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Abstract— This research focuses on two self-localization
methods for observation of the sea floor and samplingOne is a
method of estimate the self-localization using Kalmariilter
from the acceleration data calculated from equatiorof motion
and the velocity data considering the effect of undeater
vehicle’s oscillation. The other is visual odometrysing a stereo
camera. The AUV was deployed in a sea area 40m depth tc
evaluate the performance of self-localization estimatebdy two
methods. Self-localization estimation using Kalman fier was
less accurate than visual odometry, but it was confired that the
variance of the estimated velocity was smaller than berfe
estimation. In the visual odometry using stereo camer it was
confirmed that the estimation error depends on the ravel
direction of AUV and the moving direction of a stereccamera.

Keywords— Sampling-AUV, self-localization, visual odometr
sensor odmetry, Kalman filter

I. INTRODUCTION Fig.1 Appearance of Hovering type AUV Tuna-Sand2

Mineral resources and energy resources are very famor
basic resources in the development of industrial so@ety, acceleration data calculated using the equation of matidn
these demands are expected to increase. There are mang Doppler velocity log(DVL) velocity data. In the tue, we
resources including mineral and energy resources imdapa will integrate sensor odometry and visual odometry toewehi
ocean. However, Japan depends on the import from threore accurate self-localization. Therefore, we etaid the
country that produces land resources. Therefore, dtlgre self-localization performance to obtain the model eroor f
depends on the political situation of the producing country tthese two methods. In this paper, we describe the devalibpme
obtain resources. It is included in this cause that theee of a visual odometry system using a stereo camera, the
resources in the sea floor more than depth of the \waten  evaluation of self-localization estimation using Kalmiterf
that a general diver cannot go into and that neighboringnd a sea trial performed at 40 m depth in October 2018.
environment is not clear. In recent years, ROV has bessh us
to collect marine minerals and benthic organisms usidly SELF-LOCALIZATION METHOD FOR UNDERWATER VEHICLE
equipped manipulators [1,2]. AUV is used for surveys thal pjatform
move over faW|de ar.e a,_ SU(.:h as mt_easu_rmg seafloor tgingr Fig.1 shows appearance of the AUV Tuna-Sand2. This
and surveying the distribution of biological commun[Be$]. 0t is 2 hovering type AUV equipped with a sampling
The survey of the sea floor using an underwater vehig@e do device[6-9]. Tuna-Sand2 has two pressure resistant cargtaine
not end at once, and it is necessary to observeaeneiital  called a control hull and a mapping hull. The control kil
changes continuously. In addition, the accuracy of the survesuipped with two CPUs. One is used for navigation and the
results obtained by the vehicle greatly depends on thgher is used for obstacle detection. This AUV has three
accuracy of it's self-localization. sensors including Inertial navigation system(INS), DVid an

In this research, we focus on self-localization to perfornPr€SSure sennsor as navigation elements. The self-riaaiz
observation of sea floor and sampling. To improve th In the water is estimated using a ground velocity atidide
accuracy of self-localization, we proposed a methosetf da:ja from the DXL’ tge d_ep(tjh %ata ffrom ”;]e pressmlr?ase
localization estimation using Kalman filter considerimg t and true azimuth and attitude data from the INS. Thi¥ AU

effect of vehicle’s oscillation[5]. In the research(s], the ~ detects obstacles by photographing the reflected ligtiteo

velocity was estimated using the Kalman filter from thesheet laser illuminating forward with the front camera

addition, the mapping hull is equipped with a CPU. This
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Fig.3 Translational velocity generated by the iot&l motion

mapping device consists of a bottom camera, a Hmmtand

two LED strobes. A three dimension mosaic image lman

generated by offline processing by emitting an L&Bbe

and a sheet laser and taking a reflected imadeedser and

seabed images.

B. Self-localization using Kalman filter

The ground velicity includes the translational withp by
underwater vehicle’s oscillation as shown in Figlhe

translational velocityVri, Ven and Vw generated by the

rotational movement of AUV is expressed by thedfwlhg
equations:

Vi, = h- Wy 1)
Vo = h- wy 2)
VWww =1"w, 3)

Sectional view|

Aluminum

Battery

Aluminum
hull
[ Stereo camer
Acylic

Bottom view

Stereo cameras:

Fig.4 System configuration of Stereo camera hull

Here,his the altitude data from the DVL, ahid the distance
from the AUV's center of gravity to the center loétDVL. As
shown in Fig.2(A), we consider the effect of thelerwater
vehicle’s oscillation by substracting the transiasl velocity
generated by the rotational motion from the grousldcity.
Therefore, the velocitWex and Vg, are expressed by the
following equations:

—Ven (4)

Vey = Vgy — Ve — Vyw 5)

Here, vg« andvgy are ground velocity data from the DVL.
When estimating the acceleration using the equatibn
motion, the effect of the current flow is due te thotion of
the robot.. Therefore, it is necessary to condidereffect of
the current flow. As shown in Fig.2(B), the currdioiv is
estimated with the velocity calculated by the epoaiof
motion and the ground velocity measured by DVL. By
assuming the effect of current flow is always aggplirom a
certain direction during navigation, the accelerati; of the
underwater vehicle can be expressed by the follgwin
equation:

Vex = Vgx

Vg = {F-DIVe—ul(Vg—w}  (6)

Here,M is intertia matrix,D is fluid resistance coefficient
matrix, F is Force of AUV,u is the current flow. Therefore,
the velocity data that is input to the Kalman filshown in
Fig.2(C) includes the ground velocity data considgthe
effect of underwater vehicle’s oscillation and #veeleration
data considering the effect of the current flddvandD are
parameters estimated experimentally by limit cyett. Then,
the self-localization of underwater vehicle is mstied by
transforming the estimated velocity into three aaisd
integrating. In this paper, a liner model expresbgdthe



using a two-dimensional vector between feature point, the
(A) Aquisition distance between the camera and the feature points is
) generally a constant value such as altitude data from\the D
However, in this method, the self-localization is esteéda
(B) Image distortion correctio+ only by the data that can be aquired by the cameteouwmii
using the sensor data such as DVL. Therefore, it isseacg
y to estimate altitude data from the image-photo. Asvehia
(C) Image smoothing Fig.5(F), the corresponding points are searched frentefh
and right photo-images to estimate the disparity. Wine
! estimated disparity iB, the distance between two cameras is
(D) Feature point detection b, and focal length i the distance from between camera
and the corresponding point is expressed by the following
) equation:
(E) Feature point matching 7 = b[')_f (10)
! When the horizontal angle of view &, and the vertical angle
(F) Caluclation of disparity of view is@,, the horizontal photograpy range and the
) vertical photograpy rangke is expressed by the following
equation:
(G) Calculation of depth data P
T w=2z" tan7‘” (11)
(H) Calculation of Underwate On
vehicle’s localization h=2z-tan>t (12)

Here, z is the distance between the camera and the feature
point. If the two-dimensional vectors between featuriatpo
obtained using SURF ardy, and dy, the amounts of
movement of camerdx anddy are expressed by the following
following equation is used as the Kalman filter model [5].equation:

x(k+ 1) = A(k)x(k) + Bwq(k) (7)

Fig.5 Processing flow of visual odmetory using etecamera

w

dx = dpy " — (13)
y(k) = C()x(k) + wa (k) ®) y
x(k) = Ve (k), vg(k), w(K)]  (9) dy = dpy -5, (14)

Here,x is state variabléA is the state transition matrig,is  Here, Sy and S, are the image sizes in the horizontal and
the observation matrix. The state variableconsists of vertical directions. In this paper, we set it to 8480 pixels.

velocity data, acceleration data and anguler velocity.data The result of movement shown in Fig.5(H) depends on the
number of matched feature points. Therefore, we etina
the self-localization by using the average value aanaunt

C. Visual odometory system using stereo camera of movement of the underwater vehicle.

Fig.4 shows the system configuration of the stesenera
module(camera hull). This camera module is mounted@n th Ill. SEATRIALs
front left side of AUV Tuna-Sand2. The camera hull for  For evaluating the performance of a self-localizationgus
photograping the sea floor is equipped with a mobileKalman filter and visual odometry, we collected baksita of
battery.This module is a stand alone device that can kmensors mounted the AUV and photo-image taken with a
mapped. The CPU board is LattePand. Stereo camera astgreo camera The hovering type AUV Tuna-Sand2 was
CPU board are connected by USB cable. In addition, a CPdeployed at the depth of 40 m, and tracked waypoints at a
board and a Wi-Fi router are connected by LAN cable t@onstant velocity and altitude. Fig.6 shows the paahrphg
prevent changes in the position and attitude of the sterdor AUV Tuna-Sand?2. After reaching the sea floor, thévA
camera when the hull is opened and closed. Thereforeanve cruised along the waypoint at 0.1 m/s and 1.5 m altitude. |
remotely control the execution a program to aquiretggho addition, the sea floor was taken every 1.5 second wsing
image and the confirmation of the acqired photo-infielye ~ stereo camera. In this sea trial, the true azimuth angleg\d
an external PC. At first, distortion correction and siiogf was constant. For evaluating the performance of self-
processing is performed on photo-images taken with acsterlocalizaion, we set landmarks on the images taken at the
camera, and calculate two-dimensional vectors betweenbservation point shown in Fig.5.

feature points. Fig.7 shows waypoints and the sef-localization of AUV

Fig.5 shows the processing flow of visual odometrygisin calculated based on the INS data. During cruisinggatbe
a stereo camera. Next, as shown in Fig.5(D) andi¢Bjure  waypoint, the AUV mednders with position control within an
point are detected and matched using photo-images takeneator of 0.5 m.
timet = k and photo-images taken at timne k-1. We used . .
Speeded Up Robust Features (SURF) to perform stabledeatu Fig.8(a) and (b) photo-images taken by the AUV at the

point detection and matching from photo-image(9]. WheneaCh observation point (A to H) and the position of thaufe

estimating the amount of movement of underwater vehiclBOINts of each photo-images calculated based on INGadat
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Eq.(13) and Eqg.(14). Fig.8(a) shows photo-imag&ert at
observation points A to D. Fig.8(b) shows photogemtaken
at observation points E to H. In Fig.8(a) and i, upper part
is photo-images taken each observation points éefioe
AUV moving, and lower part is photo-images after &KV

Kalman filter could not contribute to the improvemef the
self-localization accuracy. The reason for thikét errors are
included in the actual robot behavior and modehofion of
equations. However, as shown in Fig.9, the velodiya
estimated by the Kalman filter has a variance 64610 for

returning. i, "e;) is absolute position of the feature point the target velocity, and it can be confirmed tas ismaller

as seen from the robot at each observation poattkeTl to
Table 3 show east-west direction error, north-salitbction
error and distance error at the observation points.

The self-localization based on
considering the effect of the underwater vehictsssillation
included 0.086 m average error in the east-westidin and
0.115 m average error in the north-south directibrcan
confirmed that the distance error is smaller thaa $elf-
localization based on the DVL velocity data. Theref it is
effective to improve the self-localization accuré@ygonsider
the effect of the underwater vehicle’s oscillation.

The self-localization using Kalman filter include@34 m
average error in the east-west direction and Or234erage
error in the north- south direction. As a resultofmparison
with the self-localization based on the DVL velgdiata, the
estimation method based on the velocity data estuinasing

d
the velocity data

than the variance 7.8320* of the velocity data from DVL.
Therefore, the noise contained in the velocity datald be
suppressed by applying the Kalman filter to the DX¥locity

ata.

Visual odometry using a stereo camera included/025
average error in the east-west direction and O9&erage
error in the north-south direction. Compared witle self-
localization based on the DVL velocity data, therage error
in the north-south direction was smaller. Thereftie self-
localization accuracy has improved. However, therage
error was large in the east-west direction. Thiglasted to the
direction of the stereo camera and the travel timeof the
AUV. The overlapping area of two photo-images diffe
depending on whether the baseline between the eanier
vertical or horizontal with respect to the direntiaf travel of
Tuna-Sand2. The accuracy of stereo matching depentie
overlapping areas of the photo-images. Therefbesaverage



TABLE I.

POSITION ERROR OF EASWEST DIRECTION AT EACH

02 W . OBSERVATION POINT
w0l -‘" - Position error of ea-west direction [
B l '}' Observation
= 0 ﬁ F - . Simple Correct Kalman Visual
Mo . Point
@ 0 ﬁi?_ ‘4 - DR. DR. DR. Odometory
02 i : P | A
o 200 1000 1500 0.002 0.041 0.407 0.423
Time [s] B 0.043 0.057 0.183 0.373
E 07 e C 0.074 0.100 0.115 0.147
€3 o : e i L "‘ D 0.041 0.120 0.410 0.276
=T 0
%E ! ’ E 0.027 0.007 0.503 0.230
£-01 ]
- E— ' ,.. H 3 F 0.147 0.162 0.704 0.275
Wogo
0 500 1000 1500 G 0.153 0.114 0.717 0.073
Tirme [s] H
0.023 0.038 0.417 0.178

Fig.9 Comparison of velocity data from the DVL argocity data estimated
by Kalman filter against target velocity.

error increased
overlapping areas.

in the east-west movement with few TABLEIL

POSITION ERROR OF NORT+6OUTH DIRECTION AT EACH
OBSERVATION POINT

IV. CONCLUSION

In this paper, we proposed a visual odometry system usin
a stereo camera. We also reported the results ofriaés

Position error onortt-soutt direction [m’

conducted in October 2018 to evaluate the performance

self-localization. Then, we introduced a method of self;
localization using Kalman filter considering the effedt o

underwater vehicle’s oscillation, and compared it witual

odometry. As a result, the self-localization caledabased

on the velocity data estimated by Kalman filter wssles

accurate than the visual odometry using a stereo camer

However, the estimated velocity data variance waslemal

than the DVL velocity data. In visual odometry, it was
confirmed that the average error of the self-loctibra

greatly changed depending on the travel direction of AUV.

In the future, we reconstruct the motion model to reduce

the error of the AUV's actual behavior and motion mauohel
investigate a more accurate self-localization metiogd
integrating the self-localization estimated based osseatata
and visual odometry.

Observation
) Simple Correct Kalman Visual
g Point
D.R. D.R. D.R. Odometory
of A 0.049 0.143 0.226 0.069
B 0.238 0.102 0.468 0.090
c 0.074 0.188 0.245 0.152
D 0.218 0.067 0.269 0.071
a. E 0.065 0.055 0.178 0.002
F 0.079 0.161 0.473 0.007
G 0.286 0.087 0.197 0.123
H 0.244 0.018 0.369 0.184
TABLE IIl. POSITION ERROR OF DISTANCE AT EACH OBSERVATION
POINT
Position error oDistanci[m]
Observation
) Simple Correct Kalman Visual
Point
D.R. D.R. D.R. Odometory
A 0.049 0.149 0.465 0.429
B 0.242 0.117 0.502 0.384
c 0.105 0.213 0.271 0.211
D 0.222 0.138 0.490 0.285
E 0.071 0.056 0.534 0.230
F 0.167 0.228 0.848 0.275
G 0.324 0.143 0.743 0.143
H 0.245 0.042 0.557 0.256
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