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Abstract: 

Determining the catalytic residues in an enzyme is critical to our understanding the relationship 
between protein sequence, structure, function, and enhancing our ability to design novel enzymes 
and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary 
structures determined, experimental methods for enzyme functional characterization lag behind. 
Because experimental methods used for identifying catalytic residues are resource- and 
labor-intensive, computational approaches have considerable value and are highly desirable for their 
ability to complement experimental studies in identifying catalytic residues and helping to bridge 
the sequence-structure-function gap. In this study, we describe a new computational method called 
PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a 
comprehensive set of informative features extracted from multiple levels, including sequence, 
structure, and residue-contact network, in a random forest machine-learning framework. Extensive 
benchmarking experiments on eight different datasets based on 10-fold cross-validation and 
independent tests, as well as side-by-side performance comparisons with seven modern sequence- 
and structure-based methods, showed that PREvaIL achieved competitive predictive performance, 
with an area under the receiver operating characteristic curve and area under the precision-recall 
curve ranging from 0.896–0.973 and from 0.294–0.523, respectively. We demonstrated that this 
method was able to capture useful signals arising from different levels, leveraging such differential 
but useful types of features and allowing us to significantly improve the performance of catalytic 
residue prediction. We believe that this new method can be utilized as a valuable tool for both 
understanding the complex sequence-structure-function relationships of proteins and facilitating the 
characterization of novel enzymes lacking functional annotations. 
 
Keywords: 
enzyme catalytic residues; sequence-structure-function relationship; functional annotation; 
bioinformatics; pattern recognition; machine learning; sequence analysis 
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1 INTRODUCTION 
As powerful biological catalysts, enzymes can effectively catalyze biochemical reactions at 
extremely high rates and are thus indispensable for many biological processes and pathways 
(Khosla and Harbury, 2001). Many important findings acquired from enzyme fast reaction systems 
(Chou and Zhou, 1982; Kuo-chen and Shou-ping, 1974; Zhou and Zhong, 1982) significantly 
impact both basic research (Gardner, et al., 2015) and drive changes in medicinal chemistry (Chou, 
2017). However, the residues comprising an enzyme differ greatly in functional significance, with 
only a small number directly involved in catalytic activity (Furnham, et al., 2014). Accordingly, 
understanding which of these are catalytic residues is critical for our determining relationships 
between protein sequence, structure, function, and enhancing our ability to design novel inhibitors 
and enzymes. This has important implications in the post-genomic era, with its challenge of 
bridging the widening protein sequence-structure gap. Although sequence information for many 
enzymes is known, relatively few enzymes have been functionally characterized. Therefore, 
detailed information regarding catalytic residues and enzyme active sites explicitly involved in 
catalysis remains lacking. Because experimental methods for identifying catalytic residues are 
resource- and labor-intensive, high-throughput in silico approaches have considerable value and are 
highly desirable for complementing experimental efforts in identifying catalytic residues and 
helping to bridge the sequence-structure-function gap. 

In recent years, a variety of computational methods have been developed for predicting catalytic 
residues or functional residues involved in catalytic reactions (Chou and Cai, 2004). These methods 
differ in several ways, including in the machine-learning or statistical-scoring technique used, the 
types of sequence features used, whether or not structural features are used in addition to sequence 
features, and in the sources of training and testing datasets. According to the types of features used 
for constructing prediction models, existing methods can be generally categorized into four major 
groups. 

The first group of methods was primarily developed based on protein sequence and typically 
relied upon extracting useful sequence features for inputs used to train the prediction models. 
Commonly used sequence features include evolutionary information in the form of position-specific 
scoring matrices (PSSMs) or sequence conservation inferred from multiple sequence alignments 
(Capra and Singh, 2007; Fischer, et al., 2008; La, et al., 2005; Pai, et al., 2015; Youn, et al., 2007; 
Zhang, et al., 2008) or other sequence-derived features, such as Jensen-Shannon divergence scores, 
relative entropies (Dou, et al., 2012; Dou, et al., 2010; Fischer, et al., 2008), and predicted structural 
information inferred from sequences, including secondary structure and solvent accessibility (Dou, 
et al., 2012; Kauffman and Karypis, 2009; Shen, et al., 2009). 

In recent years, many research groups exploited the increasing quantity of structural data 
deposited in the Protein Data Bank (PDB) (Rose, et al., 2017), prompting the proliferation of the 
second group of methods, which leverage structural information to build the prediction models 
(Alterovitz, et al., 2009; Chea and Livesay, 2007; Cilia and Passerini, 2010; Gutteridge, et al., 2003; 
Han, et al., 2012; Kirshner, et al., 2013; Panchenko, et al., 2004; Petrova and Wu, 2006; Sun, et al., 
2016; Xin, et al., 2010; Youn, et al., 2007). Xin et al. (2010) proposed a structure-based kernel 
algorithm for the prediction of catalytic residues by explicitly modelling the similarity between 
residue-centered neighborhoods in protein structures (Xin, et al., 2010). They showed that the 
geometry, physicochemical properties, and evolutionary conservation play an important role in 
determining catalytic residue activity. In a recent study, Sun et al. (2016) developed the CRHunter 
method which combined both sequence and structural information in an SVM framework that 
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achieved stable performance when compared with other template-based predictors (Sun, et al., 
2016). Chien and Huang proposed an approach EXIA based on residue side chain orientation and 
backbone flexibility of protein structure, which achieved a comparable performance to that of 
evolutionary sequence conservation (Chien and Huang, 2012). In another study, Kirshner et al. 
(2013) developed the Catsid (Catalytic site identification) search engine, which enables rapid 
searches for structural matches to a user-specified catalytic site among all PDB structures. Its 
capacity to rapidly search all known protein structures in the PDB is enabled by a logistic 
regression-based model that allows for systematic identification of true positives based on a set of 
feature descriptors (Kirshner, et al., 2013). 

The third group of methods (Chea and Livesay, 2007; del Sol, et al., 2006; del Sol and O'Meara, 
2005; Li, et al., 2011) involve graph-theoretical methods that essentially rely on representing 
protein three-dimensional (3D) structures as small world networks (Watts and Strogatz, 1998), 
where amino acid residues specify vertices within a graph while two residues in a proximal spatial 
neighborhood form edges. Zhou et al. provided a comprehensive review on recent progress in this 
area (Zhou, et al., 2016). Previous studies showed that representing protein structure as a 
topological residue-contact network can provide novel insights into protein folding mechanisms, 
stability, and function (del Sol, et al., 2006; del Sol and O'Meara, 2005; Jiao and Ranganathan, 2017; 
Song, et al., 2010; Tang, et al., 2008; Wang, et al., 2012; Zheng, et al., 2012). Chea and Livesay 
(2007) benchmarked the performance of one particular network measure called closeness centrality 
and showed that it provided statistically significant predictive power for catalytic residue 
predictions. They also demonstrated that solvent accessibility or residue identity could be used as an 
efficient filter by this network feature to further improve its predictive performance (Chea and 
Livesay, 2007). 

The fourth group of methods uses heterogeneous features through the integration or fusion of 
sequence, structure, and other types of features (Li, et al., 2011; Sankararaman, et al., 2010; Tang, et 
al., 2008). Because the extracted features are heterogeneous, redundant, and noisy, a number of 
feature-selection and dimensionality reduction algorithms are often employed and used in 
combination with the learning algorithms to remove irrelevant features and improve model training 
in order to increase prediction accuracy. In terms of the algorithms used for training these prediction 
models, machine learning or statistical scoring approaches are often employed and used include 
neural networks (Gutteridge, et al., 2003), information-theoretic algorithms (Capra and Singh, 2007; 
Fischer, et al., 2008), genetic algorithms (Izidoro, et al., 2015), support vector machines (SVMs) 
(Chea and Livesay, 2007; Li, et al., 2011; Pai, et al., 2015; Petrova and Wu, 2006; Sun, et al., 2016; 
Youn, et al., 2007), kernel-based algorithms (Xin, et al., 2010), AdaBoost (Alterovitz, et al., 2009), 
and logistic regression (Dou, et al., 2012; Kirshner, et al., 2013; Sankararaman, et al., 2010). The 
consensus of these studies has been that evolutionary information, sequence conservation, and the 
structural neighborhood of catalytic residues are important predictive features, with machine 
learning-based approaches often providing competitive performance, making them particularly 
suitable for dealing with high-dimensional heterogeneous feature spaces. 

Despite the development and increasing availability of such a wide range of methods, three main 
challenges need to be overcome to predict catalytic residues by machine leaning-based approaches: 
(1) Sequence and structural features are still not sufficient to predict the catalytic residues of certain 
proteins. Accordingly, it is necessary to find and exploit other novel and complementary groups or 
types of features that can be used to further improve prediction performance. (2) Methods for 
quantifying and characterizing the relative importance and contribution of each group of features 
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according to model performance are needed. (3) It is necessary to determine which machine 
learning algorithm provides the overall highest and most reliable prediction performance. 

To address these questions, in this study, we present a new machine learning-based approach 
called PREvaIL (PRotEin various Information-based cataLytic site predictor) for predicting 
catalytic residues based on a random forest (RF) algorithm. In terms of input features, this approach 
combines a variety of sequence and structural features, as well as residue-contact-network 
properties, and uses an efficient feature-selection technique to select a subset of more useful 
features for catalytic residue prediction. We performed extensive benchmark experiments using 
eight different test datasets to evaluate the performance of this approach and compared it with other 
competing methods. The results showed that this new approach performed favorably as compared 
with other methods, thereby illustrating its effectiveness. 
 
2 MATERIALS and METHODS 
According to the 5-step rules (Chou, 2011), the first important step in developing a new predictor 
involves construction or selection of an effective benchmark dataset. In this study, we addressed this 
problem as follows. 
2.1 Design and generation of independent test datasets of catalytic residues 
To comprehensively evaluate the predictive performance of our approach and compare it with other 
available methods, we employed the same nine datasets prepared by previous studies (Chea and 
Livesay, 2007; Gutteridge, et al., 2003; Petrova and Wu, 2006; Youn, et al., 2007; Zhang, et al., 
2008). These nine datasets are briefly introduced below. 

The first six of these datasets were carefully curated based on various levels of sequence 
homology and only contained one sequence per fold, family, and superfamily (Zhang, et al., 2008), 
thereby allowing rigorous and unbiased performance comparison between different methods. These 
curated datasets are the SCOP fold dataset (“EF_fold”), SCOP superfamily dataset 
(“EF_superfamily”), and SCOP family dataset (“EF_family”) originating from Youn et al. (2007), 
SCOP superfamily dataset (“HA_superfamily”) prepared by Chea and Livesay (2007), the dataset 
(“PC”) prepared by Petrova and Wu (2006), and a non-homologous dataset (“NN”) prepared by 
Gutteridge et al. (2003). 

The ST-1109 dataset was originally prepared by the Kurgan group (Zhang, et al., 2008). In this 
dataset, all experimentally verified catalytic residues were extracted from the Catalytic Site Atlas 
(CSA) database (Furnham, et al., 2014; Porter, et al., 2004), which is a comprehensive resource for 
catalytic sites and residues identified in enzymes using structural data. The CD-HIT program (Fu, et 
al., 2012) was applied at a sequence identity cut-off of 40% to filter homologous sequences against 
those in the six aforementioned datasets in order to avoid bias introduced by homologous sequences 
used for independent tests. This final design dataset contained 1,109 PDB chains. 

The T-124 and T-37 datasets were also originally prepared by the Kurgan group (Zhang, et al., 
2008) and used as independent test datasets to evaluate the performance of different methods. The 
two datasets contain 124 and 37 PDB chains, respectively, and used the CSA database (version 
2.2.5) (Furnham, et al., 2014; Porter, et al., 2004) to annotate the catalytic residues in each chain. 
The two datasets have low pairwise sequence identity (<30%) with respect to the two training 
datasets EF_fold and ST-1109 design set, which would be used by our method to train the RF 
models. 

As the most comprehensive dataset, the ST-1109 design dataset was used to train the prediction 
models used by our method, select optimal features, and calibrate model parameters. The EF_fold 
dataset was used to train the models of our method, which was then tested using the T-124 and T-37 
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independent test datasets to compare the performance between different methods. Additionally, 
10-fold cross-validation tests on the six curated datasets were also performed to assess the 
performance of other existing methods. 
 
2.2 Overview of the PREvaIL methodology 
The flowchart of our PREvaIL methodology for predicting catalytic residues based on the 
integration of sequence, structural, and residue-contact-network features is shown in Figure 1. 
There exist several major stages of developing the PREvaIL methodology, including dataset 
curation, feature extraction at the sequence, structure, and network levels, feature selection, model 
construction, and performance evaluation. Except for dataset curation, which was described in 
section 2.1, we discuss each of these major stages in the following sections. 
 
2.3 Feature engineering 
Similar to previous studies, we formalized the catalytic residue prediction as a classification 
problem. For this purpose, each candidate catalytic residue was represented by a feature vector, x, 
with D-dimensional feature components, {x1, x2,…, xD}. The aim of this classification problem is to 
predict the label y given the feature representations of a residue, i, i.e., to predict whether a residue 
is catalytic (y = 1) or noncatalytic (y = 0). Table 1 provides a comprehensive list of all feature 
components, {x1, x2,…, xD}, categorized according to 11 different feature groups and arranged in 
the order of feature encoding. A series of 3,424-dimensional feature vectors were extracted and used 
in this study. In the following sections, we describe in detail each feature type used for extracting 
feature-vector components. 
 
2.3.1. Sequence features 
With the explosive growth of biological sequence data generated in the post-genomic age, one of 
the most important but also most difficult problems in computational biology is formulation of a 
biological sequence using a discrete model or vector while maintaining considerable sequence order 
or pattern information. This is because all existing operation engines, such as SVMs and RF 
algorithms, can only handle vectors, but not sequence samples (Chou, 2015). However, a vector 
defined by a discrete model might lose all of the sequence-pattern information. To avoid complete 
loss of sequence-pattern information for proteins, the pseudo amino acid composition (PseAAC) 
(Chou, 2001; Chou, 2005) was proposed and has subsequently been utilized in many biomedicine 
and drug development areas (Zhong and Zhou, 2014), as well as all areas of computational 
proteomics [e.g., ((Khan, et al., 2017; Meher, et al., 2017; Rahimi, et al., 2017; Tahir, et al., 2017; 
Zhou, et al., 2007) and a long list of references previously cited (Amanzadeh, et al., 2014; 
Behbahani, et al., 2016; Beigi, et al., 2011; Esmaeili, et al., 2010; Hajisharifi, et al., 2014; 
Khosravian, et al., 2013; Mohabatkar, 2010; Mohabatkar, et al., 2011; Mohabatkar, et al., 2013; 
Mousavizadegan and Mohabatkar, 2016; Poorinmohammad, et al., 2015). Because of its wide use, 
three powerful open access software tools called “PseAAC-Builder” (Du, et al., 2012), “propy” 
(Cao, et al., 2013), and “PseAAC-General” (Du, et al., 2014) were established. The former two are 
used to generate various modes of special PseAACs, whereas the latter the general PseAAC, 
including not only all special modes of feature vectors for proteins but also higher level feature 
vectors, such as “Functional Domain,” “Gene Ontology,” and “Sequential Evolution” or “PSSM” 
modes. In this study, we considered the following five different sequence-derived feature types. 
1) PSSM. Evolutionary information in the form of a PSSM (Jones, 1999) is particularly useful for 
improving the predictive performance of machine learning-based models in our previous studies, 
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including prediction of cis/trans isomerization (Song, et al., 2006), disulfide connectivity (Song, et 
al., 2007), protease cleavage sites (Song, et al., 2012), and metal-binding sites (Chen, et al., 2013; 
Song, et al., 2017). We used a sliding window comprised of 13 amino acids to extract PSSM 
features, resulting in a 20 × 13 = 260-dimensional vector. 
2) EntWOP. This feature is calculated based on the Shannon entropy of the weighted observed 
percentages (WOPs) generated by performing three iterations of PSI-BLAST search and was 
originally designed by incorporating the sequence conservation information into the PSI-BLAST 
profiles (Zhang, et al., 2008). This feature was included based on its emergence as among the most 
important features used for predicting catalytic residues. We followed the same procedures as 
described by Zhang et al. (2008) to extract this feature. 
3) Dist_Key. This one-dimensional feature describes the relative sequence distance of a catalytic 
residue relative to the N-terminus of the protein sequence. 
4) Physicochemical property. Catalytic residues can be classified as charged, hydrophobic, or polar 
residues according to their physicochemical properties. We used binary encoding to represent this 
feature type (i.e., using a 3-dimensional binary vector; if the given catalytic residue is charged, the 
first dimension is set to “1,” whereas the other two dimensions are set to “0”). 
5) CRPair. An enzyme normally has three catalytic residues based on the requirement to form a 
catalytic triad at the center of the active site (Carter and Wells, 1988). The notation of CRPair was 
first introduced by Zhang et al. and is defined as a pair of catalytic residues (Zhang, et al., 2008). 
The sequence distances between any two adjacent catalytic residues are all calculated and 
collectively encoded for the central catalytic residue. A total of 76 CRPairs were extracted in this 
study and we used binary encoding to represent each CRPair. 
 
2.3.2. Structure features 
To complement sequence-derived features and improve the predictive performance of our models, 
we also extracted a variety of structure features, including the following: 1) eight different types of 
secondary structures calculated using the DSSP program (Kabsch and Sander, 1983) and including 
the 310 helix (denoted as G in DSSP), D helix (H), S helix (I), beta bridge (B), beta bulge (E), turns 
(T), high curvature region (S), and loops (C); 2) solvent accessibilities of all-atoms, total-side, 
main-chain, non-polar, and all-polar residues, which were calculated using the NACCESS program 
(Hubbard and Thornton, 1993); 3) solvent exposure features to include half sphere exposure (HSE), 
contact number (CN), and residue depth (RD), with HSE a two-dimensional measurement of the 
solvent exposure of a residue (Hamelryck, 2005; Song, et al., 2008). HSE features include HSEAU, 
HSEAD, HSEBU, and HSEBD, with the former two calculated using the CD coordinates, whereas 
the latter two were calculated using the CE coordinates. We used the Biopython package (Cock, et 
al., 2009) to calculate the six solvent exposure features; 5) B-factor (atomic displacement parameter) 
measures residue mobility and reflects fluctuations of an atom in a crystallographic structure (Yuan, 
et al., 2005) based on its indication of residue flexibility and dynamics. We extracted the original 
B-factor value for each catalytic residue from its corresponding PDB structure and then normalized 
it using a previously described method (Smith, et al., 2003) prior to its being encoded as a feature 
vector and used as the input. 
 
2.3.3. Residue contact network features 
A protein can be represented as a connected network of contacting residues in the 3D structure 
space (del Sol and O'Meara, 2005). By representing protein structures as small world networks 
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(Watts and Strogatz, 1998), a number of important characteristic features can be extracted from the 
topology of the protein 3D structures to facilitate the identification of functionally important 
residues involved in both enzyme and nonenzyme protein families (del Sol, et al., 2006). Here, we 
defined two residues in a protein structure as in contact if the distance between their center points 
was ≤6.5 Å. This allowed conversion of a PDB structure into a residue contact network (Wang, et 
al., 2012). We used the iGraph network analysis package (Csardi and Nepusz, 2006) to calculate 
different network properties describing the local environment of the catalytic residue in the residue 
contact network, including degree, closeness, status, hubscore, clustering coefficient, cyclic 
coefficient, constraint, betweenness, eigenvector, cocitation, coreness, and eccentrality. 
 
2.3.4. Network neighboring properties 
Considering that neighboring nodes might affect the spatial arrangement and organization of the 
central node due to their differential distance to the central node in the network, the neighboring 
property of node i,     , can be defined as follows to take this effect into consideration: 

     
 

   
 

    
      

 
   

 

where f(j) is a given property of node j, d(i,j) is the shortest path length between nodes i and j, and N 
is the total number of residues in a protein structure. To the best of our knowledge, this represents 
the first encoding and use of this form of network neighboring properties. 

We encoded the network features in two different ways. One involves encoding 
residue-contact-network metrics as input features, and the other involves encoding network 
neighboring properties for a central residue as an input feature after representing the entire protein 
structure as the residue contact small world network. 
 
2.4. RF algorithm 
RF is an ensemble tree-structured algorithm used for classification and regression analyses 
(Breiman, 2001) and has been implemented as the randomForest package in R (Liaw and Wiener, 
2002) and widely used in computational biology (Jia, et al., 2015; Jia, et al., 2016; Liu, et al., 2016; 
Qiu, et al., 2016). A typical RF model consists of hundreds of decision trees and uses majority 
voting to determine the final prediction outcome for unseen data samples. Compared with other 
machine-learning algorithms, RF has several attractive advantages that make it suitable for dealing 
with the current prediction task. It usually performs favorably and stably with high-dimensional 
feature vectors, which is particularly the case in this work. The model training process is often 
faster than that of other machine-learning algorithms, such as SVMs and neural networks. 
Importantly, this also permits variable or feature selection, thereby providing the opportunity to 
characterize important features that contribute the most to model performance. Additionally, use of 
RF includes both model training and prediction stages, which is similar to many other 
machine-learning algorithms. 
 
2.5. Feature selection based on the RF mean decrease Gini index (MDGI) 
RF provides a feature-selection method based on the MDGI, which can be calculated by the 
randomForest R package (Liaw and Wiener, 2002). The MDGI score measures the importance of 
individual vector elements of a feature for correctly classifying a residue as catalytic or noncatalytic. 
The mean MDGI was calculated as the averaged MDGI over 100 trials of randomly classifying a set 
of positive (i.e., catalytic residues) and negative residues (i.e., noncatalytic residues) with a ratio of 
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1:1. The mean MDGI Z-Score of each vector element was then calculated as: 

              
     

 
 

where xi is the mean MDGI of the i-th feature, and   is the standard deviation. We divided the 
vector elements into four zones according to their MDGI Z-Scores (i.e., Z-score > 2, 1.5 < Z-score 
≤ 2, 1< Z-score ≤ 1.5, and 0.5 < Z-score ≤ 1, respectively). Vector elements with MDGI Z-Score s> 
2.0 were considered as optimal feature candidates and used as the input features to train the RF 
classifier. 
 
2.6. Performance evaluation by cross-validation and independent testing 
We used several standard performance measures, including precision (PRE), recall (REC), false 
positive (FP) rate, the area under the curve (AUC), and the area under the recall-precision Curve 
(AURPC), to comprehensively evaluate and compare the predictive performance between different 
methods. Among these measures, AUC represents the area under the receiver operating 
characteristic (ROC) curve, which is a plot of the true positive (TP) rate against the FP rate, whereas 
AURPC is the area under the Recall-Precision curve (RPC) and used as a good alternative to AUC 
if there is a large skew in the class distribution. Both AUC and AURPC were used as primary 
measures to assess the predictive performance of different methods using the eight aforementioned 
independent test datasets. 
 
PRE is defined as: 

    
  

     
 

 
REC (also referred to as the TP rate) is defined as: 

    
  

     
 

 
FP rate is defined as: 

        
  

     
 

where TP is the number of TPs, TN is the number of true negatives, FP is the number of FPs, and 
FN is the number of false negatives. 
 
3 RESULTS AND DISCUSSION 
3.1. Feature ranking by the MDGI Z-Score 
We calculated and ranked the MDGI Z-Scores of all initial 3,424 features (See Table 1 for a 
summary of these features) using the randomForest R package in order to assess the relative 
importance and contribution of each feature type. As a result, we identified a total of 127 
feature-vector elements with MDGI Z-score > 1.0, of which 41 had an MDGI Z-score > 2.0. The 
relative importance and ranking of these feature vectors are plotted in Figure 2. A detailed list of 
these feature vectors according to their MDGI Z-Score zones are provided in Supplementary Table 
S1. 

To better understand the interrelationships between the significant sequence, structure, and 
network-based features, we performed classical multi-dimensional scaling (Lobley, et al., 2007) and 
visualized the distributions of these features in the feature space (Figure 3). Feature descriptors that 
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are closely correlated tend to be closely clustered together in the feature space. As shown, there 
existed four clearly defined feature groupings. The first group included two solvent exposure 
measures, HSEAD and HSEBD, and several other network features, such as degree, 
closeness_centrality, cocitation, coreness, hubscore, and eigen_centrality. The second group 
contained all polar, total_side, main_chain, non-polar solvent accessibility, and two network 
features, cyclic_coeff and cluster_coeff. The third group included CN, RD, HSEAU, HSEBU, and 
betweenness centrality. The remaining features formed the fourth group, which included B-factor, 
constraint, Dist_Key, eccentrality, and status. 

As expected, the feature interrelationships revealed by the multi-dimensional scaling plot in 
Figure 3 agreed well with their pairwise Pearson’s correlation coefficients. For example, five 
network features that were closely related to the degree feature in the feature space were coreness, 
cocitation, closeness_centrality, eigen_centrality, and hubscore, with Pearson’s correlation 
coefficient values of 0.896, 0.896, 0.407, 0.364, and 0.364, respectively (See the Supplementary 
Excel file 1 Correlation matrix between significant features for the calculated Pearson’s 
correlation coefficients between every two features). The observed correlations between these 
features indicated they encoded similar information within this feature grouping, and that such 
information was not represented by other feature groupings. Similar observations were noted for the 
second, third, and fourth feature groupings, as shown in Figure 3 and Supplementary Excel file 1. 
 
3.2. Analysis of the importance and relevance of different feature types 
We performed unpaired two-sample t tests to examine whether the mean values of a given feature 
between catalytic residues and randomly selected noncatalytic residues were statistically significant 
in order to assess the potential of the given feature for discriminating the two sample sets. The 
results are shown in Figures 4 and S1, with the mean values, standard deviations, and P-values 
listed in Supplementary Table S2. For the majority of features, the mean values between catalytic 
residues and noncatalytic residues were statistically significant, with most having a P-value < 
1.7E-05. The boxplots for some of the selected features are shown in Figures 4 and S1. 

To investigate and assess the contribution of a variety of sequence, structural, and 
residue-contact-network features to catalytic residue prediction, we examined their contributions to 
gain insight into the ability of PREvaIL to discriminate between catalytic and noncatalytic residues. 
As shown in Figure 2 and Supplementary Table 1, among the 3,424 features initially extracted, 41 
had MDGI Z-scores >2.0 and were used in the final RF models. These features were distributed in 
eight specific types, including network feature (closeness centrality), Dist_Key, a number of 
neighboring properties, PSSM, EntWOP, CN, HSEAD, HSEBD, solvent accessibility, and amino 
acid physicochemical properties (charge and hydrophobicity). 

These top ranked features are frequently associated with features identified in previous studies as 
highly correlated with catalytic residues. These include closeness centrality, which is a network 
centrality feature describing the status of a residue located in the protein structure. Highly central 
residues tend to have higher closeness values due to their interaction with a relatively larger number 
of residues in the structure space. Closeness was highly correlated with catalytic residues (Amitai, 
et al., 2004; Chea and Livesay, 2007; del Sol, et al., 2006; del Sol and O'Meara, 2005; Li, et al., 
2011), and our results confirmed this observation. 

However, as an enriched feature source, sequence-derived features have been extensively used in 
model training and crucial for ensuring model performance in a number of previous bioinformatics 
studies focusing on prediction of protein structural and functional properties (Li, et al., 2015; Li, et 
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al., 2014; Song, et al., 2009; Song, et al., 2017; Wang, et al., 2014) (Disfani, et al., 2012; Jones and 
Cozzetto, 2015; Lobley, et al., 2007; Meng and Kurgan, 2016; Ofran and Rost, 2007; Zhang, et al., 
2008). In our investigation, we focused on sequence-derived features, such as evolutionary 
information in the form of PSSM profile, EntWOP, and Dist_Key (describing sequence-specific 
distance between two adjacent catalytic residues). Among these, EntWOP was the top-ranked 
feature, with the highest MDGI Z-score of 24.3 (Figure 2). This can be considered a condensed 
type of sequence-conservation feature derived from the multiple sequence alignments of 
homologous proteins gathered from the nonredundant protein databases. Zhang et al. originally 
introduced the concept of this feature and used it in their SVM-based models to improve the 
prediction of catalytic residues (Zhang, et al., 2008). Here we confirmed EntWOP as a powerful 
feature, with its use in conjunction with PSSM features greatly benefiting catalytic residue 
prediction. 

This study also confirmed the critical importance of physicochemical properties of amino acids, 
including hydrophobicity (Zhang, et al., 2008) and charge (Sankararaman, et al., 2010), as well as 
structural features, including solvent accessibility (Gutteridge, et al., 2003; Petrova and Wu, 2006) 
and B-factor (Sankararaman, et al., 2010; Youn, et al., 2007). The B-factor had a relatively smaller 
contribution according to its lower MDGI Z-score (1 < Z-score < 1.5) (Supplementary Table 1). 
Additionally, we identified several structural features as important for predicting catalytic residues, 
including CN, HSEAD, and HSEBD (Wang, et al., 2012), with these ranked as top features (MDGI 
Z-scores > 2.0). To our knowledge, this was the first application of these features to build models 
for identifying catalytic residues and thus represent novel informative features for this prediction 
task. 

In summary, investigating the impact of integrating these sequence-derived, structural, and 
network level features might provide complementary information to existing methods and shed light 
on the sequence-structure-function relationships of functional residues. In the following sections, 
we examine the effectiveness of combining these features to train our PREvaIL models and 
compared them with other existing methods. 
 
3.3. Performance comparison between PREvaIL and other methods 
In this section, we compared the performance of our PREvaIL method with two sequence-based 
methods and five structure-based method by performing 10-fold cross-validation tests on six 
datasets (EF_fold, EF_superfamily, EF_family, HA_family, NN, and PC). Additionally, we also 
compared the performance of our method against four methods by performing independent tests on 
the T-124 dataset. To facilitate performance comparison, we used the TP rate and PRE by adjusting 
the prediction cut-off value to achieve an equal or close-to-equal PRE with different methods. For 
10-fold cross-validation tests, performance results between different methods are shown in Table 2. 
In terms of independent tests, the performance results are shown in Table 3. The ROC curves and 
Precision-Recall curves of the CRpred method and our method are shown in Figures 5 and S2. 

The five structure-based methods in the benchmark included a neural-network method (two 
versions with and without spatial clustering) (Gutteridge, et al., 2003), two SVM methods (Petrova 
and Wu, 2006; Youn, et al., 2007), and a graph-theoretic method (Chea and Livesay, 2007), whereas 
the two sequence-based methods included a neural-network method (Gutteridge, et al., 2003) and 
CRpred (Zhang, et al., 2008). 

The SVM-based method proposed by Youn et al. (2007) extracted a number of features from 
sequence, sequence alignments, 3D structures, and structural-environment conservation and used 
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the SVM algorithm to perform automated catalytic site prediction and annotation (Youn, et al., 
2007). In their study, the authors found that structural features of residue environments, such as 
solvent accessibility, together with sequence conservation were particularly important for predicting 
catalytic residues. Specifically, this method achieved TP rates of 51.1%, 53.9%, and 57.0%, and 
PRE values of 17.1%, 16.9%, and 18.5% on the EF_fold, EF_superfamily, and EF_family datasets, 
respectively. 

The method proposed by Chea and Livesay (2007) is a graph-theoretic method that uses 
closeness centrality as the primary feature based on a network representation of protein structure to 
predict enzyme catalytic residues (Chea and Livesay, 2007). This method achieved a TP rate of 29.3% 
and Precision of 16.5%, respectively, on the HA_superfamily dataset. 

The method proposed by Petrova and Wu is an SVM-based method that selected seven of the 24 
attributes as an optimal subset of features, including sequence conservation, catalytic propensities of 
amino acids, and relative position on the protein surface as the most important features (Petrova and 
Wu, 2006). This method achieved a TP rate of 90.0%, but a significantly lower PRE value of only 
7.0%, on the PC dataset. 

The method proposed by Gutteridge et al. (2003) is a neural network based on analysis of both 
sequence and structural features and using solvent accessibility, secondary structure type, residue 
depth, and the pocket in which the catalytic residues are located, as well as conservation score and 
residue type, as inputs for training the neural-network models. After predicting the catalytic residues 
using these models, the output and spatial clustering of the high scoring residues were then used to 
predict the location of the active site (Gutteridge, et al., 2003). For the structure-based version with 
spatial clustering, the method achieved a better performance in terms of TP rate (68.0%) and PRE 
value (16.0%) on the NN dataset; however, its sequence-based version performed worse than the 
structure-based version, with a TP rate of 50.0% and a PRE value of 13.0% on the NN dataset. 

CRpred is also an SVM-based method that takes advantage of a wide range of sequence features, 
including residue type, PSSM profile generated by PSI-BLAST, EntWOP, hydrophobicity, and 
catalytic residue pairs (544 features) (Zhang, et al., 2008). To reduce the dimensionality of the input 
features, CRpred uses feature selection to eliminate redundant and less relevant features (Zhang, et 
al., 2008). Due to its competitive performance and the optimized parameterization of the SVM 
models and carefully designed feature sets, the CRpred method is considered as a state-of-the-art 
method for enzyme catalytic residue prediction. CRpred was extensively tested by 10-fold 
cross-validation on all six datasets, achieving TP rates of 54.0% and 53.7% and PRE values of 14.9% 
and 17.5% on the HA_superfamily and PC datasets, respectively (Table 2). 

As a comparison, the performance of the RF models of our PREvaIL method achieved TP rates 
of 56.5%, 59.4%, and 60.2% at the fixed PRE value of 17.0% on the EF_fold, EF_superfamily, and 
EF_family datasets, respectively. This was a consistently better performance relative to all other 
methods, including CRpred. On the HA_superfamily dataset, PREvaIL achieved a TP rate of 57.9% 
at the fixed PRE value of 17.0%, representing the best performance on this dataset and also 
achieved the best performance on the NN and PC datasets (Table 3). The improved performance of 
PREvaIL over CRpred was more pronounced when they were evaluated in terms of the ROC curve 
and RPC, especially the latter (Figures 5 and S2). Depending on the particular test dataset, 
PREvaIL consistently achieved a larger AURPC value than CRpred. These results indicated that the 
PREvaIL method provided the overall best performance as compared with several sequence- and 
structure-based methods. 
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3.4 Performance evaluation by independent testing using the T-124 and T-37 datasets 
We performed additional independent testing using the T-124 and T-37 datasets, which exhibit the 
lowest sequence identities (<30%) with the two training datasets (ST-1109 and EF_fold). As 
previously suggested (Zhang, et al., 2008), we trained the PREvaIL model using the entire EF_fold 
dataset, tested the trained model, and compared its performance with other methods using the 
independent test datasets. The performance results between PREvaIL, CRpred, and the 
structure-based HA method proposed by Chea and Livesay (2007) on the T-124 dataset are shown 
in Table 3. Additionally, the performance results between PREvaIL and CRpred on the two 
independent test datasets are also shown in Figure S2 in terms of ROC curve and RPC. 

As compared with CRpred (based on all residues and residues with coordinates) and the HA 
method (based on residue-identity and combination filters), PREvaIL outperformed these four 
different methods when evaluated on both the T-124 and T-37 datasets. More specifically, PREvaIL 
achieved a TP rate of 62.2% and a PRE value of 14.9% on the T-124 dataset, whereas CRpred 
(based on residues with coordinates) achieved a TP rate of 50.1% at 14.7% REC. In contrast, the 
HA method (based on residue-identity filter) achieved a TP rate of 27.71% at 16.1% REC. However, 
we noticed that all tested methods performed relatively poorly on these two independent test 
datasets, as reflected by the lower AURPC values (<0.35) (Supplementary Figure S2D and E). As 
observed in previous studies (Fischer, et al., 2008; Kauffman and Karypis, 2009), none of these 
methods achieved >30% PRE at 50% REC on the two independent test datasets. For example, the 
best performing PREvaIL method only achieved 20% PRE at 50% REC on the T-124 dataset. These 
results indicated that there remains a strong need to improve the performance of the predictors, 
especially at the higher REC. Future studies should investigate incorporation of other relevant 
features that might prove useful for improving the predictive performance of catalytic residues. In 
this regards, a recent work that proposed new network-based features that describe side chain 
orientation and residue contact density (Chien and Huang, 2012) might provide additional 
information for further improving the model performance. 

In summary, the extensive benchmarking results on the eight datasets indicated that the 
combination of the different types of features descriptors extracted from sequence, structural, and 
residue-contact networks provided a more representative power that could be leveraged by the RF 
algorithm to achieve better performance for accurately differentiating enzyme catalytic residues. 
 
3.5 Case study 
To demonstrate the effectiveness and predictive capability of PREvaIL, we further performed a case 
study of catalytic residue prediction by selecting two different proteins. Specifically, we applied two 
selection criteria for choosing case study proteins. A primary consideration is that they should 
contain multiple catalytic residues (three or more catalytic residues), such that we can evaluate and 
compare the predictive performance of our method for predicting these catalytic residues within the 
same enzyme. Another consideration is that the case study proteins should have important 
biological functions, as indicated by their functional roles or involvement in significant biological 
pathways and processes. Figure 6 shows their predicted catalytic residues. The first case study 
protein, anabolic ornithine transcarbamylase from Escherichia coli (PDB: 1AKM, chain A), is an 
essential metabolic enzyme that catalyzes the production of L-citrulline and phosphate from 
L-ornithine and carbamyl phosphate (Jin, et al., 1997) and has seven catalytic residues. The RF 
models of PREvaIL correctly predicted six of these, including R57, R106, H133, Q136, C273, and 
R319 (Figure 6A and B, red) while incorrectly classifying the seventh catalytic residue (T58) 
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(Figure 6A and B, yellow). The second case study protein, mitochondrial creatine kinase (PDB: 
1CRK, chain A) (Fritz-Wolf, et al., 1996), is an enzyme that catalyzes the reversible transfer of a 
phosphoryl group from phosphocreatine to adenosine diphosphate and is considered important for 
energy metabolism in cells with high and fluctuating energy requirements (Fritz-Wolf, et al., 1996). 
It has five catalytic residues annotated in the CSA database. The RF model successfully predicted 
three of these, including R127, E227, and R231 (Figure 6C and D, red) while failing to identify 
the fourth and fifth catalytic residues: R287 and R315 (Figure 6C and D, yellow). It is challenging 
to explain why certain catalytic residues were incorrectly predicted as noncatalytic by the model. 
However, we found that catalytic residues tended to have smaller EntWOP and Dist_Key values, 
and larger CN, HSEAD, HSEBD values compared with noncatalytic residues. This was consistent 
with the observations from Figures 4 and S1. From this viewpoint, those catalytic residues with 
relatively larger EntWOP and Dist_Key values, or smaller CN, HSEAD, HSEBD values represent 
difficult samples to predict, which is the case for the three incorrectly catalytic residues. A detailed 
list of all the predicted catalytic residues is given in Supplementary Table 3. These results 
suggested that PREvaIL is a useful tool for novel catalytic residue prediction. 
 
4. CONCLULSIONS 
In this study, we demonstrated that the combinatorial application of machine learning techniques on 
multi-level protein features involving sequence-derived, structural, and residue-contact-network 
features allowed the development of a powerful bioinformatics predictor, PREvaIL. Previous 
methods explored these different levels of features separately; however, we illustrated their effective 
integration into a machine-learning framework to provide complementary information to 
collectively help improve predictive performance associated with catalytic residue prediction. 
Through in-depth feature analysis, we identified a smaller subset of features arising from all of 
these levels that significantly contributed to the prediction. Using 10-fold cross-validation and 
independent test datasets, we showed that the performance of PREvaIL compared favorably with 
two sequence-based methods and five structure-based methods. The improved performance of 
PREvaIL might be attributed to three major factors: 1) inclusion of a comprehensive set of 
informative features at the sequence, structure, and residue-contact-network levels; 2) selection of 
an optimal set of contributing features, and 3) use of the RF algorithm for machine learning-based 
model training, which provided a robust and competitive performance. A local stand-alone version 
of PREvaIL can be downloaded at http://prevail.erc.monash.edu/. We believe that this approach 
could be utilized as a valuable tool for both understanding the complex sequence-structure-function 
relationships of proteins and facilitating the characterization of novel enzymes with unknown 
functional annotations. 
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Figure legends 
 
Figure 1. Flowchart describing the PREvaIL methodology for predicting catalytic residues based 
on the integration of sequence, structural, and residue-contact-network features using the RF 
learning framework. 
 
Figure 2. The MDGI Z-Scores for the selected feature groups. The bar represents the corresponding 
MDGI Z-Score of a feature group. The feature group is the same as the feature category described 
in Supplementary Table 1. There were 41 features with MDGI Z-scores >2.0. 
 
Figure 3. Two-dimensional scaling plot of the representative sequence, structure, and 
network-based features in the feature space. Feature descriptors that are closely correlated are 
closely clustered together in the feature space. The scale units of the plot are relative to the smallest 
correlation between feature pairs as measured by Pearson’s correlation coefficient (Lobley et al., 
2007). 
 
Figure 4. Boxplots of the mean and standard deviations of the four representative structural and 
residue-contact-network features based on the unpaired two-sample t test. 
 
Figure 5. ROC and RPC for the RF-based PREvaIL method and the SVM-based CRpred method. 
AUC and AURPC values were provided to quantify the performance. 
 
Figure 6. Examples of the predicted catalytic residues mapped onto the original PDB structures. (A 
and B) Anabolic ornithine transcarbamylase from Escherichia coli (PDB: 1AKM, chain A) (Jin et 
al., 1997). (C and D) Mitochondrial creatine kinase (PDB: 1CRK, chain A) (Fritz-Wolf et al., 1996). 
Different prediction catalogs are represented by different colors: TP, red; TN, grey; FP, blue; FN, 
yellow. 
 



4. Figure 1



4. Figure 2



4. Figure 3



4. Figure 4



4. Figure 5



4. Figure 6



4. Figure S1



4. Figure S2



 1 

Tables 

 

Table 1. A comprehensive summary of sequence, structure, and network features used in this study. 

Feature category Dimensionality 
Software 
/Database 

References Description 

Network features 12 iGraph 
(Csardi and Nepusz, 

2006) 

Residue-contact network features include 
degree, closeness, status, hubscore, 

clustering coefficient, cyclic coefficient, 
constraint, betweenness, eigenvector, 
cocitation, coreness and eccentrality 

Dist_Key 1 In-house  
Relative sequential distance between 

catalytic residues 
Network 

neighboring 
properties 

3050 iGraph 
(Csardi and Nepusz, 

2006) 

The residue-contact network features 
were used to describe the local spatial 

environment of catalytic residues 

PSSM 260 PSI-BLAST 
(Altschul, et al., 

1997; Jones, 1999) 
Evolutionary information in the form of 

PSSM 

EntWOP 1 PSI-BLAST (Zhang, et al., 2008) 

Shannon entropy-based weighted 
observed percentage (WOP) calculated 

using PSI-BLAST of the catalytic residue 
of interest 

Structure 
descriptors 

6 Biopython (Cock, et al., 2009) 
Structure descriptors include residue 

depth, contact number, HSEAU, HSEAD, 
HSEBU, and HSEBD 

B-factor 1 PDB (Rose, et al., 2017) B-factor or temperature factor 

Solvent 
accessibility 

5 Naccess 
(Hubbard and 

Thornton, 1993) 

This feature group include solvent 
accessibilities of all-atoms, Total-side, 
Main-chain, Non-polar and All-polar. 

Secondary 
structure features 

8 DSSP 
(Kabsch and Sander, 

1983) 
Eight secondary structure types annotated 

by DSSP 

Physicochemical 
property 

3 BioJava (Prlic, et al., 2012) 
This feature group include charged, 
hydrophobic and polar and is calculated 
from sequences. 

CRPair 76 In-house (Zhang, et al., 2008) 

A CRPair is a pair of catalytic residues in 
the protein. The sequence distances 
between any two adjacent catalytic 
residues are all calculated and collectively 
encode for the central catalytic residue. A 
total of 76 CRPairs were extracted. 

5. Tables
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Table 2. Performance comparison between LR and RF models of PREvaIL, CRpred, and other competing methods. All performance results were 
evaluated based on 10-fold cross-validation tests using the six datasets EF_fold, EF_superfamily, EF_family, HA_family, NN, and PC. 

Method 
Performance 

measure 

Performance evaluated on different datasets (%) 

EF_fold EF_superfamily EF_family HA_superfamily 
NN 

(without clustering) 
NN 

(with clustering) 
PC NN 

Competing 
methods 

TP-rate 51.1a 53.9a 57.0a 29.3b 56.0c 68.0d 90e 50.0f 
Precision 17.1a 16.9a 18.5a 16.5b 14.0c 16.0d 7.0e 13.0f 

CRpred 
TP-rate 48.2g 52.1g 58.3g 54.0g 57.1g 57.1g 53.7g 57.1g 

Precision 17.0g 17.0g 18.6g 14.9g 17.8g 17.8g 17.5g 17.8g 
Our LR 
model 

TP-rate 52.5 53.1 55.0 46.1 50.0 50.0 53.7 50.0 
Precision 17.1 17.0 16.9 17.0 17.0 17.0 17.0 17.0 

Our RF 
model 

TP-rate 56.5 59.4 60.2 57.9 58.9 58.9 58.1 58.9 
Precision 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 

a Performance results assessed on the EF_fold, EF_superfamily and EF_family datasets by Youn et al., 2007, respectively; 
b Performance results assessed on the HA_family dataset by Chea and Livesay, 2007; 
c Performance results assessed on the NN dataset by using the structure-based method without spatial clustering by Gutteridge et al., 2003; 
d Performance results assessed on the NN dataset by using the structure-based method with spatial clustering by Gutteridge et al., 2003; 
e Performance results assessed on the PC dataset by Petrova and Wu, 2006; 
f Performance results assessed on the NN dataset by using the sequence-based method by Gutteridge et al., 2003; 
g Performance results assessed on all the six datasets by using the sequence-based CRpred method by Zhang et al., 2008. 
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Table 3. Performance comparison of different methods on the T-124 independent test dataset. 

Method TP FN FP TN TP-rate Precision 

CRpreda 
(all residues) 

190 189 1131 47503 50.1 14.4 

CRpredb 
(residues with 
coordinates) 

190 189 1103 46017 50.1 14.7 

HAc 
(residue identity 

filter) 
105 274 549 46571 27.7 16.1 

HAd 
(combination 

filter) 
91 288 553 46567 24.0 14.1 

Our LR model 183 185 1119 44339 49.7 14.9 
Our RF model 229 139 1311 44147 62.2 14.9 

a Performance results of CRpred by Zhang et al. (2008) based on all residues; 
b Performance results of CRpred by Zhang et al. (2008) based on residues with coordinates; 
c Performance results of the HA method by Chea and Livesay (2007) based on residue identity filter; 
d Performance results of the HA method by Chea and Livesay (2007) based on combination filter. 

 


