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SUMMARY
Wheel slip prediction on rough terrain is crucial for secure, long-term operations of

planetary exploration rovers. Although rough, unstructured terrain hampers mobility,
prediction by modeling wheel-terrain interactions remains difficult owing to unclear
terrain conditions and complexities of terramechanics models. This study proposes a
vision-based approach with machine learning for predicting wheel slip risk by estimating
the slope from 3D information and classifying terrain types from image information. It
considers the slope estimation accuracy for risk prediction under sharp increases in wheel
slip due to inclined ground. Experimental results obtained with a rover testbed on several
terrain types validate this method.

KEYWORDS: Planetary exploration rovers; Machine learning; Wheel slip prediction;
Exteroceptive sensing; Slope estimation.

1. Introduction
Planetary exploration rovers have been used for conducting detailed investigations of

extraterrestrial surfaces such as those of Moon and Mars. During these missions, rovers
have to be operated with weak communication signals and nonnegligible communication
lag. To overcome these constraints, rovers have been required to automatically recognize
their surrounding environment, detect obstacles, and travel through uncharted regions.
For example, the Spirit and Opportunity rovers (National Aeronautics and Space
Administration (NASA)) used conventional perception strategies that evaluated their
surrounding environments by using stereo vision and detecting geometric obstacles.1

Although this approach enabled successful long-term operation of the rovers, loose,
granular materials on celestial surfaces can make the rovers wheels slip and, in the
worst case, can cause the rover to get stuck without the possibility of recovery. In
the Mars Science Laboratory (MSL) mission, Curiosity experienced excessive wheel slip
in the Hidden Valley.2 The terrain here comprised rippled sand that seemed safe and
nonhazardous; nonetheless, Curiosity was forced to avoid these nongeometric obstacles.

To assess wheeled robots mobility on rough terrain, the mechanical phenomena
occurring in wheel-terrain interaction have been studied in the field of terramechanics.3

Slip causes a lack of movement when wheeled robots traverse terrain. Although
considering wheel slip is crucial for rovers, the complexity of modeling the highly
nonlinear characteristics of rover-terrain interaction makes it difficult to evaluate and
predict rovers traversability to accomplish autonomous operations.

∗ Corresponding author. E-mail: masafumi.endo@ieee.org
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Fig. 1. The Hidden Valley on Mars c©NASA/JPL. Curiosity experienced excessive wheel slip here and
failed to traverse this region although it is relatively flat. At the beginning of the mission, Curiosity was
commanded to travel on the flat surface and avoid obstacles such as rocks; however, wheel slip occurred
owing to loose sand with megaripples. Wheel traces on these megaripples indicated that Curiosity gave
up traversing this surface and turned back to avoid getting stuck.

Visual information provides rovers with more clues to predict wheel slip from a
distance. Geometric information of the terrain topography, such as steep slopes that
cause wheel slip,4 can be obtained from 3D measurements through stereo vision. Further,
visual characteristics such as color and texture provide semantic descriptions of terrain
types to evaluate rovers mobility. Both of these clues are obtained from a distance; hence,
exteroceptive sensing can potentially be used to predict wheel slip before entering the
hazardous area by estimating slopes and assessing terrain types for rovers operating on
rough terrain.

This study proposes a method to predict the wheel slip risk for a rover operating
on rough terrain. This method involves two procedures: (1) slope estimation from 3D
information and (2) terrain classification from images by using a machine-learning
classifier. A regression curve optimized with previously experienced data is used as a slip
versus slope relation to predict the wheel slip risk corresponding to the estimated slope
angle and classified terrain. The terrain-dependent slip risk, classified as low, medium,
or high, is predicted using the slip versus slope relation in consideration of the slope
estimation accuracy. Thresholds are set for each terrain type because different terrain
types have different impacts on the rover. Experimental results obtained using a rover
testbed operated on several terrain types are presented to validate the proposed approach.

The rest of this paper is organized as follows. Section 2 defines wheel slip and discusses
related work. Section 3 presents details of the proposed slip risk prediction approach.
Section 4 describes the experiment for validating the proposed approach, including
detailed information of the testbed, data collection, and experimental conditions. Section
5 presents experimental results validating the performance of the proposed slip risk
prediction approach. Finally, Section 6 concludes this paper.
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2. Related Work

2.1. Background on Slip
Wheel slip is considered one of the critical factors for rovers to traverse rough terrain.

Wheel slip is quantitatively described by the slip ratio.5 The slip ratio s is a proportion
of the desired and actual traveling velocities and is expressed as follows:

s =
rω − v

rω
= 1−

v

rω
(0 ≤ s ≤ 1), (1)

where v is the actual traveling velocity, and r and ω are the radius and angular velocity
of the wheel, respectively, as shown in Fig. 2. The slip ratio represents the degree of
longitudinal slip. A positive slip ratio implies that a rover is traveling slower than
commanded, and a slip ratio of 1 implies that the rover is completely stuck in rough
terrain.

2.2. Traversability Assessment
Mobile robots must have vision so that they can assess their traversability. NASA’s

Mars Exploration Rover (MER) mission conducted geometric analyses using a stereo
camera that detected natural obstacles, such as small rocks, to assess whether the rovers
wheels could get over them.1 However, this approach could not solve problems caused
by rough terrain, such as wheel slip, sinkage, and complete immobilization of the rover,
because geometric information does not contain semantic characterizations of the physical
properties of the target terrain.

Learning-based terrain assessment approaches using visual information have been
actively studied to enable mobile robots to detect such nongeometric hazards and avoid
wheel slip on rough terrain. These approaches afford two main advantages: traversability
can be predicted to detect potential risks before entering the region in front of the
robots and modeling of complex wheel-terrain interactions can be avoided. Halatci
et al.6 presented a multisensor terrain classification method that applied Bayesian
fusion of individual support vector machines (SVMs) using color, texture, and depth
information acquired by stereo imagery. Brooks et al.7 expanded this approach to self-
supervised terrain classification by associating exteroceptive data with proprioceptive
wheel vibration data. Otsu et al.8 proposed co- and self-training approaches that classified
the surrounding terrain of a rover with lesser image data. Several studies have also
investigated traversability prediction as well as terrain classification. Berczi et al.9 showed
that Gaussian process (GP) classifiers enable learning and assessing the traversability
of terrain with a high-dimensional representation. Schilling et al.10 implemented a
geometric and visual terrain classification method that predicts terrain traversability
in a mixture of environments with less training data. Higa et al.11 proposed a vision-
based approach that remotely predicts the energy consumed by rovers when driving
to search for and traverse desirable paths on rough terrain. Wheel slip is one of the
indexes used to assess traversability. Angelova et al.12 applied a mixture of expert models
for combining the results of terrain classification and terrain-dependent slip prediction
using locally weighted projection regression (LWPR) to predict wheel slip from visual
information. Cunningham et al.13 used GP regression for considering the uncertain wheel-
terrain relation for each terrain, which was classified using convolutional neural networks
(CNNs). Skonieczny et al.14 evaluated the trafficability risk of planetary rovers using a
slip-slope table specific to each terrain, which adapts to variable slip versus slope data,
and by assigning thresholds between low, medium, and high slip risk. These thresholds
were defined by considering the hazardous slip ratio to be 0.2; however, these fixed
thresholds could cause incorrect wheel slip risk evaluation owing to the uncertainty of
slope estimation. Although the slip risk monotonically increases with increasing slope,
wheel slip trends differ with the terrain type being traversed. For instance, uneven gravel
terrain causes a sudden increase in wheel slip, and the slip versus slope relation on
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Fig. 2. Longitudinal wheel slip on loose soil.

terrain consisting of homogeneous loose sand is almost linear. Thus, terrain-dependent
thresholds are a more reasonable criterion for evaluating the slip risk of wheeled robots
on rough terrain.

This study predicts the slip risk of a rover traversing rough terrain. The main idea is
to enable the rover to discover hazardous region from a distance. Two factors—terrain
slope and terrain type—that affect the degree of wheel slip are investigated using visual
information to predict wheel slip corresponding to the obtained slope angle and terrain
classification. The proposed approach differs from the above-described methods in that
it introduces terrain-dependent thresholds for the slip versus slope relation for the rover
to predict the wheel slip risk. The mean absolute error (MAE) between the estimated
slope angle and the ground truth value is used as a margin to bound the thresholds. By
using this prediction method, (1) the characteristic wheel slip risk is predicted on the
target region of the terrain and (2) the MAE enables avoiding underestimating the slip
risk owing to the uncertain terrain surface.

3. Overview of Slip Risk Prediction
This section presents an overview of the proposed approach for learning the

relation between visual information and wheel slip based on data obtained from
both exteroceptive and proprioceptive sensors. Wheel slip results from wheel-terrain
interactions, and the amount of wheel slip depends on geometric conditions such as the
slope, state, and composition of the terrain. Therefore, the proposed slip risk prediction
approach is based on slope estimation and terrain classification, as shown in Fig. 3, and
the use of visual information from an RGB-D sensor. The slip risk is finally predicted by
assessing the classified terrain and slip ratio corresponding to the estimated slope angle.

3.1. Slope Estimation
The slope estimation procedure acquires the slope angle of terrain in front of the rover

by calculating the least squares plane using 3D point clouds acquired from an RGB-D
sensor. To remove outliers in the point cloud data, the RANdomized SAmple Consensus
(RANSAC) algorithm is applied as follows:16

1. Select n sample points at random from 3D point clouds U .
2. Calculate the plane equation that minimizes the sum of squares of plane Z and n

points.
3. Evaluate the coincidence between U and Z calculated in step 2.
4. Repeat from step 1 to obtain the least squares plane Z ′.
5. Calculate slope angle θ as the pitch angle for the rover coordinate

∑

Rover
{X,Y,Z} by

using the following equation:

θ = − tan−1
∂Y

∂Z ′.
(2)



Terrain-Dependent Slip Risk Prediction 5

Fig. 3. Architecture of proposed slip prediction approach. Input posture and 3D information acquired
using the IMU and RGB-D sensor, respectively, are used for slope estimation, and image data is used
for terrain classification. Wheel slip is predicted by integrating both the slope estimation and the terrain
classification results.

Fig. 4. ROI in front of rover in RViz 3D visualization tool. The ROI is expressed by a 3D point cloud of

0.8 m2. Two coordinate systems are used for the camera and the rover body, respectively, and 3D point
cloud information is converted from the camera into the body coordinate system for slope estimation.

This procedure also reflects the rover posture by acquiring data from inertial
measurement units (IMUs) and potentiometers in the rovers suspension mechanism, as
discussed in Section 4. The region of interest (ROI) for slope estimation is 0.8 m2 in
front of the rover, as shown in Fig. 4, considering the effective measurement range of the
RGB-D sensor.

3.2. Terrain Classification
To assess the distinctive terrain type of a given region, terrain is classified by a machine-

learning classifier using images as the input. Terrain classification mainly consists of two
procedures: feature extraction and classifier training.

Before feature extraction, the image viewpoint is converted from the camera view
into a top view for evaluating the region corresponding to the ROI for slope estimation.
Inverse perspective transformation is applied for image transformation preprocessing.17

Visual features are then selected and extracted from the converted RGB image
acquired using the exteroceptive sensor. In this study, color- and texture-based features
are applied for classification. To obtain color-based features, the original RGB image
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(a) (b) (c) (d)

Fig. 5. (a) Original visual image of cracked-ground region. (b) Segmented image by superpixels. Blue
lines are boundaries for visually homogeneous pixels. (c) Mean color of L*a*b* color space. (d) Mean
color of gray-scale image used for texture extraction.

is converted to the L*a*b* color space, where L* represents lightness, and a* and b*
represent color dimensions. The mean values of a* and b* inside a patch are calculated to
compose a two-element feature vector, and the L* value is not used to reduce the effect of
lighting conditions. Texture-based features are also extracted from the obtained images.
A texture is a measure of the local spatial variation of image intensity. In this study,
energy and contrast, which express the gray-scale distribution homogeneity and image
sharpness, respectively, are calculated from the gray level co-occurrence matrix (GLCM).
To decompose each image, a superpixel representation is applied instead of fixed-sized
patches. Each superpixel agglomerates visually homogeneous pixels while respecting
natural scene boundaries.18 Specifically, simple linear iterative clustering (SLIC), in
which a k-means clustering approach is used to efficiently generate superpixels, is used to
decompose the image into image patches for feature extraction.19 Fig. 5 shows a sample
image of this feature extraction process.

Finally, a classifier is trained using the color- and texture-based features. In this study,
the gradient boosting decision tree (GBDT) classifier is used for solving the classification
problem. Gradient boosting is a type of ensemble learning that consists of multiple
weak prediction models.20 In particular, a GBDT comprises multiple decision trees that
recursively partition the input space for prediction.21 Thus, the output of GBDT, p(c|v),
is expressed by the posterior probability pt(c|v) of each decision tree as follows:

p(c|v) =
1

T

T
∑

t=1

pt(c|v), (3)

where c, v, and T are the classes, input feature vectors, and number of decision trees,
respectively. This learning method can achieve better predictive performance and avoid
overfitting by reflecting the results of trained classifiers on new ones.

3.3. Terrain-Dependent Slip Risk Prediction
3.3.1. Definition of Slip Risk. As mentioned in Section 2.1., wheel slip is quantitatively
described by the slip ratio. This study classifies the slip ratio as low (0 < s ≤ 0.3),
medium (0.3 < s ≤ 0.6), and high (0.6 < s). In previous literature22,23 the slip ratio was
distinguished into three classes, as in the present study, by referring to the behaviors
of a single-wheel testbed with a flight spare wheel for Curiosity. Another study noted
that wheels exhibit a sharp increase in slip for slip ratio of 0.2–0.3.24 Similarly, the
experimental results of the present study, as presented later, indicate that the rover
travels steadily for slip ratio of up to 0.3 but becomes unstable when the slip ratio
reaches 0.6. Based on both previous literature and the rovers mobility in this study, this
definition is used as a reasonable indicator for evaluating the wheel slip risk.
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3.3.2. Slip Risk Prediction. Before risk prediction, the slip ratio is predicted from a
regression curve using the acquired slip versus slope data as inputs. The predicted slip
ratio s and a linear basis function y(x,w) are expressed as follows:

s = y(x,w) + ǫ, (4)

y(x,w) =
M−1
∑

j=0

wjφj(x) = wTφ(x.) (5)

where ǫ, x, and w are the error, input variables, and parameters, respectively, and φ(x)
are basis functions. To minimize ǫ, w is derived by the following equation:

minE(w) =
1

2

N
∑

n=1

{

s−wTφ(x)
}2

. (6)

In this study, the Gaussian basis function is used as the basis function:

φj(x) = exp

{

−
(x− µj)

2

2t2

}

, (7)

where µj is the location of the basis function in the input space and t, its spatial scale.25

Then, the slip risk is predicted by comparing the acquired regression to the thresholds
mentioned in Section 3.3.1. While the three classes are defined as slip risk common to
the terrain, this study redefines the slip risk to a terrain-dependent one by reflecting the
slope estimation accuracy. Fig. 6 shows the concept of deciding the terrain-dependent
threshold for risk prediction. The threshold common to terrain, such as 0.3 and 0.6, is
expressed as

s = f(φ). (8)

To redefine the terrain-dependent threshold in consideration of the slope estimation
accuracy, MAE σ is subtracted from φ as follows:

s′ = f(φ− σ) = f(φ′), (9)

MAE : σ =
1

n

n
∑

i=1

|fi − yi| , (10)

where fi and yi are the estimated slope angle value and ground truth value, respectively.
Through the above procedure, the thresholds of each terrain for risk prediction are shifted
from common points (φ, s) to terrain-dependent ones (φ′, s′). Note that the regression
curve for each terrain has a different inclination because different terrain properties result
in specific wheel-terrain interactions. For instance, while wheel slip on homogeneous loose
sand monotonously increases as the slope of the traversing surface increases, a rovers
behavior on gravel terrain becomes more unpredictable owing to the uneven constitution
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Fig. 6. Concept of deciding new threshold considering inclination of function.

of this terrain. The slip risk is redefined in consideration of the slope estimation accuracy
for dealing with the terrain-dependent inclination of the regression curve, especially when
a sharp increase in slip ratio results in a difference between the actual and predicted slip
risk.

4. Experiment
An experiment was performed to validate the proposed approach using datasets

including images, 3D point clouds, and slip versus slope data collected with a four-
wheeled rover testbed operating on rough terrain. This section describes the testbed,
data collection, and experimental conditions in detail.

4.1. Testbed
In this study, the El-Dorado IIB four-wheeled rover testbed (Fig. 7) is used for

data collection. Table I lists the specifications of the testbed. Each wheel has a
driving and steering motor, and the testbeds rocker-type passive suspension mechanism
enables getting over obstacles such as small rocks. The testbed is equipped with
an Intel R©RealSenseTMD435 RGB-D sensor, an IMU, wheel encoders for each wheel,
and potentiometers between the suspension and the main body. The RGB-D sensor
simultaneously captures image and depth information with the resolution and field of
view (FOV) shown in Table II. Depth information is calculated by stereo imagery and
complemented by projecting infrared patterns. The system configuration is implemented
using the Robot Operating System (ROS) and manually steered by using a joystick
controller. The controller commands steering motors for turning and driving motors for
traveling with angular velocity of at most 0.5 rad/s. When no wheel slip occurs, the
testbed can traverse terrain with translational velocity of at most 0.05 m/s.

4.2. Data Collection
Data were collected for five terrain types: Sand, Soil, Gravel, Asphalt, and Cracked-

ground. Fig. 8 shows examples of these terrain types. Dry, cracked terrain is also classified
as Cracked-ground because the terrain is solid, unlike Soil terrain, and is assumed to be

Table I . Specifications of El-Dorado IIB rover testbed.

Size [mm] L800 × W650 × H400
Mass [kg] 23.8

Wheel size [mm] φ 200 × W100
Wheel base [mm] 600
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Fig. 7. El-Dorado IIB rover testbed on sandy terrain. RGB-D sensor, IMU inside the main body, and
potentiometers attached to each side of the body are used for acquiring data.

a bedrock region on the surface of Mars. Data for sandy terrain was collected indoors,
and data for other terrains were collected outdoors.

Fig. 9 (a), (b) shows the indoor test field. A sandbox is uniformly and loosely covered
with dry Toyoura Standard Sand; it can be jacked up manually at an inclination. The
testbed motion was tracked using a motion capture camera with accuracy of 1 mm and
recording frequency of 100 fps.

Fig. 9 (c), (d) shows the outdoor test fields. For Soil and Gravel terrains, slopes were
made manually. The testbed motion was tracked using a total station with accuracy of
1 mm and recording frequency of 5 fps.

To collect slip versus slope data, the testbed tried to climb the slope for Sand, Soil,
and Gravel terrain types. During data collection, image and 3D point cloud data were
collected using the RGB-D sensor with recording frequency of 5 fps, posture information
was collected by combining data from the IMU and potentiometers, and angular velocity
of each wheel was collected from the encoder. The ground truth value of the slope angle
was obtained from a digital inclinometer. The slip ratio s was calculated as follows:

s = 1−
v

rω
= 1−

(

dx

dt
cos θ +

dz

dt
sin θ

)

1

rω
, (11)

where v is the translational velocity of the testbed; r, the wheel radius; ω, the angular
velocity of the wheel; and θ, the slope angle. Proportional–Integral (PI) control was
performed for each wheel to rotate at 0.5 rad/s for traveling at 0.05 m/s.

Table II . Specifications of IntelR©RealSenseTMDepth Camera D435 RGB-D sensor.

Image resolution [pixel] 320 × 180 – 1920 × 1080
Depth resolution [pixel] 424×240 – 1280 × 720

Frame rate [fps] 15 – 90
Measurement range [m] 0.2 – 10

Field of view of image sensor [◦] H69.4 × V42.5 × D77
Field of view of depth sensor [◦] H85.2 × V58 × D94
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(a) (b) (c)

(d) (e)

Fig. 8. Images of different terrain types ((a) Sand in indoor test field and (b) Soil, (c) Gravel, (d) Asphalt,
and (e) Cracked-ground in outdoor test fields) on which the testbed traversed during data collection. Dry,
cracked soil was classified as (e) Cracked-ground assuming a bedrock region on the surface of Mars.

(a) (b)

(c) (d)

Fig. 9. (a) Indoor test field filled with loose, dry sand. (b) Schematic of indoor experimental setup. (c)
Outdoor test fields with smooth soil and cracked-ground surfaces. (d) Schematic of outdoor experimental
setup.

4.3. Experimental Conditions
The experimental conditions for terrain classification and slip risk prediction are

described below. The MAE of slope estimation for terrain-dependent slip risk prediction
is discussed in Section 4.3.2.
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4.3.1. Terrain Classification. The classifier was trained on approximately 500 images to
predict the terrain type in 25 test images for verification. Five terrain types—Sand, Soil,
Gravel, Asphalt, and Cracked-ground—are contained in respective superpixels. Manually
labeled images were also prepared for images including multiple terrain types. When
more than half the pixels in a superpixel belonged to one class, the whole superpixel was
classified as that class. During classifier training, stratified K-fold cross-validation with
K = 6 was applied for evaluating the generalization.

4.3.2. Slip Risk Prediction. The regression curve for each terrain was predicted using
the collected slip versus slope data. Before optimizing the function, the hyperparameters
of the Gaussian basis function φj(x) were set. The maximum slope angle point of each
terrain was regarded as the maximum value of µj . Other hyperparameters s and j were
decided by grid search. To predict slip risk, absolute errors between the ground truth
and the estimated value near s = 0.3 and s = 0.6 were used as the MAE.

5. Results

5.1. Terrain Classification Results
Fig. 10 shows examples of classification results. Fig. 11 shows quantitative results of

the terrain classifier as a confusion matrix and a learning curve. By normalizing true
positives (TPs), false positives (FPs), true negatives (TNs), and false negatives (FNs),
the accuracy (ACC) of each class displayed in the confusion matrix was calculated as
follows:

ACC =
TP + TN

TP + TN + FP + FN
. (12)

These results indicate that the classifier predicts reasonable classes for each terrain;
however, its ability decreases for Cracked-ground, as shown in Fig. 11 (a). For instance,
for the Cracked-ground image in Fig. 10, multiple terrain types including Cracked-ground
and Soil with unclear boundaries are present in the image. Therefore, determining classes
is difficult even for a human, and the classifier uses these incorrect results to learn to
predict terrain types from the image. This incorrect human labeling is the main cause of
reduced accuracy. Fig. 11 (b) shows the generalization performance of the classifier. Two
“learning curves” indicates whether the classifier overfits the training data. The green
curve representing the cross-validation score approaches the red curve representing the
training score. This trend indicates that iterative training using cross-validation improves
the classifiers generalization performance.

Table III . Terrain-independent slip versus slope standards for risk prediction.

Terrain MAE Slip risk Slip ratio Slope angle

Sand 0.75
low

medium
high

s < 0.26
0.26 ≤ s < 0.55

0.55 ≤ s

θ < 4.2
4.2 ≤ θ < 9.3

9.3 ≤ θ

Soil 1.15
low

medium
high

s < 0.23
0.23 ≤ s < 0.47

0.47 ≤ s

θ < 12.5
12.5 ≤ θ < 15.6

15.6 ≤ θ

Gravel 1.15
low

medium
high

s < 0.25
0.25 ≤ s < 0.53

0.53 ≤ s

θ < 16.0
16.0 ≤ θ < 21.5

21.5 ≤ θ
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(a) (b) (c)

(d) (e) (f)

Fig. 10. (a), (b), (c), (d), and (e) Examples of classes predicted by terrain classifier for each terrain
image. Boundaries in each image indicate the superpixels made by SLIC. (f) Correspondence of classes
to color.

(a) (b)

Fig. 11. Summary of ability and validity of terrain classifier. (a) Confusion matrix of terrain classifier
with normalization. (b) Learning curve of terrain classifier. Green and red lines indicate the cross-
validation score and training score, respectively. Color bands around each line indicate standard deviation
of their scores.

5.2. Slip Risk Prediction Results
The slip versus slope relation was acquired using the regression curve and terrain-

dependent risk prediction for three terrain types: Sand, Soil, and Gravel. The slip versus
slope data obtained during data collection, shown in Fig. 12, indicates that wheel slip
trends, such as the rate of slip ratio, depend on terrain properties whereas the slip
ratio monotonously increases with increasing slope angle for all terrain types. In Sand
terrain that comprises homogeneous particles, the slip versus slope relation becomes more
linear compared to that in other terrain types. While the wheel gains driving force via
grousers pushing away particles in front of the wheel, a larger slope angle increases the
slip ratio by drawbar pull.4 In Soil terrain, the slip ratio increases sharply when the
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Fig. 12. Input slip versus slope data. Blue, red, and green points indicate data acquired on Sand, Soil,
and Gravel terrain, respectively.

slope angle exceeds 15◦ because the fine grain surface suddenly collapses when the slope
angle approaches the internal friction angle of the composition. Further, wheel slip in Soil
terrain is unlikely to occur because the surface is solid until it breaks up. The Gravel
terrain also makes the rover travel with low wheel slip compared to that in the case of
Sand terrain; however, the slip versus slope data is irregular owing to the presence of
large, nonuniform particles compared to other terrain types.15

Fig. 13 shows a summary of the results for three terrain types. The regression curves
for each terrain type fit the monotonic increase of the slip versus slope relation without
overfitting the collected data. The thresholds for risk prediction shift from common
to terrain-dependent ones using these regression curves, as shown in Table III. Table
III also presents the slope estimation accuracy, described in Section 3.1., as an MAE
value. The MAE value for each terrain type shows that slope estimation using the
RGB-D sensor can well estimate the slope angle in front of the rover. However, such
estimation results can still cause problems for the rover; thus, MAE is subtracted from
the slope angle corresponding with common thresholds for risk prediction. For Sand
terrain, the regression curve linearly increases compared to those for Soil and Gravel
terrains; therefore, the thresholds are not significantly affected by the MAE. When the
slope angle reaches 9.3◦, the slip risk is considered high, and the rover seems to face
difficulties in traversing Sand terrain. By contrast, the slope of the regression curve for
Soil terrain suddenly increases at around 17◦; therefore, the slip ratio threshold between
medium and high risk decreases to 0.13. This sharp increase causes a sudden transition
of the slip risk from low to high. In Gravel terrain, the regression curve avoids overfitting
the irregularity of the slip versus slope relation. Low slip risk, shown as a green region
in Fig. 13 (c), indicates that the rover can climb a slope of around 16◦ safely, whereas it
is unable to do so for other terrain types.

6. Conclusion
This study proposes a data-driven approach to predict the slip risk of a rover operating

on rough terrain by estimating the slope angle and classifying surrounding terrain
using visual information. Terrain-dependent slip risk is predicted by setting the slip-
risk criterion for each terrain type in consideration of the slope estimation accuracy.
Experimental validation is performed using datasets acquired from a four-wheeled rover
testbed traversing different types of rough terrains. The proposed approach can (1)
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(a) (b)

(c)

Fig. 13. (a), (b), and (c) Slip risk prediction result for three terrain types: Sand, Soil, and Gravel. Black
points indicate input data obtained from data collection. The blue line indicates the predicted regression
curve. Green, yellow, and red regions indicate low, medium, and high slip risks, respectively. Green and
red dotted lines indicate the common boundaries of low and medium slip and medium and high slip,
respectively.

estimate the slope angle within an MAE of 1.15◦, (2) classify five terrain types with
at least 77% accuracy, and (3) predict the wheel slip risk on three terrain types in
consideration of the slope estimation accuracy, which may be affected by noises such
as those contained in 3D information. This study assesses wheel slip and shows that
geometrical information alone cannot be used to avoid a wheel getting stuck in the future.
It does so by incorporating vision in a mobile robot and introducing terrain-dependent
thresholds for the slip versus slope relation.

This study currently uses offline data for both learning and validation. Future studies
aimed at autonomous operation will implement online data processing for slip prediction.
For this purpose, an adaptive learning procedure will be required to update the slip versus
slope relation without overfitting data collected by the rover in early exploration stages
or when terrain properties change in a given place even if the appearance of the terrain
type does not change.

Acknowledgements
This work was partially supported by JKA and its promotion funds from KEIRIN

RACE. Advice and comments given by Dr. Kyohei Otsu from NASA’s Jet Propulsion
Laboratory have been a great help to implement the proposed algorithm and to write
this paper. We would also like to thank Editage (https://www.editage.com) for English
language editing.



Terrain-Dependent Slip Risk Prediction 15

References
1. S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation software for

planetary exploration,” In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA (2002)
pp. 2025–2036.

2. R. E. Arvidson, K. D. Iagnemma, M. Maimone, A. A. Fraeman, F. Zhou, M. C. Heverly, et al., “Mars
Science Laboratory Curiosity rover megaripple crossings up to sol 710 in gale crater,” Journal of Field
Robotics, 34(3), 495–518 (2017).

3. M. G. Bekker, Introduction to terrain-vehicle systems (Ann Arbor: University of Michigan Press, USA,
1969).

4. G. Ishigami, K. Nagatani, and K. Yoshida, “Slope traversal controls for planetary rover on sandy
terrain,” Journal of Field Robotics, 26(3), 264–286 (2009).

5. J. Y. Wong, Theory of ground vehicles (John Wiley & Sons, USA, 1978).
6. I. Halatci, C. A. Brooks, and K. Iagnemma “A study of visual and tactile terrain classification and

classifier fusion for planetary exploration rovers,” Robotica, 26, 767–779 (2008).
7. C. A. Brooks and K. Iagnemma, “Self-supervised terrain classification for planetary surface exploration

rovers,” Journal of Field Robotics, 29(3), 445–468 (2012).
8. K. Otsu, M. Ono, T. J. Fuchs, I. Baldwin, and T. Kubota “Autonomous terrain classification with

co- and self-training approach,” IEEE Robotics and Automation Letters, 1(2), 814–819 (2016).
9. L.-P. Berczi, I. Posner, and T. D. Barfoot, “Learning to assess terrain from human demonstration using

an introspective gaussian-process classifier,” In: Proceedings of the IEEE International Conference on
Robotics and Automation, Seattle, WA, USA (2015) pp. 3178–3185.

10. F. Schilling, X. Chen, J. Folkesson, and P. Jensfelt, “Geometric and visual terrain classfication
for autonomous mobile navigation,” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vancouver, BC, Canada (2017) pp. 2678–2684.

11. S. Higa, Y. Iwashita, K. Otsu, M. Ono, O. Lamarre, A. Didier, and M. Hoffman, “Vision-based
estimation of driving energy for planetary rovers using deep learning and terramechanics,” IEEE
Robotics and Automation Letters, 4(4), 3876–3883 (2019).

12. A. Angelova, L. Matthies, D. Heilmick, and P. Perona “Learning and prediction of slip from visual
information,” Journal of Field Robotics, 24(3), 205–231 (2007).

13. C. Cunningham, M. Ono, I. Nesnas, J. Yen, and W. L. Whittaker, “Locally-adaptive slip prediction
for planetary rovers using Gaussian processes,” In: Proceedings of the IEEE International Conference
on Robotics and Automation, Singapore, Singapore (2017) pp. 5487–5494.

14. K. Skonieczny, D. K. Shukla, M. Faragalli, M. Cole, and K. D. Iagnemma, “Data-driven mobility risk
prediction for planetary rovers,” Journal of Field Robotics, 36(2), 475–491 (2019).

15. G. Yamauchi, T. Noyori, K. Nagatani, and K. Yoshida, “Improvement of slope traversability for a
multi-DOF tracked vehicle with active reconfiguration of its joint forms,” In Proceedings of the IEEE
International Symposium on Safety, Security, and Rescue Robotics, Hokkaido, Japan (2014) pp. 1–6.

16. M. Y. Yang, W. Forstner, “Plane detection in point cloud data,” In Proceedings of the 2nd
International Conference on Machine Control Guidance, Bonn, Germany (2010) pp. 95–104.

17. S. Tanaka, K. Yamada, T. Ito, and T. Ohkawa, “Vehicle detection based on perspective transformation
using rear-view camera,” International Journal of Vehicular Technology, 2011 (2011).

18. D. Kim, S. M. Oh, and J. M. Rehg, “Traversability classification for UGV navigation: a comparison
of patch and superpixel representations,” In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, San Diego, CA, USA (2007) pp. 3166–3173.

19. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “SLIC superpixel compared
to state-of-the-art superpixel methods,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11), 2274–2281 (2012).

20. J. H. Friedman “Stochastic gradient boosting,” Computational Statistics & Data Analysis, 38(4),
pp. 367–378 (2002).

21. W. Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 1(1), 14–23 (2011).

22. R. Gonzalez, M. Fiacchini, and K. Iagnemma, “Slippage prediction for off-road mobile robots via
machine learning regression and proprioceptive sensing,” Robotics and Autonomous Systems, 105,
85–93 (2018).

23. R. Gonzalez, D. Apostolopoulos, and K. Iagnemma, “Slippage and immobilization detection for
planetary exploration rovers via machine learning and proprioceptive sensing,” Journal of Field
Robotics, 35, 231–247 (2018).

24. D. R. Freitag, A. J. Green, and K. J. Melzer, “Performance evaluation of wheels for lunar vehicles,”
US Army Waterways Experiment Station Technical Report M-70-2 (Vicksburg, MS, 1970).

25. C. M. Bishop, Pattern recognition and machine learning (Springer, USA, 2006).


