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1. INTRODUCTION 

Food industry is an important part of the economy for 

many countries. It represents a large portion of the 

country’s GDP, and it is made up of various business 

sectors that provide food supply to the population, 

including agriculture, manufacturing, food processing, 

and food services, just to name a few. By incorporating 

innovative technologies to these existing sectors, the 

overall efficiency can be improved, while the operating 

cost can be reduced. One such example is the use of 

automation in the food production process. Automating 

food production can help to improve consistency in the 

appearance and quality of the food being produced, as 

well as to minimize unnecessary waste by using 

minimum amount of ingredients. Although the benefit of 

automation in food production is clear, there has not been 

a wide-scale adoption of such technology in the food 

industry, as one might observe in other industries like car 

or industrial manufacturing. One reason has to do with 

the ability to manipulate food objects. Unlike other 

industries where the components are usually uniform in 

size and weight, the ingredients that go into food 

production are often of diverse size, shape, weight, and 

texture, making it difficult to develop a line automation 

using traditional methods [1]. 

Computer vision may help solve these challenging 

problems, however. The technology mimics how human 

sees and perceives things. One important aspect of 

computer vision is image recognition, which involves 

different processes such as object detection, 

classification, and segmentation. A particular technique, 

called instance segmentation, has been used to detect 

distinct objects in an image in real-time and the 

classification is done at a pixel-level using deep learning 

model. Previous studies have shown this approach to be 

effective and reliable in detecting food objects [2, 4, 5]. 

In addition to the output RGB data from a camera 

sensor, depth camera technology can also provide 3D 

depth information which can be advantageous for 

analyzing 3D objects in a surrounding environment. By 

combining the segmented RGB data and 3D depth 

information together, automatic detection and 

classification of food object can be done more accurately, 

allowing for better estimation of its shape, weight, size 

and, even calories.  

The main contribution of the paper is to explore 

instance segmentation and point cloud extraction for food 

object using data from a single stereo depth camera. In 

this study, we use the data from a single stereo depth 

camera mounted on a robot end-effector which is used for 

performing tasks involving food automation. The outputs 

from the camera are RGB color data and depth 

information. We perform instance segmentation on the 

RGB data by using Cascade Mask R-CNN which is a 

powerful deep learning architecture based on 

mmdetection [3] benchmark result with the box AP and 

mask AP of 41.2% and 35.9% on COCO 2017 test-dev 

dataset [4], respectively. The Cascade Mask R-CNN 

method is a combination of Cascade R-CNN [4] and 

Mask R-CNN [5], which allows classification of RGB 

data at a pixel level. Then, we combine the processed data 

with depth information to achieve 3D object 

segmentation. All of the output information from our 

proposed process is published on a robot system network 

that can later be used in path planning or grasping posture 

estimation. Moreover, the resulting output can be 

generalized to other systems that are equipped with a 

depth sensing camera, not just limited to a robotic system. 
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2. EXPERIMENTS 

2.1 Robot System 

The robot system used in this experiment is a 7-Axis 

articulated arm robot system from Yaskawa Electric 

Corporation, Japan, with a model name Motoman SIA5F 

[6]. It supports many applications such as assembling, 

machine tending, material handling, part transferring, 

and picking-and-placing with a payload of up to 5.0 kg. 

It has a horizontal reach of 559 mm and a vertical reach 

of 1007 mm. The controller model is FS100. The robotic 

arm is connected to and controlled by several computers 

used for performing different tasks such as path planning 

and gripper controlling. The entire robot system is 

operated and communicated on Robot Operating System 

(ROS) network.  

Fig.1 The robot system with a stereo depth camera 

mounted at the end-effector. 

Several depth cameras are set up in the system to 

perform workspace calibration and computer vision. One 

of the cameras fixed near the end-effector is a stereo 

depth camera. It is used for computer vision to enhance 

object manipulation task like pick-and-place with a 

robotic arm. The model of this depth camera used is Intel 

RealSense D435i [7]. It is connected via a USB to a 

desktop computer running high performance GPU, 

Nvidia GeForce RTX 2080Ti, which is suited for 

performing high computation tasks like deep learning [8]. 

The data flow for the image processing of our system 

is shown in Fig.2. Computer A directly receives the raw 

data from the depth camera which includes RGB and 

depth data. The RGB data are used for instance 

segmentation and then combined with the depth data to 

create 3D point cloud information. The processed data 

are sent to other computers in the network to be used in 

other processes like path planning and grasp posture 

optimization. 

 

 

 

 

 

Fig.2 Data flow example of image processing part in 

robot system. 

2.2 Dataset 

The deep learning is conducted on our curated image 

dataset annotated in the same style as COCO dataset via 

COCO-Annotator [9,10]. The dataset consists of 807 

images, of which 765 images are annotated, while the rest 

are images of the laboratory environment. There are 13 

categories in the dataset: Japanese lunch box (Bento Box), 

bologna sausage, potato chip, Japanese fried chicken 

(Karaage), Japanese rice ball (Onigiri), and 8 different 

kinds of sushi which are shrimp (Ebi), squid (Ika), red 

caviar (Ikura), salmon, Japanese omelette (Tamago), tuna, 

eel (Unagi), and sea urchin roe (Uni). The detail of the 

dataset is summarized in Table 1. Examples of annotated 

images of the food objects belonging to the different 

categories are shown in Fig.3. 

Table 1: Dataset detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Examples of annotated food images. 

2.3 Deep Learning Implementation 

In this experiment, we use mmdetection [3] as a 

framework for performing deep learning. The 

architecture used for training is Cascade Mask R-CNN, 

implemented with PyTorch [11] and mmdetection. The 

backbone is ResNet-50. The detectors are trained on a 

single GeForce RTX 2080Ti (three images per GPU) for 

1000 epochs with an initial learning rate of 0.02. The 

trained model can also be applied for testing in the same 

framework. 

Category Images Annotations 

Train Val Train Val 

Bento box 142 17 142 17 

Bologna 27 3 195 23 

Potato chip 55 9 82 11 

Ebi nigiri 105 11 139 17 

Ika nigiri 101 10 138 13 

Ikura nigiri 49 6 84 9 

Karaage 104 16 474 59 

Onigiri 96 10 325 27 

Salmon nigiri 103 13 197 21 

Tamago nigiri 98 10 159 19 

Tuna nigiri 53 4 117 7 

Unagi nigiri 49 5 118 11 

Uni nigiri 49 6 104 12 

Surroundings 38 4 - - 
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2.4 Point Cloud Extraction via Depth Topic 

The depth camera streams data which consist of RGB 

and depth frames that can be used to generate point cloud 

ROS message. We use realsense2_camera package to 

access data from the camera. The package’s node, called 

/camera/realsense2_camera, publishes raw camera data 

which are RGB, depth, and camera information to 

different ROS topics. The /pointcloud_masking node 

subscribes to these topics and accepts the data as inputs 

which will then be transformed into point cloud 

information of food objects. The subscriptions are done 

via callback functions. The RGB data are used to perform 

inference with the trained model, providing detection and 

segmentation information (mask) of the food objects 

being detected. These masks are binary masks in an array 

structure with the same dimension as the original RGB 

image, but the values in the array are stored in Boolean 

format as true or false instead. The true value indicates 

that the pixel is in a segmented object, and vice versa. 

This binary mask is then applied to the depth data from 

the subscribed depth topic. The depth data is an array 

consisting of depth value for each pixel and it has the 

same dimension as the binary mask array. This 

processing step is demonstrated with a 6x8 size image as 

shown in Fig.4, where Fig.4a represents a mask array, 

Fig.4b represents a depth frame, and Fig.4c represents the 

resulting depth frame after applying the mask array.  

 

 

 

 

 

 

 

(a) 6x8 Mask array     (b) 6x8 Depth frame 

 

 

 

 

 

 

 

(c) Depth frame after applying the mask 

 

Fig.4 Process of applying mask to a depth frame 

 

The depth values in the array are in millimeters and its 

actual dimensions are H x W x 1, where H and W 

represent the height and width of the image, respectively. 

After applying the mask to the depth frame, the depth 

value outside the mask area will be set to zero. At this 

point, we have retained only the depth information of the 

desired area. The resulting depth frame is then 

transformed from a pixel coordinate into a metric 

coordinate in order to create 3D point cloud. To 

accomplish this, we need the camera intrinsic parameters 

which are used to map camera coordinates into image 

plane (world points). The camera intrinsic parameters are 

obtained from /camera/color/camera_info ROS topic via 

a callback function. The metric coordinate can be 

calculated according to Eq. (1). 

 

𝑧 = 𝑑𝑒𝑝𝑡ℎ 1000⁄   

𝑥 = 𝑧(𝑢 − 𝐾13) 𝐾11⁄  (1) 

𝑦 = 𝑧(𝑣 − 𝐾22) 𝐾21⁄   

 

, where x, y, z are the metric coordinates of a point, u 

and v are the horizontal and vertical pixel coordinates of 

a point, and K is the camera intrinsic matrix, respectively.  

Once we have obtained a set of 3D points in metric 

coordinates, we are able to create 

sensor_msgs/PointCloud2 to publish the information in 

the ROS system. In this case, the point cloud information 

of each category is published on different topics. For 

examples, /pointcloud_1 is a point cloud topic for 

category one, and /pointcloud_2 is a point cloud topic for 

category two. Furthermore, we can colorize the point 

cloud for each category to enhance visualization by 

adding a floating RGB value to each point in the set of 

3D points, so that each point will now contain x, y, z, and 

an RGB value. The ROS diagram for this node is shown 

in Fig.5. 

2.5 Centroid of Point Cloud 

In the previous section, we discussed how individual 

point clouds are extracted from a depth camera data. 

Using the extracted point cloud data, we can calculate the 

centroid position of a point cloud by simply taking the 

average values of each coordinates x, y, and z values 

belonging to the segmented object. Then, we publish the 

centroid position of the segmented object in a ROS topic 

using /visualization_msgs/Marker ROS message. This 

information is especially useful for food automation 

involving pick-and-place operations.  

 

 

 

 

 

 

 

 

 

 

 

Fig.5 First method for point cloud extraction in ROS 

via Depth Topic 

2.6 Point Cloud Extraction via Point Cloud Topic 

In the previous section, we explained one method to 

obtain food object’s point cloud information and publish 

that information in a ROS environment. There is also an 

alternative method that can be used to extract point cloud 

as illlustrated in Fig.6.  

This second method differs from the first method in the 

way that it subscribes to the point cloud topic instead of 

the depth topic. One advantage of using this second 

method is that it simplifies the calculation in the 

/pointcloud_masking node. If a point cloud topic 

provides the depth registered point cloud message, we 

can easily obtain the point cloud of the desired objects by 
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applying the mask array to the point cloud array directly. 

The depth registered point cloud is an array with a 

dimension of H x W x 4. The number 4 implies each point 

has 4 attributes, which are x, y, z, and RGB values of a 

point. With this kind of point cloud information, we can 

apply a mask to it in a similar manner as previously 

shown in Fig.4. However, if a point cloud is not depth 

registered, we will need to perform additional calculation. 

For example, after the inference step, we find all the 

possible contours (in a closed form) in the mask image 

and pick out the largest contour. Next, we generate a 

polygon of this contour, consisting of a set of vertices of 

the contour boundary. Then, we filter the desired points 

by determining only the points in the points array that 

reside in the polygon. Each point in the point cloud 

contains an RGB color from the camera’s RGB data. 

Hence, the object in the point cloud format can be 

displayed with its true color instead of a mono color as is 

the case with the first point cloud extraction method. 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Second method for point cloud extraction in 

ROS via Point Cloud topic. 

3. RESULTS AND DISCUSSION 

3.1 Instance Segmentation Model 

The trained instance segmentation is tested with a set 

of 87 images with the score threshold of 0.8. The result is 

evaluated using mean average precision metric (mAP). 

This model achieves bbox AP and mask AP of 66.9% and 

68.7%, respectively. This indicates that the deep learning 

model is able to successfully detect and classify different 

food objects in the test images. An example of a 

segmentation result of an RGB image consisting of 

different food objects is shown in Fig.7. 

Fig.7a RGB images of food objects.

 
Fig.7b Segmentation results from the RGB images. 

3.2 Point Cloud Extraction 

Fig. 8 (Left) shows an RGB frame of the depth camera 

and Fig. 8 (Right) shows the corresponding extracted 

point cloud of that frame with the depth cloud of the 

surrounding environment. Using rviz for visualization, 

the point cloud messages of each object are published in 

different ROS topics with different colors and they can 

be visualized simultaneously. In this example image, 

there are 4 objects being detected: Japanese lunch box 

(blue), Japanese rice ball (green), potato chip (yellow), 

and Japanese fried chicken (red). 

 

 

 

 

 

 

 

Fig.8 RGB frame of the depth camera (Left) and 

extracted point cloud visualization (Right). 

 

Fig.9 shows the extracted point cloud of a Japanese rice 

ball (onigiri) as seen from different perspectives. The left 

column shows the RGB images and the right column 

shows their corresponding point cloud information. The 

green cluster represents the point cloud of the detected 

object (onigiri) and the white cluster represents the depth 

information of the surroundings (plate, table). The point 

cloud information of each object is streamed in real-time 

as the camera raw data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 Japanese rice ball point cloud visualization 
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3.3 Extraction Method Comparison 

Comparing between the two methods of point cloud 

extraction, the first extraction method shows a faster 

processing time as compared to the second extraction 

method. The processing time comparison of the first 

thousand frames is shown in Fig 8. Measured using timeit 

Python library, the average processing time of the first 

and the second extraction method are 0.149 and 0.211 

seconds (6.71 and 4.74 fps), respectively. This translates 

to about a 1.4x faster processing time for the first 

extraction method. It is worth noting that although the 

second extraction method has worse performance, it is 

easier to understand and implement. Furthermore, the 

point cloud extracted using the second method retains the 

original RGB information of the detected object which 

could be beneficial for other types of analysis such as 

quality assessment or shelf life estimation based on color 

information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of processing time between 

two methods of point cloud extraction. 

4. CONCLUSION 

In this study, we perform instance segmentation on 

Japanese food images dataset using Cascade Mask R-

CNN deep learning model and we also extract the 

corresponding point cloud of the detected objects using 

only one stereo depth camera mounted on a robotic arm 

system. We present and compare two methods for 

extracting point cloud information using different 

subscription topics, which shows trade-offs in 

performance vs. ease of implementation. The resulting 

output data from our process are in a form of ROS 

messages that are published continuously in the robot 

system network. The data should help enable robotic arm 

to manipulate and perform pick-and-place task on food 

object that varies in size, shape, and texture. Additionally, 

the output data can also be applied to other areas of food 

automation involving weight or calorie estimation of 

food objects.  

 

 

 

 

REFERENCES 

[1] Phil Hoden, “Automation in the food industry”, 

https://www.newfoodmagazine.com/article/5424/autom

ation-in-the-food-industry/, 2011. 

[2] Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, 

S., Feng, W., Liu, Z., Shi, J., Ouyang, W., et al.: “Hybrid 

task cascade for instance segmentation”. In Proceedings 

of the IEEE conference on computer vision and pattern 

recognition, 2019. 

[3] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, 

Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, 

Jianping Shi, Wanli Ouyang, Chen Change Loy, and 

Dahua Lin. “mmdetection”. https://github.com/open-

mmlab/mmdetection/, 2018. 

[4] Zhaowei Cai and Nuno Vasconcelos. “Cascade r-cnn: 

Delving into high quality object detection”. In IEEE 

Conference on Computer Vision and Pattern Recognition, 

2018. 

[5] Kaiming He, Georgia Gkioxari, Piotr Dollar, and 

Ross Girshick. “Mask r-cnn”. In IEEE International 

Conference on Computer Vision, 2017. 

[6] SIA5F 7-Axis Articulated Arm 

https://www.motoman.com/en-

us/products/robots/industrial/assembly-handling/sia-

series/sia5f/ 

[7] Intel RealSense Depth Camera D435i datasheet 

https://www.intelrealsense.com/wp-

content/uploads/2020/05/Intel-RealSense-D400-Series-

Datasheet-May-2020.pdf 

[8] Nvidia GeForce RTX 2080 Ti Graphics Card 

https://www.nvidia.com/en-us/geforce/graphics-

cards/rtx-2080-ti/ 

[9] COCO – Common Objects in Context 

http://cocodataset.org/ 

[10] COCO Annotator 

https://github.com/jsbroks/coco-annotator/ 

[11] Adam Paszke, Sam Gross, Soumith Chintala, 

Gregory Chanan, Edward Yang, Zachary DeVito, Zeming 

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 

“Automatic differentiation in pytorch”. In Advances in 

Neural Information Processing Systems Workshop, 2017. 

 

 

 

 

 

 

 

 

342


