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Abstract— It has been widely considered that one of the
distinctive features of musculoskeletal structures is to change
both a joint angle and stiffness by exploiting the agonist-
antagonist driving of the joint. In animals and humans, however,
musculoskeletal systems are typically very complex, and the
simple agonist-antagonist driving is hardly found. Therefore, in
accordance with the increasing complexity of musculoskeletal
robots, the feature that makes the robot take a posture with
different stiffness values becomes difficult to achieve due to
the difficulty of modeling the kinematics. Although data-driven
approach such as Neural Network is thought of as suitable for
modeling complex relationships, the training data is difficult
to obtain because measuring a joint stiffness usually is very
difficult in contrast to measuring an actuator’s state and
a posture. To this problem, in this paper, we propose the
common dimensional autoencoder where the encoded feature
has identical dimensions to the original input vector. In the
proposed network, in parallel with the original unsupervised
training using the data of actuators’ states, supervised training
at a part of the encoded features is carried out by using the
data of postures. As a result, features expressing redundancy of
inverse kinematics appear at the rest part of encoded features
without using the data such as stiffness of joints. The validity
of the proposed method was successfully confirmed through an
experiment using a 10 DOF complex musculoskeletal robot arm
driven by pneumatic artificial muscles.

I. INTRODUCTION

Living organisms can adaptively behave in complex envi-
ronments by manipulating their complex body skillfully. It
has been thought of as that their distinctive body structures,
namely musculoskeletal structures, greatly contributes to
achieve adaptive behaviors. Therefore, many musculoskele-
tal robots have been developed in the field of bioinspired
robotics to clarify and exploit functionalities provided by
musculoskeletal systems through experiments[1], [2], [3],
[4], [5]

One of the well-known functionalities of musculoskeletal
systems is to control both an angle and stiffness of a
joint. In contrast with that a joint is typically driven by a
single rotatory actuator in conventional robots, if a joint is
driven via tendons by two agonist-antagonist pair of springy
actuators, the redundancy in the drive system can be used
to change the stiffness[6], [7]. So far, this property has been
intensively studied in the field of tendon-driven systems. It
is well-known that musculoskeletal systems having actuators
not only driving single joints but also multiple joints (i.e.,
actuators corresponding to multiarticular muscles) are still
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Fig. 1. Example of redundancy in a complex musculoskeletal robot. The
same hand position can be achieved in different postures with different ac-
tuators’ states. This robot has a three dimensional complex musculoskeletal
structure driven by pneumatic artificial muscles. Different sets of internal
pressures of pneumatic artificial muscles exist while the same hand position
maintains.

sufficiently modeled and controlled if agonist-antagonist
pairs can be analytically identified[8], [9], [10]. However, be-
cause animals and humans have too complex musculoskeletal
systems to identify agonist-antagonist pairs of muscles in
advance, musculoskeletal robots have been increasing their
structural complexity, and there are already several robots
that have complex musculoskeletal robot enough to give up
the conventional analytic approach[11], [12], [13].

Data-driven methods such as frameworks using Neural
Network (NN) will be a promising candidate to overcome the
difficulty in modeling a complex musculoskeletal structure.
For instance, Jantsch et al. approximated a muscle Jacobian
of a spherical joint by using a multilayered perceptron
network[14]. Also, Jamone et al. modeled the muscle Ja-
cobian by adopting the receptive field neural network for
their tendon-driven neck structure inspired by the structure
of humans[15]. However, in these studies, the feature of the
musculoskeletal system that varies stiffness has been neither
approximated nor exploited. Because a NN typically provides
a one-by-one mapping, redundancy that appears in mapping
from a posture to an actuators’ state has to be explicitly
handled by preparing training data that fully explain the
difference in the same posture realized by different actuators’
states appears. It is evident that preparing this type of data
is much harder than preparing data of actuators’ states and
postures. To overcome this problem, Okubo et al. adopted
a functional approximation of forwarding kinematics and
solved the redundant inverse kinematics problem numerically
based on the differentiation of the forward mapping[16].



Although they proposed a method of a bidirectional mapping
for redundant kinematics problems, exploiting the redun-
dancy (e.g., varying actuators’ state while keeping the same
posture) is fully responsible for the numerical method and
can be time-consuming comparing with approaches using
NN. If training a NN to express both forward and inverse
mappings between actuators’ states and postures becomes
available only based on easily obtainable data while re-
dundancy provided by not only different stiffness but also
redundant joints for the task accomplishment is stored at the
same time, it will be the viable alternative.

In this study, we propose a new NN-based method for
highly redundant kinematics problems found in complex
musculoskeletal robots. Because measuring the stiffness of
all joints is typically difficult, the proposed method is re-
quired to train the NN without relying on this type of
data. Also, since even measuring angles of all joint in
musculoskeletal robots is often difficult (e.g., measuring
three angles of a spherical joint), it is also required to
deem it as the redundancy as the same as the above, if
it is not explicitly considered in the task accomplishment.
Fig.1 shows the example of this problem that appears prac-
tically in our musculoskeletal robot arm. To this end, in
the proposed method, both the unsupervised learning and
the supervised learning are carried out simultaneously for
creating both forward and inverse mappings of kinematics.
Briefly speaking, it directly trains a part of feature units
in a general autoencoder by supervised learning manner
during the original unsupervised learning, so that the rest of
feature units finds the information, which is not contained
in the supervised data but required to accomplish the un-
supervised learning, i.e., the redundant information such as
joint stiffness. Thus far, we verified the core idea through
a simulation of a 2DOF planer manipulator driven by the
typical 3-pairs-6-muscles configuration[17]. However, it has
not been evaluated that the proposed method can be applied
to complex musculoskeletal robots that actually require data-
driven approaches. Therefore, in this paper, we conducted an
experiment using a 10 DOF complex musculoskeletal robot
arm driven by pneumatic artificial muscles[]. The experiment
resulted in a successful confirmation of the method’s validity.

II. PROPOSED METHOD

In this section, we explain the proposed method in a
general setup where a mapping from high dimensional data
DH to low dimensional data DL is a many-to-one mapping.
For instance, u ∈ DH ∈ RN and q ∈ DL ∈ RM , where M < N
holds, can be assumed to be corresponding to actuators’
states and postures, respectively. Fig.2 shows the network
used in the proposed method. The proposed method consists
of unsupervised learning and supervised learning of NN. The
unsupervised learning aims to transform high dimensional
data to feature vectors and transforming back. Therefore,
this is precisely the same as the general autoencoder. On
the other hand, the supervised learning aims to force a part
of the feature vector (i.e., M-dimensional subvector out of N-
dimensional vector) to mean corresponding low dimensional

Fig. 2. The network used in the proposed method is a simple autoencoder
trained by feeding high dimensional data DH to both the input and the output
units depicted as black circles. Because the bottleneck hidden layer, where
low dimensional feature vectors are typically expressed, has the identical
dimensionality with the input and the output layers, we name this network -
the common dimensional autoencoder. At the same time, supervised learning
is carried out by feeding low dimensional data DL to a part of the feature
units on the bottleneck layer (depicted as dark gray circles).

data. It indicates that the forward mapping from the high
dimensional data to the low dimensional data is explicitly
trained in the subnetwork of the autoencoder. Note that
the unsupervised training and supervised training are both
carried out simultaneously. In this case, the rest of the feature
vector has to retain the information which is not contained in
the low dimensional data but required to reproduce the high
dimensional data. In other words, it has to show vectors that
distinguish many input vectors of the many-to-one forward
mapping. The important feature of the proposed method is
that the remaining part is not trained explicitly but implicitly
guided to express such information meaning the redundancy
in the inverse mapping. Once the training was sufficiently
accomplished, a variety of high dimensional vectors that
realizes the same low dimensional vector can be obtained
by fixing the trained part of the feature units (i.e., dark gray
circles in Fig.2) to the low dimensional vector and by varying
the rest (i.e., light gray circles in Fig.2). See Fig.3 for more
specific comprehension.

As shown in Fig.2, the bottleneck layer of the autoencoder
has the identical dimensionality with the input and the
output and is named the common dimensional autoencoder.
The reason is that because the dimensionality required for
expressing the redundancy does not exceed N−M, N units
common to the input and the output of the autoencoder are
required for the feature vector at a maximum. Note that other
hidden layers have more than N units.

The unsupervised learning is performed by referring the
following cost function:

LAE =
1
‖DH‖ ∑

ui∈DN

(y(ui)−ui)
T Q(y(ui)−ui) (1)

where y(ui) indicates the output of the common dimensional
autoencoder obtained by feeding ui to the input layer and
by transforming back via the bottleneck hidden layer. In
addition, Q indicates a weighting matrix. This is the general
form of the cost function of the autoencoder.

The supervised learning is performed only in the sub-
network of the common dimensional autoencoder. Let us
denote vectors that appear on the bottleneck hidden layer



Fig. 3. Functions of subnetworks achieved in the common dimensional
autoencoder. The network is sandwiched between the input layer, and the
part of the bottleneck hidden layer where units received DL (upper left)
is explicitly trained to be the forward mapping. On the other hand, the
rest half of the encoder (lower left) is not trained explicitly but implicitly
guided to have the remaining information lost in the forward mapping as the
result of training the entire autoencoder. Once the training was successful, it
was obvious that the decoder (right) can be used for the inverse mapping. In
particular, a variety of high dimensional vectors that conduces the same low
dimensional data can be obtained by feeding the low dimensional vector to
units depicted dark gray (upper right) and by feeding a variety of adequate
vectors to units depicted light gray (lower left).

as h. Assuming a column vector hT
I ∈ RM as the subvector

of h where (hT
I ,h

T
K)

T = h holds, the cost function for the
supervised learning is written as follows:

LFM =
1
‖DL‖ ∑

{ui,qi}∈{DH ,DL}
(hI(ui)−qi)

T R(hI(ui)−qi). (2)

Where R and hI(ui) indicates a weighting matrix and a
vector that appears at hI when ui was fed onto the input
layer, respectively. This is the general cost function of the
simple feedforward neural network and governs training of
the forward mapping.

The entire cost function for the common dimensional
autoencoder is simply defined as:

L = LAE +LFM. (3)

In the training, we do not assume any restriction of tech-
niques about activation functions, optimization technique,
and so on. Additionally, even for network structures of the
encoder and the decoder, the proposed method allows using
any configuration except for shortcut connections beyond the
bottleneck layer.

As shown in the above, the rest of the units on the
bottleneck hidden layer hK is not trained explicitly. However,
qualitatively speaking, hK is required to have the information
that has been lost by the many-to-one forward mapping from
DH to DL because the entire network has to reproduce DH
on the output layer eventually. From the analogy of the
linear algebra, hI and hK are thought of as playing as the
image and the kernel of the function f : u→ q, respectively.
The kernel (null space) is commonly employed to explain

Fig. 4. Muscle arrangements of the musculoskeletal robot arm and a human.
This robot arm has a 10 DOF skeletal structure where the scapula, the
shoulder joint, the elbow joint, the forearm, and the wrist have 3 DOFs, 3
DOFs, 1 DOF, 1 DOF, and 2 DOFs, respectively. All joints are redundantly
driven by 24 PAMs arranged similarly to the corresponding human muscles.
Each PAM has a pressure sensor (SMC PSE-540), and the internal pressure
is controlled by an air-flow control valve (Festo MPYE-5). A yellow ball
is attached instead of the hand, and the Cartesian position is tracked using
a depth camera (Intel RealSense ZR 300). The origin is located at the base
of the upper torso. A visualization of the robot’s coordinate system’s origin
is also referenced in the image above.

how the stiffness of the joint and other variables appear as
redundancy of kinematics models in tasks, and the common
dimensional autoencoder introduces the same viewpoint to
complex musculoskeletal robots.

III. EXPERIMENT

In this section, we verify the proposed method by using
the 10 DOF musculoskeletal robot arm[18]. Fig.4 shows the
musculoskeletal structure which the robot arm has. In this
robot arm, 24 pneumatic artificial muscles (PAMs) corre-
sponding to muscle arrangement of humans are employed.
Further, the Cartesian position of the hand, where the yellow
ball is attached, is measured by a depth camera. In the
experiment, we focus on the bidirectional mapping between
the internal pressures of all PAMs and their resulting hand
positions. In other words, in this experiment, the actuators’



state and the posture in the previous section are specifically
corresponding to the internal pressures of PAMs and the
Cartesian position of the hand. Therefore, N = 24 and M = 3
hold in this problem. It is clear that the forward mapping
that transforms internal pressures to the corresponding hand
position is a many-to-one mapping and redundancy appears
in the inverse mapping.

In the following subsections, at first, the procedure to
gather training data DH and DL is explained in detail. The
structure and the training of the common dimensional au-
toencoder employed in this setup are also further explained.
The second subsection contains the result of control based
on the trained common dimensional autoencoder as well as
the discussion.

A. Training of the Common Dimensional Autoencoder

To train the common dimensional autoencoder, DH and
DL are collected by moving the musculoskeletal robot arm.
A data point in DH indicates a vector consisting of internal
pressures of PAMs. To sample the data points, the pressure
of each PAM was randomly selected set between 0 to 0.5
[MPa] with the interval 0.01. The corresponding data point
in DL that indicates the hand position was measured when
the musculoskeletal robot arm reached the equilibrium at
the given pressures. By repeatedly executing this procedure,
1 million points of DH and DL were gathered from the
musculoskeletal robot arm.

Based on DH and DL, the training of the common di-
mensional autoencoder was carried out. About the network
structure, because 24 actuators are used in this experiment,
24 units are used on the input layer, the bottleneck hidden
layer, and the output layer. There are 3 hidden layers between
the input layer and the bottleneck hidden layer as well as
between the bottleneck hidden layer and the output layer,
For these hidden layers, 180, 120, and 60 units are employed
between the input and bottleneck layer, and in reverse order
between the bottleneck and output layer. Each layer - except
the output layer - has an additional bias unit that always
outputs 1. Because the hand position is expressed in the form
of a three dimensional vector, 3 units out of 24 units on the
bottleneck hidden layer are explicitly trained to output the
corresponding data points in DL. For the training, the Adam
optimization algorithm was used, and the entire cost value
was sufficiently reduced.

B. Posture control based on inverse mapping

To verify whether or not the common dimensional au-
toencoder learned the bidirectional mapping between PAM
pressures and hand positions, we conducted the hand position
control experiment using the musculoskeletal robot arm. For
the experiment, desired hand positions were generated as
follows:

h∗I =

x
y
z

=

0.15cosθ +0.05
0.15sinθ −0.30

−0.27

 (4)

where θ varies from 0 to 2π with the interval π/10. Thus,
there are 20 desired hand positions on a circular path on

a horizontal plane. In the decoder part of the common
dimensional autoencoder (The right half of the network. See
in Fig.3), the hI , which three units trained by referring the
DL, receives one by one from these 20 desired hand positions.

If the proposed method works as expected and the training
was done sufficiently, although the hK meaning the rest of
units on the bottleneck hidden layer affects the values on
the output layer, the same hand position will be achieved by
using these values as desired internal pressures of PAMs.
Therefore, we can randomly generate values of 21 units
contained in hK in intervals where each unit could have
during the training. However, how these values change joints’
stiffness and the rest of the linkage positions and postures is
unknown at this moment. Once both hI and hK are obtained,
the vector (hT

I ,h
T
K)

T is fed to the decoder part, and the output
vector is used as desired pressures for the pressure feedback
controller of the musculoskeletal robot arm.

Fig.5 shows the sequential snapshots when the hand po-
sition control was performed. In addition, Fig.6 shows the
performance of the control. In these results, the hK was fixed
after the random generation. From these figures, although
the accuracy was obviously low, it can be seen that the hand
position control was qualitatively achieved.

In the next, we prepared five different hK and executed
the hand position control for each of five different hK . Fig.7
shows the results of the hand position control. Ideally, these
five trajectories should be the same, but errors can be seen
in this figure. However, because these errors are reasonably
smaller than the variance made by changing in hI , it is
thought of as that the proposed method worked as expected.

Fig.8 shows the variety of pressures of selected PAMs seen
during trials shown in Fig.7. From this figure, it can be seen
that where a large difference of pressures in each PAMs.
Therefore, it indicates that changes in hK actually resulted
in the changes in pressures while keeping hand positions.

During the experiment, the common dimensional autoen-
coder was able to approximate both the forward and the
inverse mapping of a redundant kinematics problem. Notably,
on the bottleneck hidden layer, the vital feature that hK
automatically becomes to express the information about the
redundancy in the forward mapping despite it is not trained
explicitly was successfully validated. Therefore, we conclude
that the validity and features of the proposed method are
confirmed.

IV. DISCUSSION AND CONCLUSION

In this study, we proposed a new method that learn
bidirectional mapping between redundant actuators’ states
and low dimensional postures. The proposed method em-
ployed an autoencoder which the number of units on the
bottleneck layer is the same to that of the input layer
and the output layer and imposes supervised training to
a part of the bottleneck units. Therefore, We named this
method as the common dimensional autoencoder. To train the
network, high dimensional redundant vectors are used for the
unsupervised training of autoencoder and low dimensional
corresponding vectors are used for the supervised training



Fig. 5. Sequential snapshots of the hand position control of the musculoskeletal robot arm. PAM pressures were obtained by using the inverse mapping
constituted in the right half of the trained common dimensional autoencoder. The hand drew a circular trajectory by feeding circular desired positions to
the hI of the decoder part.

Fig. 6. The performance of the hand position control of the musculoskeletal
robot arm shown in Fig.5. The top, the middle, and the bottom plots show the
time-series of the hand position on x, y, and z axes, respectively. Black dotted
lines indicate the trajectory obtained by smoothing desired hand positions
given to hI . Blue solid lines indicate the trajectory obtained by connecting
realized hand positions by giving calculated pressure values to the feedback
controller.

of a part of the bottleneck units. As the result, it is assumed
that the remaining units on the bottleneck layer will keep the
information that is going to be lost in the forward mapping. It
indicates that both the forward and the inverse mapping are
approximated in subnetworks of the common dimensional
autoencoder. In order to validate the method, we conducted
an experiment using 10 DOFs musculoskeletal robot arm
driven by 24 pneumatic artificial muscles. Through the

Fig. 7. Trajectories of hand positions obtained by executing the control with
different hT

K . The black line indicates the trajectory drawn by connecting
by desired hand positions given to hI . The other five different colored lines
indicate trajectories obtained by connecting realized hand positions in trials
with different hT

K .

experiment, it was successfully confirmed that the common
dimensional autoencoder learned both the forward and the
inverse mapping between 24-dimensional pressure vectors
and 3-dimensional hand positions.

Gathering training data was the largest difficulty for con-
ducting the experiment. As explained in the last section, 1
million data points were collected by actually moving the
musculoskeletal robot. Because approximately one second
was taken for each points in order to wait the convergence
to the equilibrium, more than 10 days are consumed for



Fig. 8. Histories of changes in desired pressures of selected PAMs in
the musculoskeletal robot arm. These muscles are all related to driving the
scapula link. Five different colors are corresponding to them used in Fig.7.

just gathering data even if the robot arm can keep moving.
In the long trials, PAMs were often repaired to cope with
severe damage and the consistency of the hardware decayed.
Furthermore, unignorable noise was also existing on sensor
signals. To cope with these problem by improving the hard-
ware will be necessary to improve the performance shown
in this paper. On the other hand, the fact that the proposed
method could still exhibit qualitatively valid results indicates
its robustness.

Variable stiffness provided by musculoskeletal systems
is one of the typical features that pose redundancy in the
inverse mapping. In the proposed method, hK bears the
role to express the information corresponding to stiffness
of joints. However, in this study, although it was confirmed
that stiffness is possibly changed by changing the hK , how
hK should be modulated to achieve desired stiffness was not
investigated. Analyzing hK and extracting the information of
stiffness and other valuable factors will be one of important
future works.
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