
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2020

Semantic understanding of smart contracts: Executable Semantic understanding of smart contracts: Executable

operational semantics of solidity operational semantics of solidity

Jiao JIAO

Shuanglong KAN

Shang Wei LIN

David SANAN

Yang LIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Finance and Financial Management Commons, and the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jiao JIAO, Shuanglong KAN, Shang Wei LIN, David SANAN, Yang LIU, and Jun SUN

Semantic Understanding of Smart Contracts:
Executable Operational Semantics of Solidity

Jiao Jiao∗, Shuanglong Kan∗, Shang-Wei Lin∗, David Sanan∗, Yang Liu∗ and Jun Sun†
∗Nanyang Technological University, Singapore and †Singapore Management University, Singapore

{jiao0023,slkan,shang-wei.lin,sanan,yangliu}@ntu.edu.sg, {junsun}@smu.edu.sg

Abstract—Bitcoin has been a popular research topic recently.
Ethereum (ETH), a second generation of cryptocurrency, extends
Bitcoin’s design by offering a Turing-complete programming
language called Solidity to develop smart contracts. Smart con-
tracts allow creditable execution of contracts on EVM (Ethereum
Virtual Machine) without third parties. Developing correct and
secure smart contracts is challenging due to the decentralized
computation nature of the blockchain. Buggy smart contracts
may lead to huge financial loss. Furthermore, smart contracts
are very hard, if not impossible, to patch once they are deployed.
Thus, there is a recent surge of interest in analyzing and
verifying smart contracts. While most of the existing works either
focus on EVM bytecode or translate Solidity smart contracts
into programs in intermediate languages, we argue that it is
important and necessary to understand and formally define
the semantics of Solidity since programmers write and reason
about smart contracts at the level of source code. In this work,
we develop a formal semantics for Solidity which provides a
formal specification of smart contracts to define semantic-level
security properties for the high-level verification. Furthermore,
the proposed semantics defines correct and secure high-level
execution behaviours of smart contracts to reason about compiler
bugs and assist developers in writing secure smart contracts.

I. INTRODUCTION

The success of Bitcoin since 2009 stimulates the de-
velopment of other blockchain-based applications, such as
Ethereum [1], a second generation of cryptocurrency which
supports the revolutionary idea of smart contracts. A smart
contract [2] is a computer program written in a Turing-
complete programming language called Solidity, which is
stored on the blockchain to achieve certain functionality. Smart
contracts benefit from the features of the blockchain in various
aspects. For instance, it is not necessary to have an exter-
nal trusted authority to achieve consensus, and transactions
through smart contracts are always traceable and credible.

Smart contracts must be verified for multiple reasons.
Firstly, due to the decentralized nature of the blockchain, smart
contracts are different from programs written in other pro-
gramming languages (e.g., C/Java). For instance, the storage
of each contract instance is at a permanent address on the
blockchain. In this way, each instance is a particular execution
context and context switches are possible through external
calls. Particularly, delegatecall is executed in the context
of the caller rather than the recipient, making it possible to
modify the caller state. Programming smart contracts thus is
error-prone without a proper understanding of the underlying
semantic model. This is further worsened by multiple language
design choices (e.g., fallback functions) made by Solidity.

To understand the execution behaviors of smart contracts, we
must understand the semantics of Solidity, and make sure that
it is formally defined so that programmers can write contracts
accordingly. If a programmer implements a smart contract with
his/her understanding inconsistent with the Solidity semantics,
vulnerabilities are very likely to be introduced. Secondly,
verifying smart contracts against vulnerabilities in deployed
contracts is crucial for protecting digital assets. One well-
known attack on smart contracts is the DAO attack [3].
The attacker exploited a vulnerability associated with fallback
functions and the reentrancy property [4] in the DAO contract,
and managed to take 60 million dollars under his control.
Finally, unlike traditional software which can be patched, it
is very hard if not impossible to patch a smart contract once
it is deployed due to the very nature of the blockchain. For
instance, the team behind Ethereum intended to conduct a hard
fork of the Ethereum network in view of the DAO attack,
which turned out to be controversial [5]. It is thus extremely
important that a smart contract has been verified before it is
deployed on the blockchain.

A. Related Works

There is a surge of interest in analyzing and verifying smart
contracts. Some of the existing works conduct verification or
security analysis on EVM bytecode [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26]. For instance, Oyente [6] is a
symbolic execution engine which targets bytecode running on
Ethereum Virtual Machine (EVM). In addition, KEVM [7] is
a semantic encoding of EVM bytecode in the K-framework to
facilitate the formal verification of smart contracts at bytecode
level. A set of test oracles is defined in [8] to detect security
vulnerabilities at EVM level. In [11], a semantic framework
is proposed to analyze smart contracts based on a small-step
EVM semantics. Securify [12] translates EVM bytecode into
a stackless representation in static-single assignment form to
infer semantic facts for analyzing smart contracts. In other
works, the verification or security analysis of smart contracts
is based on intermediate languages [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37]. For instance, the formalization
in F* [27] is an intermediate-level language for the equivalence
checking of Solidity programs and EVM bytecode. In addition,
Zeus [28] translates Solidity contracts into programs in an
abstract language which are translated into LLVM bitcode
to verify smart contracts. Similarly, Solidity programs are

translated into Boogie programs to be analyzed in the proposed
verifiers in [29], [35]. The online detection of Effectively
Callback Free (ECF) [30] objects is facilitated by a simple
imperative object-based programming language, called SMAC.

To the best of our knowledge, most of the existing works
either focus on EVM bytecode, or translate Solidity contracts
into programs in intermediate languages which are suitable for
verifying smart contracts or detecting potential issues in asso-
ciated verifiers or checkers. We believe that it is necessary and
also important to formally define the semantics of Solidity. The
first reason is that programmers write and reason about smart
contracts at the level of source code without the semantics of
which they are required to understand how Solidity programs
are compiled into bytecode to understand contracts, which is
far from trivial. Secondly, even though Solidity contracts can
be transformed into programs in intermediate languages to be
analyzed and verified in existing model checkers and verifiers,
the equivalence checking of Solidity and the intermediate lan-
guage considered is crucial to the validity of the verification.
For instance, most of the false positives reported in Zeus [28]
are introduced by the semantic inconsistency of Solidity and
the abstract language. Finally, although alternative high-level
smart contract languages, such as Vyper [38], Bamboo [39],
Flint [40], etc, have been proposed for safer programming,
Solidity is still the most popular language for writing smart
contracts. According to the data obtained from Etherscan [41],
with respect to 500 contracts deployed from 30 Nov 2019 to
8 Dec 2019, all of them are written in Solidity.

Lolisa [42] is a formal semantics of a subset of Solidity
designed based on a formal memory (GERM) framework.
This semantics is not constructed directly on Solidity, which
introduces equivalence checking issues (i.e., the correctness
and completeness of the semantic transformation from the
Solidity features to the ones supported by the GERM model)
for further validation. Furthermore, a big-step semantics of
a small subset of Solidity is formalized in [43]. However,
this formalization fails to address many important Solidity
features, such as function overloading, integers of sizes less
than 256 bits, packed byte array types, libraries, events, etc.
Featherweight Solidity [44] is a calculus formalizing the core
features of Solidity with a static type system. A refinement of
the type system is also proposed to enhance the type safety
of Solidity. Similarly, TinySol [45] is a minimal calculus for
Solidity contracts. Nevertheless, these calculus-based formal-
izations are not directly executable, making them infeasible in
semantics validation and automatic verification. Therefore, a
complete direct executable formal semantics of Solidity is a
must in both understanding and verifying smart contracts.

B. Challenges

The challenges of developing Solidity semantics lie in two
aspects. Firstly, there are insufficient documentations defining
or describing the complete features of Solidity. For instance,
the official documentation [46] introduces each feature with
a few examples, from the perspective of which, it is difficult
for readers to fully understand the complete features of the

language since only a part of the semantics is involved in the
examples illustrated. Furthermore, these documentations fail
to address corner cases including ambiguities and undefined
behaviours. This requires that the Solidity semantics has to
be executable for extensive testing to eliminate ambiguities
and resolve undefined behaviours. Another way to understand
the semantics is to figure out how Solidity compilers, such as
Remix [47], interpret it by observing the execution behaviours.
However, this may be problematic since these compilers only
capture low-level instructions which may be inconsistent with
the high-level semantics. Therefore, in addition to taking the
execution behaviors observed from the compilers as “bench-
marks” to interpret the semantics, it is necessary to define the
correct semantics from the perspective of what it should be to
get rid of the misunderstandings introduced by the compilers.

The second aspect of the challenges comes from the lan-
guage features. The decentralized nature of the blockchain
makes the Solidity features unique. As mentioned above,
smart contracts work in a distributed mode, and each contract
instance has a storage located at a permanent address on
the blockchain, which makes inter-contract calls possible.
Therefore, the values of state variables in a contract instance
can be modified by another one through external calls to
this instance. Many potential issues can be triggered by the
untrusted nature of calls. For instance, in the DAO attack [3],
the late update of state variables makes it possible to enter the
associated function for a second time, resulting in ether loss.
However, this would never be possible for programs written
in other languages, such as C or Java, without such distributed
nature. Furthermore, the blockchain related features in Solid-
ity, such as mappings associated with accounts, fallback
functions, transaction-based assert and revert, etc,
add to the difficulty of the semantics design since there
are no standard interpretations that can be borrowed from
other language semantics to take into account the blockchain
context. Apart from uniqueness, Solidity supports a variety
of calls, such as high-level and low-level calls, constructors,
fallback functions, etc, possibly with ether transfer, in different
formats of syntax, and exception handling features, such as
assert, revert, require, etc. A uniform mechanism is
necessary to construct the semantics to make it extensible.
Lastly, the evolution of the Solidity language features, such
as the reformatting of constructor and the deprecation of
throw, makes the semantics design even more difficult. In
order to survive in the language evolution, Solidity semantics
must be designed from a very general point of view, which also
makes it extensible for alternative smart contract languages.

C. Contributions

In this work, we develop an executable operational seman-
tics for the Solidity programming language to formally reason
about smart contracts written in Solidity. The contributions
of this work lie in four aspects. Firstly, our work is the first
approach, to our knowledge, to a complete executable formal
semantics of Solidity constructed directly on the language
itself other than Solidity compilers. The proposed executable

semantics completely covers the supported high-level core fea-
tures specified by the official Solidity documentation [46] and
is validated with the official compiler Remix [47]. In addition,
a new and general way of semantics formalization is applied in
the semantics design, making the proposed semantics robust
in the language evolution of smart contracts. Secondly, the
proposed semantics provides a formal specification of smart
contracts which solves the specification issues in the existing
verification and analysis tools. Thirdly, the proposed semantics
allows us to formally define semantic-level security properties
for verifying smart contracts to exclude the false positives
introduced by the existing approaches. Finally, the proposed
semantics defines correct and secure high-level execution
behaviours of smart contracts to reason about compiler bugs
and assist developers in writing secure smart contracts.

D. Outline

The remaining part of this paper is organized as follows.
Section II introduces the background of smart contracts and the
K-framework. The proposed executable operational semantics
of Solidity formalized in the K-framework is introduced in
Section III. Section IV shows the evaluation results of the
proposed semantics. The applications of the Solidity semantics
are introduced in Section V. Section VI concludes this work.

II. PRELIMINARIES

In this section, we briefly introduce the background of smart
contracts and the K-framework.

A. Smart Contracts

Ethereum [1], proposed in late 2013 by Vitalik Buterin, is
a blockchain-based distributed computing platform support-
ing smart contract functionality. It provides a decentralized
international network where each participant node equipped
with EVM can execute smart contracts. It also provides a
cryptocurrency called “ether” (ETH), which can be transferred
between different accounts and used to compensate participant
nodes for their computations on smart contracts.

Solidity is one of the high-level programming languages
to implement smart contracts on Ethereum. A smart contract
written in Solidity can be compiled into EVM bytecode and
then be executed by any participant node equipped with EVM.
A Solidity smart contract is a collection of code (its functions)
and data (its state) that resides at a specific address on the
Ethereum blockchain [46]. Fig. 1 shows an example of Solidity
smart contracts, named Coin, implementing a very simple
cryptocurrency. In line 2, the public state variable minter of
type address is declared to store the address of the minter
of the cryptocurrency, i.e., the owner of the smart contract.
The constructor, denoted by constructor(), is defined in
lines 5–7. Once the smart contract is created and deployed1,
its constructor is invoked automatically, and minter is set to
be the address of its creator (owner), represented by the built-
in keyword msg.sender. In line 3, the public state variable

1How to create and deploy a smart contract is out of scope and can be
found in: https://solidity.readthedocs.io

1 contract Coin {
2 address public minter;
3 mapping (address => uint) public balances;
4

5 constructor() public {
6 minter = msg.sender;
7 }
8

9 function mint(address receiver, uint amount) public
10 {
11 if (msg.sender != minter) return;
12 balances[receiver] += amount;
13 }
14

15 function send(address receiver, uint amount) public
16 {
17 if (balances[msg.sender] < amount) return;
18 balances[msg.sender] -= amount;
19 balances[receiver] += amount;
20 }
21 }

Figure 1. Solidity Smart Contract Example

balances is declared to store the balances of users. It is
of type mapping, considered as a hash-table mapping from
keys to values. In this example, balances maps from a user
(represented as an address) to his/her balance (represented as
an unsigned integer value). The mint function, defined in
lines 9–13, is supposed to be invoked only by its owner to
mint coins, the number of which is specified by amount,
for the user located at the receiver address. If mint is
called by anyone except the owner of the contract, nothing
will happen because of the guarding if statement in line 11.
The send function, defined in lines 15–20, can be invoked by
any user to transfer coins, the number of which is specified by
amount, to another user located at the receiver address.
If the balance is not sufficient, nothing will happen because of
the guarding if statement in line 17; otherwise, the balances
of both sides will be updated accordingly.

A blockchain is actually a globally-shared transactional
database or ledger. Every participant node can read the in-
formation on the blockchain. If one wants to make any state
change on the blockchain, he or she has to create a so-called
transaction which has to be accepted and validated by all other
participant nodes. Furthermore, once a transaction is applied to
the blockchain, no other transactions can alter it. For example,
deploying the Coin smart contract generates a transaction
because the state of the blockchain is going to be changed, i.e.,
one more smart contract instance will be included. Similarly,
any invocation of the function mint or send also generates
a transaction because the state of the contract instance, a part
of the whole blockchain, is going to be changed. Transactions
have to be selected and added into blocks to be appended to the
blockchain. Appending blocks to Proof-of-Work (PoW) [48]
blockchains involves solving a computationally challenging
mathematical problem. This procedure is the so-called mining,
and the participant nodes are called miners.

B. The K-framework
The K-framework (K) [49] is a rewriting logic [50] based

formal executable semantics definition framework. The seman-
tics definitions of various programming languages have been

< < $PGM:Pgm >k < .Map >state >T
Figure 2. IMP Configuration

Pgm ::= "int" Ids ";" Stmt Ids ::= List{Id, ","}
AExp ::= Int | Id | "-" Int | AExp "/" AExp

> AExp "+" AExp | "(" AExp ")"
BExp ::= Bool | AExp "<=" AExp | "!" BExp

> BExp "&&" BExp | "(" BExp ")"
Block ::= "{" "}" | "{" Stmt "}"
Stmt ::= Block | Id "=" AExp ";"

| "if" "(" BExp ")" Block "else" Block
| "while" "(" BExp ")" Block > Stmt Stmt

Figure 3. The Syntax of IMP

developed using K, such as Java [51], C [52], etc. Partic-
ularly, an executable semantics of EVM (Ethereum Virtual
Machine) [7], the bytecode language of smart contracts, has
been constructed in the K-framework. K backends, like the
Isabelle theory generator, the model checker, and the deductive
verifier, can be utilized to prove properties on the semantics
and construct verification tools [53].

A language semantics definition in the K-framework con-
sists of three main parts, namely the language syntax, the
configuration specified by the developer and a set of rules
constructed based on the syntax and the configuration. Given
a semantics definition and some source programs, the K-
framework executes the source programs based on the seman-
tics definition. In addition, specified properties can be verified
by the formal analysis tools in K backends. We take IMP [54],
a simple imperative language, as an example to show how to
define language semantics in the K-framework.

The configuration of the IMP language is shown in Fig. 2.
There are only two cells, namely k and state in the whole
configuration cell T. The cells in the configuration are used to
store some information related to the program execution. For
instance, the cell k stores the source program for execution
Pgm. Furthermore, the cell state records the mapping from
a variable name to its value.

Here, we introduce some basic rules in the K-IMP se-
mantics. These rules are allocate, read and write for
variables. The syntax of IMP is also given in Fig. 3.

Let us start with the rule of memory allocations for variables

RULE ALLOCATE

< int X,Xs;S
int Xs;S

. . .>k < Rho:Map
Rho (X |-> 0) >state

requires notBool (X in keys(Rho))

RULE FINISH-ALLOCATE

< int .Ids;S
S

. . .>k
RULE READ

< X:Id
I

. . .>k <. . . X |-> I . . .>state

RULE WRITE

< X = I:Int;
.

. . .>k < . . .
X |-> _
X |-> I

. . .>state

in IMP shown in ALLOCATE. When Pgm, interpreted as int
X,Xs;S, is encountered, we need to store a list of variables
(X,Xs) starting from X in the cell state with a list of
mappings. Here state can be regarded as a physical memory
or storage, and Xs is also a list of variables which can be
empty. X is popped out of the cell k and a new mapping
from X to 0 is created in the cell state, which means that
a memory slot has been allocated for X to store its initial
value 0. No duplicate names are allowed in state, which is
guaranteed by the require condition. Then we go like this until
Xs becomes empty, which means that all the variables have
already been stored in state. At this point, the execution
of the first part of Pgm has been finished and we proceed to
the execution of the statement S. This can be summarized in
FINISH-ALLOCATE where .Ids is an empty list of identifiers,
which means that the variable list is empty. Please note that .
means an empty set in the K-framework. If a rule ends with
., it means that nothing will be executed.

Then we come to the rules of read and write. As shown
in READ, if we want to look up the value of the variable X, we
need to search it in the cell state by mapping the variable
name X to its value I. So the evaluation of this expression X
is its value I. If we cannot find a mapping for X, the program
execution will stop at this point. Particularly, ... means there
can be something in the corresponding position. For instance,
the mapping of X can be in any position in the cell state.
However, in the cell k, ... can only be at the end since the
program stored in k is executed sequentially. As illustrated in
WRITE, if we want to assign the integer value I to the variable
X, similarly we need to search it in the cell state by mapping
the variable name. However, we also need to rewrite the value
of X, denoted by “ ” which is a placeholder, to I.

As illustrated above, formalizing language semantics in the
K-framework is really specific to its configuration which stores
the information related to the program execution, such as
variables, statements, etc. Firstly, cells in the configuration can
be regarded as physical features, e.g., memory or storage, or
logical concepts, such as stacks, mappings, etc, which may be
more common in complex languages. Secondly, cell contents
can be either mapped or rewritten. When we map contents in
a cell, this cell is used to formalize a condition requirement.
Only when the contents in the cell match the desired ones,
the rule involving this cell with the specific contents can be
applied (e.g., mapping the name of the variable x in READ).
Also, cell contents can be rewritten to stay updated with the
program execution (e.g., rewriting the value of the variable x
in WRITE). Finally, cell contents can be retrieved to facilitate
the program execution. For instance, function definitions are
stored in a list of cells. When executing function calls, we
need to retrieve the function definitions that have been stored
to get the information about the functions to be called.

III. FORMAL SEMANTICS OF SOLIDITY IN THE
K-FRAMEWORK

In this section, we introduce the executable operational
semantics of Solidity formalized in the K-framework. The

syntax of this semantics is constructed based on the official
Solidity documentation [46]. The configuration is designed
specifically for Solidity smart contracts. Based on the syntax
and the configuration, we formalize the operational rules for
the language features with rewriting logic.

A. Runtime Configuration of Solidity

Due to limit of space, the configuration in Fig. 4 is shown
from a general point of view and some of the sub-cells are
omitted. In this configuration, there are six main cells in the
whole configuration cell T and they are k, controlStacks,
contracts, functions, contractInstances and
transactions. The value of each cell is initialized in the
configuration with its type specified. A dot followed by any
type represents an empty set of this type. For instance, .List
is an empty list. Particularly, K is the most general type which
can be any specific type defined in the K-framework.

In the cell k, the source programs, called SourceUnit, are
stored for execution. If the programs stored in k terminate in
a proper way, there will be a dot in this cell, indicating that
this cell is empty and there are no more programs to execute.

The cell controlStacks records contractStack,
functionStack, newStack and blockStack. To be
specific, contractStack, functionStack, newStack
and blockStack keep track of lists of contract instances,
function calls, new contract instance creations and variable
contexts to look up and assign values to variables in different
scopes with the current ones on the top, respectively.

In the cell contracts, a set of contract definitions
is stored. Each cell contract represents a contract def-
inition. The number of distinct contracts is counted in
cntContractDefs. In contract, the contract name is
stored in cName. State variable information is stored in
stateVars. In addition, Constructor indicates whether
the contract has a constructor or not and its initial value is
false. The constructor of a Solidity smart contract is an op-
tional function declared with the keyword “constructor” which
is executed for once when a new instance is created [46].

Similarly, the cell functions stores a set of function
definitions. Each cell function represents a function def-
inition. The total number of function definitions is stored in
cntFunctions. For each function definition, the function
Id and name are stored in fId and fName, respectively. In
addtion, function parameters, including input parameters and
return parameters, are recorded in the corresponding cells. We
also store the function body in Body and function quantifiers
which can be modifiers or specifiers in funQuantifiers.

In the cell contractInstances, there is a set of con-
tract instances. Each cell contractInstance represents a
contract instance. The number of contract instances is counted
in cntContracts. We store the contract instance Id and
the name of its associated contract in ctId and ctName,
respectively. Four different mappings are applied to store more
information of a variable. Specifically speaking, ctContext,
ctType, ctLocation and ctStorage/Memory record
the mappings from a variable name to its logical address

in the storage or memory, a variable name to its type, a
variable name to its location information, namely “global” or
“local”, and the logical address of a variable in the storage or
memory to its value, respectively. globalContext records
the state variable context. The number of memory slots taken
by variables is calculated in slotNum. Balance records the
balance of each contract instance.

In transactions, we record the number of transactions
in cntTrans, every transaction in tranComputation and
also “msg” information in Msg and msgStack. “msg” is
a keyword in Solidity to represent transaction information.
For instance, “msg.sender” is the caller of the function and
“msg.value” specifies the amount of ether to be transferred.
msgStack stores a list of transaction information tuples at
increasing call depths while Msg records the current one.
We simulate transactions of smart contracts with a “Main”
contract similar to the main function in C where new contract
instances can be created and external function calls to these
instances are available. The Id of the “Main” contract is “-
1”, since other contract instances start from 0. Therefore, the
initialized content in contractStack is ListItem(-1),
and cntTrans is counted from 1, indicating that the cre-
ation of the “Main” contract is the first transaction recorded
in tranComputation. gasConsumption records the
amount of gas consumed in the current call, and gasStack
stores gas consumption at increasing call depths.

B. Semantics of the Core Features

We construct Solidity semantics from a very general point of
view to adapt to the language evolution of smart contracts. To
be specific, instead of directly using the formats of function
calls in Solidity, all kinds of function calls, including high-
level and low-level calls, constructors and fallback functions,
are rewritten to a uniform format. In this way, the semantics
is extensible by inheriting commonly shared parts and adding
specific parts, making it possible to interpret the semantics
of other high-level smart contract programming languages
with the proposed Solidity semantics as long as their core
semantic features fall into the ones of Solidity. In the following
part of this section, we present an overview of three core
semantic features in Solidity, namely memory operations, new
contract instance creations and function calls. Particularly, new
contract instance creations and function calls are the two kinds
of transactions on the blockchain. Due to limit of space,
common features, such as loops, arithmetic operations, etc,
and implementation details of sub-steps are omitted.

Types are specified in the presented rules. Id stands for
identifiers and Int represents integers. EleType represents
elementary types in Solidity, such as int, uint, address,
etc. Values is a list of Value types which can be integers
(Int) or Boolean types (Bool). Msg is the type of transaction
information. Map represents mappings. ExpressionList is
a list of expressions.

1) Memory Operations: We present the semantics rules for
memory operations on elementary types in Solidity, such as
int, uint and address, each of which takes only one

<
< $PGM:SourceUnit >k

< < ListItem(-1) >contractStack < .List >functionStack
< .List >newStack < .List >blockStack >controlStacks

< < 0:Int >cntContractDefs
< < .K >cName < .List >stateV ars < false >Constructor . . .>contract∗ >contracts

< < 0:Int >cntFunctions
< < 0:Int >fId < .K >fName < .K >inputParameters

< .K >returnParameters < .K >Body < .K >funQuantifiers . . .>function∗ >functions
< < 0:Int >cntContracts

< < (-1):Int >ctId < .K >ctName < .Map >ctContext
< .Map >globalContext < .Map >ctType < .Map >ctLocation

< .Map >ctStorage < .Map >Memory

< 0:Int >slotNum < 0:Int >Balance
. . .>contractInstance∗ >contractInstances

< < 1:Int >cntTrans < 0 |-> "Main" >tranComputation < .K >Msg < .List >msgStack
< 0:Int >gasConsumption < .List >gasStack >transactions >T

Figure 4. Runtime Configuration of Solidity

memory slot. Complex types, such as arrays, mappings, etc,
are compositions of elementary types. A memory operation on
a complex type can be regarded as a set of recursive memory
operations on elementary types. For instance, the memory
allocation for a one-dimensional fixed-size array is equivalent
to allocating an elementary type for each index of this array.
Reading and writing a particular index involve recursive steps
to retrieve the logical address of this index from the base
address of the array. Mappings are similar to dynamic arrays.

Let us start with the read operation on elementary types
shown in READ. Here, we consider the object as a variable, de-
noted by X, which is an Id type. The first thing to do is to get
the current execution context. This is achieved by retrieving
the current contract instance Id N in contractStack and
mapping the corresponding contract instance with N in the cell
ctId. After that, we retrieve the logical address of X, denoted
by Addr, in ctContext and the location information of X,
denoted by L, in ctLocation. With these two parameters,
we can obtain the evaluation of X through readAddress
which retrieves the value located at Addr in the associated
cell specified by L (cf. Appendix A for details). To be specific,
if L specifies this variable as a global one, the search space is
ctStorage. Otherwise, the value is retrieved in Memory.
write is similar to read. After retrieving the logical

address of X, denoted by Addr, and the location information
of X, denoted by L, we rewrite the value located at Addr to the
value V in the cell specified by L through writeAddress
(cf. Appendix B for details).

Then we come to the allocation for elementary types shown
in ALLOCATE. The first input parameter N indicates the
contract instance Id. The information of the variable including
its name X, type T, location information L and initial value
V, is stored in #varInfo. First, we map the corresponding
contract instance with the instance Id N which is indicated in
ctId. Then the number of memory slots is increased by 1

in slotNum. After that, the variable information is recorded
in the associated cells. To be specific, we record the logical
address Addr, the type T, and the location information L
in ctContext, ctType and ctLocation, respectively.
Finally, a memory slot is allocated for this variable through
allocateAddress (cf. Appendix C for details).

2) New Contract Instance Creations: The semantics
rule for creating a new contract instance is shown in
NEW-CONTRACT-INSTANCE-CREATION. Creating a new
contract instance in Solidity is achieved through new
X:Id (E:ExpressionList) where X is the contract
name and E specifies the arguments in the constructor.
There are altogether three sub-steps for this transaction
and they are updateState, allocateStorage and
initInstance. The symbol y here means “followed by”.
To be specific, updateState updates the blockchain states,
including the states of contract instances and transactions, and
the stack information to indicate that we are in the process of a
new contract instance creation (cf. Appendix D for details). In
addition, allocateStorage allocates state variables (cf.
Appendix E for details) and initInstance deals with
initialization issues, such as calling the constructor, in the new
contract instance (cf. Appendix F for details).

3) Function Calls: Function calls in Solidity are writ-
ten in a format similar to member access. For instance,
target.deposit.value(2)() is a typical function call
in Solidity. To be specific, target specifies the recipient
instance and deposit is the function to be called in that in-
stance. value specifies msg.value as 2. In addition, we can
specify other parameters, such as msg.gas, function argu-
ments, etc, in the function call. In order to make the semantics
of function calls general for all kinds of calls and extensible
for different kinds of smart contract languages, a uniform
format of function calls is applied to generalize the semantics.
The uniform format is functionCall(Id_of_Caller;

RULE READ

< X:Id
readAddress(Addr,L)

. . .>k
< ListItem(N:Int) . . .>contractStack

< < N >ctId
<. . . X |-> Addr . . .>ctContext

<. . . X |-> L . . .>ctLocation

<. . . X |-> T:EleType . . .>ctType

. . .>contractInstance

RULE WRITE

< X:Id = V:Value
writeAddress(Addr,L,V)

. . .>k
< ListItem(N:Int) . . .>contractStack

< < N >ctId
<. . . X |-> Addr . . .>ctContext

<. . . X |-> L . . .>ctLocation

<. . . X |-> T:EleType . . .>ctType

. . .>contractInstance

RULE ALLOCATE

< allocate(N:Int, #varInfo(X:Id,
T:EleType, L:Id, V:Value))
allocateAddress(N,Addr,L,V)

. . .>k

<
< N >ctId

< Addr
Addr +Int 1 >slotNum

< CONTEXT:Map
CONTEXT (X |-> Addr) >ctContext

< TYPE:Map
TYPE (X |-> T) >ctType

< LOCATION:Map
LOCATION (X |-> L) >ctLocation

. . .>contractInstance

RULE NEW-CONTRACT-INSTANCE-CREATION

< new X:Id (E:ExpressionList)
updateState(X) y allocateStorage(X) y

initInstance(X,E)
. . .>k

RULE DECOMPOSE-SOLIDITY-CALL

< #memberAccess(R:Int,F:Id) y Es:Values y
MsgValue:Int y MsgGas:Int
functionCall(C;R;F;Es;

#msgInfo(C,R,MsgValue,MsgGas))

. . .>k
< ListItem(C:Int) . . .>contractStack

RULE FUNCTION-CALL

< functionCall(C:Int;R:Int;
F:Id;Es:Values;M:Msg)

switchContext(C,R,F,M) y
functionCall(F;Es) y returnContext(R)

. . .>k
Id_of_Recipient; Function_Name; Arguments;
Msg_Info). Particularly, Msg_Info represents the trans-
action information stored in #msgInfo, including the Ids
of the caller and the recipient instances, msg.value and
msg.gas. The semantics rule for function calls based on
this format is shown in FUNCTION-CALL. When it comes
to the semantics of function calls in Solidity, the first thing
to do is to decompose the member access like format and
transform the call into the one in the uniform format. As shown
in DECOMPOSE-SOLIDITY-CALL, each decomposed part in
Solidity calls is reorganized in functionCall. Specifically
speaking, #memberAccess(R:Int,F:Id) specifies the
recipient instance R and the function to be called in this in-
stance F. Es specifies the function arguments. MsgValue and
MsgGas represent msg.value and msg.gas, respectively.

The semantics of function calls is designed from a general
point of view. Each external function call is regarded as
an extension of an internal function call. Whenever there
is an external function call, we first switch to the recipient

RULE EXCEPTION-PROPAGATION

< exception()
updateExceptionState()

. . .>k
< ListItem(R)ListItem(C) . . .>contractStack

requires C >=Int 0

RULE TRANSACTION-REVERSION

< exception()
updateExceptionState() y revertState()

. . .>k
< ListItem(R)ListItem(-1) >contractStack

RULE REVERT

< revert(.ExpressionList);
exception()

. . .>k
RULE ASSERT

< assert(true);
.

. . .>k < assert(false);
exception()

. . .>k
RULE REQUIRE

< require(true);
.

. . .>k < require(false);
exception()

. . .>k
RULE OUT-OF-GAS

< S:Statement
exception()

. . .>k < #msgInfo(_,_,_,GasLimit) >Msg

< GasC >gasConsumption

requires GasC >Int GasLimit

instance and then call the function in this instance as an
internal call. Finally, we switch back to the caller instance.
In this way, external function calls can be achieved through
internal function calls and switches of contract instances. This
mechanism also applies to internal function calls where the
caller instance is the same as the recipient instance.

There are three sub-steps in FUNCTION-CALL. The first one
is to switch to the recipient instance from the caller through
switchContext (cf. Appendix G for details). The second
is an internal function call functionCall (cf. Appendix H
for details). The last one is to return to the caller instance
through returnContext (cf. Appendix I for details).

Particularly, the semantics of function calls is equipped with
exception handling features. Generally speaking, if an excep-
tion is encountered in an inner call, it will be propagated to the
transactional function call to revert the whole transaction. The
propagation of exceptions is a sub-step in returnContext
(cf. Appendix I for details). The exception handling mecha-
nism is also general, making it possible to deal with all kinds
of exception handling features in Solidity, such as revert,
assert, etc, in a similar way. This is the only optimization
in the proposed semantics with respect to the official Solidity
documentation [46]. It generally follows but slightly differs
from the semantics of exception handling defined in the
documentation since it allows the propagation of exceptions in
low-level calls intended by developers. The semantics rules for
exception handling are shown in EXCEPTION-PROPAGATION
and TRANSACTION-REVERSION.

There are two stages in handling exceptions. The first
one is the propagation of exceptions to the function call
whose caller is the “Main” contract as shown in EXCEPTION-

PROPAGATION, and the second is the reversion of the trans-
action as shown in TRANSACTION-REVERSION. Please note
that in the first stage exceptions are propagated from in-
ner calls to the transactional function call, while the sec-
ond stage is only present in the transactional function call
stemming from the “Main” contract. In the stage of prop-
agating exceptions, the exception state is updated through
updateExceptionState() (cf. Appendix J for details) to
indicate that an exception has been encountered. In particular,
the Id of the caller instance should be larger than or equal
to 0 since the caller cannot be the “Main” contract in this
case. And in the stage of reverting transactions, the caller is
the “Main” contract whose Id is “-1”. In addition to updating
the exception state, the whole transaction is reverted through
revertState() (cf. Appendix J for details). Exception
handling features, such as revert, assert, require, etc,
and out-of-gas exceptions can be interpreted with the seman-
tics of exception(). The semantics rules for revert,
assert, require and out-of-gas exceptions are shown in
REVERT, ASSERT, REQUIRE and OUT-OF-GAS, respectively.

The semantics rules for function calls apply to all kinds
of calls in Solidity, including high-level and low-level calls,
constructors and fallback functions. For instance, if there is
no function name specified or the specified name does not
match any existing function in the recipient instance, the first
decomposed part in DECOMPOSE-SOLIDITY-CALL will be
#memberAccess(R:Int,String2Id("fallback"))
where R is the Id of the recipient instance and “fallback”
refers to the fallback function in that instance. In this case,
the fallback function in R will be invoked. In addition, in the
case of delegatecall, the recipient instance R is the same
as the caller instance C since the execution takes place in the
caller’s context.

IV. SEMANTICS EVALUATION

The proposed executable Solidity semantics is available
at https://github.com/kframework/solidity-semantics. We eval-
uate the proposed Solidity semantics from two perspectives:
the first one is its coverage (i.e., completeness), and the second
is its correctness (i.e., consistency with Solidity compilers).
In this section, we show that the proposed semantics com-
pletely covers the supported high-level core language features
specified by the official Solidity documentation [46] and is
consistent with the official Solidity compiler Remix [47].

We evaluate and test the proposed Solidity semantics with
the Solidity compiler test set [55] which consists of different
test programs for each feature. The Solidity compiler test set
is regarded as a standard test set or benchmarks for evaluating
Solidity semantics since the test programs are written in a
standard or correct way defined by the language developers
and cover all the features in Solidity. There are altogether
482 tests in the Solidity compiler test set. We skip the 18
tests for inline assembly statements and list the
number of tests for some important features in the remaining
464 tests used in the evaluation in Fig. 5. Specifically speak-
ing, four kinds of features, namely types, functions,

Figure 5. Number of Tests for Each Feature in the Solidity Compiler Test
Set

statements and new expression, are listed in Fig. 5.
For types, we list the number of tests for elementary
types, struct, mapping, and array. For statements,
we list the number of tests for if statements, loops,
return, throw, assert, revert and require. As
indicated in Fig. 5, Uint is the most common type and
return is the most common statement in all the tests
considered. In addition, function related features, including
function definitions and function calls, are present in almost all
the tests considered (with a ratio of 459/464). The evaluation
is done by manually comparing the execution behaviours of
the semantics definition in the K-framework with the ones of
the Remix compiler. We consider the proposed semantics is
correct if the execution behaviours in the K-framework are
consistent with the ones of the Remix compiler. A feature
is considered to be fully covered if all the Solidity compiler
tests involving this feature are passed. In order to adapt to the
optimization of exception handling in the proposed semantics,
we manually propagate exceptions in low-level calls by adding
assertions in the test programs. We list the coverage of the
proposed Solidity semantics in Table I from the perspective of
each feature specified by the official Solidity documentation.

From Table I, we can observe that the proposed Solidity
semantics completely covers the supported high-level core fea-
tures of the Solidity programming language. As for types, the
semantics definition in the K-framework covers the following
elementary types: address, bool, string, Int, Uint
and Byte. Fixed and Ufixed are not covered because
they are not fully supported by Solidity yet [46]. User-
defined types, including struct, contract types and enum,
are covered. Mappings, arrays, function types and address
payable are also covered. The semantics associated with
functions, such as function definitions and function calls,
is fully covered. Furthermore, the semantics of statements
is completely covered except that of inline assembly
statements which are considered to be low-level features
accessing EVM (i.e., this part of semantics can be integrated
with KEVM [7]). All kinds of expressions in Solidity are
covered. Lastly, the semantics of event is also covered. For
all the parts of covered semantics, they are considered to be

Table I
COVERAGE OF THE PROPOSED SOLIDITY SEMANTICS

Features Coverage Features Coverage Features Coverage

Types(Core) Statements(Core) Expressions(Core)
Elementary Types If Statement FC Bitwise Operations FC
address FC While Statement FC Arithmetic Operations FC
bool FC For Statement FC Logical Operations FC
string FC Block FC Comparison Operations FC
Int FC Inline Assembly N Assignment FC
Uint FC Statement Look Up FC
Byte FC Do While Statement FC New Expression FC
Fixed N Place Holder Statement FC Index Access FC
Ufixed N Continue FC Member Access FC

User-defined Types FC Break FC Other Expressions FC
Mappings FC Return FC
Array Types FC Throw,Revert,Assert,Require FC Using For FC
Function Types FC Simple Statement FC Inheritance FC
address payable FC Emit Statement FC Event FC

Functions(Core)
Function Definitions Function Calls
Constructors FC Fallback Functions FC Internal Function Calls FC
Normal Functions FC Modifiers FC External Function Calls FC

FC: Fully Covered and Consistent with Solidity IDE N: Not Covered

correct since the execution behaviours involved are consistent
with the ones in the official Solidity compiler Remix. The
parts of semantics for using for and inheritance are
covered with rewriting. They are not the core features of
Solidity since source programs with these features can be
properly rewritten to equivalent forms, the semantics of which
is completely supported. Therefore, the proposed Solidity
semantics can be considered to be complete and correct in
terms of the supported high-level core features of Solidity.

The semantics definition in the K-framework covers the se-
mantics of the core features in smart contracts. Actually, the set
of semantics in which known vulnerabilities of smart contracts
lie has already been covered. Taking the DAO attack [3] as
an example, the two vulnerabilities, reentrancy and call to
the unknown [4], are mainly associated with the semantics
of function calls. Thus, the proposed Solidity semantics can
be used in the verification of smart contracts.

V. APPLICATIONS

In this section, we introduce the applications of the Solidity
semantics as a formal foundation of the verification or security
analysis of smart contracts. Particularly, we underline some
practical problems in the existing approaches and show how
these problems can be solved with the proposed semantics.

A. Formal Specification of Smart Contracts

The proposed Solidity semantics provides a formal spec-
ification of smart contracts written in Solidity due to the
completeness and correctness of the semantics. Most of the
existing tools, such as Oyente [6], Zeus [28], etc, are based
on informal interpretations of the semantics of smart contracts.
Specifically speaking, Oyente is based on a distilled EVM
semantics which supports a subset of EVM features. As
discussed in [11], the verification facilitated by Oyente is not
sound due to the incompleteness of the EVM semantics and
the patterns to detect vulnerabilities. Zeus interprets Solidity

1 contract Bank {
2 mapping(address=>uint) credit;
3 address _BankLibrary;
4

5 constructor() public{
6 _BankLibrary = address(new BankLibrary());
7 }
8

9 function withdrawBalance(uint amount) public{
10 if(credit[msg.sender] >= amount){
11 _BankLibrary.delegatecall(abi.encodeWithSignature
12 ("withdraw(address payable, uint)", msg.sender,
13 amount));
14 credit[msg.sender] -= amount;
15 }
16 }
17 }
18

19 contract BankLibrary{
20 function withdraw(address payable recipient,
21 uint amount) public{
22 recipient.call.value(amount)(
23 abi.encodeWithSignature("nonExistingFunction()"));
24 }
25 }

Figure 6. Reentrancy False Negative in Oyente

semantics with the semantics of an abstract language. Due
to the nature of smart contract executions, the semantics of
intermediate languages cannot be completely equivalent to that
of Solidity in fundamental aspects which are important for
the security analysis [19]. We show some examples below to
illustrate the importance of a complete and correct Solidity
semantics in the verification of smart contracts.

A false negative in detecting delegated reentrancy at-
tacks [14] in Oyente [6] is shown in Fig. 6. In this case,
delegatecall is used to transfer ether rather than a direct
call. After the ether has been transferred, the recipient’s
fallback function is invoked by call in lines 22−23, making
reentrancy attacks [4] possible. However, the semantics of
delegatecall is not supported in Oyente, making it im-
possible to detect the reentrancy vulnerability associated with
delegatecall. To be specific, Oyente detects the reen-

1 contract Bank {
2 uint credit = 100;
3

4 function withdraw(uint amount) public{
5 assert(amount <= 100 && credit > 0);
6 if(credit - amount >= 0){
7 credit = 0;
8 msg.sender.transfer(amount);
9 }

10 }
11 }

Figure 7. Integer Underflow False Positive in Zeus

trancy vulnerability by checking whether the path condition for
executing CALL holds for updated state variables. If the ether
transfer is achieved through delegatecall, it is impossible
to obtain the path condition for executing the CALL instruction
corresponding to the ether transfer in lines 22 − 23 properly
without the semantics of delegatecall. The detection of
reentrancy attacks introduced by delegatecall is missing
due to the incomplete EVM semantics. In addition, without the
semantics of delegatecall, it is also impossible to detect
the Parity wallet attack [56] in which the attacker exploited
delegatecall to become the owner of the wallet contract
to steal ether. Therefore, the completeness of the underlying
semantics is important for the verification of smart contracts.

Apart from the completeness, the correctness of the se-
mantics of smart contracts is crucial to the validity of the
verification. For instance, Zeus [28] uses havoc statements
to handle all state variables in the same way regardless of
their types. havoc expands the domain of legitimate values
that a state variable can take to the type-defined domain of
that variable. In this case, initial values of state variables are
ignored and the entire data domain is explored. This potentially
leads to lots of false positives, especially in detecting integer
underflow and overflow problems. An example of the false
positives introduced by havoc is shown in Fig. 7.

In this example, the initial value of the state variable
credit is 100, which requires that the amount of ether to be
withdrawn for the first time cannot exceed 100 as indicated in
the assertion in line 5. Before the ether is transferred, credit
is set to be 0. However, havoc explores the entire data domain
of credit regardless of its initial value, making it possible
to trigger an integer underflow when credit is less than
amount. This leads to a false positive in detecting integer
underflow problems. The main reason for the false positive is
that the semantics of havoc statements is not equivalent to
that of state variable declarations in Solidity which takes into
account initial values. Therefore, the correctness of the under-
lying semantics is crucial to the validity of the verification.

As illustrated above, both the completeness and correctness
of the semantics of smart contracts are important in the verifi-
cation and security analysis. Providing a complete and correct
Solidity semantics solves the issues mentioned above as a
formal specification of smart contracts. The proposed Solidity
semantics allows us to refine the semantic foundations in the
existing tools targeting Solidity, such as Zeus, etc, to improve
their performance. Furthermore, the proposed semantics is not

limited to the K-framework since it can be interpreted into a
proof assistant language, such as Coq [57] or Isabelle [58],
with K backends for formal reasoning [59].

B. Defining High-level Security Properties of Smart Contracts

The proposed Solidity semantics allows us to define high-
level security properties of smart contracts for verification.
Most of the existing tools, such as Oyente [6], Zeus [28],
etc, focus on the detection of known vulnerabilities and
attacks. This is limited since there can be vulnerabilities
that have not been exploited to launch attacks. It is much
more important to discover unknown vulnerabilities to prevent
potential attacks. In addition, informal methods introduce
false positives and negatives. Therefore, formal definitions of
security properties which are not limited to specific attacks
are necessary. In [11], a set of security properties is first
defined for smart contracts on the proposed small-step EVM
semantics. However, in addition to possible semantic gaps
between high-level and low-level languages introduced by
compiler bugs, the low-level definition of single-entrancy fails
to address the high-level reentrancy property [60]. VerX [24]
allows high-level specifications of temporal safety properties
for low-level verification. However, high-level properties may
not be precisely interpreted with EVM semantics due to its
limitations. For instance, VerX integrates compiler behaviours
into EVM level verification to make up for the loss of high-
level semantic information during compilation. Securify [12]
also defines a set of security patterns for analyzing smart
contracts. However, pattern-based approaches introduce false
positives without considering semantic-level correctness in
the property specification. With the proposed semantics, it
is possible to formally define semantic security properties at
source code level, which facilitates the detection of unknown
vulnerabilities and potential attacks and also excludes false
positives introduced by pattern-based approaches. We show
some examples below to illustrate the importance of defining
high-level security properties of smart contracts.

A false positive in detecting the reentrancy vulnerabil-
ity with single-entrancy based approaches (e.g., Oyente [6],
Zeus [28], [11]) is shown in Fig. 8. In the withdraw func-
tion, the function nonExistingFunction() is invoked
by call to transfer ether to msg.sender. If there is no
function matching the specified function name in the recipient
instance specified by msg.sender, the fallback function in
that instance will be invoked, making it possible to re-enter
the withdraw function with the recipient’s fallback function.
However, in this case the state variable credit is updated in
line 6 before the execution of call in lines 7−9, making the
withdraw function reentrant and consequently excluding the
possibility of reentrancy attacks. A function is said to be reen-
trant if it can be interrupted in the middle of its execution and
then safely be called again (“re-entered”) before its previous
invocation’s complete execution [60]. Single-entrancy based
approaches to reentrancy attacks introduce false positives due
to the lack of a formal definition of reentrancy.

1 contract Bank {
2 mapping(address=>uint) credit;
3

4 function withdraw(uint amount) public{
5 if(credit[msg.sender] >= amount){
6 credit[msg.sender] -= amount;
7 msg.sender.call.value(amount)(
8 abi.encodeWithSignature(
9 "nonExistingFunction()"));

10 }
11 }
12 }

Figure 8. Reentrancy False Positive in Oyente and Zeus

1 contract Bank {
2 mapping(address=>uint) credit;
3

4 function withdraw(uint amount) public{
5 if(credit[msg.sender] >= amount){
6 credit[msg.sender] -= amount;
7 msg.sender.call.value(amount)(
8 abi.encodeWithSignature(
9 "nonExistingFunction()"));

10

11 credit[msg.sender] -= amount;
12 credit[msg.sender] += amount;
13 }
14 }
15 }

Figure 9. Reentrancy False Positive in Securify

A false positive in detecting the reentrancy vulnerability in
Securify is shown in Fig. 9. Securify detects the reentrancy
vulnerability by checking whether there is any instruction
to write to the storage after any CALL instruction in any
single trace. This is very close to detecting non-reentrant
behaviours [60] in low-level instructions. However, this se-
curity pattern does not take into account semantic-level cor-
rectness. For instance, if we add two additional statements in
lines 11−12 to write to the storage after the call in lines 7−9,
this function is still reentrant since the value of credit at
the end of the function is the same as the one before the
call, which means that the withdraw function in Fig. 9 is
equivalent to that in Fig. 8 at semantic level. In this case,
a false positive is introduced. Therefore, defining high-level
security properties for smart contracts based on semantic-level
correctness is crucial to the performance of verification tools.

The formal definition of reentrancy presented below inherits
the definition in [60] and excludes these false positives.

Notations. The runtime configuration of variables in a
smart contract, denoted by rc : G ∪ L 7→ D, is a func-
tion mapping variables to their domain D at each execution
step, where G and L are the sets of state variables and
local variables, respectively. Given a basic block B with n

statements, denoted by B 4= S1;S2; . . . ;Sn, we use rci to
denote the runtime configuration after Si is executed for
i ∈ {1, 2, . . . , n}, and rc0 denotes the initial configura-
tion before the block. We use ExeEOS(rc, S) to denote
the execution of a list of statements S on rc with the
Solidity semantics. Then rci = ExeEOS(rci−1, Si) =
ExeEOS(rc0, (S1;S2; . . . ;Si)). Given two runtime configu-

rations rci and rcj both over G∪L, we say rci(X) = rcj(X)
where X ⊆ G ∪ L, if 1) X 6= ∅ and rci(x) = rcj(x) for all
x ∈ X or 2) X = ∅. We use two particular state variables
checkReturn and checkDelegate to record the logical
conjunction of return values of unchecked low-level calls and
delegatecalls in a smart contract, respectively. We use
UI and SI to denote the sets of variables of unsigned and
signed integer types where UI ⊆ G ∪ L and SI ⊆ G ∪ L,
respectively. T is a function mapping a variable to its type and
Size is a function mapping an integer type to its size.

Reentrancy Safety. DAO attacks happen due to the fact
that the associated function is not reentrant [60], making it
possible to modify the values of critical state variables after an
external call which may be achieved through delegatecall
(e.g., Fig. 6). In Definition 1, a reentrant function requires
that the values of critical state variables cannot be modified
at semantic level after any external call. Theorem 1 shows
that a smart contract is reentrant safe if every function in
this contract is reentrant safe. For the runtime configuration
calculation for this property, external calls are skipped to avoid
the interference of another entry of the function.

Definition 1. Given any function definition DF
4
= F (~x){ B }

where B 4
= S1;S2; . . . ;Sn and a set of critical variables

C ⊆ G, the function is called reentrant or reentrant safe if
the following condition holds: if Si is an external jumping
statement (i.e., a statement with any external call or delegate-
call) for some i ∈ {1, 2, . . . , n}, then rci−1(C) = rcn(C).

Theorem 1. A smart contract is reentrant safe, if every
function in this contract is reentrant safe.

Proof. Let F1 and F2 be any two functions in the smart
contract, and their statement sequences are denoted by
σ1;σ2; . . . ;σn and ρ1; ρ2; . . . ; ρm, respectively. If there is any
reentrancy attack, we can always find a subsequence of the fol-
lowing form: σ1;σ2; . . . ;σi−1; (ρ1; ρ2; . . . ; ρm);σi+1; . . . ;σn
for some external jumping statement σi such that rcσi−1

(C) 6=
rcσn

(C). If F1 and F2 are reentrant, according to Definition 1,
rcσi−1(C) = rcσn(C). Therefore, if every function is reen-
trant, then such a subsequence does not exist.

Based on Definition 1 and Theorem 1, Algorithm 1 is
proposed to prove a smart contract is reentrant safe with
the executable Solidity semantics. Given a smart contract, we
try to prove that every function in this contract is reentrant.
Different from some existing works (e.g., [28], [11], [6])
which use single-entrancy to avoid reentrancy attacks, this
algorithm excludes non-reentrant behaviours [60] in every
function of smart contracts. It also differs from trace-based
approaches (e.g., [12], [30]) which rely on execution traces to
verify certain properties of smart contracts since the definition
of reentrancy is independent of any trace information. This
benefits the static analysis of smart contracts.

Let us compare our approach with a trace-based detection
approach to reentrancy attacks. The property of Effectively
Callback Free (ECF) defined in [30] is based on execution

Algorithm 1: VerifyReentrancy(P)
input : P : a smart contract
output: yes/no (to indicate whether the given smart

contract is reentrant safe)

1 foreach function definition

DF
4
= F (~x) {S1;S2; . . . ;Sn } do

2 rcn ←− ExeEOS(rc0, (S1;S2; . . . ;Sn));
3 foreach statement Sj do
4 if Sj is an external jumping statement and

rcj−1(C) 6= rcn(C) then return no;
5 else
6 rcj ←− ExeEOS(rcj−1, Sj);

7 return yes;

traces which are regarded as a part of the semantics of
contracts. This approach is effective in dynamic scenarios
(e.g., online detection and dynamic verification) where trace
information, i.e., a substantial part of the semantics, is avail-
able. However, it would be infeasible in automatic static
analysis where no existing trace is given due to the lack
of precise semantic foundations. Specifically speaking, this
approach is facilitated by a simple imperative object-based
programming language, called SMAC, the semantics of which
is not completely equivalent to the Solidity semantics. For
instance, this semantics does not support delegatecall,
making it impossible to generate the traces of delegated
reentrancy attacks (e.g., Fig. 6) properly. In the case of
static analysis, as discussed above, the detection of delegated
reentrancy attacks is missing. Compared with this approach,
our approach is more powerful in static analysis due to the
completeness and correctness of the Solidity semantics.

Also, the verification can be limited to a subset of state
variables to be more specific to certain reentrancy attacks,
which is impossible on EVM semantics for compound types. If
this security property is specific to the test set, there will be no
false positives and negatives in the verification. With respect
to the test cases shown in Fig. 8 and Fig. 9, the reentrancy
property defined in Definition 1 is specific when C = G
so that these two cases can be correctly identified as secure
contracts in terms of reentrancy. We implement Algorithm 1
in K backends and verify four variants of real DAO contracts
obtained from [61] in which the reentrancy bug has been fixed
(i.e., state variables are updated before ether transfer in the
withdraw function). These four real contracts are verified
to be reentrant safe. Oyente and Zeus cannot identify them
correctly due to the reasons mentioned above.

Delegatecall Safety. delegatecall is executed in the
context of the caller rather than the recipient, making it
possible to modify the caller state. This introduces certain
security vulnerabilities. For instance, delegatecall was
exploited in the Parity wallet attack [56] which led to a huge
impact on digital assets [62]. Delegatecall safety requires that
the critical state of the caller cannot be modified at semantic

level through delegatecall and delegatecall must
return true. The first condition guarantees that critical state
variables, such as the owner of the contract, cannot be modified
through delegatecall, and the second condition requires
that delegatecall must be successful in transferring ether
to recipients to avoid frozen ether.

Definition 2. Given any function definition DF
4
=

F (~x){ B } where B 4
= S1;S2; . . . ;Sn, an initial state

rc0(checkDelegate) = true and a set of critical variables
C ⊆ G, the function is called delegatecall safe if the following
condition holds: if Si is a delegatecall statement (i.e., a
statement with any delegatecall) for some i ∈ {1, 2, . . . , n},
then rci−1(C) = rci(C) and rci(checkDelegate) = true.

Theorem 2. A smart contract is delegatecall safe, if every
function in this contract is delegatecall safe.

Proof. Similar to Theorem 1.

Exception Handling Correctness. Exception disorders are
caused by the absent checking of return values of low-level
calls, such as call, send, etc. If such low-level calls fail,
exceptions will not be propagated to outer calls. Exception
handling correctness requires that low-level calls without ex-
ception handling, such as assertion checking of return values,
must succeed to avoid exception disorders.

Definition 3. Given any function definition DF
4
=

F (~x){ B } where B 4= S1;S2; . . . ;Sn and an initial state
rc0(checkReturn) = true, the function is called exception
handling correct if the following condition holds: if Si is an
unchecked low-level jumping statement (i.e., a statement with
any unchecked low-level call) for some i ∈ {1, 2, . . . , n}, then
rci(checkReturn) = true.

Theorem 3. A smart contract is exception handling correct,
if every function in this contract is exception handling correct.

Proof. Similar to Theorem 1.

Integer Arithmetic Operation Correctness. This security
property excludes integer overflow and underflow problems.

Definition 4. Given any function definition DF
4
= F (~x){ B }

where B 4
= S1;S2; . . . ;Sn, the function is called integer

arithmetic operation correct if the following condition holds:
if Si is an integer arithmetic operation statement (i.e., a
statement with any integer arithmetic operation) for some
i ∈ {1, 2, . . . , n}, then 0 <= rci(x) < 2Size(T (x)) for all
x ∈ UI and - 2Size(T (x))−1 <= rci(x) < 2Size(T (x))−1 for
all x ∈ SI .

Theorem 4. A smart contract is integer arithmetic operation
correct, if every function in this contract is integer arithmetic
operation correct.

Proof. There are two cases in constructing the proof. 1) If
there is no function call in any function of the contract, then
integer arithmetic operation correctness in one function is

1 contract Test {
2 uint256 a = 1;
3 uint256[2] b = [1,2];
4

5 function foo() public {
6 uint256[2] d;
7 d[0] = 7;
8 d[1] = 8;
9 }

10 }

Figure 10. A Bug in the Remix Compiler before Version 0.5.0

independent of the other functions. In this case, Theorem 4
holds. 2) If there exists at least one function call in any
function of this contract, then the proof is constructed in a
way similar to Theorem 1.

For delegatecall safety, exception handling correctness and
integer arithmetic operation correctness, the verification algo-
rithms are constructed in a way similar to Algorithm 1. Due
to limit of space, they are omitted.

C. Defining Correct and Secure High-level Execution Be-
haviours of Smart Contracts

As mentioned above, the execution behaviours of compilers
may be inconsistent with the high-level Solidity semantics so
that low-level bytecode may not equivalently capture intended
high-level execution behaviours. Another application of the
proposed Solidity semantics is defining correct and secure
high-level execution behaviours of smart contracts to reason
about Solidity compiler bugs and assist developers in writing
secure smart contracts in Solidity.

1) Reasoning about Compiler Bugs: A bug in the earlier
versions of Remix [47] is shown in Fig. 10. This smart contract
can be compiled in the Remix compiler before Version 0.5.0.
Please note that the local array declared in the function foo,
named d, is not specified with any location information (i.e.,
storage or memory). In this case, the values of d overwrite
the ones in the storage from the first slot. Specifically speaking,
the values of the first and the second indexes of d overwrite
the values of a and the first index of b, respectively. However,
this is not consistent with the intention of developers who
expect that the allocation of d takes place in the memory.
A correct semantics of a local array declaration requires that
the location information of this array must be specified. If it
is specified with memory, the allocation takes place in the
local memory. If it is specified with storage, a pointer to
the storage must be provided. In other cases, the local array
declaration is considered to be invalid in syntax.

Although this bug has been fixed in Remix since Version
0.5.0, the proposed semantics allows us to discover other
compiler bugs through the equivalence checking of the Solidity
semantics and compilers which is conducted by automatically
comparing the execution behaviours of Solidity contracts on
the proposed semantics with the ones of the compiled bytecode
on EVM semantics [7] in the K-framework [49].

2) Assisting Developers in Writing Secure Smart Contracts:
As illustrated above, excluding invalid syntax and undefined

behaviours with the proposed Solidity semantics is a good
way to assist developers in writing secure smart contracts. In
addition, correct and secure high-level execution behaviours
are defined in the semantics. For instance, according to the
low-level implementations of the language features of Solid-
ity [46], exceptions are not propagated by low-level calls,
such as call, send, etc, resulting in exception disorders.
However, this is not the intention of developers who expect
that exceptions in all kinds of calls propagate properly from
the perspective of source code. Instead of being consistent with
the low-level implementations, a uniform exception handling
mechanism is applied in all kinds of calls to propagate excep-
tions in a proper way, which excludes exception disorders at
high level. At the same time, exception disorders in the low-
level implementations can also be detected with the semantics
by checking return values of low-level calls. In this way,
the proposed semantics assists developers in writing secure
smart contracts by checking whether the high-level semantics
is consistent with the low-level implementations. If any in-
consistency occurs, developers are advised to use alternative
expressions. As mentioned above, this equivalence checking
procedure can be automatically conducted in the K-framework
with the proposed Solidity semantics and KEVM [7].

The benefits of defining correct and secure high-level execu-
tion behaviours of smart contracts instead of being consistent
with the low-level implementations lie in two aspects. First,
as illustrated above, the low-level implementations are not
necessarily correct and there can be compiler bugs. Secondly,
alternative low-level implementations [63] have been proposed
for smart contracts. Sticking to the existing ones may affect the
longstanding performance of the high-level Solidity semantics.

VI. CONCLUSION

In this paper, we introduce an executable operational seman-
tics of Solidity formalized in the K-framework. We present
the semantics of the core features of Solidity, namely memory
operations, new contract instance creations and function calls,
with an emphasis on the semantics of the exception handling
features. The semantics is designed from a general point of
view to adapt to the language evolution of smart contracts.
Experiment results show that the proposed Solidity semantics
has already completely covered the supported high-level core
language features specified by the official Solidity documenta-
tion, and the covered semantics is consistent with the official
Solidity compiler Remix. Furthermore, the applications of the
proposed Solidity semantics in the verification and security
analysis of smart contracts are discussed.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Education, Sin-
gapore under its Tier-2 Project (Award Number: MOE2018-
T2-1-068) and partially supported by the National Research
Foundation, Singapore under its NSoE Programme (Award
Number: NSOE-TSS2019-03).

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[2] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by
step towards creating a safe smart contract: Lessons and insights from
a cryptocurrency lab,” in FC, 2016, pp. 79–94.

[3] D. Siegel. (2016) Understanding the DAO attack. [Online]. Available:
http://www.coindesk.com/understanding-dao-hack-journalists

[4] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts (SoK),” in POST 2017, ser. Lecture Notes in Computer
Science, M. Maffei and M. Ryan, Eds., vol. 10204. Springer, 2017,
pp. 164–186.

[5] A. Madeira. (2019) The DAO, the hack, the soft fork and the hard
fork. [Online]. Available: https://www.cryptocompare.com/coins/guides/
the-dao-the-hack-the-soft-fork-and-the-hard-fork

[6] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in CCS 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 254–269.

[7] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. M. Moore, D. Park, Y. Zhang, A. Ştefănescu, and G. Roşu, “KEVM:
A complete formal semantics of the Ethereum Virtual Machine,” in CSF
2018. IEEE Computer Society, 2018, pp. 204–217.

[8] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart con-
tracts for vulnerability detection,” in ASE 2018, M. Huchard, C. Kästner,
and G. Fraser, Eds. ACM, 2018, pp. 259–269.

[9] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
Ethereum smart contract bytecode in Isabelle/HOL,” in CPP 2018.
ACM, 2018, pp. 66–77.

[10] Y. Hirai, “Defining the Ethereum Virtual Machine for interactive theorem
provers,” in FC, M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y.
Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson,
Eds. Cham: Springer International Publishing, 2017, pp. 520–535.

[11] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of Ethereum smart contracts,” in POST
2018, pp. 243–269.

[12] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. T. Vechev, “Securify: Practical security analysis of smart contracts,”
in CCS 2018, D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM,
2018, pp. 67–82.

[13] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “MadMax: Surviving out-of-gas conditions in Ethereum smart
contracts,” PACMPL, vol. 2, no. OOPSLA, pp. 116:1–116:27, 2018.

[14] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” in NDSS 2019. The
Internet Society, 2019.

[15] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in ACSAC 2018.
ACM, 2018, pp. 653–663.

[16] Mythril. [Online]. Available: https://github.com/ConsenSys/mythril
[17] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,

T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in ASE 2019.
IEEE, 2019, pp. 1186–1189.

[18] J. Krupp and C. Rossow, “teEther: Gnawing at Ethereum to automati-
cally exploit smart contracts,” in USENIX 2018, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 1317–1333.

[19] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of Ethereum smart contracts,” in CAV 2018, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 51–78.

[20] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting
the laws of order in smart contracts,” in ISSTA 2019, D. Zhang and
A. Møller, Eds. ACM, 2019, pp. 363–373.

[21] S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment
bugs in Ethereum smart contracts,” OOPSLA, pp. 189:1–189:29, 2019.

[22] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao, and
X. Zhang, “TokenScope: Automatically detecting inconsistent behaviors
of cryptocurrency tokens in Ethereum,” in CCS 2019, pp. 1503–1520.

[23] J. He, M. Balunovic, N. Ambroladze, P. Tsankov, and M. T. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in CCS 2019, pp. 531–548.

[24] VerX: Safety verification of smart contracts. [Online]. Available:
https://verx.ch

[25] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “sCompile:
Critical path identification and analysis for smart contracts,” in ICFEM
2019, pp. 286–304.

[26] H. Wang, Y. Li, S. Lin, L. Ma, and Y. Liu, “VULTRON: Catching
vulnerable smart contracts once and for all,” in ICSE (NIER) 2019,
A. Sarma and L. Murta, Eds. IEEE / ACM, 2019, pp. 1–4.

[27] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Z. Béguelin, “Formal verification of smart contracts,”
in PLAS@CCS 2016, T. C. Murray and D. Stefan, Eds. ACM, 2016,
pp. 91–96.

[28] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing safety
of smart contracts,” in NDSS 2018. The Internet Society, 2018.

[29] S. K. Lahiri, S. Chen, Y. Wang, and I. Dillig, “Formal specification and
verification of smart contracts for Azure Blockchain,” arXiv preprint,
vol. abs/1812.08829, 2018.

[30] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” POPL, vol. 48:1–48:28,
2018.

[31] A. Mavridou and A. Laszka, “FSolidM for designing secure Ethereum
smart contracts,” in POST 2018, pp. 270–277.

[32] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
Ethereum smart contracts,” in WETSEB@ICSE 2018. ACM, 2018,
pp. 9–16.

[33] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in WETSEB@ICSE 2019. IEEE / ACM, 2019,
pp. 8–15.

[34] Z. Nehai and F. Bobot, “Deductive proof of Ethereum smart contracts
using Why3,” arXiv preprint, vol. abs/1904.11281, 2019.

[35] Á. Hajdu and D. Jovanovic, “solc-verify: A modular verifier for Solidity
smart contracts,” arXiv preprint, vol. abs/1907.04262, 2019.

[36] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VeriSmart: A highly
precise safety verifier for Ethereum smart contracts,” arXiv preprint,
vol. abs/1908.11227, 2019.

[37] X. Li, Z. Shi, Q. Zhang, G. Wang, Y. Guan, and N. Han, “Towards
verifying Ethereum smart contracts at intermediate language level,” in
ICFEM 2019, pp. 121–137.

[38] Vyper documentation. [Online]. Available: https://vyper.readthedocs.io/
en/latest

[39] Bamboo. [Online]. Available: https://github.com/pirapira/bamboo
[40] Flint. [Online]. Available: https://github.com/flintlang/flint
[41] Etherscan. [Online]. Available: https://etherscan.io
[42] Z. Yang and H. Lei, “Lolisa: Formal syntax and semantics for a

subset of the Solidity programming language,” arXiv preprint, vol.
abs/1803.09885, 2018.

[43] J. Zakrzewski, “Towards verification of Ethereum smart contracts: A
formalization of core of Solidity,” in VSTTE 2018, ser. Lecture Notes
in Computer Science, vol. 11294. Springer, 2018, pp. 229–247.

[44] S. Crafa, M. Pirro, and E. Zucca, “Is Solidity solid enough?” in FC,
2019.

[45] M. Bartoletti, L. Galletta, and M. Murgia, “A minimal core calculus for
Solidity contracts,” in DPM/CBT@ESORICS, 2019.

[46] Solidity documentation. [Online]. Available: https://solidity.readthedocs.
io/en/latest

[47] Remix - Solidity IDE. [Online]. Available: https://remix-ide.readthedocs.
io/en/latest

[48] M. Jakobsson and A. Juels, “Proofs of work and bread pudding proto-
cols,” ser. IFIP, B. Preneel, Ed., vol. 152. Kluwer, 1999, pp. 258–272.

[49] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic frame-
work,” Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp.
397–434, 2010.

[50] N. Martı́-Oliet and J. Meseguer, “Rewriting logic: Roadmap and bibli-
ography,” Theor. Comput. Sci., vol. 285, pp. 121–154, 2002.

[51] D. Bogdănaş and G. Roşu, “K-Java: A complete semantics of Java,” in
POPL 2015. ACM, 2015, pp. 445–456.

[52] C. Ellison and G. Roşu, “An executable formal semantics of C with
applications,” in POPL 2012. ACM, 2012, pp. 533–544.

[53] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based
program verifiers for all languages,” in OOPSLA 2016, E. Visser and
Y. Smaragdakis, Eds. ACM, 2016, pp. 74–91.

[54] T. Nipkow and G. Klein, “IMP: A simple imperative language,” Concrete
Semantics. Springer, Cham, 2014.

[55] Solidity compiler test set. [Online]. Available: https://github.com/
ethereum/solidity

[56] S. Palladino. The Parity wallet attack. [Online]. Available: https://blog.
zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

[57] The Coq proof assistant. [Online]. Available: http://coq.inria.fr
[58] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof

Assistant for Higher-order Logic. Springer-Verlag, 2002.
[59] K-framework. [Online]. Available: http://www.kframework.org/index.

php
[60] M. Kerrisk, The Linux Programming Interface. No Starch Press, 2010.
[61] The standard DAO framework. [Online]. Available: https://github.com/

slockit/DAO
[62] M. Suiche. (2017) The $280M Ethereum’s Parity bug. [Online]. Avail-

able: https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513
[63] T. Kasampalis, D. Guth, B. Moore, T. Şerbănuţă, V. Şerbănuţă,

D. Filaretti, G. Roşu, and R. Johnson, “IELE: An intermediate-level
blockchain language designed and implemented using formal seman-
tics,” July 2018.

APPENDIX

A. ReadAddress

We evaluate global and local variables with
READADDRESS-GLOBALVARIABLES and READADDRESS-
LOCALVARIABLES, respectively. Particularly, global and
local variables are stored in ctStorage and Memory in the
corresponding instance, respectively. The gas consumption
for reading a slot is calculated and updated in gasCal.

B. WriteAddress

We rewrite global variables with WRITEADDRESS-
GLOBALVARIABLES and local variables with
WRITEADDRESS-LOCALVARIABLES. Particularly, global and
local variables are rewritten in ctStorage and Memory in
the corresponding instance, respectively. The gas consumption
for rewriting a slot is calculated and updated in gasCal.

C. AllocateAddress

A memory slot is allocated for a variable through
allocateAddress. First, we map the corresponding con-
tract instance with its Id N. Then we add a new slot
at Addr with the initial value V. Particularly, for global
variables the slot is added in ctStorage as shown
in ALLOCATEADDRESS-GLOBALVARIABLES. And for local
variables, the slot is added in Memory as illustrated in
ALLOCATEADDRESS-LOCALVARIABLES. The gas consump-
tion for allocating a slot is calculated and updated in gasCal.

D. UpdateState

The blockchain state is updated through updateState
when a new contract instance is created. To be specific,
the number of contract instances is increased by 1 in
cntContracts. A new contract instance cell is created
with its Id N in ctId and the associated contract name X
in ctName. In addition, as shown in UPDATESTATE-MAIN-
CONTRACT, if this new contract instance creation is in the
“Main” contract, the number of transactions will be increased
by 1 in cntTrans and a new mapping will be created
to record this new contract instance creation as a transac-
tion in tranComputation. As shown in UPDATESTATE-
FUNCTION-CALL, if this new contract instance creation is

RULE READADDRESS-GLOBALVARIABLES

< readAddress(Addr:Int,String2Id("Global"))
gasCal(#read,String2Id("Global")) y V:Value

. . .>k
< ListItem(N:Int) . . .>contractStack

< < N >ctId
<. . . Addr |-> V . . .>ctStorage

. . .>contractInstance

RULE READADDRESS-LOCALVARIABLES

< readAddress(Addr:Int,String2Id("Local"))
gasCal(#read,String2Id("Local")) y V:Value

. . .>k
< ListItem(N:Int) . . .>contractStack

< < N >ctId
<. . . Addr |-> V . . .>Memory

. . .>contractInstance

RULE WRITEADDRESS-GLOBALVARIABLES

< writeAddress(Addr:Int,String2Id("Global"),
V:Value)

gasCal(#write,String2Id("Global"),OV,V) y V
. . .>k

< ListItem(N:Int) . . .>contractStack

< < N >ctId
< . . .

Addr |-> OV
Addr |-> V

. . .>ctStorage
. . .>contractInstance

RULE WRITEADDRESS-LOCALVARIABLES

< writeAddress(Addr:Int,String2Id("Local"),
V:Value)

gasCal(#write,String2Id("Local"),OV,V) y V
. . .>k

< ListItem(N:Int) . . .>contractStack

< < N >ctId
< . . .

Addr |-> OV
Addr |-> V

. . .>Memory
. . .>contractInstance

RULE ALLOCATEADDRESS-GLOBALVARIABLES

< allocateAddress(N:Int, Addr:Int,
String2Id("Global"), V:Value)

gasCal(#allocate,String2Id("Global")) y V
. . .>k

< < N >ctId
< STORAGE:Map

STORAGE (Addr |-> V) >ctStorage
. . .>contractInstance

RULE ALLOCATEADDRESS-LOCALVARIABLES

< allocateAddress(N:Int, Addr:Int,
String2Id("Local"), V:Value)

gasCal(#allocate,String2Id("Local")) y V
. . .>k

< < N >ctId
< MEMORY:Map

MEMORY (Addr |-> V) >Memory
. . .>contractInstance

nested in a function call, no transaction information will be
recorded since it is not an independent transaction. Finally,
a new list item of X is added into newStack to indicate
that we are in the process of a new contract instance creation.
The gas consumption for deploying a new contract instance is
calculated and updated in gasCal(#newInstance).

E. AllocateStorage

Memory slots are allocated for state variables in the new
contract instance through allocateStateVars. As shown
in ALLOCATESTATEVARIABLES, a memory slot is allocated
for each variable Var with allocate sequentially until there
are no more variables to process.

F. InitInstance

If there is a constructor in the contract for which a new
instance is created, INITINSTANCE-WITHCONSTRUCTOR will
be applied. Otherwise, INITINSTANCE-NOCONSTRUCTOR
will be applied. The rule INITINSTANCE-NOCONSTRUCTOR
simply returns the Id of the new instance. Furthermore, the
associated contract name X is popped out of newStack to

RULE UPDATESTATE-MAIN-CONTRACT

< updateState(X:Id)
gasCal(#newInstance)

. . .>k < < X >cName . . .>contract

< N:Int
N +Int 1 >cntContracts < T:Int

T +Int 1 >cntTrans

< INS:Bag

INS < < N >ctId
< X >ctName

. . .>contractInstance >contractInstances

< Trans:Map
Trans (T |-> "new contract") >tranComputation

< L:List
ListItem(X) L >newStack < .List >functionStack

RULE UPDATESTATE-FUNCTION-CALL

< updateState(X:Id)
gasCal(#newInstance)

. . .>k < < X >cName . . .>contract

< N:Int
N +Int 1 >cntContracts

< INS:Bag

INS < < N >ctId
< X >ctName

. . .>contractInstance >contractInstances

< L:List
ListItem(X) L >newStack < CallList:List >functionStack

requires CallList =/=K .List

RULE ALLOCATESTORAGE

< allocateStorage(X:Id)
allocateStateVars(N -Int 1, Vars)

. . .>k
< < X >cName < Vars:List >stateV ars . . .>contract

< N:Int >cntContracts

RULE ALLOCATESTATEVARIABLES

< allocateStateVars(N:Int,
ListItem(Var) Vars:List)

allocate(N, Var) y
allocateStateVars(N, Vars)

. . .>k
RULE ALLOCATESTATEVARIABLES-END

< allocateStateVars(N:Int, .List)
.

. . .>k
indicate that the new instance creation is finished. While in the
rule INITINSTANCE-WITHCONSTRUCTOR, apart from remov-
ing the contract name X out of newStack, a function call is
processed to execute the constructor. To be specific, the caller
of this function is C and the recipient is the new instance N -
1. In addition, the function to be called is the constructor and E
specifies the function arguments. The name of the constructor
has been changed to “constructor” since Version 0.4.22 [46].
The function name is stored as an identifier, so we transform
the string “constructor” into the equivalent Id type with
the built-in function String2Id in the K-framework. The
last argument of functionCall is the “msg” information,
denoted by #msgInfo(msg.sender(Id_of_Caller),
Id_of_Recipient, msg.value, msg.gas). The gas
consumption for executing the constructor is calculated and
updated in gasCal(#constructor).

G. SwitchContext

The first step for a function call is to switch to the recipient
instance as shown in SWITCH-CONTEXT. This is achieved by
adding the recipient R into contractStack which indicates
the current contract instance. At the same time, we need
to store the state information of this function call, presented as
#state(RhoC,F,#return(false,0),CNum,false),

RULE INITINSTANCE-NOCONSTRUCTOR

< initInstance(X:Id,E:ExpressionList)
N -Int 1

. . .>k
< ListItem(X) L:List

L >newStack < N:Int >cntContracts

< < X >cName < false >Constructor . . .>contract

RULE INITINSTANCE-WITHCONSTRUCTOR

< initInstance(X:Id,E:ExpressionList)
functionCall(C;N -Int 1;

String2Id("constructor");E;
#msgInfo(C,N -Int 1,0,gasCal(#constructor)))

. . .>k
< ListItem(X) L:List

L >newStack < N:Int >cntContracts

< ListItem(C:Int) . . .>contractStack

< < X >cName < true >Constructor . . .>contract

RULE SWITCH-CONTEXT

< switchContext(C:Int,R:Int,F:Id,M:Msg)
createTransaction(L)

. . .>k
< L:List

ListItem(R) L >contractStack < CNum >cntContracts

< M1
M >Msg < MsgList:List

ListItem(M1) MsgList >msgStack

< CallList:List
ListItem(#state(RhoC,F,

#return(false,0),CNum,false)) CallList >functionStack

< < C >ctId < RhoG >globalContext

< RhoC
RhoG >ctContext

. . .>contractInstance

< G
0 >gasConsumption < GasList:List

ListItem(G) GasList >gasStack

in functionStack. There are altogether five items in the
state information. The first item RhoC is the variable context
of the caller instance which can be used to read and write
variables in that instance. The second one F is the name of
the function to be called. The next one is the information
for return with two fields. The first field indicates whether
a return statement has already been encountered, while the
second records the return value. We assume that the default
return value is 0. After this, the next item in #state is the
number of contract instances created before this function call
which is CNum. The last item is a flag to indicate whether
this function call throws an exception.

The variable context of the caller instance RhoC is obtained
from the cell contractInstance with the caller instance
Id C in the sub-cell ctId. Apart from storing the previous
variable context in functionStack, we rewrite it to RhoG
which is stored in globalContext and only associated with
state variables. The intention of this step is to remove the
context of local variables. Furthermore, the current transaction
information in Msg is rewritten to M, while the previous
one M1 is pushed into msgStack. Similarly, the current gas
consumption in gasConsumption is rewritten to 0, and the
previous one G is pushed into gasStack. Finally, we record
the transaction information through createTransaction.
Particularly, the balance of the creator of the transaction is
reduced at a certain rate to pay for the gas in this sub-step.
Due to limit of space, this part is omitted.

RULE INTERNAL-FUNCTION-CALL

< functionCall(F:Id;Es:Values)
saveCurContext(CNum,0) y

call(searchFunction(F,checkCallData(Es,0)),Es)
y updateCurContext(CNum,0)

. . .>k
< CNum >cntContracts

RULE CALL

< call(N:Int,Es:Values)
initFunParams(N,Es) y

processFunQuantifiers(N)y
callFunBody(N)

. . .>k
RULE CALL-FUNCTION-BODY

< callFunBody(N)
funBody(B) y updateReturnParams(N) y

updateReturnValue(N)
. . .>k

< < N >fId < B >Body . . .>function

RULE FUNCTION-BODY

< funBody(S:Statement Ss:Statements)
exeStmt(S) y funBody(Ss)

. . .>k
< funBody(.Statements)

.
. . .>k

H. Internal-Function-Call

There are three sub-steps in handling internal function
calls. To be specific, saveCurContext facilitates the
semantics of exceptions. When a transaction throws an
exception, the states of all the contract instances involved
should revert to the ones before this transaction. The
instance states prior to the transaction are saved through
saveCurContext(CNum,0) where CNum is the number
of contract instances created before this function call and
0 specifies the starting point. In other words, we store the
states of contract instances whose Ids range from 0 to CNum
- 1. If this is a nested call, the states of the involving
instances will not be saved through saveCurContext
since it aims to keep track of the states before a transaction.
call(searchFunction(F,checkCallData(Es,0)),
Es) is the actual call of the function F with arguments Es.
Particularly, searchFunction is an expression that
returns the Id of the function to be called. It is used
to distinguish functions with the same name F through
checkCallData which checks the call data specified by
Es. The second argument of checkCallData records
the number of parameters that have been checked, so we
start from 0. Finally, we update the instance states we
have saved to the ones after the function call through
updateCurContext(CNum,0). If an exception is
encountered in this call, the states of the involving instances
will not be updated through updateCurContext.

In dealing with CALL, we first initialize function parameters
including input parameters and return parameters through
initFunParams. Input parameters are initialized by the
function call arguments Es and return parameters are initial-
ized to be the default values, such as 0 for an integer and false
for a Boolean type. The first argument of initFunParams,
denoted by N, is the Id of the function to be called while the
second Es specifies the values of the input parameters of the
function. After this, processFunQuantifiers deals with

RULE RETURN-CONTEXT

< returnContext(R:Int)
clearRecipientContext(R,RhoG)y
clearCallerContext(C,Rho)y

propagateException(C,Exception)yE:Value

. . .>k
< ListItem(R) ListItem(C) L:List

ListItem(C) L >contractStack

< M
M1 >Msg < ListItem(M1) MsgList:List

MsgList >msgStack

< ListItem(#state(Rho,_,#return(_,E),
_,Exception)) CallList:List

CallList >functionStack

< < R >ctId < RhoG >globalContext . . .>contractInstance

< G:Int
G +Int G1 >gasConsumption

< ListItem(G1) GasList:List
GasList >gasStack

function quantifiers, namely specifiers and modifiers, which
may modify the function body and have an impact on the
function execution. For instance, modifiers rewrite the function
body by replacing “ ;” that appears there with the function
body. Finally, callFunBody executes the function body that
has been modified by function quantifiers.

There are three sub-steps in CALL-FUNCTION-BODY. The
first one funBody is the execution of the function body
B which is obtained by mapping the cell function with
Id N. The second updateReturnParams binds the return
parameter with the return value. For instance, if a function
returns 1, the value of its return parameter should be 1.
The last one updateReturnValue returns the value of the
return parameter if there is no return statement in this function.

Statements in a function body are executed sequentially.
In the rule FUNCTION-BODY, every time the first statement
S in a list of statements is extracted for execution through
exeStmt and the remaining statements Ss are processed with
this rule recursively until the list of statements becomes empty.

I. ReturnContext

RETURN-CONTEXT is the last step in FUNCTION-CALL
to return to the caller instance. In order to finish this
function call, the recipient instance R is popped out of
contractStack to switch back to the caller instance
C. In the meantime, the state information for this function
call is removed from functionStack. Furthermore, the
“msg” information in Msg is rewritten to the previous
one M1 which is also popped out of msgStack. In
gasConsumption, the gas consumption in the inner call
G is added to that in the outer call G1 which is popped
out of gasStack. This rule has three sub-steps, namely
clearRecipientContext, clearCallerContext,
and propagateException, and ends with the return value
of this call. To be specific, clearRecipientContext and
clearCallerContext remove the local variable contexts
in the instances of the recipient and caller, respectively. For
the recipient instance, the variable context is set to be RhoG
which is obtained from globalContext and only holds
the context of state variables in R. For the caller instance,
the variable context is set to be the previous one Rho
retrieved from the state information in functionStack.

RULE UPDATE-EXCEPTION-STATE

< updateExceptionState()
.

. . .>k
< ListItem(#state(_,_,_,_,_))

ListItem(#state(_,_,_,_,true))
. . .>functionStack

RULE REVERT-STATE

< revertState()
revertInContracts(PreCNum,0)y

deleteNewContracts(PreCNum,CNum)
. . .>k

< ListItem(#state(_,_,_,PreCNum,_)) . . .>functionStack

< CNum >cntContracts

RULE RETURN-VALUE

< return E:Value
1

. . .>k

< ListItem(#state(_,_,
#return(_,_),_,_))
ListItem(#state(_,_,
#return(true,E),_,_))

. . .>functionStack

RULE RETURN

< return
1

. . .>k

< ListItem(#state(_,_,
#return(_,_),_,_))
ListItem(#state(_,_,

#return(true,true),_,_))

. . .>functionStack

propagateException deals with the propagation of
exceptions based on the exception flag recorded in
functionStack. If an exception is encountered in a
function call, it should be propagated to the call stemming
from the “Main” contract which is considered as an
independent transaction. In this way, if an exception appears
in any nested call, the whole transaction throws and the states
of all the involving instances should revert to the ones before
this transaction. Due to limit of space, the detailed steps are
omitted. Lastly, RETURN-CONTEXT returns the return value
of this function call E which is obtained from #return in
functionStack.

J. Exception Handling

In UPDATE-EXCEPTION-STATE, the exception flag,
the last field in #state is rewritten to true to
indicate that an exception has been encountered. In
REVERT-STATE, two sub-steps are processed to revert
to the state before the transaction. These sub-steps are
revertInContracts and deleteNewContracts. To
be specific, revertInContracts(PreCNum,0) deals
with the reversion to the previous states of the contract
instances that were created before this transaction. Par-
ticularly, the reversion starts from the instance with Id
0 and ends at the one with Id PreCNum - 1 where
PreCNum is the number of instances created before
this transaction which is recorded in functionStack.
deleteNewContracts(PreCNum,CNum) deletes the
new contract instances created in this transaction. Here, CNum
is the current number of contract instances retrieved from
cntContracts. The reversion to previous states is simply
the rewriting of cell contents to previous ones and the deletion
of new contract instances is the deletion of a set of cells. Due
to limit of space, detailed steps are omitted here.

RULE EXE-STATEMENT

< exeStmt(S:NoBlockStatement)
S

. . .>k
< ListItem(#state(_,_,

#return(false,_),_,false))
. . .>functionStack

RULE EXE-STATEMENT-END

< exeStmt(S:NoBlockStatement)
.

. . .>k
< ListItem(#state(_,_,

#return(ReturnFlag,_),
_,ExceptionFlag))

. . .>functionStack

requires (ReturnFlag ==Bool true)

orBool (ExceptionFlag ==Bool true)

RULE EXE-STATEMENT-MAIN-CONTRACT

< exeStmt(S:NoBlockStatement)
S

. . .>k
< .List >functionStack

K. Return

When return is encountered, the return flag, the first
field in #return, is set to be true in functionStack.
Particularly, if a value E is returned, the return value, the
second field in #return, is rewritten to E. If there is no value
to return, we assign true to the return value to indicate
that this function call is successful. Both RETURN-VALUE and
RETURN end with the integer 1 which indicates the end of the
expression. Any integer followed by “;” will be rewritten to
., which represents the end of the return statement.

L. Statements

As shown in EXE-STATEMENT, the execution of each
statement in the function body is affected by the return and
exception flags in functionStack. Generally speaking,
a statement will be executed when both of the two flags are
false, indicating that neither return nor an exception has
been encountered. For statements in the “Main” contract, we
simply execute them.

Please note that we limit the statement for execution to
NoBlockStatement where no block structures are present.
This is because we need to exclude block structures to keep all
the other statements in the function body parallel to return
and exception statements. In this way, each statement can
be executed sequentially without any nested structures. Once
return or an exception is encountered, the execution stops
regardless of the structure of the statements. Statements with
blocks, named as BlockStatements, can be transformed
into a list of NoBlockStatements. Due to limit of space,
the transformation rules are omitted.

View publication statsView publication stats

https://www.researchgate.net/publication/343336899

	Semantic understanding of smart contracts: Executable operational semantics of solidity
	Author

	tmp.1622103391.pdf.5VLuu

