
A Hardware-Oriented Echo State Network and its
FPGA Implementation

著者 Honda Kentaro, Tamukoh Hakaru
journal or
publication title

Journal of Robotics, Networking and Artificial
Life

volume 7
number 1
page range 58-62
year 2020-05-18
その他のタイトル A hardware-oriented echo state network and its

FPGA implementation
URL http://hdl.handle.net/10228/00008260

doi: https://doi.org/10.2991/jrnal.k.200512.012

Research Article

A Hardware-Oriented Echo State Network and its
FPGA Implementation

Kentaro Honda, Hakaru Tamukoh*

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu,
Fukuoka 808-0196, Japan

1. INTRODUCTION

Neural networks are highly expected to be applied into embedded
systems such as robots and automobiles. However, Deep Neural
Networks (DNNs) [1] require high computational power because
a lot of accumulate operations are being processed using them.
Generally, graphics processing units are used to accelerate these
computations; however, as their power consumption is high, imple-
menting embedded systems using them is difficult due to a power
limit. To mitigate this problem, we have implemented DNNs into
hardware such as Field Programmable Gate Arrays (FPGAs), realiz-
ing high-speed calculation with low power consumption.

In this paper, we have implemented an Echo State Network (ESN)
[2], a kind of Reservoir Computing (RC) into an FPGA. An RC is a
Recurrent Neural Network (RNN) model in which only the weights
of an output layer are defined in the training step. ESNs are able to
learn time-series data faster than general RNNs such as Long Short-
term Memory (LSTM). In ESNs, a lot of accumulate operations of
input data and weights are executed, however, there are limitations
of FPGA resources such as Loot Up Table (LUT), Flip Flop (FF) and
Digital Signal Processor (DSP). As a result, we have modified the
algorithms and architectures of ESNs. Furthermore, we implement
the proposed hardware-oriented algorithms into the FPGA and
show the effectiveness of the proposed methods by comparing the
proposed circuit with other.

2. ECHO STATE NETWORK

The ESN is a type of RC which consists of three layers: an input
layer, a reservoir layer and an output layer, shown in Figure 1, in

which the neurons of the reservoir layer are randomly connected
to each other.

ESN is described by Equations (1) and (2),

 x t f x t w u t w x t() (() () (() ()))= - - + + -1 1 1d d in res
 (1)

 z t w x t() ()= ×out (2)

where x(t) and z(t) are output of the reservoir and output layer,
respectively, time t, u(t) is an input data, d is the leak rate, which is
the rate of the term x(t − 1) that affects x(t). win, wres, and wout are the
weights of the input, reservoir and output layer, respectively. The
activation function f is defined as the hyperbolic tangent function.
The reservoir layer follows the Echo State Property (ESP) [3] and its
weights are initialized by the following steps:

 1. All weights of the reservoir layer are generated from a normal
distribution.

 2. A spectral radius (the maximum eigenvalue of the weights) is
calculated and all the generated weights are divided by it.

 3. All weights are multiplied by a constant value.

In standard RNNs, all weights are updated following the backprop-
agation through time algorithm [4]. On the other hand, in the ESN,
only the weights of the output layer are updated in one-shot learning
through ridge regression as follows:

 w X X I X YT T
out = + -()l 1 (3)

where X is the matrix of x(t) for all time-series, Y is the matrix of the
supervised signal for all time-series, and l is the regularization term.

A RT I C L E I N F O
Article History

Received 11 November 2019
Accepted 04 March 2020

Keywords

Reservoir computing
echo state network
field programmable gate array

A B S T R AC T
This paper proposes implementation of an Echo State Network (ESN) to Field Programmable Gate Array (FPGA). The proposed
method is able to reduce hardware resources by using fixed-point operation, quantization of weights, which includes accumulate
operations and efficient dataflow modules. The performance of the designed circuit is verified via experiments including
prediction of sine and cosine waves. Experimental result shows that the proposed circuit supports to 200 MHz of operation
frequency and facilitates faster computing of the ESN algorithm compared with a central processing unit.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: tamukoh@brain.kyutech.ac.jp

Journal of Robotics, Networking and Artificial Life
Vol. 7(1); June (2020), pp. 58–62

DOI: https://doi.org/10.2991/jrnal.k.200512.012; ISSN 2405-9021; eISSN 2352-6386
https://www.atlantis-press.com/journals/jrnal

http://creativecommons.org/licenses/by-nc/4.0/
mailto:tamukoh%40brain.kyutech.ac.jp?subject=

 K. Honda and H. Tamukoh / Journal of Robotics, Networking and Artificial Life 7(1) 58–62 59

Figure 2 | Circuit of neuron.

Figure 3 | Output of quantized model.

Figure 1 | Echo state network.

3. HARDWARE-ORIENTED ESN

There are certain limitations of FPGA’s resources, therefore, we
have to modify the algorithms to suitable for FPGA implementa-
tion. In this paper, we design a circuit for the ESN by following
three methods.

3.1. Quantization

One way to reduce the complexity of a circuit is using quantized
values that are able to simplify the computation while maintaining
its accuracy [5].

Therefore, we calculated the outputs of the reservoir layer
[Equation (1)] using quantized weights. Generally, the weights
of input and reservoir layers are real numbers resulting in
several DSPs to compute real number multiplications. Therefore,
we transformed the real valued weights to ternary values: 0 or ±1.
Furthermore, the accuracy by using this quantization for both
training and prediction mode are maintained.

The circuit of the neuron is shown in Figure 2. Where n is the
number of reservoir’s neurons. un and wn are inputs and weights of
input and reservoir layers, respectively, and m is the bit width of the
input data. Furthermore, the circuit is able to calculate accumulate
operations using only AND and OR operations.

We have verified the accuracy of a quantized model and the con-
ventional model. The task carried out to evaluate their performance
was NARMA10 [6] with equations as follows:

y y y y u uk k k

i
k i k k+

=
- -= + + + +å1

0

9

9a b g d (4)

 u vk k= +m s (5)

where uk and yk are input and output at time k. a, b, g, d, m, s are
hyper parameters which we set to value (0.3, 0.05, 1.5, 0.1, 1, 0.5).
vk is the random number from 0 to 1. Training data contains 4000
time steps and test data contains 300 time steps, but we used only
the last 200 time steps data.

Figure 3 shows the prediction of 100–200 time steps of the quan-
tized model where the number of reservoir neurons was 1000.
The black line represents the supervised signal and the blue line
represents output of the quantized model. The quantized model
was able to reproduce NARMA10. Figure 4 shows the MSE of the
supervised signal and outputs of each model, with varying in the
number of neurons in the reservoir. The accuracy of the quantized
model was similar to conventional model.

3.2. Fixed Point

Generally, computations are conducted with floating point num-
bers, which are an exponential representation, and can represent
a wide range of numbers. A circuit using floating point numbers
is more complex as it requires many FPGA resources. In con-
trast, although the fixed-point representation can only represent
a narrow range of numbers, the circuit resources is less complex
compared with that using the floating point.

3.3. Sequence Product–Sum
of Output Layer

As shown in Figure 5, general product–sum operations can be rep-
resented by a tree structure. Using this representation, the number
of adders and multipliers increases with the number of neurons.

Figure 4 | MSE of each model.

60 K. Honda and H. Tamukoh / Journal of Robotics, Networking and Artificial Life 7(1) 58–62

Figure 5 | Tree structure of the product–sum circuit.

Table 1 | Details of each circuit

Operation
Weights of input
and reservoir
layers

Module of output
layer

Conventional Floating point Real values Tree structure
Proposed Fixed point Ternary values Sequence structure

Therefore, in this research, we sequentially calculated the product–
sum of the output layer. Figure 6 illustrates the product–sum oper-
ation by the proposed method, where Ai is an intermediate variable
that temporarily stores the accumulate value. As this method con-
sists of only a single adder, multiplier, and register per neuron in
the output layer, the complexity of the circuit is reduced.

4. FPGA IMPLEMENTATION

As shown in Figure 7, the conventional model used two pipeline. In
process 1 and 2, the reservoir module calculates the state of a single
neuron in reservoir layer and stores it in memory. In process 3, the
reservoir module repeats the process 1 and 2 for the rest of reservoir
neurons. In process 4, an output module calculates the output of a
single neuron in output layer by using tree structure. In process 5,
the output module repeats process 4 for the rest of output neurons.

Figure 8 illustrates the circuits architecture of the proposed model.
We implement the sequential structure of the product–sum cir-
cuit (as in Figure 6) in parallel for the output layer. Therefore, the
proposed circuit is able to calculate a single neuron of reservoir
layer and output layer simultaneously in process 4. As a result, the
proposed model processes more efficiency than the conventional
model. Table 1 shows the comparison between the conventional
model and the proposed model.

5. EXPERIMENT

In the experiment, we have created two types of circuits in order
to verify the effectiveness of the proposed circuit and compared
its calculation speed with those of the other devices. The task to
evaluate their performance is the prediction problem of sine and
cosine waves. The number of neurons in the input, reservoir and
the output layers were 2, 100, and 2, respectively, and the prediction
was computed in an FPGA. The target device is a Zynq UltraScale+
MPSoC ZCU102. Furthermore, the experiment was conducted
with an operating frequency of 200 MHz and a data width of 32-bits
operations [7]. Table 2 shows experimental conditions.

6. RESULTS

Figure 9 shows the prediction of the conventional and proposed
circuits. The black, blue, and red lines represent the supervised
signal, prediction of the conventional circuit and prediction of the
proposed circuit, respectively. Both circuits were able to repro-
duce sine and cosine waves. Tables 3 and 4 shows the utilization
of resources for the conventional and proposed circuit, respec-
tively. The proposed method was able to reduce the overall use
of resources approximately 50%. Table 5 shows the comparison
between electric energy of conventional circuit and proposed cir-
cuit. The proposed method reduced the electric energy consump-
tion by approximately 80% compared with the conventional one.
Table 6 shows a comparison between the computation speed of the
FPGA and other devices. The proposed circuit was approximately
25 and 340 times faster than a desktop CPU and embedded CPU,
respectively.

Figure 6 | Sequence structure of the product–sum circuit.

Figure 7 | Circuits architecture of conventional model.

Figure 8 | Circuits architecture of proposed model.

Table 2 | Experimental conditions

Tool SDSoC 2018.3

Target device Zynq UltraScale+ MPSoC ZCU102
Clock frequency 200 MHz

 K. Honda and H. Tamukoh / Journal of Robotics, Networking and Artificial Life 7(1) 58–62 61

Table 5 | Electric energy consumption of each circuits

Latency (ms) Power (w) Electric energy
(w*ms)

Conventional 0.43 1.46 0.63
Proposed 0.20 0.67 0.13

Table 6 | Computation speed of devices

Platform Latency (ms)

CPU 3.2GHz (i7-8700) 5.215
Embedded CPU 1.2GHz (Quad Arm

Cortex-A53) 68.123

FPGA 200MHz (XCZU-
9EG-2FFVBG1156E) 0.200

Table 3 | Utilization of resources for the conventional circuit

Used Total Utilization

BRAM_18k 106 912 11.57
DSP_48E 519 2520 20.48
LUT 60557 274,080 22.07
FF 96556 548,160 17.55

Table 4 | Utilization of resources for the proposed circuit

Used Total Utilization

BRAM_18k 48 912 5.26
DSP_48E 20 2520 0.79
LUT 28933 274,080 10.56
FF 44021 548,160 8.03

possible while the circuit resources were reduced. To achieve this,
fixed-point computation, quantification of weights, and sequential
product–sum computation techniques were used.

In the future, it is expected to apply the proposed circuit and meth-
ods to embedded systems such as automobiles and robots.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

ACKNOWLEDGMENT

This research is supported by JSPS KAKENHI grant number
17H01798.

REFERENCES

[1] G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for
deep belief nets, Neural Comput. 18 (2006), 1527–1554.

[2] H. Jaeger, The “echo state” approach to analysing and training
recurrent neural networks – with an Erratum note, German
National Research Center for Information Technology GMD,
Bonn, Germany, Technical Report, 148 (2001), 13.

[3] I.B. Yildiz, H. Jaeger, S.J. Kiebel, Re-visiting the echo state prop-
erty, Neural Netw. 35 (2012), 1–9.

[4] P.J. Werbos, Backpropagation through time: what it does and how
to do it, Proc. IEEE 78 (1990), 1550–1560.

[5] Y. Aratani, Y.Y. Jye, A. Suzuki, D. Shuto, T. Morie, H. Tamukoh,
Multi-valued quantization neural networks toward hardware
implementation, IEEE International Conference on Artificial Life
and Robotics (ICAROB), 22 (2017), 132–135.

[6] A.F. Atiya, A.G. Parlos, New results on recurrent network training:
unifying the algorithms and accelerating convergence, IEEE
Trans. Neural Netw. 11 (2000), 697–709.

[7] XILINX, Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit,
available from: https://www.xilinx.com/products/boards-and-
kits/ek-u1-zcu102-g.html (accessed December 1, 2019).

Figure 9 | Output of circuits.

7. CONCLUSION

We were able to successfully adapt the circuit to enhance ESN com-
putation in the FPGA. As a result, high-speed computation was

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.5954/ICAROB.2017.OS9-2
https://doi.org/10.5954/ICAROB.2017.OS9-2
https://doi.org/10.5954/ICAROB.2017.OS9-2
https://doi.org/10.5954/ICAROB.2017.OS9-2
https://doi.org/10.1109/72.846741
https://doi.org/10.1109/72.846741
https://doi.org/10.1109/72.846741

62 K. Honda and H. Tamukoh / Journal of Robotics, Networking and Artificial Life 7(1) 58–62

AUTHORS INTRODUCTION

Mr. Kentaro Honda

He received Master of Engineering degree
from Kyushu Institute of Technology in
2019. His research interests include neural
network and digital circuit.

Associate Prof. Hakaru Tamukoh

He received the B.Eng. degree from Miyazaki
University, Japan, in 2001. He received the
M.Eng. and the PhD degree from Kyushu
Institute of Technology, Japan, in 2003 and
2006, respectively. He was a postdoctoral
research fellow of 21st century center of
excellent program at Kyushu Institute of
Technology, from April 2006 to September

2007. He was an Assistant Professor of Tokyo University of
Agriculture and Technology, from October 2007 to January
2013. He is currently an Associate Professor in the Graduate
School of Life Science and System Engineering, Kyushu
Institute of Technology, Japan. His research interest includes
hardware/software complex system, digital hardware design,
neural networks, soft-computing and home service robots. He
is a member of IEICE, SOFT, JNNS, IEEE, JSAI and RSJ.

