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1. INTRODUCTION

Neural networks are highly expected to be applied into embedded 
systems such as robots and automobiles. However, Deep Neural 
Networks (DNNs) [1] require high computational power because 
a lot of accumulate operations are being processed using them. 
Generally, graphics processing units are used to accelerate these 
computations; however, as their power consumption is high, imple-
menting embedded systems using them is difficult due to a power 
limit. To mitigate this problem, we have implemented DNNs into 
hardware such as Field Programmable Gate Arrays (FPGAs), realiz-
ing high-speed calculation with low power consumption.

In this paper, we have implemented an Echo State Network (ESN) 
[2], a kind of Reservoir Computing (RC) into an FPGA. An RC is a 
Recurrent Neural Network (RNN) model in which only the weights 
of an output layer are defined in the training step. ESNs are able to 
learn time-series data faster than general RNNs such as Long Short-
term Memory (LSTM). In ESNs, a lot of accumulate operations of 
input data and weights are executed, however, there are limitations 
of FPGA resources such as Loot Up Table (LUT), Flip Flop (FF) and 
Digital Signal Processor (DSP). As a result, we have modified the 
algorithms and architectures of ESNs. Furthermore, we implement 
the proposed hardware-oriented algorithms into the FPGA and 
show the effectiveness of the proposed methods by comparing the 
proposed circuit with other.

2. ECHO STATE NETWORK

The ESN is a type of RC which consists of three layers: an input 
layer, a reservoir layer and an output layer, shown in Figure 1, in 

which the neurons of the reservoir layer are randomly connected 
to each other.

ESN is described by Equations (1) and (2),

 x t f x t w u t w x t( ) (( ) ( ) ( ( ) ( )))= - - + + -1 1 1d d in res
  (1)

 z t w x t( ) ( )= ×out   (2)

where x(t) and z(t) are output of the reservoir and output layer, 
respectively, time t, u(t) is an input data, d is the leak rate, which is 
the rate of the term x(t − 1) that affects x(t). win, wres, and wout are the 
weights of the input, reservoir and output layer, respectively. The 
activation function f is defined as the hyperbolic tangent function. 
The reservoir layer follows the Echo State Property (ESP) [3] and its 
weights are initialized by the following steps:

 1. All weights of the reservoir layer are generated from a normal 
distribution.

 2. A spectral radius (the maximum eigenvalue of the weights) is 
calculated and all the generated weights are divided by it.

 3. All weights are multiplied by a constant value.

In standard RNNs, all weights are updated following the backprop-
agation through time algorithm [4]. On the other hand, in the ESN, 
only the weights of the output layer are updated in one-shot learning 
through ridge regression as follows:

 w X X I X YT T
out = + -( )l 1   (3)

where X is the matrix of x(t) for all time-series, Y is the matrix of the 
supervised signal for all time-series, and l is the regularization term.
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A B S T R AC T
This paper proposes implementation of an Echo State Network (ESN) to Field Programmable Gate Array (FPGA). The proposed 
method is able to reduce hardware resources by using fixed-point operation, quantization of weights, which includes accumulate 
operations and efficient dataflow modules. The performance of the designed circuit is verified via experiments including 
prediction of sine and cosine waves. Experimental result shows that the proposed circuit supports to 200 MHz of operation 
frequency and facilitates faster computing of the ESN algorithm compared with a central processing unit.
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Figure 2 | Circuit of neuron.

Figure 3 | Output of quantized model.

Figure 1 | Echo state network.

3. HARDWARE-ORIENTED ESN

There are certain limitations of FPGA’s resources, therefore, we 
have to modify the algorithms to suitable for FPGA implementa-
tion. In this paper, we design a circuit for the ESN by following 
three methods.

3.1. Quantization

One way to reduce the complexity of a circuit is using quantized 
values that are able to simplify the computation while maintaining 
its accuracy [5].

Therefore, we calculated the outputs of the reservoir layer  
[Equation (1)] using quantized weights. Generally, the weights 
of input and reservoir layers are real numbers resulting in  
several DSPs to compute real number multiplications. Therefore, 
we transformed the real valued weights to ternary values: 0 or ±1. 
Furthermore, the accuracy by using this quantization for both 
training and prediction mode are maintained.

The circuit of the neuron is shown in Figure 2. Where n is the 
number of reservoir’s neurons. un and wn are inputs and weights of 
input and reservoir layers, respectively, and m is the bit width of the 
input data. Furthermore, the circuit is able to calculate accumulate 
operations using only AND and OR operations.

We have verified the accuracy of a quantized model and the con-
ventional model. The task carried out to evaluate their performance 
was NARMA10 [6] with equations as follows:
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 u vk k= +m s   (5)

where uk and yk are input and output at time k. a, b, g, d, m, s are 
hyper parameters which we set to value (0.3, 0.05, 1.5, 0.1, 1, 0.5). 
vk is the random number from 0 to 1. Training data contains 4000 
time steps and test data contains 300 time steps, but we used only 
the last 200 time steps data.

Figure 3 shows the prediction of 100–200 time steps of the quan-
tized model where the number of reservoir neurons was 1000. 
The black line represents the supervised signal and the blue line 
represents output of the quantized model. The quantized model 
was able to reproduce NARMA10. Figure 4 shows the MSE of the 
supervised signal and outputs of each model, with varying in the 
number of neurons in the reservoir. The accuracy of the quantized 
model was similar to conventional model.

3.2. Fixed Point

Generally, computations are conducted with floating point num-
bers, which are an exponential representation, and can represent 
a wide range of numbers. A circuit using floating point numbers 
is more complex as it requires many FPGA resources. In con-
trast, although the fixed-point representation can only represent 
a narrow range of numbers, the circuit resources is less complex 
compared with that using the floating point.

3.3.  Sequence Product–Sum  
of Output Layer

As shown in Figure 5, general product–sum operations can be rep-
resented by a tree structure. Using this representation, the number 
of adders and multipliers increases with the number of neurons. 

Figure 4 | MSE of each model.
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Figure 5 | Tree structure of the product–sum circuit.

Table 1 | Details of each circuit

Operation
Weights of input 
and reservoir 
layers

Module of output 
layer

Conventional Floating point Real values Tree structure
Proposed Fixed point Ternary values Sequence structure

Therefore, in this research, we sequentially calculated the product–
sum of the output layer. Figure 6 illustrates the product–sum oper-
ation by the proposed method, where Ai is an intermediate variable 
that temporarily stores the accumulate value. As this method con-
sists of only a single adder, multiplier, and register per neuron in 
the output layer, the complexity of the circuit is reduced.

4. FPGA IMPLEMENTATION

As shown in Figure 7, the conventional model used two pipeline. In 
process 1 and 2, the reservoir module calculates the state of a single 
neuron in reservoir layer and stores it in memory. In process 3, the 
reservoir module repeats the process 1 and 2 for the rest of reservoir 
neurons. In process 4, an output module calculates the output of a 
single neuron in output layer by using tree structure. In process 5, 
the output module repeats process 4 for the rest of output neurons.

Figure 8 illustrates the circuits architecture of the proposed model. 
We implement the sequential structure of the product–sum cir-
cuit (as in Figure 6) in parallel for the output layer. Therefore, the 
proposed circuit is able to calculate a single neuron of reservoir 
layer and output layer simultaneously in process 4. As a result, the 
proposed model processes more efficiency than the conventional 
model. Table 1 shows the comparison between the conventional 
model and the proposed model.

5. EXPERIMENT

In the experiment, we have created two types of circuits in order 
to verify the effectiveness of the proposed circuit and compared 
its calculation speed with those of the other devices. The task to 
evaluate their performance is the prediction problem of sine and 
cosine waves. The number of neurons in the input, reservoir and 
the output layers were 2, 100, and 2, respectively, and the prediction 
was computed in an FPGA. The target device is a Zynq UltraScale+ 
MPSoC ZCU102. Furthermore, the experiment was conducted 
with an operating frequency of 200 MHz and a data width of 32-bits 
operations [7]. Table 2 shows experimental conditions.

6. RESULTS

Figure 9 shows the prediction of the conventional and proposed 
circuits. The black, blue, and red lines represent the supervised 
signal, prediction of the conventional circuit and prediction of the 
proposed circuit, respectively. Both circuits were able to repro-
duce sine and cosine waves. Tables 3 and 4 shows the utilization 
of resources for the conventional and proposed circuit, respec-
tively. The proposed method was able to reduce the overall use 
of resources approximately 50%. Table 5 shows the comparison 
between electric energy of conventional circuit and proposed cir-
cuit. The proposed method reduced the electric energy consump-
tion by approximately 80% compared with the conventional one. 
Table 6 shows a comparison between the computation speed of the 
FPGA and other devices. The proposed circuit was approximately 
25 and 340 times faster than a desktop CPU and embedded CPU, 
respectively. 

Figure 6 | Sequence structure of the product–sum circuit.

Figure 7 | Circuits architecture of conventional model.

Figure 8 | Circuits architecture of proposed model.

Table 2 | Experimental conditions

Tool SDSoC 2018.3

Target device Zynq UltraScale+ MPSoC ZCU102
Clock frequency 200 MHz
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Table 5 | Electric energy consumption of each circuits

Latency (ms) Power (w) Electric energy 
(w*ms)

Conventional 0.43 1.46 0.63
Proposed 0.20 0.67 0.13

Table 6 | Computation speed of devices

Platform Latency (ms)

CPU 3.2GHz (i7-8700) 5.215
Embedded CPU 1.2GHz (Quad Arm 

Cortex-A53) 68.123

FPGA 200MHz (XCZU-
9EG-2FFVBG1156E) 0.200

Table 3 | Utilization of resources for the conventional circuit

Used Total Utilization

BRAM_18k 106 912 11.57
DSP_48E 519 2520 20.48
LUT 60557 274,080 22.07
FF 96556 548,160 17.55

Table 4 | Utilization of resources for the proposed circuit

Used Total Utilization

BRAM_18k 48 912 5.26
DSP_48E 20 2520 0.79
LUT 28933 274,080 10.56
FF 44021 548,160 8.03

possible while the circuit resources were reduced. To achieve this, 
fixed-point computation, quantification of weights, and sequential 
product–sum computation techniques were used.

In the future, it is expected to apply the proposed circuit and meth-
ods to embedded systems such as automobiles and robots.
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