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Abstract— This research focuses on two self-localization 
methods for observation of the sea floor and sampling.  One is a 
method of estimate the self-localization using Kalman filter 
from the acceleration data calculated from equation of motion 
and the velocity data considering the effect of underwater 
vehicle’s oscillation. The other is visual odometry using a stereo 
camera. The AUV was deployed in a sea area 40m depth to 
evaluate the performance of self-localization estimated by two 
methods. Self-localization estimation using Kalman filter was 
less accurate than visual odometry, but it was confirmed that the 
variance of the estimated velocity was smaller than before 
estimation. In the visual odometry using stereo camera, it was 
confirmed that the estimation error depends on the travel 
direction of AUV and the moving direction of a stereo camera. 

Keywords— Sampling-AUV, self-localization, visual odometry, 
sensor odmetry, Kalman filter 

I. INTRODUCTION  

Mineral resources and energy resources are very important 
basic resources in the development of industrial society, and 
these demands are expected to increase. There are many 
resources including mineral and energy resources in Japanese 
ocean. However, Japan depends on the import from the 
country that produces  land resources. Therefore, it greatly 
depends on the political situation of the producing country to 
obtain resources. It is included in this cause that there are 
resources in the sea floor more than depth of the water 50 m 
that a general diver cannot go into and that neighboring 
environment is not clear. In recent years, ROV has been used 
to collect marine minerals and benthic organisms using 
equipped manipulators [1,2]. AUV is used for surveys that 
move over a wide area, such as measuring seafloor topography 
and surveying the distribution of biological communities[3,4]．
The survey of the sea floor using an underwater vehicle does 
not end at once, and it is necessary to observe enviromental 
changes continuously. In addition, the accuracy of the survey 
results obtained by the vehicle greatly depends on the 
accuracy of it’s self-localization. 

In this research, we focus on self-localization to perform 
observation of sea floor and sampling. To improve the 
accuracy of self-localization, we proposed a method of self-
localization estimation using Kalman filter considering the 
effect of vehicle’s oscillation[5]. In the research of [5], the 
velocity was estimated using the Kalman filter from the 

acceleration data calculated using the equation of motion and 
the Doppler velocity log(DVL) velocity data. In the future, we 
will integrate sensor odometry and visual odometry to achieve 
more accurate self-localization. Therefore, we evaluated the 
self-localization performance to obtain the model error for 
these two methods. In this paper, we describe the development 
of a visual odometry system using a stereo camera, the 
evaluation of self-localization estimation using Kalman filter 
and a sea trial performed at 40 m depth in October 2018. 

II. SELF-LOCALIZATION METHOD FOR UNDERWATER VEHICLE 

A. Platform 

Fig.1 shows appearance of the AUV Tuna-Sand2. This 
robot is a hovering type AUV equipped with a sampling 
device[6-9]. Tuna-Sand2 has two pressure resistant containers 
called a control hull and a mapping hull. The control hull is 
equipped with two CPUs. One is used for navigation and the 
other is used for obstacle detection. This AUV has three 
sensors including Inertial navigation system(INS), DVL and 
pressure sennsor as navigation elements. The self-localization 
in the water is estimated using a ground velocity and altitude 
data from the DVL, the depth data from the pressure sensor, 
and true azimuth and attitude data from the INS. This AUV 
detects obstacles by photographing the reflected light of the 
sheet laser illuminating forward with the front camera. In 
addition, the mapping hull is equipped with a CPU. This 

 
Fig.1 Appearance of Hovering type AUV Tuna-Sand2 



mapping device consists of a bottom camera, a sheet laser and 
two LED strobes. A three dimension mosaic image can be 
generated by offline processing by emitting an LED strobe 
and a sheet laser and taking a reflected image of the laser and 
seabed images.  

B. Self-localization using Kalman filter 

The ground velicity includes the translational velocity by 
underwater vehicle’s oscillation as shown in Fig.3. The 
translational velocity VRLL, VPH and VYW generated by the 
rotational movement of AUV is expressed by the following 
equations: 

 ���� � � ∙ �� (1) 
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Here, h is the altitude data from the DVL, and l is the distance 
from the AUV’s center of gravity to the center of the DVL. As 
shown in Fig.2(A), we consider the effect of the underwater 
vehicle’s oscillation by substracting the translational velocity 
generated by the rotational motion from the ground velocity. 
Therefore, the velocity VGx and VGy are expressed by the 
following equations: 
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                         (4) 

 ��� � ��� � ���� � ��
 (5) 

Here, vgx and vgy are ground velocity data from the DVL. 
When estimating the acceleration using the equation of 
motion, the effect of the current flow is due to the motion of 
the robot.. Therefore, it is necessary to consider the effect of 
the current flow. As shown in Fig.2(B), the current flow is 
estimated with the velocity calculated by the equation of 
motion and the ground velocity measured by DVL. By 
assuming the effect of current flow is always applied from a 
certain direction during navigation, the acceleration ���  of the 
underwater vehicle can be expressed by the following 
equation:  

 ��� �
�

�
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Here, M is intertia matrix, D is fluid resistance coefficient 
matrix, F is Force of AUV, u is the current flow. Therefore, 
the velocity data that is input to the Kalman filter shown in 
Fig.2(C) includes the ground velocity data considering the 
effect of underwater vehicle’s oscillation and the acceleration 
data considering the effect of the current flow. M and D are 
parameters estimated experimentally by limit cycle test. Then, 
the self-localization of underwater vehicle is estimated by 
transforming the estimated velocity into three axis and 
integrating. In this paper, a liner model expressed by the 

 
Fig.2 Self-localization method using Kalman filter 

 

 

Fig.3 Translational velocity generated by the rotational motion 
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Fig.4 System configuration of Stereo camera hull 
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following equation is used as the Kalman filter model [5].
 )!* % 1" � ,!*")!*" % -./!*" (7) 
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Here, x is state variable, A is the state transition matrix, C is 
the observation matrix. The state variable x consists of  
velocity data, acceleration data and anguler velocity data. 

 

C. Visual odometory system using stereo camera 

Fig.4 shows the system configuration of the stereo camera 
module(camera hull). This camera module is mounted on the 
front left side of AUV Tuna-Sand2. The camera hull for 
photograping the sea floor is equipped with a mobile 
battery.This module is a stand alone device that can be 
mapped. The CPU board is LattePand. Stereo camera and 
CPU board are connected by USB cable. In addition, a CPU 
board and a Wi-Fi router are connected by LAN cable to 
prevent changes in the position and attitude of the stereo 
camera when the hull is opened and closed. Therefore, we can 
remotely control the execution a program to aquire photo-
image   and the confirmation of the acqired photo-image from 
an external PC. At first, distortion correction and smoothing 
processing is performed on photo-images taken with a stereo 
camera, and calculate two-dimensional vectors between 
feature points. 

Fig.5 shows the processing flow of visual odometry using 
a stereo camera. Next, as shown in Fig.5(D) and (E), feature 
point are detected and matched using photo-images taken at 
time t = k and photo-images taken at time t = k-1. We used 
Speeded Up Robust Features (SURF) to perform stable feature 
point detection and matching from photo-image[9]. When 
estimating the amount of movement of underwater vehicle 

using a two-dimensional vector between feature point, the 
distance between the camera and the feature points is 
generally a constant value such as altitude data from the DVL. 
However, in this method, the self-localization is estimated 
only by the data that can be aquired by the camera without 
using the sensor data such as DVL. Therefore, it is necessary 
to estimate altitude data from the image-photo. As shown in 
Fig.5(F), the corresponding points are searched from the left 
and right photo-images to estimate the disparity. When the 
estimated disparity is D, the distance between two cameras is 
b, and focal length is f, the distance z from between camera 
and the corresponding point is expressed by the following 
equation: 

 6 �
7∙8

9
 (10) 

When the horizontal angle of view is  :; and the vertical angle 
of view is :< , the horizontal photograpy range w and the 
vertical photograpy range h is  expressed by the following 
equation: 

 = � 26 ∙ tan
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D
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Here, z is the distance between the camera and the feature 
point. If the two-dimensional vectors between feature points 
obtained using SURF are dpx and dpy, the amounts of 
movement of camera dx and dy are expressed by the following 
equation: 

 FG � F�� ∙
;
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 (13) 
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Here, Sw and Sh are the image sizes in the horizontal and 
vertical directions. In this paper, we set it to 640×480 pixels. 
The result of movement shown in Fig.5(H) depends on the 
number of matched feature points. Therefore, we estimated 
the self-localization by using the average value as the amount 
of movement of the underwater vehicle. 

III.  SEA TRIALS 

For evaluating the performance of a self-localization using 
Kalman filter and visual odometry, we collected basic data of 
sensors mounted the AUV and photo-image taken with a 
stereo camera  The hovering type AUV Tuna-Sand2 was 
deployed at the depth of 40 m, and tracked waypoints at a 
constant velocity and altitude. Fig.6 shows the path planning 
for AUV Tuna-Sand2. After reaching the sea floor, the AUV 
cruised along the waypoint at 0.1 m/s and 1.5 m altitude. In 
addition, the sea floor was taken every 1.5 second using a 
stereo camera. In this sea trial, the true azimuth angle of AUV 
was constant. For evaluating the performance of self-
localizaion, we set landmarks on the images taken at the 
observation point shown in Fig.5. 

Fig.7 shows waypoints and the sef-localization of AUV 
calculated based on the INS data. During cruising along the 
waypoint, the AUV mednders with position control within an 
error of 0.5 m.  

Fig.8(a) and (b) photo-images taken by the AUV at the 
each observation point (A to H) and the position of the feature 
points of each photo-images calculated based on INS data and 

 
Fig.5 Processing flow of visual odmetory using stereo camera 
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Eq.(13) and Eq.(14).  Fig.8(a) shows photo-images taken at 
observation points A to D. Fig.8(b) shows photo-images taken 
at observation points E to H. In Fig.8(a) and (b), the upper part 
is photo-images taken each observation points before the 
AUV moving, and lower part is photo-images after the AUV 
returning. (wxcr,i, wycr,i) is absolute position of the feature point 
as seen from the robot at each observation points.Table 1 to 
Table 3 show east-west direction error, north-south direction 
error and distance error at the observation points.  

The self-localization based on the velocity data 
considering the effect of the underwater vehicle’s oscillation 
included 0.086 m average error in the east-west direcion and 
0.115 m average error in the north-south direction. It can 
confirmed that the distance error is smaller than the self-
localization based on the DVL velocity data. Therefore, it is 
effective to improve the self-localization accuracy to consider 
the effect of the underwater vehicle’s oscillation. 

The self-localization using Kalman filter included 0.434 m 
average error in the east-west direction and 0.294 m average 
error in the north- south direction. As a result of comparison 
with the self-localization based on the DVL velocity data, the 
estimation method based on the velocity data estimated using 

Kalman filter could not contribute to the improvement of the 
self-localization accuracy. The reason for this is that errors are 
included in the actual robot behavior and model of motion of 
equations. However, as shown in Fig.9, the velocity data 
estimated by the Kalman filter has a variance of 5.74J10-4 for 
the target velocity, and it can be confirmed that it is smaller 
than the variance 7.39J10-4 of the velocity data from DVL. 
Therefore, the noise contained in the velocity data could be 
suppressed by applying the Kalman filter to the DVL velocity 
data.  

Visual odometry using a stereo camera included 0.257 m 
average error in the east-west direction and 0.073 m average 
error in the north-south direction. Compared with the self-
localization based on the DVL velocity data, the average error 
in the north-south direction was smaller. Therefore, the self-
localization accuracy has improved. However, the average 
error was large in the east-west direction. This is related to the 
direction of the stereo camera and the travel direction of the 
AUV. The overlapping area of two photo-images differ 
depending on whether the baseline between the cameras is 
vertical or horizontal with respect to the direction of travel of 
Tuna-Sand2. The accuracy of stereo matching depends on the 
overlapping areas of the photo-images. Therefore, the average 

 
Fig.6 Path planning for Tuna-Sand2 

 

 

Fig.7 Movement trajectory of AUV Tuna-Sand2 
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(b) 

Fig.8 (a)Photo-images from observation points A to D. (b)Photo-images from 
observation points E to H. 



error increased in the east-west movement with few 
overlapping areas. 

IV. CONCLUSION 

In this paper, we proposed a visual odometry system using 
a stereo camera. We also reported the results of sea trials 
conducted in October 2018 to evaluate the performance of 
self-localization. Then, we introduced a method of self-
localization using Kalman filter considering the effect of 
underwater vehicle’s oscillation, and compared it with visual 
odometry. As a result, the self-localization calculated based 
on the velocity data estimated by Kalman filter ws less 
accurate than the visual odometry using a stereo camera. 
However, the estimated velocity data variance was smaller 
than the DVL velocity data. In visual odometry, it was 
confirmed that the average error of the self-localization 
greatly changed depending on the travel direction of AUV. 

In the future, we reconstruct the motion model to reduce 
the error of the AUV’s actual behavior and motion model and 
investigate a more accurate self-localization method by 
integrating the self-localization estimated based on sensor data 
and  visual odometry. 

 

TABLE I.  POSITION ERROR OF EAST-WEST DIRECTION AT EACH 
OBSERVATION POINT 

Observation 

Point 

Position error of east-west direction [m] 

Simple 

D.R. 

Correct 

D.R. 

Kalman 

D.R. 

Visual 

Odometory 

A 0.002  0.041  0.407  0.423  

B 0.043  0.057  0.183  0.373  

C 0.074  0.100  0.115  0.147  

D 0.041  0.120  0.410  0.276  

E 0.027  0.007  0.503  0.230  

F 0.147  0.162  0.704  0.275  

G 0.153  0.114  0.717  0.073  

H 0.023  0.038  0.417  0.178  

 

 

TABLE II.  POSITION ERROR OF NORTH-SOUTH DIRECTION AT EACH 
OBSERVATION POINT 

Observation 

Point 

Position error of north-south direction [m] 

Simple 

D.R. 

Correct 

D.R. 

Kalman 

D.R. 

Visual 

Odometory 

A 0.049  0.143  0.226  0.069  

B 0.238  0.102  0.468  0.090  

C 0.074  0.188  0.245  0.152  

D 0.218  0.067  0.269  0.071  

E 0.065  0.055  0.178  0.002  

F 0.079  0.161  0.473  0.007  

G 0.286  0.087  0.197  0.123  

H 0.244  0.018  0.369  0.184  

 

 

TABLE III.  POSITION ERROR OF DISTANCE AT EACH OBSERVATION 
POINT 

Observation 

Point 

Position error of Distance [m] 

Simple 

D.R. 

Correct 

D.R. 

Kalman 

D.R. 

Visual 

Odometory 

A 0.049  0.149  0.465  0.429  

B 0.242  0.117  0.502  0.384  

C 0.105  0.213  0.271  0.211  

D 0.222  0.138  0.490  0.285  

E 0.071  0.056  0.534  0.230  

F 0.167  0.228  0.848  0.275  

G 0.324  0.143  0.743  0.143  

H 0.245  0.042  0.557  0.256  

 

  

 
Fig.9 Comparison of velocity data from the DVL and velocity data estimated 
by Kalman filter against target velocity. 
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