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Abstract—Uncertainty is an ever present challenge in life. To 
meet this challenge in data analysis, we propose a method for 
detecting anomalies in data. This method, based in part on 
Variational Autoencoder, identifies spiking raw data by means of 
spectrum analysis. Time series data are examined in the 
frequency domain to enhance the detection of anomalies. In this 
paper, we have used the standard data sets to validate the 
proposed method. Experimental results show that the 
comparison of the frequency domain with the original data for 
anomaly detection can improve validity and accuracy on all 
criteria. Therefore, analysis of time series data by combining 
Variational Autoencoder and frequency domain spectrum 
methods can effectively detect anomalies. 

Contribution— We have proposed an anomaly detection method 
based on the time series data analysis by combining Variational 
Autoencoder and Spectrum analysis, and have benchmarked the 
method with reference to recent related research. 

Keywords—Anomaly Detection, Variational Autoencoder, Time 
Series Data 

I.  INTRODUCTION 

Research in artificial intelligence has spurred advances in 
algorithms for identifying trends in complex data sets. 
However, the reliability and accuracy of these algorithms 
depend on the quality of the input data and metadata obtained 
from observations in the real world. Clearly data is essential for 
decision making, but some data sets are better than others.   

Inescapably, data sets contain uncertain or noisy 
information, which may reduce the accuracy of analysis. Thus 
it is critical to detect and avoid the use of abnormal data. Our 
research focuses on the development of methods for 
determining uncertain or anomalous data to help ensure the 
validity of data driven systems in areas of practical application 
in areas such as factory automation, medicine, and business.  

Anomaly detection is analogous to outlier detection in 
traditional statistics and is a species of novelty detection in an 
emerging data analysis area. Anomaly detection attempts to 
identify data occurrences that deviate from expected patterns. 
Identification of anomalies is of importance in a number of 
areas, including credit card fraud, medical diagnosis, network 
intrusion, sensor network faults, and others. 

Various methods for anomaly detection focusing on 
dimension reduction have been developed. As the name 
suggests, these methods aim to reduce the number features 
needed to characterize the data, retaining only the critical ones. 
This approach is useful in many situations requiring low 
dimensional data, and can be performed by selection or 
extraction. One of the earliest of these methods is principal 
component analysis (PCA). The Autoencoder is a new method 
for dimensionality reduction, which is similar to but more 
flexible than PCA. An autoencoder is a feedforward neural 
network in which the input is the same as the output. 
Dimension reduction is achieved by stacking up layers in the 
process of encoding and decoding the data. By reducing the 
number of units in a certain layer, it is expected that the units 
will extract features that represent the data well [1].  

In recent years, the Variational Autoencoder (VAE) has 
been developed as a generative model based on Autoencoder. 
This method offers an effective way of producing a faithful 
representation of data in a non-linear and noisy environment, 
suitable for practical applications. VAE outperforms 
autoencoders and PCA, as it provides a probability 
measurement instead of a reconstruction error as anomaly 
scores. Moreover, VAE also provides latent feature vectors [2], 
which could extract the data’s key features.  

In this work, we propose an anomaly detection method 
using variational autoencoders (VAE) with spiking raw data 
and the frequency domain for analysis and prediction. We 
validate the proposed method by comparing the results of VAE 
with the original data derived from factory automation, wafer 
fabrication for integrated circuits, and ECG data from medical 
applications. The validation and verification are based on AUC 
(area under the ROC curve), precision, recall, and F1-score 
criteria.   

II. BACKGROUND AND RELATED WORK 

Anomaly detection is an active area of research and has 
been investigated extensively, see, for example, [3]. It has been 
applied in a number of different fields. In factory operations 
dependent on robots, anomaly detection is used to analyze and 
detect failures in manipulation tasks such as pick and place. It 
is also used in automated aerial surveillance, as a method 
known as detecting anomalies and cognizant path planning. 
Popular techniques utilizing classification approaches that learn 
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a discriminative boundary around standard data, such as SVMs 
[4] for prediction require a set of vectors as input to represent 
time-series data. Therefore, it uses a time delay embedding 
process to transform the time-series into phase space. The time 
delay embedding process involves identifying relatively short 
overlapping subsequences drawn from a given long sequence. 
All vectors are projected onto an orthogonal subspace, acting 
as a high-pass filter used to exclude low-frequency components, 
thus allowing only high-frequency ones [5].  

Another method uses the fidelity of reconstruction to 
examine whether the data sets are abnormal. A major example 
is Principal Component Analysis (PCA) [4]. PCA is a 
dimensionality reduction technique that works by transforming 
a large variable set into a small variable set that still contains 
most of the information in the original set. One of the latest 
techniques for dimensionality reduction is Autoencoder, which 
is a neural network approach. The Autoencoder has much in 
common with PCA. However, the autoencoder method is 
capable of modeling complex non-linear functions, whereas 
PCA is essentially a linear transformation. Yokkampon et al. 
[6] propose an autoencoder with spiking in the frequency 
domain to detect anomalies. This method offers good anomaly 
detection performance of time series data by combining 
Variational Autoencoder and frequency domain spectrum 
analysis. 

Another novel approach is Variational Autoencoder (VAE) 
[7]. Unlike autoencoders, VAE can reconstruct the input 
without using an encoding-decoding process. Instead, it defines 
the probability distribution on the latent vector and learns a 
distribution in order to match the distribution of outputs 
inferred by the decoder to the observed data. Then, it can 
generate new data by sampling this distribution. Bayer and 
Osendorfer [8] proposed the recurrent neural networks with 
latent variables by using motion capture data to model time 
series data. Soelch et al. [9] proposed the Stochastic Recurrent 
Network (STORN) to detect and predict robot anomalies using 
unimodal signals. An and Cho [1] proposed the reconstruction 
probability from the variational autoencoder to predict anomaly 
detection and introduced a new probabilistic anomaly score. 
Zhang et al. [10] proposed a new technique using the 
variational autoencoder together with re-Encoder and the 
Latent Constraint network (VELC) to perform time series 
anomaly detection. This method offers good performance. 

In our current research, we propose the Variational 
Autoencoder technique to compare spiking raw data with 
original data for detection of anomalies. This approach makes 
use of the frequency domain to improve performance. We 
compare our results with those of previous research [6], which 
has followed a somewhat different approach, but also made use 
of frequency domain analysis. Analysis in the frequency 
domain can determine the absolute stability and relative 
stability of the closed-loop system. It can be extended for 
application to nonlinear control systems analysis and nonlinear 
control systems design. We also compare our results with 
research reported in [10], which used variational autoencoder 
but did not make use of frequency domain analysis. Our 
approach is designed to avoid overfitting and to make sure that 
the latent space is suitable for enabling the generative process. 
Therefore, VAE can be defined as an autoencoder whose 

training is regularized, which implies that it can design the 
complex generative data models and effect a fit to large 
datasets. These are the reasons that VAE works better than any 
other method currently available. To justify this claim, we 
briefly explain the VAE and frequency domain analysis in this 
section. 

A. Variational Autoencoder 

Autoencoder is a neural network architecture consisting of 
two parts, the encoder, and decoder which pass data through a 
‘bottleneck’, and implement training designed to lose the least 
amount of information during the encoder-decoder process. 
The training aims to reduce reconstruction error, which uses 
gradient descent over the network parameters. Because of over-
fitting, the latent space of an autoencoder can be highly 
irregular. As a result, it is not feasible to rely on the generative 
process consisting of sampling a point from the latent space 
and making it through the decoder to get the new data. 

Variational autoencoder (VAE) is an autoencoder that 
addresses the anomaly problem of the latent space by having 
the encoder return a distribution rather than just a single point, 
and by including a loss function and regularization term for 
that distribution to ensure that a better organization of the latent 
space. 

VAE is a popular and widely used method. VAE learns 
how to represent complex data without supervision by using a 
deep neural network (Kingma and Welling, 2013) [7]. To 
ensure that the latent space of VAE has suitable properties for 
the generation of the new data, VAE has to ensure that the 
distribution produced by the encoder is regularized during the 
training. Note that the term “variational” is derived from the 
close relationship between regularization and the variational 
inference approach based on statistical properties. 

Variational autoencoder has three parts, namely, encoder, 
decoder, and loss function. Both encoder and decoder are 
neural networks. An encoder’s input is a data point ,x  an 
encoder’s output is a latent representation ,z having weights 
and biases  . The encoder aims to “encode” the data into a 
latent representation space ,z  which has a lower dimension 
than the data (input). In general, the latent space is commonly 
referred to as a “bottleneck”. The encoder learns to compress 
the data from input to lower-dimensional space. The encoder is 
represented by the conditional probability ( )q z x . 

The decoder’s input is denoted by ,z  the decoder’s output 
is denoted by a datapoint .x  Weights and biases are represented 
by , and ( )p x z  represents the decoder. The decoder aims to 

“decode” the low dimensional latent space representation z  
into the data point x  (output).  

The loss function of VAE uses negative log-likelihood and 

a regularizer. The overall loss is given  by 
1

N

ii
l

   a total of  N  

datapoints. A loss function il  for datapoint ix  is given by: 

 ( )( , ) [log ( )] ( ) ( )
ii i iz q z xl E p x z KL q z x p z

         (1) 

Authorized licensed use limited to: Chulalongkorn University provided by UniNet. Downloaded on March 23,2021 at 04:55:31 UTC from IEEE Xplore.  Restrictions apply. 



 

The first term represents the reconstruction loss of the 
negative log-likelihood of the i -th data point. This term 
prompts the decoder to reconstruct the data. Poor 
reconstruction will incur many costs associated with this loss 
function. 

The divergence of Kullback-Leibler is the regularizer, 
which is included in the second term of the loss function. It is 
the difference between the encoder’s distribution ( )q z x  and 

( )p z , and constitutes a measure of how close q  is to p . 

VAE is a highly powerful generative tool because it can be 
used with various data types such as sequence or non-sequence, 
continuous or non-continuous, even labeled or completely 
unlabeled data. 

B. Frequency Domain Analysis 

The frequency domain is the domain of analysis of 
mathematical functions or signals transformed from the time 
domain. The frequency domain has played an important role 
in communications, engineering, electronics, image processing, 
statistics,  and various other fields. It is typically used with the 
analysis of periodic signals or functions recorded over time.  

In general, we can observe the relationship between 
amplitude and frequency. Wave amplitude or vibration 
amplitude is shown as a positive number, with the highest 
amplitude being a measure of the deviation from the median. 
These signals can also be expressed in power versus frequency 
format. This will appear on the spectrum analyzer, which can 
analyze the frequency domain. 

We can identify the key point in all datasets by analyzing 
the frequency domain without having to examine all variations 
occurring in the time domain. The graph of frequency domain 
expresses either the phase shift or signal magnitude at each 
given frequency. It expresses the number of signals in each 
specified frequency band over a range of frequencies. 
Therefore, signals can be explained as the sum of many sine 
waves (“Fourier series”) with different pulses, phases, and 
amplitudes. 

Discrete Fourier Transform (DFT) is most commonly used 
in the processing, especially in the digital signal, both real-
time or non-real-time. In the frequency domain, we can use 
the DFT to analyze and design the system. Note that DFT is 
attractive because efficient algorithms exist for its 
computation. The so-called Fast Fourier Transform (FFT) is of 
particular importance. 

FFT has been widely used in transforming signal 
representations between time and frequency domains. FFT 
transforms the signals into the individual frequency 
components and also provides the frequency information 
about the signal. The frequency components come from 
sampling the signal over a period of time and then breaking it 
down into frequency components. Each component is a single 
sinusoidal oscillation at a particular frequency, with certain 
amplitude and phase. FFT is most commonly used in the 
analysis of anomalies in operations such as quality control and 

machine condition checking, as well as other applications. An 
FFT algorithm can determine the DFT of input sequences 
much faster than direct calculation. 

FFT computes the DFT defined as follows: 

     
1

2 /

0

n
j ik n

k i
i

H x e 




                                 (2) 

where j  represents the complex number 1 , and 

n  denotes the number of points in time and frequency. 

III. PROPOSED METHOD 

The proposed system for improving anomaly detection, and 
the data sets and the evaluation metric used, are described here. 
Fig. 1 shows the architecture of the proposed method. As 
explained earlier, this system combines the variational 
autoencoder approach with the analysis of spiking raw data in 
the analysis of signal (frequency domain) for purposes of 
identifying anomalies. 

The system consists of three parts. First is the input, second 
is the variational autoencoder method, and the last is the set of 
predicted results. The input part consists of original time series 
data, which is transformed into the frequency domain in order 
to visualize the spike plot as a spectrum. The time series data, 
including FFT values of each data set, are then combined. Next 
step is to input the two groups, i.e., original data and original 
data combined with the frequency domain representation, to 
the variational autoencoder in order to identify anomalies by 
constructing the encoder and decoder. Next the results from the 
reconstruction value of the variational autoencoder are obtained. 

 
Figure 1.  Concept of the proposed method. 

A. Spike Plot 

The Fourier transform is represented as spikes in the 
frequency domain, the spike height showing the amplitude of 
the wave of that frequency. By converting an input signal to the 
frequency domain, a spike like representations in the plot 
denote the frequency components of the signal. The Larger 
spike length, the higher frequency component, and the smaller 
the spike length, the lower the frequency component. The 
spikes show the number of sections of horizontal or vertical 
lines with a constant or variable height. For example, if we 

Authorized licensed use limited to: Chulalongkorn University provided by UniNet. Downloaded on March 23,2021 at 04:55:31 UTC from IEEE Xplore.  Restrictions apply. 



 

generated a sum of four sine waves time signal, we will get the 
spectrum with spikes corresponding to each of the sine 
components. 

Spikes are typically used in time series plots and can also 
show deviation from a general value such as average, mode, 
mean. They are used, for example, in train-spike visualizations 
in neurophysiology. 

B. Datasets 

The results reported in this paper made use of ten time 
series data sets obtained from a UCR public dataset [11] and a 
UCI public dataset [12]. All data sets were given in time series 
format, in which every data point is labeled. We define the 
minority class as an anomaly class. The details about data sets 
are shown in Table 1. In our analysis of each data set, 80% of 
normal data was used in the training part and 20% of the 
normal and all anomaly data were used in the testing. 

TABLE I.  THE DETAILS OF TIME SERIES DATA SETS 

Data sets 
Time Series 

Length 
Total 

Instances 
Anomaly 

Rate 
ItalyPowerDemand 
Wafer 
SonyAIBORobotSurface2 
ECGFiveDays 
TwoLeadECG 
MoteStrain 
Arrhythmia 

24 
152 
65 

136 
82 
84 

274 

1096 
7164 
980 
884 

1162 
1272 
452 

0.49 
0.11 
0.38 
0.50 
0.50 
0.46 
0.40 

C. Benchmark Method 

The proposed method was evaluated using standard criteria 
of anomaly detection, namely, area under the curve of the 
receiver operating characteristic, precision, recall, and F1-
Score, computed as follows: 

Precision
TP

TP FP



                          (3) 

     Recall
TP

TP FN



                               (4) 

                
Precision×Recall

F1 Score 2
Precision + Recall

                 (5) 

where TP denotes accurately detected anomalies, FP  
stands for the falsely detected anomalies, TN  denotes the 
accurately defined normal, and FN , the falsely defined normal. 

IV. EXPERIMENTAL RESULTS 

Performance of the proposed method for detecting 
anomalies in time series data using the Variational autoencoder 
approach is described in this section. In the combined 
frequency case, we have calculated the FFT values of all data 
sets and spike plots. Fig. 2 shows the spike plot example in 
which image features are extracted by spectrum analysis in 
real-time. The result is from the wafer dataset for the spike plot. 
We extract the data over time by sampling. 

 
Figure 2.  The spike plot example. 

The anomaly detection experiment was conducted to 
improve the accuracy in seven time series datasets using area 
under the curve (AUC) criteria. In Fig. 3, the blue line 
represents the AUC value of the original data, and the orange 
line represents the AUC value of original data combined with 
frequency domain information. It is clear that our proposed 
method can improve outcomes in AUC values to a greater 
extent than the original data from all data sets. Thus, our 
proposed methods can be used to improve the effectiveness of 
anomaly detection in time series data. 

 

 
(a) ItalyPowerDemand 

 
(b) Wafer 
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(c) SonyAIBORobotSurface 2 

 
(d) ECGFiveDays 

 
(e) TwoLeadECG 

 
(f) MoteStrain 

 
(g) Arrhythmia 

Figure 3.  AUC comparison between original data and combined frequency 
domain. 

Table 2. shows the summary and comparison results of 
anomaly detection. We presented the results with 7 data sets for 
discussion. The results show that our method could improve 
performance relative to relying on original data for all criteria 
and data sets. For the Arrhythmia data set, the AUC value 
associated with original data was 64.44%, whereas our method 
gave an improved result of 81.58%. In addition, the F1-Score 
of original data was only 70.71% compared with 84.75% for 
our method. The Wafer dataset results for AUC, Precision, 
Recall, and F1-Score all show our method to be superior. 
Moreover, SonyAIBORobotSurface2, ECGFiveDays, and 
TwoLeadECG datasets show perfect recall results, and the 
precision results for the MoteStrain dataset are also perfect. 

We also compared current results to those obtained in 
previous research reported in “Autoencoder with spiking in 
frequency domain for anomaly detection of uncertainty event” 
[6], which used a somewhat different method. For three 
common datasets, the method proposed in this paper can 
improve the accuracy of all results over those reported in our 
previous paper. The results obtained in the earlier research are 
shown in Table 3, for comparison with those of the improved 
method displayed in Table 2.  

Yet another comparison is presented here, i.e., our latest 
results with those reported in “Time Series Anomaly Detection 
with Variational Autoencoders” [10] in 2019. There are six 
common datasets utilized in the application of our method, 
namely, ItalyPowerDemand, Wafer, ECGFiveDays, 
TwoLeadECG, MoteStrain, and Arrhythmia. The results in 
terms of AUC are shown in Table 4. These results show that 
the proposed method can improve the AUC values more than 
the approach taken in [10] for all six datasets. In general, the 
results show that the proposed system constitutes an 
improvement of performance in detecting anomalies for time 
series data relative to the results reported in the literature. 

V. CONCLUSION 

The method proposed here uses Variational autoencoder 
method based on negative log-likelihood loss function together 
with a comparison between the original data and frequency 
spectrum data, as well as visualization of the spike spectrum 
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plot to estimate the anomalies according to the AUC, Precision, 
Recall and F1-Score criteria. Experiments on anomaly 
detection indicate that our proposed method can enhance the 
validity and accuracy of detecting anomalies on all criteria 
through the use of spiking spectrum data based on frequency 
analysis. Therefore, the incorporation of frequency domain 
analysis has been shown to improve anomaly detection in time 
series data. 

For future research, we intend to create various custom loss 
functions for use in variational autoencoder with time series 
data to detect anomalies. 
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TABLE II.  VAE COMPARE OF ORIGINAL DATA AND COMBINED FREQUENCY DOMAIN 

 
 
 
 
 
 
 
 
 

TABLE III.  THE AUTOENCODER RESULTS FROM OUR PREVIOUS PAPER 

 
 
 
 
 
 

TABLE IV.  COMPARING AUC OF VAE RESULTS FROM THE RECENT RESEARCH 

 

Data sets 
Original Data Combined Frequency Domain 

AUC Precision Recall F1-Score AUC Precision Recall F1-Score 

ItalyPowerDemand 
Wafer 
SonyAIBORobotSurface2 
ECGFiveDays 
TwoLeadECG 
MoteStrain 
Arrhythmia 

0.8344 
0.9881 
0.9242 
0.9155 
0.9561 
0.8435 
0.6444 

0.9643 
0.9787 
0.8846 
0.8624 
0.9333 
1.0000 
0.7447 

0.7941 
1.0000 
0.9583 
0.9615 
1.0000 
0.9556 
0.6731 

0.8710 
0.9892 
0.9200 
0.9091 
0.9655 
0.9773 
0.7071 

0.9237 
1.0000 
0.9886 
0.9807 
0.9983 
0.9198 
0.8158 

0.9667 
1.0000 
0.9600 
0.9642 
0.9688 
1.0000 
0.8621 

0.9355 
1.0000 
1.0000 
1.0000 
1.0000 
0.9778 
0.8333 

0.9508 
1.0000 
0.9796 
0.9818 
0.9841 
0.9888 
0.8475 

Data sets 
Original Data Combined Frequency Domain 

AUC Precision Recall F1-Score AUC Precision Recall F1-Score 

ItalyPowerDemand 
Wafer 
SonyAIBORobotSurface2 

0.5917 
0.9820 
0.8999 

0.7091 
0.7349 
0.9043 

0.5166 
0.9979 
0.7647 

0.5977 
0.8464 
0.8287 

0.9031 
0.9963 
0.9520 

0.9727 
0.8008 
0.9565 

0.7279 
1.0000 
0.8333 

0.8327 
0.8894 
0.8907 

Data sets OUR* ANOGAN ALAD MLP-VAE IF 

ItalyPowerDemand 
Wafer 
ECGFiveDays 
TwoLeadECG 
MoteStrain 
Arrhythmia 
KDD99 
GunPointAgeSpan 
ToeSegmentation2 
Herring 

0.761 
0.965 
0.970 
0.891 
0.840 
0.758 
0.958 
0.881 
0.846 
0.659 

0.516 
0.558 
0.970 
0.554 
0.746 
0.576 
0.887 
0.515 
0.547 
0.488 

0.538 
0.587 
0.694 
0.515 
0.504 
0.515 
0.950 
0.547 
0.544 
0.569 

0.768 
0.790 
0.910 
0.731 
0.750 
0.747 
0.622 
0.821 
0.816 
0.627 

0.763 
0.847 
0.678 
0.760 
0.762 
0.530 
0.929 
0.612 
0.787 
0.698 
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