
Real-Time Instance Segmentation and Point
Cloud Extraction for Japanese Food

著者 Yarnchalothorn Suthiwat, Damrongplasit
Nattapol, Chumkamon Sakmongkon, Hayashi Eiji

journal or
publication title

Proceedings of the SICE Annual Conference 2020

page range 338-342
year 2020-09
URL http://hdl.handle.net/10228/00008280

1. INTRODUCTION

Food industry is an important part of the economy for

many countries. It represents a large portion of the

country’s GDP, and it is made up of various business

sectors that provide food supply to the population,

including agriculture, manufacturing, food processing,

and food services, just to name a few. By incorporating

innovative technologies to these existing sectors, the

overall efficiency can be improved, while the operating

cost can be reduced. One such example is the use of

automation in the food production process. Automating

food production can help to improve consistency in the

appearance and quality of the food being produced, as

well as to minimize unnecessary waste by using

minimum amount of ingredients. Although the benefit of

automation in food production is clear, there has not been

a wide-scale adoption of such technology in the food

industry, as one might observe in other industries like car

or industrial manufacturing. One reason has to do with

the ability to manipulate food objects. Unlike other

industries where the components are usually uniform in

size and weight, the ingredients that go into food

production are often of diverse size, shape, weight, and

texture, making it difficult to develop a line automation

using traditional methods [1].

Computer vision may help solve these challenging

problems, however. The technology mimics how human

sees and perceives things. One important aspect of

computer vision is image recognition, which involves

different processes such as object detection,

classification, and segmentation. A particular technique,

called instance segmentation, has been used to detect

distinct objects in an image in real-time and the

classification is done at a pixel-level using deep learning

model. Previous studies have shown this approach to be

effective and reliable in detecting food objects [2, 4, 5].

In addition to the output RGB data from a camera

sensor, depth camera technology can also provide 3D

depth information which can be advantageous for

analyzing 3D objects in a surrounding environment. By

combining the segmented RGB data and 3D depth

information together, automatic detection and

classification of food object can be done more accurately,

allowing for better estimation of its shape, weight, size

and, even calories.

The main contribution of the paper is to explore

instance segmentation and point cloud extraction for food

object using data from a single stereo depth camera. In

this study, we use the data from a single stereo depth

camera mounted on a robot end-effector which is used for

performing tasks involving food automation. The outputs

from the camera are RGB color data and depth

information. We perform instance segmentation on the

RGB data by using Cascade Mask R-CNN which is a

powerful deep learning architecture based on

mmdetection [3] benchmark result with the box AP and

mask AP of 41.2% and 35.9% on COCO 2017 test-dev

dataset [4], respectively. The Cascade Mask R-CNN

method is a combination of Cascade R-CNN [4] and

Mask R-CNN [5], which allows classification of RGB

data at a pixel level. Then, we combine the processed data

with depth information to achieve 3D object

segmentation. All of the output information from our

proposed process is published on a robot system network

that can later be used in path planning or grasping posture

estimation. Moreover, the resulting output can be

generalized to other systems that are equipped with a

depth sensing camera, not just limited to a robotic system.

Real-Time Instance Segmentation and Point Cloud Extraction for Japanese Food

Suthiwat Yarnchalothorn1, Nattapol Damrongplasit1, Sakmongkon Chumkamon2, and Eiji Hayashi2

1Department of Mechanical Engineering, Faculty of Engineering,

Chulalongkorn University 254 Phayathai Road, Pathumwan, Bangkok 10330 Thailand

(E-mail: joestw1996@gmail.com)
2Mechanical Information Science and Technology, Kyushu Institute of Technology,

680-4 Kawazu, Iizuka-shi, Fukuoka, 820-8502, Japan

Abstract:

Innovation in technology is playing an important role in the development of food industry, as is evidenced by the growing

number of food review and food delivery applications. Similarly, it is expected that the process of producing and packaging

food itself will become increasingly automated through the use of a robotic system. The shift towards food automation

would help ensure quality control of food products and improve production line efficiency, leading to reduced cost and

higher profit margin for restaurants and factories. One key enabler for such automated system is the ability to detect and

classify food object with great accuracy and speed. In this study, we explore real-time food object segmentation using

stereo depth sensing camera mounted on a robotic arm system. Instance segmentation on Japanese food dataset is used to

classify food objects at a pixel-level using Cascade Mask R-CNN deep learning model. Additionally, depth information

from the sensor is extracted to generate a 3D point cloud of the food object and its surroundings. When combined with

the segmented 2D RGB image, a segmented 3D point cloud of the food object can be constructed, which will help facilitate

food automation operation such as precision grasping of food object with numerous shapes and sizes.

Keywords: Instance Segmentation, Cascade R-CNN, 3D Point Cloud, Food Automation

Proceedings of the SICE Annual Conference 2020
September 23-26, 2020, Chiang Mai, Thailand

978-4-907764-68-5 PR0001/20 ¥400 © 2020 SICE 338

2. EXPERIMENTS

2.1 Robot System

The robot system used in this experiment is a 7-Axis

articulated arm robot system from Yaskawa Electric

Corporation, Japan, with a model name Motoman SIA5F

[6]. It supports many applications such as assembling,

machine tending, material handling, part transferring,

and picking-and-placing with a payload of up to 5.0 kg.

It has a horizontal reach of 559 mm and a vertical reach

of 1007 mm. The controller model is FS100. The robotic

arm is connected to and controlled by several computers

used for performing different tasks such as path planning

and gripper controlling. The entire robot system is

operated and communicated on Robot Operating System

(ROS) network.

Fig.1 The robot system with a stereo depth camera

mounted at the end-effector.

Several depth cameras are set up in the system to

perform workspace calibration and computer vision. One

of the cameras fixed near the end-effector is a stereo

depth camera. It is used for computer vision to enhance

object manipulation task like pick-and-place with a

robotic arm. The model of this depth camera used is Intel

RealSense D435i [7]. It is connected via a USB to a

desktop computer running high performance GPU,

Nvidia GeForce RTX 2080Ti, which is suited for

performing high computation tasks like deep learning [8].

The data flow for the image processing of our system

is shown in Fig.2. Computer A directly receives the raw

data from the depth camera which includes RGB and

depth data. The RGB data are used for instance

segmentation and then combined with the depth data to

create 3D point cloud information. The processed data

are sent to other computers in the network to be used in

other processes like path planning and grasp posture

optimization.

Fig.2 Data flow example of image processing part in

robot system.

2.2 Dataset

The deep learning is conducted on our curated image

dataset annotated in the same style as COCO dataset via

COCO-Annotator [9,10]. The dataset consists of 807

images, of which 765 images are annotated, while the rest

are images of the laboratory environment. There are 13

categories in the dataset: Japanese lunch box (Bento Box),

bologna sausage, potato chip, Japanese fried chicken

(Karaage), Japanese rice ball (Onigiri), and 8 different

kinds of sushi which are shrimp (Ebi), squid (Ika), red

caviar (Ikura), salmon, Japanese omelette (Tamago), tuna,

eel (Unagi), and sea urchin roe (Uni). The detail of the

dataset is summarized in Table 1. Examples of annotated

images of the food objects belonging to the different

categories are shown in Fig.3.

Table 1: Dataset detail.

Fig.3 Examples of annotated food images.

2.3 Deep Learning Implementation

In this experiment, we use mmdetection [3] as a

framework for performing deep learning. The

architecture used for training is Cascade Mask R-CNN,

implemented with PyTorch [11] and mmdetection. The

backbone is ResNet-50. The detectors are trained on a

single GeForce RTX 2080Ti (three images per GPU) for

1000 epochs with an initial learning rate of 0.02. The

trained model can also be applied for testing in the same

framework.

Category Images Annotations

Train Val Train Val

Bento box 142 17 142 17

Bologna 27 3 195 23

Potato chip 55 9 82 11

Ebi nigiri 105 11 139 17

Ika nigiri 101 10 138 13

Ikura nigiri 49 6 84 9

Karaage 104 16 474 59

Onigiri 96 10 325 27

Salmon nigiri 103 13 197 21

Tamago nigiri 98 10 159 19

Tuna nigiri 53 4 117 7

Unagi nigiri 49 5 118 11

Uni nigiri 49 6 104 12

Surroundings 38 4 - -

339

2.4 Point Cloud Extraction via Depth Topic

The depth camera streams data which consist of RGB

and depth frames that can be used to generate point cloud

ROS message. We use realsense2_camera package to

access data from the camera. The package’s node, called

/camera/realsense2_camera, publishes raw camera data

which are RGB, depth, and camera information to

different ROS topics. The /pointcloud_masking node

subscribes to these topics and accepts the data as inputs

which will then be transformed into point cloud

information of food objects. The subscriptions are done

via callback functions. The RGB data are used to perform

inference with the trained model, providing detection and

segmentation information (mask) of the food objects

being detected. These masks are binary masks in an array

structure with the same dimension as the original RGB

image, but the values in the array are stored in Boolean

format as true or false instead. The true value indicates

that the pixel is in a segmented object, and vice versa.

This binary mask is then applied to the depth data from

the subscribed depth topic. The depth data is an array

consisting of depth value for each pixel and it has the

same dimension as the binary mask array. This

processing step is demonstrated with a 6x8 size image as

shown in Fig.4, where Fig.4a represents a mask array,

Fig.4b represents a depth frame, and Fig.4c represents the

resulting depth frame after applying the mask array.

(a) 6x8 Mask array (b) 6x8 Depth frame

(c) Depth frame after applying the mask

Fig.4 Process of applying mask to a depth frame

The depth values in the array are in millimeters and its

actual dimensions are H x W x 1, where H and W

represent the height and width of the image, respectively.

After applying the mask to the depth frame, the depth

value outside the mask area will be set to zero. At this

point, we have retained only the depth information of the

desired area. The resulting depth frame is then

transformed from a pixel coordinate into a metric

coordinate in order to create 3D point cloud. To

accomplish this, we need the camera intrinsic parameters

which are used to map camera coordinates into image

plane (world points). The camera intrinsic parameters are

obtained from /camera/color/camera_info ROS topic via

a callback function. The metric coordinate can be

calculated according to Eq. (1).

𝑧 = 𝑑𝑒𝑝𝑡ℎ 1000⁄

𝑥 = 𝑧(𝑢 − 𝐾13) 𝐾11⁄ (1)

𝑦 = 𝑧(𝑣 − 𝐾22) 𝐾21⁄

, where x, y, z are the metric coordinates of a point, u

and v are the horizontal and vertical pixel coordinates of

a point, and K is the camera intrinsic matrix, respectively.

Once we have obtained a set of 3D points in metric

coordinates, we are able to create

sensor_msgs/PointCloud2 to publish the information in

the ROS system. In this case, the point cloud information

of each category is published on different topics. For

examples, /pointcloud_1 is a point cloud topic for

category one, and /pointcloud_2 is a point cloud topic for

category two. Furthermore, we can colorize the point

cloud for each category to enhance visualization by

adding a floating RGB value to each point in the set of

3D points, so that each point will now contain x, y, z, and

an RGB value. The ROS diagram for this node is shown

in Fig.5.

2.5 Centroid of Point Cloud

In the previous section, we discussed how individual

point clouds are extracted from a depth camera data.

Using the extracted point cloud data, we can calculate the

centroid position of a point cloud by simply taking the

average values of each coordinates x, y, and z values

belonging to the segmented object. Then, we publish the

centroid position of the segmented object in a ROS topic

using /visualization_msgs/Marker ROS message. This

information is especially useful for food automation

involving pick-and-place operations.

Fig.5 First method for point cloud extraction in ROS

via Depth Topic

2.6 Point Cloud Extraction via Point Cloud Topic

In the previous section, we explained one method to

obtain food object’s point cloud information and publish

that information in a ROS environment. There is also an

alternative method that can be used to extract point cloud

as illlustrated in Fig.6.

This second method differs from the first method in the

way that it subscribes to the point cloud topic instead of

the depth topic. One advantage of using this second

method is that it simplifies the calculation in the

/pointcloud_masking node. If a point cloud topic

provides the depth registered point cloud message, we

can easily obtain the point cloud of the desired objects by

F F F F F F F F

F F F T T F F F

F F T T T T F F

F F T F T T F F

F F F F F F F F

F F F F F F F F

Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18

Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28

Z31 Z32 Z33 Z34 Z35 Z36 Z37 Z38

Z41 Z42 Z43 Z44 Z45 Z46 Z47 Z48

Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58

Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68

0 0 0 0 0 0 0 0

0 0 0 Z24 Z25 0 0 0

0 0 Z33 Z34 Z35 Z36 0 0

0 0 Z43 0 Z45 Z46 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

340

applying the mask array to the point cloud array directly.

The depth registered point cloud is an array with a

dimension of H x W x 4. The number 4 implies each point

has 4 attributes, which are x, y, z, and RGB values of a

point. With this kind of point cloud information, we can

apply a mask to it in a similar manner as previously

shown in Fig.4. However, if a point cloud is not depth

registered, we will need to perform additional calculation.

For example, after the inference step, we find all the

possible contours (in a closed form) in the mask image

and pick out the largest contour. Next, we generate a

polygon of this contour, consisting of a set of vertices of

the contour boundary. Then, we filter the desired points

by determining only the points in the points array that

reside in the polygon. Each point in the point cloud

contains an RGB color from the camera’s RGB data.

Hence, the object in the point cloud format can be

displayed with its true color instead of a mono color as is

the case with the first point cloud extraction method.

Fig.6 Second method for point cloud extraction in

ROS via Point Cloud topic.

3. RESULTS AND DISCUSSION

3.1 Instance Segmentation Model

The trained instance segmentation is tested with a set

of 87 images with the score threshold of 0.8. The result is

evaluated using mean average precision metric (mAP).

This model achieves bbox AP and mask AP of 66.9% and

68.7%, respectively. This indicates that the deep learning

model is able to successfully detect and classify different

food objects in the test images. An example of a

segmentation result of an RGB image consisting of

different food objects is shown in Fig.7.

Fig.7a RGB images of food objects.

Fig.7b Segmentation results from the RGB images.

3.2 Point Cloud Extraction

Fig. 8 (Left) shows an RGB frame of the depth camera

and Fig. 8 (Right) shows the corresponding extracted

point cloud of that frame with the depth cloud of the

surrounding environment. Using rviz for visualization,

the point cloud messages of each object are published in

different ROS topics with different colors and they can

be visualized simultaneously. In this example image,

there are 4 objects being detected: Japanese lunch box

(blue), Japanese rice ball (green), potato chip (yellow),

and Japanese fried chicken (red).

Fig.8 RGB frame of the depth camera (Left) and

extracted point cloud visualization (Right).

Fig.9 shows the extracted point cloud of a Japanese rice

ball (onigiri) as seen from different perspectives. The left

column shows the RGB images and the right column

shows their corresponding point cloud information. The

green cluster represents the point cloud of the detected

object (onigiri) and the white cluster represents the depth

information of the surroundings (plate, table). The point

cloud information of each object is streamed in real-time

as the camera raw data.

Fig.9 Japanese rice ball point cloud visualization

341

3.3 Extraction Method Comparison

Comparing between the two methods of point cloud

extraction, the first extraction method shows a faster

processing time as compared to the second extraction

method. The processing time comparison of the first

thousand frames is shown in Fig 8. Measured using timeit

Python library, the average processing time of the first

and the second extraction method are 0.149 and 0.211

seconds (6.71 and 4.74 fps), respectively. This translates

to about a 1.4x faster processing time for the first

extraction method. It is worth noting that although the

second extraction method has worse performance, it is

easier to understand and implement. Furthermore, the

point cloud extracted using the second method retains the

original RGB information of the detected object which

could be beneficial for other types of analysis such as

quality assessment or shelf life estimation based on color

information.

Figure 8. Comparison of processing time between

two methods of point cloud extraction.

4. CONCLUSION

In this study, we perform instance segmentation on

Japanese food images dataset using Cascade Mask R-

CNN deep learning model and we also extract the

corresponding point cloud of the detected objects using

only one stereo depth camera mounted on a robotic arm

system. We present and compare two methods for

extracting point cloud information using different

subscription topics, which shows trade-offs in

performance vs. ease of implementation. The resulting

output data from our process are in a form of ROS

messages that are published continuously in the robot

system network. The data should help enable robotic arm

to manipulate and perform pick-and-place task on food

object that varies in size, shape, and texture. Additionally,

the output data can also be applied to other areas of food

automation involving weight or calorie estimation of

food objects.

REFERENCES

[1] Phil Hoden, “Automation in the food industry”,

https://www.newfoodmagazine.com/article/5424/autom

ation-in-the-food-industry/, 2011.

[2] Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun,

S., Feng, W., Liu, Z., Shi, J., Ouyang, W., et al.: “Hybrid

task cascade for instance segmentation”. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, 2019.

[3] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong,

Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jianping Shi, Wanli Ouyang, Chen Change Loy, and

Dahua Lin. “mmdetection”. https://github.com/open-

mmlab/mmdetection/, 2018.

[4] Zhaowei Cai and Nuno Vasconcelos. “Cascade r-cnn:

Delving into high quality object detection”. In IEEE

Conference on Computer Vision and Pattern Recognition,

2018.

[5] Kaiming He, Georgia Gkioxari, Piotr Dollar, and

Ross Girshick. “Mask r-cnn”. In IEEE International

Conference on Computer Vision, 2017.

[6] SIA5F 7-Axis Articulated Arm

https://www.motoman.com/en-

us/products/robots/industrial/assembly-handling/sia-

series/sia5f/

[7] Intel RealSense Depth Camera D435i datasheet

https://www.intelrealsense.com/wp-

content/uploads/2020/05/Intel-RealSense-D400-Series-

Datasheet-May-2020.pdf

[8] Nvidia GeForce RTX 2080 Ti Graphics Card

https://www.nvidia.com/en-us/geforce/graphics-

cards/rtx-2080-ti/

[9] COCO – Common Objects in Context

http://cocodataset.org/

[10] COCO Annotator

https://github.com/jsbroks/coco-annotator/

[11] Adam Paszke, Sam Gross, Soumith Chintala,

Gregory Chanan, Edward Yang, Zachary DeVito, Zeming

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

“Automatic differentiation in pytorch”. In Advances in

Neural Information Processing Systems Workshop, 2017.

342

