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Abstract— Uncertainty in observations about the state of 

affairs is unavoidable, and generally undesirable, so we are 

motivated to try to minimize its effect on data analysis. Detection 

of anomalies in data has become an important research area. In 

this paper, we propose a novel approach to anomaly detection 

based on the Variational Autoencoder method with a Mish 

activation function and a Negative Log-Likelihood loss function. 

The proposed method is validated with ten standard datasets, 

comparing performance on each of the various activation 

functions and loss functions.  Experimental results show that our 

proposed method offers an improvement over existing methods. 

Statistical properties (i.e., F1 score, AUC, and ROC) of the method 

are also examined in light of the experimental results. 

Keywords—Anomaly Detection, Variational Autoencoder, Time 

Series Data, Activation Functions, Loss Functions 

I. INTRODUCTION 

Courtesy of developments in artificial intelligence, 
especially machine learning, large data sets can be analyzed 
effectively to detect anomalies. Confidence in data analysis is 
critical for all organizations, and such confidence can only be 
assured with quality data and metadata. To be useful in 
applications, data collected at a point in time or over an extended 
period must be accurate and reliable. Our current work is 
directed at improving accuracy and reliability of data with the 
help of anomaly detection.  

Real-world data is often noisy, incomplete, and inconsistent 
since it derives from a variety of sources. This condition may 
reduce the performance and accuracy of data analysis. Thus it is 
important to ensure that anomalies in the data are detected and 
properly treated. Our research focuses on the development of 
methods for detecting anomalies, i.e., potentially unreliable data. 
Anomaly detection is essential as a foundation for ensuring the 
accuracy and reliability of data critical in so many practical 
settings such as factory automation, advertising, and financial 
transaction in banking, and insurance.  

Anomaly detection aims to identify data that departs from 
what is expected in a dataset. Such detection plays an important 
role in network security, medical monitoring, social media 
monitoring, intrusion detection, production system monitoring, 
as well as other areas. 

Several anomaly detection methods have been developed. 
Especially noteworthy are methods based on dimension 

reduction. These methods aim to reduce the dimension of the 
space defined by a data set, while retaining the important 
features of the original data. Dimension reduction methods 
differ according to their handling of feature selection and feature 
extraction; in addition these methods may be linear or non-linear. 
The Autoencoder is particularly important in this area. This 
method attempts to compress and thus map input data to a 
reduced dimensional space, and then use an encoding-decoding 
process to reconstruct the input data set. A newer method of 
dimensionality reduction is Variational Autoencoder (VAE), 
which evolved from Autoencoder. VAE is a type of neural 
networks that can learn to compress data in a completely 
unsupervised way. This method outperforms Autoencoder, by 
imposing a probability distribution, with given mean and 
variance, on the latent space, and using a sample from this 
distribution to reconstruct the data. 

In this paper, we propose an anomaly detection method 
based on the Variational Autoencoder method using a Mish 
activation function and a Negative Log-Likelihood loss function 
to enhance the performance. The proposed method is validated 
using ten standard datasets, which contain sensor, ECG, and 
image data types. The validation is based on Area Under the 
Curve, Precision, Recall, and F1-score criteria. 

II. BACKGROUND AND RELATED WORK 

Anomaly detection is an important problem that has been 
investigated extensively in diverse areas, see [1], for example. It 
figures prominently in a variety of applications. Anomaly 
detection is a critical tool in the identification of potentially 
malicious intrusions in computer networks. Such intrusions 
might take the form of denial of service attacks, data breaches, 
etc. As mentioned in the previous section, many anomaly 
detection techniques have been developed, notably methods 
based on dimension reduction. One such method is Principal 
Component Analysis (PCA) [2], a linear algebra technique that 
can be used to achieve dimension reduction automatically. 
Vasan et al. [3] propose PCA using various classifier algorithms, 
and determine its reduction ratio in experiments on two 
benchmark datasets. This method offers good accuracy. PCA 
can reduce dimensions, but it is important to note that it results 
in loss of information, and cannot provide 100%  accuracy. 

Autoencoder is another method for reducing the dimension 
of a dataset. This method lowers dimensions through data 
compression, and then produces reconstructed data similar to the 
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original input. Autoencoder outclasses PCA in that PCA is a 
linear transformation, whereas autoencoders use nonlinear 
transformations and thereby models relatively complex 
relationships. Yokkampon et al. [4] propose the autoencoder 
method with spiking raw data in the frequency domain to detect 
anomalies. This method offers good anomaly detection 
performance by analyzing time series data in the frequency 
domain. 

The newest deep learning method is variational autoencoder 
(VAE) [5], which is a variant of autoencoder. VAE can design 
complex generative models of data, and fit them to large datasets. 
VAE outperforms autoencoders that do not use the encoder-
decoder process to reconstruct the input. VAE determines a 
probability distribution on the latent space and learns the 
distribution so that the decoder's distribution of outputs matches 
that of the observed data. Then, it samples from this distribution 
to generate new data. Bayer and Osendorfer [6] proposed the 
recurrent neural networks with latent variables using four 
polyphonic musical data sets and motion capture data to model 
time series data and introduced Stochastic Recurrent Networks 
(STORNs). Soelch et al. [7] proposed a Stochastic Recurrent 
Network (STORN) to learn robot time series data. That method 
offers good anomaly detection performance, both off-line and 
on-line. An and Cho [8] proposed using the reconstruction 
probability from the variational autoencoder and a new 
probabilistic anomaly score to detect anomalies. This method 
outperforms autoencoder and PCA. Zhang et al. [9] proposed the 
variational autoencoder with re-Encoder and Latent Constraint 
network (VELC) and used LSTM as the encoder and decoder 
part of VAE to identify time series anomalies. This method 
offers excellent performance for anomaly detection. Wang et al. 
[10] proposed deep autoencoder networks and spectral 
clustering using the Mish activation function for acoustic scene 
analysis. This method outperforms many state-of-the-art 
methods. 

In the research reported here, we propose the Variational 
Autoencoder method based on the Mish activation function and 
Negative Log-Likelihood loss function to analyze and detect 
anomalies in time series data. Performance is assessed by 
comparing results using various activation functions and loss 
functions designed to improve performance. The Mish 
activation function helps to avoid saturation, which generally 
causes training to drastically slow down performance due to 
near-zero gradients. Saturation also has undesirable 
regularization effects. We compare our results with research 
reported in [9], which also used variational autoencoder but did 
not use the same loss function. Our approach is designed to 
avoid overfitting and ensure that the latent space has suitable 
properties that facilitate the generative process. Therefore, the 
variational autoencoder can be defined as being an autoencoder 
whose training is regularized, which implies that it can design 
complex generative models of data and fit them to large datasets. 
This is where VAE works better than any other method currently 
available. To justify this claim, we briefly explain the VAE 
activation functions and loss functions in this section. 

A. Variational Autoencoder 

Autoencoder is a simple learning network designed to 
transform inputs into outputs with the minimum possible error 

so it can compress and decompress images or documents and 
reduce noise in the data. This system consists of three main 
components or layers. The first contains the code, encoder, and 
decoder. The encoder compresses the input and generates the 
code; the decoder reconstructs new input using only this code. 
One drawback of the autoencoder is a hidden layer which may 
not be continuous and could make interpolation difficult. 
Variational Autoencoder (VAE) was an outgrowth of 
autoencoder designed to address this problem. 

VAE (Kingma and Welling, 2013) [5] is a deep learning 
technique for dimension reduction. VAE relies on probability 
distributions of observations in latent space and makes strong 
assumptions about the distribution of latent variables. Thus, 
rather than generate an encoder that outputs a single value to 
describe each latent variable, it defines an encoder to describe a 
probability distribution for each latent variable. 

Like autoencoder, VAE also has three main layers. The first 
one consists of the encoder, decoder, and loss function. A 
variable x  represents the data or input, and x  is generated from 

a latent variable ,z  which is the encoded representation. The 

first process samples a latent representation z  from the prior 

distribution ( )p z  and then samples the data x  from the 

conditional likelihood distribution ( )p x z .  

The decoder is defined by ( )p x z  which corresponds to the 

distribution of the decoded variable given the encoded one, 

whereas the encoder is defined by (z x)p  which corresponds to 

the distribution of the encoded variable given the decoded one.  

The loss function of the variational autoencoder consist of 
two terms: a reconstruction loss term, which can be thought of 
maximizing the reconstruction likelihood, and a regularizer term 

which encourages learn distribution (z x)q  to be similar to the 

true prior distribution ( )p z . The loss function is defined as 

follows: 

( )( )
( ) [log ( )] ( ) ( )

i
i i iz q z x

x E p x z KL q z x pL z= − +       (1) 

For the regularizer term, VAE uses the Kullback-Leibler 
divergence to control the divergence between the probability 
distributions. The objective is to obtain the best fit between the 
mean and variance of the probability distribution and the 
corresponding parameters of the target distribution. 

B. Activation Functions 

Activation functions are mathematical equations used in 
neural networks for transforming the weighted sum of inputs 
from a node to its output. Activation functions can be either 
linear or non-linear. In this research, we use three activation 
functions defined as follows. 

1) Leaky ReLu: Leaky ReLu is a recently developed 

activation function. It is designed to minimize sensitivity to the 

dying ReLU problem by having a small negative slope (in the 

neighborhood of  0.01). 
The Leaky ReLu activation function is defined by (see Maas 

et al., 2013) [11]: 
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0.01 , if 0
( )

, otherwise

x x
f x

x


= 


  (2) 

2) Swish: Swish is an activation function discovered by 

researchers at Google (Ramachandran et al., 2017) [12]. The 

swish activation function is a combination of the sigmoid 

activation function and the input function. The shape of Swish 

is similar to ReLu, but it performs better than ReLu. 

More precisely, Sigmoid is defined as follows: 

                 
1

( )
1 x

sigmoid x
e−

=
+

           (3) 

The Swish function is defined by: 

( ) ( )
1 x

x
f x x sigmoid x

e−
=  =

+
  (4) 

3) Mish: Mish is also one of the new activation functions in 

the deep learning world. It is a combination of hyperbolic 

tangent and softplus. Mish performs better than ReLu, sigmoid, 

and even Swish. 

The Mish activation function is given by: 

( ) tanh( ( ))f x x softplus x=    (5) 

where  ( ) ln(1 )xsoftplus x e= +  

 

Fig. 1. Activation Functions 

C. Loss Functions 

Loss functions are used to optimize the parameter values in 
a neural network model and also can be used to measure the 
difference between the estimated and actual values for an 
instance of data. In this research, we use two loss functions. 

1) Mean Square Error: Mean Square Error (MSE) is the 

most commonly used loss function. MSE is calculated as the 

average of squared difference between predictions and actual 

observations. The result is always positive.  
It is given by the following: 

         

2

1

ˆ( )
n

i i

i

y y

MSE
n

=

−

=


  (6) 

2) Negative Log-Likelihood: The Negative Log-Likelihood 

loss function is widely used in neural networks. It is typically 

used as a measure of the accuracy of a classifier. 
This function  is defined by: 

         
1

ˆlog
M

j j

j

y y
=

−                   (7) 

III. PROPOSED MEHOD 

This section describes our proposed method for improving 
anomaly detection and discusses the data sets and the evaluation 
metrics used. The structure of our proposed method is shown in 
Fig. 2. As explained earlier, this system uses the variational 
autoencoder method based on the Mish activation function and 
Negative Log-Likelihood loss function. The system is evaluated 
on time series data sets by comparing performance using 
different functions. 

Our proposed system consists of three main parts. First is the 
input; second is the variational autoencoder method; and the last 
is the set of results. The input part contains ten time series data 
sets. The procedure is to input all ten time series data sets to the 
variational autoencoder in order to identify anomalies by 
constructing the encoder and decoder. Six cases are 
distinguished. The results are then obtained from the variational 
autoencoder reconstruction value. 

 

Fig. 2. Concept of the proposed method 

A. Data Sets 

To illustrate the effectiveness of the proposed method, we 
conducted experiments using three types of time series data 
(sensor, ECG, and image), obtained from a UCR public data set 
[13] and a UCI public data set [14]. All datasets are given in time 
series format, and every data point is labeled. For all datasets, 
we chose the minority class as an anomaly class. The summary 
of datasets is shown in Table 1. For each dataset, 80% of normal 
data has been used for the training phase; the remaining 20% and 
the anomalies have been used for testing. 
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TABLE I.  SUMMARY OF TIME SERIES DATA SETS 

Datasets Data type Length 
Number of 

instances 

Anomaly 

Ratio 

ItalyPowerDemand 

Wafer 

SonyAIBORobotSurface2 
ECGFiveDays 

TwoLeadECG 

MoteStrain 
Arrhythmia 

DistalPhalanxOutlineCorrect 

MiddlePhalanxOutlineCorrect 
PhalangesOutlinesCorrect 

Sensor 

Sensor 

Sensor 
ECG 

ECG 

Sensor 
Sensor 

Image 

Image 
Image 

24 

152 

65 
136 

82 

84 
274 

80 

80 
80 

1096 

7164 

980 
884 

1162 

1272 
452 

876 

891 
2658 

0.49 

0.11 

0.38 
0.50 

0.50 

0.46 
0.40 

0.38 

0.38 
0.36 

 

B. Performance Evaluation 

To evaluate the accuracy of our proposed method for 
improving anomaly detection, we use Area under the curve of 
the receiver operating characteristic (AUC), Precision (Pre), 
Recall (Rec), and F1-Score criteria, which are defined as 
follows: 

        Pre
TP

TP FP
=

+
                        (8) 

       Rec
TP

TP FN
=

+
               (9) 

     
Pre×Rec

F1 2
Pre+ Rec

=               (10) 

where TP is the correctly detected anomaly, FP  is the 
falsely detected anomaly, TN  is the correctly assigned normal, 

and FN  is the falsely assigned normal. 

IV. RESULTS AND DISCUSSION 

In this section, we evaluate the anomaly detection 
performance for ten time-series data sets using the Variational 
autoencoder method. The experiments are divided into 6 cases 
which consist of our proposed VAE using the Mish activation 
function and Negative Log-likelihood compared with Leaky 
ReLu and Swish activation functions, and MSE loss function. 
The experiment with the standard dataset is designed to 
benchmark the method and investigate its characteristics.  

 

TABLE II.  CASE I: ACTIVATION FUNCTION: LEAKY RELU, LOSS 

FUNCTION: MEAN SQUARE ERROR 

Datasets 
Performance Evaluation 

AUC Precision Recall F1-Score 

ItalyPowerDemand 
Wafer 

SonyAIBORobotSurface2 
ECGFiveDays 

TwoLeadECG 

MoteStrain 
Arrhythmia 

DistalPhalanxOutlineCorrect 

MiddlePhalanxOutlineCorrect 
PhalangesOutlinesCorrect 

0.7227 
0.6148 

0.8364 
0.7627 

0.6905 

0.8404 
0.6000 

0.5968 

0.4811 
0.5355 

0.7807 
0.7567 

0.8729 
0.9022 

0.8376 

0.9084 
0.8200 

0.8190 

0.7436 
0.7819 

0.5394 
0.8995 

0.7007 
0.6288 

0.5632 

0.6230 
0.6029 

0.6515 

0.6493 
0.6291 

0.6380 
0.8219 

0.7774 
0.7411 

0.6735 

0.7391 
0.6949 

0.7257 

0.6932 
0.6972 

 

TABLE III.  CASE II: ACTIVATION FUNCTION: LEAKY RELU, LOSS 

FUNCTION: NEGATIVE LOG-LIKELIHOOD 

Datasets 
Performance Evaluation 

AUC Precision Recall F1-Score 

ItalyPowerDemand 

Wafer 

SonyAIBORobotSurface2 
ECGFiveDays 

TwoLeadECG 

MoteStrain 
Arrhythmia 

DistalPhalanxOutlineCorrect 

MiddlePhalanxOutlineCorrect 
PhalangesOutlinesCorrect 

0.8537 

0.9899 

0.9510 
0.8948 

0.7217 

0.8876 
0.7424 

0.7726 

0.5990 
0.6812 

0.9612 

0.8353 

0.9735 
0.9890 

0.9561 

0.8904 
0.9000 

0.8929 

0.8083 
0.8713 

0.6000 

1.0000 

0.7483 
0.6818 

0.6229 

0.6806 
0.6618 

0.7576 

0.7239 
0.7293 

0.7388 

0.9102 

0.8462 
0.8072 

0.7543 

0.7715 
0.7627 

0.8197 

0.7638 
0.7940 

 

The results of anomaly detection and comparisons are 
summarized in Table 2. - Table 7. We presented the results with 
ten data sets for discussion. Table 2 shows case I, which uses the 
Leaky ReLu activation function and Mean Square Error loss 
function. Table 3. shows case II, which uses Leaky ReLu 
activation function that is normally used in VAE and Negative 
Log-Likelihood loss function. The results indicate that case II 
could improve outcomes in AUC and F1-Score values higher 
than case I on all the data sets. Cases I and II draw a comparison 
with the same activation function but different loss functions. 
Thus, the Negative Log-Likelihood loss function can be used to 
improve the effectiveness of anomaly detection for time series 
data. Note that in case II, performance on the Wafer data set 
exhibits perfect recall results. 

 

TABLE IV.  CASE III: ACTIVATION FUNCTION: SWISH, LOSS FUNCTION: 
MEAN SQUARE ERROR 

Datasets 
Performance Evaluation 

AUC Precision Recall F1-Score 

ItalyPowerDemand 

Wafer 
SonyAIBORobotSurface2 

ECGFiveDays 

TwoLeadECG 
MoteStrain 

Arrhythmia 

DistalPhalanxOutlineCorrect 
MiddlePhalanxOutlineCorrect 

PhalangesOutlinesCorrect 

0.7921 

0.6941 
0.9161 

0.8334 

0.7709 
0.8628 

0.7057 

0.7430 
0.5164 

0.5905 

0.7768 

0.7653 
0.9421 

0.9432 

0.9333 
0.9453 

0.8704 

0.8899 
0.8318 

0.7972 

0.5686 

0.9372 
0.7651 

0.6288 

0.6328 
0.6402 

0.6912 

0.7462 
0.6496 

0.7093 

0.6566 

0.8426 
0.8444 

0.7545 

0.7542 
0.7634 

0.7705 

0.8117 
0.7295 

0.7507 

 

TABLE V.  CASE IV: ACTIVATION FUNCTION: SWISH, LOSS FUNCTION: 
NEGATIVE LOG-LIKELIHOOD 

Datasets 
Performance Evaluation 

AUC Precision Recall F1-Score 

ItalyPowerDemand 

Wafer 
SonyAIBORobotSurface2 

ECGFiveDays 

TwoLeadECG 
MoteStrain 

Arrhythmia 

DistalPhalanxOutlineCorrect 
MiddlePhalanxOutlineCorrect 

PhalangesOutlinesCorrect 

0.8962 

0.9903 
0.9637 

0.9468 

0.7451 
0.8935 

0.7408 

0.7832 
0.6123 

0.6603 

0.9244 

0.8358 
0.9318 

0.9878 

0.9643 
0.9333 

0.8936 

0.9417 
0.9192 

0.8459 

0.6667 

1.0000 

0.8367 

0.7232 

0.6316 
0.6597 

0.6176 

0.7348 
0.6791 

0.7257 

0.7746 

0.9106 
0.8817 

0.8351 

0.7633 
0.7730 

0.7304 

0.8255 
0.7811 

0.7812 
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Table 4. shows case III, which uses Swish activation 
function and Mean Square Error loss function. Table 5 presents 
case IV, which uses Swish activation function and Negative 
Log-Likelihood loss function. The results show that case IV 
could improve outcomes in AUC values to a greater extent than 
case III on 9 data sets, just as indicated for the F1-Score. 
Moreover, in case IV, performance on the Wafer data set shows 
perfect recall results. Thus, Negative Log-Likelihood loss 
function can be used to improve the effectiveness of anomaly 
detection for time series data. 

 

TABLE VI.  CASE V: ACTIVATION FUNCTION: MISH, LOSS FUNCTION: 
MEAN SQUARE ERROR 

Datasets 
Performance Evaluation 

AUC Precision Recall F1-Score 

ItalyPowerDemand 

Wafer 

SonyAIBORobotSurface2 
ECGFiveDays 

TwoLeadECG 

MoteStrain 
Arrhythmia 

DistalPhalanxOutlineCorrect 

MiddlePhalanxOutlineCorrect 
PhalangesOutlinesCorrect 

0.8404 

0.7111 

0.9344 
0.8866 

0.8179 

0.8852 
0.7713 

0.7596 

0.5610 
0.6072 

0.8333 

0.7843 

0.9389 
0.9368 

0.9444 

0.9420 
0.9388 

0.9000 

0.8087 
0.8210 

0.6164 

0.9520 

0.8425 
0.6593 

0.7000 

0.6806 
0.7188 

0.7500 

0.6940 
0.7261 

0.7087 

0.8601 

0.8881 
0.7739 

0.8041 

0.7903 

0.8142 

0.8182 

0.7470 
0.7707 

 

TABLE VII.  CASE VI: ACTIVATION FUNCTION: MISH, LOSS FUNCTION: 
NEGATIVE LOG-LIKELIHOOD 

Datasets 
Performance Evaluation 

AUC Precision Recall F1-Score 

ItalyPowerDemand 

Wafer 

SonyAIBORobotSurface2 

ECGFiveDays 
TwoLeadECG 

MoteStrain 

Arrhythmia 
DistalPhalanxOutlineCorrect 

MiddlePhalanxOutlineCorrect 
PhalangesOutlinesCorrect 

0.9492 

0.9956 

0.9693 

0.9767 

0.8955 

0.8788 

0.8023 

0.8129 

0.7797 
0.6556 

0.9730 

0.8478 

0.9688 

0.8804 
0.9231 

0.8973 

0.8852 
0.9107 

0.8761 
0.8504 

0.6545 

1.0000 

0.8435 

0.9759 
0.7742 

0.6859 

0.7941 
0.7727 

0.7388 
0.7494 

0.7826 

0.9176 

0.9018 

0.9257 

0.8421 

0.7774 

0.8372 

0.8361 

0.8016 

0.7967 

 

 Table 6. shows case V which uses the Mish activation 
function and Mean Square Error loss function. Table 7 shows 
case VI which is our proposed method. Case VI uses the Mish 
activation function and Negative Log-Likelihood loss function. 
The results show that case VI could improve outcomes in AUC 
and F1-Score values more than case V on almost every data set. 
Moreover, in case VI, performance on the Wafer data set also 
shows perfect recall results. Thus, the Negative Log-Likelihood 
loss function can be used to improve the effectiveness of 
anomaly detection for time series data. 

  

 

Fig. 3. AUC comparisons all six cases on Variational autoencoder 

 

 

Fig. 4. F1-Score comparisons all six cases on Variational autoencoder 

Figures 3 and 4 show the chart of AUC and F1-Score 
comparisons, respectively, for all six cases for Variational 
Autoencoder. It is quite clear that our method in case VI which 
uses the Mish activation function and Negative Log-Likelihood 
loss function outperforms on all metrics for all the data sets. For 
the Wafer data set, the result of AUC of case I yields 61.48%, 
but in case VI the results are improved to 99.22%. In addition, 
the F1-Score of case I yields only 84.26% compared with 
91.76% for case VI. The Wafer data set results for recall in case 
II, IV, and VI, which uses Negative Log-Likelihood loss 
function, show perfect recall.  

TABLE VIII.  COMPARING AUC OF VAE RESULTS FROM THE RECENT 

RESEARCH 

Datasets OUR* ANOGAN ALAD MLP-VAE IF 

ItalyPowerDemand 

Wafer 

ECGFiveDays 
TwoLeadECG 

MoteStrain 

Arrhythmia 
KDD99 

GunPointAgeSpan 

ToeSegmentation2 
Herring 

0.761 

0.965 

0.970 

0.891 

0.840 

0.758 

0.958 

0.881 

0.846 

0.659 

0.516 

0.558 

0.970 
0.554 

0.746 

0.576 
0.887 

0.515 

0.547 
0.488 

0.538 

0.587 

0.694 
0.515 

0.504 

0.515 
0.950 

0.547 

0.544 
0.569 

0.768 

0.790 

0.910 
0.731 

0.750 

0.747 
0.622 

0.821 

0.816 
0.627 

0.763 

0.847 

0.678 
0.760 

0.762 

0.530 
0.929 

0.612 

0.787 
0.698 
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 We also compare our results to the latest reported in “Time 
Series Anomaly Detection with Variational Autoencoders” [10] 
in 2019. There are six common datasets utilized in our method, 
namely, ItalyPowerDemand, Wafer, ECGFiveDays, 
TwoLeadECG, MoteStrain, and Arrhythmia. The results in 
terms of AUC are shown in Table VII. These results show that 
our method could improve AUC outcome values compared to 
the approach taken in [10] for all six datasets. In general, the 
results show that our method constitutes an improvement in 
anomaly detection performance for time series data relative to 
the results reported in the literature. 

 

Fig. 5. ROC results of ItalyPowerDemand, Wafer, 

SonyAIBORobotSurface2, ECGFiveDays, TwoLeadECG data sets 

 

Fig. 6. ROC results of MoteStrain, Arrhythmia, 

DistalPhalanxOutlineCorrect, MiddlePhalanxOutlineCorrect, 

PhalangesOutlinesCorrect data sets 

Finally, we investigate the characteristic of our method. 
Figures 5 and 6 illustrate the diagnostic ability of our method 
from case VI illustrated by the ROC curve. The charts show that 
the performance on the Wafer data set is better than on the other 
datasets. The performance results on the Phalanges Outlines 
Correct data set are worse, but could be improved the result 
based on recent research and other methods. Moreover, there are 
three image-based datasets, i.e., Distal Phalanx Outline Correct, 
Middle Phalanx Outline Correct, and Phalanges Outlines 
Correct, for which accurate anomaly detection is more difficult 
to achieve. This may be a consequence of the fact that image 
data is more complex than those based on signal or sensor data.  

V. CONCLUSION 

The system proposed here uses the Variational autoencoder 
method based on various activation functions and loss functions 
together. Performance has been evaluated by means of six 
different cases, and computation of the metrics AUC, Precision, 
Recall, and F1-Score. The experiments on anomaly detection 
show that our proposed method, which uses Mish activation 
function and Negative Log-Likelihood loss function could 
improve the accuracy of detecting anomalies on all the usual 
metrics for time series data. Therefore, the Mish activation 
function and loss function have been shown to improve anomaly 
detection on the criteria of precision, recall, F1 score, AUC and 
ROC.  

In future research, we intend to use various data 
transformations in variational autoencoder to detect anomalies 
in time series data. 
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