
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2021 

Sentiment-oriented metric learning for text-to-image retrieval Sentiment-oriented metric learning for text-to-image retrieval 

Quoc Tuan TRUONG 

Hady W. LAUW 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, Data Science Commons, and the 

Numerical Analysis and Scientific Computing Commons 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Sentiment-Oriented Metric Learning for
Text-to-Image Retrieval
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{qttruong.2017,hadywlauw}@smu.edu.sg

Abstract. In this era of multimedia Web, text-to-image retrieval is a
critical function of search engines and visually-oriented online platforms.
Traditionally, the task primarily deals with matching a text query with
the most relevant images available in the corpus. To an increasing extent,
the Web also features visual expressions of preferences, imbuing images
with sentiments that express those preferences. Cases in point include
photos in online reviews as well as social media. In this work, we study
the effects of sentiment information on text-to-image retrieval. Particu-
larly, we present two approaches for incorporating sentiment orientation
into metric learning for cross-modal retrieval. Each model emphasizes
a hypothesis on how positive and negative sentiment vectors may be
aligned in the metric space that also includes text and visual vectors.
Comprehensive experiments and analyses on Visual Sentiment Ontol-
ogy (VSO) and Yelp.com online reviews datasets show that our mod-
els significantly boost the retrieval performance as compared to various
sentiment-insensitive baselines.

Keywords: Text-to-Image Retrieval · Cross-Modal Retrieval · Metric
Learning · Sentiment Orientation.

1 Introduction

The Web is awash in visual imagery. Millions of images are added daily to the
billions already existing in various image-oriented platforms such as Instagram,
Pinterest, Flickr, etc. In addition, product reviews in virtually any category,
be it of restaurants on Yelp or consumer electronics on Amazon, frequently
feature photos accompanying (complementing and even enhancing) the textual
content of the reviews. In the face of such abundance and diversity, finding images
relevant to one’s purpose remains a pertinent challenge. While images are now a
cornerstone modality on the Web, the manner in which most users express their
intent is still predominantly textual. In this paper, we focus on text-to-image
retrieval, i.e., retrieving images from a textual query. This is distinct from image
retrieval, i.e., retrieving images from an image query [10], which is an active
research topic in its own right.

The presumption by many previous works on cross-modal retrieval (involving
multiple modalities, such as text and image) [8, 41] is that queries, and by ex-
tension the images the queries are aimed at, are generally of an objective nature.
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For instance, a user may be looking for pictures of a cat, a car, a specific person,
etc. In reality, images are not universally devoid of sentiment. To the contrary,
recent literature on visual sentiment analysis [47, 36–38, 31] attests to the man-
ifestation of sentiments within some images. Within reviews for a restaurant or
a hotel for example, someone may post an image of “restroom” in the positive
sense (perhaps an especially clean or well-appointed specimen) or in the nega-
tive sense (such as the case where hygiene is less than desired). Conceivably, an
“objective” query may turn out images of varied sentiments, due to its lack of
specificity of which sentiment is fit and proper for the occasion at hand.

Problem. For a more holistic and expressive capacity for retrieving relevant
images, we posit that in some scenarios the query intent may indeed have a
sentiment dimension. For simplicity of discourse, we assume binary sentiment
classes of positive and negative respectively. In other words, a query is now a
tuple of (textual keywords, sentiment class), and we seek to return a ranked
list of images (from a corpus), which are relevant to the specified keywords and
sentiment. It is worth noting that the corpus of interest consists of mere images,
unadorned explicitly with text nor sentiment.

There are several challenges to this problem. One challenge inherent to cross-
modality learning is how to learn associations among different modalities with
distinct feature spaces, in this case text and images. Another challenge pertinent
to retrieval is how to model relevance between varied modalities. Over and above
these that plague cross-modal retrieval, we also have the peculiar challenge of
modeling the third modality of interest, namely sentiment.

Approach. To deal with these challenges, we propose a framework called
Sentiment-Oriented Metric Learning or SML. To overcome the variety in modal-
ities, we learn modality-specific feature mappings that respectively map text
and image inputs onto a common space. Presuming training data in the form
of text-sentiment-image triples, we preserve relevant associations in these triples
through proximity constraints relating texts, sentiments, as well as images in the
resulting common feature space. Of particular interest are the manners in which
we model sentiments as directional vectors in the common metric space, giving
rise to two variants, SMLOPPO and SMLFLEX , based on different assumptions
in bringing sentiment-oriented queries closer to the relevant images.

Contributions. In this work, we make several contributions. First, to our
best awareness, this is the first work to study the effect of sentiment information
for better understanding of text-to-image retrieval. Second, to characterize the
effect of sentiments, we develop two models, namely SMLOPPO and SMLFLEX ,
that learn metric spaces in which the sentiments are represented by directional
vectors. Third, we conduct comprehensive experiments comparing the proposed
models with other cross-modal retrieval approaches. Experiments on real-life
datasets, which include Visual Sentiment Ontology (Flickr images) and online
review images from Yelp.com, show that our models significantly outperform the
sentiment-insensitive baselines, underlining the import of sentiment on text-to-
image retrieval.
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2 Related Work

In this section, we review the related work along the two broad lines of metric
learning as well as multi-view learning.

Metric Space Learning. The notion of distance is fundamental to many
machine learning algorithms. Metric representation learning [22] deals with
learning representations of objects so as to reflect the relationships among those
objects in terms of distances in the metric space, i.e., putting relevant objects
in proximity while distancing irrelevant ones. It finds applications in various
contexts, such as image classification [35, 26], image retrieval [40, 21], text re-
trieval [46] and collaborative filtering [15], whereby in each case context-specific
constraints may apply.

In the context of cross-modal retrieval, the constraints may include minimiz-
ing distances between positive pairs while maximizing distances between negative
pairs [25, 24]. Additional considerations may include preserving geometric struc-
tures such as global consistency and local smoothness [48] or making the feature
learning modality-specific [42, 49]. Orthogonally, we investigate metric learning
for sentiment-oriented text-to-image retrieval, whereby the sentiment-orientation
is particularly novel. We further propose a framework incorporating recent devel-
opments in deep representation learning, with new objectives to factor sentiment
into the learned metric space (in addition to text and image modalities).

Multi-View Learning. An object may have multiple “views”, i.e., obser-
vations in distinct feature spaces. In cross-modal retrieval, we have text and
images. Multi-view learning finds object representations across several views,
which would preserve the associations among different views of an object as well
as among objects within a view.

A classical technique for feature learning across spaces is Canonical Correla-
tion Analysis (CCA) [14, 2]. The crux is to find linear projections of two vectors
(one for each view), so as to maximize their correlations. To incorporate non-
linearity, one approach is based on kernel methods [1, 27, 5, 11]. A more recent
approach is to use deep neural networks [23, 16, 3], of which DCCA [3] is the
most recent work presenting a complete learning framework. In experiments, we
compare to both CCA and DCCA.

Aside from correlation analysis, neural networks are also used for multi-view
learning in different ways. Within the autoencoder framework, the objective is
usually to find a feature representation in a common space that could reconstruct
the inputs in the respective feature spaces [29, 8, 43]. In turn, [30, 41] employ
adversarial learning framework. As a recent competitive method for cross-modal
retrieval based on adversarial learning, ACMR [41] is included as a baseline.

Note that ours has a different problem setting from those [32, 17, 41] that
learn discriminative common representations by exploiting labels to distinguish
between semantic categories. For one, sentiment can be seen as an independent
modality, rather than labels during learning. For another, sentiment itself is
a part of the query. Also incidentally related are approaches based on cross-
modal hashing [33, 34, 45, 7, 50] that focus primarily on retrieval efficiency, while
tolerating some loss in accuracy due to potential loss of information.
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Fig. 1: Illustration of the SML framework. Image and text are embedded into
the metric space using deep neural networks. For SMLOPPO (a), sentiment
vectors are in opposite directions, while sentiment vectors in SMLFLEX (b) are
unconstrained. Given that the query is positive, the sentiment margin constraint,
d(q+

i ,pi) < d(qi,pi) − τ1, is demonstrated in green color (negative is in red
color). In turn, the distance margin constraint between correct and incorrect
query-photo pairs, d(q+

i ,pi) < d(q+
i ,pj)− τ2, is demonstrated in blue color.

3 Sentiment-Oriented Metric Learning (SML)

An input data collection T = {(xi, zi,yi)}Ni=1 contains N instances of text-
sentiment-image triples. Here, zi is binary {positive, negative}. Our objective is
to infuse the text with sentiment in order to form a sentiment-sensitive query
(xi, zi) that would better match the desired image yi than xi could on its own.

In essence, we propose SML framework which seeks to find two functions f
and g transforming queries and images, respectively, into a metric space in which
their similarities can be measured. Specifically, fθ and gψ, parameterized by θ
and ψ, independently map (xi, zi) and yi to a D-dimensional Euclidean space
RD, in which the distance between query (xi, zi) and image yi is measured as:

dθ,ψ((xi, zi),yi) = ‖fθ(xi, zi)− gψ(yi)‖2 (1)

In this framework, we posit that sentiments are high-level abstraction con-
cepts which should be represented as independent vectors in the metric space.
We model a sentiment-infused query in additive form fθ(xi, zi) = qi + si, where
qi and si are vectors in the metric space representing text and sentiment respec-
tively. In turn, gψ(yi) = pi is a vector representing the image in the same metric
space. The specific instantiation of si manifests slightly differently in two models,
SMLOPPO and SMLFLEX , which will be discussed subsequently. The learning
output consists of transformations for qi and pi, as well as the sentiment vectors
{si} that allow us to measure distances for new queries and images.
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3.1 Opposing Sentiment Vectors (SMLOPPO)

In the first model, referred to as SMLOPPO, we propose learning opposing sen-
timent vectors in a metric space. In other words, the two sentiment vectors
(positive and negative) are in opposite directions and having the same magni-
tude. Thus, we only need to learn a single vector s. It follows that the positive
vector is +s and the negative vector is −s. For each query tuple (xi, zi), the
sentiment vector si is in the form of:

si = αi ∗ Γ (zi) ∗ s (2)

αi = ln(1 + exp(WT
αqi)) (3)

Γ (zi) =

{
+1 if zi = positive

−1 if zi = negative
(4)

where s is the sentiment basis vector shared across queries, Γ (∗) is a sign func-
tion, αi is query-specific scale factor controlling the magnitude of the sentiment
vector si. Hypothetically, αi is a function of qi as different semantic concepts
in different text queries require different intensity for the sentiment to be ex-
pressed. The choice of softplus [9] function for αi is because of its smoothness
and to ensure the value domain αi ∈ (0,+∞) for vector magnitude.

Our model learning can be specified as a constrained optimization problem:

min
θ,ψ,Wα,s

λ(r(θ) + r(ψ)) +

N∑
i=1

d(qi + si,pi)

s.t. d(qi + si,pi) < d(qi,pi)− τ1
d(qi + si,pi) < d(qi + si,pj)− τ2,∀j 6= i

(5)

where r(∗) is regularizer on the model parameters {θ,ψ}, d(∗) is the loss due to
Euclidean distance, and λ is the trade-off between regularizer and loss. The first
constraint is margined relative distance between sentiment-oriented-query and
neutral-query towards the correct image. The second constraint is margined rela-
tive distance between correct and incorrect query-photo pairs. The relationships
amongst vectors and constraints are demonstrated in Fig. 1a.

We transform this constrained optimization into a regularized empirical risk
minimization problem. The constraints are enforced using the standard hinge
loss [δ]+ = max(0, δ). We then derive an unconstrained loss function with l2-
regularization as follows:

L = λ
(
‖Wα‖2F +

Lf∑
l=1

(‖Wl
f‖2F + ‖blf‖22) +

Lg∑
l=1

(‖Wl
g‖2F + ‖blg‖22)

)
+

N∑
i=1

[
‖(qi + si)− pi‖22 + max

(
0, τ + ‖(qi + si)− pi‖22 − ‖qi − pi‖22

)
+

N∑
j=1

1(i 6= j) max
(
0, 1 + ‖(qi + si)− pi‖22 − ‖qi − pj‖22

)]
(6)
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where Lf and Lg are the numbers of layers of the two neural networks charac-
terizing fθ and gψ, respectively.

Parameters of the model can be optimized via minimizing the loss function
using stochastic gradient descent. In practice, we optimize the model using mini-
batch to speed up the learning process. For each mini-batch of triples B =

{(xi, zi,yi)}|B|i=1 sampled from the collection T , each query will be paired with
other images within the mini-batch to form negative pairs instead of considering
all possible negative combinations from the whole collection T . This stochastic
process drastically reduces convergence time, and in expectation achieves our
global objective (Eq. 6). Algorithm 1 describes the optimization procedure with
the mini-batch gradient descent.

3.2 Flexible Sentiment Vectors (SMLFLEX)

In some ways, the previous assumption by SMLOPPO could be quite restrictive,
as the opposing directions of the sentiment vectors are enforced on every single
dimension of the learned metric space.

To allow for greater flexibility, we arrive at another variant, which we refer
to as SMLFLEX , by allowing the positive sentiment vector and negative senti-
ment vector to take their own independent directions. That way, they can be
opposing in some dimensions, but not necessarily across all D dimensions. Thus,
it provides another degree of freedom for the model to allocate coordinates judi-
ciously between the objective of capturing sentimental concepts as well as that
of capturing textual-visual semantic concepts. SMLFLEX decouples and learns
two global sentiment vectors s+ and s− separately. Fig. 1b illustrates the learned
metric space of SMLFLEX . The constrained optimization is as follows:

min
θ,ψ,s+,s−

λ(r(θ) + r(ψ)) +

N∑
i=1

d(qi + sΓ (zi),pi)

s.t. d(qi + sΓ (zi),pi) < d(qi,pi)− τ1
d(qi + sΓ (zi),pi) < d(qi + sΓ (zi),pj)− τ2,∀j 6= i

(7)

Similarly to SMLOPPO, we can derive an unconstrained loss function and pro-
ceed minimization with the stochastic gradient descent algorithm.

3.3 Implementation Details

In this work, we use two neural networks, recurrent and convolution, to learn
text and image transformations. The former uses LSTM cell [13], which had
been shown to be effective in learning textual representation in many machine
learning tasks. Word embeddings to the LSTM are initialized from pre-trained
Word2vec [28] of 300 dimensions. For the latter, we employ ResNet-50 [12] archi-
tecture, which has also been used extensively for obtaining image representation
of numerous vision-related tasks. The output representations from LSTM and
ResNet-50 are both projected into the metric space using two-layer perceptrons
(each layer is followed by the hyperbolic tangent activation function). The im-
plementation of SML is made available at https://code.preferred.ai/sml/.
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Algorithm 1 Parameter learning with mini-batch gradient descent

Input: T = {(xi, zi,yi)}Ni=1, learning rate η
Output: Learned parameters {θ,ψ, s}

1: initialization
2: θ,ψ, s← randomly initialized
3: while not converged do
4: Tbatch = {Bb}num batch

b=1 ← uniformly sampled from T
5: for all Bb ∈ Tbatch do
6: gθ = 0; gψ = 0; gs = 0;
7: for all (xi, zi,yi) ∈ Bb do
8: for all (xj , zj ,yj) ∈ Bb where (j 6= i) do
9: gθ = gθ + ∂

∂θ
L(xi, si,yi,yj);

10: gψ = gψ + ∂
∂ψ
L(xi, si,yi,yj);

11: gs = gs + ∂
∂s
L(xi, si,yi,yj);

12: end for
13: end for
14: θ = θ − η · gθ

|Bb|
; ψ = ψ − η · gψ

|Bb|
; s = s− η · gs

|Bb|
;

15: end for
16: end while
17: return {θ,ψ, s}

4 Experiments

The objectives are to investigate the impact of sentiment on text-to-image re-
trieval and to assess the efficacy of sentiment-oriented metric learning framework
via comparison with various cross-modal retrieval baselines.

4.1 Experimental Setup

Datasets. We conduct experiments on two datasets including Visual Sentiment
Ontology (VSO) [6] and online reviews crawled from Yelp.com.

VSO dataset consists of adjective-noun pairs (ANP), e.g., delicious drink or
angry face, associated with sentiment scores. Images are retrieved from Flickr
when using these ANPs as queries. Firstly, sentiment is binarized based on the
sign of the scores. Secondly, to reduce sentiment biases, we neutralize the queries
by only using the nouns. Images from all ANPs belonging to the same noun
are merged together. To remove the biases, we balance the number of images
between two sentiments within each query via uniform sampling. These would
then form (xi, zi,yi) triples in T , which is randomly split into 5 folds for model
cross-validation. Statistics of the VSO dataset after being processed is shown in
Table 1. The numbers of triples are not identical as not all queries have divisible-
by-5 number of triples. A small fraction of images appear in multiple queries,
thus, the number of images is smaller than the number of triples.
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Table 1: Data statistics

VSO
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

#images 29,745 30,033 29,654 30,039 29,614 149,085
#triples 29,798 30,088 29,704 30,080 29,660 149,330

Yelp
BO CH LA NY SF Total

#images 19,054 19,054 19,054 19,054 19,054 95,270
#triples 38,303 37,643 38,816 37,762 38,654 191,178

Yelp dataset consists of reviews of businesses in 5 US cities: Boston (BO),
Chicago (CH), Los Angeles (LA), New York (NY), and San Francisco (SF).
Each review has a rating, review text, and one or more images taken by the
user. Sentiment is derived from the rating score, whereby ratings 1 and 2 are
considered negative, ratings 4 and 5 are considered positive, while rating 3 is
dropped as being ambiguous. Review text is split into shorter passages; each
sentence is considered a text query. An image can be paired with multiple queries
from the same review. To identify the best-matching text-image pairs, we rank
the text queries based on cosine similarity of their TF-IDF vectors to that of the
user-provided image caption, and consider up to 3 highest-ranked text queries
to be relevant. These form the (xi, zi,yi) triples in T . To neutralize a text
query xi, words strongly suggestive of sentiment (i.e., objective score < 0.5
by SentiWordNet [4]) are replaced by a special token -MSK-. We balance the
number of images between the two sentiments and across the cities via uniform
sampling. Table 1 shows statistics of the Yelp dataset after being processed. The
numbers of triples are not identical as not all queries have 3 matched images.

Evaluation Protocols. We adopt a similar test procedure as [18, 39]. In
our case, we conduct 5-fold validation, where for the Yelp dataset, four cities are
used for training and one city is used for testing. During the test phase, for each
query we construct a sample of 1,000 images, which include the correct images as
well as uniformly sampled images in the test set. For each experiment, we report
average result across 10 independent runs as well as the standard deviation.

Comparative Methods. We compare the proposed methods SMLOPPO
and SMLFLEX with the following approaches:

– Random is the simplest baseline without learning,

– CCA [14] is one of the strongest statistical methods for cross-modal retrieval,
which learns linear projections from input features, i.e., average Word2vec
embeddings for text query and ResNet-50 features for images,

– DCCA [3] is the most recent extension of CCA transforming the same input
features using multilayer perceptrons (i.e., we follow the original architecture
of MLP in the original work) to capture non-linear interactions,

– ACMR [41] is a competitive method for cross-modal retrieval based on ad-
versarial learning, in which modality-invariant representation in the common
space is achieved by confusing a modality discriminator. We use the same
neural network architectures for ours and ACMR for parity.
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For all methods, the size of latent space is set to D = 300. For models that use
stochastic gradient optimization, their parameters are updated with Adam [19]
adaptive rule, batch size of 256, and learning rate of 0.001. Upon grid search for
regularization λ ∈ {1e−5, 1e−4, . . . , 1e−1} and margins τ∗ ∈ {0.0, 0.1, . . . , 1.0},
the best hyper-parameters are obtained with cross-validation.

Metrics. We employ three established ranking metrics to measure the re-
trieval performance of the compared methods.

– Percentile Rank (PR) measures how well the correct images are being ranked

amongst the image population. PR = 1
N

N∑
i=1

(
1
|Di|

∑
j∈Di

rankj
M

)
, where Di

denotes the set correct images for the query i, rankj is the rank of image j
by the model, and M is the total number of images being ranked.

– Normalized Discounted Cumulative Gain (NDCG) measures the quality of

ranking. NDCG = 1
N

N∑
i=1

DCGi
idealDCGi

, where DCGi =
∑
j∈Di

1
log (rankj+1) , is

the gain of image i relative to its position in a ranked list, and idealDCGi
is the best achievable DCGi in which all the correct images are at the top.

– Recall@K (R@K) denotes the ratio of correct images in the top-K retrieved

images to the total number of correct images. R@K = 1
N

N∑
i=1

∑
j∈Di

1[j∈Li]
|Di| ,

where 1[∗] is the indicator function and Li is the top-K retrieved images.

4.2 Quantitative Evaluation

Comparison among Baselines. For an overall sense of the retrieval accuracy,
Table 2 and Table 3 report the results of comparative approaches on different
metrics on the two datasets, respectively. Random is the ground-level reference
for relative comparisons with other methods.

The statistical method CCA shows a competitive performance. Starting with
pre-trained embeddings from Word2Vec and ResNet-50, it benefits from the
richly-compressed features from those underlying models, even though the pro-
jections it learns on top of these features are linear. DCCA obtains better results,
attributable to further adaptation by learning non-linear transformations opti-
mized for the same CCA objective. Even so, the gap between CCA and DCCA
seems to be close on VSO dataset as the text queries are simpler (single nouns).

Considered a strong method for cross-modal retrieval, ACMR outperforms
DCCA across all metrics on VSO and also on Yelp except for Recall@10. How-
ever, by adopting adversarial learning with less stable optimization [20], the
variances of ACMR tend to be higher than other methods. That explains why
DCCA can surpass ACMR on Yelp-Recall@10, which takes into account only
top-10 items rather than global ranking by Percentile Rank and NDCG.

Effect of Proposed Sentiment-Orientation. By leveraging sentiment
information, both SMLOPPO and SMLFLEX significantly outperform all the
sentiment-insensitive baselines across virtually all metrics and datasets. On av-
erage, SMLFLEX model is slightly better than SMLOPPO. This is not unexpected
as SMLOPPO makes a stricter assumption on the direction of sentiment vectors.
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Table 2: Performance of comparative methods on VSO dataset.
Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg.

P
R

Random 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 0.00
CCA 80.94± 0.00 81.05± 0.01 80.82± 0.01 80.67± 0.01 80.86± 0.01 80.87± 0.00
DCCA 81.22± 0.11 81.33± 0.11 81.14± 0.05 81.00± 0.10 81.06± 0.09 81.15± 0.04
ACMR 84.35± 0.21 84.43± 0.22 84.01± 0.14 84.16± 0.22 84.02± 0.26 84.19± 0.08

SMLOPPO 85.38± 0.10† 85.42± 0.08† 85.04± 0.12† 85.15± 0.06† 85.11± 0.11† 85.22± 0.04†

SMLFLEX 85.34± 0.08† 85.42± 0.11† 85.10± 0.07† 85.14± 0.09† 85.13± 0.07† 85.23± 0.03†

N
D
C
G

(%
) Random 12.30± 0.02 12.32± 0.03 12.32± 0.03 12.31± 0.03 12.32± 0.03 12.31± 0.01

CCA 19.55± 0.02 19.70± 0.02 19.59± 0.03 19.55± 0.04 19.62± 0.02 19.60± 0.01
DCCA 20.08± 0.07 20.20± 0.10 19.96± 0.05 20.04± 0.07 20.06± 0.08 20.07± 0.03
ACMR 20.64± 0.22 20.67± 0.20 20.41± 0.11 20.61± 0.21 20.56± 0.25 20.58± 0.09

SMLOPPO 21.95± 0.14† 21.93± 0.14† 21.74± 0.19† 21.80± 0.13† 21.89± 0.15† 21.86± 0.05†

SMLFLEX 21.93± 0.15† 21.97± 0.15† 21.84± 0.12† 21.87± 0.09† 21.92± 0.13† 21.91± 0.05†

R
@
1
0
(%

)

Random 0.99± 0.07 1.00± 0.08 1.02± 0.05 0.99± 0.09 0.99± 0.05 1.00± 0.02
CCA 12.00± 0.06 12.26± 0.06 12.01± 0.06 11.89± 0.09 12.19± 0.08 12.07± 0.03
DCCA 13.25± 0.20 13.52± 0.25 13.08± 0.16 13.17± 0.13 13.23± 0.18 13.25± 0.08
ACMR 14.01± 0.45 13.98± 0.41 13.61± 0.22 13.98± 0.49 13.94± 0.49 13.91± 0.18

SMLOPPO 16.75± 0.29† 16.77± 0.27† 16.43± 0.41† 16.50± 0.25† 16.72± 0.38† 16.63± 0.13†

SMLFLEX 16.75± 0.36† 16.85± 0.31† 16.54± 0.26† 16.57± 0.18† 16.71± 0.25† 16.68± 0.12†

† improvements of SML models over the second-best baseline are statistically significant (p-value < 0.01).

Table 3: Performance of comparative methods on Yelp dataset.
Method BO CH LA NY SF Avg.

P
R

Random 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 0.00
CCA 69.45± 0.01 68.65± 0.00 68.59± 0.01 69.01± 0.00 69.25± 0.01 68.99± 0.00
DCCA 79.22± 0.26 78.67± 0.24 78.79± 0.34 79.01± 0.27 78.44± 0.28 78.83± 0.19
ACMR 83.76± 0.89 83.32± 0.96 83.63± 0.65 83.67± 0.53 83.12± 0.80 83.50± 0.36

SMLOPPO 85.51± 0.09† 84.84± 0.12† 84.89± 0.17† 84.92± 0.14† 84.32± 0.24† 84.89± 0.10†

SMLFLEX 85.48± 0.12† 84.81± 0.10† 84.93± 0.17† 84.96± 0.13† 84.38± 0.12† 84.91± 0.07†

N
D
C
G

(%
) Random 12.65± 0.03 12.76± 0.03 12.38± 0.03 12.41± 0.03 12.60± 0.02 12.56± 0.01

CCA 19.82± 0.04 19.21± 0.02 18.80± 0.02 18.89± 0.02 18.97± 0.01 19.14± 0.01
DCCA 21.06± 0.21 20.85± 0.20 20.38± 0.24 20.54± 0.21 20.40± 0.20 20.64± 0.14
ACMR 20.88± 0.91 21.00± 0.92 20.29± 0.70 20.59± 0.54 21.01± 0.76 20.75± 0.38

SMLOPPO 22.83± 0.14† 22.51± 0.26† 21.66± 0.21† 21.95± 0.31† 22.20± 0.46† 22.23± 0.16†

SMLFLEX 22.82± 0.09† 22.57± 0.25† 21.77± 0.33† 22.10± 0.40† 22.44± 0.19† 22.34± 0.16†

R
@
1
0
(%

)

Random 0.96± 0.06 1.02± 0.08 0.99± 0.06 0.98± 0.06 1.01± 0.04 0.99± 0.02
CCA 12.78± 0.05 11.31± 0.05 11.80± 0.04 11.56± 0.04 11.55± 0.04 11.80± 0.02
DCCA 14.75± 0.47 13.96± 0.43 14.39± 0.49 14.62± 0.52 13.77± 0.40 14.30± 0.31
ACMR 13.43± 1.94 13.45± 1.86 13.19± 1.52 13.81± 1.19 14.25± 1.60 13.62± 0.81

SMLOPPO 17.49± 0.27† 16.44± 0.58† 16.04± 0.51† 16.59± 0.69† 16.65± 0.92† 16.64± 0.34†

SMLFLEX 17.45± 0.22† 16.62± 0.56† 16.21± 0.67† 16.93± 0.84† 17.10± 0.40† 16.86± 0.32†

† improvements of SML models over the second-best baseline are statistically significant (p-value < 0.01).

Fig. 2 visualizes the learned metric spaces of SML with four sample queries:
“bill”, “service”, “drink”, and “toilet”, and their sentiment-infused queries, by
projecting their vectors onto 2D using PCA [44]. For SMLOPPO, we observe
opposing directions between positive and negative sentiments. For SMLFLEX ,
they are not directly opposing but still form obtuse angles. This indicates a
strong contrast of the sentiment concepts captured by the models. In addition,
with the relaxation, SMLFLEX can pull “bill” and “service” together, i.e., they
are considered closer semantically as compared to “drink” or “toilet”. This could
be an explanation for the higher accuracies exhibited by SMLFLEX .
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Fig. 2: Learned metric spaces of SML visualized in 2D using PCA.
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Fig. 3: Performance with varying the number of dimensions D of metric spaces.

Effect of Dimensionality. To further understand how the size of the metric
space affects SML models, we conduct an experiment with different settings of di-
mensionality D on Yelp dataset. Fig. 3 illustrates performance of the SMLOPPO
and SMLFLEX when D ranges from 50 to 300. Across all metrics, the model
performances are sharply boosted when D increases from 50 − 200 and tends
to converge around the values of 250− 300, especially so in terms of Percentile
Rank. Even though the performance of SMLFLEX is potentially better if D goes
beyond 300, it does not seem to be the case for SMLOPPO. Thus, we stop at
D = 300, and all experiments are also conducted under this setting.

4.3 Case Studies

To gain more insights on the SML models, especially when the notion of senti-
ment is visually prominent, we illustrate examples from Yelp-LA dataset. Fig. 4
shows retrieved images with different queries and sentiments. In addition, we
include ACMR as a reference baseline. In each ranking (top-4 are vertically po-
sitioned), the ground-truth is marked with a dotted rectangle. First of all, we no-
tice that SMLFLEX can retrieve the correct image in both cases and SMLOPPO
in one case. This observation concurs with the higher retrieval performance of
SMLFLEX in the previous quantitative analysis. Interestingly, in the second ex-
ample, not only can SMLFLEX pull the correct one into top-4, but it also illus-
trates a strong notion of sentiment when the first-ranked image, “burned pizza”,
is evidently negative. Meanwhile, ACMR retrieves images based on the concepts
implied by text queries, but not the ground-truth in both cases, presumably as
it might not have captured the sentiment aspects well.
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Query: here are the -MSK- 1 my king room was on the plus -MSK- .

SMLOPPO SMLFLEXACMRGround-truth

Sentiment: positive
Query:my second pizza was also -MSK- .

SMLOPPO SMLFLEXACMRGround-truth

Sentiment: negative

Fig. 4: Top retrieved images organized along queries.

Query: toilet

SMLOPPO SMLFLEX
neutralnegative positive neutralnegative positive

Query: service

neutralnegative positive neutralnegative positive
SMLOPPO SMLFLEX

Fig. 5: Top retrieved images while changing sentiments.

For understanding the notion of sentiments captured by SMLOPPO and
SMLFLEX , in Fig. 5 we analyze 2 queries “toilet” and “service”, while alternat-
ing the sentiment input. Neutral means the sentiment vectors are set to zeros.
For both queries, there are contrasts between “negative” and “positive” images.
SMLOPPO demonstrates that effect more clearly, especially on “toilet” query.
This is due to desired constraint of the model, and can also be explained via Fig. 2
(i.e., sentiment vectors of “toilet” query are slightly longer in magnitude than
the other queries’). For “service” query, negative images show complaint notes
which imply customer unhappiness. Surprisingly, the positive images turn out to
be smiling faces showing customer satisfaction. With such sentimental concepts
captured via SML models, the case studies shed some light on understanding
how the models work as well as how the performance could be interpreted.

5 Conclusion

We propose Sentiment-Oriented Metric Learning framework to incorporate sen-
timents into text-to-image retrieval. Our models SMLOPPO and SMLFLEX out-
perform comparable baselines on experiments involving images obtained from
Flickr (VSO) as well as from online reviews (Yelp). As future work, the pro-
posed framework could potentially be further extended to learn other visual
concepts (e.g., human emotions, fashion styles) for text-to-image retrieval.
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