
A shared synapse architecture for efficient
FPGA implementation of autoencoders

著者 Suzuki Akihiro, Morie Takashi, Tamukoh Hakaru
journal or
publication title

PLoS ONE

volume 13
number 3
page range e0194049-1-e0194049-22
year 2018-03-15
URL http://hdl.handle.net/10228/00008262

doi: https://doi.org/10.1371/journal.pone.0194049

RESEARCH ARTICLE

A shared synapse architecture for efficient

FPGA implementation of autoencoders

Akihiro Suzuki*, Takashi Morie, Hakaru Tamukoh

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino,

Wakamatsu-ku, Kitakyushu 808-0196, Japan

* suzuki-akihiro@edu.brain.kyutech.ac.jp

Abstract

This paper proposes a shared synapse architecture for autoencoders (AEs), and imple-

ments an AE with the proposed architecture as a digital circuit on a field-programmable gate

array (FPGA). In the proposed architecture, the values of the synapse weights are shared

between the synapses of an input and a hidden layer, and between the synapses of a hidden

and an output layer. This architecture utilizes less of the limited resources of an FPGA than

an architecture which does not share the synapse weights, and reduces the amount of syn-

apse modules used by half. For the proposed circuit to be implemented into various types of

AEs, it utilizes three kinds of parameters; one to change the number of layers’ units, one to

change the bit width of an internal value, and a learning rate. By altering a network configu-

ration using these parameters, the proposed architecture can be used to construct a stacked

AE. The proposed circuits are logically synthesized, and the number of their resources is

determined. Our experimental results show that single and stacked AE circuits utilizing the

proposed shared synapse architecture operate as regular AEs and as regular stacked AEs.

The scalability of the proposed circuit and the relationship between the bit widths and the

learning results are also determined. The clock cycles of the proposed circuits are formu-

lated, and this formula is used to estimate the theoretical performance of the circuit when

the circuit is used to construct arbitrary networks.

Introduction

Deep neural networks (DNNs) are known for their high levels of performance in machine

learning applications [1]. DNNs are general models of deeply stacked neural networks and

include multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs), restricted

Boltzmann machines (RBMs) and autoencoders (AEs).

MLPs are the most basic DNNs model and they are applied to classification tasks [2]. CNNs

are modeled on the structure of the human visual cortex and mainly focus on image recogni-

tion tasks [3], while RBMs are generative models that can learn a probability distribution over

an input dataset [1, 4]. AEs obtain a representation for an input dataset and have several ver-

sions [5–8]. AEs are used in a wide variety of different applications; low-light image enhance-

ment [9] and dimensionality reduction for image processing [10] in image processing domain;

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Suzuki A, Morie T, Tamukoh H (2018) A

shared synapse architecture for efficient FPGA

implementation of autoencoders. PLoS ONE 13(3):

e0194049. https://doi.org/10.1371/journal.

pone.0194049

Editor: Jun Ma, Lanzhou University of Technology,

CHINA

Received: November 6, 2017

Accepted: February 25, 2018

Published: March 15, 2018

Copyright: © 2018 Suzuki et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by JSPS

KAKENHI Grant Number 15H01706, URL https://

kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-

15H01706/; JSPS KAKENHI Grant Number

17H01798, URL https://kaken.nii.ac.jp/en/grant/

KAKENHI-PROJECT-17H01798/; and JSPS

KAKENHI Grant Number 17K20010, URL https://

kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-

17K20010/. The funders had no role in study

https://doi.org/10.1371/journal.pone.0194049
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194049&domain=pdf&date_stamp=2018-03-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194049&domain=pdf&date_stamp=2018-03-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194049&domain=pdf&date_stamp=2018-03-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194049&domain=pdf&date_stamp=2018-03-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194049&domain=pdf&date_stamp=2018-03-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194049&domain=pdf&date_stamp=2018-03-15
https://doi.org/10.1371/journal.pone.0194049
https://doi.org/10.1371/journal.pone.0194049
http://creativecommons.org/licenses/by/4.0/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15H01706/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15H01706/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15H01706/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17H01798/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17H01798/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17K20010/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17K20010/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17K20010/

the hash function for data mining [11], tomographic reconstruction from dynamic positron

emission tomography [12], and the extractor for latent representations of documents [13].

In most DNNs, processes are divided into pre-training and fine-tuning phases [14]. RBMs

and AEs are stacked so as to be used in the pre-training phase [15, 16]. In this phase, the objec-

tives are to train a part of an entire network and obtain effective initial parameters for the fine-

tuning via unsupervised learning. In the fine-tuning phase, the pre-trained network is used as

a feature extractor so that the entire network, including a classifier, can be tuned via supervised

learning. In both phases, a great amount of data and computational resources are required for

learning.

It is expected that in the future, DNNs will be loaded onto embedded systems such as

mobile devices, robots, and automobiles [17–19]. Because embedded systems with DNNs are

expected to be used in everyday items, the embedded systems should have the following fea-

tures: real-time processing, low power consumption, and situational-responsive capabilities.

With all of these considerations in mind, hardware is considered to be a better choice than

software for these systems. The pieces of hardware often used for the implementation of

DNNs are graphics processing units (GPUs), dedicated very large-scale integration (VLSI)

chips, and field-programmable gate arrays (FPGAs).

Several libraries and frameworks have been developed for the implementation of DNNs

via GPUs; these include Theano (which is a Python library) [20] and Caffe (a deep learning

framework) [21], Tensor Flow and Chianer (Python-based deep learning frameworks) [22,

23]. Some DNNs, such as some MLPs [24, 25], RBMs [26, 27], and CNNs [28–31], have been

developed as dedicated chips. One of the report uses RBMs for training and AEs for inference

[32]. In addition to these examples of the hardware implementations of DNNs, FPGA imple-

mentations of CNNs and RBMs have also been reported in [33–38]. Unlike other hardware

implementations, FPGAs are more suitable for implementing DNNs onto embedded systems,

as FPGAs require less power than GPUs and, unlike dedicated chips, their internal circuits can

be reconfigured by users.

A few reports have also been published about the implementation of AE into FPGAs [39,

40]. One of these proposed a digital circuit of AEs by high-level synthesis (HLS) [39]. In that

particular study, the circuit generated by HLS was loaded onto an Altera Stratix V GS D5

FPGA. However, a comparison between regular GPUs, mobile GPUs, and FPGAs found that

the HLS-designed circuit had several drawbacks. Because HLS automatically generates a circuit

architecture from an algorithmic description, the generated circuit cannot effectively utilize

FPGAs. The other relevant study to discuss here created a behavior model simulation for

AEs [40]; in the simulation, a sparse AE was implemented and used for an image recognition

task on a set of Kyoto pictures. Because the circuit used in the simulation required too many

resources from the FPGA, it was impossible for the circuit to be implemented onto an actual

FPGA. As stated above, the study of FPGA implementation for AEs has been still insufficient.

The implementation of register transfer level (RTL) description is required to utilize the FPGA

effectively, and small-but-adjustable architectures for AEs that can be implemented on actual

FPGAs are also required.

This paper proposes a novel hardware architecture for AEs called a shared synapse architec-

ture, and it demonstrates the results of implementing such AEs onto a digital circuit. This

paper is an extended version of work published in [41]. The sharing synapse was originally

reported in an earlier study [5], and another earlier study [42] called the method of sharing

synapses as a tied weight technique; this technique restricts AEs so as to improve the perfor-

mance of AEs’ reconstruction. We use a tied weight technique to efficiently use the resources

of the FPGAs in our study. By assuming that the reconstruction of an AE is divided into those

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 2 / 22

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0194049

in the neuron and synapse modules, the shared synapse architecture is able to halve the num-

ber of the synapse modules.

In this paper, a digital circuit with the shared synapse architecture is implemented via a RTL

description. The circuit is designed in an object-oriented manner and implemented as a basic

model that could be scaled. In our experiments, we investigate the performance and scalability

of the proposed digital circuit. This paper is organized as follows: Section 2 explains the basic

algorithms of the AEs used along with the algorithm related to the proposed idea; in Section 3,

we propose and describe in detail a novel hardware architecture for AEs; Section 4 looks at the

implementation of the proposed AEs on a digital circuit via software experiments; Section 5

shows the results of the logic synthesis and verifies the circuit operation as AEs; in Section 6, the

scalable functions of the proposed design circuit are investigated; Section 7 compares the pres-

ent work with other related works; and in Section 8, we put forward our conclusions.

Autoencoders

Learning algorithm of autoencoders

As shown in Fig 1, AEs are composed of three layers: an input, a hidden, and an output layer.

Each layer has neurons that are connected to each other via synapses between the layers. The

data of the neurons are handed over to the next layer via synapses, and each synapse has a

weight value representing the transmission efficiency. In the hidden and output layers, each

neuron has a bias that controls the firing probability.

The difference between the input and output values is measured by the cross-entropy error.

This error is minimized by the gradient descent method, and the values of the weights and the

biases are updated so that this error is reduced. These processes are repeated until the output

values become to reconstruct input values.

If an input vector is assumed to be~x, a hidden one~y, and an output one~z , then the recon-

struction and update flow can be represented by the sequence of equations shown below. In

Fig 1. Autoencoder. Reprinted from [41] under a CC BY license, with permission from Springer Nature, original copyright 2016 (S1 File).

https://doi.org/10.1371/journal.pone.0194049.g001

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0194049.g001
https://doi.org/10.1371/journal.pone.0194049

this flow, the hidden weight and bias vectors are ~W and~b, respectively, while the output ones

are ~W 0 and ~b0 , respectively. The function σ is an activation function such as a sigmoidal func-

tion, and η is the learning rate. It should be noted that 1 is a vector of all ones, � is an inner

product, and � is the Hadamard product. The reconstruction and update flow can be repre-

sented as follows:

1. ~x is encoded and transformed in the hidden layer thereby becoming~y:

~ym ¼ sð
XN

n¼0

~Wmn �~xn þ
~bmÞ m ¼ 0; 1 . . . ;M � 1;M : ð1Þ

2. ~y is decoded and transformed in the output layer, thereby becoming~z :

~zn ¼ sð
XM

m¼0

~W 0
nm �~ym þ

~b0 nÞ n ¼ 0; 1 . . . ;N � 1;N : ð2Þ

3. The cross entropy, C, is measured using~x and~z :

Cð~x;~zÞ ¼ � ~x log~z � ð1 � ~xÞ log ð1 � ~zÞ ð3Þ

4. The update values for each parameters are obtained from the cross entropy error.

D~W ¼
�
~W � ð~x � ~zÞ �~y � ð1 � ~yÞ �~xT

�

þ
�
ðð~x � ~zÞ �~yTÞ

T
� ð4Þ

D~b ¼
�
~W � ð~x � ~zÞ �~y � ð1 � ~yÞ

�
ð5Þ

D~b0 ¼ ð~x � ~zÞ ð6Þ

5. Each update value is added to the old parameters, which allows the new parameters to be

obtained.

~Wnew ¼ ~Wold þ ZD~W ð7Þ

~b0 new ¼ ~b0 old þ ZD~b0 ð8Þ

~bnew ¼~bold þ ZD~b0 ð9Þ

In this paper, these equations are computed on digital circuits; Eqs (1) and (2) are com-

puted in a reconstruction module, Eqs (4), (5) and (6) at an update function module, and Eqs

(7), (8) and (9) at an update execution module.

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 4 / 22

https://doi.org/10.1371/journal.pone.0194049

Stacked autoencoders

Fig 2 shows a stacked AE composed of two AEs. The learning process of the stacked AE is as

follows:

1. The first AE (left-hand side of Fig 2) is trained by the learning algorithm described in Sec-

tion 2.1 so that it can reconstruct the input dataset.

2. The second AE is stacked on the hidden layer of the first AE (right-hand side of Fig 2).

3. The second AE is trained by the same learning algorithm so that it can reconstruct the

value encoded by the first AE.

After the learning process, the stacked AE is able to reduce the dimension of the input datasets

and can be used as a feature extractor.

Tied weight

Tied Weight is a technique for restricting neural networks [42]; this is often used in AEs. The

technique shares synapses between layers; namely, it shares synapses between the input and

hidden layers, and the hidden and output layers. The weight matrix between the hidden and

output layers is represented as a transposed matrix of the input and hidden layers; this is

shown in Eq (10).

~W 0 ¼ ~WT ð10Þ

By using the tied weight technique, AEs can be used to reduce the parameters that need to be

updated and can improve the regularization ability.

Fig 2. Stacked autoencoder.

https://doi.org/10.1371/journal.pone.0194049.g002

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 5 / 22

https://doi.org/10.1371/journal.pone.0194049.g002
https://doi.org/10.1371/journal.pone.0194049

Shared synapse architecture

This paper proposes a shared synapse architecture based on the tied weight technique; the aim

of this architecture is to decrease the utilizations of the recourses of the FPGAs. It is assumed

that the reconstruction process for the AEs is described in the neuron and synapse modules;

this process is shown in Fig 3. By sharing the synapses, the number of synapse modules used is

halved; a representation of the architecture of an AE with shared synapses is shown in Fig 4.

The data flow should be noted. Even though this architecture shares the synapse module, the

data flow and timing of module driving do not change the operation order, which remains the

same as that of a regular AE. The outputs of hidden neurons repass again the same synapse

modules that were passed once; then they do not go forward to the hidden layer but to the out-

put layer instead. Therefore, the synapse modules are executed twice according to every set of

encode and decode processes.

The circuit proposed by this study consists of three modules, as shown in Fig 5: a recon-

struction module, an update function module, and an update execution module. The recon-

struction and update function modules contain sub-modules, and the internal structures of

each of these two modules are shown individually in Figs 6 and 7, respectively.

The roles of these three modules and their respective sub-modules are as described in the

following sentences in more detail. Eighteen-bit fixed point numbers are used in the modules

shown in Figs 6 and 7; these are the memory for the weights, the multiplier, the memory for

the bias, the accumulator, the adder, and the subtractor. The activation function module

Fig 3. Reconstruction of AE. Reprinted from [41] under a CC BY license, with permission from Springer Nature, original copyright 2016 (S1 File).

https://doi.org/10.1371/journal.pone.0194049.g003

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 6 / 22

https://doi.org/10.1371/journal.pone.0194049.g003
https://doi.org/10.1371/journal.pone.0194049

shown in Fig 6 is designed using a look-up table (LUT), and it uses ten-bit numbers as inputs

and eighteen-bit numbers as outputs. The values in the LUT can be rewritten so as to become

other activation functions:

(a) Reconstruction Module

This module is composed of two sub-modules, as shown in Fig 6 and it has a reconstruc-

tion mode and an update mode.

• Reconstruction Mode

Via two processes (encode and decode), the input data are reconstructed on as out-

put data.

Fig 4. Reconstruction of AE with shared synapse architecture. Reprinted from [41] under a CC BY license, with permission from Springer Nature,

original copyright 2016 (S1 File).

https://doi.org/10.1371/journal.pone.0194049.g004

Fig 5. Entire circuit.

https://doi.org/10.1371/journal.pone.0194049.g005

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 7 / 22

https://doi.org/10.1371/journal.pone.0194049.g004
https://doi.org/10.1371/journal.pone.0194049.g005
https://doi.org/10.1371/journal.pone.0194049

a-1) Synapse Module

A weight value is read from the weight memory. The input data and corre-

sponding weight values are multiplied.

a-2) Neuron Module

The accumulation of all of the inputs and biases are determined. From the

LUT, the corresponding value of the accumulation is given as a result output

by the sigmoidal operation.

• Update Mode

This module receives the update values from the update execution module and

updates all of the parameters in the weight memory and two bias memories.

Fig 6. Reconstruction module.

https://doi.org/10.1371/journal.pone.0194049.g006

Fig 7. Update function module.

https://doi.org/10.1371/journal.pone.0194049.g007

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 8 / 22

https://doi.org/10.1371/journal.pone.0194049.g006
https://doi.org/10.1371/journal.pone.0194049.g007
https://doi.org/10.1371/journal.pone.0194049

(b) Update Function Module

This module is composed of three sub-modules, as shown in Fig 7. Utilizing a given

input, output, and all of the parameters sent by the reconstruction module, the update

values of the parameters are determined.

b-1) Update Output Bias Module

An input and an output value are sent from the reconstruction module. The

update value of ~b0 , is determined by Eq (6).

b-2) Update Hidden Bias Module

The values for the calculation are sent from the other modules; a weight and a

hidden value from the reconstruction module, and the output of the update

output bias module. The update value of~b is determined by Eq (5).

b-3) Update Weight Module

The values for the calculation are sent from the other modules; an input and an

output value from the reconstruction module, the output of the output bias

update module, and the output of the update hidden bias module. The update

value of ~W is determined by Eq (4).

(c) Update Execution Module

The update values of the parameters are given by the update function module. Each

update value is added to a corresponding parameter by this module. Each updated value

is then sent to the reconstruction module in the update process. Another function of

this module is to switch the reconstruction module from the reconstruction mode to the

update mode before the updated values are transferred to the reconstruction module.

After the update, the update execution module switches from the update mode to the

reconstruction mode.

Software implementation of the proposed AE

Because the number of processes involved in the hardware implementation is greater than the

number for the software implementation, it is advisable to first verify the hardware implemen-

tation using software implementation. A quantized AE was implemented into a piece of soft-

ware coded by C++. The quantized AE is able to handle eighteen-bit fixed-point numbers. In

addition, an array with 1,024 elements was used as a quantized sigmoidal function generator

in the piece of software.

The number of input and output neurons was set to four, and the number of hidden neu-

rons was set to two; in total, sixteen sets of four tuples of binary data were prepared for the

learning process. Both the quantized AE and a regular AE with 32-bit floating-point numbers

were trained with one set from the dataset for each learning experiment. The number of

epochs was set to 1,000, and the learning rate was set to 0.0078125. The initial value of each

parameter of the AEs was set to zero.

Fig 8 shows the averages of the results of the sixteen learning processes using the quantized

and regular AEs. In the figure, the straight line indicates the results of the quantized AE, while

the dotted line indicates the results of the regular AE; the vertical and horizontal axes indicate

the cross entropy and epochs, respectively. The results show that the quantized AE operated

better than the regular AE. The cross-entropy errors of both of the AEs decreased as the learn-

ing processes proceeded. The cross-entropy errors of the quantized AE converged faster than

those of the regular AE; this was because the update process of the quantized AE operated

rougher than the regular AE.

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 9 / 22

https://doi.org/10.1371/journal.pone.0194049

Hardware implementation of the proposed AE

As the effectiveness of the proposed architecture was validated via the experiments conducted

by the software implementation, the proposed AE was implemented in a digital circuit. As

with the software implementation, the designed network had four input and output neurons

and two hidden neurons. The digital circuit with the proposed design was described by the

Verilog Hardware Description Language (HDL) with RTL.

Logic synthesis of the proposed circuit

The designed circuit was synthesized using Xilinx ISE 14.7, and the target device used was a

Xilinx Virtex-6 xc6vlx240t. The results of the synthesis are shown in Table 1.

Fig 8. Comparison of learning results.

https://doi.org/10.1371/journal.pone.0194049.g008

Table 1. Logic synthesis results for the shared synapse AEs.

Module Registers LUTs DSPs� Freq. (MHz)

Entire AE module 6,284 (2.08%) 6,198 (4.11%) 30 (3.91%) 230.654

Reconstruction 2,621 (0.87%) 2,442 (1.62%) 2 (0.26%) 242.777

Synapse 270 (0.09%) 262 (0.17%) 1 (0.13%) 242.424

Neuron 102 (0.03%) 153 (0.10%) 0 (0%) 363.769

Update function 6125 (2.03%) 6557 (4.35%) 28 (3.65%) 230.654

Update output bias 667 (0.22%) 454 (0.30%) 0 (0%) 419.639

Update hidden bias 1139 (0.38%) 1190 (0.79%) 6 (0.78%) 242.777

Update weight 399 (0.13%) 411 (0.27%) 2 (0.26%) 242.777

Update Execution 763 (0.25%) 7(0.004%) 0 (0%) 651.042

� Digital signal processors

https://doi.org/10.1371/journal.pone.0194049.t001

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 10 / 22

https://doi.org/10.1371/journal.pone.0194049.g008
https://doi.org/10.1371/journal.pone.0194049.t001
https://doi.org/10.1371/journal.pone.0194049

In addition to the modules shown in this table, several other sub-modules were used to con-

trol the weight memory; these were synthesized, and they consisted of a serial-parallel con-

verter, a parallel-serial converter, and a signal selector. The proposed shared synapse

architecture therefore reduced the number of the synapse modules as well as the number of

the sub-modules belonging to the synapse module. Moreover, the larger the network that was

constructed, the greater the reductions in the number of the module increase and the more

effective the proposed architecture is for the implementation of AEs into FPGAs.

Verification of learning performance

To verify the performance of the designed AE circuit, the proposed circuit was logically simu-

lated by a Veritak Verilog HDL simulator. As in the software experiments, the proposed

designed circuit was trained using sixteen sets of four-bit binary data. The leaning rate was set

at 0.0078125, which corresponds to 2−7, and therefore the multiplication of the update values

with this learning rate were replaced by seven-bit shifting. The number of the epochs was set

to 365.

The outputs produced after training are shown in Table 2. The cross entropy error between

the corresponding input and output values was measured by Eq (3), and it can be seen from

Table 2 that the output neurons reconstructed the corresponding input values. The averages of

the four errors in each of the learning epochs are shown in Fig 9; in this figure, the vertical and

horizontal axes express the cross entropy and epochs, respectively. As can be seen in Fig 9, as

the number of epochs increased, the value of errors decreased. It can therefore be concluded

that the AE circuit adjusted the parameters so that the input data could be reconstructed as the

output data.

Evaluation of processing speed performance

To evaluate the processing speed performance of the proposed circuits, a processing speed per-

formance index for hardware and the number of multipliers are computed.

“Operations per second (OPS)” is generally used as a performance index for hardware pro-

cessing speed, and we have employed OPS. OPS represents the number of operations per sec-

ond for updating the network according to Eqs (1)–(9) during the learning phase of AEs. The

processing time for updating is decided by the number of clock cycles and the operation fre-

quency of the circuit. Details about the number of clock cycles of the proposed circuits are

given in Table 3, and the number of clock cycles is computed using Eq (11) when the AE struc-

ture is 4-2-4.

ClockCycles ¼ 8Ni þ 2Nh þ 235 ð11Þ

where the number of the neurons in an input and in the hidden layers are represented by Ni

and Nh, respectively.

Assuming that each addition, subtraction, and multiplication is counted as one operation,

the number of operations is determined using Eqs (1)–(9), and is formulated as Eq (12). More-

over, the processing time is determined using Eq (13).

ofOperations ¼ 6Ni þ 11NiNh þ 6Nh ð12Þ

ProcessingTime ¼
ClockCycle
Frequency

ð13Þ

where the clock cycles and frequency are computed using Eq (11) and Table 1, respectively.

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 11 / 22

https://doi.org/10.1371/journal.pone.0194049

Therefore, the OPS is computed by Eq (14).

OPS ¼
ofOperations
ProcessingTime

¼
6Ni þ 11NiNh þ 6Nh

8Ni þ 2Nh þ 235
� Frequency ð14Þ

A multiplier is synthesized as a digital signal processor (DSP), which is a specific custom-

ized primitive element of FPGAs. The number of DSPs is limited depending on FPGAs. The

number of multipliers used in our circuits is determined using Eq (15) given below.

ofMultipliers ¼ Nh � ð2 � Ni þ 9Þ ð15Þ

As expressed in Eq (15), the number of multipliers increases linearly along the equation

until the limitation of DSPs.

Table 2. Output results of the proposed AE circuit after training.

Input: 0 0 0 0

0.027267456 0.027267456 0.027267456 0.027267456

Input: 0 0 0 1

0.034179688 0.034179688 0.034179688 0.96875

Input: 0 0 1 0

0.034179688 0.034179688 0.96875 0.034179688

Input: 0 0 1 1

0.048828125 0.048828125 0.953125 0.953125

Input: 0 1 0 0

0.034179688 0.96875 0.034179688 0.034179688

Input: 0 1 0 1

0.048828125 0.953125 0.048828125 0.953125

Input: 0 1 1 0

0.025268555 0.96875 0.96875 0.025268555

Input: 0 1 1 1

0.025756836 0.96875 0.96875 0.96875

Input: 1 0 0 0

0.96875 0.034179688 0.034179688 0.034179688

Input: 1 0 0 1

0.96875 0.025268555 0.025268555 0.96875

Input: 1 0 1 0

0.953125 0.048828125 0.953125 0.048828125

Input: 1 0 1 1

0.96875 0.025756836 0.96875 0.96875

Input: 1 1 0 0

0.953125 0.953125 0.048828125 0.048828125

Input: 1 1 0 1

0.96875 0.96875 0.025756836 0.96875

Input: 1 1 1 0

0.96875 0.96875 0.96875 0.025756836

Input: 1 1 1 1

0.96875 0.96875 0.96875 0.96875

https://doi.org/10.1371/journal.pone.0194049.t002

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 12 / 22

https://doi.org/10.1371/journal.pone.0194049.t002
https://doi.org/10.1371/journal.pone.0194049

The OPS and the number of multipliers of various structure are given in Table 4, where the

4-2-4 structure is compared with four types of structures: 8-2-8 (double the number of in-out

neurons) and 4-4-4 (double the number of hidden neurons), and 20-10-20 (five times the

number of both of in-out and hidden neurons), 24-10-24 (maximum structure in this setup).

As mentioned above, the target device of this paper is xc6vlx240t which has 768 DSPs. DSP uti-

lization is not limited to a multiplier and the total number of DSP utilizations is cleared by a

logic synthesis. Therefore, 24-10-24 is the maximum structure and this structure employs 750

DSPs.

According to Table 4, the OPS tends to be influenced by the number of synapses, which is

determined by multiplexing the number of in/out and hidden neurons as expressed by Eq (15).

Fig 9. Training results represented with cross entropy errors.

https://doi.org/10.1371/journal.pone.0194049.g009

Table 3. Equations for the number of clock cycles.

Modules Clock cycles

Neuron (hidden unit) Ni + 5

Neuron (output unit) Nh + 5

Update hidden bias Ni + 17

Synapse (Ni + 8) � 2

Weight memory controller Ni + Nh + 4

Update execution Ni + 8

Fixed clock cycle 164

https://doi.org/10.1371/journal.pone.0194049.t003

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 13 / 22

https://doi.org/10.1371/journal.pone.0194049.g009
https://doi.org/10.1371/journal.pone.0194049.t003
https://doi.org/10.1371/journal.pone.0194049

To construct larger AEs than the 24-10-24 structure, the proposed circuits require a mem-

ory controller and additional memory. To communicate with external modules such the mem-

ory controller and memory, the number of operations would increase, which acts as

performance penalty and degrades the performance of the proposed circuits.

Verification of the scalability of the proposed circuit

All of the modules comprising the proposed circuits have a common interface and parameters

that are controlled externally. The common interface is useful for combining the modules with

one another, and the parameters can be used to define the network structures for the stacked

AEs.

Common interface

In our study, the common interface used was based on the first-in, first-out (FIFO) principle;

this was used in all of the modules, and it was designed to help users combine the modules eas-

ily. Fig 10 shows the input and output ports: iDS and oDD are for data; iES and iED are the

enable signals; oFLL and oEMP mean that the module memory is full and empty, respectively;

iSTART and iEND receive the flags to start and end a process, respectively; and oSTART and

oEND send the corresponding flags for starting and ending a process, respectively. A module

may have several input-output signal wires for data, as iDS and oDD, depending on its func-

tion. The input and output ports of all of the modules are shown in Table 5. For instance, in

Fig 6, “x”, “U_W”, “U_b” or “U_b”, (left-hand side of Reconstruction module) are regarded as

iDS, and “x”, “y”, “z”, or “w”. (right-hand side of Reconstruction module) are regarded as

oDD, in Fig 10 respectively.

Parameters for the network structure

Construction of stacked AE. With the parameters for the network structure in the

designed circuit, we constructed the first and second AEs, which consisted of 4-2-4 and 2-1-2

networks, respectively. These two AEs were then used to construct a 4-2-1-2-4 stacked AE that

had the proposed architecture; this is shown in Fig 11. As is shown in Table 6, the stacked AE

circuit required fewer registers and LUTs than the first and second AE circuits did, because

several of the necessary parts were duplicated when the second AE was stacked on the first.

Learning operation of second AE. The learning operation for the stacked AE consisted of

two steps; the first step was for the first AE, and the second step was for the second AE. Because

the step for the first AE is described in Section 5, the step for the second AE is explained in this

sub-section. The input data for the second AE is the value of the hidden neuron in the first AE,

which had been trained with the sixteen kinds of binary data in Section 5.2. The learning rate

Table 4. Performance and recource comparison of various structure of AEs.

Network structure MOPS� Number of multipliers

4-2-4 116 30

8-2-8 201 46

4-4-4 206 60

20-10-20 1,529 470

24-10-24 1,713 550

� Mega operations per second. Bigger is better

https://doi.org/10.1371/journal.pone.0194049.t004

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 14 / 22

https://doi.org/10.1371/journal.pone.0194049.t004
https://doi.org/10.1371/journal.pone.0194049

and the number of epochs were set to the same values used in the training of the first AE. The

results of the learning process are shown in Fig 12. To update the parameters of the AEs, we

used Eqs (4)–(6); they were determined from the cross entropy. The root mean square error

was used to measure the error in the second AE, because this error was a real value. Using the

Fig 10. Common interface.

https://doi.org/10.1371/journal.pone.0194049.g010

Table 5. I/O ports.

Reconstruction circuit Update function circuit

Module iDS oDD Module iDS oDD

(a) x x (b) x U_b’

U_W y y U_W

U_b z z U_b

U_b’ w w

(a-1) x / y wx / wy (b-1) x U_b’

U_W w z

(a-2) wx / wy y / z (b-2) U_b’ U_b

U_b / U_b’ w

y

(b-3) x U_W

U_b

U_b’

y

https://doi.org/10.1371/journal.pone.0194049.t005

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 15 / 22

https://doi.org/10.1371/journal.pone.0194049.g010
https://doi.org/10.1371/journal.pone.0194049.t005
https://doi.org/10.1371/journal.pone.0194049

results of the experiments, we were able to confirm that all of the parameter values after train-

ing were close to the desired values.

Operation of the reconstruction of the stacked AE. The parameters obtained for the first

and second AEs through training were input into the stacked AE. The sixteen kinds of binary

datasets were used to verify whether the stacked AE was able to reconstruct the input data. The

comparison between the outputs of the first AE and the reconstructed values of the stacked AE

are shown in Table 7; although some of the results have an error of 20%, the output results were

regarded as having successfully digitally reconstructed the input data. These errors were pro-

duced as a result of the learning process used for the second AE, i.e., the inputs were encoded

into one neuron in the second AE, after they were encoded into two neurons in the first AE.

Parameters for the bit width

To evaluate the relationship between the bit widths of the proposed circuits and the learning

performances, the bit widths were changed from eighteen to ten. The results of the experi-

ments are shown in Fig 13, and it can be seen that the AE reaches the target values more closely

as the number of bits increases. In the case of ten bits, the cross entropy error was found to

barely decrease; this was because seven-bit shifting, which was used for the learning rate, leads

to a result that is almost zero in the update process for ten-bit numbers.

Fig 11. Stacked AE with shared synapse architecture.

https://doi.org/10.1371/journal.pone.0194049.g011

Table 6. Logic synthesis results for the stacked and second AE reconstruction modules.

Module Registers LUTs Freq. (MHz)

First AE

(Reconstruction module)

2,477 (0.82%) 2,324 (1.54%) 242.424

Second AE 728 (0.24%) 798 (0.53%) 242.777

Stacked AE 2,746 (0.91%) 2,781 (1.85%) 242.777

https://doi.org/10.1371/journal.pone.0194049.t006

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 16 / 22

https://doi.org/10.1371/journal.pone.0194049.g011
https://doi.org/10.1371/journal.pone.0194049.t006
https://doi.org/10.1371/journal.pone.0194049

Comparison with related works

The proposed circuit was compared with two related works about the implementations of AEs

into FPGAs. The results of the comparisons are shown in Table 8.

In one of the studies, sparse AEs are described by a Verilog HDL as a behavior model and

evaluated by pre-route simulations [40]; however, there is no description in this study about

the detailed hardware architecture used and the logic synthesis results. Because the pre-route

behavior model does not consider FPGA resources and timing issues, implementing it in an

actual FPGA is difficult. According to Table 8, the performance of [40] is not available (N/A)

and cannot be calculated, because both operation frequency and time period, key requirements

for evaluating the processing speed of a digital circuit, are not given in [40].

In the other study, a three-layered stacked AE was designed using an OpenCL program-

ming framework and implemented on an NVIDIA GTX Titan GPU, a Qualcomm Adreno 330

mobile GPU, and an Altera Stratix V D5 FPGA [39]. For the FPGA implementation, HLS was

used to generate an RTL code automatically from the OpenCL description. The experimental

results showed that the FPGA performed the worst in terms of processing speed. Generally, it

is hard to find an optimal digital architecture from a high-level description by architecture

exploration in HLS. The generated RTL code was therefore not optimized for the stacked AE,

and its FPGA implementation resulted in the worst performance among the devices.

In contrast, the circuit proposed in the present study was manually designed by RTL and

was based on the shared synapse architecture. The RTL design enabled us to formulate the

Fig 12. Training results represented with root mean square errors.

https://doi.org/10.1371/journal.pone.0194049.g012

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 17 / 22

https://doi.org/10.1371/journal.pone.0194049.g012
https://doi.org/10.1371/journal.pone.0194049

number of clock cycles required for an AE used in the proposed circuit; this is shown in more

detail in Table 3. A weight memory controller controls the read/write operations of the weight

memory in the synapse module; the other modules are shown in Figs 6 and 7. By considering

the equations in Table 3 and the operating frequency from the synthesized results shown in

Tables 1 and 6, we can estimate the theoretical performance of a circuit by constructing arbi-

trary networks. From these estimates, we can see that the proposed circuit designed by RTL is

much faster than a circuit designed by HLS. As shown in Table 8, unlike [40], the OPS can be

calculated because both the processing time for one epoch and the number of operations are

given in descriptions in [39]. Compared to [39], the performance of the proposed architecture

is six times better than it.

Table 7. Outputs of the proposed stacked AE after learning.

Input: 0 0 0 0

0.083984375 0.083984375 0.083984375 0.083984375

Input: 0 0 0 1

0.09765625 0.16015625 0.09765625 0.84375

Input: 0 0 1 0

0.09765625 0.16015625 0.75 0.16015625

Input: 0 0 1 1

0.107421875 0.203125 0.796875 0.890625

Input: 0 1 0 0

0.16015625 0.75 0.16015625 0.09765625

Input: 0 1 0 1

0.1484375 0.859375 0.1484375 0.859375

Input: 0 1 1 0

0.22265625 0.796875 0.796875 0.22265625

Input: 0 1 1 1

0.20703125 0.9375 0.8125 0.9375

Input: 1 0 0 0

0.84375 0.09765625 0.16015625 0.09765625

Input: 1 0 0 1

0.796875 0.22265625 0.22265625 0.796875

Input: 1 0 1 0

0.859375 0.1484375 0.859375 0.1484375

Input: 1 0 1 1

0.8125 0.484375 0.8125 0.9375

Input: 1 1 0 0

0.890625 0.796875 0.203125 0.107421875

Input: 1 1 0 1

0.9375 0.9375 0.484375 0.8125

Input: 1 1 1 0

0.9375 0.8125 0.9375 0.20703125

Input: 1 1 1 1

0.984375 0.984375 0.984375 0.984375

https://doi.org/10.1371/journal.pone.0194049.t007

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 18 / 22

https://doi.org/10.1371/journal.pone.0194049.t007
https://doi.org/10.1371/journal.pone.0194049

Conclusion

A novel hardware architecture for AEs, which we have called a shared synapse architecture,

was proposed in this paper. This proposed architecture meant that the number of synapse

modules in the AE circuit that were implemented in could be halved. To construct various

types of AEs, the proposed architecture had three parameters; one to change a network struc-

ture, another to change the bit width of the internal values of the AE, and the other to change a

learning rate. Additionally, the proposed circuits had a common interface that allows them to

be combined easily. We designed two AEs that consisted of 4-2-4 and 2-1-2 networks, and we

combined them to construct a 4-2-1-2-4 stacked AE. The designed circuits were logically syn-

thesized and subsequently evaluated. Our experimental results show that the proposed AE and

Fig 13. Relationship between accuracy and bit width.

https://doi.org/10.1371/journal.pone.0194049.g013

Table 8. Comparison of the implementations of the AEs.

Algorithm Method Logic synthesis MOPS�

Proposed AE (Stacked AE) RTL Possible 1,713

[40] Sparse AE Behavior Impossible N/A

[39] Stacked AE HLS Possible 357

� Mega operations per second. Bigger is better

https://doi.org/10.1371/journal.pone.0194049.t008

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 19 / 22

https://doi.org/10.1371/journal.pone.0194049.g013
https://doi.org/10.1371/journal.pone.0194049.t008
https://doi.org/10.1371/journal.pone.0194049

the stacked AE circuits successfully reconstructed input data. By comparing our results with

related works, we were able to discuss the effectiveness of the proposed RTL design.

Future work involves designing a memory controller that can divide AE processes along

time series. A time series processes of large AE networks can be constructed using multiplex-

ing the proposed architecture in time and implemented by the memory controller and a block

RAM (high-capacity FPGA internal memory) or an external memory (SDRAM) that stores

weights memories. With this future work, we intend to extend the proposed circuit to deep-

stacked AEs and integrate it into embedded systems. We plan to apply an extended version of

the proposed circuits to various applications such as binary value applications, image process-

ing applications, and abnormal detection applications.

Supporting information

S1 File. RightsLink printable license. Permission from the original copyright holder of Figs 1,

3 and 4.

(PDF)

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 15H01706, 17H01798, and

17K20010.

Author Contributions

Conceptualization: Akihiro Suzuki.

Formal analysis: Akihiro Suzuki.

Funding acquisition: Takashi Morie, Hakaru Tamukoh.

Investigation: Akihiro Suzuki.

Methodology: Akihiro Suzuki, Hakaru Tamukoh.

Project administration: Takashi Morie.

Software: Akihiro Suzuki.

Supervision: Takashi Morie, Hakaru Tamukoh.

Validation: Akihiro Suzuki, Takashi Morie, Hakaru Tamukoh.

Writing – original draft: Akihiro Suzuki.

Writing – review & editing: Akihiro Suzuki, Takashi Morie, Hakaru Tamukoh.

References
1. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural computation.

2006; 18(7):1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 PMID: 16764513

2. Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW. The multilayer perceptron as an approxima-

tion to a Bayes optimal discriminant function. IEEE Transactions on Neural Networks. 1990; 1(4):296–

298. https://doi.org/10.1109/72.80266 PMID: 18282850

3. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

In: Advances in neural information processing systems; 2012. p. 1097–1105.

4. Fischer A, Igel C. Training restricted Boltzmann machines: An introduction. Pattern Recognition. 2014;

47(1):25–39. https://doi.org/10.1016/j.patcog.2013.05.025

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 20 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194049.s001
https://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
https://doi.org/10.1109/72.80266
http://www.ncbi.nlm.nih.gov/pubmed/18282850
https://doi.org/10.1016/j.patcog.2013.05.025
https://doi.org/10.1371/journal.pone.0194049

5. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. DTIC

Document; 1985.

6. Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional auto-encoders for hierarchical

feature extraction. In: International Conference on Artificial Neural Networks. Springer; 2011. p. 52–

59.

7. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-encoders: Explicit invariance during

feature extraction. In: Proceedings of the 28th international conference on machine learning (ICML-11);

2011. p. 833–840.

8. Alain D, Olivier S. Gated autoencoders with tied input weights. In: Proceedings of the 30th International

Conference on Machine Learning (ICML-13). vol. 28; 2013. p. 154–162.

9. Lore KG, Akintayo A, Sarkar S. LLNet: A Deep Autoencoder approach to Natural Low-light Image

Enhancement. arXiv preprint arXiv:151103995. 2015;.

10. Wang Y, Yao H, Zhao S. Auto-encoder based dimensionality reduction. Neurocomputing. 2016;

184:232–242. https://doi.org/10.1016/j.neucom.2015.08.104

11. Carreira-Perpinán MA, Raziperchikolaei R. Hashing with binary autoencoders. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 557–566.

12. Jianan C, Xin L, Yile W, Huafeng L. Deep reconstruction model for dynamic PET images. PLoS ONE.

2017; 12(9):e0184667. https://doi.org/10.1371/journal.pone.0184667

13. Chao W, Senlin L, Xincheng M, Hao R, Ji Z, Limin P. Locally Embedding Autoencoders: A Semi-Super-

vised Manifold Learning Approach of Document Representation. PLoS ONE. 2016; 11(1):e0146672.

https://doi.org/10.1371/journal.pone.0146672

14. Bengio Y. Learning deep architectures for AI. Foundations and trends in Machine Learning. 2009; 2

(1):1–127. https://doi.org/10.1561/2200000006

15. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science.

2006; 313(5786):504–507. https://doi.org/10.1126/science.1127647 PMID: 16873662

16. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy Layer-Wise Training of Deep Networks. In:

Bernhard S, John P, Thomas H, editors. Advances in Neural Information Processing Systems 19. MIT

Press; 2007. p. 153–160.

17. Liu C, Cao Y, Luo Y, Chen G, Vokkarane V, Ma Y. DeepFood: Deep Learning-Based Food Image Rec-

ognition for Computer-Aided Dietary Assessment. In: International Conference on Smart Homes and

Health Telematics. Springer; 2016. p. 37–48.

18. Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, et al. Adaptive robotic control

driven by a versatile spiking cerebellar network. PLoS one. 2014; 9(11):e112265. https://doi.org/10.

1371/journal.pone.0112265 PMID: 25390365

19. Hu C, Bai X, Qi L, Chen P, Xue G, Mei L. Vehicle color recognition with spatial pyramid deep learning.

IEEE Transactions on Intelligent Transportation Systems. 2015; 16(5):2925–2934. https://doi.org/10.

1109/TITS.2015.2430892

20. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et al. Theano: new features

and speed improvements. arXiv preprint arXiv:12115590. 2012;.

21. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al. Caffe: Convolutional architecture

for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia.

ACM; 2014. p. 675–678.

22. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Distributed Systems. CoRR. 2016;.

23. Tokui S, Oono K, Hido S, Clayton J. Chainer: a next-generation open source framework for deep learn-

ing. In: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Twenty-ninth

Annual Conference on Neural Information Processing Systems (NIPS); 2015.

24. Whatmough PN, Lee SK, Lee H, Rama S, Brooks D, Wei GY. 14.3 A 28nm SoC with a 1.2GHz 568nJ/

prediction sparse deep-neural-network engine with >0.1 timing error rate tolerance for IoT applications.

In: 2017 IEEE International Solid-State Circuits Conference (ISSCC); 2017. p. 242–243.

25. Price M, Glass J, Chandrakasan AP. 14.4 A scalable speech recognizer with deep-neural-network

acoustic models and voice-activated power gating. In: 2017 IEEE International Solid-State Circuits Con-

ference (ISSCC); 2017. p. 244–245.

26. Park S, Bong K, Shin D, Lee J, Choi S, Yoo HJ. A 1.93 TOPS/W scalable deep learning/inference pro-

cessor with tetra-parallel MIMD architecture for big-data applications. In: IEEE International Solid-State

Circuits Conference (ISSCC); 2015. p. 80–82.

27. Du Z, Fasthuber R, Chen T, Ienne P, Li L, Luo T, et al. ShiDianNao: shifting vision processing closer to

the sensor. In: ACM SIGARCH Computer Architecture News. vol. 43. ACM; 2015. p. 92–104.

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 21 / 22

https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1371/journal.pone.0184667
https://doi.org/10.1371/journal.pone.0146672
https://doi.org/10.1561/2200000006
https://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
https://doi.org/10.1371/journal.pone.0112265
https://doi.org/10.1371/journal.pone.0112265
http://www.ncbi.nlm.nih.gov/pubmed/25390365
https://doi.org/10.1109/TITS.2015.2430892
https://doi.org/10.1109/TITS.2015.2430892
https://doi.org/10.1371/journal.pone.0194049

28. Chen Y, Luo T, Liu S, Zhang S, He L, Wang J, et al. DaDianNao: A Machine-Learning Supercomputer.

In: 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture; 2014. p. 609–622.

29. Chen YH, Emer J, Sze V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional

Neural Networks. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA); 2016. p. 367–379.

30. Desoli G, Chawla N, Boesch T, p Singh S, Guidetti E, Ambroggi FD, et al. 14.1 A 2.9TOPS/W deep con-

volutional neural network SoC in FD-SOI 28nm for intelligent embedded systems. In: 2017 IEEE Inter-

national Solid-State Circuits Conference (ISSCC); 2017. p. 238–239.

31. Shin D, Lee J, Lee J, Yoo HJ. 14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-RNN processor for gen-

eral-purpose deep neural networks. In: 2017 IEEE International Solid-State Circuits Conference

(ISSCC); 2017. p. 240–241.

32. Cho H, Son H, Seong K, Kim B, Park HJ, Sim JY. An On-Chip Learning Neuromorphic Autoencoder

With Current-Mode Transposable Memory Read and Virtual Lookup Table. IEEE Transactions on Bio-

medical Circuits and Systems. 2018; PP(99):1–10.

33. Yonekawa H, Nakahara H. On-Chip Memory Based Binarized Convolutional Deep Neural Network

Applying Batch Normalization Free Technique on an FPGA. In: 2017 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW); 2017. p. 98–105.

34. Liang S, Yin S, Liu L, Luk W, Wei S. FP-BNN: Binarized neural network on FPGA. Neurocomputing.

2018; 275:1072–1086. https://doi.org/10.1016/j.neucom.2017.09.046

35. Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong PHW, Jahre M, et al. FINN: A Framework for

Fast, Scalable Binarized Neural Network Inference. CoRR. 2016;.

36. Li H, Fan X, Jiao L, Cao W, Zhou X, Wang L. A high performance FPGA-based accelerator for large-

scale convolutional neural networks. In: Proceedings of 26th International Conference on Field Pro-

grammable Logic and Applications. IEEE; 2016. p. 1–9.

37. Kim SK, McAfee LC, McMahon PL, Olukotun K. A highly scalable restricted Boltzmann machine FPGA

implementation. In: Proceedings of the 19th International Conference on Field Programmable Logic

and Applications. IEEE; 2009. p. 367–372.

38. Ueyoshi K, Marukame T, Asai T, Motomura M, Schmid A. FPGA Implementation of a Scalable and

Highly Parallel Architecture for Restricted Boltzmann Machines. Circuits and Systems. 2016; 7

(9):2132–2141. https://doi.org/10.4236/cs.2016.79185

39. Joao M, Joao A, Gabriel F, Luis A A. Stacked Autoencoders Using Low-Power Accelerated Architec-

tures for Object Recognition in Autonomous System. Neural Processing Letters. 2015; 43:1–14.

40. Jin Y, Kim D. Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior

Model. International Journal of Computer, Electrical, Automation, Control and Information Engineering.

2014; 8(5):668–672.

41. Suzuki A, Morie T, Tamukoh H. FPGA Implementation of Autoencoders Having Shared Synapse Archi-

tecture. In: International Conference on Neural Information Processing. Springer; 2016. p. 231–239.

42. Vincent P. A connection between score matching and denoising autoencoders. Neural computation.

2011; 23(7):1661–1674. https://doi.org/10.1162/NECO_a_00142 PMID: 21492012

A shared synapse architecture for efficient FPGA implementation of autoencoders

PLOS ONE | https://doi.org/10.1371/journal.pone.0194049 March 15, 2018 22 / 22

https://doi.org/10.1016/j.neucom.2017.09.046
https://doi.org/10.4236/cs.2016.79185
https://doi.org/10.1162/NECO_a_00142
http://www.ncbi.nlm.nih.gov/pubmed/21492012
https://doi.org/10.1371/journal.pone.0194049

