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Preamble

Magnetism, arising from electric currents and magnetic moments of elementary par-

ticles, is a physical phenomenon present in our day-to-day life. The Earth magnetic

field, for example, is crucial for our survival, since it protects the planet and its organ-

isms from the charged particles of the solar wind and cosmic rays. In the last couple of

centuries, the scientific and technological advances in controlling magnetic fields have

ignited the development of a wide range of technologies based on magnetism, includ-

ing turbines, transformers, data storage systems, biomedical equipment and sensors. In

this context, research on how to manipulate magnetic fields is not only essential for

improving a wide range of current technologies but also because it could lead to new

applications of magnetism.

Magnetic fields are shaped and controlled by magnetic materials. The way each

material responds to an applied magnetic field depends on its magnetic permeability.

Traditionally, most of the devices for controlling magnetic fields included ferromagnetic

materials, which strongly attract magnetic fields due to their extremely large perme-

ability. In the last decade, the design of magnetic metamaterials exhibiting unconven-

tional properties has widen the toolbox for controlling magnetic fields, enabling the

development of intriguing devices such as invisibility magnetic cloaks that can make

objects magnetically undetectable, or magnetic hoses that can transfer and route mag-

netic fields. These metamaterials consist of arrangements of natural materials, typically

combinations of ferromagnets and their antagonistic material, perfect diamagnets, which

strongly expel the magnetic field due to their extremely low permeability.

In this thesis, we present different strategies for controlling static magnetic fields.

We start by deriving some general features of conventional materials with extreme per-

meability, continue by designing and deriving the properties of novel devices based on

magnetic metamaterials and, finally, introduce the concept of negative static permeabil-

ity. Similar to negative indexes of refraction, which have enabled effects such as perfect

lensing, negative static permeability is shown to bring new possibilities for shaping static

magnetic fields. The content of the thesis is organized as follows.
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Chapter 1 is an introduction to some concepts on electromagnetism that will be

used throughout this work. We start by briefly reviewing the Maxwell equations, giv-

ing special attention to the limit of static magnetic fields and the magnetic boundary

conditions. Then, we present transformation optics, a mathematical technique that

has enabled the design of several novel devices for controlling electromagnetic fields,

and metamaterials, artificial structures exhibiting the unconventional permittivity and

permeability tensors required for developing most of the devices derived from the trans-

formation optics theory. Finally, we describe some properties of the most common types

of magnetic materials: diamagnetic, paramagnetic, and ferromagnetic materials.

In Chapter 2, we study in detail how materials with extremely low and extremely

large linear, homogeneous, and isotropic magnetic permeability interact with static mag-

netic fields. These results are directly derived from Maxwell equations and magnetic

boundary conditions and, thus, can be applied to different geometries. With this study,

we do not only recover some well-known properties of both perfect diamagnetic (µ→ 0)

and ideal ferromagnetic (µ → ∞) materials, such as their ability to shield magnetic

fields, but also demonstrate some unexploited features of perfect diamagnetic materials

enclosing free current densities.

In Chapter 3, we present different strategies for shaping magnetic fields with mag-

netic metamaterials. To start with, we apply transformation optics and Maxwell equa-

tions to derive the properties of two-dimensional shells with arbitrary cross-section and

three-dimensional spherical shells able to concentrate magnetic fields inside their holes.

Then, we study which is the effect of covering magnetic materials with these concen-

trators and demonstrate that their magnetic response is magnified in such a way that

the material appears as an enlarged material. As a possible application of these ideas,

our concentrators could help improve current sensing techniques. We show that the

concentrators could enhance the sensitivity of a sensor at the cost of increasing its de-

tectability, which may benefit some applications, but may be an issue when non-invasive

sensing is required. Lastly, we present a different metamaterial device that, opposite to

the concentrating shells, can make magnetic sensors magnetically undetectable at the

cost of reducing their sensitivity.

In Chapter 4, we introduce the concept of negative permeability in magnetostat-

ics. Even though negative values of the permeability have not been found in naturally

occurring materials, we theoretically and experimentally demonstrate that their prop-

erties can be effectively emulated in practice by arrangements of currents. Two devices

requiring negative values of the permeability are presented to illustrate the potential of

negative-permeability materials. First, we demonstrate the possibility of transforming

the magnetic signature of an object into that of a different one (magnetic illusion). Sec-

ond, we present the analogy of a perfect lens for the case of static magnetic fields, which

could eventually lead to the emulation and cancellation of magnetic sources remotely.

The global conclusions of the thesis are presented in Chapter 5. Finally, additional

analytic derivations are included as an Appendix.
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CHAPTER 1

Introduction to essential concepts

In this chapter, we build the theoretical framework of this thesis. We start with a re-

view of Maxwell equations, pointing out the simplifications that will be made throughout

this work for static magnetic fields. We continue with an introduction to the transfor-

mation optics technique and the concept of metamaterials. Finally, magnetic materials

are introduced as a tool for controlling static magnetic fields.

1.1 Maxwell equations

Electromagnetic phenomena are governed by the four Maxwell equations [1, 2, 3],

∇ ·D = ρf , (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B

∂t
, (1.3)

∇×H = Jf +
∂D

∂t
, (1.4)

where D is the displacement field, B is the magnetic induction, E is the electric field, H

is the magnetic field, ρf is the free charge density and Jf is the free current density. The

constitutive equations relate the fields D and E and the fields B and H. In absence of a

dielectric or a magnetic material they can be written as D = ε0E and B = µ0H, where

ε0 and µ0 are the vacuum permittivity and permeability, respectively. In the presence

of a material, the constitutive equations become

D = ε0E + P = εε0E, (1.5)
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6 Introduction to essential concepts

B = µ0(H + M) = µµ0H, (1.6)

where P is the electric polarization, M is the magnetization, and ε and µ are the

relative permittivity and permeability of the material, respectively. When a field is

applied to a medium made up of a large number of atoms or molecules, each molecule

creates a multipolar response, dominated by the dipolar term. The polarization and the

magnetization give the distribution of electric and magnetic dipole moments per unit

volume. By means of the constitutive relations, D and H can be eliminated from Eqs.

(1.1) and (1.4), which become

∇ ·E =
1

ε0
(ρf −∇ ·P), (1.7)

∇×B = µ0(Jf + ε0
∂E

∂t
+
∂P

∂t
+∇×M). (1.8)

These equations indicate that electromagnetic materials in the presence of electromag-

netic fields can be effectively emulated by an equivalent distribution of charge of density

−∇ ·P, and an equivalent distribution of current of density ∂P/∂t+∇×M [4].

1.1.1 Static magnetic regime

In static conditions, the time derivatives of the electromagnetic fields are zero and

electric and magnetic fields decouple. Static magnetic fields are described by the two

magnetostatic Maxwell equations,

∇ ·B = 0, (1.9)

∇×B = µ0(Jf +∇×M). (1.10)

One of the most important consequences of these equations is that static magnetic

fields always decay with the distance from the sources, which contrasts with the long-

distance propagation of time-dependent electromagnetic waves. This example illustrates

how different the physics behind the static case is from that of the electromagnetic waves

case. Therefore, the physical results obtained in magnetostatics cannot always be derived

as the zero-frequency limit of the results for the full-wave case and the study of static

magnetic fields has a deep interest on its own.

Equation (1.10) shows that the magnetic induction due to a magnetized body is

exactly the same as the one produced by a volume, JM, and a surface, KM, magnetization

current densities

JM = ∇×M, (1.11)

KM = M× n, (1.12)

where n is the unitary vector pointing outwards the material surface. This result is valid

both for points at the interior and at the exterior of the magnetic material.
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The magnetization of a magnetic material is related to the magnetic field through

the constitutive equation (1.6). This equation involves the magnetic permeability, which

is the tensor relating the magnetic field and the magnetic induction inside a material

and may depend on the magnetic field magnitude and direction, and on the position in

the material. When the material can be assumed linear, isotropic, and homogeneous

the permeability becomes a constant scalar magnitude and Eq. (1.6) leads to

M = (µ− 1)H = (µ− 1)(Ha + Hd), (1.13)

where H is the field inside the material and can be regarded as the superposition of

the applied magnetic field, Ha, plus the demagnetizing field, Hd = -NM. The demag-

netizing field strongly depends on the sample permeability and geometry through the

demagnetizing factor N , which is, in general, a tensor [5].

1.1.2 Magnetic boundary conditions

When there is a boundary between two media of different electromagnetic nature,

the fields must satisfy some boundary conditions in order to fulfill the four Maxwell

equations in all space. In the case of static magnetic fields, the magnetic field and the

magnetic induction must satisfy the magnetostatic boundary conditions,

n12 · (B2 −B1) = 0, (1.14)

n12 × (H2 −H1) = Kf , (1.15)

which arise from the Maxwell equations (1.9) and (1.10) and the constitutive equation

(1.6). The subscripts 1 and 2 refer to the mediums 1 and 2 in the interface, n12 is a unit

vector pointing from the medium 1 towards the medium 2, and Kf is the free surface

current density.

Equations (1.15) and (1.14) show that the component of the magnetic field tangential

to the boundary between two media must be continuous unless there are free currents

flowing on the interface and that the component of the magnetic induction perpendicular

to the boundary between two media must always be continuous. Equation (1.10) gives

the boundary condition for the tangential component of the magnetic induction. It

depends on the free surface current density, Kf , and on the magnetization surface current

density, KM, as

n12 × (B2 −B1) = µ0(Kf + KM), (1.16)

where

KM = n12 × (M2 −M1). (1.17)

Equation (1.17) reduces to Eq. (1.12) for the case of a material in vacuum, M2 = 0.
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1.2 Transformation optics and metamaterials

Transformation optics is a mathematical technique that enables the design of novel

devices to control and manipulate electromagnetic fields [6, 7, 8]. These devices usually

require inhomogeneous and anisotropic permittivity and permeability tensors that are

not found in naturally occurring materials. In consequence, the development of meta-

materials with unconventional effective permittivity and permeability tensors has been

crucial [9].

1.2.1 Transformation optics

Transformation optics provides a visual intuitive way of describing how electromag-

netic fields interact with materials. Based on space transformations, this technique offers

a recipe for controlling electromagnetic fields almost at will [6].

Figure 1.1: Sketch of the transformation optics technique. Field propagating in (a) an

original cartesian space, (b) a distorted space, and (c) the original cartesian space with

a properly designed material in the blue region. The material properties obtained by

transformation optics guarantee that the field propagation in (c) is the same as in (b).

To understand how transformation optics works, imagine a uniform magnetic field in

free space. One can record the field lines location on a system of coordinates, as in Fig.

1.1a. If the field lines are fixed to the coordinates, the coordinate system carries the

field lines with it under a distortion. Then, the trajectories of the field can be shaped by

simply distorting the coordinates, as shown in Fig. 1.1b. Maxwell equations keep their

form under coordinate transformations provided that the permittivity and permeability

tensors in the transformed region are modified as follows [6, 7, 8, 10, 11]

ε′(x′) =
Λ · ε(x) · ΛT

det(Λ)
, (1.18)

µ′(x′) =
Λ · µ(x) · ΛT

det(Λ)
, (1.19)
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where x and x’ refer to the coordinates in the original and in the transformed space,

respectively, ε(x) and µ(x) are the permittivity and permeability distributions in the

original cartesian space, and Λ is the Jacobian transformation matrix, with elements

Λij =
∂x′i
∂xj

. (1.20)

The transformed permittivity and permeability tensors ensure that Maxwell equa-

tions are obeyed by the new configuration of the field lines, which means that one can

place a material with ε′(x′) and µ′(x′) in the original space and the field will propagate

as if the space had been distorted, as shown in Fig. 1.1c.

The electric and the magnetic field distributions in the transformed space are re-

lated to the field distributions in the initial undistorted space through the Jacobian

transformation matrix as [6, 7, 8, 10, 11]

E′(x′) = (ΛT)−1E(x), (1.21)

H′(x′) = (ΛT)−1H(x). (1.22)

This shows that, starting from some initial fields E(x) and H(x), one can achieve any

desired field distribution by constructing the adequate Jacobian transformation matrix

Λ. Once this matrix is known, one can use Eqs. (1.18) and (1.19) to find the material

properties required to shape the fields as intended.

A possible way of achieving the cumbersome permittivity and permeability distri-

butions that usually arise from transformation optics is by means of metamaterials,

artificially engineered media that can be designed to exhibit effective electromagnetic

properties difficult or impossible to find in naturally occurring materials.

1.2.2 Metamaterials

Metamaterials are artificial media made from assemblies of multiple materials, usu-

ally arranged in repeating patterns, at scales that are smaller than the wavelength of the

field they are tackling. They differ from conventional materials because their properties

derive from the structure of their constituent units rather than from their constituent

atoms [12, 13]. Because of this property, metamaterials can be engineered to interact

with the fields beyond what is possible with conventional materials.

The advent of metamaterials has brought new opportunities to the physics, optics,

and engineering communities, enabling the realization of physical phenomena that were

previously only theoretical exercises. One of the first evidences of the potential of

metamaterials was the realization of a structure shown to have a frequency band over

which ε and µ were both negative [14]. In the 60’s, Victor Veselago had reexamined

some well-known electromagnetic phenomena assuming the hypothetical existence of

materials with negative ε and µ [15]. Since no known naturally occurring material

exhibits both ε < 0 and µ < 0, for many years this work was regarded as a theoretical
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curiosity. However, the experimental realization of metamaterials with negative µ and

ε showed that Veselago’s hypothesis could be realized and ignited the interest in the

field of negative index materials [16]. This field has experienced a rapid development

during the last decade, enabling intriguing phenomena such as negative refraction, for

which light rays are refracted at an interface in the reverse direction to that normally

expected, or perfect lenses, which can go beyond the diffraction limit of conventional

lenses [17, 18].

When the field of transformation optics was born, metamaterials became a paradigm

for controlling and manipulating electromagnetic fields in unprecedented ways [19]. One

of the most exciting applications of metamaterials and transformation optics is the

possibility of making an object invisible by means of an invisibility cloak [7, 20, 21].

Other applications of metamaterials and transformation optics include electromagnetic

concentrators, which could play an important role in the harnessing of light in solar cells

[22, 23, 24, 25]; illusion devices, which can make an object appear as if it was another

one [26, 27]; rotators, which change the direction of the applied field [28]; anti-cloaks,

which cancel the effect of a cloak [29, 30]; and many others.

Transformation optics and metamaterials have been applied to a wide range of phys-

ical areas [31, 32, 33], enabling the control and manipulation not only of electromagnetic

fields but also of thermal radiation [34, 35, 36, 37], acoustic waves [38, 39], and elasto-

mechanical waves [40, 41], for example. The control of static magnetic fields, which is

covered in this thesis, has also benefited from both transformation optics and metama-

terials [42, 43, 44, 45].

1.3 Magnetic materials

Magnetic fields are shaped and controlled by magnetic materials, which can be classi-

fied according to their magnetic permeability. The three most common types of magnetic

materials are diamagnetic, paramagnetic, and ferromagnetic materials.

Diamagnetic materials exhibit a relative permeability lower than 1. The atoms in

their volume do not show a net magnetic moment when there is no applied magnetic field.

Under the influence of a magnetic field, diamagnetic materials produce a magnetization

in the opposite direction to that of the magnetic field. Thus, the fields M and H in

their volume tend to cancel out, which results in low magnetic inductions, as can be

seen from the constitutive equation B = µ0(H + M) [Eq. (1.6)]. Diamagnetic materials

achieve this behaviour by expelling magnetic induction field lines towards their exterior.

In the case of perfect diamagnetic materials, which exhibit a permeability µ→ 0, all the

magnetic induction field lines are expelled from the material volume, and the magnetic

induction inside the material is B → 0. An example of perfect diamagnetic materials

are superconductors, which exhibit µ → 0 under certain conditions (low temperatures,

low applied magnetic fields, and low transport currents) [46, 47, 48].
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The behaviour of paramagnetic materials, which exhibit a relative permeability

slightly larger than 1, is very different. When there is no applied magnetic field, the

atoms in these materials have the magnetic moments randomly oriented due to thermal

agitation. Applied magnetic fields tend to align these magnetic moments, resulting in

materials magnetized in the same direction as the magnetic field. Different from dia-

magnetic materials, which expel magnetic induction field lines, paramagnetic materials

slightly attract magnetic induction field lines towards their volume.

Similar to paramagnetic materials, ferromagnetic materials are magnetized in the

same direction as the magnetic field [49, 50]. However, ferromagnetic materials exhibit

large permeabilities and their ability to attract magnetic fields is much stronger than

that of paramagnetic materials. Most ferromagnets retain part of the magnetization

even when the magnetic field is removed, which is known as remanent magnetization

or residual magnetism Mr. The field that has to be applied to achieve M = 0 in

the ferromagnet is known as coercive field. The behaviour of ferromagnetic materials

is described by hysteresis loops, which show how the response of the material to an

applied field depends on its previous magnetizations. According to the shape of their

hysteresis loop, ferromagnetic materials can be classified as hard and soft ferromagnets.

In hard ferromagnets, the coercive field is high while in soft ferromagnets it is low. At

temperatures above the Curie temperature, the ferromagnetism is lost and the material

becomes paramagnetic due to thermal agitation. In this work we will only deal with soft

ferromagnetic materials in small applied magnetic fields, which have a linear relation

between M and H and their permeability can be assumed constant and very large,

µ→∞.

Soft ferromagnetic and perfect diamagnetic materials, which can exhibit effective

permeabilities tending to µ → ∞ and µ → 0, respectively, are particularly interesting

for shaping static magnetic fields because of their extreme and antagonistic magnetic

responses. Some general features of these extreme-permeability materials are presented

in Chapter 2.





CHAPTER 2

Shaping magnetic fields with extreme permeabilities

Media with near-zero index of refraction (NZI) interacts with electromagnetic waves

in an unusual manner [51]. In these media, electric and magnetic fields decouple at

non-zero frequencies: the fields exhibit a nearly constant phase distribution but con-

tinue to dynamically oscillate in time [52, 53]. One of the first consequences of this

wave-dynamics was found when analysing the ability of NZI materials to guide electro-

magnetic waves [54]. Typically, light propagating within waveguides or optical fibers is

partially backscattered when encountering an obstacle such as a sharp bent in the waveg-

uide. In contrast, materials with NZI can be bent and deformed without introducing any

reflection, which enables an unusual full transmission of light through distorted chan-

nels with obstacles [55, 56, 57]. NZI media was also shown to lead to highly directive

emitters that could radiate light with tailored phases and magnitudes [58]. These novel

possibilities ignited the interest in the field of NZI, which has lead to novel strategies

for controlling the scattering [59], guiding [54], emission [60], concentration [61], and

trapping [62, 63, 64, 65] of light, and is still a very active line of research [66, 60].

Inspired by these works, in this chapter we present some features of materials with

near-zero (or zero) magnetic permeability in the presence of static magnetic fields. For

comparison, we also study the case of materials with extremely large magnetic perme-

ability, µ → ∞, which apparently show an antagonistic behaviour to that of µ → 0

materials. We start by considering externally applied magnetic fields and continue with

the case of magnetic sources embedded in the material volume. While near-zero indexes

of refraction are not typically found in natural occurring materials, µ → 0 and µ → ∞
are readily available in the static limit thanks to superconducting and soft ferromagnetic

materials, respectively.

13
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2.1 Shielding externally applied magnetic fields

Consider a linear, homogeneous, and isotropic perfect diamagnetic (PD, µ → 0) or

ideal ferromagnetic (FM, µ → ∞) material with arbitrary three-dimensional geometry

bounded by the surface SEXT, as sketched in Fig. 2.1a, in an arbitrary externally applied

magnetic field. Because there are not free currents involved, ∇×H = 0, the magnetic

field can be written in terms of a magnetic scalar potential φ,

H = −∇φ, (2.1)

everywhere in space. In linear, isotropic and homogeneous media, Eqs. (1.9) and (1.6)

lead to ∇ ·H = 0. Therefore, the magnetic scalar potential in all space is a solution

of the Laplace equation ∇2φ = 0. In particular, the magnetic scalar potential in the

external region corresponds to the superposition of the applied magnetic scalar potential

plus the response of the material, which depends on its permeability and geometry.

Figure 2.1: Sketches of (a) a solid perfect diamagnetic (PD) or ferromagnetic (FM)

material with external surface SEXT and (b) the PD/FM material with an empty hole

of surface SINT. The external region is denoted by EXT, the material region (yellow)

by PD/FM, and the hole region by INT.

Consider now that the material has a hole of arbitrary geometry bounded by the

surface SINT, as sketched in Fig. 2.1b. Same as for the solid material, the magnetic

field in all space can be derived from a magnetic scalar potential fulfilling the Laplace

equation. In general, the field both in the exterior of the material and inside its hole

depends on the hole geometry and position. In this section, we apply magnetostatic

boundary conditions to demonstrate that this does not occur in materials with extreme

permeability. The field distribution in the hole and outside perfect diamagnetic and

ferromagnetic materials does not depend on the geometry nor on the position of the

hole.
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2.1.1 Perfect diamagnetic materials

Let us start with the case of a hollow perfect diamagnetic material. For finite ex-

ternally applied magnetic fields, the magnetic fields in the material, HPD and BPD,

must be finite to fulfill the magnetostatic boundary conditions. Therefore, the magnetic

induction inside a material with µ → 0 tends to zero, BPD = µµ0H
PD → 0. Since the

component of the magnetic induction normal to a material boundary must be continuous

[Eq. (1.14)], the magnetic induction in the external region fulfills the boundary condi-

tion BEXT
n

∣∣
SEXT = BPD

n

∣∣
SEXT → 0. This indicates that the external magnetic induction

field lines always reach perfect diamagnetic materials tangential to their surfaces, as

illustrated in Fig. 2.2. As BEXT
n

∣∣
SEXT = 0, the normal derivative of the magnetic scalar

potential in the external region along the surface SEXT fulfills [Eqs. (1.6) and (2.1)]

∂φEXT

∂n

∣∣∣∣
SEXT

= − HEXT
n

∣∣
SEXT = − 1

µ0
BEXT
n

∣∣
SEXT = − 1

µ0
BPD
n

∣∣
SEXT → 0, (2.2)

which sets a Neumann boundary condition for φEXT (see Appendix A1). The solution

of the Laplace equation for φEXT is therefore uniquely determined: for each applied

potential, there is a single solution for φEXT (apart from an arbitrary additive constant)

that fulfills the boundary condition in Eq. (2.2). For this reason, the magnetic field

distribution in the external region can only depend on the applied field and on the

external surface SEXT; there is not a solution for each hole configuration (Fig. 2.2).

Figure 2.2: Numerical finite-elements calculations of the magnetic induction field lines

and (in colors) the modulus of the magnetic induction in arbitrary units for four long

(along the z−direction) perfect diamagnetic materials with squared cross-section and

relative permeability µ = 10−5 in a uniform field applied along the y−direction. In (a)

the material is solid, in (b) it has a long centered hole of squared cross-section, in (c)

the material has the same hole as in (b) but it is not centered, and in (d) the material

has a centered cylindrical hole.

The continuity of the normal component of B also sets a Neumann boundary con-

dition for the magnetic scalar potential inside the hole,

∂φINT

∂n

∣∣∣∣
SINT

= − HINT
n

∣∣
SINT = − 1

µ0
BINT
n

∣∣
SINT = − 1

µ0
BPD
n

∣∣
SINT → 0. (2.3)
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Therefore, the solution of the Laplace equation for φINT is also unique. Since a uniform

magnetic scalar potential fulfills the condition in Eq. (2.3) and is a solution of the

Laplace equation, φINT must be uniform. Thus, according to Eq. (2.1), the magnetic

field inside the hole is zero, which demonstrates that perfect diamagnetic materials

always shield their holes from externally applied magnetic fields. This result is also

observed in Fig. 2.2. These and all the finite-elements numerical calculations presented

throughout this thesis are performed with Comsol Multiphysics.

2.1.2 Ferromagnetic materials

Consider now the case of hollow ferromagnetic materials. As above, for finite exter-

nally applied magnetic fields the magnetic fields in the material HFM and BFM must be

finite. Thus, for µ → ∞ the magnetic field tends to zero, HFM = BFM/(µµ0) → 0.

The component of the magnetic field H tangential to the ferromagnetic boundary

must be continuous because there are not free surface current densities [Eq. (1.15)].

Therefore, the magnetic field in the external region fulfills the boundary condition

HEXT
t

∣∣
SEXT = HFM

t

∣∣
SEXT → 0, indicating that the magnetic field lines always enter

the ferromagnetic volume perpendicular to the surface SEXT, as shown in Fig. 2.3.

Since the gradient of the magnetic scalar potential is zero, HFM = −∇φFM = 0, the

potential inside the ferromagnetic material must be uniform, φFM = aFM, where aFM is

a constant. Due to the continuity of the scalar potential, the potential along both the

external and the internal surfaces of the material is found to be

φEXT
∣∣
SEXT = φFM

∣∣
SEXT = aFM, (2.4)

φINT
∣∣
SINT = φFM

∣∣
SINT = aFM. (2.5)

These equations set two Dirichlet boundary conditions (see Appendix A1), which

uniquely determine the solution of the magnetic scalar potential in the external re-

gion and in the internal region, respectively [67, 68]. Given an applied magnetic scalar

potential, there is only a solution for φEXT and φINT fulfilling Eqs. (2.4) and (2.5),

respectively. Similar to the case of perfect diamagnetic materials, since φINT = aFM is a

solution of the Laplace equation and fulfills the boundary condition in Eq. (2.5), φINT

must be uniform. Thus, the magnetic field inside the hole of a ferromagnetic material is

zero, which demonstrates that ferromagnetic materials shield their holes from any exter-

nally applied magnetic field (Fig. 2.3). This result leads to a property of the magnetic

induction inside the ferromagnetic volume BFM. Since the component of B normal to

any interface must be continuous and the magnetic induction inside the ferromagnetic

hole is zero, the magnetic induction field lines reach the ferromagnetic holes tangential

to their surfaces, BFM
n

∣∣
SINT = BINT

n

∣∣
SINT → 0 (Fig. 2.3).
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Let us consider now a ferromagnetic material with the same external surface but

a different hole. The magnetic scalar potential in the material must still be uniform

but, in general, its magnitude can be different from aFM. If that was the case, the

magnetic scalar potential in the external region would be the same as that for the

initial configuration except for an additive constant. Because the magnetic field cannot

depend on this constant [Eq. (2.1)], the external field distribution does not depend on

the hole geometry nor on its position; it only depends on the applied potential and on

the material external surface SEXT (Fig. 2.3).

Figure 2.3: Numerical calculations of the magnetic induction field lines and (in colors)

the modulus of the magnetic induction in arbitrary units when a uniform field is applied

along the y−direction to (a) a long (along z) solid ferromagnetic material (µ = 105), (b)

the material in (a) with a long centered hole of squared cross-section, (c) the material

in (a) with a long non-centered hole, and (d) the material in (a) with a centered long

cylindrical hole.

2.2 Enclosing magnetic field sources

Once the case of externally applied magnetic fields has been analysed, a question

arises as to whether these extreme-permeability materials also shield the external region

from magnetic fields generated by sources located inside a hole in their volume. Inter-

estingly, the shielding ability of these materials depends on the nature of the enclosed

magnetic field sources. Here we demonstrate that perfect diamagnetic and ferromag-

netic materials can shield irrotational or conservative magnetic fields, ∇ ×H = 0, but

are unable to shield rotational fields, ∇×H 6= 0, which arise from enclosed free current

densities.

2.2.1 Shielding irrotational fields

Consider a hollow material with arbitrary three-dimensional shape, as sketched in

Fig. 2.1b, with a magnetic field source located inside its hole. To start with, we assume

there are not free current densities inside the hole, i.e. Jf = 0. The magnetic field source
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could be a magnet, for example, which creates an approximately dipolar magnetic field

distribution. When Jf = 0, the magnetic field in all space can be written in terms of a

magnetic scalar potential φ which, in turn, can be derived from the Laplace equation

and the magnetostatic boundary conditions.

In perfect diamagnetic materials, the property BPD → 0 allows to specify the normal

derivative of the magnetic scalar potential (Neumann boundary condition) both at the

material internal [Eq. (2.3)] and external [Eq. (2.2)] surfaces. Same as for the case

of externally applied magnetic fields, these conditions determine the solution for φINT

and φEXT, which leads to two general properties. First, the magnetic field inside the

hole only depends on the sources it encloses and on the hole surface SINT; it does not

depend on the surface SEXT nor on the position of the hole inside the material (Figs.

2.4a-c). Second, because a uniform potential is found to fulfill the boundary condition

in Eq. (2.2) and is a solution of the Laplace equation, the magnetic scalar potential in

the external region φEXT must be uniform and, thus, the magnetic field reaching the

external region must be zero (Figs. 2.4a-d).

Figure 2.4: Numerical calculations of the magnetic induction field lines and (in colors)

the modulus of the magnetic induction in arbitrary units for a long magnetic dipole

with magnetic moment per unit length m = muy placed inside the hole of different

long (along z) materials. In (a) a perfect diamagnetic material (µ = 10−5) of squared

cross-section with a long concentric hole. In (b) same as in (a) for a non-concentric

hole. In (c) a cylindrical material with a centered long hole of squared cross-section. In

(d) same as in (c) for a cylindrical hole. Panels (e)-(h) show the same results as panels

(a)-(d) for a ferromagnetic material (µ = 105).
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In ferromagnetic materials, HFM → 0 specifies the magnetic scalar potential (Dirich-

let boundary condition) at the material internal [Eq. (2.5)] and external [Eq. (2.4)]

surfaces, which uniquely determine the solution for φINT and φEXT, respectively. As

a result, the magnetic field inside the hole only depends on the enclosed sources and

on the internal surface SINT (Figs. 2.4e-h). Similar to the case of perfect diamagnetic

materials enclosing sources, because a uniform magnetic scalar potential is a solution of

the Laplace equation and fulfills the boundary condition in Eq. (2.4), the magnetic field

reaching the external region is zero (Figs. 2.4e-h).

These results demonstrate that materials with extreme-permeability µ → 0 and

µ→∞ do not only shield their holes from externally applied fields, but also shield their

exterior from irrotational fields generated inside their holes.

2.2.2 Enclosing free currents with zero-permeability media

Consider now that there is a free current density Jf inside the hole of a perfect

diamagnetic material, so that ∇ ×H = Jf 6= 0. For the sake of simplicity, let us start

by assuming a long (along the z−axis) hollow perfect diamagnetic material with a long

straight wire of current I placed inside its hole, as sketched in Fig. 2.5.

Because the line integral of the magnetic field along any closed path enclosing the

hole must fulfill
∮

H · dl = I, the magnetic field in the material volume, HPD, and

the magnetic field in the external region, HEXT, must be finite and different from zero.

This leads to some general properties of µ → 0 materials. First, since HPD is finite,

the magnetic induction inside the material is zero; BPD = µµ0H
PD → 0 for µ → 0.

Second, because HEXT 6= 0, the magnetic field reaches the external region, indicat-

ing that perfect diamagnetic materials cannot shield the field created by a long wire.

Because BPD → 0 and the normal component of the magnetic induction must be con-

tinuous, the magnetic field induction reaches the external region tangential to SEXT

(BEXT
n

∣∣
SEXT = BPD

n

∣∣
SEXT → 0). Similarly, the magnetic field induction inside the hole

reaches the material tangential to SINT (BINT
n

∣∣
SINT = BPD

n

∣∣
SINT → 0). These properties

are illustrated in Fig. 2.6.

Figure 2.5: Sketch of the cross section of a long (along z) PD material of external surface

SEXT enclosing a long straight wire of current I inside a hole of surface SINT.
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Figure 2.6: Numerical calculations of the magnetic induction field lines and (in colors)

the modulus of the magnetic induction in arbitrary units when a long straight wire

of current I is surrounded by different long (along z) perfect diamagnetic materials

(µ = 10−5). In (a)-(d) the cross section of the external surface of the material is a star,

while in (e)-(h) it is a rectangle. In (a) and (e) the wire is centered inside a centered

hole with squared cross section. In (b) and (f) the wire position is the same as in (a)

and (e) but it is located inside a cylindrical discentered hole. In (c) and (g), the wire is

centered inside the cylindrical hole. In (d) and (f) the wire is centered inside a centered

hole with rectangular cross section.

In materials with intermediate positive values of µ, the magnetic field distribution

both inside the hole and in the external region depends on the hole surface SINT, on the

hole position, on the material external surface SEXT, and on the wire position inside the

hole. Here we demonstrate that this does not occur in the case of perfect diamagnetic

materials with µ→ 0. For this discussion, we use the magnetic vector potential A, which

is defined as ∇×A = B and for the chosen symmetry can be written as A = A(x, y)uz.

In the volume of a hollow perfect diamagnetic material, since BPD = ∇×APD → 0,

the magnetic vector potential must be uniform, APD = aPD, where aPD is a constant.

Due to the continuity of the vector potential, the moduli of the magnetic vector potential

along the internal and the external boundaries of the material, respectively, are

AINT
∣∣
SINT = APD

∣∣
SINT = aPD, (2.6)

AEXT
∣∣
SEXT = APD

∣∣
SEXT = aPD. (2.7)
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These equations set a Dirichlet boundary condition for AINT and for AEXT, respec-

tively (see Appendix A2). The constant aPD may depend on the chosen material con-

figuration but this dependence, similar to the arbitrary choice of the reference magnetic

vector potential, only contributes to AINT and AEXT as an additive constant that does

not have an effect on the field distribution in these regions (B = ∇ ×A). Therefore,

the conditions in Eqs. (2.6) and (2.7) uniquely determine both BINT and BEXT. On

the one hand, the magnetic field induction inside the hole only depends on Jf and on

the surface SINT; it does not depend on the material outer surface (Fig. 2.6). On the

other hand, the magnetic field induction in the external region only depends on the total

current enclosed by the material and on the external surface SEXT. For this reason, the

field reaching the exterior of a perfect diamagnetic material does not depend on the wire

position inside the hole, nor on the hole position or geometry (Fig. 2.6).

In this section, we have discussed the case of a long straight wire inside a long

perfect diamagnetic material, but similar ideas apply to other geometries. We now

briefly discuss the case of a circular loop carrying a current I embedded inside the hole

of a perfect diamagnetic volume with axial symmetry, as sketched in Fig. 2.7.

As above, the property BPD → 0 uniquely determines the magnetic induction distri-

bution both inside the material hole and in the external region by requiring the magnetic

vector potential both at SINT and SEXT to be a constant. Consider first the geometry

in Fig. 2.7a. Since the net free current enclosed by the material external surface SEXT

is zero, the material can shield the external region from the field created by the wire, as

occurred for irrotational fields. This is shown in Fig. 2.8a. Consider now the toroidal

geometry in Fig. 2.7b. In this case, one can think of closed paths in the external region

that enclose a total free current different from zero. Thus, in order for the Maxwell

equation ∇×H = Jf to be fulfilled, the field created by the current loop must exit the

toroid. As illustrated in the examples in Figs. 2.8b-d, the external field distribution

only depends on the current I and on the geometry of the surface SEXT.

Figure 2.7: Sketch of the cross-section of two hollow perfect diamagnetic materials with

a circular loop carrying a current I inside the hole. In (a) the axis of revolution crosses

the material, while in (b) there is a space between the axis and the material.
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Figure 2.8: Numerical calculations of the modulus of the magnetic induction in arbitrary

units when a circular loop of current I is enclosed by different perfect diamagnetic

materials with µ = 10−5. In (a) the wire is covered by a cylindrical material with a

circular toroidal hole. In (b), (c) and (d) the wire is covered by a cylindrical shell with

a toroidal hole of (b) circular and (c) and (d) squared cross-section. In (a), (b), and (c)

the wire is centered inside the toroidal hole, while in (d) it is decentered.

The results presented in this section show that perfect diamagnetic materials can re-

shape the magnetic field created by a wire in novel ways. Since the magnetic field exiting

the material is always tangential to the material surface (BEXT
n

∣∣
SEXT = BPD

n

∣∣
SEXT → 0),

one can design the adequate material shape to meet specific needs. For example, a

cylindrical shell enclosing a single circular current loop provides a uniform magnetic

field distribution similar to that of a solenoid (Figs. 2.8b-d). This is reminiscent of the

results obtained for epsilon-near-zero media embedding free currents, which have been

used to derive highly directive emitters with tailored phases [52, 58].

2.2.3 Wire superposition with zero-permeability media

Once the features of perfect diamagnetic media enclosing a wire have been studied,

a question arises as what is the collective effect of several wires enclosed in different cav-

ities. Imagine a long perfect diamagnetic material with arbitrary cross-section bounded

by the surface SEXT that has not only one but n holes of arbitrary cross-section, each

of them limited by the surface SINT
i , i = 1, 2...n. There is a long straight wire of cur-

rent I inside one of these holes, for example inside the hole j. In the material volume,

BPD → 0 leads to a uniform APD, which sets a Dirichlet boundary condition for the

magnetic vector potential at every material boundary.
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First, because the free current enclosed by any hole i 6= j is zero, a constant vector

potential AINT
i is found to fulfill the Laplace equation ∇2AINT

i = 0 and the Dirichlet

boundary condition ∀i. Therefore, the magnetic field inside the holes i 6= j, BINT
i =

∇ × AINT
i , is zero, indicating that perfect diamagnetic materials shield their cavities

from the field generated inside other cavities, as illustrated in the example in Fig. 2.5a.

Second, the wire creates a field different from zero inside the cavity j, which is in general

modified due to the presence of the material. Because AINT
j also fulfills a Dirichlet

boundary condition, the field distortion inside the hole j only depends on the hole

surface SINT
j ; it does not depend on the presence of other cavities nor on the external

surface of the material. Third, since the magnetic vector potential in the external surface

of the material is also specified, the external field distribution can only depend on the

current enclosed by SEXT and on the geometry of the surface SEXT. For example, in the

case of a cylindrical external surface enclosing a long wire of current I, the external field

corresponds to that of a long wire of current I in the center of the cylindrical surface,

as shown in Figs. 2.9a and b.

From these results, the case of N wires placed in different cavities in the material

is straightforward. The field inside each cavity only depends on its surface and on the

free current it is enclosing, while the field in the external region depends on the external

surface as well as on the total current enclosed by SEXT. For example, if there are N

wires of current I enclosed by the material (located in the same or in different cavities),

the external field is the same as if a wire of current NI was placed inside one of the

cavities. In the case of a circular external surface, it corresponds to the field created by

a centered wire of current NI (Figs. 2.9c and d). If the total current enclosed by SEXT

is zero, the shielding property of perfect diamagnetic materials is recovered.

Figure 2.9: Numerical calculations of the magnetic induction field lines and (in colors)

the modulus of the magnetic induction in arbitrary units in four different cases. In (a) a

long cylindrical perfect diamagnetic material (µ = 10−5) with a straight wire of current

I embedded in one of its holes. In (c) the same material as in (a) with six straight wires

of current I, each of them in a different hole. In (b) and (d) a straight wire of current

I and 6I, respectively, located at the geometric center of the external surface of the

material in (a) and (c).
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Therefore, perfect diamagnetic materials enable the overlapping of the field created

by several wires located at different positions; the external field distribution is the same

as if all the wires were located at the same point. This may offer new possibilities for

current technologies where several wires are used to provide strong magnetic fields, as in

superconducting magnets. In most of these applications, the consideration of the strong

Lorentz forces the wires must withstand is crucial. Because wires located in different

cavities inside a perfect diamagnetic material would be isolated, the forces between the

wires would be zero, which could help reduce the extremely large forces that appear

in some practical applications. In these cases, however, the internal compressive forces

that perfect diamagnetic materials enclosing wires must stand should be considered.

2.2.4 Enclosing free currents with infinite-permeability media

Consider now a ferromagnetic material with µ → ∞ surrounding a free current

density Jf . For simplicity, consider the same geometry as that in Fig. 2.5: a long hollow

material with a long straight current wire of intensity I placed inside its hole.

The magnetostatic Maxwell equation∇×H = Jf shows that, same as perfect diamag-

netic materials, ferromagnets cannot shield rotational fields created by internal sources.

If the field in the external region was zero, the line integral of the magnetic field along

paths in the external region that enclose the wire would not fulfill
∮

H · dl = I. In the

ferromagnetic material volume, different from the cases studied above, in which µ→∞
led to HFM → 0, the equation ∇×H = Jf also forces the magnetic field to be different

from zero. A first consequence of having HFM 6= 0 inside the ferromagnetic volume is

that both the magnetic induction and the magnetization of the material tend to infinity,

BFM = µµ0H
FM →∞ and MFM = (µ− 1)HFM →∞ for µ→∞.

This reveals that ferromagnetic materials surrounding free currents cannot be con-

sidered linear materials with permeability µ→∞. In practice, ferromagnetic materials

with a large magnetization exhibit a non-linear behaviour, experience saturation and

their relative magnetic permeability is dramatically reduced; instead of µ → ∞ their

permeability becomes µ→ 1. Therefore, when enclosing a current with a ferromagnetic

material, the material permeability cannot be assumed to be µ→∞ because the mate-

rial magnetization MFM would tend to infinity and it would become saturated even for

low values of HFM. Because the discussion of non-linear phenomena in ferromagnetic

materials falls beyond the scope of this thesis, we leave this discussion here.

2.2.5 Analogy between perfect diamagnets and electric conductors

The derived results for perfect diamagnetic media in magnetostatics can be regarded

as an analogy to the well-known properties of conducting media in electrostatics. Here

we explore this analogy by taking into account that the response of conducting media can

be explained in terms of induced electric charges and the response of perfect diamagnetic

media in terms of magnetization currents.
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In electrostatics, the electric field in the volume of a hollow electric conductor must

be zero, EC → 0. In the presence of an applied electrostatic field, the material achieves

this property by inducing some electric charges at its surfaces. In a similar way, mag-

netization currents are induced at the surfaces of perfect diamagnetic materials in the

presence of magnetostatic fields in order to provide a zero magnetic induction BPD → 0

in the material volume. For externally applied fields, these surface charge and current

densities appear at the material external surface, SEXT and only depend on the applied

field distribution and on the geometry of SEXT. Because the fields cannot reach the vol-

ume of conductors and perfect diamagnets, their cavities are shielded from electrostatic

and magnetostatic fields, respectively.

When the source of electrostatic and magnetostatic fields is located in a cavity inside

the material, induced charges and magnetization currents appear at the surface of the

cavity, SINT, to provide EC = 0 and BPD = 0, for conductors and perfect diamagnets,

respectively. From Maxwell equations, one finds that the net charge induced at the

surface SINT of a conductor must be equal and with opposite sign to the total charge Q

enclosed by the cavity. In an analogous way, the net magnetization current induced at

the surface SINT of a perfect diamagnet must be equal and with opposite sign to the total

current I enclosed by the cavity. Because the total net induced charge in the conductor

and the total net magnetization current in the perfect diamagnetic volume must be zero,

when Q 6= 0 and I 6= 0, some surface charges and magnetization currents must appear

at SEXT to compensate for the excess of charges and currents at SINT. These charges

and currents must be distributed along SEXT in such a way that the conditions EC = 0

and BPD = 0 are maintained. The charge and the current density induced at SEXT

create an electrostatic and a magnetostatic field different from zero outside the material

volume, respectively. This shows that conductors and perfect diamagnetic materials only

shield their exterior from the electrostatic and magnetostatic fields generated inside their

volume when the total free charge or the total free current they enclose, respectively, is

zero.

In spite of this similarities, the way in which conductors and perfect diamagnetic

materials shape the electrostatic and the magnetostatic fields, respectively, is very dif-

ferent. Because EC = 0 and the Maxwell equations require the tangential component of

E to be continuous at any interface, electrostatic fields E always enter and exit conduc-

tors perpendicularly. In contrast, magnetostatic fields B are always tangential to the

perfect diamagnetic surfaces because BPD = 0 and it is the component of B normal to

an interface the one that has to be continuous.

2.3 Chapter summary and conclusions

The formulation of the magnetic field distribution in terms of a magnetic

scalar/vector potential fulfilling the magnetostatic boundary conditions has enabled the

derivation of some interesting general features of materials with extreme permeabilities.
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First, both perfect diamagnetic and ferromagnetic materials have been shown to

shield any cavity in their volume from externally applied magnetic fields as well as their

external region from irrotational fields generated inside their volume. The shielding

ability of these materials was already known, but it had only been derived for some

particular fields and geometries. In contrast, the formulation of Neumann and Dirichlet

problems has enabled the generalization of the shielding property to any applied field

distribution and material geometry. Second, we have demonstrated that perfect diamag-

netic and ferromagnetic materials cannot shield their exterior from rotational magnetic

fields generated by free current densities located inside their volume.

For the case of perfect diamagnetic materials enclosing free currents, the external

field distribution has been shown to depend solely on the geometry of the material

external surface and on the total current enclosed by the material. This property could

be exploited to find novel ways of shaping and controlling static magnetic fields. For

example, we have shown that cylindrical shells made of perfect diamagnetic material

with a toroidal hole enclosing a circular current loop achieve a uniform magnetic field

inside its hole that is even more uniform than the field achieved by a solenoid of the same

length. Also, interesting collective effects arise when considering a perfect diamagnetic

material surrounding several wires located in different cavities, as the wires do not

interact with each other but the field in the exterior of the material appears as if all the

wires were located at the same point.

The properties derived for perfect diamagnetic materials could be explored in prac-

tice using superconducting materials. For low temperatures and applied magnetic fields,

superconductors exhibit an effective uniform, isotropic, and linear magnetic permeabil-

ity µ→ 0. However, when the applied magnetic field becomes larger than a certain field,

the property µ→ 0 is lost and the superconducting material does not longer behave as a

perfect diamagnet. This may be a drawback specially in the case of surrounding one or

several wires with perfect diamagnetic materials, since the field close to the wires could

be very strong.



CHAPTER 3

Shaping magnetic fields with positive-permeability metamaterials

The toolbox for controlling static magnetic fields has recently been enriched thanks

to the development of magnetic metamaterials. In the static limit, metamaterials can be

defined as combinations of existing materials that result in novel effective permeability

tensors [42, 43, 44, 45]. This concept was introduced in 2007 by Wood and Pendry,

who examined the possibility of creating metamaterials at near-zero frequencies and

designed a magnetic metamaterial able to render magnetic objects undetectable to dc

magnetic fields [42]. Prior to this work, metamaterials had been discussed only at

microwave frequencies and above, and were defined as assemblies of materials smaller

than the wavelength of the field. In the static limit, since the wavelength associated to

the magnetic field tends to infinite, metamaterials can be constructed at any scale.

The introduction of static magnetic metamaterials was crucial for realizing several

magnetic devices derived from transformation optics. The magnetic permeability result-

ing from the space transformations, which is usually inhomogeneous and anisotropic and

can seldom be found in naturally occurring materials, can be effectively emulated by

magnetic metamaterials. The building blocks that constitute these metamaterials are

usually superconducting (µ → 0) and soft ferromagnetic materials (µ → ∞). The nat-

ural existence of these materials with extreme permeabilities makes the magnetostatic

regime particularly interesting for exploiting transformation optics and metamaterials.

Magnetic metamaterials have enabled the realization of a wide range of devices for

shaping magnetic fields. Among them, one finds magnetic invisibility cloaks that make

objects magnetically undetectable [69, 70, 71, 72, 73]; concentrators that focus magnetic

fields [74, 75, 76, 77, 78]; hoses that route and transfer magnetic field to long distances

[79, 80, 81]; and even magnetic wormholes that magnetically connect two regions in

space through an undetectable path [82].

27
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In this chapter, some novel devices for controlling static magnetic fields that can be

realized with magnetic metamaterials with positive permeability are presented. First,

in Sec. 3.1, we show that two-dimensional and three-dimensional shells with extremely

anisotropic permeabilities (very large in the radial direction and small in the angular one)

are able to concentrate externally applied magnetic fields inside their holes [83]. In Sec.

3.2, we demonstrate that these shells do not only concentrate external fields, but also

expel towards the exterior the magnetic field created by magnetic sources located inside

their holes. When surrounding a magnetic material with these shells, this expulsion

property results in a magnification of the response the material creates to an applied field,

which corresponds to that of an enlarged material. The proposed extremely anisotropic

concentrating shells could be used as a general strategy for enhancing the sensitivity of a

magnetic sensor, which could benefit applications requiring the detection of low magnetic

fields. However, these shells enhance the sensor sensitivity at the cost of increasing

their detectability; the shell magnifies the distortion of the probing field created by the

sensor, which can be a major drawback when non-invasive sensing is required. To tackle

this issue, in Sec. 3.3, we present a cloaking shell that can render a magnetic sensor

undetectable. Even though the sensitivity of a sensor is reduced by the cloaking shell,

the sensor is still able to measure the applied field [84].

3.1 Magnetic field concentration

The first theoretical proposals for concentrating static magnetic fields using metama-

terials were derived using transformation optics [74, 85]. It was demonstrated that long

cylindrical shells with extremely anisotropic permeability achieve large concentrations

of magnetic fields [74]. These ideas have been experimentally verified both for static [86]

and quasistatic magnetic fields [87]. Magnetic concentrators could benefit a wide range

of technologies working with zero and low-frequency magnetic fields, including magnetic

sensors [83], biomedical techniques such as magnetic resonance imaging or transcranial

magnetic stimulation [74], and wireless power transfer [87].

Here we extend the results for concentrating magnetic fields with long cylindrical

shells to the cases of long shells with arbitrary cross-section and spherical shells. In

this way, the shape of the concentrator could be tailored according to its application.

As an example, consider a magnetic sensor that is covered by a concentrating shell

with the goal of enhancing its sensitivity [83]. The possibility of adapting the shape of

the concentrator to the shape of the sensor allows a more efficient use of space, which

enables a more dense packaging of sensors. As another example, imagine two coils

covered by two cylindrical concentrating shells that enhance the coupling between them

[87]. Concentrators designed according to the shape of the coils they enclose may give

the same coupling enhancement as cylindrical concentrators with a much larger air gap

between the shells, which is an important parameter in wireless power transfer [87].
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3.1.1 Long concentrators with arbitrary geometry

We start by extending the results for long cylindrical concentrators [74] to the case

of arbitrarily shaped long concentrators. Their properties can be derived using transfor-

mation optics. For electromagnetic waves, similar transformations have been employed

to derive arbitrarily shaped cloaks [88, 89] and concentrators [23, 90].

Figure 3.1: (a) Sketch of the original space. (b) Sketch of the transformed space. The

space ρ < R0(ϕ) is compressed into the region ρ′ < R1(ϕ) and the space R0(ϕ) < ρ <

R2(ϕ) is expanded to fill the region R1(ϕ) < ρ′ < R2(ϕ).

Consider three infinitely long (along the z−direction) surfaces with arbitrary cross-

section. The radial distance between each surface and the origin of coordinates depends

on ϕ and can be denoted as R1(ϕ), R0(ϕ) > R1(ϕ), and R2(ϕ) > R0(ϕ) (Fig. 3.1a). To

simplify the derivation, we consider conformal surfaces. In this case, R0(ϕ) and R2(ϕ)

can be written in terms of R1(ϕ) as R0(ϕ) = (r0/r1)R1(ϕ) and R2(ϕ) = (r2/r1)R1(ϕ),

where r0, r1, and r2 are positive parameters fulfilling r2 > r0 > r1 > 0. Inspired by the

transformation in [74] for the cylindrical case, we transform the space as illustrated in

Fig. 3.1b. First, the space in the region 0 < ρ < R0(ϕ) is radially compressed through

the transformation, 
ρ′ =

(
r1
r0

)
ρ,

ϕ′ = ϕ, ρ ∈ [0, R0(ϕ)),

z′ = z,

(3.1)

where ρ, ϕ and z are the coordinates in the original physical space and ρ′, ϕ′ and z′ are

the coordinates in the transformed virtual space. Second, to guarantee that the space

is continuous, the space in the region R0(ϕ) < ρ < R2(ϕ) is expanded as
ρ′ = R2(ϕ)

(
ρ

R2(ϕ)

)k
,

ϕ′ = ϕ, ρ ∈ [R0(ϕ), R2(ϕ)],

z′ = z,

(3.2)
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where the parameter k ∈ (1,∞) is related to the parameters r0, r1, and r2 through

r0 = r2(r1/r2)
1/k. (3.3)

Finally, the space in the region ρ ∈ (R2(ϕ),∞) is not transformed. If one assumes

cylindrical surfaces, R1(ϕ) = R1, R0(ϕ) = R0, and R2(ϕ) = R2, the transformation in

[74] is recovered.

The magnetic permeability required to shape the magnetic field in the same way as

the proposed space transformation would, can be obtained from Eqs. (1.19) and (1.20)

of the transformation optics theory. The permittivity is not discussed because we are

assuming static magnetic fields, which are decoupled from electric fields. Expressed in

the cylindrical basis, the calculated relative permeability tensors are

µ′ =

 µρρ µρϕ µρz
µϕρ µϕϕ µϕz
µzρ µzϕ µzz

 =


1 0 0

0 1 0

0 0
(
r1
r2

)2/k−2
 , (3.4)

in the region ρ′ < R1(ϕ),

µ′ =



k + (k−1)2
k

1
R2(ϕ)2

(
dR2(ϕ)
dϕ

)2
− (k−1)

k
1

R2(ϕ)
dR2(ϕ)
dϕ 0

− (k−1)
k

1
R2(ϕ)

dR2(ϕ)
dϕ 1/k 0

0 0 1
k

(
ρ′

R2(ϕ)

)2/k−2


, (3.5)

in the region R1(ϕ) ≤ ρ′ ≤ R2(ϕ), and µ′ = 1 in the region, ρ′ > R2.

If one considers static magnetic fields independent of the z−coordinate and without

z−component, the problem shows translational symmetry along the z−axis. In this case,

only the left-upper 2x2 minors of the tensors have physical relevance. This means that

the presented space transformation only requires the presence of a linear, inhomogeneous

and anisotropic magnetic material with the permeability in Eq. (3.5) placed in the region

R1(ϕ) < ρ′ < R2(ϕ), which, constitutes the magnetic concentrator.

Transformation optics does not only give the required permeability to effectively

transform the space as desired, but also how the magnetic field distribution is shaped

in the transformed space. The expression for the magnetic field can be found from

Eqs. (1.22), (3.1) and (3.2). For our goal of concentrating the magnetic field, we are

interested in the magnetic field distribution inside the hole, which can be written as

H′(ρ′, ϕ′) =

(
r1
r2

)1/k−1
H

((
r1
r2

)1/k−1
ρ′, ϕ′

)
, ρ′ ∈ [0, R1(ϕ)). (3.6)
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Figure 3.2: Numerical calculations of the magnetic induction field lines and, in colors, the

y−component of the magnetic induction normalized to µ0H0 when a uniform magnetic

field H0 is applied along the y−direction to four long (along the z−direction) objects

with µρρ = 105, µϕϕ = 10−5, and µρϕ = µϕρ = 0. The object cross-sections are (a) a

hollow ellipsoid with internal and external surfaces R1(ϕ) and R2(ϕ) = 4R1(ϕ), (b) a

hollow star with surfaces R1(ϕ) and R2(ϕ) = 4R1(ϕ), (c) a hollow square with surfaces

R1(ϕ) and R2(ϕ) = 2R1(ϕ), and (d) a star of surface R2(ϕ) with a squared hole of

surface R1(ϕ).

For example, if one assumes a uniform applied magnetic field H0, the magnetic field

reaching the hole of the concentrator is

HINT =

(
r2
r1

)1−1/k
H0, (3.7)

which depends on the parameter k. When k is minimum, k → 1, the field is not

concentrated inside the hole, HINT = H0, and when k is maximum, k → ∞, the field

concentration is maximum, HINT = (r2/r1) H0. This result can be understood from

Eqs. (3.1) and (3.3). When k → 1, r0 → r1, and there is no space concentration. In

contrast, when k → ∞, r0 → r2, which is the case of maximum concentration; all the

space in the region ρ < R2(ϕ) is compressed into the region ρ < R1(ϕ). The parameter k

controls the amount of space that is compressed inside the hole and, therefore, indicates

how strong the magnetic field concentration is.

Because the angular permeability of the shell is found to be directly related to the

parameter k as µϕϕ = 1/k, shells with µϕϕ → 0 are the ones achieving the largest

magnetic field concentration. In this case, the components of the concentrator relative

permeability can be written as µρρ → ∞, µϕϕ → 0 and µρϕ = µϕρ = 1
R2(ϕ)

dR2(ϕ)
dϕ . In

general, the off-diagonal components of the magnetic permeability change the direction

of the magnetic induction: µρϕ converts part of the angular field Hϕ into a radial mag-

netic induction Bρ, and viceversa for µϕρ. In the case of maximum field concentration,

the off-diagonal permeabilities µρϕ = µϕρ = 1
R2(ϕ)

dR2(ϕ)
dϕ can be assumed to be zero

because, independently of their value, the magnetic induction field lines follow a radial

path towards the concentrator hole due to µρρ →∞. All the performed finite-elements

numerical calculations confirm this assumption, even when considering shells with sharp
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edges. Some examples are shown in Figs. 3.2a-c, which illustrate that shells of different

geometries with permeability µρρ →∞, µϕϕ → 0, and µϕρ = µρϕ = 0 achieve the ideal

concentration ratio resulting from Eq. (3.7).

The field distribution in the external region may also be of interest. Because the

space ρ > R2 has not been transformed, the field distribution outside the concentrator is

not modified by the presence of the shell. Therefore, the proposed concentrating shells

can achieve strong field concentrations inside their holes without distorting the applied

magnetic field. Figures 3.2a-c show that the shells achieving the maximum field con-

centration exhibit this non-distorting property even when the off-diagonal components

of their permeability tensor are set to zero.

Figure 3.2d shows that the properties we have obtained for shells with the perme-

ability in Eq. (3.5) do not hold if the inner and the outer surface of the shell have

different shapes. Because we have transformed the space considering three conformal

surfaces [R2(ϕ)/r2 = R0(ϕ)/r0 = R1(ϕ)/r1, Fig. 3.1], shells with surfaces that do not

fulfill this condition exhibit different properties to those derived above. In particular,

the field inside their holes is not uniform and their presence distorts the applied mag-

netic field distribution. If the goal was to obtain a shell with inner and outer surfaces

with different shapes that was able to uniformly concentrate the field inside its hole

without distorting the applied field, different space transformations and permeability

tensors would be required.

3.1.2 Spherical concentrators

The long concentrators presented above can only achieve a two-dimensional field

concentration. In this section, we explore the possibility of having a three-dimensional

concentrator. In this case, transformation optics leads to inhomogeneous permeabilities,

which may be difficult to construct in a practical realization, even when considering

the simplest geometry of a spherical shell. A different strategy that can be used to

derive the properties of homogeneous concentrators is solving the magnetostatic Maxwell

equations. However, these equations must be derived for each shell geometry and for

each applied field distribution. For simplicity, we consider a spherical shell with internal

radius R1 and external radius R2 in the presence of a uniform magnetic field, H0,

applied along the z−axis [83]. We assume a linear, homogeneous and anisotropic relative

permeability fulfilling (in spherical coordinates r, θ, ϕ) µrθ = µθr = µrϕ = µϕr = µθϕ =

µϕθ = 0 and µθθ = µϕϕ. To simplify the notation, we define the angular and the

radial permeability as µθ = µθθ and µr = µrr, respectively. Since there are not free

currents and the material is homogeneous, the magnetic field can be written in terms of

a magnetic scalar potential φ that fulfills the Laplace equation. This potential reads

∇2φSHE =
∂

∂r

(
r2
∂φSHE

∂r

)
+

1

sinθ

µθ
µr

∂

∂θ

(
sinθ

∂φSHE

∂θ

)
= 0, (3.8)

in the shell region (SHE: R1 < r < R2) and
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∇2φINT,EXT =
∂

∂r

(
r2
∂φINT,EXT

∂r

)
+

1

sinθ

∂

∂θ

(
sinθ

∂φINT,EXT

∂θ

)
= 0, (3.9)

inside the hole (INT: r ≤ R1) and in the external region (EXT: r ≥ R2). The general

solution of these equations is

φINT = aINTrcosθ, (3.10)

φSHE =
(
bSHEr1/2(−1−

√
1+8µθ/µr) + cSHEr1/2(−1+

√
1+8µθ/µr)

)
cosθ, (3.11)

φEXT =

(
dEXT

r2
−H0r

)
cosθ. (3.12)

The coefficients aINT, bSHE, cSHE, and dEXT are obtained from the magnetostatic

boundary conditions [Eqs. (1.15) and (1.14)]: the angular component of H and the

radial component of B must be continuous at the material surfaces r = R1 and r = R2.

The magnetic field inside the hole of the spherical shell is uniform and in the direction

of the applied magnetic field, HINT = −aINTuz [Eq. (3.10)], and can be written as

HINT =
6µrα(R2/R1)

(3+α)/2

−4− µr − 4µrµθ + 3µrα+ (4 + µr + 4µrµθ + 3µrα)(R2/R1)α
H0, (3.13)

where α2 = 1 + 8µθ/µr. The maximum field that can be concentrated inside the hole of

a spherical shell is found in the limit µr →∞ and µθ → 0 and is

HINT(µr →∞, µθ → 0) =
3 (R2/R1)

2

1 + 2 (R2/R1)
H0. (3.14)

The magnetic field distribution outside the spherical shell may also be of interest.

Equation (3.12) indicates that the response of the shell is equivalent to the field created

by a point dipole centered inside the hole of the spherical shell with dipolar magnetic

moment m = 4πdEXT pointing towards the z−direction. Positive values of dEXT indicate

that the shell attracts the magnetic field, while negative values of dEXT indicate that

it expels the field. When dEXT is zero, the shell does not distort the uniform applied

magnetic field. From

dEXT =
−2(−1− µr + 2µθµr)R

3
2 [1− (R2/R1)

α]

−4− µr − 4µrµθ + 3µrα+ (4 + µr + 4µrµθ + 3µrα)(R2/R1)α
H0, (3.15)

one finds that spherical concentrators with µr → ∞ and µθ → 0 slightly expel the

magnetic field (dEXT < 0), as shown in Fig. 3.3a. Therefore, the anisotropic shell

providing the maximum magnetic field concentration distorts the applied magnetic field.
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Figure 3.3: Numerical calculations of the magnetic induction field lines and (in colors)

the z−component of the magnetic induction normalized to µ0H0 when a uniform mag-

netic field H0 is applied along the z−direction to two different spherical concentrators

with internal radius R1 and external radius R2 = 3R1. The shell relative permeabilities

are µr = 105 and µθ = 10−5 in (a), and µr = 105 and µθ = 1/2 in (b).

We can now explore which is the maximum magnetic field concentration that a

spherical shell that does not distort the external magnetic field can achieve. According

to Eq. (3.15), a spherical shell does not distort uniform applied fields (dEXT = 0) when

its radial and angular permeability fulfill

µθ =
1 + µr

2µr
. (3.16)

The field inside a non-distorting spherical shell is found as [Eq. (3.13)]

HINT =

(
R2

R1

)1−1/µr
H0. (3.17)

Therefore, the largest field concentration that can be achieved without distorting the

uniform applied field is found in the limit µr →∞ and µθ → 1/2 and is

HINT(µr →∞, µθ → 1/2) =
R2

R1
H0. (3.18)

We can now compare the field concentration provided by a distorting shell with

µr → ∞ and µθ → 0 [Eq. (3.14), Fig. 3.3a] to that of a non-distorting shell with

µr → ∞ and µθ → 1/2 [Eq. (3.18), Fig. 3.3b]. For small radii ratios, R2/R1 → 1,

the two concentrators achieve the same magnetic field concentration ratio, (R2/R1).

Interestingly, for large radii ratios, R2/R1 →∞, the non-distorting shells maintain the

same concentration ratio, while the concentration ratio achieved by distorting shells is

increased to (3/2)(R2/R1).
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3.1.3 Realizing magnetic concentrators with metamaterials

The two-dimensional and the three-dimensional shells presented above must exhibit

an extremely anisotropic permeability in order to achieve a strong concentration of

magnetic field inside their holes. The radial component of the permeability must be

large to direct the applied magnetic field lines towards the hole of the shell, whereas the

angular component of the permeability must be low to guarantee that once a field line has

entered the shell it does not exit without reaching the hole. Such extremely anisotropic

permeabilities are not found in natural occurring materials. However, thanks to the

recent introduction of magnetic metamaterials, one can adequately combine materials

with extremely large permeability µ→∞ (ferromagnetic materials) and materials with

extremely low permeability µ→ 0 (perfect diamagnetic materials) to design a shell that

effectively behaves as if it was anisotropic.

The first proposal on how to arrange ferromagnetic and perfect diamagnetic materials

to emulate a cylindrical concentrator with permeability µρρ → ∞ and µϕϕ → 0 was

theoretically proposed and numerically verified in [74]. It was shown that an alternation

of ferromagnetic and perfect diamagnetic rectangular prisms placed radially, as shown

in the example in Fig. 3.4b, exhibits practically the same effective properties as the

ideal concentrator in Fig. 3.4a; the magnetic field is concentrated inside the hole by a

factor r2/r1 [Eq. (3.7)] and the applied field is kept undistorted. Figures 3.4c and d

illustrate for the case of a long shell with squared cross-section that the same strategy

can be applied to effectively emulate the properties of extremely anisotropic long shells

with arbitrary cross sections.

Figure 3.4: Numerical calculations of the magnetic induction field lines and, in colors, the

y−component of the magnetic induction (normalized to µ0H0) for a uniform magnetic

field H0 applied along the y−direction to four different devices. In (a) a long cylindrical

concentrator with radial and angular relative permeability µρρ = 105 and µϕϕ = 10−5

with internal and external radii R1(ϕ) = R1 and R2(ϕ) = 2R1. In (b) the shell in

(a) discretized by a set of 32 soft ferromagnetic (µ = 105) and 32 perfect diamagnetic

(µ = 10−5) alternating thin bars. Panels (c) and (d) are equivalent to panels (a) and

(b), respectively, for a concentrator with squared cross-section.
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The concentration properties of cylindrical shells consisting of alternating ferromag-

netic and perfect diamagnetic prisms made of µ−metal and superconductors, respec-

tively, was experimentally verified for the first time in [86]. Because superconductors

only exhibit the permeability of a perfect diamagnetic material (µ → 0) at low tem-

peratures, this metamaterial requires cryogenics to fully function. Interestingly, these

experiments showed that the metamaterial can still concentrate magnetic fields at room

temperature, where the effective permeability of the superconductors is not longer µ→ 0

but µ → 1. Even though the concentration ratio at room temperature was lower than

the achieved at low temperatures, these results demonstrated that strong field concen-

trations can be achieved using ferromagnetic pieces solely. These results also showed

that the properties derived for long cylindrical concentrators hold even when the height

of the shell is made of the order of its radii.

Spherical concentrators with radial permeability µr →∞ and angular permeability

µθ → 0 can also be emulated by adequate combinations of ferromagnetic and perfect

diamagnetic bars. In a general situation, alternating small bars of ferromagnetic and

perfect diamagnetic materials placed radially towards the center of the shell hole would

be necessary. However, if the goal is to concentrate a uniform applied field, one can bene-

fit from the axisymmetric symmetry of the problem to construct a simpler metamaterial

design [83]. In this case, the spherical shell can be discretized by alternating funnels of

ferromagnetic and perfect diamagnetic materials, as illustrated in the example in Fig.

3.5. Similar to the experiments at room temperature for a cylindrical shell discretized

with ferromagnetic and superconducting pieces [86], experimental results (Figs. 3.6a

and b) demonstrate that spherical shells discretized with ferromagnetic (µ−metal) fun-

nels solely also provide a strong concentration of both uniform and non-uniform applied

magnetic fields [83].

Figure 3.5: (a) Sketch of a spherical concentrator discretized with funnels. (b) Magnetic

induction field lines and, in colors, z−component of the magnetic induction normalized

to µ0H0 for a uniform field H0 = H0uz applied to a spherical concentrator with in-

ternal radius R1, external radius 3R1, and permeability µr = 105 and µθ = 10−5. (c)

Discretized version of the sphere in (b) consisting of an alternation of 16 ferromagnetic

(µ = 105) and 15 perfect diamagnetic (µ = 10−5) funnels.
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Figure 3.6: Measurements (red dots) of Bz along the z−axis when placing the spherical

concentrator in (a) a uniform dc field created by a pair of Helmholtz coils, (b) a non-

uniform field created by a single coil, and (c) a uniform field created by a pair of Helmoltz

coils excited by a sinusoidal current of 200Hz. Errors bars fit within the symbol size.

The analytic applied induction (green line), the measurements of the applied magnetic

induction (black triangles) and numerical results obtained assigning a permeability of

µ = 105 to the µ−metal (blue line) are shown for comparison. The hole region is

shadowed in gray. In (d) the concentration ratio at the center of the shell is plotted as

a function of the frequency of the current feeding the pair of Helmoltz coils.

In the experiments, a spherical shell with internal radius R1 = 30mm and external

radius R2 = 90mm was discretized into a set of 10 ferromagnetic funnels positioned as

shown in the sketch in Fig. 3.5a. The uniform applied field was generated by feeding

a dc current I = 0.5A to a pair of Helmoltz coils, while the inhomogeneous field was

generated by feeding the current only to one of the two coils. The z−component of the

magnetic induction measured along the z−axis with a Hall probe is plotted in Fig. 3.6a

for the uniform field and in Fig. 3.6b for the non-uniform field. Results show that the

shell enhances not only the magnitude of the field but also its gradient.

The experimental realization has led to another important result. Even though the

theory was derived for static magnetic fields, the shell concentrates not only static but

also low-frequency applied magnetic fields [87, 83]. Figure 3.6c shows the measurements

obtained when feeding the pair of Helmholtz coils with a sinusoidal current IRMS =10mA

and frequency 200Hz, which clearly ressamble those for the dc current in Fig. 3.6a. The

spherical concentrator keeps its concentrating ability from 1Hz to 100kHz (Fig. 3.6d).

The amplitude of the applied magnetic induction along the z−axis is B0 = 0.41mT

(taking into account the contribution of the Earth magnetic field) for all frequencies.
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3.2 Magnifying magnetic materials

The magnetic concentrators presented above have been shown to concentrate mag-

netic fields inside their holes without distorting externally applied magnetic fields. How-

ever, this result is only valid when the concentrator holes do not include magnetic ma-

terials. In this section, we demonstrate that a concentrator surrounding a magnetic

material has two different effects. First, it concentrates the magnetic field inside the

material and, second, it amplifies the magnetic field distortion the material creates as

a response to the applied field. As a result, the distortion of the externally applied

magnetic field is equivalent to that of an enlarged material. Magnifying a magnetic ma-

terial could be useful, for example, to save on exotic materials with relevant magnetic

properties or to measure properties of a magnetic sample, such as the permeability, with

higher precision.

For the following studies we consider long concentrating shells with arbitrary cross-

section. Similar results could be derived for the case of spherical concentrators. However,

because their properties do not result from transformation optics, their study is more

complex and requires the derivation of the solutions of the magnetostatic Maxwell equa-

tions for each applied field and for each material geometry. In contrast, in the case

of long concentrators with arbitrary cross-section, transformation optics enables the

derivation of some general properties of the device that can be applied to any applied

field and to any material sample.

3.2.1 Magnetic field expulsion

When the long cylindrical magnetic concentrator was proposed [74], it was demon-

strated that the shell was able not only to concentrate inside its hole externally applied

magnetic fields, but also to expel towards its exterior the field created by magnetic

sources located inside its hole. In this section, we extend this result to demonstrate that

the long concentrating shells with arbitrary cross-section presented above are also able

to expel toward their exterior magnetic fields generated inside their holes.

First, we apply transformation optics to derive the properties of a shell able to expel

magnetic fields towards its exterior. A transformation analogous to that in Eqs. (3.1)

and (3.2) and Fig. 3.1 is required. Consider three infinitely long (along the z−direction)

surfaces with arbitrary cross-section bounded by R1(ϕ), R0(ϕ), and R2(ϕ), respectively,

fulfilling R0(ϕ) = (r0/r1)R1(ϕ) and R2(ϕ) = (r2/r1)R1(ϕ), with r2 > r0 > r1 > 0, as

sketched in Fig. 3.7a. The space is transformed as illustrated in Fig. 3.7b. First, the

space in the region ρ > R0(ϕ) is radially expanded through the transformation
ρ′ =

(
r2
r0

)
ρ,

ϕ′ = ϕ, ρ ∈ (R0(ϕ),∞),

z′ = z,

(3.19)
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Figure 3.7: (a) Sketch of the original space. (b) Sketch of the transformed space. The

space ρ > R0(ϕ) is expanded into the region ρ′ > R2(ϕ) and the space R1(ϕ) < ρ <

R0(ϕ) is expanded to fill the region R1(ϕ) < ρ′ < R2(ϕ).

and, second, the space in the region R1(ϕ) < ρ < R0(ϕ) is expanded as
ρ′ = R1(ϕ)

(
ρ

R1(ϕ)

)k
,

ϕ′ = ϕ, ρ ∈ [R1(ϕ), R0(ϕ)].

z′ = z.

(3.20)

The space in the region ρ < R1(ϕ) is not transformed. In order for the space to be

continuous at ρ = R0(ϕ), the parameters k, r0, r1, and r2 must fulfill

r0 = r1(r2/r1)
1/k. (3.21)

Equations (1.19) and (1.20) give the permeability tensors that shape the field in the

same way as this space tranformation. One finds µ′ = 1 in the region ρ′ < R1(ϕ),

µ′ =



k + (k−1)2
k

1
R1(ϕ)2

(
dR1(ϕ)
dϕ

)2
− (k−1)

k
1

R1(ϕ)
dR1(ϕ)
dϕ 0

− (k−1)
k

1
R1(ϕ)

dR1(ϕ)
dϕ 1/k 0

0 0 1
k

(
ρ′

R1(ϕ)

)2/k−2


, (3.22)

in the region R1(ϕ) ≤ ρ′ ≤ R2(ϕ), and

µ′ =


1 0 0

0 1 0

0 0
(
r2
r1

)2/k−2
 , (3.23)

in the region ρ′ > R2(ϕ).
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In cases with translational symmetry along the z−axis, only the left-upper 2x2 mi-

nors of the permeability tensors have to be considered. Thus, the effect of the space

transformation presented in Fig. 3.7b can be achieved by a single magnetic mate-

rial with the relative magnetic permeability given by Eq. (3.22) placed in the region

R1(ϕ) < ρ′ < R2(ϕ). Interestingly, since the shell boundaries R1(ϕ) and R2(ϕ) fulfill

R2(ϕ) = (r2/r1)R1(ϕ), the left-upper 2x2 minor of the permeability in Eq. (3.22) is

equivalent to that in Eq. (3.5) for the concentrating shell. This indicates that a long

shell with the permeability designed for concentrating external magnetic fields inside its

hole also expels towards its exterior magnetic fields created inside its hole. This prop-

erty, known for cylindrical concentrating shells [74], is therefore extended to the case of

arbitrarily shaped long concentrators.

The shell achieving the maximum field concentration, which according to Eqs. (3.7)

and (3.5) was found to be the shell with k →∞, is also the shell exhibiting the maximum

field expulsion. This result can be intuitively understood by analysing the space trans-

formation in Eqs. (3.19) and (3.20) bearing in mind the relation between the parameter

k and the shell radii [Eq. (3.21)]. When k is minimum, k → 1, R0(ϕ)→ R2(ϕ) and the

space is barely expanded. In contrast, when k →∞, R0(ϕ)→ R1(ϕ) and all the space

in the shell region is expanded towards its exterior. Because the transformation with

k → ∞ is the one expelling the largest amount of space, it is also the one resulting in

the largest field expulsion.

One can apply the transformation optics theory to find out which is the field dis-

tribution outside a shell with k → ∞ when there is a magnetic source located inside

its hole. According to Eqs. (1.22), (3.19) and (3.21), the magnetic field in the external

region is transformed as

H′(ρ′, ϕ′) =

(
r2
r1

)1/k−1
H

((
r2
r1

)1/k−1
ρ′, ϕ′

)
, ρ′ ∈ [R2(ϕ),∞). (3.24)

As an example, consider a long dipole of magnetic moment m placed inside the shell

hole; at ρ = ρ0 < R1 and ϕ = ϕ0. The field in the external region exactly corresponds

to the field created by another magnetic dipole, with magnetic moment

m′ =

(
r2
r1

)1−1/k
m, (3.25)

located at

ρ′0 =

(
r2
r1

)1−1/k
ρ0, ϕ′0 = ϕ0. (3.26)

Since r2 > r1, the field outside the shell corresponds to the field of a magnified dipole.

Some examples of this result are illustrated in Fig. 3.8 assuming a shell with k →∞. In

this limit, the components of the shell relative permeability tend to µρρ →∞, µϕϕ → 0

and µρϕ = µϕρ → 1
R1(ϕ)

dR1(ϕ)
dϕ . Same as for the concentrating shell with k → ∞ (Fig.

3.2), numerical calculations show that the off-diagonal components of the permeability

can be neglected.
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Figure 3.8: Numerical calculations of By normalized to µ0m/a
2 in three different con-

figurations. (a) A long (along the z−direction) magnetic dipole with magnetic moment

per unit length m = muz. (b) The dipole in (a) surrounded by a long shell with elliptic

cross-section with relative permeability µρρ = 105, µϕϕ = 10−5, and µρϕ = µϕρ = 0. The

inner and the outer axes of the elliptic shell are a and a/2, and 4a and 2a, respectively.

The distance between the dipole and the center of the shell is ρ0 = 3a/5. (c) A long

magnetic dipole with magnetic moment m = 4muy placed at a distance 4ρ0 from the

center of the shell in (b).

3.2.2 Surrounding magnetic materials by magnetic concentrators

Consider a magnetic material of linear, isotropic, and homogeneous permeability µ

in the presence of an applied magnetic field. The applied field magnetizes the material,

which responds to the field creating a magnetic field distortion that depends on its

permeability and geometry and on the applied field. In this section, we demonstrate that

surrounding a magnetic material with a concentrating shell results in an amplification of

the material response. One could foresee this result by bearing in mind the concentration

and expulsion properties of the shell. Interestingly, by applying the transformation optics

technique, one does not only find that the material response is amplified by the shell, but

also that the amplified response is equivalent to the response of an enlarged magnetic

material with the same permeability and shape as the original one. Similar devices

have been derived for electromagnetic waves, usually involving materials with negative

constitutive parameters [9, 91, 92, 93, 94, 95].

For this study, consider a long shell of arbitrary cross-section with internal boundary

R1(ϕ) and external boundary R2(ϕ) with the anisotropic permeability tensor in Eq.

(3.5). The shell shapes the applied magnetic field as if the space had been transformed

according to Eqs. (3.1) and (3.2). A sketch of the transformed space due to the use

of a concentrating shell with k → ∞ is shown in Fig. 3.9a. Consider now a magnetic

material of permeability µ and cross-section area SM placed inside the shell hole (blue

object in Fig. 3.9a). If the origin of coordinates is set at the center of the hole, the

position of the center of the material is defined by ρ = ρM and ϕ = ϕM.
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Figure 3.9: (a) Sketch of a magnetic material (blue) in the region ρ′ < R1(ϕ) when the

space is transformed according to Eqs. (3.1) and (3.2) with k →∞. The shell effectively

increases the size of the material, as sketched in (b).

Using the space transformation in Eq. (3.1), one finds that the material surrounded

by the concentrating shell (Fig. 3.9a) shapes externally applied magnetic fields in the

same way as a material with cross-section

S′M =

(
r2
r1

)1−1/k
SM, (3.27)

with its center at

ρ′M =

(
r2
r1

)1−1/k
ρM, ϕ′M = ϕM, (3.28)

as illustrated in Fig. 3.9b. According to the transformation optics theory, because the

space occupied by the material is effectively transformed by the concentrating shell, the

material permeability has to be transformed as indicated by Eq. (3.4). However, when

only the first 2x2 minor of the permeability tensor has physical relevance, as occurs

in magnetostatics for applied fields with translational symmetry along the z−axis, the

transformed permeability is equivalent to the original one. This demonstrates that mag-

netic concentrators can be employed to effectively enlarge magnetic materials without

modifying their magnetic properties. The magnification is always bounded: the magni-

fied object cannot reach the shell external region ρ > R2(ϕ). Shells with k →∞ achieve

the largest material magnification. Some examples of the magnification provided by

concentrators with µρρ → ∞ and µϕϕ → 0 are presented in Fig. 3.10. The magnetic

field outside a concentrator covering a magnetic material (Figs. 3.10a and c) corresponds

to the field that an uncovered material with the same properties as the covered material

but enlarged cross-section would create (Figs. 3.10b and d). The field distributions are

only equivalent in the region ρ > R2(ϕ). Also, the magnetic field in the volume of the

coated material is larger than the field in the volume of the enlarged materials due to

the shell ability to concentrate magnetic fields.
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Figure 3.10: Numerical calculations of the magnetic induction field lines and, in colors,

By/(µ0H0) for a uniform magnetic field H0 applied along the y−direction to four long

(along z) objects. (a) A ferromagnetic (µ = 105) cylinder of radius R surrounded by

a cylindrical shell with internal radius R1 = 1.5R, external radius R2 = 2R1, and

permeability µρρ = 105 and µϕϕ = 10−5. The cylinder is displaced a distance R/2 from

the center of the shell (origin). In (b) a ferromagnetic cylinder of radius R(R2/R1)

at a distance (R/2)(R2/R1) from the origin. In (c) and (d), same as in (a) and (b),

respectively, for a long ferromagnetic material with squared cross-section.

3.2.3 Surrounding short magnetic materials by short concentrators

Long magnetic materials with arbitrary cross-section surrounded by long concen-

trators have been shown to respond to perpendicularly applied fields in the same way

as magnified materials with the same permeability and larger cross-section. In this

section, these results are extended to the case of short cylinders surrounded by short

cylindrical concentrators. As sketched in Fig. 3.11, we consider a uniform magnetic

field H0 applied along the cylinder plane. Numerical calculations demonstrate that the

concentration provided by short cylindrical shells is lower than that for the infinitely

long shells [86, 87], but this does not considerably worsen the concentrators ability to

magnify ferromagnetic materials.

Figure 3.11: Sketches of (a) a disk of radius R and height h in a uniform field H0 and

(b)the disk in (a) surrounded by a cylindrical concentrator with internal radius R1 = R,

external radius R2, and height h.

Consider first a long (along the z−direction) ferromagnetic cylinder of radius R

surrounded by a long concentrator with internal radius R1 = R, external radius R2,

and relative permeability µρρ → ∞ and µϕϕ → 0 in a uniform field H0 applied in the

y−direction. Results in Figs. 3.12a-c show that the magnetic response of the material

is equivalent to that of a radially enlarged long cylinder with radius R2.
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Consider now a ferromagnetic cylinder of radius R and height h surrounded by a

cylindrical concentrating shell with internal radius R1 = R, external radius R2, and

height h, as sketched in Fig. 3.11b. Figures 3.12d-i show that even though the concen-

trator height h is finite, the magnification ability demonstrated for long concentrators

is maintained. The field distribution in the exterior of the coated disk (Figs. 3.12e and

h) approximates well the field distribution outside a magnified disk of radius R2 and

height h (Figs. 3.12f and i). Thus, short concentrators can radially enlarge magnetic

materials without modifying their height.

Figure 3.12: Numerical calculations of the magnetic induction field lines and, in colors,

log [By/(µ0H0)] for a uniform magnetic field H0 applied along the y−direction. In

(a) a long (along z, h → ∞) ferromagnetic (µ = 105) cylinder of radius R. In (b)

the cylinder in (a) surrounded by a long cylindrical concentrator with internal radius

R1 = R, external radius R2 = 4R, and permeability µρρ = 105 and µϕϕ = 10−5. In (c) a

long ferromagnetic cylinder of radius 4R. Panels (d)-(f) show the same results as panels

(a)-(c) for cylinders of finite height h = 0.4R. Images are taken at the cylinders mid-

plane (z = 0). Panels (g)-(i) show the field distributions corresponding to the cylinders

in (d)-(f) in the plane x = 0. The magnetic induction averaged over the ferromagnetic

cylinder volume, Bvol
y /(µ0H0), is (a) 2, (b) 8.12, (c) 2.03, (d) 7.09, (e) 71.9, and (f)

20.63.
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For some applications, such as for enhancing the sensitivity of sensors including

ferromagnetic elements, it may be interesting to compare the magnetic induction in the

volume of a ferromagnetic cylinder when covered by a concentrator to the magnetic

induction in the volume of the same cylinder when uncovered. Since the magnetic

induction in the volume of short ferromagnetic cylinders is not uniform, we consider the

magnetic induction averaged over the cylinder volume, which can be written as [96]

Bvol =
µ0H0

Nm
. (3.29)

Nm is the magnetometric demagnetizing factor, defined as Nm = −Hvol
d /Mvol, where

Hvol
d and Mvol are the demagnetizing field Hd and the magnetization M averaged over

the entire volume of the ferromagnetic cylinder. Nm and, thus, Bvol strongly depend

on the cylinder aspect ratio. In the limit of long cylinders, h/R → ∞, Nm → 1/2

and Bvol → 2µ0H0 (Figs. 3.12a and c). The lower the material aspect ratio h/R, the

lower Nm, which results in a larger Bvol [96]. For example, a cylinder of aspect ratio

h/R = 0.4 exhibits Bvol ≈ 7.1µ0H0 (Fig. 3.12d) and a cylinder of aspect ratio h/R = 0.1

Bvol ≈ 20.7µ0H0 (Fig. 3.12f).

Consider the case of a ferromagnetic cylinder surrounded by a cylindrical concentra-

tor. In the limit of long materials, the concentrator magnifies the cylinder radius, but

the aspect ratio h/R and Nm are barely reduced because h→∞. Therefore, the average

magnetic induction in the volume of a long magnified cylinder, Bvol
M , is the same as that

of the original cylinder, Bvol
0 (compare Figs. 3.12c and a). In contrast, when the mate-

rial is short, the radius enlargement leads to a substantial reduction of the aspect ratio

h/R and therefore Bvol
M > Bvol

0 (compare Figs. 3.12f and d). The magnetic induction

averaged over the whole volume occupied by the ferromagnetic cylinder surrounded by

a concentrator is equivalent to Bvol
M because the magnetic field attraction achieved by

the coated cylinder is the same as that of the magnified cylinder (compare Figs. 3.12b,

e, and h to Figs. 3.12c, f and i, respectively).

Bearing in mind these properties, we can finally compare the average magnetic in-

duction in the volume of a ferromagnetic cylinder covered by a concentrator, Bvol
C , to the

average magnetic induction in the volume of the same cylinder when uncovered, Bvol
0 .

Long concentrators radially direct all the magnetic induction field lines that reach their

volume towards their hole, achieving Bvol
C /Bvol

M = R2/R1 [Eq. (3.7), Figs. 3.12b and

c]. This is approximately maintained when considering short concentrators (Figs. 3.12e

and f). Because long concentrators fulfill Bvol
M = Bvol

0 , the magnetic induction concen-

tration ratio Bvol
C /Bvol

0 they achieve is R2/R1. In contrast, short concentrators achieve

a stronger concentration ratio, Bvol
C /Bvol

0 > R2/R1, because they fulfill Bvol
M > Bvol

0 .

Numerical calculations for a shell radii ratio R2/R1 = 4 give a concentration ratio

Bvol
C /Bvol

0 ≈ 4 for the case h/R → ∞ (Figs. 3.12a and b) and Bvol
C /Bvol

0 ≈ 10 for the

case h/R = 0.4 (Figs. 3.12d and e).
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3.2.4 Realizing magnification shells with metamaterials

Metamaterials consisting of alternating ferromagnetic and perfect diamagnetic pieces

have been shown in Sec. 3.1.3 to effectively reproduce the properties of magnetic con-

centrators with extremely large radial component of the permeability and extremely low

angular one (Fig. 3.13b). Simplified metamaterials consisting solely of ferromagnetic

pieces work at room temperature, but lead to lower concentration ratios than those

combining ferromagnetic and perfect diamagnetic materials and leave the applied field

slightly distorted (Fig. 3.13c) [86, 83]. Similar results are obtained when discretizing

the metamaterial using solely perfect diamagnetic pieces (Fig. 3.13d).

Figure 3.13: Numerical calculations of the magnetic induction field lines and, in colors,

By/(µ0H0) for a uniform magnetic field H0 applied along the y-direction. In (a) empty

space. In (b) a long cylindrical shell of internal and external radii R and 2R, respectively,

made of an alternation of 32 ferromagnetic (µ = 105) and 32 perfect diamagnetic (µ =

10−5) bars. In (c) the same shell as in (b) without the perfect diamagnetic pieces. In (d)

the same as in (b) without the ferromagnetic pieces. In (e) and (i) a long ferromagnetic

(µ = 105) and a long perfect diamagnetic (µ = 10−5) cylinder of radius 2R, respectively.

In (f), (g) and (h), the shells in (b), (c) and (d) cover a long ferromagnetic (µ = 105)

cylinder of radius R. In (j), (k) and (l), the shells in (b), (c) and (d) cover a long perfect

diamagnetic (µ = 10−5) cylinder of radius R.
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Numerical calculations demonstrate that a metamaterial shell alternating both ma-

terials also emulates well the properties of a long concentrator with µρρ → ∞ and

µϕϕ → 0 surrounding a magnetic material of permeability µ. As an example, Figs. 3.13f

and j show how this metamaterial shell magnifies the response of a ferromagnetic and a

perfect diamagnetic cylinder, respectively, to make it approximately equivalent to that

of a larger cylinder, depicted in Figs. 3.13e and i, respectively. In general, metamaterial

devices consisting solely of ferromagnetic or perfect diamagnetic pieces exhibit a worse

magnifying performance than those combining both materials. Interestingly, when sur-

rounding a paramagnetic or a ferromagnetic material (µ > 1), the discretization with

ferromagnetic pieces emulates the shell much better than the discretization with perfect

diamagnetic pieces. When covering diamagnetic materials (µ < 1), it is the other way

around. Figures 3.13g, h, k, and l illustrate this effect for the limit cases of a shell

covering a ferromagnetic (µ → ∞) and a perfect diamagnetic (µ → 0) material. When

covering a ferromagnetic material, a concentrator consisting of ferromagnetic bars solely

(Fig. 3.13g) can barely be distinguished from the concentrator combining ferromagnetic

and perfect diamagnetic pieces (Fig. 3.13f). In contrast, a concentrator consisting of

perfect diamagnetic bars solely (Fig. 3.13h) is not able to magnify the ferromagnetic

material. On the contrary, when covering a perfect diamagnetic material, the discretiza-

tion with perfect diamagnetic bars is the one leading to a magnified object (Figs. 3.13k

and l).

When the hole of the shell is empty, perfect diamagnetic bars are required for avoid-

ing magnetic field lines from following an angular path and leaving the material without

having reached the hole (Fig. 3.13c), and ferromagnetic bars are required for attracting

the applied magnetic field towards the shell volume (Fig. 3.13d). In contrast, when

there is a ferromagnetic material inside the hole, perfect diamagnetic bars are not re-

quired because the attraction provided by the inner material and the ferromagnetic bars

is enough to guarantee that the magnetic field lines that reach the shell are directed

towards the hole (Fig. 3.13g). Therefore, the magnification of ferromagnets does not

require superconductors nor cryogenics. The response of a ferromagnetic material can-

not be magnified by perfect diamagnetic bars solely because the expulsion of magnetic

field lines provided by the diamagnetic shell reduces the attraction of the ferromagnetic

core instead of increasing it (Fig. 3.13h). Similar arguments explain why a perfect

diamagnetic material cannot be magnified by a shell consisting of ferromagnetic pieces

solely (Fig. 3.13k). Finally, when covering a perfect diamagnetic material, perfect dia-

magnetic bars are enough to guarantee that magnetic induction field lines do not reach

the shell volume, which results in a magnification of the diamagnet (Fig. 3.13l). These

results provide a strategy for achieving the same response as that resulting from a bulk

ferromagnetic or a perfect diamagnetic material using a much lower amount of material.
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3.3 Cloaking shells to make magnetic sensors undetectable

Magnetism is measured by magnetic sensors or magnetometers, which can measure

the magnetization of a magnetic material, such as a ferromagnet, or the direction and

strength of a magnetic field. Because magnetism is present in a wide range of technolo-

gies, such as biomedicine, geophysics, or space exploration [97, 98, 99], the development

and the improvement of magnetic sensors is an important active line of research. There

are several types of magnetic sensors, which can be classified according to the physical

principle that underlies their ability to measure. Some of the most employed sensors

are pick-up coils, fluxgate sensors [100], magnetoresistive sensors [101, 102], Hall-effect

sensors [103], magnetic tunnel junctions [104], and SQUIDS [105].

The extreme anisotropic concentrating shells presented above can be applied as a

general tool for enhancing the sensitivity of magnetic sensors, as sensors surrounded by

these shells would be able to detect lower magnetic fields than when uncoated [74, 83].

In many cases, there is an analytic relation between the field inside the concentrator

and the applied field and it is possible to derive the applied field from measurements

performed by the coated sensor. This could benefit applications requiring the detection

of tiny magnetic fields, as occurs in a wide range of biomedical techniques, such as in

magnetoencephalography or ultra-low-field magnetic resonance imaging [106, 107, 108,

109]. In some cases, however, what limits the sensor applicability is not its sensitivity,

but its detectability, which depends on the distortion it creates as a response to the

probing field. This distortion may be an important drawback in applications dealing with

precise field distributions that require non-invasive sensing, or in applications involving

dense packaging of sensors, since the distortion created by each sensor may affect the

measurements of the others, for example [110]. If a sensor was covered by a concentrator,

not only its sensitivity, but also its distortion would be magnified, as the concentrator

would expel the field distortion caused by the sensor towards its exterior. For example,

the distortion due to a sensor that includes ferromagnetic parts would be magnified by a

concentrator because it would effectively enlarge the enclosed ferromagnetic materials,

which results in a larger field attraction (Fig. 3.12).

Our goal in this section is to derive the properties of a magnetic shell able to render

a magnetic sensor invisible, so that it is able to detect magnetic fields while being

magnetically undetectable [111]. Our ideas are based on the strategy proposed in [112]

for cloaking electromagnetic sensors or antennas. After this proposal several cloaks for

electromagnetic sensors [112, 113, 114, 115, 116, 117], acoustic sensors [118, 119] and

multiphysical field sensors [120] were discussed, but the problem of cloaking magnetic

sensors remained unsolved. Opposite to the concentrating shells, the cloaking shell we

propose strongly reduces the distortion of a sensor at the cost of decreasing its sensitivity.

We show that, under certain conditions, it is possible to exactly cancel a sensor distortion

without completely losing its ability to measure the applied field. This contrasts with

the case of electromagnetic invisible sensors, which, due to the optical theorem, can only

absorb and measure the field if their scattering cross-section is not zero [121].
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3.3.1 Cloaking spherical sensors in uniform fields

Magnetic sensors usually benefit from the properties of ferromagnetic materials [98].

For example, magnetoresistive sensors measure the fields thanks to the dependence of

the ferromagnets electric resistance on externally-applied magnetic fields. In other cases,

as in Hall-effect sensors, ferromagnets are employed to increase the sensor sensitivity;

thanks to their ability to attract magnetic fields, ferromagnetic pieces can be properly

arranged to magnify the field a sensor receives [122]. Because the distortion caused

by magnetic sensors is mainly due to their ferromagnetic parts, our goal of cloaking a

magnetic sensor can be redefined as cancelling the distortion created by a ferromagnetic

material. For this reason, we model our sensor as a linear, isotropic, and uniform

ferromagnetic material with permeability µ→∞.

For simplicity, we start by considering a spherical sensor in the presence of a uniform

magnetic field H0. The sphere becomes magnetized in the direction of the applied field,

with a uniform magnetization MFM = 3H0 [2]. The distortion it creates is shown in

Fig. 3.14a. A first strategy for rendering a spherical sensor undetectable could be

that of surrounding the sensor by one of the already known magnetic invisibility cloaks

[69, 71, 123]. Such cloaks, however, include an inner perfect diamagnetic layer that

prevent any external magnetic field line from entering inside the region it encloses, as

shown in Fig. 3.14b. A sensor surrounded by one of these cloaks would be magnetically

isolated and unable to measure external fields. Our goal of making a magnetic sensor

undetectable requires, therefore, the design of a different kind of cloaking shell. Based

on the scattering cancellation cloak presented in [112], the cloaking shell we propose

cancels the sphere distortion while enabling the magnetic field to reach the sphere, so

that the sensor is still able to detect the applied field, as shown in Fig. 3.14c [84].

Consider a spherical sensor of radius R surrounded by a spherical shell of internal

radius R1 = R and external radius R2 > R1, with linear, homogeneous, and isotropic

relative permeability µ1. In this case, the magnetic field everywhere can be obtained

from a magnetic scalar potential φ that fulfills the Laplace equation and the magneto-

static boundary conditions. In this way, one finds that the coated sensor distorts, in

general, the applied field. Interestingly, there is a permeability value (0 < µ1 < 1),

which depends on the shell geometry as

µ1 = 1− 3

(R2/R1)3 + 2
, (3.30)

that leads to a zero field distortion. This demonstrates that it is possible to render a

spherical sensor exactly undetectable. In order for the sensor to be able to measure the

applied field, the coated sphere magnetization, which gives a measurement of the field

it receives, MFM
c , must be different from zero. By taking into account the permeability

in Eq. (3.30) one finds

MFM
c =

3(R2/R1)
3

(R2/R1)3 + 2
H0. (3.31)
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Figure 3.14: Numerical calculations of the magnetic induction field lines and, in colors,

Bz/(µ0H0) for a uniform magnetic field H0 applied along the z-direction to three objects.

In (a) a ferromagnetic (µ = 105) sphere of radius R. In (b) same sphere surrounded

by a bilayer cloak consisting of an inner perfect diamagnetic layer (µ = 10−5) with

internal radius R and external radius R1 = 1.2R and a second layer of permeability

µ = 3.55, internal radius R1, and external radius R2 = 1.4R. In (c) same sphere as in

(a) surrounded by a shell with internal radius R1 = R, external radius R2 = 1.4R, and

permeability µ = 0.368.

As MFM
c is different from zero for any shell radii ratio R2/R1, the cloaked sensor is still

able to receive magnetic field lines (Fig. 3.14c). The magnetization of the coated sphere

is lower than that of the bare sphere, indicating that the sensor sensitivity is reduced

by the presence of the cloak. The larger the external radius of the shell, R2 → ∞, the

larger the sensor sensitivity, since MFM
c tends to MFM.

In this way, the magnetic sensor is able to detect magnetic fields while being mag-

netically undetectable. From this apparent asymmetry, a fundamental question arises

as to whether magnetostatic reciprocity holds in this situation [124]. The evaluation of

the magnetostatic reciprocity condition requires the consideration of two independent

magnetic field sources. For example, two dipoles of magnetic moment m1 and m2 fulfill

the reciprocity condition when the field created by the dipole 1 at the position of the

dipole 2, B1(r2), and the field created by the dipole 2 at the position of the dipole 1,

B2(r1), fulfill m2 · B1(r2) = m1 · B2(r1). In order to understand why it is possible to

exactly cloak a magnetic sensor without breaking the magnetostatic reciprocity condi-

tion, one can regard a cloaked sensor as the superposition of two different configurations.

First, the cloaking shell in the presence of the externally applied magnetic field (Fig.

3.15a) and, second, the cloaking shell surrounding a sphere with magnetization MFM
c

(Fig. 3.15b). This shows that the behaviour of the cloaking shell is symmetric, since

the field generated by the external magnetic field source can reach the sphere and the

field generated by the sphere can reach the external region. It is only when one takes

into account the field in the external region due to both magnetic field sources that the

external field distortion is equal to zero (Fig. 3.15c).
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Figure 3.15: (a) Numerical calculations of the field distortion (Bz/µ0 −H0)/H0 when a

uniform magnetic field H0 is applied along the z−direction to a spherical shell of internal

radius R1 = R, external radius R2 = 1.4R, and permeability µ = 0.368. (b) Numerical

calculations of Bz/µ0 for a sphere of radius R and magnetization MFM
c = 1.735H0

surrounded by the same spherical shell as in (a). (c) Numerical calculations of the field

distortion (Bz/µ0 − H0)/H0 when a uniform magnetic field H0 applied to the coated

sphere in (b). The cloaked sphere in (c) does not distort the external field distribution.

For practical applications it would be more interesting to consider thin cloaking

shells, not only in terms of material savings, but also because it can result in simpler

metamaterial devices. To this end, it is convenient to study which is the sensitivity

of magnetic sensors cloaked by thin spherical shells. Consider that there is a centered

air gap between the ferromagnetic sphere and the spherical shell. In this case, the

internal radius of the shell is R1 > R and the external radius is R2. The solution

of the magnetostatic Maxwell equations gives that the permeability µ1 to render the

ferromagnetic sphere magnetically undetectable is

µ1,GAP =
−(R1/R)6 − 4(R2/R)3 + (R1/R)3

[
(R2/R)3 − 5

]
+ 3F

4 [(R1/R)3 − 1] [(R2/R)3 − (R1/R)3]
, (3.32)

where F =

√
(R1/R)3[8(R2/R)3 + (R1/R)3 ((R1/R)3 − (R2/R)3 + 1)2]. As in the gap-

less case [R1 − R = 0, Eq. (3.30)], the cloaking shell is diamagnetic (µ1,GAP < 1) to

compensate for the attractive response of the sphere. The magnetization of the ferro-

magnetic sphere surrounded by this shell is

MFM
c,GAP =

3(R1/R)3
[
(R2/R)3 + (R1/R)3 + 1

]
− 3F

2 [(R1/R)6 + (R1/R)3 − 2]
H0, (3.33)

which is always larger than that of the gapless case [R1 − R = 0, Eq. (3.31)], for fixed

radii R and R2. In Fig. 3.16, the magnetization MFM
c,GAP is plotted as a function of the

normalized external radius R2/R and the normalized air gap (R1−R)/R. The analysis
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of this figure leads to two interesting results. First, the larger the external radius of the

shell, the higher the sensitivity of the sensor. This results from the relation between

the shell permeability, µ1,GAP, and the shell geometry. The larger the shell, the less

extreme (closer to 1) the permeability µ1,GAP is. Therefore, shells with low R2/R → 1

exhibit an extremely low permeability and tend to shield the applied field, MFM
c,GAP → 0,

while shells with R2/R→∞ exhibit a relative permeability close to 1 and barely reduce

the field reaching the sphere, MFM
c,GAP → MFM. Second, for a fixed R2/R, the sensor

sensitivity hardly depends on the air gap that is left between the sphere and the shell.

Figure 3.16: Modulus of the magnetization normalized to the applied field H0 for a

ferromagnetic sphere of radius R covered by a spherical shell extending from R1 ≥ R to

R2 with the permeability µ1,GAP in Eq. (3.32) plotted as a function of the shell external

radius R2 and the air gap R1 −R, both normalized to R.

3.3.2 Generalization to non-spherical sensors and inhomogeneous

fields

Consider now the ferromagnetic sphere of radius R in the presence of an inhomoge-

neous applied magnetic field. In this situation, the sphere responds to the applied field

creating not only a dipolar response, as for uniform fields, but a multipolar one. As an

example, Figs. 3.17a and b show how a sphere distorts the field created by a dipolar

source. Interestingly, a cloaking shell with permeability µ1 in Eq. (3.30) (without air

gap) or permeability µ1,GAP in Eq. (3.32) (with air gap) still cancels the dipolar term of

the distortion the sphere creates. Since this is usually the leading term of the distortion

(the other terms rapidly decrease with the distance from the material), the distortion of

ferromagnetic spheres in inhomogeneous fields can be largely reduced by the proposed

cloaking shell, as illustrated in Fig. 3.17c. If the goal is to reduce the distortion even fur-

ther, one can add more layers to the cloaking device. The permeability of each layer can

be designed to cancel a different term of the distortion multipolar expansion. The case

of a cloaking shell consisting of two layers that cancel the dipolar and the quadrupolar

terms of a sphere distortion is illustrated in Fig. 3.17d [84].
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Figure 3.17: Numerical calculations of the normalized magnetic induction BzR
3/(µ0m)

for a dipole of magnetic moment m = muz displaced a distance 1.3R from the origin of

coordinates in the presence of different magnetic materials. In (a) the dipole in empty

space, in (b) the dipole in the presence of a centered ferromagnetic (µ = 105) sphere of

radius R, in (c) same as in (b) with the sphere covered by a spherical shell with internal

radius R1 = R, external radius R2 = 1.2R, and permeability µ1 =0.195, and in (d)

same as in (b) with the sphere surrounded by a bilayer spherical shell with permeability

µ1,b = 0.0546 (inner layer, extending from R to 1.1R) and µ2,b = 3.08 (outer layer,

extending from 1.1R to 1.2R).

So far we have only considered spherical sensors, but sensors usually exhibit elon-

gated shapes to provide stronger magnetic field attractions. The response of non-

spherical materials is never merely dipolar, not even when the applied field is uniform.

Even though the proposed cloaking shells cannot make non-spherical sensors exactly

undetectable, they can largely reduce their distortion by cancelling its leading dipolar

term [84].

Figure 3.18: Numerical calculations of the magnetic induction field lines and, in colors,

Bz/µ0H0 for a uniform magnetic field H0 applied in the z−direction to (a) an ellipsoid

with semiaxes b/a = 1 and c/a = 2 and permeability µ = 105, and (b) the ellipsoid in

(a) surrounded by a spherical shell with internal radius R1 =2a, external radius R2 =

2.2a, and permeability µ1 = 0.138.
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The required shell permeability can be derived by rewriting Eq. (3.32) in terms

of the dipolar magnetic moment m it cancels. To this end, the sphere radius R must

be substituted by [m/(4πH0)]
1/3, which results from m = MFMV = 4πR3H0, where

MFM = 3H0 is the modulus of the sphere magnetization and V its volume. Following

this method, one can obtain, for example, the shell permeability that cancels the dipolar

term of the distortion created by an ellipsoid, as illustrated in the example in Fig. 3.18.

3.3.3 Realizing the cloaking shell with metamaterials

The proposed shell for cloaking a sensor is linear, homogeneous, and isotropic, but

it requires a precise value of the relative permeability lower than 1. Such diamagnetic

permeabilities may not exist in nature, since most natural diamagnetic materials ex-

hibit a relative permeability smaller but close to 1. Interestingly, one can design a

magnetic metamaterial that effectively exhibits the required intermediate diamagnetic

permeability 0 < µ < 1. These metamaterials can be realized by adequate arrange-

ments of superconducting tapes, which behave as materials with µ ≈ 0 in magnetostat-

ics [42, 43, 44, 45, 82]. This strategy for obtaining intermediate diamagnetic perme-

abilities has been experimentally demonstrated using both low-temperature and high-

temperature superconductors [43, 82]. Numerical calculations in Fig. 3.19c demonstrate

that a metamaterial diamagnetic shell made of perfect diamagnetic loops (Fig. 3.19a)

largely reduces the distortion created by a ferromagnetic sphere in a uniform applied

field. Compared to the ideal cloaking shell in Fig. 3.19b, the metamaterial shell slightly

distorts the field due to its simple and coarse discretization. In a practical realization,

the superconducting loops would need to include a cut such that each piece has a simple

connected topology. Otherwise, the superconducting pieces would not behave as perfect

diamagnetic materials and would not provide the desired cloaking effect [79].

Figure 3.19: (a) Sketch of a ferromagnetic sphere (in red) surrounded by a metamaterial

shell made of perfect diamagnetic loops (in gray). (b) Numerical calculations of the

magnetic induction field lines and, in colors, Bz/(µ0H0) for a uniform magnetic field

H0 applied along the z−direction to a ferromagnetic (µ = 105) sphere of radius R

surrounded by a cloaking shell with internal radius R1 = 1.45R, external radius R2 =

1.5R, and permeability µ1 = 0.059. (c) Same as in (b) with the shell discretized by the

set of perfect diamagnetic (µ = 10−5) loops sketched in (a).
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3.4 Chapter summary and conclusions

Transformation optics has been applied to derive the properties of arbitrarily shaped

two-dimensional shells that achieve a strong magnetic field concentration inside their

holes. Results have been extended to the case of three-dimensional concentrators with

spherical geometry by solving Maxwell magnetostatic equations. Numerical calculations

have shown that independently of the geometry, the extremely-anisotropic permeability

of magnetic concentrators can be realized in practice by metamaterial shells consisting of

adequate arrangements of ferromagnetic and perfect diamagnetic materials. For the case

of the spherical concentrator, results have been validated experimentally. The possibility

of tailoring the shape of the concentrator may benefit applications requiring an efficient

use of space. For example, if the goal is to concentrate the field in the region occupied

by elongated sensors in order to enhance their sensitivity, it may be convenient to use

concentrators with elongated cross-section to achieve a more dense packaging of sensors.

We have demonstrated that concentrators not only concentrate external fields, but

also expel towards their exterior the magnetic field generated inside their holes. For the

case of two-dimensional concentrators, this property can be used to effectively magnify

magnetic objects, so that their magnetic response is equivalent to that of an enlarged

material. Both long and short cylindrical concentrators radially enlarge long and short

magnetic materials placed inside their holes. Interestingly, when a concentrator sur-

rounds a ferromagnetic (perfect diamagnetic) material, only ferromagnetic (perfect dia-

magnetic) pieces are required for obtaining the properties of an ideal concentrator with

extremely-anisotropic permeability.

In the last part of this chapter, we have derived the properties of a different type of

metamaterial shell able to make a magnetic sensor undetectable. This shell cancels the

magnetic field distortion created by a magnetic sensor without losing the sensor ability

to detect magnetic fields. Sensors are modelled as ferromagnetic materials, since the dis-

tortion they create is mainly due to their ferromagnetic parts. The distortion created by

spherical sensors in the presence of uniform applied magnetic field can be made exactly

zero by a single-layer isotropic and homogeneous spherical shell. When the applied field

is non-uniform, the same shell cancels the leading dipolar term of the distortion created

by the sensor, but additional layers must be considered if one aims at reducing the

distortion further. The distortion created by non-spherical sensors can also be largely

reduced by a single or a multilayer spherical shell. Finally, a metamaterial shell con-

sisting of perfect diamagnetic loops has been proposed as a strategy for experimentally

realizing the intermediate diamagnetic permeability required for cloaking.





CHAPTER 4

Shaping magnetic fields with negative permeability

Electromagnetic materials exhibiting a negative value of the refractive index, n, show

counterintuitive properties that have ignited the development of a wide range of devices

for controlling electromagnetic waves [9, 15, 125]. There are not natural materials with

a negative index of refraction, but metamaterials have enabled the experimental realiza-

tion of n < 0 from microwaves to optical frequencies [126, 127]. These metamaterials are

designed to exhibit both negative permittivity and permeability simultaneously, which

results in n < 0 [15]. The first experimental demonstration of a metamaterial exhibiting

this behaviour was realized in 2000 by Smith et al. and was based on the combination

of squared shaped split ring resonators (SRR) and line conducting wires [14]. The SRRs

arrangement was shown to provide µ < 0 above its resonant frequency [12, 128], while

the lattice of wires possessed a cutoff frequency below which ε < 0 [129]. By choos-

ing the parameters of the wire lattice such that the cutoff frequency was significantly

above the SRRs resonant frequency, the composite presented an overlapping region of

frequency where both ε and µ were negative, which enabled the realization of the first

metamaterials with a negative index of refraction [130, 131].

The experimental realization of a material exhibiting n < 0 had a huge impact

not only in optics and electromagnetism but also in other communities. Inspired by

the unusual properties of materials with negative refractive index, metamaterials with

negative constitutive parameters were developed in several areas of physics [32]. For

example, there are proposals of materials with negative conductivity for controlling dc

electric fields [132], materials with negative bulk modulus and negative mass density for

acoustic waves [133, 134, 135], materials with negative compressibility for mechanical

waves [136, 137], negative capacitance for electronics [138, 139] and negative thermal

expansion coefficients for thermodynamics [140].

57
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For static magnetic fields, metamaterials with a negative value of the magnetic per-

meability can also be devised [141]. In this chapter, negative-permeability materials

are introduced as a novel tool for shaping static magnetic fields. First, we study the

properties of materials with µ < 0 and present a method to emulate them. Second, we

theoretically and experimentally demonstrate that µ < 0 enables the illusion of trans-

forming the magnetic signature of a magnetic material into that of another one. Finally,

we present the analogy of a perfect lens for the case of static magnetic fields, which

opens the path towards the creation of magnetic sources at a distance.

4.1 Static negative permeability

Magnetic materials in the presence of static magnetic fields exhibit a permeability

value ranging from zero (perfect diamagnetic materials) to effectively infinite (ferro-

magnetic materials). Even though negative values of the static permeability are not

found in naturally occurring materials [142], magnetic metamaterials exhibiting this

exotic property can be artificially designed [143]. In this section, we analyse the be-

haviour of hypothetical materials with negative permeability by extending the solutions

of the two magnetostatic Maxwell equations for solid and hollow ellipsoids with positive

permeability. Based on the properties of these objects, a method for emulating negative-

permeability materials is theoretically proposed and experimentally demonstrated.

4.1.1 Ellipsoids with negative permeability

To study the properties of a material with negative permeability, we choose the

general shape of an ellipsoid with the semiaxes a, b and c in x, y and z, respectively, in a

uniform field H0 applied along the c−axis, as sketched in Fig. 4.1. The ellipsoid relative

permeability µ is assumed to be linear, homogeneous, and isotropic. In this situation,

the material magnetization and demagnetizing field are uniform and they are related

through the demagnetizing factor N as Hd = −NM, where N is a scalar ranging from

0 (long samples, c→∞) to 1 (short samples, c→ 0) [5].

Figure 4.1: Sketch of an ellipsoid with semiaxes a, b and c in a uniform field H0 applied

along its c−axis.
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The behaviour of the ellipsoids can be analysed in terms of the magnetization M, the

magnetic field H, and the magnetic induction B in their volume, which are analytically

obtained as [1, 2, 4, 144]

M =
µ− 1

1 +N(µ− 1)
H0, H =

1

1 +N(µ− 1)
H0, B =

µµ0
1 +N(µ− 1)

H0. (4.1)

This set of equations shows that all the fields M, H and B are uniform and only depend

on the demagnetizing factor and on the material permeability. In Fig. 4.2, M, H and

B are plotted as a function of µ for two particularly interesting ellipsoidal geometries: a

sphere (a = b = c, N = 1/3), and a long cylinder in perpendicular field (a = c, b→∞,

N = 1/2).

Figure 4.2: Normalized magnetization (in red), magnetic field (in green), and magnetic

induction (in blue) as a function of the relative permeability µ when a uniform magnetic

field H0 is applied to (a) a sphere and (b) a long cylinder.

Materials with negative permeability can be analysed as a natural extension of ma-

terials with positive permeability. We start by reviewing how materials with µ > 0

interact with uniform applied magnetic fields. Ferromagnetic materials (µ → ∞) ex-

hibit the largest magnetization due to the strong field attraction they provide. The

magnetization and the magnetic induction in their volume depend on their geometry as

1/N : M(µ → ∞) = (1/N)H0 and B(µ → ∞) = (µ0/N)H0. Since M = (µ − 1)H and

B = µµ0H, M(µ → ∞) and B(µ → ∞) can only be finite if the magnetic field in the

ferromagnetic volume is zero, H(µ → ∞) → 0. As µ is reduced from ∞ to 1, the field

attraction decreases and both the modulus of M and B are reduced. The modulus of the

demagnetizing field (Hd = −NM) is reduced due to the decrease in M and, therefore,

the modulus of the magnetic field (H = H0 + Hd) is increased. When reaching the air

permeability, µ = 1, materials do not attract (nor expel) magnetic fields; M(µ = 1) = 0,

H(µ = 1) = H0, and B(µ = 1) = µ0H0. For positive µ−values lower than 1, materials

become diamagnetic and repel the applied magnetic field; M(0 < µ < 1) has opposite

direction to H0 and, thus, the modulus of B(0 < µ < 1) is lower than µ0H0. In the

limit of perfect diamagnetic ellipsoids (µ→ 0), B(µ→ 0)→ 0.
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A further decrease of µ leads us to the region of negative permeability [141]. The

main feature one appreciates in Fig. 4.2 for µ < 0 is that there is a negative permeability

value that gives a divergence of the magnetic fields. According to the set of equations

(4.1), this permeability is µDIV = (N − 1)/N ; µDIV = −2 for the sphere and µDIV = −1

for the cylinder. As µ is reduced from 0 to negative values, the fields M, H and B

continuously build up (M and B in the opposite and H in the same direction as H0)

until they become infinite at µDIV. Because materials with µDIV < µ < 0 are magnetized

in the opposite direction to H0, they can be classified as diamagnetic materials. Since

the modulus of their magnetization is larger than that of perfect diamagnetic materials,

these materials expel magnetic field lines even more strongly than perfect diamagnets

(see Figs. 4.3a and c). For µ-values lower than µDIV the ellipsoids change their behaviour

completely and the direction of all the fields is inverted. The modulus of M, H and B

decreases with µ and in the limit µ → −∞ their magnitude is the same as in the limit

µ→∞. Because materials with µ < µDIV are magnetized in the direction of the applied

field, they can be regarded as paramagnetic materials. The field attraction they provide

is even larger than that of ferromagnetic materials (see Figs. 4.3b and d).

To understand how negative-permeability materials behave and why they can pro-

duce such strong magnetic responses, it is important to analyse the energy density,

E = (1/2)H · B, in their volume. In linear, homogeneous and isotropic materials, the

energy density can be written as E = (1/2)µµ0H
2, where H is the modulus of the

magnetic field. This expression shows that the energy density is positive in the volume

occupied by a positive-permeability material and negative in the volume of a material

with negative permeability.

Consider an ellipsoid of volume V in a uniform field H0. The total magnetic energy

the applied field creates in the region occupied by the ellipsoid is E0 = (1/2)µ0V H
2
0 .

As shown in Figs. 4.3a and b, the positive-permeability ellipsoids exhibiting the largest

field attraction (µ → ∞) and repulsion (µ → 0) expel all the magnetic energy E0 from

their volume (materials with µ→∞ because H = 0 and materials with µ→ 0 because

B = 0). This energy is redistributed to the rest of space and is responsible for the dis-

tortion of the applied magnetic field. Materials with intermediate positive permeability

values also expel some magnetic energy, but their magnetic responses are weaker because

they keep part of the energy in their volume. Materials with negative permeability, as

shown in Fig. 4.2, show larger magnetic responses than materials with µ → ∞ and

µ → 0. In Fig. 4.3c, a cylinder with µ = −1/2 is shown to expel the applied magnetic

induction field lines much further than a cylinder with µ → 0 (Fig. 4.3b) and in Fig.

4.3d a cylinder with µ = −2 is shown to attract more lines than a cylinder with µ→∞
(Fig. 4.3a). In terms of energy reorganization, these materials can only achieve these

strong magnetic responses if they expel more magnetic energy from their volume than

materials with µ → ∞ and µ → 0; that is, they expel more energy than the energy E0

that the applied magnetic field provides.
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Figure 4.3: Numerical calculations of the magnetic induction field lines and (in colors)

the normalized energy density E/(µ0H
2
0 ) when a uniform magnetic field H0 is applied

along the z-direction to a long cylinder with isotropic relative permeability (a) µ = 104,

(b) µ = 10−4, (c) µ = −1/2, and (d) µ = −2.

In other words, positive-permeability materials can be regarded as materials that

redistribute the magnetic energy E0 that the applied magnetic field provides in their

volume. The manner in which they redistribute this energy depends on their geometry

and permeability. In contrast, negative-permeability materials, do not redistribute the

energy E0 but a larger amount of energy. Since this energy is not provided by the uniform

applied magnetic field, materials with µ < 0 can be understood as active because they

themselves are responsible for generating the extra amount of magnetic energy they

need to expel [145]. In this sense, the negative energy in the µ < 0 materials volume

can be regarded as energy that the material has to generate in order to behave as a

material with negative permeability. Active materials and metamaterials have already

been introduced for controlling a wide range of fields, including thermal [146], acoustic

[147], electric [148, 149], and electromagnetic waves [150, 151, 152, 153]. A strategy on

how to create an active negative-µ material for magnetostatic fields based on electric

currents will be presented in Sec. 4.1.3

4.1.2 Hollow ellipsoids with negative permeability

Once the behaviour of solid ellipsoids has been described, we can move to the study

of hollow bodies. This analysis is relevant because hollow materials with negative per-

meability may achieve a strong magnetic field concentration inside their hole and lead

to novel strategies for concentrating static magnetic fields, for example [75].

Consider a hollow ellipsoid in the presence of a uniform applied magnetic field. Dif-

ferent from the case of a solid ellipsoid [see the set of equations (4.1)], the magnetic fields

M, H, and B in the volume of a hollow ellipsoid are not uniform [144]. Consequently,

hollow ellipsoids respond to uniform magnetic fields creating, in general, a multipolar

magnetic field distribution. Only in the case of hollow spheres and hollow cylinders,

the response of the material is merely dipolar and the field distribution everywhere in
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space can be easily derived from the magnetostatic Maxwell equations. For this rea-

son, in this section we restrict our study to hollow spheres and cylinders in uniform

applied magnetic fields. It was shown in Chapter 3 that metamaterial shells with posi-

tive anisotropic magnetic permeability exhibit interesting possibilities for shaping static

magnetic fields, such as strong magnetic field concentration or cloaking [69]. Here we

extend this analysis to consider negative values of the permeability. In this way, we will

be able to explore novel solutions for concentrating and cloaking static magnetic fields.

Consider a sphere with radius R2 with a centered empty hole of radius R1 char-

acterized by a homogeneous and anisotropic relative permeability tensor fulfilling (in

spherical coordinates r, θ, ϕ) µrθ = µθr = µrϕ = µϕr = µθϕ = µϕθ = 0, µθ = µθθ = µϕϕ,

and µr = µrr. A uniform magnetic field H0 is applied in the z-direction. Since there

are not free currents involved and the material is homogeneous, the magnetic field can

be written in terms of a magnetic scalar potential φ that fulfills the Laplace equation

everywhere in space [Eq. (2.1)]. The general solution for φ inside the hole (INT), in the

shell (SHE), and in the external region (EXT) can be written as

φINT
s = asrcosθ, (4.2)

φSHE
s =

(
cs

r(1−α)/2
+

ds

r(1+α)/2

)
cosθ, (4.3)

φEXT
s =

(
bs
r2
−H0r

)
cosθ, (4.4)

where α2 = 8µθ/µr + 1 and we have taken into account that the potential must be finite

at r = 0 and tend to the applied potential, −H0rcosθ, when r → ∞. The coefficients

as, bs, cs and ds are obtained by applying the magnetostatic boundary conditions [Eqs.

(1.14) and (1.15)]. That is, the angular component of H and the radial component of

B must be continuous at the material surfaces r = R1 and r = R2. In this way, the

coefficients are found to be

as =
6µrα (R2/R1)

(3+α)/2H0

4µrµθ + µr(1− 3α) + 4− [4µrµθ + µr(1 + 3α) + 4] (R2/R1)
α , (4.5)

bs =
−2(2µrµθ − µr − 1) [(R2/R1)

α − 1]R3
2H0

4µrµθ + µr(1− 3α) + 4− [4µrµθ + µr(1 + 3α) + 4] (R2/R1)
α , (4.6)

cs =
3(µrα+ µr + 2)R

(3+α)/2
2 R−α1 H0

4µrµθ + µr(1− 3α) + 4− [4µrµθ + µr(1 + 3α) + 4] (R2/R1)
α , (4.7)

ds =
3(µrα− µr − 2)R

(3+α)/2
2 H0

4µrµθ + µr(1− 3α) + 4− [4µrµθ + µr(1 + 3α) + 4] (R2/R1)
α . (4.8)
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Analogous results are found for a long (along y) cylinder of radius R2 with a centered

long (along y) hole of radius R1 in a uniform magnetic field H0 applied along the cylinder

c-axes. The components of the cylinder permeability tensor (in cylindrical coordinates

ρ, ϕ, z) are assumed to be µρϕ = µϕρ = µρz = µzρ = µϕz = µzϕ = 0, µρ = µρρ, ϕ = µϕϕ
and µz = 1. The general solution for the magnetic scalar potential inside the hole (INT),

in the shell (SHE) and in the external region (EXT), is

φINT
c = acρcosϕ, (4.9)

φSHE
c =

(
ccρ

k +
dc
ρk

)
cosϕ, (4.10)

φEXT
c =

(
bc
ρ
−H0ρ

)
cosϕ, (4.11)

where k2 = µϕ/µρ and the coefficients ac, bc, cc and dc, obtained from the magnetostatic

boundary conditions as before, are

ac =
4µρk (R2/R1)

1+kH0

(µρk − 1)2 − (µρk + 1)2 (R2/R1)
2k
, (4.12)

bc =
−(µρµϕ − 1)R2

2

[
(R2/R1)

2k − 1
]
H0

(µρk − 1)2 − (µρk + 1)2 (R2/R1)
2k
, (4.13)

cc =
2(µρk + 1)R1−k

2 (R2/R1)
2kH0

(µρk − 1)2 − (µρk + 1)2 (R2/R1)
2k
, (4.14)

dc =
2(µρk − 1)R2

1+kH0

(µρk − 1)2 − (µρk + 1)2 (R2/R1)
2k
. (4.15)

Two important properties for the spherical and the cylindrical shells result from

these solutions. First, the magnetic field inside the hole of these shells is always uniform

and aligned in the same or in the opposite direction to H0, with magnitude Hz = −as,c
[Eqs. (4.2) and (4.9)]. Therefore, shells showing high values of the coefficient as,c can

be used as magnetic concentrators and shells with low values of as,c as attenuators or

shielding shells. Second, the magnetic field in the external region is, in general, modified

with respect to the applied field due to the presence of the shells [Eqs. (4.4) and (4.11)].

The magnetic field created by the shells in their exterior corresponds to the field created

by a point dipole with magnetic moment ms = 4πbs for the spherical shell and to the

field of a long dipole with magnetic moment per unit length mc = 2πbc for the cylindrical

shell. Shells with a positive value of the coefficient bs,c attract magnetic induction field

lines and can be classified as paramagnetic shells. On the contrary, shells with bs,c < 0

expel the magnetic induction field lines and can be regarded as diamagnetic shells. Only

the shells exhibiting bs,c = 0 do not distort the uniform applied magnetic field.
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Figure 4.4: Relations between the angular and the radial relative magnetic permeability

resulting in non-distortion (red lines) and in field divergences (blue lines) for a spherical

shell (a) and a cylindrical shell (b). The solid and dashed red lines indicate if the non-

distortion shell is of the first or of the second type, respectively. The chosen shell radii

ratio is R2/R1 = 2 in both cases. The light-blue regions correspond to paramagnetic

shells, while the white regions correspond to diamagnetic shells.

Different from the case of isotropic solid spheres and cylinders, for which the fields

diverged at a particular negative value of the permeability (Fig. 4.2), when considering

anisotropic hollow spheres and cylinders there are infinite permeability values for which

the magnetic field diverges. According to Eqs. (4.5)-(4.8) and Eqs. (4.12)-(4.15), the

divergences occur when

√
−α2log(R2/R1) = 2arctan

(
3µr
√
−α2

4µrµθ + µr + 4

)
+ 2πn, n = 0, 1, 2..., (4.16)

√
−k2log(R2/R1) = arctan

(
−2µρ

√
−k2

µρµϕ + 1

)
+ πn, n = 0, 1, 2..., (4.17)

for spherical and cylindrical shells, respectively. The permeability relations resulting

from these expressions are plotted as blue lines in Fig. 4.4. Interestingly, there are also

infinite anisotropic shells that do not distort the applied magnetic field, which fulfill

µθ = −µr
8

[(
2πn

log(R2/R1)

)2

+ 1

]
, n = 1, 2, 3..., (4.18)

µθ =
1 + µr

2µr
, (4.19)

and

µϕ = −µρ
(

πn

log(R2/R1)

)2

, n = 1, 2, 3..., (4.20)

µϕ =
1

µρ
, (4.21)

for spherical and cylindrical shells, respectively.
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Figure 4.5: Numerical calculations of the magnetic induction field lines and (in colors)

the energy density E/(µ0H
2
0 ) for a uniform field H0 applied along the z−direction to

four long cylindrical shells with internal radius R1 and external radius R2 = 2R1. The

shells in (a) and (b) are non-distorting shells of the first type, with µρ = 0.1, µϕ = −2.05

(a), and µρ = 0.1, µϕ = −8.22 (b). The shells in (c) and (d) are non-distorting shells of

the second type, with µρ = 104, µϕ = 10−4 (c), and µρ = −2, µϕ = −1/2 (d).

These non-distorting shells can be classified in two different types according to their

ability to concentrate magnetic fields inside their holes.

The first type of non-distorting shells have a radial and angular permeability fulfilling

Eq. (4.18) for spherical shells and Eq. (4.20) for cylindrical shells. These permeability

relations are plotted in straight red lines in Fig. 4.4 and always involve a positive and a

negative component of the permeability. There is an infinite number of these lines, and

their slope depends upon a single parameter, n. The magnetic field inside the hole of

non-distorting shells of this type does not depend on the shell permeability; it is always

fixed to HINT
s = ±H0(R2/R1)

3/2 for spherical shells and to HINT
c = ±H0R2/R1 for

cylindrical shells, with positive sign when n is even and negative sign when n is odd.

Two examples of this type of cylindrical shells are shown in Figs. 4.5a and b.

The second type of non-distorting shells have a radial and angular permeability

fulfilling Eq. (4.19) for spherical shells and Eq. (4.21) for cylindrical shells. These

permeability relations are plotted in dashed red lines in Fig. 4.4. The field inside the

hole of these shells depends on the radii ratio of the shell and on the permeability as

HINT
s = H0 (R2/R1)

2−2µθ , (4.22)

HINT
c = H0 (R2/R1)

1−µϕ , (4.23)

for spherical and cylindrical shells, respectively. This indicates that, for a fixed radii ratio

R2/R1, the magnetic field concentrating ratio can be made arbitrarily large by decreasing

the angular permeability (µθ or µϕ) from ∞ to −∞. Restricting to positive values of

both the radial and the angular permeability, the maximum field concentration ratio

these shells can achieve is HINT/H0 = R2/R1, both for spherical (µθ → 1/2, µr → ∞)

and cylindrical shells (µϕ → 0, µρ → ∞). Actually, these extremely anisotropic shells

were presented in Sec. 3.1 as magnetic concentrators.
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For negative permeability values, the concentration ratio achieved by non-distorting

shells of the second type is always larger than the maximum concentration ratio achieved

with positive permeabilities. From energy conservation analysis, one finds that this can

only occur if, similar to the case of solid ellipsoids with µ < 0, shells with negative

permeability do not only redistribute the energy provided by the applied field but also

some extra energy that they actively provide. Consider a cylindrical shell with perme-

abilities µϕ → 0 and µρ →∞ (Fig. 4.5c), which is the non-distorting shell with positive

permeability that achieves the largest magnetic field concentration. All the magnetic

energy in the volume occupied by the shell (including its hole), E0 = 1/2µ0H
2
0πR

2
2b2 is

uniformly redistributed inside the hole. In this way, the energy density in the hole be-

comes EINT = (1/2)µ0H
2
0 (R2/R1)

2 and the energy density in the shell is zero ESHE = 0.

As illustrated in the example in Fig. 4.5d, non-distorting shells with negative perme-

abilities µϕ and µρ fulfilling Eq. (4.21) achieve larger magnetic field concentrations than

shells with µϕ → 0 and µρ →∞ because the energy in their volume is negative. Thus,

concentration ratios larger than R2/R1 can only be achieved by active materials that

generate the extra amount of energy that has to be redistributed.

4.1.3 Negative-permeability emulation with active metamaterials

Materials with negative permeability do not occur in nature [142]. Because magnetic

metamaterials have enabled the design of novel permeability tensors [74, 79], a possible

strategy for achieving µ < 0 could be the construction of a new kind of magnetic

metamaterial. In the previous sections we have seen that negative-permeability materials

must be understood as active materials because of their ability to generate magnetic

energy. Thus, in order to achieve µ < 0, the metamaterials should be able to feed

energy into the system. Different from the metamaterials studied in Chapter 3, these

active metamaterials cannot be constituted by combinations of passive materials with

positive permeability.

In order to understand how active metamaterials exhibiting µ < 0 could be designed,

it is interesting to analyse how negative-permeability materials distribute the magnetic

induction field lines. Figures 4.3 and 4.5 show that closed magnetic field lines appear

when materials with negative-µ are assumed. Because of Ampere’s law, closed magnetic

field lines can only occur in linear materials if there are free currents in the system. This

suggests that negative-permeability materials can be emulated by feeding energy in the

form of electric currents. At this point, it is worth recalling that a magnetic material

can be substituted by its magnetization currents, which give exactly the same magnetic

induction field distribution as the material itself. These magnetization currents, located

at the surface and in the volume occupied by the material, can be calculated from the

material magnetization using Eqs. (1.11) and (1.12). This property, well-known for

materials with positive-µ can be extended to the case of negative-µ.
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Figure 4.6: Comparison between a negative-µ material and its emulation by currents

when a uniform magnetic field H0 is applied along the z−direction. In (a) and (b) colors

correspond to the z−component of the magnetic induction normalized to µ0H0. In (c)

and (d) colors show the z−component of the magnetic field normalized to H0. In (a)

and (c) the field interacts with a spherical shell with internal radius R1, external radius

R2 = 2R1 and relative permeability µ = −1/2. In (b) and (d) the spherical shell is

substituted by its magnetization currents according to Eqs. (4.24) and (4.25).

In this way, even though negative-µ materials do not exist in magnetostatics, their

behaviour can be emulated in practice by a suitably tailored arrangement of currents,

which constitute the active metamaterial. These currents can be analytically calculated

from the magnetization that the desired material would show in the presence of an

applied magnetic field. Since the magnetization of a material depends on the applied

magnetic field, the currents have to be readjusted when changing the applied field.

As an example, let us now consider the case of a spherical shell with internal radius

R1, external radius R2, and isotropic permeability µ = −1/2 in a uniform magnetic field

H0 = H0uz. According to Eq. (4.19), this shell does not distort uniform applied fields

and, according to Eq. (4.22), the field inside its hole is HINT
s = H0(R2/R1)

3 aligned

in the same direction as the applied field. This large magnetic field concentration is

achieved at the cost of having a negative energy density in the spherical shell volume,

which can be externally supplied in the form of electric currents. The calculation of

the current density that has to be fed to the shell requires the knowledge of the shell

magnetization M, which can be obtained from the constitutive relation (1.13) and Eqs.

(4.2)-(4.8). Since the chosen material is linear, homogeneous, and isotropic its volume

magnetization currents JM are zero [Eq. (1.11)]. The spherical shell only shows surface

magnetization currents KM, which flow in its internal (r = R1) and external (r = R2)

surfaces as

KM(r = R1) =
3

2

(
R2

R1

)3

H0sinθuϕ, (4.24)

KM(r = R2) = −3

2
H0sinθuϕ. (4.25)
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These current distributions give exactly the same magnetic induction B as a spherical

shell with µ = −1/2 in the whole space. This is illustrated in Figs. 4.6a and b. In

contrast, the magnetic field H resulting from these currents is not the same as that of

the negative-µ material in all space, as shown in Figs. 4.6c and d. On the one hand, when

having a magnetic material with µ = −1/2, the magnetic field inside the shell volume

is H = B/(µµ0) = −2B/µ0 and the magnetic field inside the hole and in the external

region is H = B/µ0. On the other hand, when substituting the material by currents, the

magnetic field is H = B/µ0 in the whole space and, therefore, it is different from the field

resulting from a material with µ = −1/2 in the material volume. The magnetization in

the shell region for the case of the negative-µ material, M = (µ− 1)H = 3B/µ0, is also

different from the magnetization for the current densities, M = 0.

4.1.4 Experimental realization of a negative-permeability material

A negative-permeability material is experimentally realized to demonstrate the pre-

sented theory [141]. We choose a spherical shell with isotropic relative magnetic per-

meability µ = −1/2, internal radius R1 = 25mm and external radius R2 = 50mm. The

field distribution in the presence of this shell can be seen in Fig. 4.7a.

The required surface current densities to emulate this material are given by Eqs.

(4.24) and (4.25). For practical reasons, these continuous current distributions are

converted into two discrete sets of current loops. The intensity that has to be fed to

each loop can be calculated as the integral of the surface current density,

I(Ra, θi) =

∫ θi+π/(2n)

θi−π/(2n)
KM(r = Ra)Ra dθ, (4.26)

where θi is the azimuth angle of each current loop, a = 1, 2 is an index to differentiate

between the internal and the external surface, and n indicates the number of current

loops on each surface. Numerical calculations show that a discretization into six current

loops (Fig. 4.7b) generates a magnetic induction distribution that approximates well

the distribution for the ideal continuous current density case (Fig. 4.7a). The loops are

placed at θ1 = 15o, θ2 = 45o, θ3 = 75o,θ4 = 105o, θ5 = 135o, θ6 = 165o. Figures 4.8a

and b show the analytic field distribution together with the field distribution calculated

with the finite-elements method for the discretized case of 6 internal plus 6 external

current loops. Only close to the surfaces there is a small discrepancy between the ideal

and the discretized cases, which is due to the coarse discretization.

In order to place each current loop at the required position (Ra, θi) a 3D-printed

non-magnetic plastic support with grooves at the loops locations is designed, as shown

in Figs. 4.7c and d. In the experiments, the current is fed to the loops using a common

voltage source from a Agilent 6671A power supply. Each loop is connected in series with

the adequate load resistor to achieve the required current according to Eq. (4.26). The

set of resistors can be seen in the picture of the experimental setup in Fig. 4.7e. The

spherical shell is placed in between a pair of Helmholtz coils, which create a uniform
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Figure 4.7: Finite-element simulations of the z−component of B normalized to B0 =

µ0H0 when a magnetic induction B0 is applied in the z-direction to a spherical shell

with (a) µ = −1/2 and radii ratio R2/R1 = 2, and (b) the same shell emulated by 6

current loops placed at R1 and 6 current loops placed at R2. Both sets of currents fulfill

Eq. (4.26). Dashed lines indicate the measuring lines. Panels (c) and (d) show the

three-dimensional sketch and the actual experimental realization, respectively, of the

metamaterial spherical shell shown in (b). (e) Picture of the experimental setup with

the metamaterial in the middle of a pair of Helmholtz coils.

magnetic field B0 = µ0H0=0.0543mT (taking into account the contribution of the Earth

magnetic field) in the z-direction, along the shell axis. A Hall probe is used to measure

the z−component of the magnetic induction along the x−axis (Fig. 4.8a) and along the

z−axis (Fig. 4.8b), both indicated with dashed lines in Fig. 4.7b. Results in Figs. 4.8a

and b show a very good agreement between the experimental measurements and the

numerical calculations for the discretized device. The field inside the hole of the shell is

uniform with the expected concentrating ratio of (R2/R1)
3 = 8 and the external field is

not modified by the presence of the shell, in accordance with the theory.

In this way, we have experimentally emulated a spherical shell with µ = −1/2 in a

uniform applied magnetic field. If the applied field is changed, our device does not longer

act as a spherical shell with µ = −1/2. Because the magnetization currents depend on

the applied field magnitude [Eqs. (4.24) and (4.25)], the current of each loop needs

to be readjusted in order to keep emulating the same negative-µ material, (4.26). To

this end, one could design a feedback loop that automatically adjusts the currents by

measuring the magnitude of the applied field [111]. Finally, the discretization used for

our device (Figs. 4.7c and d) is only adequate for uniform fields applied perpendicular to

the current loops. Uniform fields applied in other directions or fields with other spatial

dependences would require more advanced discretization schemes.
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Figure 4.8: Experimental measurements (symbols), finite-element calculation for the

discretized set of currents (red line), and analytic results for the ideal material with

µ = −1/2 (blue line). The z−component of B is plotted along (a) the x−axis (with

y = z = 0), and (b) the z−axis (with x = y = 0). The shell region is painted in grey.

4.2 Illusion: disguising an object as another object

The appearance of objects is determined by the way they interact with electromag-

netic fields, which depends on their geometry and constitutive parameters. One of the

most fascinating applications of transformation optics and metamaterials has been the

development of electromagnetic invisibility cloaks [21]. Most of the cloaks that have

been proposed can be classified as transformation cloaks, which make objects invisible

by preventing electromagnetic fields from reaching the objects [7, 10, 20], or as scattering-

cancellation cloaks, which make object invisible by cancelling their scattering [56, 154].

The goal of cloaks is to create the illusion of empty space, so that electromagnetic fields

pass through the cloaked volume as if the object was not there. In 2009, Yun Lai et al.

generalized these ideas by introducing the concept of illusion optics, which provides a

method for making an object of arbitrary shape and electromagnetic properties appear

not as empty space (as achieved by invisibility cloaks) but as another object with other

shape and properties [26, 155, 156]. Several experiments achieving illusion for electro-

magnetic waves have been reported, usually involving media with negative values of the

permittivity and the permeability [27, 153, 157, 158, 159]. Illusion for other fields, such

as illusion thermodynamics have also been proposed [160].

Illusion for static magnetic fields can be regarded as the transformation of the mag-

netic signature of an object into that of another one. It was introduced as a tool for

cancelling, enlarging and overlapping magnets [161], but the development of these ideas

was braked because of the lack of negative permeability materials in magnetostatics. The

recent proposal of active metamaterials exhibiting an effective µ < 0 [141] has enabled

the first experimental realization of magnetic illusion [111]. In this section, we present

the theoretical and the experimental demonstration of illusion in magnetostatics.
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4.2.1 Derivation of illusion in magnetostatics

Consider an original sphere of radius R1 and linear, isotropic and homogeneous

relative magnetic permeability µ1 in a uniform magnetic field H0 applied along the z-

direction, as sketched in Fig. 4.9a. For our goal of achieving illusion, we surround this

sphere with a spherical shell with internal radius R1, external radius R2, and linear,

isotropic, and homogeneous relative magnetic permeability µ2, which acts as an illusion

device (Fig. 4.9b). Illusion is achieved when the magnetic response of the original

sphere surrounded by the illusion device is made indistinguishable from the response of

a target sphere, with radius R and linear, isotropic, and homogeneous relative magnetic

permeability µ (Fig. 4.9c).

On the one hand, the field distribution outside the target sphere is equivalent to the

field created by a centered point dipole with magnetic moment pointing towards the

z-direction with magnitude [144]

ms = 4π
µ− 1

µ+ 2
R3H0. (4.27)

On the other hand, the magnetic response of the coated sphere can be obtained by

solving the magnetostatic Maxwell equations. As in the previous section, since there are

not free currents involved, the magnetic field can be found as the gradient of a magnetic

scalar potential φ that fulfills the Laplace equation. The scalar potential inside the

original sphere (MAT: r ≤ R1), inside the illusion device (SHE: R1 < r < R2) and in

the external region (EXT: r ≥ R2), can be written as

φMAT
cs = acsrcosθ, (4.28)

φSHE
cs =

(
bcsr +

ccs
r2

)
cosθ, (4.29)

φEXT
cs =

(
dcs
r2
−H0r

)
cosθ, (4.30)

where we have taken into account that the potential must be finite at r = 0 and tend

to the applied potential, −H0rcosθ, when r →∞.

Figure 4.9: Sketch of an example of magnetic illusion. The magnetic signature of an

original ferromagnetic sphere (a) covered by a negative-permeability illusion device (b)

corresponds to the signature of a larger perfect diamagnetic sphere (c).
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The coefficients acs, bcs, ccs, and dcs can be obtained by applying magnetostatic

boundary conditions. Equations (4.30) and (4.31) indicate that, in the external region,

the coated sphere creates the same magnetic scalar potential as a point dipole located

at the center of the sphere, pointing towards the z−direction with dipolar magnetic

moment [144],

mcs = 4πdcs = 4π
(µ1 − µ2)(2µ2 + 1) + (µ2 − 1)(µ1 + 2µ2) (R2/R1)

3

2(µ1 − µ2)(µ2 − 1) + (µ2 + 2)(µ1 + 2µ2) (R2/R1)
3R

3
2H0. (4.31)

Once the responses of the target and the original coated spheres have been written

in terms of two dipoles, the condition for achieving illusion becomes msc = ms, which

reads

(µ1 − µ2)(2µ2 + 1) + (µ2 − 1)(µ1 + 2µ2) (R2/R1)
3

2(µ1 − µ2)(µ2 − 1) + (µ2 + 2)(µ1 + 2µ2) (R2/R1)
3R

3
2 =

µ− 1

µ+ 2
R3. (4.32)

Given the original sphere (with radius R1 and permeability µ1), Eq. (4.32) provides

the required shell properties (R2 and µ2) to attain the illusion of a target sphere (with

radius R and permeability µ). For a fixed radius R2, there are, in general, two possible

values of the permeability µ2 to achieve the illusion. One of them is always negative and

the other one can be positive or negative depending on the parameters. Therefore, there

are some magnetic illusions that can be attained with shells with positive permeability

and others that require negative-permeability.

One can understand why some magnetic illusions cannot be achieved by shells with

positive permeability by analysing the magnetic response of both the target sphere and

the original coated sphere. Consider an original sphere of positive permeability µ1 > 0

surrounded by a spherical shell with positive permeability µ2 > 0. The response of this

coated sphere is bounded; for any pair of µ1 and µ2, the response cannot be neither

more attractive than that of a ferromagnetic sphere of radius R2 nor more repulsive

than that of a perfect diamagnetic sphere of radius R2. Thus, target spheres exhibiting

larger magnetic field responses, such as ferromagnetic spheres with radius R > R2, are

unattainable with illusion devices with positive permeability. If, instead, one considers

illusion devices with negative values of the permeability µ2 < 0, the response of the

coated sphere is unbounded and the illusion of arbitrary target spheres becomes possible.

Two particular cases of magnetic illusion are cloaking and magnification/shrinking

of an object [27, 91, 9, 93]. The illusion device properties (µ2 and R2) for achieving

cloaking, i.e. for making an object magnetically undetectable, are obtained by setting

µ = 1 in Eq. (4.32), while the properties for achieving magnification/shrinking, i.e. for

modifying the size of an object, are achieved by setting µ = µ1 and R 6= R1 in Eq.

(4.32). Examples of two cloaking and two magnification illusions for the same original

sphere are shown in Figs. 4.10a-c and in Figs. 4.10d-f, respectively. Different from

the concentrators with extremely anisotropic positive permeability studied in Chapter

3, which could enlarge magnetic objects in a bounded manner, illusion devices with
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Figure 4.10: Numerical calculations of the magnetic induction field lines and, in colors,

Bz/(µ0H0) for a uniform magnetic field H0 applied along the z-direction to different

objects. In (a) a sphere of radius R1 and permeability µ1 = 10. In panels (b), (c),

(d) and (e) this same sphere is surrounded by illusion devices exteding from R1 to

R2 = 1.5R1 and permeability (b) µ2 = 0.49, (c) µ2 = −10.18, (d) µ2 = −1.51, and (e)

µ2 = −19.34. The devices in (b) and (c) make the sphere magnetically undetectable,

while the devices in (d) and (e) make the sphere undistinguishable from a sphere of

magnified radius R = 2R1 and the same permeability µ = µ1 = 10 (f). The dashed lines

in (d) and (e) indicate the inner border of the region of illusion, r = R.

negative permeability offer the possibility of enlarging magnetic objects even beyond the

shell. This is the case for the magnification illusions in Figs. 4.10d and e: the illusion

devices achieve the same field distribution as that of a magnified object of radius R > R2

(Fig. 4.10f). In these cases, the region of illusion is r > R. If, instead, the radius of

the illusion device is larger than the radius of the target sphere, R < R2, the region of

illusion is the whole external region r > R2.

When the original sphere exhibits an extreme permeability value (µ1 →∞ or µ1 →
0), Eq. (4.32) gives a single solution for the illusion device permeability µ2,

µ2(µ1 →∞) =

(
R3

2 −R3
1

2R3
1 +R3

2

)
(µ+ 2)R3

2 + 2(µ− 1)R3

(µ+ 2)R3
2 − (µ− 1)R3

, (4.33)

µ2(µ1 → 0) =

(
2R3

2 +R3
1

2(R3
2 −R3

2)

)
(µ+ 2)R3

2 + 2(µ− 1)R3

(µ+ 2)R3
2 − (µ− 1)R3

. (4.34)

Interestingly, the first fractions in Eqs. (4.33) and (4.34) (in parenthesis) correspond

to the required shell permeabilities to cancel the magnetic response of a ferromagnetic

sphere (µ1 → ∞) [84] and a perfect diamagnetic sphere (µ1 → 0) [82], respectively.
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The second term is the same in both equations and does not depend on the original

object. In this way one can regard the illusion device permeability as the combination

of a term responsible for cancelling the response of the original object and another term

responsible for creating the response of the target sphere. This is reminiscent of the

first proposal for achieving illusion for electromagnetic waves [26], in which the illusion

device consisted of a complementary media that cancelled the original object and a

restoring media that created the target. In our case, a single material with µ2 would

simultaneously do both tasks.

4.2.2 Emulating illusion devices with active metamaterials

In the previous section we have seen that some illusions require spherical shells (illu-

sion devices) with negative permeability. As discussed in Sec. 4.1.3, even though there

are not naturally occurring materials with µ < 0 in magnetostatics, active metamaterials

consisting of sets of electric currents can be used to artificially emulate their behaviour

[141]. For an adequate replacement of the spherical shell of negative permeability with

currents, one has to take into account that the shell surrounds a magnetic sphere that

interacts with both the applied field and the currents fed to the shell volume. As a

starting point, we calculate from Eqs. (1.11) and (1.12) the volume JM and the surface

KM magnetization currents of the coated sphere. Since we assume µ1 and µ2 to be

linear, homogeneous, and isotropic, then JM = 0. The surface current densities are cal-

culated from the magnetization Mθ, which can be written in terms of the magnetic field

as Mθ = (µθ − 1)Hθ [Eq. (1.13)], where Hθ is, in turn, found from the magnetic scalar

potential [Eq. (2.1)]. The two surface magnetization currents, flowing at the spherical

surfaces r = R1 and r = R2, are

KM1 = KM(r = R1) = (µ2 − µ1)
(
bcs +

ccs
R3

1

)
sin(θ)uϕ, (4.35)

KM2 = KM(r = R2) = −
(
bcs +

ccs
R3

2

)
sin(θ)uϕ. (4.36)

These two current densities create the same magnetic induction field distribution

as that of a coated sphere in all space. The current KM1 can be regarded as the

superposition of a current density that substitutes the sphere plus a current density

that substitutes the shell. For achieving magnetic illusion, the original sphere is present

and, therefore, only the spherical shell must be substituted by currents. In this situation,

the spherical shell can be substituted by the current density KM2 in Eq. (4.36) flowing

at r = R2 plus a current density found from Eq. (1.12) as

K′M1 = (µ2 − 1)

(
bcs +

ccs
R3

1

)
sin(θ)uϕ, (4.37)

flowing at r = R1.
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Figure 4.11: Numerical calculations of the magnetic induction field lines and, in colors,

Bz/(µ0H0) for a uniform field H0 applied along the z-direction. (a) A ferromagnetic

sphere with permeability µ1 = 104 and radius R1, (b) the same sphere surrounded by an

illusion device with permeability µ2 = −0.0942 extending from R1 to R2 = 1.25R1, (c)

the sphere in (a) surrounded by the currents KM2 in Eq. (4.39) for the case µ2 = −0.0942

and R2 = 1.25R1, and (d) a diamagnetic sphere with permeability µ = 10−4 and radius

R = 1.5R1.

As an example on how magnetic illusion can be achieved with active metamaterials,

consider an original ferromagnetic sphere (µ1 → ∞) with radius R1. As shown in Fig.

4.11a, this sphere attracts the applied magnetic field lines. Our goal is to transform

its magnetic signature into that of a perfect diamagnetic sphere (µ→ 0) with different

radius R, which, as illustrated in Fig. 4.11d, expels the applied magnetic field lines. To

this end, the ferromagnetic sphere is surrounded with a spherical shell that acts as the

illusion device. According to Eq. (4.33), the required shell permeability to achieve the

targeted illusion is

µ2 =
−2(R3 −R3

2)(R3
2 −R3

1)

(R3
2 + 2R3

1)(R3 + 2R3
2)
. (4.38)

Equation (4.38) shows that illusion devices with radius fulfilling R1 < R2 < R require

negative values of the permeability µ2. Thus, an active metamaterial consisting of the

current densities in Eqs. (4.36) and (4.37) is needed. Interestingly, for the case µ1 →∞
the surface current density K′M1 tends to zero (bcs → −ccs/R3

1), and only the current

density KM2 is required. For the particular case of transforming a ferromagnetic sphere

into a perfect diamagnetic one, the currents that have to be fed at r = R2 are obtained

from Eq. (4.36) as

KM2 = KM(r = R2) = −3

2

(
R3 + 2R3

1

R3
2 + 2R3

1

)
H0sinθuϕ. (4.39)

Figure 4.11c shows that the magnetic field distribution in the region of illusion

(r > R) when a ferromagnetic sphere is surrounded by the current distribution in Eq.

(4.39) is exactly the same as the field distribution created by the sphere coated by a

µ2 < 0 shell (Fig. 4.11b) and by the target illusion (Fig. 4.11d).
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While illusion optics usually involves materials with cumbersome distributions of

permittivity and permeability (often obtained by transformation optics) [26], illusion in

magnetostatics only requires a precise arrangement of electric currents. This strategy,

reminiscent of the proposals of active metasurfaces for camouflaging objects for electro-

magnetic waves [152, 153, 156] has some practical advantages. First, there is no need

of designing and constructing bulk matematerial structures with precise and complex

permeability distributions. Second, the illusion devices are fully controllable; they can

be easily turned on and off at will. One can even transform the magnetic signature of

an object into different ones by dynamically controlling and tuning the currents. Third,

the illusion devices do not lose their properties for intense magnetic fields. The last

property is particularly interesting for the case of cloaking. One of the major drawbacks

of passive magnetic cloaks [71, 74] is that their constituting materials lose their proper-

ties and become non-linear for strong magnetic fields. If one uses active cloaks based on

the present strategy this problem can be circumvented. However, the intensity of the

applied field also limits the applicability of active devices, since the current densities

required to emulate negative-permeability materials in the presence of strong magnetic

fields may be unachievable in practice. Another advantage of active cloaks is that, dif-

ferent from the passive cloaking proposals studied in [71, 74, 70], active cloaks do not

require superconducting materials and can work at room temperature. A strategy for

cloaking without superconductors based on these ideas has recently been proposed [162].

4.2.3 Experimental realization of illusion in magnetostatics

To verify the magnetic illusion theory and to demonstrate its potential, the illusion

of transforming the signature of a ferromagnetic sphere (µ1 → ∞) into that of its

antagonistic material, a perfect diamagnetic sphere (µ → 0) is experimentally realized

[111]. For the sake of generality, the target sphere is chosen larger than the original one

(R > R1) in order to transform both the material permeability and size (Fig. 4.12).

Figure 4.12: Numerical calculations of the magnetic induction field lines and Bz/(µ0H0)

(in colors) for a uniform magnetic fieldH0 applied along the z-direction to (a) a ferromag-

netic (µ1 = 104) sphere of radius R1 surrounded by an illusion device with permeability

µ2 = −0.0942 extending from R1 to R2 = 1.25R1, (b) the same sphere surrounded by

the discretized version of the illusion device in (a), consisting of 6 current loops placed

at the surface r = R2, and (c) a diamagnetic (µ = 10−4) sphere of radius R = 1.5R1.
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Figure 4.13: Experimental measurements of the z−component of B for the bare ferro-

magnetic sphere (solid symbols) and for the ferromagnetic sphere surrounded by the illu-

sion device (open symbols) along the (a) x−axis (y = z = 0), and (b) z−axis (x = y = 0).

The analytic responses of a ferromagnetic (FM) sphere of relative permeability µ1 = 104

and radius R1 = 20mm (blue line) and a perfect diamagnetic (PD) sphere of relative

permeability µ = 10−4 and radius R = 30mm (red line) are also plotted.

In the experiments, the original sphere is a solid steel sphere of radius R1 =20mm.

First, the magnetic response of this sphere is measured to guarantee that it can be

qualified as an ideal ferromagnetic sphere. The sphere is placed at the central region

of a pair of Helmholtz coils that generate a constant magnetic induction along the z-

direction B0 = µ0H0 = 0.353 mT (taking into account the contribution of the Earth

magnetic field). The z−component of the magnetic induction is measured with a Hall

probe along the x and z axes (Fig. 4.13). Measurements (solid symbols) agree very well

with the analytic response of a sphere with permeability µ1 →∞ (blue lines).

The external radius of the spherical shell (illusion device) is R2 = 25mm and the

radius of the target illusion is R = 30mm. The required permeability for the shell,

obtained from Eq. (4.38), is µ2 = −0.0942. Equation (4.39) gives the surface current

density that emulates this negative-permeability shell. For the practical realization, this

current density is converted into a discrete set of current loops. The intensity that has

to be fed to each of these loops is calculated from Eq. (4.26). Numerical calculations

show that the field distribution in the illusion region (r > R) for a discretized illusion

device consisting of 6 current loops placed at R2 = 25mm and at the azimuthal angles

θ1 = 15o, θ2 = 45o, θ3 = 75o, θ4 = 105o, θ5 = 135o, and θ6 = 165o approximates

very well the field distribution resulting from the ideal negative-permeability illusion

device (Figs. 4.12a and b). The loops are precisely positioned at the required angles

thanks to a 3D-printed non-magnetic plastic former of radius R2 that has grooves at the

appropriate positions, as shown in the inset of Fig. 4.14. The currents are fed using a

common voltage source from an Agilent 6671A power supply and a set of load resistors

that provide each loop with a different current according to Eq. (4.26). The original
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ferromagnetic sphere surrounded by the illusion device is placed in the central region

of the Helmholtz coils, as shown in the picture in Fig. 4.14, and the z component of

the magnetic induction is measured with a Hall probe along both the z-axes and the

x-axes (Fig. 4.13). The good agreement between the measurements (open symbols)

and the analytic results for a perfect diamagnetic sphere (red lines) demonstrates that

the magnetic signature of a ferromagnetic sphere has been successfully transformed into

that of a perfect diamagnetic sphere.

Figure 4.14: Picture of the experimental setup for achieving magnetic illusion. A ferro-

magnetic sphere is surrounded by a negative-µ metamaterial shell consisting of 6 current

loops adequately positioned on a plastic former, as shown in the inset, and is placed in

the middle of a pair of Helmholtz coils.

The magnetostatic illusion theory has been developed and experimentally verified

for spherical objects in uniform applied fields. It is possible to extend the theory to

other geometries and other applied fields, but the experimental realization of the illusion

device would be more complex than the one presented above because it would require

the emulation of inhomogeneous and/or anisotropic permeability distributions. This sets

two practical complications. First, not only surface but also volume current densities

could be required and, second, the current densities could show complicate expressions

difficult to discretize into a finite set of current loops.

The illusion we have experimentally realized can be considered a predetermined illu-

sion, as defined in [163] for the case of active cloaks. Because the currents that emulate

the illusion device are specific to the magnitude of the applied magnetic field [Eq. (4.39)],

we have first measured the applied magnetic field and then fed the required currents to

the loops. If the applied field was changed, the illusion of the target sphere would be

lost. By incorporating sets of sensors and feedback loops to the experiment, as in [141],

one could achieve magnetic illusion for any uniform applied magnetic field.
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4.3 Perfect magnetic lenses: emulating sources remotely

Most of the devices for controlling electromagnetic waves that have been developed

using transformation optics and metamaterials have an analogy for the case of static

magnetic fields, including magnetic cloaks [70, 71], magnetic concentrators [74] and

magnetic wormholes [82]. After the realization of active metamaterials exhibiting a

negative value of the permeability in magnetostatics [111] a question arises as to whether

it could be possible to devise a magnetic device analogous to a perfect lens, one of the

most intriguing devices that negative refraction has brought [17, 164].

John Pendry, based on the ideas of Victor Veselago [15], showed that lenses with

n = −1 can be used to overcome the diffraction limit, a fundamental limitation on the

resolution of conventional lenses, which cannot resolve details finer than the wavelength

of the electromagnetic fields. Lenses with n = −1, known as perfect lenses, exhibit

the extraordinary property of sub-wavelength focusing of electromagnetic fields, which

makes the perfect reconstruction of an object possible [17, 165, 166, 18]. As shown in

Figs. 4.15a and b, flat perfect lenses create perfect images that are exactly the same size

as the object [167], while cylindrical and spherical perfect lenses can create magnified

images of the objects [168, 169]. Soon after the first theoretical proposals of perfect

lenses, sub-wavelength resolution was experimentally demonstrated [170, 171, 172, 173,

174, 175].

Inspired by these ideas, in this section we derive and study the properties of perfect

lenses for the case of static magnetic fields: perfect magnetic lenses. We present a cylin-

drical perfect lens that not only can achieve strong magnetic field concentrations but

also, similar to a cylindrical perfect lens for electromagnetic waves, can create magnified

images of the magnetic objects placed inside its hole. For example, a perfect mag-

netic lens surrounding a magnetic dipole creates in its exterior the same magnetic field

distribution as that of an image dipole, with different position and magnified dipolar

magnetic moment, as sketched in Fig. 4.15c. We will show that, even though magne-

tostatic Maxwell equations forbid the creation of sources in empty space, the result in

Fig. 4.15c can be well approximated in a large region of space. These results could

eventually be used to create and to cancel magnetic sources at a distance, something

unachievable with magnetic materials with positive permeability.

Figure 4.15: Sketch of a flat perfect lens (PL) (a), a cylindrical perfect lens (b), and a

cylindrical perfect magnetic lens (PML) (c).
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4.3.1 Derivation of a perfect magnetic lens with transformation optics

A cylindrical perfect magnetic lens is derived using transformation optics. By using

this technique, one does not only obtain the permeability resulting in a perfect lens but

also how the lens transforms a general magnetic field distribution.

Figure 4.16: Panels (a) and (b) illustrate the space transformation resulting in a perfect

magnetic lens when considering magnetic field sources located outside the lens volume,

and panel (c) shows the associated radial coordinate transformation. The blue region

indicates the perfect magnetic lens region.

We start with the case of having a perfect lens in the presence of an external applied

magnetic field. The space transformation is illustrated in Fig. 4.16. Consider a cylin-

drical shell infinitely long along the z−direction with internal radius R1 and external

radius R2 and a cylinder of radius R0 > R2. The space in the region 0 < ρ ≤ R0 is

radially compressed through the transformation
ρ′ =

(
R1
R0

)
ρ,

ϕ′ = ϕ, ρ ∈ (0, R0),

z′ = z,

(4.40)

where ρ, ϕ and z are the coordinates in the original physical space and ρ′, ϕ′ and z′ are

the coordinates in the transformed virtual space. Simultaneously, the space R2 < ρ < R0

is folded (arrows in Fig. 4.16b) as
ρ′ = R2

(
ρ
R2

)k
,

ϕ′ = ϕ, ρ ∈ [R2, R0].

z′ = z.

(4.41)

To guarantee the continuity of the space at ρ = R0, a relation between k and R0 arises

from Eqs. (4.40) and (4.41),

R0 = R2

(
R1

R2

)1/k

, (4.42)

which indicates that k is a negative parameter ranging from k → −∞ (R0 → R2) to

k → 0− (R0 →∞).
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By applying Eqs. (1.19) and (1.20) of the transformation optics theory, we obtain the

permeability that a cylindrical shell must have in order to shape the magnetic fields in

the same way as the transformed space. Expressed in the cylindrical basis, the obtained

relative permeability tensors are,

µ′ =

 µρρ µρϕ µρz
µϕρ µϕϕ µϕz
µzρ µzϕ µzz

 =


1 0 0

0 1 0

0 0
(
R1
R2

)2/k−2
 , (4.43)

in the internal region ρ′ < R1,

µ′ =


k 0 0

0 1/k 0

0 0 1
k

(
ρ′

R2

)2/k−2
 , (4.44)

in the cylindrical shell region R1 ≤ ρ′ ≤ R2, and µ′ = 1 in the external region, ρ′ > R2,

where the space is not transformed.

As discussed in Sec. 3.1.1, the material requirements given by Eqs. (4.43) and (4.44)

can be simplified under certain assumptions. If one considers a static magnetic field inde-

pendent of the z−coordinate and without z−component, the problem has translational

symmetry along the z−axis and only the left-upper 2x2 minors of the tensors have phys-

ical relevance. In this case, Eq. (4.43) shows that a perfect magnetic lens, different from

the proposals for electromagnetic waves [176, 177, 9], does not require magnetic material

neither inside the hole nor in the external region. According to Eq. (4.44), the required

relative magnetic permeability for achieving a perfect magnetic lens is homogeneous and

anisotropic, with radial and angular components µρρ = k and µϕϕ = 1/k, respectively.

Since k was defined as a negative parameter, there are infinite possible anisotropic per-

fect magnetic lenses, all with negative values of both µρρ and µϕϕ. All these lenses

exhibit different properties, since they result from different space transformations [Eqs.

(4.40)-(4.42)].

The analytic expression for the magnetic field in all regions of space is found from

Eq. (1.22) and the space transformations in Eqs. (4.40) and (4.41) as

H′(ρ′, ϕ′) =

(
R1

R2

)1/k−1
H

((
R1

R2

)1/k−1
ρ′, ϕ′

)
, ρ′ ∈ [0, R1), (4.45)


H ′ρ(ρ

′, ϕ′) = 1
k

(
ρ′

R2

)1/k−1
Hρ

(
R2

(
ρ′

R2

)1/k
, ϕ′
)
,

H ′ϕ(ρ′, ϕ′) =
(
ρ′

R2

)1/k−1
Hϕ

(
R2

(
ρ′

R2

)1/k
, ϕ′
)
, ρ′ ∈ [R1, R2],

(4.46)

H′(ρ′, ϕ′) = H(ρ′, ϕ′), ρ′ ∈ (R2,∞). (4.47)
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Equation (4.47) indicates that the field in the external region, ρ′ ∈ (R2,∞), is not

modified by the presence of the shell. The field distributions inside the shell, ρ′ ∈
[R1, R2], and inside the hole, ρ′ ∈ [0, R1), depend on the applied magnetic field. For

example, for the case of a uniform applied magnetic field, H0, one finds using Eq. (4.45)

that the field inside the shell hole, HINT, is

HINT =

(
R2

R1

)1−1/k
H0. (4.48)

Equation (4.48) shows that perfect magnetic lenses concentrate uniform applied mag-

netic fields inside their holes. The concentration ratio tends to R2/R1 for lenses with

k → −∞ and increases to ∞ as k → 0− because the shell concentrates larger volumes

of space inside its hole [Eq. (4.40), Fig. 4.16].

When the applied magnetic field is not uniform, the field distribution inside the hole

can also be written in terms of the applied field. Consider now that there is a two-

dimensional dipolar magnetic field source located outside the perfect magnetic lens, at

ρ = ρ0 > R2 and ϕ = ϕ0, with dipolar magnetic moment per unit length m0. From Eq.

(4.45) one obtains that the field distribution inside the hole is equivalent to that of an

image dipole, located at

ρi =

(
R1

R2

)1−1/k
ρ0, ϕi = ϕ0, (4.49)

with a reduced dipolar magnetic moment,

mi =

(
R1

R2

)1−1/k
m0. (4.50)

The image position is the same for any magnetic field source placed at ρ0 and ϕ0, but

the magnetic strength of the image depends on the considered magnetic field source;

only the dipolar magnetic moment is reduced by a factor (R1/R2)
1−1/k.

According to Eqs. (4.45) and (4.49), when a magnetic source is located outside the

folding region, ρ0 > R0, the image appears at R1 < ρi < ρ0, i.e. closer to but not

inside the hole. In this case, the lens concentrates the field inside its hole because the

reduction of the image strength [Eq. (4.50)] is compensated by the fact that the image

appears closer to the hole. Solutions of this kind are also found when assuming positive-

permeability materials [178, 74]. In contrast, when the sources are placed within the

folding region, R2 < ρ0 < R0, the image appears inside the lens hole, at ρi < R1. This

seems to indicate that the lens is able to create magnetic sources at a distance from

its surfaces. The creation of magnetic images in empty space is, however, not possible.

Magnetostatic Maxwell equations (1.9) and (1.10) indicate that magnetic field lines can

only emanate from actual magnetic sources. This makes it impossible to achieve the

same field distribution as if a source was located in empty space (ρ < R1) if no real source

is actually placed there. Therefore, the transformation optics results for the cases in
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which the folding region contains magnetic sources have only physical validity if actual

magnetic sources are placed at the image location. Perfect lenses for electromagnetic

waves derived by transformation optics show similar limitations [179]. This result will

be analysed further in Sec. 4.3.2

Once we have analysed the behaviour of perfect magnetic lenses with magnetic field

sources located in their exterior, we consider the case of having magnetic field sources

located inside the hole of the lens. A space transformation different from that in Eqs.

(4.40) and (4.41) is required in order to understand how perfect magnetic lenses trans-

form magnetic fields generated inside their holes. Considering a cylindrical shell in-

finitely long along the z−direction with internal radius R1 and external radius R2 and

a cylinder of radius R0 < R1, the space is transformed as illustrated in Fig. 4.17.

Figure 4.17: Panels (a) and (b) illustrate the space transformation resulting in a perfect

magnetic lens with k = −1 for the case of having magnetic sources inside the hole of

the lens, and panel (c) shows the associated radial coordinate transformation.

The space in the region R0 ≤ ρ <∞ is expanded through
ρ′ =

(
R2
R0

)
ρ,

ϕ′ = ϕ, ρ ∈ (R0,∞),

z′ = z,

(4.51)

and, simultaneously, the space R0 < ρ < R1 is folded (arrows in Fig. 4.17b) as
ρ′ = R1

(
ρ
R1

)k
,

ϕ′ = ϕ, ρ ∈ [R0, R1].

z′ = z.

(4.52)

As above, k is a negative parameter ranging from 0− to −∞. To guarantee the continuity

of the space at ρ′ = R2, Eqs. (4.51) and (4.52) give the following relation between k

and R0,

R0 = R1(R2/R1)
1/k. (4.53)

Similar as before, Eqs. (1.19) and (1.20) of the transformation optics theory are

applied to obtain the permeability resulting in the presented space transformation. For
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simplicity, we limit our study to problems with translational symmetry along z. In this

way, we obtain that the permeability in the regions ρ′ > R2 and ρ′ < R1 must be µ = 1

(air), while in the region R1 < ρ′ < R2 a material with anisotropic relative permeability

µρρ = k and µϕϕ = 1/k, which constitutes the perfect magnetic lens, is required.

The analytic expression for the magnetic field in all regions of space is found from

Eq. (1.22) and the space transformations in Eqs. (4.51) and (4.52) as

H′(ρ′, ϕ′) = H(ρ′, ϕ′), ρ′ ∈ [0, R1), (4.54)
H ′ρ(ρ

′, ϕ′) = 1
k

(
ρ′

R1

)1/k−1
Hρ

(
R1

(
ρ′

R1

)1/k
, ϕ′
)
,

H ′ϕ(ρ′, ϕ′) =
(
ρ′

R1

)1/k−1
Hϕ

(
R1

(
ρ′

R1

)1/k
, ϕ′
)
, ρ′ ∈ [R1, R2],

(4.55)

H′(ρ′, ϕ′) =

(
R2

R1

)1/k−1
H

((
R2

R1

)1/k−1
ρ′, ϕ′

)
, ρ′ ∈ (R2,∞). (4.56)

Equation (4.54) indicates that the field inside the hole, ρ′ ∈ [0, R1), is not modified by

the presence of the shell. The field distributions inside the shell, ρ′ ∈ [R1, R2], and in

the external region, ρ′ ∈ (R2,∞), are transformed by the lenses according to Eqs. (4.55)

and (4.56), respectively.

As an example, we analyse how a perfect magnetic lens transforms the field created

by a magnetic dipole. Consider a long dipole of magnetic moment per unit length m0

placed inside the hole of the cylindrical perfect magnetic lens with the permeability in

Eq. (4.44). The position of the long dipole in cylindrical coordinates is ρ = ρ0 < R1 and

ϕ = ϕ0, as sketched in Fig. 4.18. Equation (4.56) indicates that the field distribution

outside the lens corresponds to the field of an image dipole located at

ρi =

(
R2

R1

)1−1/k
ρ0, ϕi = ϕ0, (4.57)

with a magnified dipolar magnetic moment per unit length

mi =

(
R2

R1

)1−1/k
m0. (4.58)

These equations show that perfect magnetic lenses achieve a strong expulsion of the

magnetic field inside their volume. As occurred when considering sources in the external

region, the behaviour of the lens depends on the position of the inner source. If the source

is placed outside the folding region, ρ0 < R0, the field in all the external region is that

of an image source, as sketched in Fig. 4.18a. However, if the source is placed in the

folding region, R0 < ρ0 < R1, the image appears at a distance from the external surface

of the lens, at ρi > R2 (Fig. 4.18b). As discussed above for the case of external sources,

because magnetic field lines can only emanate from magnetic sources, this latter result

is not physical unless a magnetic source is actually placed at ρi.
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Figure 4.18: Sketch of two cylindrical perfect magnetic lenses of internal radius R1 and

external radius R2 with a long (along z) magnetic dipole (black arrow) placed inside

their holes, at ρ = ρ0 < R1. The dotted line indicates the folding radius R0. In (a)

ρ0 < R0 and the field in the external region corresponds to the field created by an image

dipole (red arrow) located inside the lens. In (b) ρ0 > R0 and the image dipole appears

outside the lens. The length of the arrows indicates the strength of the dipolar magnetic

moment.

In the following section we investigate further on the behaviour of perfect magnetic

lenses and, specially, on the possibility of creating magnetic sources at a distance by

solving magnetostatic Maxwell equations.

4.3.2 Study of perfect magnetic lenses with Maxwell equations

Once we have obtained by transfromation optics the required magnetic permeability

tensors to achieve a cylindrical perfect magnetic lens, we study its magnetic response

following a different approach, by solving magnetostatic Maxwell equations. Consider

the perfect magnetic lens in Fig. 4.18; a long cylindrical shell with internal radius R1,

external radiusR2, radial relative permeability µρρ = k and angular relative permeability

µϕϕ = 1/k. A long magnetic dipole with magnetic moment per unit length (mx,my) =

(0,m0) is placed inside the shell hole, at (x, y) = (ρ0, 0). The magnetic scalar potential

created by this dipole can be written as the Fourier series

φD =


− m0

2πρ0

∑∞
n=1

(
ρ
ρ0

)n
sin(nϕ), ρ ≤ ρ0,

m0
2πρ0

∑∞
n=1

(
ρ0
ρ

)n
sin(nϕ), ρ > ρ0.

(4.59)

We focus on the particular case of having a magnetic dipolar source inside the shell

hole, but a similar procedure can be applied to obtain the field distribution for any other

source placed inside the hole or outside the lens. Because there are not free currents

involved in the problem, the magnetic field can be obtained as the gradient of a magnetic

scalar potential φ in all the space. The general solution for the scalar potential inside

the hole (INT), in the shell (SHE) and in the external region (EXT) is found to be,
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φINT
PL = φD +

∞∑
n=1

anρ
nsin(nϕ), (4.60)

φSHE
PL =

∞∑
n=1

bnρ
n/ksin(nϕ) +

∞∑
n=1

cn

ρn/k
sin(nϕ), (4.61)

φEXT
PL =

∞∑
n=1

dn
ρn

sin(nϕ), (4.62)

where we have taken into account that the potential must be finite at ρ = 0 and tend

to zero when ρ→∞. By applying magnetostatic boundary conditions [Eqs. (1.14) and

(1.15)] at ρ = R1 and ρ = R2, the potential coefficients are obtained as

an = 0, (4.63)

bn = 0, (4.64)

cn =
m

2πρ0

1

R
(1−1/k)n
1

ρn0 , (4.65)

dn =
m

2πρ0

(
R2

R1

)(1−1/k)n
ρn0 . (4.66)

The study of the derived potentials leads to some general properties of cylindrical

perfect magnetic lenses. We focus on two main results. First, the solution for the

magnetic scalar potential inside the hole φINT
PL confirms that the lens does not distort the

magnetic scalar potential created inside its hole, as we had obtained from transformation

optics [Eq. (4.54)]. This property is observed in Fig. 4.19; the fields inside the hole of

the lenses in Figs. 4.19b and f are exactly the same as those of the bare dipoles shown

in Figs. 4.19a and e, respectively. Second, the magnetic scalar potential in the external

region φEXT
PL is found to be equivalent to that created by the image dipole obtained by

transformation optics, with dipolar magnetic moment and position given by Eqs. (4.58)

and (4.57), respectively. The dipolar strength and the position of these image dipoles

are sketched as light red arrows in Figs. 4.19d and h. However, this equivalence is

only valid in the region ρ > ρi; when the image appears outside the lens, ρi > R2, the

magnetic scalar potential in the region ρ ∈ (R2, ρi) is not convergent. These results are

observed by comparing the field distribution outside the lenses in Figs. 4.19b and f with

the field created by the image dipoles in Figs. 4.19c and g, respectively. In Fig. 4.19f

the region ρ ∈ (R2, ρi) is painted in white to indicate that the field diverges.

Perfect lenses with k = −1 exhibit an extra property, which can also be noticed in

Figs. 4.19b and f. The magnetic scalar potential in the lens volume is equivalent to

the field of another image dipole (sketched as a blue arrow in Figs. 4.19d and h). The

magnetic moment of this image is mi2 = −(R1/ρ0)
2m0 and its position is ρi2 = R2

1/ρ0
and ϕi2 = ϕ0. When this image appears in the material volume, R1 < ρi2 < R2,

the magnetic field in the region ρ ∈ (ρi2, R2) (painted in white in Fig. 4.19f) is not

convergent.
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Figure 4.19: Numerical calculations of the normalized magnetic induction ByR
2
1/(µ0m0)

for (a) a long dipole (black arrow) of magnetic moment per unit length (mx,my) =

(0,m0) placed at (x, y) = (ρ0, 0), (b) the dipole in (a) surrounded by a perfect magnetic

lens with internal radius R1 = 3ρ0, external radius R2 = 2R1, and permeability µρρ =

µϕϕ = −1, (c) a dipole of magnetic moment (0, 4m0) placed at (4ρ0, 0), (e) a dipole

of magnetic moment (0, m0) placed at (2ρ0, 0), (f) the dipole in (e) surrounded by

the perfect magnetic lens in (b), and (g) a dipole of magnetic moment (0, 4m0) placed

at (8ρ0, 0). Panels (d) and (h) sketch the original dipole (black arrow) and the image

dipoles (red arrow and blue arrow) for the perfect lens (blue region) configurations in (b)

and (f), respectively. The dotted line in (b), (d), (f), and (h) indicates the boundary of

the folding region, ρ = R0 = R2
1/R2. In (a)-(d), ρ0 < R0, while in (e)-(h), R0 < ρ0 < R1.

The white annular regions in (f) indicate that the field diverges.

The annular regions of divergences that appear in perfect magnetic lenses have been

previously studied in the quasistatic regime and are known as regions of anomalous

localized resonances [180, 181, 182]. Interestingly, these divergences make it possible to

achieve the field of an image source in the region ρ > ρi without the need of placing

an extra source at ρi. Because the field in the region ρ ∈ (R2, ρi) is not the field of

the image source, an image can appear at ρi > R2 without violating magnetostatic

Maxwell equations; a cumbersome and strong (infinite) field distribution is adequately

generated inside the lens volume in such a way that the field reaching the region ρ > ρi
is equivalent to the field created by a source placed at ρi. These regions of anomalous

localized resonances are discussed further in the following section.



88 Shaping magnetic fields with negative permeability

4.3.3 Creating and cancelling magnetic sources with perfect lenses

Cylindrical perfect magnetic lenses have been shown to exhibit a linear, homoge-

neous, and anisotropic magnetic permeability. According to Eq. (4.44), their radial

and angular relative permeability fulfill µρρ = k and µϕϕ = 1/µρρ = 1/k, respectively.

Because k is a negative parameter, the permeability of perfect lenses is always negative.

As explained in the previous sections, negative permeability values in magnetostatics

can be emulated in practice by active metamaterials consisting of suitably tailored sets

of electric currents adequately arranged in space [141, 111]. This strategy is reminiscent

of the active perfect magnetic lenses for electromagnetic waves presented in [183, 184],

based on two metasurfaces characterized by their impedances that substitute the n = −1

material constituting the lens.

As discussed in Sec. 4.1.3, the currents that emulate a material with negative perme-

ability can be found from the material magnetization. In general, a cylindrical perfect

magnetic lens with internal radius R1 and external radius R2 can be substituted by a

volume current density JM and two surface current densities, flowing at the surfaces

ρ = R1 and ρ = R2. For the next discussion, we focus on perfect magnetic lenses with

k = −1 because they are isotropic (µρρ = µϕϕ = −1) and their emulation does not

require volume currents, JM = 0.

Consider a long (along z) dipole with magnetic moment per unit length (mx,my) =

(0,m0) located inside the perfect lens hole, at (x, y) = (ρ0, 0), as depicted in Fig. 4.18.

The magnetic scalar potential in all space is given by Eqs. (4.60)-(4.66). The surface

current densities required to emulate the lens, K1 = KM(ρ = R1) and K2 = KM(ρ =

R2), are obtained from Eq. (1.12) by writing the magnetization in terms of the magnetic

field, Mϕ = −2Hϕ [Eq. (1.13)], which is, in turn, obtained from the magnetic scalar

potential [Eq. (2.1)]. When the external field corresponds to the field of an image dipole

located in the material volume, ρi ≤ R2 (Fig. 4.18a), the lens can be emulated by

K1 =
m0

πρ0R1

∞∑
n=1

(
ρ0
R1

)n
ncos(nϕ)uz =

m0[−2R1ρ0 + (R2
1 + ρ20)cosϕ]

π(R2
1 + ρ20 − 2ρ0R1cosϕ)2

uz, (4.67)

K2 =
−m0

πρ0R2

∞∑
n=1

(
R2ρ0
R2

1

)n
ncos(nϕ)uz =

m0[2R
2
1R2ρ0 − (R4

1 +R2
2ρ

2
0)cosϕ]

π[R2
1 +

(
R2
R1

)2
ρ20 − 2R2ρ0cosϕ]2

uz. (4.68)

When surrounding the dipole by these current densities, the field distribution in

Fig. 4.19b is exactly recovered. However, when the image appears outside the material

volume, ρi > R2 (Fig. 4.18b), the magnetic scalar potential diverges at ρ = R2, resulting

in a divergence of the current distribution K2; the sum in Eq. (4.68) is not convergent.

In spite of this and even though all the infinite terms of the current distribution in Eq.

(4.68) are required for achieving the exact field of the image dipole, one can truncate the

sum up to a finite number of terms nT and obtain a field distribution that approximates

well the field of the image dipole at ρ > ρi. In this case, the surface current densities

that approximately emulate a perfect magnetic lens are K1 in Eq. (4.67) and
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K2 =
−m0

πρ0R2

nT∑
n=1

(
R2ρ0
R2

1

)n
ncos(nϕ)uz. (4.69)

In Fig. 4.20 three field distributions resulting from the current densities in Eqs.

(4.67) and (4.69) are shown for the cases nT = 5, nT = 10, and nT = 20. It can be

seen that the larger the number of terms nT the more the field resembles that of the

ideal material with µρρ = µϕϕ = −1. The shell does not distort the field of the dipole

inside the hole and creates the field of an image dipole of magnetic moment mi located

at ρ = ρi in the region ρ > ρi (red arrow in Fig. 4.20d) and the field of another image

dipole of magnetic moment mi2 located at ρ = ρi2 in the region R1 < ρ < ρi2 (blue

arrow in Fig. 4.20d).

Figure 4.20: In panels (a)-(c), numerical calculations of the normalized magnetic induc-

tion ByR
2
1/(µ0m0) resulting from a dipole (black arrow) of magnetic moment per unit

length (mx,my) = (0,m0) placed at (x, y) = (ρ0, 0) surrounded by the current distri-

butions in Eqs. (4.67) and (4.69) for the case R1 = 3/2ρ0, R2 = 2R1 and (a) nT = 5,

(b) nT = 10, and (c) nT = 20. In panel (d), a schetch illustrating the dipole images

(blue and red arrows) that a perfect lens (blue region, extending from R1 to R2) creates

when a dipole (black arrow) is placed inside its hole, at (x, y)=(ρ0, 0). The dotted line

indicates the boundary of the folding region, ρ = R0 = R2
1/R2, and the dashed line

indicates the position of the external image dipole ρi = ρ0(R2/R1)
2.

The emulation of a perfect magnetic lens by an active metamaterial consisting of

electric currents may be used to create magnetic sources at a distance. The two current

densities in Eqs. (4.67) and (4.69) surrounding an original dipole are shown to create a

dipole remotely in all the region ρ > ρi (see Fig. 4.20). Interestingly, if the goal is to

create a dipole at a distance the active metamaterial can be simplified. By analysing

the field distribution the current K1 creates, one finds that this current density has two

tasks. First, in the region ρ < R1 it cancels the magnetic field created by the current

K2, which guarantees that the field inside the hole is not distorted by the presence of

the currents. Second, in the region ρ > R1 it cancels the field created by the original

dipole.
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This means that the current density K2 is the only responsible for creating the two

image dipoles; the original dipole and the current density K1 are not required for creating

a dipole at a distance. Rewriting Eq. (4.69) in terms of the image dipole parameters,

mi and ρi, one finds that the current density that has to be fed to a cylindrical surface

of radius R to create a dipole of magnetic moment per unit length (0,mD) at (ρD, 0) is

KD(ρ = R) =
mD

πρDR1

∞∑
n=1

(ρD
R

)n
ncos(nϕ)uz. (4.70)

This current density could eventually be used to remotely cancel the field created by a

long (along z) small magnet, which can be approximated by a long dipolar source. KD

can be used to create the field of a magnetic dipole with the same magnetic moment

as the magnet that needs to be cancelled but pointing in the opposite direction. An

example of the cancellation of a long dipole at a distance is shown in Fig. 4.21.

Figure 4.21: Numerical calculations of the normalized magnetic induction ByR
2
1/(µ0m0)

for (a) a long dipole (black arrow) of magnetic moment per unit length (mx,my) =

(0,m0) placed at (x, y) = (x0, 0), (b) the current distribution in Eq. (4.70) for ρD = x0,

mD = −m0, R = 3x0/4, and nT = 30, and (c) the dipole in (a) plus the current density

in (b).

Similar active metasurfaces can create/cancel other magnetic sources remotely. It is

particularly interesting to analyse the case of current wires, since most magnetic field

sources can be regarded as combinations of them. For example, the field created by a

dipole can be well approximated by the field created by two long straight antiparallel

wires placed close to each other.

Consider a straight wire with current I placed inside the hole of a perfect magnetic

lens with internal radius R1, external radius R2 and anisotropic permeability µρρ = k

and µϕϕ = 1/k. The wire position is ρ = ρ0 < R1 and ϕ = ϕ0. It can be found both

with transformation optics and with Maxwell equations that the lens does not distort

the field inside the hole and that the magnetic field in the external region corresponds

to the field of an image wire of current I located at ρ = ρi and ϕ = ϕi [Eq. (4.57)].

Same as for the case of the dipolar source, when ρi > R2 there is an annular region of

divergent magnetic field between R2 and ρi.
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Figure 4.22: Sketch of a cylindrical perfect magnetic lens (blue region) surrounding two

antiparallel long wires of current I and −I separated by a distance ∆x (shown in black).

The resulting image wires are plotted in red. The black and the red arrows illustrate

the strength and the position of the dipolar magnetic moment that the original and the

image wires create, respectively.

The magnification of the dipolar magnetic moment given by Eq. (4.58) can be

understood from this result. Consider two antiparallel straight wires with current I and

−I separated by a distance ∆x, as shown in black in Fig. 4.22. The field created by

these wires can be well approximated as the field of a long dipole with dipolar magnetic

moment per unit length (mx, my) = (0, I∆x) located at the middle of the two wires

(black arrow in Fig. 4.22). When surrounding these two wires by a perfect magnetic

lens, the field in the external region corresponds to the field of two antiparallel image

wires with current I and −I placed at the positions given by Eq. (4.57) (shown in red

in Fig. 4.22). Because the shell effectively increases the distance between the wires by

a factor (R2/R1)
1−1/k and the dipolar magnetic moment is proportional to the distance

between the wires, the dipolar moment created by the wires is magnified (red arrow in

Fig. 4.22), recovering in this way the result in Eq. (4.58).

Consider the case of an isotropic perfect magnetic lens with µρρ = µϕϕ = −1 sur-

rounding a wire located at (x, y) = (ρ0, 0). The magnetic field in the shell region is

equivalent to that created by two image wires; a wire with current I at ρi2 = R2
1/ρ0

plus a wire with current −I at ρi3 = 0 (see Figs. 4.23b and f and the blue sketches of

the wires in Figs. 4.23d and h). The two surface current densities that must be fed at

ρ = R1 and ρ = R2 to emulate the perfect magnetic lens with this wire inside the hole

are

KW
1 = − I

πR1

(
1 +

∞∑
n=1

(
ρ0
R1

)n
cos(nϕ)

)
uz = − I

πR1

(
1− ρ0(ρ0 −R1cosϕ)

R2
1 + ρ20 − 2R1ρ0cosϕ

)
uz,

(4.71)

KW
2 =

I

πR2

(
1 +

∞∑
n=1

R−2n1 Rn2ρ
n
0cos(nϕ)

)
uz. (4.72)
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Figure 4.23 shows that these two current densities act as a perfect magnetic lens

both when the original wire is placed outside the folding region (Figs. 4.23a-d) and

when it is placed within the folding region (Figs. 4.23e-h). For the latter, the sum in

KW
2 is truncated to nT = 30 terms because it is not convergent. First, by comparing

Figs. 4.23a and b and Figs. 4.23e and f, one observes that the field in the region ρ < R1

is not distorted by the currents. Second, by comparing Figs. 4.23b and c and Figs. 4.23f

and g, the field in the exterior of the current densities is found to be equivalent to that

of an image wire (sketched in red in Figs. 4.23d and h, respectively) of current I located

at ρ = ρi in the region ρ > ρi. Same as for the case of a dipolar magnetic source, the

only current density responsible for creating the image wire located at ρ = ρi2 is KW
2 .

Figure 4.23: In panels (a)-(c) and (e)-(g), numerical calculations of the normalized

magnetic induction ByR1/(µ0I) a straight wire of current I (sketched as a black dot)

creates in different configurations. In (a) the wire is placed at (x,y)= (x0, 0). In (b) the

wire in (a) is surrounded by the current densities in Eqs. (4.71) and (4.72) for R1 = 3x0,

R2 = 2R1 and ρ0 = x0. In (c) the wire is located at (4x0, 0). In (e) the wire is placed at

(2x0, 0). In (f) the wire in (e) is surrounded by the current densities in Eqs. (4.71) and

(4.72) (truncated to nT = 30 terms) for R1 = 3x0, R2 = 2R1 and ρ0 = 2x0. In (g) the

wire is placed at (8x0, 0). Panels (d) and (h) illustrate the creation of images achieved

by a perfect magnetic lens with µ = −1 (filled in light blue, extending from R1 to R2)

when surrounding the wires in (a) and (e), respectively. The dotted lines in (b),(d),(f),

and (h) indicate the inner boundary of the folding region ρ = R0 = R2
1/R2. The image

wire sketched in red in (d) and (h) give the field distribution in the external region,

while the image wires sketched in blue give the field distribution in the shell volume.
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4.4 Chapter summary and conclusions

In this chapter, materials with a negative value of the static magnetic permeabil-

ity have been introduced and studied as a natural extension to the case of positive-

permeability materials. Active metamaterials based on currents have been proposed as

a way to effectively emulate the properties of negative-permeability materials in prac-

tice. These currents are obtained from the material magnetization and depend on the

applied magnetic field and on the material geometry and permeability. The theory has

been demonstrated by the experimental realization of a spherical shell that produces the

same magnetic induction field distribution as that of a spherical shell with µ = −1/2 in

a uniform applied field.

After introducing materials with negative static permeability, two applications of

these materials have been studied. The first one has been the illusion of transforming

the magnetic signature of an object into that of another one. While some particular

cases of illusion, like magnetic cloaking for example, had already been achieved with

positive-permeability materials, negative permeability makes it possible to disguise an

original object as another object. The theory for transforming the magnetic signature

of a sphere of arbitrary permeability into another sphere with different permeability

and radius has been presented. The extreme transformation of a ferromagnetic sphere

into that of its antagonistic material, a perfect diamagnet, has been experimentally

realized to verify our ideas. The second application of negative permeability that has

been studied is the possibility of creating perfect magnetic lenses, which are able to

create magnified images of magnetic sources. Because approximate images may appear

in empty space, these lenses could be used to create magnetic sources at a distance,

something unachievable with positive permeability. The particular case of creating and

cancelling a dipole at a distance has been studied in detail, but the theory could be

applied to any magnetic field source. The idea of cancelling magnetic sources at a

distance by active metamaterials with negative permeability is a first step towards the

realization of a magnetic external cloak. While external cloaks that cancel the scattering

of an object at a distance without the need of surrounding the object have already been

proposed for electromagnetic waves [132, 185, 186, 187], analogous devices for the case

of static magnetic fields have yet to be developed.

To sum up, materials with negative permeability have been shown to exhibit prop-

erties beyond those known for positive-permeability materials and can be regarded as a

new tool for shaping, controlling, and even for creating static magnetic fields.





CHAPTER 5

Conclusions

The understanding of magnetism and its interaction with magnetic materials has

enabled the development of a wide range of technologies that are present in our daily

life; magnetism is nowadays found at the basis of electric generators, computers, credit

cards, and medical techniques such as magnetic resonance imaging and hyperthermia.

In the last decade, the ’toolbox’ for controlling static magnetic fields has been enriched

thanks to the introduction of magnetic metamaterials and transformation optics, which

have enabled the realization of intriguing devices such as magnetic cloaks, concentra-

tors, and hoses. In this thesis, we have extended the results along this line to propose

different metamaterial devices to shape magnetic fields in novel ways. We have not only

considered the case of passive magnetic metamaterials with positive permeabilities, but

also active magnetic metamaterials with negative permeabilities.

Since most magnetic metamaterials consist of arrangements of extreme-permeability

materials, we have started by studying in detail the interaction of magnetic fields with

perfect diamagnetic materials with µ → 0 and ideal ferromagnetic materials with µ →
∞. This study has shown that extreme-permeability materials exhibit some interesting

features that remain yet to be exploited and could be further developed to achieve new

magnetic field configurations. For example, we have demonstrated that one can use

perfect diamagnetic materials to overlap the field created by several wires located at

different points.

Once the properties of extreme-permeability materials have been discussed, we have

presented different devices based on magnetic metamaterials with positive permeability.

We have demonstrated that hollow magnetic metamaterials of different geometries with

extremely anisotropic permeability (very large in the radial direction and small in the

angular one) can achieve a strong concentration of magnetic field inside their holes, a

95
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strong expulsion of the magnetic fields created inside their holes towards their exterior,

and the magnification of the magnetic response of magnetic materials placed inside their

holes. As another application of magnetic metamaterials, we have shown that isotropic

multilayer shells can be used to cloak a magnetic sensor in such a way that it is able to

detect the applied magnetic field while being magnetically undetectable.

Inspired by all the possibilities that negative refraction has enabled for the control

of light, in the last part of the thesis we have studied the interaction of static magnetic

fields with materials with negative permeabilities. Such materials do not naturally occur,

but we have demonstrated that they can be emulated in practice as arrangements of

free currents. Negative permeability has been applied to demonstrate how to transform

the magnetic signature of an object into that of another one (magnetic illusion) and

to theoretically derive the analogy of a perfect lens for the case of static magnetic

fields. We think that these results are particularly relevant; the introduction of negative

static permeability could lead to the realization of devices that have been explored for

controlling light but have not yet an analogy in magnetostatics due to the lack of negative

permeability media, such as the possibility of making an object undetectable remotely.

All the theoretical results we have presented, which have been derived directly from

the magnetostatic Maxwell equations or by applying the transformation optics theory,

have been confirmed by numerical calculations. Also, some of the theoretical ideas

have been demonstrated with proof-of-principle experiments. We have experimentally

verified that an anisotropic spherical shell with positive permeability discretized by a

set of ferromagnetic funnels achieves a strong magnetic field concentration inside its

hole, that negative permeability media can be effectively emulated by free currents and,

finally, that negative permeability enables the illusion of transforming the magnetic

signature of a ferromagnetic sphere into that of a larger perfect diamagnetic sphere.

The future work to extend the results presented in this thesis can be divided into two

different lines. On the one hand, there are still experimental demonstrations that could

be realized to verify some of the proposed theoretical strategies for shaping magnetic

fields, such as the magnification ability of magnetic concentrators, the possibility of

making a magnetic sensor undetectable, or the realization of a perfect magnetic lens.

We are currently working on the latter experimental demonstration. We believe that the

experimental realization of a perfect magnetic lens that enables the creation of magnetic

sources at a distance could have a remarkable technological impact, specially because

it would enable the focusing of strong magnetic fields. On the other hand, one could

extend the results presented in this work by considering that actual magnetic materials

are, in general, not linear. The consideration of non-linearities is not only important

because it could set the limitations of the magnetic devices derived assuming linear

media, but also because it could lead to new interesting effects.



APPENDIX A

Uniqueness theorems in magnetostatics

In this appendix, we demonstrate that the magnetic field distribution in a given vol-

ume is uniquely determined by the specification of the magnetic scalar/vector potential

or its derivative at its boundaries.

A1 Magnetic scalar potential

Consider a volume V bounded by a surface S. If there are not free currents, Jf = 0,

the magnetic field in this volume fulfills ∇ ×H = 0 and can be written in terms of a

magnetic scalar potential φ as H = −∇φ. Let us assume ∇ ·H = 0, so that φ fulfills

the Laplace equation ∇2φ = 0. Here we prove that the specification of the magnetic

scalar potential φ along the surface S, known as Dirichlet boundary condition, uniquely

determines the magnetic scalar potential through the volume V . Similar proofs are

derived in [2, 4, 3] for electrostatics.

Suppose that there are two solutions for the magnetic scalar potential, φ1 and φ2
both fulfilling the Laplace equation in the volume V . φ1 and φ2 are specified at the

bounding surface S, so that φ1|S = φ2|S = φS. In this case, the difference potential,

φ3 = φ1 − φ2, which also fulfills the Laplace equation, is specified at S as φ3|S = 0.

Consider the relation

∇ · (φ∇φ) = (∇φ)2 + φ∇2φ. (A1)

For the difference magnetic scalar potential φ3, this expression leads to∫
V

(∇φ3)2dV =

∫
V
∇ · (φ3∇φ3)dV =

∮
S
φ3∇φ3dS =

∮
S
φ3
∂φ3
∂n

dS, (A2)

where ∂φ3/∂n is the normal derivative of φ3 and we have applied the divergence theorem.
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Since we have considered φ3|S = 0, we obtain∫
V

(∇φ3)2dV = 0, (A3)

which can only be satisfied if ∇φ3 = 0 everywhere in the volume V . This leads to a

constant value of φ3, which can only fulfill the condition φ3|S = 0 if φ3 = φ1−φ2 is zero.

Therefore, the solution for the magnetic scalar potential in V is uniquely determined by

the specification of the magnetic scalar potential along the surface S.

The magnetic scalar potential in the volume V is also uniquely determined (apart

from an additive arbitrary constant) if the normal derivative of φ along the bounding

surface S is specified. This is known as Neumann boundary condition. As above, assume

there are two solutions for the magnetic scalar potential, φ1 and φ2 that fulfilling the

Laplace equation in the volume V and that the normal derivative of φ1 and φ2 is specified

at the bounding surface S, so that (∂φ1/∂n)|S = (∂φ2/∂n)|S . In this case, the normal

derivative of the difference potential, φ3 = φ1 − φ2, at S is (∂φ3/∂n)|S = 0, which

according to Eq. (A2) also leads to Eq. (A3). Therefore φ3 must be constant across

the volume V . Thus, the solution for the magnetic scalar potential in the volume V is

uniquely determined since apart from an additive arbitrary constant ct, φ1 and φ2 are

equivalent (φ1 = φ2 + ct).

A2 Magnetic vector potential

Consider now that the volume V bounded by the surface S includes free currents. In

this case, the magnetic field cannot be written in terms of a magnetic scalar potential

because ∇×H = Jf 6= 0. Here we prove that if the free current density Jf is specified

through the volume V and the magnetic vector potential A is specified on the sur-

face S, the magnetic induction is uniquely determined through V (Dirichlet boundary

condition).

Suppose that the magnetic vector potential is not uniquely determined and there are

two solutions A1 and A2 that fulfill

∇×∇×A1 = µ0µJf , (A4)

∇×∇×A2 = µ0µJf , (A5)

through V . The magnetic vector potential at the bounding surface S is specified, so

that A1|S = A2|S = AS. Consider now the difference magnetic vector potential A3 =

A1 −A2, which fulfills

∇×∇×A3 = 0, (A6)

and A3|S = 0. The difference magnetic induction B3 is therefore B3 = B1 − B2 =

∇×A1 −∇×A2.
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Consider now the relation,

(∇×U)2 −U · ∇ ×∇×U = ∇ ·U× (∇×U). (A7)

By setting U = A3 and applying the divergence theorem we obtain∫
V

(∇×A3)
2dV =

∫
V
∇ · (A3 ×B3) dV =

∮
S

A3 ×B3dS. (A8)

Since A3|S = 0, ∫
V

(∇×A3)
2dV = 0. (A9)

Because (∇×A3)
2 is positive, this condition can only be satisfied if B3 = ∇×A3 = 0

through V . Therefore, the solution for the magnetic induction in V is unique, because

B3 = 0 implies B1 = B2. Since ∇×A3 = 0, the difference magnetic vector potential in

the volume V is a uniform field f , indicating that the solution for the magnetic vector

potential in V is uniquely determined except for a field f that does not contribute to

the magnetic field induction distribution (A1 = A2 + f).

A similar derivation can be made to prove that if the free current density Jf is

specified through a volume V and the magnetic field induction B is specified on the

bounding surface S, the magnetic field induction is also uniquely determined through

V and on S.
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[56] B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental Veri-

fication of Plasmonic Cloaking at Microwave Frequencies with Metamaterials,”

Physical Review Letters, vol. 103, p. 153901, oct 2009.

[57] N. Engheta, “Pursuing Near-Zero Response,” Science, vol. 340, pp. 286–287, apr

2013.
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