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Abstract
Weconsider the optimal control problemof a small nonlinear econometricmodel under
parameter uncertainty and passive learning (open-loop feedback). Traditionally, this
type of problems has been approached by applying linear-quadratic optimization algo-
rithms. However, the literature demonstrated that those methods are very sensitive to
the choice of random seeds frequently producing very large objective function val-
ues (outliers). Furthermore, to apply those established methods, the original nonlinear
problem must be linearized first, which runs the risk of solving already a different
problem. Following Savin and Blueschke (Comput Econ 48(2):317–338, 2016) in
explicitly addressing parameter uncertainty with a large Monte Carlo experiment of
possible parameter realizations and optimizing it with the Differential Evolution algo-
rithm, we extend this approach to the case of passive learning. Our approach provides
more robust results demonstrating greater benefit from learning, while at the same time
does not require to modify the original nonlinear problem at hand. This result opens
new avenues for application of heuristic optimization methods to learning strategies
in optimal control research.
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1 Introduction

Mathematical models are pervasive in economics. They are often given in a form of a
dynamic system of equations describing how economy evolves over time. Since it is
widely accepted that the nonlinear framework allows to derive more precise picture
of reality compared to the linear one, we consider a system of nonlinear equations
describing an economy. Having such a mathematical system, one is tempted to use it
in order to optimize the state of the world or rather to guide it into a desired direction.
This is a very simplified description of the optimal control framework. One important
topic in this research field is the inclusion of learning strategies. We follow this line of
research and introduce in this study a newway for including a passive learning strategy
into an optimal control problem. The term “learning” used here implies that the policy-
makers (or any other user of optimal control problems) are willing to observe and to
learn from the current state of the world. As a result, the information about the system
is updated systematically. Thus, in addition to the optimal control process an updating
procedure is included in this methodology.

The basic work on introducing learning in the stochastic optimal control field can
be found in the studies by Tse and Bar-Shalom (1973) and Kendrick (1981). There
are two main concepts of learning, namely passive learning (or open-loop feedback)
and active learning (see Kendrick and Amman (2006) for a common classification).
Some more recent work on the latter topic can be found in Beck and Wieland (2002),
Amman et al. (2018) and Amman and Tucci (2018). In this study we concentrate on
the passive learning approach. However, an extension of the proposed evolutionary
method to include the active learning is an obvious path for the future research.

By considering the passive learning strategy we follow the approach introduced
by Kendrick (1981).1 However, this framework was restricted to linear models only.
Later, it was extended to nonlinear problems in Blueschke-Nikolaeva et al. (2012) and
resulted in the algorithmOPTCON2. In this study, OPTCON2 is used as a “traditional”
baseline solution to check the quality of the new proposed methodology. The feature
of the OPTCON2 algorithm is a simultaneous consideration of nonlinear systems and
passive learning strategy. The passive learning occurs using the Kalman filter update
procedure. The nonlinear issue is solved by an iterative approximation procedure
using the linear-quadratic (LQ) framework. Some common limitations for the linear-
quadratic (LQ) framework include an symmetric objective function and very limited
ability for additional restrictions like inequality constraints. Many of this issues were
already solved by replacing the linear-quadratic (LQ) framework by the Differential
Evolution method. In particular, the restriction of the symmetric objective function
are addressed in Blueschke et al. (2013b), while inequality constraints—in Savin
et al. (2018). In addition, Blueschke and Savin (2017) compare alternative forms of
objective function specification, which may be more suitable if—next to achieving

1 See Amman and Kendrick (2003) for an application example.
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policy targets—one is also willing to minimize volatility of the economic system over
time.

A more general limitation for the linear-quadratic (LQ) framework applied to non-
linear problems is the need to linearize themfirst. This is particularly true for stochastic
problems, where some simplification assumptions on transferring the stochastic infor-
mation from the nonlinear to the linear model have to be made. As it has been argued
by Savin and Blueschke (2016), this causes a loss of information, where the linearized
objective function of the model at hand may not necessarily correspond to the actual
problem anymore. In fact, the need to (over)simplify the actual problem before being
able to solve it is quite common in the literature (see Gilli and Schumann (2014) for
an overview). An alternative to problem simplification is to modify the optimization
algorithm, seeking not necessarily a theory-based derivative-depending optimum but
only its approximation, i.e. a solution “good enough” to satisfy the requirements to
the problem [e.g., reach a loss value below a given threshold, Gilli and Schumann
(2011)]. By sacrificing optimality, however, one gains in terms of flexibility with
respect to additional assumptions imposed on the problem (as heuristics do not have
any) and sometimes speed (as in certain cases2 an exact solution could be prohibitively
expansive). A family of computational algorithms that do not require to modify the
original (nonlinear) problem but iteratively approximate its optimum until some stop-
ping criterion is not met has been framed in the literature “heuristic” methods. And
Differential Evolution (DE, henceforth) is one of those methods designed for complex
continuous problems. The first time DE has been applied to optimal control problems
was by Blueschke et al. (2013b) demonstrating its flexibility to introducing asymmet-
ric penalties for deterministic optimal control problems. Later, DE has been extended
to stochastic problems in Savin and Blueschke (2016). The present study offers a first
application of DE to optimal control with learning.

The main motivation of this study is to combine a promising field of evolutionary-
based optimization techniques such asDEwith a sophisticated perception of the reality,
namely the ability of decision-makers to learn during the optimal control process. We
are well aware that the computational costs of such an approach are expected to be
very high. However, it would allow for a more flexible framework to be used.

The rest of the paper is structured as follows. In Sect. 2 the theoretical background
is briefly described. It includes a description of an underlying optimal control problem
and a traditional way to solve them with passive learning strategy. Section 3 discusses
the evolutionary (DE-based) approach and introduces its extension to passive learning.
An application example is presented in Sect. 4. Section 5 concludes.

2 Theoretical Background

Weconsider a nonlinear dynamic systemgiven as difference equations of the following
form:

xt = f (xt−1, xt , ut , θ, zt ) + εt , t = 1, . . . , T , (1)

2 A good example is represented by a model selection problem, where the set of possible combinations 2k

quickly explodes in the number of variables k [see Savin (2013)].
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where xt is an n-dimensional vector of state variables that describes the state of the
economic system at any point in time t . ut is an m-dimensional vector of control
variables that are exogenous for the system. However, they are directly controlled by
the decision-maker and are used to influence the state of theworld. zt denotes a vector of
non-controlled exogenous variables, θ is a p-dimensional vector of parameters, which
values are assumed to be constant but unknown to the decision-maker (parameter
uncertainty) and εt is an n-dimensional vector of additive disturbances (system error).
θ and εt are assumed to be independent random vectors with expectations θ̂ and On

and covariancematricesΣθθ andΣεε, respectively. T denotes the terminal time period
of the finite planning horizon.

The decision-maker uses the variable ut to achieve, or rather to approximate, a
desired state of the world. All her targets are summarized in the objective function as
follows:

J = E

[
T∑
t=1

Lt (xt , ut )

]
, (2)

with

Lt (xt , ut ) = 1

2

(
xt − x̃t
ut − ũt

)′
Wt

(
xt − x̃t
ut − ũt

)
. (3)

x̃t ∈ Rn and ũt ∈ Rm are given desired (target) levels of the state and control variables,
respectively. Wt is an ((n + m) × (n + m)) matrix specifying the relative weights of
the state and control variables in the objective function.

Optimal control task can be seen as a minimization problem, which means a path
of control variables ut must be calculated such as to minimize the objective function
(2). However, this optimization task is restricted by the dynamics of the system (1). In
this study an optimization approach with passive learning strategy is considered. An
inclusion of the passive learning strategy (also known as open-loop feedback, OLF)
means that the information about the underlying “true” system as given by parameter
θ is updated in each time period as a result of the observed “true” state of the world at
the “end of the day”.

2.1 Passive Learning (OLF)

The term “passive learning” used in this study means observing the current state of
the world and using the new information to improve the knowledge of the system. The
idea of passive learning (OLF) can be explained as follows. The policy-maker does not
know the “true” parameter vector θ̂ of the model and works with a set of its (imperfect)
empirical estimates θk (see Sect. 3.2). Every period, the policy-maker derives the
optimal path of the control variables u∗ as a function of the parameter θk , and not θ̂ .
And the state variables are calculated correspondingly x∗ = f (u∗, θk, . . .). At the end
of each time period, the decision-maker observes what has happened in reality, i.e. the
outcome based on the “true” model (xa∗ = f (u∗, θ̂ , . . .)) and not the estimates of the
policy-maker. The policy-maker then applies this information (or rather the mismatch
between predicted and actual state of the system due to the difference between θk and
θ̂ ) to re-estimate the model and to update the system, θknew = F(xa∗, x∗, θk). By F
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we denote a procedure which is used for the update of parameters. There are different
alternatives for the update procedure. In the OPTCON2 algorithm the Kalman filter is
used for this purpose.

2.2 OPTCON2

The idea of the paper is to introduce a new evolutionary-based approach for obtaining
OLF solutions of the optimal control problem (see Eqs. 1–3). To test the performance
of the new approach (introduced in Sect. 3) we use the OPTCON2 algorithm as a
baseline. The advantage of OPTCON2 is that it can be applied to both, open-loop
(OL) and open-loop feedback (OLF) type of problems. For the latter, an additional
updating procedure based on theKalmanfilter is included at the end of each time period
of the optimization. Furthermore, as mentioned above, it can work with the nonlinear
systems. The problem with the nonlinear system is tackled iteratively, starting with a
tentative path of state and control variables. The solution is sought from one time path
to another until the algorithmconverges or themaximal number of iterations is reached.
During this search the system is linearized around the previous iteration’s result as
a tentative path and the problem is solved for the resulting time-varying linearized
system. The approximately optimal solution of the problem for the linearized system
is found under the above-mentioned simplifying assumptions about the information
pattern; then this solution is used as the tentative path for the next iteration, starting
off the procedure all over again. Every iteration, i.e. every solution of the problem for
the linearized system, uses the Bellman’s principle of optimality in order to minimize
objective function under system conditions. See Blueschke-Nikolaeva et al. (2012) for
more details.

3 Differential Evolution with OLF

3.1 Differential Evolution

As mentioned earlier, heuristic algorithms are called this way because of their
simplified nature not necessarily finding a true optimum solution, but their approx-
imation satisfying certain stopping criteria. These optimization methods are based
on evolutionary, nature-inspired, processes employing the principles of randomness,
recombination of available solutions, and preserving the fittest out of them. To assure
good quality of approximation, heuristics normally have to run a large number of
iterations with several restarts. Hence, their widespread use has become possible only
in the last few decades thanks to the recent advances in computing technology. These
evolutionary methods are designed to address complex optimization problems eligible
for various constraints both, in discrete and continuous search spaces. An excellent
overview of these techniques is provided by Gilli and Winker (2009).

Differential Evolution (Storn and Price 1997) is a population based optimization
technique designed for continuous objective functions with multiple local minima.
Based on the idea of genetic evolution, DE uses cooperation and competition of indi-
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vidual solutions, and has only few parameters to tune. In Blueschke et al. (2013b, pp.
824–825) we describe how DE deals with optimal control problem for a deterministic
scenario (single parameter set θ ). In the following, a short summary of it is provided.
In particular, starting with an initial population of random solutions, P(1)

j,t,i (line 2 in
Algorithm 1), DE updates this population by linear combination (line 7) and crossover
(line 10) of four different solution vectors into one, and selects the fittest solutions
among the original and the updated population. This continues until some stopping
criterion is met. Each candidate solution contains all control variables for all time
periods. Thus, each candidate represents an alternative complete solution path for the
whole optimum control problem, and is given as an (m × T )-matrix, where m is the
number of controls and T—the size of the planning horizon. Each candidate solution
is also described by the time paths of corresponding state variables, which results from
the dynamic system f in (1), parameter set θ and the selected controls. For each set of
control variables and for each parameter set θ there is a unique set of state variables,
which are not directly included in a candidate solution but contribute to the objective
function in (2, 3).

Algorithm 1 Pseudocode for Differential Evolution
1: Initialize parameters m, T , pop, F and CR

2: Randomly initialize P(1)
j ,t,i , j = 1, · · · ,m; t = 1, · · · , T ; i = 1, · · · , pop

3: while the stopping criterion is not met do
4: P(0) = P(1)

5: for i = 1 to p do
6: Generate r1,r2,r3 ∈1, · · · ,p, r1 �= r2 �= r3 �= i

7: Compute P(υ)
.,.,i = P(0)

.,.,r1 + F × (P(0)
.,.,r2 - P(0)

.,.,r3 )

8: for j = 1 to m and t = 1 to T do
9: draw r_uni f from uniform distribution U (0, 1)

10: if r_uni f < CR then P(n)
j ,t,i = P(υ)

j ,t,i else P(n)
j ,t,i = P(0)

j,t,i
11: end for
12: if J (P(n)

.,.,i ) < J (P(0)
.,.,i ) then P(1)

.,.,i = P(n)
.,.,i else P(1)

.,.,i = P(0)
.,.,i

13: end for
14: end while

In the present work we apply an extended framework for stochastic problems as
described in Savin and Blueschke (2016). In this case DE has to deal in a stochastic
set-up not with a single θ , but a set of different θs representing alternative possible
realizations of parameters. We start with an initial DE population Pj,t,i (those con-
taining alternative sets of controls u to solve the system in Eqs. 1–3). However, we
do not minimize a single objective value (for a single θ draw) for each member of
the DE population, but an expected stochastic objective value. This means that we
create for each member of the DE population a large number (Λ) of Monte Carlo
realizations of θ and run for each of them the Algorithm 1 all over again. In the end
we calculate the expected objective function value for an individual member of the
DE population as a median value across all this possible (stochastic) realizations of
θs. We employ median instead of mean to get a measure robust to outliers. Let us
think of a very simple example of an initial population with just two members u1
and u2 (pop = 2). For each member we create a Monte Carlo set consisting of three
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different realizations of θ (Λ = 3). We create for u1 three realizations of θ , run three
times the Algorithm 1 and calculate the stochastic solution based on the least median
value. Then the same is applied for the u2. The resulting objective functions are used
to compare the performance of u1 and u2.

3.2 DE with OLF

The novelty of the present paper is to solve the optimal control problem (1)–(3) using
theOLF strategy bymeans of Differential Evolution. As already discussed in Sect. 2.1,
the policy-maker does not know the true parameter of the model θ̂ and derives the
optimal path of the control variables and the corresponding state of the system as
a function of its (imperfect) empirical estimate θk . Using the given information the
policy maker calculates an optimal stochastic solution according to the Algorithm 1
and the framework described in the last paragraph of Sect. 3.1. The obtained optimal
result for the time period t = 1 and u∗

1 is applied. At the end of each time period, she
observes the realized (true) values of the state variables and applies this information
to re-estimate the model and to update the system. After that the updated θk is used
to find a stochastic solution for the remaining time periods in the planning horizon
t = 2, . . . , T . Thus an optimal control problem with the OLF strategy calculated by
the DE algorithm consists of an iterative procedure as described in Algorithm 2.

Algorithm 2 Pseudocode for Differential Evolution with OLF (DE_OLF)
1: for t = 1 : T do do
2: calculate the stochastic OL solution using DE for time periods t, . . . , T and fix the optimal results

(u∗
t , x

∗
t ) for time period t based on given θk

3: observe the actual state of the world: xa∗
t

4: update the parameter estimates θk using the Kalman filter and xa∗
t according to (4) and (5)

5: set θk = θkt/t , Σ
θθ = Σθθ

t/t and t = t + 1
6: end for

In order to perform the update, the Kalman filter is used, which consists of two
steps, prediction and correction:

1. Prediction
x̂t/t−1 = f

(
xa∗
t−1, x̂t/t−1, u

∗
t , θ

k
t−1/t−1, zt

)
= x∗

t ,

θkt/t−1 = θkt−1/t−1,

Σ xx
t/t−1 = ∂x fθ t−1Σ

θθ
t−1/t−1(∂x fθ t−1)

′ + Σεε
t ,

Σ xθ
t/t−1 =

(
Σθx

t/t−1

)′ = ∂x fθ t−1Σ
θθ
t−1/t−1,

Σθθ
t/t−1 = Σθθ

t−1/t−1.

(4)

∂x f denotes the partial derivative of the function f .
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2. Correction

Σθθ
t/t = Σθθ

t/t−1 − Σθx
t/t−1

(
Σ xx

t/t−1

)−1
Σ xθ

t/t−1

and

θkt/t = θkt/t−1 + Σθx
t/t−1

(
Σ xx

t/t−1

)−1 [xa∗
t − x∗

t ]
x̂t/t = xa∗

t .

(5)

Thus, the update procedure allows to obtain the new values θkt/t andΣθθ
t/t . These values

are then used in the next time period of the optimal control problem.
Algorithm 2 describes the steps how to obtain an OLF optimal control solution

using the Differential Evolution technique (we refer to it hereafter as DE_OLF). As we
suggest a novel methodology for optimal control with passive learning, it is important
to test its performance compared to an established benchmark (OPTCON2). However,
for the update procedure one has to observe the current state of the system which is
crucial for the learning procedure. For this reasonwe use theMonte-Carlo simulations.
In this way, some “quasi-real” values can be created and used for comparison between
DE_OLF and OLF.3 In addition, we can also compare the performance of DE_OLF
vs DE_OL (stochastic solution without learning as presented in Sect. 3.1).

For the purpose of comparing OPTCON2 with passive-learning (OLF) and DE
with passive learning (DE_OLF), a large number (K ) of random time paths for the
additive (εkt ) and multiplicative errors (μk) are generated. μk are used to calculate
the (imperfect) empirical estimates θk with which the decision-maker works as she
does not know the true parameter θ̂ . Additive disturbances (εkt ) are added to the
calculated outcomeof the system representing someunpredictable shocks.All together
this allows to test how new information can affect performance of the system in
“quasi-real” observations. For better understanding, a brief scheme is sketched in
Algorithm 3.

Algorithm 3 Pseudocode of the overall experiment

1: Generate K sets of (εkt )
T
t=1 and μk (i.e. K sets of θk = θ̂ + μk )

2: for k = 1 : K do
3: calculate the stochastic OL and OLF solution using OPTCON2
4: find the stochastic OL and OLF solution using DE (as in Algorithm 2)

use xa∗
t = f (xa∗

t−1, x
a∗
t , u∗

t , θ̂ , zt ) + εkt as the actual state of the system.
5: end for
6: compare OL, OLF, DE_OL and DE_OLF

3.3 Tuning and Implementation

Since in this study we will run the model for very different θ realizations, instead
of tuning DE parameters (crossover probability CR and differential weight F) for
any particular subset of them, we take their default values CR = 0.8 and F = 0.8

3 Henceforth we refer to results obtained with OPTCON2 algorithm for open-loop and open-loop feedback
simply as OL and OLF.

123



An Evolutionary Approach to Passive Learning… 667

(Storn and Price 1997). Similarly, the size of the population of DE candidate solutions
P(1)
j,t,i is taken ten times bigger than the number of uncertain parameters, while DE

runs for gmax = 1000 generations if an alternative stopping criterion is not met.4

Those alternatives stopping criteria include either that 50% of solutions in the DE
population reach a deviation of 0.0001% from the best solution available so far, or
that for 100 generations at least half of solutions in the population does not improve
anymore. These additional criteria, thus, stop DE once its convergence is observed,
and are meant to optimize the computational cost of the problem (Blueschke et al.
2013b). Given the stochastic nature of DE, we also restart the DE algorithm three
times (i.e. construct anew a different population of candidate random solutions P(1)

j,t,i
for the same random disturbance and the same population of Monte Carlo realizations
of θ ) to ensure that it converges, if not to global optimum, to a good approximation
of it.

In order to specify the initial set of random parameters of the Monte Carlo experi-
ment, the known information about the variance is used (Σθθ and Σεε). It should be
mentioned that this information is taken from the nonlinear system directly and no
linearization steps are applied. By generating the initial population of control variables
of each individual DE optimization, there is always a trade-off to be considered. In
particular, one can choose a rather large volatility and explore more possible solutions
or, in contrast, restrict it to speed up convergence. We prefer the former option and use
all known information such as u0, ũ, uOPTCON2 to allow for a large search space.

Both methods, OPTCON2 and DE, are implemented in MATLAB to simplify their
comparison. In this particular study we need to run DE over two Monte Carlo experi-
ments. The first experiment consists of K draws of random disturbances (as explained
in Algorithm 3) to obtain “quasi-real” observations and to compare DE_OLF, DE_OL,
OLFandOLsolutions. The secondMonteCarlo experiment is applied every timewhen
an individual (stochastic) DE solution needs to be calculated. Thus, the second Monte
Carlo experiment consists of Λ random draws of possible realizations of parameter θ .

In line with Savin and Blueschke (2016), we keep Λ = 1000, which greatly
increases the cost of computation for DE. For that reason, we parallelized com-
putations over alternative Λ draws since those can be performed independently.
Furthermore, we also parallelize computations for alternative K draws of random
disturbances by performing our experiments in separate sessions on the high per-
formance computing (HPC) cluster BwUniCluster https://www.bwhpc-c5.de/wiki/
index.php/Category:BwUniCluster. However, remembering that due to passive learn-
ing we have not T but

(T+1
2

)
optimization periods,5 that have to be performed for up

to gmax generations, the cpu cost of solving stochastic OLF problem with DE is still
very high. In particular, even using a computer with 16 cores running in parallel on a
single draw of random disturbances k, one DE restart for the ATOPT model described
below takes approximately twelve hours to converge.

4 In fact, 1000 generations is a very large number for the particular application in Sect. 4, and the algorithm
always converges before reaching that limit.
5 In our application example with T = 5 this leads to 15 optimization periods. Also instead of finding a
solution once for all T periods, one has to re-estimate the optimal solution for the updated θk T − 1 times.
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4 Application

4.1 ATOPTModel

We consider a very simple and novel nonlinear dynamic model of the Austrian econ-
omy targeting on the output—public debt trade-off (ATOPT). The aim of our study is
not the economic interpretation of the solution, but analysis of the DE performance as
a solution technique for an optimal control problem with passive learning. Thus, we
try to keep the model as simple as possible but allowing for a complete analysis of the
topic of interest. Themodel consists of three endogenous variables: output growth—yt ,
public debt— dt , and interest rate—rt . These are defined in the following way:

yt = a1 · yworld
t − θ1 · gt + ε1,t (6)

dt = (1 + rt ) · dt−1 − gt + ε2,t (7)

rt = rt−1 + θ2 · (yt − ȳt ) + a2 · (dt − d̄t )
3 + ε3,t (8)

As a small open economy, Austria’s growth rate of GDP heavily depends on the
economic situation in the world via exports. In order to hold the model system close
to reality, this is captured using the correlation coefficient (a1) between Austria’s and
world’s GDP growth (between 1996 and 2017) and is equal to 0.7266. In addition,
the government is able to use its fiscal policy instrument (gt ), which is primary fiscal
surplus (or deficit if negative). An expansionary use of the fiscal policy instrument has
a positive effect on the output growth, but increases the public debt (dt ). An additional
driver of the public debt is the interest rate (rt ) which has to be paid for the bond
holders. The interest rate itself is influenced by both, an excess output growth (yt − ȳt )
and by a risk premium for an excess public debt level (dt − d̄t ). The latter is given in a
cubic form to penalize deviations from the acceptable debt level (d̄). For the Austrian
economy, the acceptable debt level is assumed to be given by the Maastricht criterion
of 60% of GDP. The cubic function penalizes less (as compared to the linear one)
small deviations around the target level, but much stronger larger deviations from it.
This allows for the possibility of financial markets teaching the government fiscal
discipline, but it takes into account that there is no exact acceptable level of public
debt. As a threshold for the normal output growth (which defines the current output
growth to be excessive) a value slightly above the historical average (1996–2017) of
1.84 is assumed here, namely 2% annual growth (ȳ = 0.02).

The fiscal multiplier parameter (θ1) is one of the two stochastic parameters in
the model. The choice of the fiscal multipliers is a tricky issue as there are many
factors which influence this parameter [see, e.g., the discussion in Ilzetzki et al. (2013)
and Nakamura and Steinsson (2014)]. We assume the value of θ1 to be 1.2 which is
significantly below the 1.6 value used by Romer and Bernstein (2009), but above the
rather low values which are frequently derived in the new classical economic theory.
However, to account for the fact that an exact value is highly questionable and different
studies derive rather large differences, we assume the variance of the fiscal multiplier
to be relatively high (Σθ1 = 1). The second stochastic parameter is the link between
output growth and its impact on the interest rate (θ2). We assume it to be 0.1 with the
variance Σθ2 = 0.2.
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Equations (6–8) give a very simplified description of the Austrian economy with an
output growth—public debt trade-off. Using its instrument, namely fiscal policy g, the
government aims at maintaining a high GDP growth of 3% (ỹ = 0.03) and a steady
decrease of the public debt from 78.4% of GDP in 2017 to 60% of GDP at the end
of the planing horizon, namely in 2022 (T = 5). At the same time, the government
prefers to have a balanced budget (g̃ = 0). The former two represent the two state
variables of the ATOPT model, while the latter variable is the control. Thus, the task
is to find an optimal path of the control variable, in order to minimize the difference
between the outcome of the system and the given targets. This optimal control problem
should be solved using the passive learning strategy.

4.2 Results of Comparison Between OPTCON2 and DE

The main motivation of this study was to show the ability of an evolutionary-based
method such as DE to include a more sophisticated (passive) learning strategy. How-
ever, the question which should be raised here is about the reason why to use this
new method which is more time consuming, if we just replicate the results of the
OPTCON2 algorithm? To this end, some known advantages of the DE method were
discussed in Sect. 1. In particular, usingDEone can extend the standard optimal control
framework with an asymmetric or a non-quadratic objective function, and to include
additional (inequality) constraints. In addition, we suggest that the new method is
more robust to the outliers problem known in the optimal control experiments with
learning strategies (see Tucci et al. (2010) and Blueschke et al. (2013a) for a detailed
discussion of the topic). To demonstrate this, we use the ATOPT model and run a
Monte Carlo experiment consisting of K draws of random disturbances (as explained
in Algorithm 3) to compare DE_OLF, DE_OL, OLF and OL solutions. Figure 1 shows
the graphical results for such an experiment with K = 100. In particular, we sam-
ple random disturbances, K , to be equally distant for the intervals θ1 ∈ [−1, 3] and
θ2 ∈ [−0.2, 0.6]

One can see from Fig. 1 very similar patterns from comparison between DE_OLF
vs. DE_OL and OLF vs. OL results. It should be mentioned, that the Monte Carlo
experiment is constructed in such a way, that all solution strategies work with the
same set of random disturbances which also allows a direct comparison between DE
andOPTCON2 solution. If we look at the absolute numbers, we see that forOPTCON2
OLF gives a better (lower) objective value in 64% of the results. For DE this number is
slightly higher: DE_OLF performs better in 68% of the runs as compared to DE_OL.6

Furthermore, if we sum up for the upper plot in Fig. 1 all the positive deviations
JDE_OLF − JDE_OL and JOLF − JOL , for OPTCON2 it will amount to 0.0056 while
it is three times smaller for DE (0.0018). That means, that using DE passive learning
has much lower chance to produce worse results than without learning. For negative
deviations DE also has overall smaller value: −0.007 vs. −0.014 for OPTCON2
implying that also the improvements in terms of objective function values under DE
are smaller. These results show that while obtaining similar results by using DE with

6 Also, in 56% of cases DE_OLF gives lower values of J than OLF; in 66% of cases DE_OLF gives lower
values of J than OL; in 50% of cases DE_OL gives lower values of J than OL.
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Fig. 1 Differences in objective function between OLF and OL solutions (upper panel), OLF vs. OL value
of objective function using OPTCON2 (middle panel) and DE (bottom panel)

passive learning as in the case with the derivative-based OPTCON2 algorithm, we
avoid large discrepancies between our objective function values with and without
learning (OLF vs. OL).

To see for which combination of θ1 and θ2 DE provides better results than OPT-
CON2, consider Fig. 2. Clearly, for larger values of θ2 DE_OLF results in smaller
objective function values than OLF.

Finally, to get some insight on how the use of the solution algorithm affects the
optimal choice of the controls we plot in Fig. 3 the resulting differences in controls for
the ATOPT model. We consider the differences between controls calculated by OL
and OLF (left panel) and DE_OL and DE_OLF (right panel) using box-plots for each
of the five periods. Each box-plot represents the results across all random disturbances
K tested (K = 100). Interestingly, most of the differences in controls due to open-
loop feedback concentrate around periods 2–4 and not in period 5, which one could
expect because of iterative nature of solution with deviations accumulating over time.
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Fig. 2 Differences in objective function between OLF and OL solutions using OPTCON2 (left panel),
DE_OLF vs. DE_OL (middle panel) and OLF vs. DE_OLF (right panel) for different values of θ1 and θ2.
Note: the color indicates which of the two options has a lower (superior) objective function value
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Fig. 3 Differences in controls between OLF and OL solutions using OPTCON2 (left panel) and between
DE_OLF and DE_OL solutions (right panel)

A possible explanation is that this is due to the curse of the last period in a finite time
horizon problem. Fortunately, the results between OLF and OL both for OPTCON2
and DE are very similar. Given that the control variable is fiscal surplus (fiscal deficit
if it is negative), under open-loop feedback we see a slightly more active fiscal policy
in periods 2 and 5 and a more restrictive policy in periods 3 and 4.

5 Conclusion

In this study we propose an evolutionary-based method for solving optimal control
problems with passive learning. We extend the work in Savin and Blueschke (2016)
which introduced a possibility for solving stochastic optimal control problems using
the Differential Evolution (DE) method. Using a small econometric model of the
Austrian economy and a series of largeMonte Carlo experiments we show that the new
method produces similar results as a baseline traditional method. The main advantage
of usingDE is its flexibility allowing to takemany restrictions into account. In addition,
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in case of the open-loop feedback scenario, DE proves to be more robust towards the
outlier problem known in the optimal control field with learning.

For the readers, a legitimate question arises what explains the differences in perfor-
mance between DE_OLF and OLF. Given the fact that we use the same information
structure and the same random disturbances, the main cause is algorithmic. In par-
ticular, OPTCON2 solves nonlinear problems by using an iterative method of linear
approximations. This applies for both, the nonlinear system itself and the stochastic
information about parameters θ . In contrast, DE addresses the problem without the
linear “simplification”, but by using a population of possible realizations of the uncer-
tain parameters directly. In addition, using the least median realization of objective
values over a large population of random parameter draws helps DE to mitigate the
problem of outliers. All together thid explains the slightly better performance of DE
compared to OPTCON2.

To sum up, introducing DE method for solving optimal control problems with
passive learning represents a promising research field. The next steps include con-
sideration of active learning strategies and alternative update procedures. Also, more
effort should be put to

– increase speed of the DE algorithm, which for the moment being is prohibitively
expansive to test larger experiments;

– increase the sample of K draws of random disturbances to confirm stability of the
results;

– test the framework for more complex problems than the ATOPT model.
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