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ABSTRACT
Cyber-physical systems (CPSs) play a critical role in automating
public infrastructure and thus attract wide range of attacks. As-
sessing the effectiveness of defense mechanisms is challenging as
realistic sets of attacks to test them against are not always available.
In this short paper, we briefly describe smart fuzzing, an automated,
machine learning guided technique for systematically producing
test suites of CPS network attacks. Our approach uses predictive
machine learning models and meta-heuristic search algorithms to
guide the fuzzing of actuators so as to drive the CPS into different
unsafe physical states. The approach has been proven effective on
two real-world CPS testbeds.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Cyber-physical systems (CPSs) are characterized by computational
elements and physical processes that are deeply intertwined, each
potentially involving different spatial and temporal scales, modal-
ities, and interactions. We define CPSs as systems in which al-
gorithmic control and physical processes are tightly integrated.
Concretely, we assume that they consist of computational elements
such as programmable logic controllers (PLCs), distributed over
a network, and interacting with their processes via sensors and
actuators. The operation of a CPS is controlled by its PLCs, which
receive readings from sensors that observe the physical state, and
then compute appropriate commands to send along the network to
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the relevant actuators. In our work we assume that the sensors read
continuous data and that the states of the actuators are discrete.

CPSs are commonly used to automate aspects of critical civil
infrastructure, such as water treatment or the management of elec-
tricity demand [7]. Given the potential to cause massive disruption,
such systems have become prime targets for cyber attackers, with a
number of successful cases reported in recent years [4, 6]. However,
CPSs are very difficult to reason about: while individual control
components (e.g. PLC programs) may be simple in isolation, reason-
ing about the behaviour of the whole system can only be done with
consideration of how its physical processes evolve and interact.
This often requires considerable domain-specific expertise beyond
the knowledge of a typical computer scientist, which is one of our
principal motivations for achieving full automation.

2 OUR APPROACH
Fuzzing, which plays a key role in our solution, is in general an auto-
mated testing technique that attempts to identify potential crashes
or assertion violations by generating diverse and unexpected inputs
for a given system [8]. Most well-known tools perform fuzzing on
programs, but in the context of CPSs, we consider fuzzing at the
network level. Furthermore, the goal of our fuzzing differs in that
we are trying to drive physical sensors out of their safe ranges,
using an underlying method that is ML-guided.

Our technique uses predictive machine learning models and
meta-heuristic search to intelligently fuzz actuator commands, and
systematically drive the system into different categories of unsafe
physical states. Smart fuzzing consists of two broad steps. First, we
learn a model of the CPS by training ML algorithms on physical
data logs that characterize its normal behaviour. The learnt model
can be used to predict how the current physical state will evolve
with respect to different actuator configurations. Second, we fuzz
the actuators over the network to find attack sequences that drive
the system into a targeted unsafe state. This fuzzing is guided by the
learnt model: potential manipulations of the actuators are searched
for, and then the model predicts which of them would drive the
CPS closest to the unsafe state.

Our design for smart fuzzing was driven by four key require-
ments. First, that it should be general, in the sense that it can be
implemented for different CPSs and a variety of sensors and ac-
tuators. Second, that the approach should be comprehensive, in
that the suites of attacks it constructs should systematically cover
different categories of sensed physical properties, rather than just
a select few. Third, that it should be efficient, with each attack
achieving its goal quickly, posing additional challenge for coun-
termeasures. Finally, that it should be practically useful, in that it
is straightforward to implement for real CPSs without any formal
specification or specific technical expertise, and that the ‘test suites’
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of attacks are of comparable quality to expert-crafted benchmarks,
thus a reasonable basis for assessing attack defense mechanisms.

Our approach for automatically finding network attacks on CPSs
consists of two broad steps in turn: learning and fuzzing. In the
first step, we learn a model of the CPS that can predict the effects
of actuator configurations on the physical state. The model takes as
input the current readings of all sensors and a proposed configura-
tion of the actuators, returning as output a prediction of the sensor
readings that would result from adopting that configuration for a
fixed time interval. The idea is that this model can later be used to
analyze different potential actuator configurations, and help inform
which of them is likely to drive the system closer to a targeted
unsafe state. To learn this model, we extract a time series of sensor
and actuator data from the system logs and train a suitable machine
learning algorithm.

The second step of our approach searches for commands to fuzz
the actuators with that will drive the CPS into an unsafe physical
state. To find the right commands, our approach applies a search
algorithm over the space of actuator configurations, returning the
configuration that is predicted by the model (of the first step) to
drive the CPS the closest to an unsafe state. We explore different
search algorithms for this task, including random, but also meta-
heuristic (e.g. genetic algorithms) given that the state space of
actuators can grow quite large (e.g. 226 possible configurations in
SWaT). We use fitness functions to evaluate predicted sensor states
with respect to the attack goal.

3 EVALUATION
To evaluate our approach against these requirements, we imple-
mented it for two CPS testbeds. First, the Secure Water Treatment
(SWaT) testbed [1], a fully operational water treatment plant con-
sisting of 42 sensors and actuators, able to produce five gallons of
drinking water per minute. Second, the Water Distribution (WADI)
testbed [3], a scaled-down version of a typical water distribution
network for a city, built for investigating attacks on consumer water
supplies with respect to patterns of peak and off-peak demand. The
designs of these testbeds were based on real-world industrial purifi-
cation plants and distribution networks, and thus reflect many of
their complexities. We found that smart fuzzing could automatically
identify suites of attacks that drove these CPSs into 27 different un-
safe states involving water flow, pressure, tank levels, and consumer
supply. Furthermore, it covered six unsafe states beyond those in
an established expert-crafted benchmark [5]. Finally, we evaluated
the utility of smart fuzzing for testing attack defense mechanisms
by launching it with SWaT’s invariant-based monitoring system
enabled [2]. Our approach was able to identify two attacks that
evaded detection by its physical invariant checks, highlighting a
potential weakness that could be exploited by attackers with the
capabilities to bypass its other conditions.

Our evaluation addresses five research questions based on our
original design requirements for smart fuzzing (Section I): RQ1
(Efficiency): How quickly is smart fuzzing able to find a targeted
attack? RQ2 (Comprehensiveness): Howmany unsafe states can the
attacks of smart fuzzing cover? RQ3 (Setup): Which combinations of
model and search algorithm are most effective? RQ4 (Comparisons):
How do the attacks compare against those of other approaches

or those in benchmarks? RQ5 (Utility): Are the discovered attacks
useful for testing CPS attack detection mechanisms? RQs 1-2 con-
sider whether smart fuzzing achieves its principal goal of finding
network attacks. We assess this from two different angles: first, in
terms of how quickly it is able to drive the CPS into a particular
unsafe state; and second, in terms of how many different unsafe
states the attacks can cover. RQ 3 considers how different setups
of smart fuzzing (i.e. different models or search algorithms) impact
its ability to find attacks. RQ 4 compares the effectiveness of smart
fuzzing against other approaches: first, the baseline of randomly
mutating actuator states without reference to a model of the system;
and second, an established, manually constructed benchmark of
attacks [5]. Finally, RQ 5 investigates whether the attacks found by
smart fuzzing are useful for testing existing cyber-security defense
mechanisms. Our empirical study shows promising results on all
five research questions.

We remark on some threats to the validity of our evaluation.
First, our approach was implemented for CPS testbeds: while they
are real, fully operational plants based on the designs of industrial
ones, they are still smaller, and our results may therefore not scale-
up (this is difficult to test due to the confidentiality surrounding
plants in cities). Second, the initial states of the testbeds were not
controlled, other than to be within their normal ranges, meaning
that our performance results may vary slightly. Finally, for testing
CPS attack detection mechanisms, we only studied an invariant
based solution, meaning that our conclusions may not hold for
other types of defenses.

4 CONCLUSION
Active fuzzing, a black-box approach for automatically building
test suites of packet-level CPS network attacks, overcomes the
enormous search spaces and resource costs of such systems. Key to
achieving this was our use of online active learning, which reduced
the amount of training data needed by sampling examples that were
estimated to maximally improve the model.
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