] -7.4E-05 -7.4E-05 Lipid 

dgts18111Z1829Z12Z[c] -2.0E-04 -2.0E-04 Lipid 

dgts18111Z1835Z9Z12Z[c] -4.0E-04 -4.0E-04 Lipid 

dgts18111Z1845Z9Z12Z15Z[c] -2.7E-04 -2.7E-04 Lipid 

dgts1819Z18111Z[c] -7.4E-05 -7.4E-05 Lipid 

dgts1819Z1819Z[c] -7.4E-05 -7.4E-05 Lipid 

dgts1819Z1829Z12Z[c] -2.0E-04 -2.0E-04 Lipid 

dgts1819Z1835Z9Z12Z[c] -4.0E-04 -4.0E-04 Lipid 

dgts1819Z1845Z9Z12Z15Z[c] -2.7E-04 -2.7E-04 Lipid 

dgts1829Z12Z18111Z[c] -7.5E-05 -7.5E-05 Lipid 

dgts1829Z12Z1819Z[c] -7.5E-05 -7.5E-05 Lipid 

dgts1829Z12Z1829Z12Z[c] -4.0E-04 -4.0E-04 Lipid 

dgts1829Z12Z1835Z9Z12Z[c] -1.6E-03 -1.6E-03 Lipid 

dgts1829Z12Z1845Z9Z12Z15Z[c] -7.5E-05 -7.5E-05 Lipid 

dgts1839Z12Z15Z18111Z[c] -3.4E-04 -3.4E-04 Lipid 

dgts1839Z12Z15Z1819Z[c] -3.4E-04 -3.4E-04 Lipid 

dgts1839Z12Z15Z1835Z9Z12Z[c] -1.1E-03 -1.1E-03 Lipid 

dgts1839Z12Z15Z1845Z9Z12Z15Z[c] -4.1E-04 -4.1E-04 Lipid 

mgdg1829Z12Z160[h] -2.0E-04 -2.0E-04 Lipid 

mgdg1829Z12Z1617Z[h] -2.0E-04 -2.0E-04 Lipid 

mgdg1829Z12Z1619Z[h] -2.0E-04 -2.0E-04 Lipid 

mgdg1829Z12Z1627Z10Z[h] -4.0E-04 -4.0E-04 Lipid 

mgdg1829Z12Z1634Z7Z10Z[h] -4.0E-04 -4.0E-04 Lipid 

mgdg1829Z12Z1637Z10Z13Z[h] -4.0E-04 -4.0E-04 Lipid 

mgdg1829Z12Z1644Z7Z10Z13Z[h] -3.2E-03 -3.2E-03 Lipid 

mgdg1839Z12Z15Z160[h] -2.0E-04 -2.0E-04 Lipid 

mgdg1839Z12Z15Z1627Z10Z[h] -4.0E-04 -4.0E-04 Lipid 

mgdg1839Z12Z15Z1634Z7Z10Z[h] -3.2E-03 -3.2E-03 Lipid 

mgdg1839Z12Z15Z1637Z10Z13Z[h] -3.2E-03 -3.2E-03 Lipid 

mgdg1839Z12Z15Z1644Z7Z10Z13Z[h] -2.8E-02 -2.8E-02 Lipid 



256 
 

pail18111Z160[c] -1.9E-03 -1.9E-03 Lipid 

pail1819Z160[c] -2.6E-04 -2.6E-04 Lipid 

pe1801835Z9Z12Z[c] -2.3E-03 -2.3E-03 Lipid 

pe1801845Z9Z12Z15Z[c] -6.5E-04 -6.5E-04 Lipid 

pe18111Z1835Z9Z12Z[c] -3.1E-03 -3.1E-03 Lipid 

pe18111Z1845Z9Z12Z15Z[c] -1.3E-04 -1.3E-04 Lipid 

pe1819Z1835Z9Z12Z[c] -9.4E-05 -9.4E-05 Lipid 

pe1819Z1845Z9Z12Z15Z[c] -3.9E-06 -3.9E-06 Lipid 

pe1829Z12Z1835Z9Z12Z[c] -2.0E-04 -2.0E-04 Lipid 

pg18111Z160[h] -6.1E-04 -6.1E-04 Lipid 

pg18111Z1613E[h] -4.5E-04 -4.5E-04 Lipid 

pg1819Z160[h] -6.1E-04 -6.1E-04 Lipid 

pg1819Z1613E[h] -4.5E-04 -4.5E-04 Lipid 

pg1829Z12Z160[h] -7.4E-04 -7.4E-04 Lipid 

pg1829Z12Z1613E[h] -3.4E-03 -3.4E-03 Lipid 

pg1839Z12Z15Z160[h] -7.4E-04 -7.4E-04 Lipid 

pg1839Z12Z15Z1613E[h] -1.2E-03 -1.2E-03 Lipid 

sqdg160[h] -2.4E-03 -2.4E-03 Lipid 

sqdg18111Z160[h] -4.8E-04 -4.8E-04 Lipid 

sqdg1819Z160[h] -4.8E-04 -4.8E-04 Lipid 

sqdg1829Z12Z160[h] -7.3E-04 -7.3E-04 Lipid 

sqdg1839Z12Z15Z160[h] -7.8E-04 -7.8E-04 Lipid 

tag16018111Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag16018111Z180[c] -1.3E-03 -1.3E-03 Lipid 

tag16018111Z18111Z[c] -1.3E-03 -1.3E-03 Lipid 

tag16018111Z1819Z[c] -1.3E-03 -1.3E-03 Lipid 

tag16018111Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag16018111Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1601819Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag1601819Z180[c] -1.3E-03 -1.3E-03 Lipid 

tag1601819Z18111Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1601819Z1819Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1601819Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1601819Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1801819Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag1801819Z180[c] -1.2E-03 -1.2E-03 Lipid 

tag1801819Z18111Z[c] -1.2E-03 -1.2E-03 Lipid 

tag1801819Z1819Z[c] -1.2E-03 -1.2E-03 Lipid 

tag1801819Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1801819Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 
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tag18111Z18111Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z18111Z180[c] -1.2E-03 -1.2E-03 Lipid 

tag18111Z18111Z18111Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z18111Z1819Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z18111Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z18111Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z1819Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z1819Z180[c] -1.2E-03 -1.2E-03 Lipid 

tag18111Z1819Z18111Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z1819Z1819Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z1819Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag18111Z1819Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z18111Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z18111Z180[c] -1.2E-03 -1.2E-03 Lipid 

tag1819Z18111Z18111Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z18111Z1819Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z18111Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z18111Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z1819Z160[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z1819Z180[c] -1.2E-03 -1.2E-03 Lipid 

tag1819Z1819Z18111Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z1819Z1819Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z1819Z1835Z9Z12Z[c] -1.3E-03 -1.3E-03 Lipid 

tag1819Z1819Z1845Z9Z12Z15Z[c] -1.3E-03 -1.3E-03 Lipid 

acaro[h] -5.0E-04 -4.0E-06 Pigment 

anxan[u] -1.0E-04 -7.9E-07 Pigment 

caro[u] -1.4E-03 -1.1E-05 Pigment 

loroxan[u] -6.6E-04 -5.1E-06 Pigment 

lut[u] -1.3E-03 -9.9E-06 Pigment 

neoxan[u] -5.5E-04 -4.3E-06 Pigment 

vioxan[u] -3.5E-04 -2.8E-06 Pigment 

zaxan[u] -3.0E-04 -2.4E-06 Pigment 

ala-L[c] -2.7E-01 -2.8E-01 Protein 

arg-L[c] -1.5E-01 -9.4E-02 Protein 

asn-L[c] -6.8E-02 -7.0E-02 Protein 

asp-L[c] -6.8E-02 -7.0E-02 Protein 

cys-L[c] -2.4E-03 -1.2E-02 Protein 

gln-L[c] -8.1E-02 -9.2E-02 Protein 

glu-L[c] -8.1E-02 -9.2E-02 Protein 

gly[c] -1.0E-01 -1.1E-01 Protein 
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his-L[c] -1.2E-03 -1.3E-02 Protein 

ile-L[c] -3.3E-02 -3.8E-02 Protein 

leu-L[c] -8.2E-02 -9.3E-02 Protein 

lys-L[c] -1.8E-02 -3.1E-02 Protein 

met-L[c] -2.4E-03 -1.3E-02 Protein 

phe-L[c] -3.4E-02 -4.0E-02 Protein 

pro-L[c] -4.7E-02 -5.2E-02 Protein 

rhodopsin[s] -1.0E-06 -1.0E-06 Protein 

ser-L[c] -2.1E-02 -2.1E-02 Protein 

thr-L[c] -8.2E-02 -3.5E-02 Protein 

trp-L[c] -1.2E-03 -1.6E-03 Protein 

tyr-L[c] -1.2E-03 -1.6E-03 Protein 

val-L[c] -5.9E-02 -6.4E-02 Protein 

ctp[c] -1.0E-01 -1.0E-01 RNA 

gtp[c] -1.0E-01 -1.0E-01 RNA 

utp[c] -5.9E-02 -5.9E-02 RNA 

ac[c] -3.7E-02 -3.7E-02 VFA 

but[c] -2.5E-02 -2.5E-02 VFA 

ppa[c] -3.0E-02 -3.0E-02 VFA 
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Appendix IV 

 

Figure IV.1 C. reinhardtii carotenoids fraction as a percentage of biomass dry weight 

(w/w) at 48 hours of batch culture. (A) Phototrophic batch cultures in M8a. (B) 

Mixotrophic batch cultures in M8a.Ac. Biological replicates plotted individually (Flask A 

– 1. Flask B – 2). W, white LED light; R, red LED light; B, blue LED light. 
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Appendix V 

Table V.1 All 161 biomass precursor synthesis related reactions identified in the top 
loadings of PCA of WA OGBM / WA BMO. 

SS RXNname 

Fatty acid biosynthesis '3-hydroxyacyl-[acyl-carrier-protein] dehydratase (n-C18:0)' 

Fatty acid biosynthesis '3-hydroxyacyl-[acyl-carrier-protein] dehydratase ((11Z)-n-
C18:1)' 

Fatty acid biosynthesis '3-oxoacyl-[acyl-carrier-protein] reductase (n-C18:0)' 

Fatty acid biosynthesis '3-oxoacyl-[acyl-carrier-protein] reductase ((11Z)-n-C18:1)' 

Fatty acid biosynthesis '3-oxoacyl-[acyl-carrier-protein] synthase (n-C18:0)' 

Fatty acid biosynthesis '3-oxoacyl-[acyl-carrier-protein] synthase ((11Z)-n-C18:1)' 

Fatty acid metabolism 'Acetyl-CoA:acetyl-CoA C-acetyltransferase' 

Fatty acid metabolism 'butanoyl-CoA:acetyl-CoA C-butanoyltransferase' 

Fatty acid metabolism 'Hexanoyl-CoA:acetyl-CoA C-acyltransferase' 

Fatty acid metabolism 'Octanoyl-CoA:acetyl-CoA C-acyltransferase' 

Fatty acid metabolism 'Decanoyl-CoA:acetyl-CoA C-acyltransferase' 

Fatty acid metabolism 'Lauroyl-CoA:acetyl-CoA C-acyltransferase' 

Fatty acid metabolism 'myristoyl-CoA:acetylCoA C-myristoyltransferase' 

Fatty acid metabolism 'Decanoyl-CoA:(acceptor) 2,3-oxidoreductase' 

Fatty acid metabolism 'Lauroyl-CoA:(acceptor) 2,3-oxidoreductase' 

Fatty acid metabolism 'Tetradecanoyl-CoA:(acceptor) 2,3-oxidoreductase' 

Fatty acid metabolism 'Palmitoyl-CoA:oxygen 2-oxidoreductase' 

Fatty acid metabolism 'Butanoyl-CoA:oxygen 2-oxidoreductase' 

Fatty acid metabolism 'Hexanoyl-CoA:(acceptor) 2,3-oxidoreductase' 

Fatty acid metabolism 'Octanoyl-CoA:oxygen 2-oxidoreductase' 

Fatty acid biosynthesis 'acyl-[acyl-carrier-protein] delta9-desaturase ((9Z)-n-
C16:1)' 

Fatty acid biosynthesis 'stearoyl-[acyl-carrier-protein] delta9-desaturase ((9Z)-n-
C18:1)' 

Glycerolipid 
metabolism 

'betaine lipid synthase (3-amino-3-
carboxypropyltransferase) (16:0/18:1(11Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (3-amino-3-
carboxypropyltransferase) (16:0/18:1(9Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (3-amino-3-
carboxypropyltransferase) (18:1(11Z)/18:1(11Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (3-amino-3-
carboxypropyltransferase) (18:1(11Z)/18:1(9Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (3-amino-3-
carboxypropyltransferase) (18:1(9Z)/18:1(11Z))' 
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Glycerolipid 
metabolism 

'betaine lipid synthase (3-amino-3-
carboxypropyltransferase) (18:1(9Z)/18:1(9Z))' 

Riboflavin metabolism 'ATP:FMN adenylyltransferase' 

Glycerolipid 
metabolism 

'1-hexadecanoyl-sn-glycerol 3-phosphate O-acyltransferase 
(n-C16:0) (ACP substrate)' 

Glycerolipid 
metabolism 

'1-octadec-11-enoyl-sn-glycerol 3-phosphate O-
acyltransferase (n-C16:0) (ACP substrate)' 

Glycerolipid 
metabolism 

'1-octadec-9-enoyl-sn-glycerol 3-phosphateO-
acyltransferase (n-C16:0) (ACP substrate)' 

Glycerolipid 
metabolism 

'1-octadec-9-enoyl-sn-glycerol 3-phosphateO-
acyltransferase ((9Z)-C16:1) (ACP substrate)' 

Purine metabolism '1-(5''-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-
imidazole AMP-lyase' 

Pyrimidine 
metabolism 

'aspartate carbamoyltransferase, mitochondria' 

Glycerolipid 
metabolism 

'oleate desaturase (2''-
18:4(5Z,9Z,12Z,15Z)/18:2(9Z,12Z)/16:0)' 

Glycerolipid 
metabolism 

'linoleate desaturase (2''-
18:4(5Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/16:0)' 

Glycerolipid 
metabolism 

'oleate desaturase (2''-18:3(5Z,9Z,12Z)/18:2(9Z,12Z)/16:0)' 

Glycerolipid 
metabolism 

'linoleate desaturase (2''-
18:3(5Z,9Z,12Z)/18:3(9Z,12Z,15Z)/16:0)' 

Purine metabolism 'allantoin synthetase' 

Butanoate metabolism 'butanoyl-CoA:acetate CoA transferase' 

Glycerophospholipid 
metabolism 

'CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase 
(18:1(11Z)/16:0)' 

Glycerophospholipid 
metabolism 

'CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase 
(18:1(9Z)/16:0)' 

Glycerophospholipid 
metabolism 

'CDP-diacylglycerol synthetase (18:1(11Z)/16:0)' 

Glycerophospholipid 
metabolism 

'CDP-diacylglycerol synthetase (18:1(11Z)/16:0), 
chloroplast' 

Glycerophospholipid 
metabolism 

'CDP-diacylglycerol synthetase (18:1(9Z)/16:0)' 

Glycerophospholipid 
metabolism 

'CDP-diacylglycerol synthetase (18:1(9Z)/16:0), chloroplast' 

Porphyrin and 
chlorophyll 
metabolism 

'chlorophyllide a oxidase' 

Biosynthesis of 
steroids 

'4-(cytidine 5''-diphospho)-2-C-methyl-D-erythritol kinase' 

Biosynthesis of 
steroids 

'2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase' 

Purine metabolism '2''-Deoxyadenosine 5''-diphosphate:oxidized-thioredoxin 
2''-oxidoreductase' 
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Glycerolipid 
metabolism 

'digalatcosyldiacylglycerol palmitate delta7-desaturase 
(18:1(9Z)/16:1(7Z))' 

Glycerolipid 
metabolism 

'digalactosyldiacylglycerol synthase (18:1(9Z)/16:0)' 

Glycerolipid 
metabolism 

'omega-3 desaturase (18:3(9Z,12Z,15Z)/16:0) (DGDG)' 

Glycerolipid 
metabolism 

'omega-6 desaturase (18:1(9Z)/16:2(7Z,10Z)) (DGDG)' 

Glycerolipid 
metabolism 

'omega-6 desaturase (18:2(9Z,12Z)/16:0) (DGDG)' 

Glycerolipid 
metabolism 

'omega-6 desaturase (18:2(9Z,12Z)/16:1(9Z)) (DGDG)' 

Glycerolipid 
metabolism 

'delta5 desaturase (16:0/18:3(5Z,9Z,12Z))' 

Glycerolipid 
metabolism 

'delta5 desaturase (18:1(11Z)/18:3(5Z,9Z,12Z)) (DGTS)' 

Glycerolipid 
metabolism 

'delta5 desaturase (18:2(9Z,12Z)/18:3(5Z,9Z,12Z))' 

Glycerolipid 
metabolism 

'oleate desaturase (16:0/18:2(9Z,12Z))' 

Glycerolipid 
metabolism 

'linoleate desaturase (16:0/18:4(5Z,9Z,12Z,15Z))' 

Glycerolipid 
metabolism 

'oleate desaturase (18:1(11Z)/18:2(9Z,12Z)) (DGTS)' 

Glycerolipid 
metabolism 

'linoleate desaturase (18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 
(DGTS)' 

Glycerolipid 
metabolism 

'oleate desaturase (18:1(9Z)/18:2(9Z,12Z)) (DGTS)' 

Glycerolipid 
metabolism 

'linoleate desaturase (18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 
(DGTS)' 

Glycerolipid 
metabolism 

'oleate desaturase (18:2(9Z,12Z)/18:1(11Z))' 

Glycerolipid 
metabolism 

'linoleate desaturase (18:3(9Z,12Z,15Z)/18:1(11Z))' 

Glycerolipid 
metabolism 

'linoleate desaturase (18:3(9Z,12Z,15Z)/18:1(9Z))' 

Glycerolipid 
metabolism 

'linoleate desaturase (18:3(9Z,12Z,15Z)/18:3(5Z,9Z,12Z))' 

Glycerolipid 
metabolism 

'linoleate desaturase 
(18:3(9Z,12Z,15Z)/18:4(5Z,9Z,12Z,15Z))' 

Pyrimidine 
metabolism 

'dihydroorotase' 

Pyrimidine 
metabolism 

'dihydroorotate oxidase' 

Biosynthesis of 
steroids 

'1-deoxy-D-xylulose-5-phosphate reductoisomerase' 
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Biosynthesis of 
steroids 

'1-deoxy-D-xylulose-5-phosphate synthase' 

Fatty acid biosynthesis 'enoyl-[acyl-carrier-protein] reductase (NADH) (n-C18:0)' 

Fatty acid metabolism '(S)-3-Hydroxybutanoyl-CoA hydro-lyase' 

Fatty acid metabolism '(S)-Hydroxyhexanoyl-CoA hydro-lyase' 

Fatty acid metabolism '(S)-Hydroxyoctanoyl-CoA hydro-lyase' 

Fatty acid metabolism '(S)-Hydroxydecanoyl-CoA hydro-lyase' 

Fatty acid metabolism '(S)-3-Hydroxydodecanoyl-CoA hydro-lyase' 

Fatty acid metabolism '(S)-3-Hydroxytetradecanoyl-CoA hydro-lyase' 

Fatty acid metabolism '(S)-3-Hydroxyhexadecanoyl-CoA hydro-lyase' 

Purine metabolism 'phosphoribosylaminoimidazolecarboxamide 
formyltransferase' 

Purine metabolism 'phosphoribosylglycinamide formyltransferase, cytosol' 

Glycerolipid 
metabolism 

'glycerol-3-phosphate acyltransferase (C16:0)' 

Glycerolipid 
metabolism 

'glycerol-3-phosphate acyltransferase ((9Z)-C18:1)' 

Glycerolipid 
metabolism 

'glycerol-3-phosphate acyltransferase ((11Z)-C18:1)' 

Biosynthesis of 
steroids 

'geranylgeranyl diphosphate synthase' 

Starch metabolism 'glucose-1-phosphate adenylyltransferase (chloroplast)' 

Glycerolipid 
metabolism 

glyceraldehyde oxidoreductase (NAD)' 

Glutathione 
metabolism 

'glutathione:protein-disulfide oxidoreductase' 

Fatty acid metabolism '(S)-3-Hydroxybutanoyl-CoA:NAD oxidoreductase' 

Fatty acid metabolism '(S)-hydroxyhexanoyl-CoA:NAD oxidoreductase' 

Fatty acid metabolism '(S)-hydroxyoctanoyl-CoA:NAD oxidoreductase' 

Fatty acid metabolism '(S)-hydroxydecanoyl-CoA:NAD oxidoreductase' 

Fatty acid metabolism '(S)-3-hydroxydodecanoyl-CoA:NAD oxidoreductase' 

Fatty acid metabolism '(S)-3-Hydroxytetradecanoyl-CoA:NAD oxidoreductase' 

Fatty acid metabolism '(S)-3-Hydroxyhexadecanoyl-CoA:NAD oxidoreductase' 

Biosynthesis of 
steroids 

'4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase' 

Purine metabolism 'hydroxyisourate hydrolase' 

Purine metabolism 'IMP cyclohydrolase' 

Carotenoid 
biosynthesis 

'lycopene cyclase (alpha-carotene producing)' 

Carotenoid 
biosynthesis 

'lycopene cyclase (delta-carotene producing)' 

Carotenoid 
biosynthesis 

'lutein hydroxylase' 

Fructose and mannose 
metabolism 

'D-mannose aldose-ketose-isomerase' 
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Biosynthesis of 
steroids 

'2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase' 

Glycerolipid 
metabolism 

'monogalactosyldiacylglycerol synthase (18:1(9Z)/16:0)' 

Glycerolipid 
metabolism 

'monogalactosyldiacylglycerol synthase (18:1(9Z)/16:1(9Z))' 

Glycerolipid 
metabolism 

'omega-6 desaturase (18:2(9Z,12Z)/16:2(7Z,10Z)) (MGDG)' 

Carotenoid 
biosynthesis 

'neoxanthin synthase' 

Pyrimidine 
metabolism 

'orotidine-5''-phosphate decarboxylase' 

Pyrimidine 
metabolism 

'orotate phosphoribosyltransferase' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerol palmitate-delta3t-desaturase 
(18:1(11Z)/16:1(3E))' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerol palmitate-delta3t-desaturase 
(18:1(9Z)/16:1(3E))' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerol palmitate-delta3t-desaturase 
(18:2(9Z,12Z)/16:1(3E))' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerol palmitate-delta3t-desaturase 
(18:3(9Z,12Z,15Z)/16:1(3E))' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerol phosphate phosphatase 
(18:1(11Z)/16:0), chloroplast' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerol phosphate phosphatase 
(18:1(9Z)/16:0), chloroplast' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerolphosphate synthase (18:1(11Z)/16:0), 
chloroplast' 

Glycerophospholipid 
metabolism 

'phosphatidylglycerolphosphate synthase (18:1(9Z)/16:0), 
chloroplast' 

Glycerophospholipid 
metabolism 

'omega-3 desaturase (18:3(9Z,12Z,15Z)/16:0) (PG)' 

Glycerophospholipid 
metabolism 

'omega-6 desaturase (18:2(9Z,12Z)/16:0) (PG)' 

Purine metabolism 'phosphoribosylamine---glycine ligase' 

Purine metabolism 'phosphoribosylaminoimidazole carboxylase, cytosol' 

Purine metabolism 'phosphoribosylaminoimidazolesuccinocarboxamide 
synthase, cytosol' 

Purine metabolism '5-phosphoribosylamine:diphosphate phospho-alpha-D-
ribosyltransferase (glutamate-amidating)' 

Purine metabolism 'phosphoribosylformylglycinamidine cyclo-ligase' 

Purine metabolism 'phosphoribosylformylglycinamidine synthase' 

Glycerophospholipid 
metabolism 

'serine decarboxylase' 

Glycerolipid 
metabolism 

'sulfolipid 2''-O-acyltransferase (2''-
18:3(5,9,12,15)/18:1(11Z)/16:0)' 
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Glycerolipid 
metabolism 

'sulfolipid 2''-O-acyltransferase (2''-
18:4(5,9,12,15)/18:1(9Z)/16:0)' 

Glycerolipid 
metabolism 

'sulfolipid 2''-O-acyltransferase (2''-
18:3(5,9,12)/18:1(11Z)/16:0)' 

Glycerolipid 
metabolism 

'sulfolipid 2''-O-acyltransferase (2''-
18:3(5,9,12)/18:1(9Z)/16:0)' 

Glycerolipid 
metabolism 

'sulfolipid synthase (16:0/16:0)' 

Glycerolipid 
metabolism 

'sulfolipid synthase (18:1(11Z)/16:0)' 

Glycerolipid 
metabolism 

'sulfolipid synthase (18:1(9Z)/16:0)' 

Glycerolipid 
metabolism 

'omega-3 desaturase (18:3(9Z,12Z,15Z)/16:0) (SQDG)' 

Glycerolipid 
metabolism 

'omega-6 desaturase (18:2(9Z,12Z)/16:0) (SQDG)' 

Starch metabolism 'starch synthase (300 glc units) (chloroplast)' 

Pyrimidine 
metabolism 

'thioredoxin-disulfide reductase, cytosol' 

Glycerolipid 
metabolism 

'betaine lipid synthase (trimethylase) (16:0/18:1(11Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (trimethylase) (16:0/18:1(9Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (trimethylase) 
(18:1(11Z)/18:1(11Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (trimethylase) (18:1(11Z)/18:1(9Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (trimethylase) (18:1(9Z)/18:1(11Z))' 

Glycerolipid 
metabolism 

'betaine lipid synthase (trimethylase) (18:1(9Z)/18:1(9Z))' 

Glycerolipid 
metabolism 

'UDP-sulfoquinovose synthase' 

Galactose metabolism 'UDP-glucose 4-epimerase' 

Purine metabolism 'urate oxidase' 

Purine metabolism 'xanthine dehydrogenase' 
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