

2020

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Security and Usability in the HeadREST Language

Francisco Robalinho Medeiros

MESTRADO EM ENGENHARIA INFORMÁTICA

 Especialização em Arquitectura, Sistemas e Redes de Computadores

Dissertação orientada por:

Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos

e pelo Prof. Doutor Maria Antónia Bacelar da Costa Lopes

2020

Agradecimentos

Agradeço aos meus orientadores, o Prof. Vasco Vasconcelos e Prof. Antónia Lopes
por me terem aceitado para realizar esta tese e pelo enorme apoio que me deram durante
todas as etapas da mesma.

Em especial agradeço à minha família que sempre me incentivou e esteve presente
durante todo o meu percurso académico.

Agradeço também ao Nuno Burnay pelo seu tempo disponibilizado e pela sua valiosa
ajuda no desenvolvimento desta tese. Por fim, agradeço a todos os meus companheiros
que me ajudaram ao longo do curso.

Um grande obrigado a todos.

3

À minha família.

Resumo

Actualmente, observa-se o crescimento contínuo de serviços web, sem sinais de abran-
dar. As trocas de informação com estes serviços seguem diferentes padrões. De entre os
muitos padrões utilizados, destaca-se o REST (REpresentational State Transfer).

O REST é um estilo arquitectural muito utilizado actualmente. Neste estilo arquitec-
tural as operações e propriedades do protocolo HTTP, sobre o qual o World Wide Web
funciona, são aproveitadas para realizar as interacções de clientes com serviços web. Em
REST, o elemento basilar são os recursos, que correspondem a pedaços de informação
que podem ser referenciados por um identificador. Cada recurso tem uma, ou várias,
representações, que podem ter diferentes formatos, e que podem mudar na sequência de
operações executadas sobre o mesmo.

Um serviço web que adere ao estilo arquitectural REST é chamado de serviço REST.
Para programar clientes de um serviço REST é fundamental que esteja disponível uma
boa documentação da sua API, com especificações claras das suas operações e dos dados
trocados nestas operações entre os clientes e o serviço.

No desenvolvimento deste tipo de serviços são utilizadas linguagens de descrição
de interfaces, tal como a OpenAPI Specification, o RAML ou a API Blueprint. Estas
linguagens permitem especificar formalmente as operações suportadas por um serviço
REST e oferecem a capacidade de documentar os dados que são trocados durante as
interacções com o serviço. Apesar da sua popularidade, estas linguagens de especificação
têm um poder expressivo limitado. Uma das limitações é que não terem capacidade para
descrever com precisão o comportamento das diferentes operações.

Numa tentativa de endereçar estas limitações, temvindo a ser desenvolvida a linguagem
HeadREST. A linguagem tem um sistema de tipos refinados que permite restringir os
valores admissíveis de um tipo, e portanto descrever com mais rigor os tipos dos dados
trocados num serviço REST. Para permitir especificar com precisão as operações de um
serviço REST, a linguagem HeadREST dispõe de asserções. Estas asserções, semelhantes
aos triplos de Hoare, são compostas por uma pré-condição, um URI template da operação
e uma pós-condição. As asserções especificam que, quando a pré-condição é satisfeita, a
execução da operação estabelece a pós-condição.

Devido ao sistema de tipos refinados não é possível resolver através de regras sintácticas
as relações de subtipagem. Para endereçar esta situação foi tomada a decisão de utilizar

7

um procedimento semântico para tratar destas situações. A relação de subtipagem é
transformada em fórmulas lógicas de primeira ordem, que são depois dadas a um SMT
solver para as resolver.

Apesar do seu grande poder expressivo, o HeadREST, como linguagem de especifica-
ção, está longe de ser perfeita. Um dos problemas mais importantes está relacionado com
a sua usabilidade. Apesar da linguagem permitir descrever operações com grande rigor
e detalhe, isso é feito à custa de asserções bastante complexas que são não só difíceis de
escrever correctamente, como de compreender.

Muitas das linguagens de especificação de serviços REST oferecem, mesmo que de
forma limitada, uma forma de expressar o que o serviço exige em termos de autenticação
e/ou autorização. Existem vários tipos de autenticação e autorização que podem ser usados
para restringir acesso a recursos em serviços REST, por exemplo, API keys, Tokens, HTTP
authentication &HTTP digest, OAuth 2.0, OpenID Connect. Para além disto, cada serviço
REST pode tomar abordagens diferentes em relação a políticas de autorização.

Este trabalho endereçou estes dois problemas e pretendeu contribuir com soluções que
os ajudassem a resolver.

Para o problema de usabilidade, a solução concebida passou pela criação de extensões
para a linguagem com ênfase em expressões derivadas. A linguagem foi estendida com:
(i) iteradores quantificados que permitem expressar melhor propriedades sobre arrays, (ii)
interpolação para permitir criar Strings a partir de URIs de uma forma mais simples e
directa, (iii) um operador de extracção que permite aceder à representação de um recurso
se esta for única e finalmente, (iv) funções que permitem abstrair expressões repetidas de
uma forma mais flexível (apenas as funções não são derivadas).

A abordagem para endereçar a especificação de políticas de segurança em APIs REST
assentou na adição (i) de um novo tipo Principal, correspondente às entidades autenticadas
e (ii) de uma função não-interpretada principalof capturando o Principal autenticado por
um valor usado na autenticação. A linguagem foi estendida com a definição de funções
não-interpretadas, para permitir que sejam feitas associações entre o tipo Principal e
outros dados que possam vir de diferentes fontes (representações, templates de URIs,
corpo dos pedidos, etc.), dando assim a possibilidade de especificar os diferentes tipos de
políticas de segurança usadas em serviços REST.

A avaliação das soluções propostas foi realizada de diferentes formas. Foi realizado
um estudo com utilizadores envolvendo a resposta a um questionário com perguntas sobre
a linguagem HeadREST antes e depois das extensões e foi feito um estudo quantitativo a
comparar o impacto das extensões em termos de métricas de complexidade das especifi-
cações e no desempenho do validador. Para avaliar as extensões referentes à segurança
foram realizados alguns casos de estudo, envolvendo a especificação parcial de alguns
serviços REST do "mundo-real".

Foi ainda explorado o impacto que as extensões introduzidas na linguagem têm nas

8

ferramentas que actualmente fazem parte do ecossistema HeadREST: (i) a ferramenta
HeadREST-RTester, que permite testar automaticamente a conformidade da implementa-
ção de um serviço REST contra uma especificaçãoHeadREST da suaAPI, (ii) a ferramenta
HeadREST-Codegen, que faz a geração de código, e (iii) a linguagem SafeRestScript,
uma linguagem de script em que é realizada estaticamente a validação das chamadas a
serviços REST cujas APIs tenham sido especificadas com HeadREST.

A linguagem HeadREST possui um validador, um plug-in para o IDE Eclipse e uma
versão headless para ser utilizada no terminal.

Palavras-chave: REST, Tipos Refinados, Linguagens de Descrição de Interfaces,
REST-Segurança, Segurança

9

Abstract

The RESTful services are still today the most popular type of web services. Com-
munication between these services and their clients happens through their RESTful APIs
and, to correctly use the services, good documentation of their APIs is paramount.

With the purpose of facilitating the specification of web APIs, different Interface Defi-
nition Languages (IDLs) have been developed. However, they tend to be quite limited and
impose severe restrictions in what can be described. As a consequence, many important
properties can only be written in natural language.

HeadREST is a specification language of RESTful APIs that poses itself as a solution
to the limitations faced by other IDLs. The language has an expressive type system via
refinement types and supports the description of service endpoints through assertions that,
among other things, allow to express relations between the information transmitted in a
request and the response.

HeadREST, like other IDLs, is however not without its limitations and issues. This
thesis addresses the problems that currently affect the usability of HeadREST and also its
lack of expressiveness for specifying security properties of RESTful APIs. The proposed
solution encompasses (i) an extension of HeadREST with new specification primitives
that can improve the degree of usability of the language and (ii) an ortogonal extension
of HeadREST with specification primitives that support the description of authentication
and authorisation policies for RESTful APIs. The evaluation of the proposed solution,
performed through a user study, a quantitative analysis and the development of case studies,
indicates that the primitives targeting the usability issues indeed improve usability of the
language and that HeadREST become able to capture dynamic, state-based dependencies
that exist in the access control policies that can be found in RESTful APIs.

Keywords: REST, Refinement Types, Interface Description Languages, REST-Security,
Security

11

Contents

List of Figures 18

List of Tables 21

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 3
1.3 Objectives and Contributions . 3
1.4 Structure of the document . 4

2 Background & Related Work 7
2.1 REST . 7

2.1.1 Resource & Representation . 7
2.1.2 Communication Protocol . 8
2.1.3 RESTful services . 10

2.2 RESTful APIs . 10
2.3 Authentication and Authorisation in RESTful APIs 12

2.3.1 Access Control . 12
2.3.2 Authentication and Authorisation Schemes 13

2.4 Specification of Security Aspects in RESTful APIs 17
2.4.1 OpenAPI/Swagger . 18
2.4.2 RAML . 21
2.4.3 API Blueprint . 22
2.4.4 RSDL . 23
2.4.5 WSDL . 24
2.4.6 WADL . 24

2.5 Conclusions . 25

3 The HeadREST Language 27
3.1 Overview . 27

3.1.1 Key Concepts . 27
3.1.2 Example . 30

13

3.2 Syntax . 32
3.2.1 Core Syntax . 32
3.2.2 Derived Syntax . 34
3.2.3 Validation . 35

3.3 Limitations & Issues . 36
3.3.1 Language Usability . 36
3.3.2 Limitations in Expressiveness 39

4 New Developments on HeadREST 45
4.1 Syntax Extensions . 45
4.2 Expressing Security Policies . 51
4.3 Implementation . 58

5 Evaluation 63
5.1 Methodology . 63
5.2 User Study . 64

5.2.1 Time Analysis . 65
5.2.2 User Perception . 66
5.2.3 Correctness . 69

5.3 Quantitative Analysis . 72
5.4 Case Studies . 78

6 Impact in HeadREST’s Ecosystem 87
6.1 HeadREST-RTester . 87
6.2 HeadREST-Codegen . 89
6.3 SafeRestScript . 90
6.4 Future Work . 91

7 Conclusion 93

A Z3 SMT-LIB Axiomatization in HeadREST 95

B Specifications 107
B.1 Without the New Extensions . 107
B.2 With the New Extensions . 139
B.3 Case Studies . 167

C User Study 181
C.1 Questionnaire . 181
C.2 Tutorial . 192

Bibliography 208

14

16

List of Figures

2.1 OAuth’s basic protocol flow as described in [27] 15
2.2 OpenID Connect’s basic protocol flow as described in [54] 17
2.3 API Contract Security Audit tool applied to the PetStore API 20
2.4 Excerpt of the report regarding a critical authentication issue 21

3.1 Examples of refinement types and the use of type test in HeadREST . . . 28
3.2 Request and response type definitions 28
3.3 HeadREST syntax . 32
3.4 The syntax of URI templates . 33
3.5 Operators signatures: ⊕ : T1, . . . , Tn → T 34
3.6 Type abbreviations . 34
3.7 Derived expressions . 35
3.8 Judgments of the algorithmic type system 36

4.1 The syntax of Interpolation . 48
4.2 Syntax for user-defined functions and predicates 49
4.3 Algorithmic specification formation for functions: ∆; Γ ` S 50
4.4 Algorithmic type formation for Principal type: ∆; Γ ` T 51
4.5 Algorithmic specification formation for uninterpreted functions: ∆; Γ ` S 53
4.6 HeadREST’s Xtext plug-in . 58

a Editor for HeadREST’s Xtext plug-in 58
b Error marker in HeadREST’s Xtext plug-in 58

4.7 Xtext generator model . 59
4.8 HeadREST’s module view . 59
4.9 HeadREST’s typing and validation modules view 60

5.1 Participants in the user study divided by occupation. The first pie chart is
for version BA, the second is for version AB. 65

5.2 Time to complete the questions in the questionnaire. 65
a Without the new extensions . 65
b With the new extensions . 65

5.3 User perception . 67
5.4 Difficulty of understanding HeadREST specifications 67

17

a . 67
b . 67

5.5 Effort of reading HeadREST specifications 68
a . 68
b . 68

5.6 Difficulty of writing HeadREST specifications 69
a . 69
b . 69

5.7 Correctness . 70
a . 70
b . 70

5.8 Correlation of user perception of understandability difficulty and correctness 70
a Without the new extensions . 70
b With the new extensions . 70

5.9 Correlation of user perception of reading effort and correctness 71
a Without the new extensions . 71
b With the new extensions . 71

5.10 Correlation of user perception of difficulty in writing and correctness . . . 71
a Without the new extensions . 71
b With the new extensions . 71

5.11 Bar graph comparing the validation time for HeadREST specifications
with different versions of HeadREST’s validator 77

6.1 HeadREST-RTester simplified overview 88
6.2 HeadREST-RTester top level runtime view 88
6.3 High level view for HeadREST-Codegen 89
6.4 SafeRestScript compilation time work flows 90

18

20

List of Tables

5.1 Summary of the user study results . 65
5.2 Table with HCM formulas . 73
5.3 HCM measures for listing 5.1 . 74
5.4 Measures for listing 5.2 . 75
5.5 Measures for specifications using HeadREST without new extensions . . 76
5.6 Measures for specifications using HeadREST with new extensions 76
5.7 Percentage differences for the key measures from table 5.5 to table 5.6 . . 76
5.8 Summary of the case studies . 86

21

Chapter 1

Introduction

1.1 Motivation

Web services usage has seen a continuous growth. On one hand, a popular way to build
large and complex enterprise applications is through the composition of individual web
service components, in so-called microservice architectures [35]. On the other hand, it is
common to build applications that take advantage of the very large number of web services
that are currently available on the Internet. Many companies, such as Google, Facebook
and Youtube, provide web APIs to access to their applications.

RESTful services are currently the most common type of web service. To use these
services effectively, good documentation is essential. Documentation is the main interface
between a client and a service. Without it, a developer of a client application will have
trouble figuring out how to use said service. It is therefore paramount for RESTful services
to have their APIS well documented. For example, some of the biggest cloud providers
like Google Cloud Platform (GCP), Amazon Web Services (AWS) and Microsoft Azure
offer extensively documented RESTful APIs [11, 57, 44]. However, since documentation
is commonly written in natural language, it is often ambiguous and difficult to validate.
Moreover, since RESTful services evolve at a very quick pace, documentation tends to
quickly become stale.

These problems can be alleviated by the adoption of Interface Definition Languages
(IDL) and the use of associated tools. Instead of deducting API intent from its behaviour
or source code, we can refer to the API contract in a formal language.

Some IDLs also have tools that provide code generation from API specifications,
preventing the need to write large amounts of boilerplate. Additionally, IDLs can also have
dedicated Integrated Development Environments (IDE) that facilitate the specification,
validation and comprehension of APIs.

The capability to automatically obtain the documentation from the service implemen-
tation is a very useful and effective way to tackle the staleness problem as well as the
upkeep costs that come with the need to document RESTful APIs. Many IDLs make use

1

Chapter 1. Introduction 2

of types to specify the information that is exchanged between clients and service. The ad-
dition of types helps making the API documentation more meaningful and also helps with
the validation of data exchanges in requests and responses. However, popular IDLs for
RESTful services only consider simple types such as integers, strings, booleans, objects
and arrays. As such, the ability to specify the data that should be sent in requests and the
data that is sent in responses (which may depend on the data sent on the request) is rather
limited. Another limitation, that is present in most IDLs for RESTful services, is that they
have no way of reasoning about the service’s state, focusing mostly on the structure of the
data that is sent and received.

HeadREST is a specification language [62] of RESTful APIs that was developed in
order to overcome important limitations that popular REST IDLs have in what they can
express. Among other features, the language has a rich type system with refinement types
that provides a great amount of expressivity. HeadREST can express the relations between
requests, responses and state changes through Hoare Triples [28], so-called assertions.
However, like other IDLs, HeadREST is not without its limitations and issues.

One of the issues identified as more severe concerns the usability of the language.
Depending on theAPI, and the level of detail wewant to specify its endpoints, HeadREST’s
expressiveness can easily lead to very complex specifications. Assertions can become
quite large as we specify in greater detail each case pertaining to the endpoints of the API,
making specifications difficult to read, understand and to iterate upon.

Among the limitations of HeadREST expressiveness, the lack of primitives to address
security has been identified as the most important one. Given that RESTful APIs expose
service interfaces on the web, security in the context of these APIs is paramount. In
particular, authentication and authorisation have a centre role: authentication as the process
of determining the identity of an external entity (end user or process) that uses the API and
authorisation as a process of checking what resources the authenticated entity is allowed
to access and manipulate.

Many different security mechanisms have been employed over RESTful APIs, such
as, API Keys, HTTP’s basic and digest authentication, OAuth 2.0 with API scopes and
user roles [31, 59]. For example, the RESTful API exposed by GitLab, a Git-repository
manager service, offers six different authentication schemes (Personal/Project Access To-
kens, OAuth 2.0 Tokens, Session Cookies, GitLab CI Job Tokens, Impersonation Tokens)
and has complex authorisation policies for access to the resources based on roles and
attributes. These are described in the GitLab API extensive documentation where they are
conveyed mainly through natural language.

Given that, to use RESTful APIs effectively, developers of client applications need to
know the schemes used to secure the API and the security policies in place to access re-
sources, it is important to have this information also as part of the API contract, specified
in a formal language. For this reason, popular IDLs for RESTful APIs, such as Ope-

Chapter 1. Introduction 3

nAPI Specification and RAML, have been extended in order to provide some means for
describing authentication and authorisation aspects of RESTful APIs. These extensions
tend to be rather limited and focused only on a few specific authentication schemes. This
is somehow justified by the fact that there is not a standardised way of describing these
security schemes. Hence, it would be greatly beneficial to overcome these limitations and
make HeadREST able to support the specification of security properties that can be found
in RESTful APIs, which are often dynamic and state-based.

1.2 Context

This work was developed at Large-Scale Informatics Systems Laboratory (LASIGE), a
research unit at the the Department of Informatics, Faculty of Sciences, University of
Lisboa, in the context of the project Communication Contracts for Distributed Systems
Development (CONFIDENT), supported by the Fundação para a Ciência e Tecnologia
(FCT) through the Project UID/CEC/00408/2013.

The aim of CONFIDENT [63] is the development of a toolchain for the effective con-
struction and evolution of RESTful APIs. In the core of the work that was developed so far
is the development of theHeadREST language and two different tools: HeadREST-RTester
[16], a tool to test that an implementation of a RESTful API conforms its HeadREST spec-
ification and HeadREST-CodeGen [55], a tool to generate server and client-side code from
an HeadREST specification. Additionally, the work around HeadREST also gave rise to
the development of the programming language SafeRestScript [9] where REST calls to a
service are statically validated against its HeadREST specification.

1.3 Objectives and Contributions

This thesis focus on the problems that currently affect the usability of HeadREST as well
its lack of expressiveness for addressing security aspects.

The first goal is to contribute with an extension of HeadREST with new specification
primitives that can improve the degree of usability of the language. As discussed before,
writing complete specifications of large and complex RESTful APIs in HeadREST can
be time-consuming, tedious, and error-prone. On the one hand, it typically involves a lot
of repetition and, on the other hand, it requires good command of first order logic. The
extension, achievedmainly through the definition of derived constructs, improves usability
by addressing the causes of repetition and boilerplate in HeadREST specifications, which
divert the user from the problem they want to solve.

The second goal is to contribute with an orthogonal extension of HeadREST to over-
comeHeadREST’s limitation in terms of expressing the aspects related with authentication
and authorisation in RESTful APIs. HeadREST should become flexible and expressive

Chapter 1. Introduction 4

enough to capture dynamic, state-based dependencies that exist in the access control poli-
cies that can be found in RESTful APIs. In the core of this extension is (1) a new type,
Principal, and the uninterpreted function principalof, which allows us to reason about
an authenticated entity independently of the authentication schemas offered by an API
and (2) support for user-defined uninterpreted functions over principals, which allow us
to specify various constraints around the Principal type with other types.

Both extensions of HeadREST are available in a publicly available tool [63], in the
form of an Eclipse IDE plugin. A validator of the language that can be executed directly
in the command line is also available through a JAR.

1.4 Structure of the document

This document is organised as follows:

Chapter 2 Background & Related Work - In this chapter we present the background
needed to bring the reader into the fold. We introduce the REST architectural
style and current IDLs for RESTful APIs. We then present the security aspects of
RESTfulAPIs, such as authentication schemes and authorisation paradigms. Finally,
we discuss how current RESTful IDLs address authentication and authorisation.

Chapter 3 HeadREST - This chapter elaborates on theHeadREST specification language.
It provides a panoramic of HeadREST through an example, presents its key concepts,
the different ways in which we can use it and finally discusses some limitations and
issues in terms of usability and security.

Chapter 4 New Developments on HeadREST - This chapter presents the changes made
to the language in order to address the issues described in the previous chapter.
It starts by describing the solution that was conceived to address usability; then it
describes the solution that was conceived to address the limitation problem regarding
expressing authentication and authorisation. An overview of the implementation of
the new extensions is also presented.

Chapter 5 Evaluation - This chapter presents the evaluation of the changes to the language
in the two fronts through a quantitative and qualitative analysis and also with the
development of some case studies.

Chapter 6 Ecosystem -This chapter presents a summary of the various tools that comprise
HeadREST’s ecosystem and briefly discusses the impact of these changes in these
tools.

Chapter 7 Conclusion - Summarises the thesis, presenting the main conclusions of this
work.

Chapter 1. Introduction 5

Appendix A - This appendix contains Z3’s formalisation for HeadREST’s type system.

Appendix B - This appendix contains the specifications used for the quantitative analysis
as well as the case studies for the evaluation of the authentication and authorisation
primitives in HeadREST.

Appendix C - This appendix contains the questionnaire and tutorial for the user-study
that was used for the qualitative part of the evaluation process.

Chapter 1. Introduction 6

Chapter 2

Background & Related Work

In this chapter we provide insights into some relevant aspects for the work of this thesis.
We start by introducing the REST architectural-style, then we focus on RESTful services
and their APIs and provide a brief overview of some popular IDLs for the specification
of these APIs. Next, we present the authentication and authorisation schemes used in
RESTful APIs and discuss the current support for the description of properties concerning
authentication and authorisation in these APIs.

2.1 REST

REST is an architectural style developed by Roy Thomas Fielding [21] as an abstract
model of the Web architecture. The properties induced by this style are considered to
be particularly beneficial for decentralised, network-based applications, where issues of
latency and agency are important.

According to [21], interactions among components are stateless and happen through
a fixed set of access methods, with the same semantics for all resources. All important
resources are identified by one resource identifier mechanism and are manipulated through
the exchange of their representations. Communications are usually realised over HTTP
as it conforms to most of REST principles, respecting stateless interactions, uniform
interface, cacheability, etc. The REST architectural style is reasonably abstract and can be
used for different type of network-based systems, such as Web Services, Cloud Systems
and Internet of Things Systems.

Since its inception, the REST architectural style has inspired many developments and
architectural styles and is still a topic of discussion and interest [20].

2.1.1 Resource & Representation

Resources are REST’s key concept, that refers to any information that can be named
(e.g. images, files, etc.). Formally, a resource R is a temporally varying membership

7

Chapter 2. Background & Related Work 8

function MR(t) which for time t maps to a set of values, corresponding to its identifiers
and representations.

Resources are identified by resource identifiers, which makes it possible for a resource
to be addressed. There are no two resources with the same identifier, however multiple
resource identifiers can point to the same resource.

Components interact with resources by using their representations. Representations
describe the current state of a resource, or its intended state at a certain point in time. They
are comprised of data that describes the resource in some way. The representation’s data
format is denoted as media type. The media type enables the recipient to know how the
data should be processed. A resource may have representations in different media types
and multiple representations in the same media type.

2.1.2 Communication Protocol

Communications in REST applications are commonly established through HTTP. HTTP
protocol is the backbone of the web’s application-level layer as the most used application-
level protocol for communications between web components. It is specifically designed
for resource representation transfers. Hence, HTTP and REST merge very well. REST
mainly depends on four HTTP methods, namely POST, PUT, DELETE and GET. These
methods were originally specified in the HTTP RFC 2616 [18]. Their semantics were
subsequently updated in RFC 7231 [19].

POST Tells the server that the client wants it to accept a representation for a resource,
this representation follows the resource’s semantics. This is the only method which
is not idempotent.

PUT Updates a resource’s state, by replacing the original representation with the repre-
sentation in the request. If there is no resource then the method will create one with
the representation in the request, behaving as the POST method.

DELETE Deletes a resource from the server. The only thing required in the request is
the URI of the resource to remove.

GET Retrieves a presentation of the resource that is identified by the URI in the request.
The response of this method is cacheable. The GET method is safe, i.e., it does not
change the state of a resource.

An example of an HTTP method call to a RESTful API can be seen in listing 2.1. It
addresses an endpoint of PetStore [34], a simple RESTful API of a service by Swagger
(https://swagger.io) that is available in https://petstore3.swagger.io. This API has the
endpoint, get /api/v3/pet/{id}. This is an endpoint to a resource in the API, pet. It
retrieves the representation of the pet with the id sent in the request as a value of the
parameter id.

https://swagger.io
https://petstore3.swagger.io

Chapter 2. Background & Related Work 9

1 GET /api/v3/pet/1 HTTP/1.1
2 Accept: application/json
3 User-Agent: PostmanRuntime/7.26.1
4 Postman-Token: ee6fe725 -5def-4aa9-a9ac-9ed757b972e9
5 Host: petstore3.swagger.io
6 Accept-Encoding: gzip, deflate, br
7 Connection: keep-alive

Listing 2.1: Example of a GET request

In this example we make a GET HTTP method call to this endpoint with the query
parameter id being 1. The first line refers to the method type and the version of the
protocol. The headers specify the various parts of the request. The Accept header is used
to advertise which content-type the client wants. The service then uses content negotiation
to select the appropriate content-type and informs the client with a header in the response.
In the example, we want the content to be in the JSON format. This content negotiation
is an important aspect for RESTful APIs. It allows different clients to pick different types
of representations from the API depending on their needs.

The Host refers to the base URL for the resource. There are many more headers that
can be included in a request. The Connection header gives control options for the current
connection. In the example, keep-alive means that the same connection must be reused
instead of creating a new one.

1 HTTP/1.1 200 OK
2 Content-Type: application/json
3 Content-Length: 161
4 Connection: keep-alive
5
6 {
7 "id": 1,
8 "category": {
9 "id": 2,
10 "name": "Cats"
11 },
12 "name": "Cat 1",
13 "photoUrls": [
14 "url1",
15 "url2"
16],
17 "tags": [
18 {
19 "id": 1,
20 "name": "tag1"
21 },
22 {
23 "id": 2,
24 "name": "tag2"
25 }

Chapter 2. Background & Related Work 10

26],
27 "status": "available"
28 }

Listing 2.2: Example of a GET response

The first line of the response refers to the protocol version as well as the status code. In
this case, the return code is 200 which means that the request was successful. The service
informs the client that it has chosen the content-type JSON which is what we asked for. In
the response body we can see the representation of the resource pet with the identifier 1.

2.1.3 RESTful services

As noted in [20], REST, RESTful architecture and RESTful services are currently widely
used terms, but most of the times they are not used appropriately.

In REST style, communication between components happens through a fixed set of
access methods, with the same semantics for all resources. A service that adheres to
REST style should provide well known entry-points and allow its clients to explore the
service through interaction of various requests and responses. However, the popularity of
REST was achieved at the expense of services that do not adhere to this view and which
instead provide static interfaces against which to client applications are expected to be
programmed. The diversity that exists in the way web services are designed is attested by
the Richardson Maturity Model [69], which defines four levels based on how much web
services are REST compliant. Hereafter, the focus is on services that make full use of
the different HTTP verbs combined with the resource identifier and have static interface
definitions towards which clients that consume their API can be programmed (the level 2
of Richardson Maturity Model).

2.2 RESTful APIs

RESTful services can be accessed by other software elements through an application
programming interface (API). For instance, Google Cloud and GitLab [11, 24] provide
RESTful APIs that serve as interfaces to their services. To use APIs in a correct manner,
it is crucial they are well documented. The API description can serve both as a contract
between API provider and API consumer, as well as single source of truth. These
descriptions enable front-end and back-end developers to work independently.

Interface Definition Languages Several Interface Definition Languages have been pro-
posed to support the definition of RESTful APIs in a programming language-agnostic way.
We provide below a brief overview of some of the most relevant ones.

Chapter 2. Background & Related Work 11

OpenAPI/Swagger OpenAPI, formerly Swagger, is considered the standard specifica-
tion language for RESTful APIs [33]. The data format of OpenAPI specifications can be
JSON or YAML. OpenAPI supports the use of basic, object and array types to specify
data exchanged in requests and responses. As the most popular REST IDL, OpenAPI has
at its disposal a great variety of tools for validation, documentation generators, converters
to other IDLs, code generators and many others.

RAML RESTful API Modeling Language [51] is also tailored for RESTful APIs. It is
a YAML based specification language and provides the ability to describe complex data
types with associated HTTP methods. Like OpenAPI, RAML has a large ecosystem in
regards to documentation, automatic code generation and testing.

APIBlueprint APIBlueprint [7] is a high-levelAPI design language forwebAPIswith a
concise syntax, based onMSON [32]. Because it is based inMarkdown[41],MSONallows
for a highly human-readable language. API Blueprint focuses on describing resources and
data exchanges. It also allows for the specification of types. Similarly to OpenAPI, API
Blueprint has the advantage of having a large quantity of available tools that aid in testing
and implementing RESTful APIs.

RSDL RESTful Service Description Language [53] makes use of XML and takes a
purist approach to REST’s definition, focusing on resources, links and media types. RSDL
closely follows REST’s design. Since RSDL is based on XML it provides the ability of
creating custom extensions to serve the needs of users.

WSDL Web Service Description Language [67] is also XML based and supports the
description of the functionality provided by a web service. WSDL describes web services
by treating them as a collection of endpoints. WSDL 1.1 was tightly coupled with SOAP,
however as of version 2.0 this coupling is greatly reduced and WSDL is now capable of
describing other services. WSDL 2.0 is a W3C recommendation.

WADL Web Application Description Language [68] also uses XML to describe HTTP-
based web services. WADL is capable of modelling resources and the relationships
between them. When compared with WSDL, WADL is more suitable to describe REST
services. It supports the description of both resources and their representations. Like
WSDL, WADL is also a W3C recommendation.

Chapter 2. Background & Related Work 12

2.3 Authentication and Authorisation in RESTful APIs

A very important aspect of RESTful APIs, and web services in general, is security.
Particularly important are authentication and authorisation, that is, the process of verifying
the identity of an entity and the process of determining if an authenticated entity has access
to certain resources.

2.3.1 Access Control

Access control can be defined as the constraints that are put in place to restrict access to
resources.

Paradigms Access control or authorisation, has two major paradigms, Attribute-Based
Access Control (ABAC) and Role-Based Access Control (RBAC). Both paradigms are key
to understand many of the authorisation schemes currently in use in RESTful APIs.

RBAC bases access control decisions on the functions an entity is allowed to perform
within an organisation [15]. Roles are pre-defined and carry with them a specific
set of privileges. The key concern in an RBAC system is protecting the integrity
of information by restricting entities’ privileges to the bare minimum necessary for
them to perform their tasks within the organisation.

ABAC is defined in [29] as a method of access control where entity permissions on
resources are granted or denied based on the assigned attributes of the entity, the
assigned attributes of the resource, environment conditions and a set of policies that
are specified in terms of those attributes and conditions. ABAC can be considered
a superset of RBAC, as we can consider a role as an attribute and implement RBAC
based on this attribute. It is also possible, for example, to restrict access to resources
with a time attribute which grants or denies access depending on the time of the day
at which the resources are accessed.

Languages Different languages and frameworks have been proposed for modelling poli-
cies for access control, among them is XACML, the extensible Access Control Markup
Language [42].

XACML is a standard access control language based on XML that implements ABAC
andwas designed tomanage the increasing complexity of authorisation policies in systems.
XACML provides the syntax and semantics necessary to describe those policies and
provides request and response formats that represent a standard interface of communication
in the system. XACML models ABAC policies and therefore can also be specialised to
represent RBAC policies and other types of access control such as Access Control Lists
(ACLs).

Chapter 2. Background & Related Work 13

XACML can describe policies that depend on requests and responses and provides
support for resources and representations. The enforcement of XACML policies is done
through policy enforcement points (PEP) and policy decision points (PDP). The former
enforces policy decisions in response to requests targeting protected resources, the latter
is responsible for computing access decisions based on the policies of the service.

In [48], it is shown how XACML can be used to describe authorisation policies for
RESTful services. An example of an ABAC policy could be limiting the execution of
certain API calls to some window of time or date. Another example could be restricting
access to the API based on location (API is only accessible in certain regions). The
attributes one can use to create their security policies are numerous and must be picked
with care. In listing 2.3 we present an example of a time based authorisation policy
described in XACML.

<Rule RuleId="Timed" Effect="Deny">
<Description>Denies access if lastLogin is more than 7 days

away from today’s date</Description>
<Target/>
<Condition>

<Apply FunctionId="...any-of">
<Function FunctionId="...dateTime -greater-than"/>
<Apply FunctionId="...dateTime -add-dayTimeDuration">

<Apply FunctionId="...dateTime -one-and-only">
<AttributeDesignator
Category="...subject-category:access-subject"
AttributeId="com.acme.user.lastLogin"
DataType="...XMLSchema#dateTime"
MustBePresent="false"/>

</Apply>
<AttributeValue

DataType="...XMLSchema#dayTimeDuration">
P7D

</AttributeValue>
</Apply>

<AttributeDesignator
Category="...attribute -category:environment"
AttributeId="...environment:current-dateTime"
DataType="...XMLSchema#dateTime"
MustBePresent="false"/>

</Apply>
</Condition>

</Rule>

Listing 2.3: Example of time based authorisation in XACML

2.3.2 Authentication and Authorisation Schemes

There are numerous types of authentication and authorisation schemes that can be used
in RESTful services [31], each with its own advantages and drawbacks. We overview the
authentication and authorisation schemes that are currently more popular [46].

API Key According to [31], this is the most commonly used security mechanism for
RESTful services. The API key is a random string negotiated between the client and the
server that is appended to the URL or header in every request. The API key acts as the

Chapter 2. Background & Related Work 14

identifier for a client and can also be used to track API requests associated with a client.
Since it is sent in plain-text there is the possibility of the key being stolen. Also, there is
no expiration date for this key, thus it can be use for an indefinite amount of time unless
revoked.

HTTP Basic and HTTP Digest Authentication Authentication in HTTP is described
in RFC 7617 [52]. When a client attempts to access a protected resource the service will
send back an error response containing an WWW-Authenticate header describing a realm
and a preferred charset. The client then provides a username/password pair which will be
transformed into Base64 and sent in an Authorization header of the request.

As stated in the RFC, this is an insecure method of authentication because it is sent
in plain-text. An external secure system should be used in conjunction with HTTP basic,
such as TLS.

Digest authentication [58] improves upon HTTP basic by hashing the username/-
password pair along with other pieces of information such as the realm of the protected
resource, the URL path, method, client and server generated nonces, a sequence number
and an optional protection description. This makes it much harder to steal client creden-
tials. However, this is still insecure by itself, like HTTP basic, an external secure system
should be used to complement digest authentication.

Token A token is an object that serves as a credential for an entity. It carries infor-
mation such as identity and privileges of an entity in the service. Tokens can offer both
authentication and authorisation. There are many types of tokens, some tokens provide
only authorisation such as OAuth’s access token [27], while others provide authentication
like the JSON web token [36] in OpenID connect. Services that make use of tokens
for authentication and authorisation work by guaranteeing that every request made by an
entity carries a token. An entity usually obtains a token after authenticating itself in the
service (initially could be with username/password). After obtaining the token, the entity
no longer needs to send his username and password to authenticated itself, relying on the
token to do that work for them. Tokens can have properties such as revocation. Entities
can revoke tokens manually or they might expire depending on how the service treats the
tokens.

OAuth 2.0 OAuth is the industry-standard protocol for authorisation. The goal is to
simplify the development of application clients by providing flows designed for web and
mobile/native applications. The OAuth authorisation framework, described in RFC 6749
[27], enables a third-party application to obtain limited access to an HTTP service, in its
own behalf or through the behalf of a resource owner.

OAuth provides authorisation through tokens sent in request headers. Tokens represent

Chapter 2. Background & Related Work 15

specific scopes and durations of access to protected resources. Token scopes are a mecha-
nism to restrict an entities’ access to protected resources. In essence, scopes are attributes
that restrict the set of operations that can be done on a protected resource. Scopes are
completely service dependent; the OAuth framework does not define any scopes in the
original RFC. In [31], the authors point out that a weakness brought by using OAuth is the
tight coupling to the application’s domain.

To better understand how OAuth works we consider a scenario in which a user wants
to view his pictures from a service that implements OAuth. The service implements an
authorisation server that handles the access token validation and retrieval, and a resource
server which contains the service’s data. This conceptual separation makes it is easier to
reason about the protocol.

The basic flow of the OAuth protocol, and interactions between the different partici-
pants, can be seen in fig. 2.1.

Client
(Application)

Resource
Owner (User)

Authorisation
Server

Resource
Server

AuthZ request
AuthZ grant

Request AuthorisationRequest Authorisation

AuthZ grant
Access token

Receive Access TokenReceive Access Token

Access token

Protected resource
(e.g. pictures)

Obtain ResourceObtain Resource

Figure 2.1: OAuth’s basic protocol flow as described in [27]

The general idea is as follows: when the user wants to access his pictures from
the service through an application (e.g., a browser), the service will prompt the user to
authorise or reject the application’s access to his pictures. This prompt informs the user

Chapter 2. Background & Related Work 16

about the types of permissions the application will be allowed when accessing the pictures.
After receiving the user’s permission, the application will request an access token from

the service’s authorisation server. This server checks if the application is allowed to access
the pictures and gives back an access token. The access token can be then used by the
application to access the pictures from the resource server.

Examples of services that use OAuth are Mattermost [43] and GitLab [24]. In most
cases, services use OAuth to allow third-party applications to communicate with their
APIs. For example, GitLab Mattermost allows Mattermost to use GitLab as an OAuth
provider. As the OAuth provider, GitLab handles account creation, and user authentication
and authorisation to the Mattermost service.

OpenID Connect OpenID [54] is a simple identity layer built on top of the OAuth
authorisation framework and is a standard for single sign-on and identity provision on the
Internet. OpenID enables a client application to verify the identity of an end-user through
an authorisation server and obtain basic profile information about the end-user. The goal
is to enable end-users to use the same account across multiple web applications without
requiring the creation of different passwords.

OpenID implements authentication as an extension to OAuth’s authorisation process.
To use OpenID client applications need only to send in the authorisation request the
scope openid. The authorisation server then returns a JSON Web Token (JWT) [36] for
authentication.

JWT is an open standard that defines a compact and self-contained way for securely
transmitting information between parties as a JSON object. The JWT used in OpenID is
an ID token that serves as authentication. Authorisation servers in OAuth services that
implement OpenID are commonly referred as OpenID providers. Also, OAuth application
clients using OpenID are referred as relying parties.

To explain OpenID’s protocol flowwe consider the same scenario we have used before:
a user wants to view his photos which are in a service that implements OpenID Connect
through a client application (e.g. a browser). The client will be the relying party.

First, the application client will request for user authentication through the service’s
OpenID provider (OAuth authorisation server). The OpenID provider will then prompt the
user to authenticate and authorise the application client. If all goes well, the application
client will be provided with an ID token and usually an access token from the OpenID
provider. The ID token asserts the identity of the user and therefore serves as authenti-
cation. Lastly, the client makes a request about the end-user’s profile information to the
OpenID provider. This last step is done for authentication purposes. With it, clients can
be sure of the user’s identity. After the flow completes the authenticated user can now
access the photos from the service through the authorised client.

The basic flow of the OpenID Connect protocol, and interactions between the different

Chapter 2. Background & Related Work 17

participants, can be seen in fig. 2.2.

Relying Party (Client) OpenID Provider End-User

AuthN request
AuthN & AuthZ

ID token & Access token

User Authentication & AuthorisationUser Authentication & Authorisation

user info request

user info response

User InformationUser Information

Figure 2.2: OpenID Connect’s basic protocol flow as described in [54]

OpenID is a bit more complex than OAuth as it includes an authentication layer to the
process. Nonetheless, it is used with great success by cloud providers such as GCP, Azure
and AWS.

2.4 Specification of Security Aspects in RESTful APIs

Given that the purpose of Interface definition languages is to write API specifications
that serve as a contract between API provider and API consumer, it is important that
they offer support for specifying the aspects related to security, namely those concerning
authentication and authorisation.

So far, different specification mechanisms have been proposed in different IDLs for
expressing security aspects. Below we provide an overview of the primitives available in
the IDLs discussed before. A comprehensive study on the expressiveness of REST-based
API Definition Languages is presented in [46], which concludes that the current solutions
reveal substantial limitations.

Chapter 2. Background & Related Work 18

2.4.1 OpenAPI/Swagger

OpenAPI addresses security aspects through the Security Requirement Object. With this
object we can detail various security schemes which, if used, must be satisfied for a request
to be authorised. The provided schemes are basic, bearer, apiKey, openIdConnect and
oauth2.

Recent versions of OpenAPI provide extensions that enable users to specify other
security schemes; this is accomplished by prefixing fields in the Security Requirement
Object with a x- pattern (eg. x-internal-id). The drawback of using these extensions is
that they are not standard but specific to the service in which they are used.

In terms of specifying complex authorisation policies, OpenAPI only provides OAuth
with the ability to specify scopes. It is not possible to make statements regarding more
complex authorisation policies that might be present in an API. For example, there is no
standard way of specifying that a call on an endpoint can only be executed by users with a
certain role. Other ABAC policies, such as limiting the execution of an endpoint to certain
times or dates, are also not standard in OpenAPI. This leaves OpenAPI somewhat limited
in terms of expressing authorisation.

In what follows we illustrate howOpenAPI supports the specification of authentication
and authorisation with a simple example of the PetStore service (see https://petstore3.sw
agger.io, for the complete specification).

First, the specification defines the securitySchemes field on the global level, and lists
the authentication methods supported by the service.

1 "securitySchemes": {
2 "petstore_auth": {
3 "type": "oauth2",
4 "flows": {
5 "implicit": {
6 "authorizationUrl":

"https://petstore3.swagger.io/oauth/authorize",
7 "scopes": {
8 "write:pets": "modify pets in your account",
9 "read:pets": "read your pets"
10 }
11 }
12 }
13 },
14 "api_key": {
15 "type": "apiKey",
16 "name": "api_key",
17 "in": "header"
18 }
19 }

Listing 2.4: Security scheme definitions

The example declares two security schemes with the securitySchemes element, pet-
store_auth (OAuth 2.0) and api_key (Api key). It specifies that the flow in use is implicit
and has two available scopes, read:pets and write:pets.

The security field on the global level is used to set the default authentication require-
ments for the whole API. If the two schemes apply to each API call, we have to write

https://petstore3.swagger.io
https://petstore3.swagger.io

Chapter 2. Background & Related Work 19

(semantically AND):
1 "security": [
2 { "petstore_auth": [], "api_key": [] }
3]

Listing 2.5: Security field applied globally to the API

If either scheme applies to each API call, use the following (semantically OR):
1 "security": [
2 { "petstore_auth": [] },
3 { "api_key": [] }
4]

Listing 2.6: Security field applied to an individual API call

We can add an exception to the security specified on the global level on the operation
level as needed. This overrides the authentication requirements of the whole API. We
need only to simply add a separate security field to the specification of the operation in
question.

The excerpt below shows the specification of an endpoint of the service —the get
method over the path /pet/petId— which depends on the previously declared security
schemes. In this specification, the responses section describes some properties of the
response for different situations. Since multiple authentication and authorisation schemes
can be selected, it is necessary to detail the responses associated with each scheme used
in the security element.

The specification in listing 2.7 is stating that there is a path /pet/petId protected by two
security schemes. We can authenticate ourselves either with petstore_auth (OAuth 2.0)
or api_key (Api key). In the case of petstore_auth we have two scopes that are required,
read:pets and write:pets.

If the request is successful returns a code 200 and some content with a given structure,
omitted for simplicity. The response returns a 404 code if the pet does not exist, and if
the ID that is supplied in the request is invalid then, the response code 400 is returned.
We add two more response codes (which are not present in the original example), 401 and
403. We can deduce that these code are used when the authentication or authorisation
fails. They also lead to a more complete specification.

1 "/pet/{petId}": {
2 "get": {
3 "tags": [
4 "pet"
5],
6 "summary": "Find pet by ID",
7 "description": "Returns a single pet",
8 "operationId": "getPetById",
9 "parameters": [
10 {
11 "name": "petId",
12 "in": "path",
13 "description": "ID of pet to return",
14 "required": true,
15 "schema": {
16 "type": "integer",

Chapter 2. Background & Related Work 20

17 "format": "int64"
18 }
19 }
20],
21 "responses": {
22 "200": {
23 "description": "successful operation",
24 ...
25 },
26 "400": {"description": "Invalid ID supplied"},
27 "401": {"description": "Unauthorised"},
28 "403": {"description": "Forbidden"},
29 "404": {"description": "Pet not found"}
30 },
31 "security": [
32 {
33 "api_key": []
34 },
35 {
36 "petstore_auth": [
37 "write:pets",
38 "read:pets"
39]
40 }
41]
42 }
43 },

Listing 2.7: API call to retrieve information about a pet

OpenAPI ecosystem includes the API Contract Security Audit tool [56]. This tool
checks an OpenAPI specification and returns a report regarding the issues with security
and data validation present in the input specification. This analysis takes the perspective
that the specification will be used as the source of truth, and can be used to generate the
backbone of the service implementation. To give an example on how this tool works, we
apply it to the PetStore API available in https://petstore3.swagger.io. See fig. 2.3.

Figure 2.3: API Contract Security Audit tool applied to the PetStore API

https://petstore3.swagger.io

Chapter 2. Background & Related Work 21

Figure 2.4: Excerpt of the report regarding a critical authentication issue

From the excerpt of the report shown in fig. 2.4, we can see that the OpenAPI spec-
ification for PetStore is missing the global security section. The global security section
applies the authentication and authorisation schemes we have defined to all API calls. If
we do not set the global security field, this is interpreted as if the API does not require any
authentication by default. That is to say, the service displays private data about users, and
anyone can invoke it because it does not have a defined security field. The report includes
detailed information on where the issues are present in the API, possible scenarios where
the issues can be exploited, as well as recommendations on how to fix the various issues
that affect the API.

Another interesting case regarding security in the OpenAPI ecosystem is a tool [2] that
lets us use OpenAPI specifications as a source of information for an API firewall. The
specification describes the types of data that are exchanged. This information can be used
by the firewall to decide which requests are correct and can pass, and which ones cannot.
In this case, the more detailed the specification, the stronger the firewall’s ability to block
bad requests.

2.4.2 RAML

RAML is able to describe several security schemes, such as HTTP basic, HTTP digest,
OAuth and Pass Through. RAML provides the ability to describe other security schemes
by using extensions. The way the extensions work is similar to the OpenAPI extensions
model. In RAML, we prefix the type of the custom scheme x-, signaling that this is a
custom scheme. Custom schemes in RAML do not have any specific settings defined and
serve only to document the intended security scheme.

In terms of authorisation, similarly to OpenAPI, RAML provides only OAuth with
the ability to specify scopes. Apart from this, RAML does not provide any other way
of expressing authorisation in any meaningful way. Therefore, RAML is quite limited in
terms of expressing other authorisation policies.

Chapter 2. Background & Related Work 22

An example of a specification for the API of a service that uses a custom authentication
scheme is shown in listing 2.8.
1 #%RAML 1.0
2 title: Product Service
3 baseUri: https://api.service.com/
4 securitySchemes:
5 custom_scheme:
6 description: |
7 This API supports custom Authentication.
8 type: x-custom
9 describedBy:
10 headers:
11 api_key:
12 type: string
13 /product:
14 get:
15 description: The product offered by the service
16 securedBy: [custom_scheme]
17 responses:
18 200:
19 401:

Listing 2.8: Example of a method in RAML protected by a custom authentication scheme

In this example we specify the security schemes for the API in the root of the document
and, hence, this applies to every specified method. If we desire to change a method’s
security schemewe canmake use of the securedBy property to override the default security
schemes. In this case the get /product is secured by a custom scheme implemented using
the x- type defined in the securitySchemes. If the request is successful a code 200 will be
return, otherwise, if the custom security scheme for authentication fails we return a code
401.

2.4.3 API Blueprint

As of the current version, API Blueprint is only capable of expressing two security
schemas: HTTP basic and OAuth. API Blueprint does not seem to be able to specify the
use of other authentication/authorisation mechanisms. An example of an API Blueprint
specification with HTTP basic authentication can be seen below in listing 2.9.

API Blueprint, like RAML and OpenAPI, has the capacity of specifying authorisation
through OAuth and provides no further way of expressing more complex authorisation
policies.
1 FORMAT: 1A
2
3 # Products API
4
5 ## Basic Auth for protected resource [/product]
6
7 ### Status [GET]
8 + Response 401
9 + Headers
10
11 WWW-Authenticate: Basic realm="protected"

Chapter 2. Background & Related Work 23

12
13 + Request
14 + Headers
15
16 Authorization: Basic ABC123
17
18 + Response 200 (application/json)
19
20 {
21 "price": "2"
22 }

Listing 2.9: Example of HTTP basic authentication in API Blueprint

This example shows the specification of the endpoint get /product protected with HTTP
basic authentication. First it specifies a 401 response for an unauthorised requests which
will prompt the client for credentials. After providing the credentials, the endpoint will
return a successful response and the unitary price of the product.

2.4.4 RSDL

RSDL can describe authentication schemes. It does so through an authentication element,
however nothing further is specified. The example provided in the paper presenting the
IDL [53] describes only HTTP basic authentication. RSDL specification is XML-based
which means that extensions are possible, which gives RSDL the capacity to describe
other authentication and authorisation schemes.

RSDL does not express authorisation out of the box. However, since it is XML-based
it would be possible to create custom XML elements to express authorisation. In this
sense, RSDL could potentially express very complex API authorisation policies. The
shortcoming is that it would be very verbose and difficult to manage depending on the
complexity of the authorisation policies. Moreover, users would need to think how to
specify the authorisation policies in their specification without any validation from the
language.

An example specifying a service endpoint withHTTP authentication in RSDL is shown
in listing 2.10.

<authentication>
<mechanism id="aut-http" name="HTTP Authentication"

authentication -type="rfc7167">
<scheme name="basic">

<parameter name="realm"/>
</scheme>
<identity -provider id="idp" mechanism -ref="aut-http"/>

</mechanism>
</authentication>

<resource id="res-product" name="product">
<location template="/product">
</location>
<links>

<link link-relation -ref="rel-self"
resource -ref="res-product"/>

</links>

Chapter 2. Background & Related Work 24

<methods>
<method name="GET">

<response>
<representation media-type-ref="application/json"

entity="res-product"/>
</response>

</method>
</resource>

Listing 2.10: Example of HTTP basic authentication in RSDL

This example uses the HTTP basic authentication scheme provided by RSDL. This
method of authentication is then applied globally across the specification. We then define
a resource product, located at /product, the links to other resources, in this case only itself
and finally a successful get method that returns a product.

2.4.5 WSDL

WSDL only supports HTTP basic and HTTP digest. Like RSDL, WSDL is XML-based,
therefore there is the possibility of extending the XML schema to specify authentication
and authorisation schemes through custom XML schema definitions.

Like RSDL, WSDL’s does not provide authorisation and therefore must make use of
it’s XML nature to create custom XML elements to express authorisation. This comes
with the aforementioned shortcomings present in RSDL.

An example of a service with HTTP basic authentication is presented in listing 2.11.

<?xml version="1.0"?>
<description>

<binding name="xs:prods">
<operation ref="" whttp:method="GET"/>

</binding>
<service name="xs:service">

<endpoint name="xs:product" binding="xs:prods"
address="xs:/product"? >
whttp:authenticationRealm="xs:string"?/>

</endpoint>
</service>

</description>

Listing 2.11: Example of HTTP basic authentication in WSDL

This example describes a service with an endpoint, named product whose address
is /product protected with HTTP basic authentication. The service also has a binding
xs:prods that applies a get method on the endpoint.

2.4.6 WADL

WADL does not provide any ways to describe authentication and authorisation schemes
out of the box. In the same vein as both WSDL and RSDL, WADL is comprised of XML
elements. Authentication and authorisation schemes can be implemented through custom
XML elements. A possible excerpt of OAuth can be seen below in listing 2.12.

Chapter 2. Background & Related Work 25

For authorisation, WADL has the same issues that plague WSDL and RSDL. A lack
of authorisation primitives in the language leads to users having to create custom XML
elements in order to express the authorisation policies p+resent in the APIs they are
specifying.

<?xml version="1.0"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance">
<resources base="http://api.service.com">

<resource path="/product">
<method name="GET">

<request>
<param name="Authorization" style="header"
type="xs:string" required="true"/>

</request>
<response status="200">

<representation mediaType="application/json"
element="xs:int"/>

</response>
</method>

</resource>
</resources>
</application>

Listing 2.12: Example of OAuth in WADL

In this example we apply the get method to a target resource (product). A way to
describe OAuth on the method call can be by defining a parameter in the request with the
name Authorisation and make it required, additionally we specify that this parameter is of
type string. The response is successful in this example and returns an integer.

2.5 Conclusions

REST is currently a popular architectural style in network-based applications. There
are many tools and technologies that have been built with the intent of supporting the
development of these applications. IDLs are a common way of aiding the process of
describing and documenting RESTful APIs. To secure RESTful APIs there are amultitude
of different authentication schemes and authorisation policies that can be considered.

Despite all of the work put into RESTful architectural style ecosystem, authentication
and authorisation are still considered second class citizens when describing RESTful APIs.
Some of the IDLs that were shown offer the capability of expressing certain authentication
and authorisation constraints. However, they are somewhat limited or restricted to specific
protocols.

Chapter 2. Background & Related Work 26

Chapter 3

The HeadREST Language

In this chapter, we describe the HeadREST language, the pillar of the work presented in
this thesis. We start by presenting its key concepts along with an example, then we show
HeadREST’s syntax and validation. We conclude this chapter with an analysis of the main
issues that HeadREST faces, namely those that motivated this work.

3.1 Overview

HeadREST is a specification language for RESTful APIs that started to be developed
in 2017, in the context of the CONFIDENT project [63]. The main motivation was to
overcome some limitations in terms of expressiveness of existing IDLs for RESTful APIs
[17, 64]. The overall goal was to develop techniques that could take advantage of this
additional expressiveness and be used in the development of tools that support front-end
and back-end developers.

Currently, the language is equipped with a tool for editing and validating HeadREST
specifications [17, 9], a tool for API testing [17] and a code generator for client SDKs and
server stubs [55]. A script language that offers static validation of REST calls based on
HeadREST specifications was also proposed in [9].

3.1.1 Key Concepts

Type System. HeadREST has a type system that bolsters the language’s type safety and
gives users a very expressive way of describing constraints over sent and received data in
REST calls. This type system, in addition to the JSON-like types supported by popular
IDLs for RESTful APIs, is equipped with refinement types as well as a type test predicate
that checks if a value is of a given type. Refinement types, which were introduced by
Freeman and Pfenning [22], are types that use logical formulas to constraint the set of
admissible values. An example of three simple refinement types in combination with the
type test predicate in HeadREST are presented in fig. 3.1.

27

Chapter 3. The HeadREST Language 28

1 // type representing odd numbers
2 type Odd = (x: Integer where x % 2 != 0)
3 // type test to define a type representing even numbers
4 type Even = (x: Integer where !(x in Odd))
5 // object type with two fields: one optional and the other

mandatory}
6 type ProductData = {?name: String, code: Even}

Figure 3.1: Examples of refinement types and the use of type test in HeadREST

To capture data sent in requests and responses, HeadREST offers two built-in types,
Request and Response, described in fig. 3.2. The type of the request reflects that the
parameters used in the URI template of an endpoint are encapsulated in the field template;
additional data can be sent in the request body and header. The type of the response reflects
that the response carries a response status code indicating whether the request has been
successfully completed and might additionally carry other data in the body and header.

Request , {location : String, ?template : {}, header : {}, ?body : Any}
Response , {code : Integer, header : {}, ?body : Any}

Figure 3.2: Request and response type definitions

Assertions. HeadREST provides a way of expressing the relation between requests,
responses and state changes through assertions akin to Hoare Triples [28]. An assertion
is formed by a pre-condition, an operation and a post-condition. The pre-condition is
a condition over the input (in the request) and the system’s state before executing the
operation, while the post-condition is a condition over the output (in the response) and the
system’s state after the execution of the operation. The operation in question is an HTTP
method call to some endpoint described by a URI template. The built-in variables request
and response can be used in the conditions of assertions to refer to the request and the
response of the operation. As such, an assertion in HeadREST consists of a quadruple

{pre_cond}m U {pos_cond}

where

• pre_cond is some boolean expression representing the pre-condition part of the
assertion, that can refer to request;

• m is the HTTP method to be used (get, post, put and delete);

• U is the target URI Template representing an API endpoint;

Chapter 3. The HeadREST Language 29

• pos_cond is some boolean expression representing the post-condition part of the
assertion, that can refer to request and response.

An example of a simple assertion is presented in listing 3.1. In this example we state
that there is an endpoint, get ‘/products‘ and that the response to calls to this endpoint
have a ProductData array in the body whenever the response code is 200. There are no
prior requirements needed for this to happen, therefore, the pre-condition is true.

1 //if the call succeeds , the body of the response
2 //is a ProductData array
3 { true }
4 get ‘/products ‘
5 { response.code == 200 ==> response in {body: ProductData[]}}

Listing 3.1: Example of a very simple assertion in HeadREST

Resources andResource Types. The state of a service is abstracted as a set of resources,
each in a given state. Observations of the state of a resource are given by its representations.
Resources in HeadREST are grouped by (resource) types. Resources can be related with
their identifiers and with representations through the infix operators, repof and uriof,
respectively. These constructs provide the capacity to ascertain properties about resources:
with repof we can check if some value is a representation of a resource, while with uriof
we can find out if a value is a URI that identifies a resource.

An example of a resource and a resource type being used together can be seen in
listing 3.2.
1 resource Product
2
3 type ProductData = {id: Integer, name: String}
4
5 {
6 request.template in {id: Integer} &&
7 // state that a product with the given ID exists
8 (exists p: Product ::
9 (exists pr: ProductData ::
10 pr repof p &&
11 pr.id == request.template.id
12)
13)
14 }
15 get ‘/product/{id}‘
16 {
17 response.code == 200 &&
18 response in {body: ProductData}
19 }

Listing 3.2: Example of a resource and its representation in HeadREST

This example specifies the endpoint get ‘/product/{id}‘, that serves to get information
about a product with a given id. The assertion states that the response of the call to this
endpoint, if the given id is an integer and there exists a product with that id, has code 200
and a value of type ProductData in the body.

Chapter 3. The HeadREST Language 30

3.1.2 Example

The examples presented so far are very simple. To illustrate the expressive power of
HeadREST, we present in this section a complete andmore interesting example still around
the API of a service for managing products. More concretely, the example addresses the
specification of the endpoint offered by the service to register new products — post

‘/product‘.
1 specification ProductsAPI
2
3 resource Product
4
5 type ProductData = {
6 name: (x: String where x != ""),
7 price: Natural,
8 quantity: Natural
9 }
10 type ProductResponse = ProductData & {id: Integer}
11 type ErrorResponse = {error: String}
12
13 {
14 request in {body: ProductData} &&
15 (forall p : Product ::
16 (forall pr : ProductData ::
17 pr repof p =>
18 pr.name != request.body.name
19)
20)
21 }
22 post ‘/product‘
23 {
24 response.code == 200 &&
25 response in {body: ProductResponse} &&
26 (exists p : Product ::
27 (exists pr : ProductData ::
28 pr repof p &&
29 pr.name == response.body.name &&
30 pr.price == response.body.price &&
31 pr.quantity == response.body.quantity
32)
33)
34 }
35
36 {
37 request in {body: ProductData} &&
38 (forall p : Product ::
39 (exists pr : ProductData ::
40 pr repof p =>
41 pr.name == request.body.name
42)
43)
44 }
45 post ‘/product‘
46 {
47 response.code == 409 &&
48 response in {body: ErrorResponse}
49 }

Listing 3.3: Example of a full specification in HeadREST.

Chapter 3. The HeadREST Language 31

As shown in listing 3.3, the specification starts with the declaration of a resource type
Product (line 3) and a representation type ProductData (line 5). The representation type
is a very simple object type detailing the name, price and quantity of a product. The
representation type ProductResponse (line 10) is the union of ProductData and id which
will be assigned upon registration.

The service requires product names to be unique and a value of type ProductData

be provided in the body of the request. Hence, the specification has two assertions
for the same endpoint. The first assertion specifies the successful case and, hence, the
pre-condition states that the request body is of type ProductData and a resource of type
Product with a representation of type ProductData whose name is equal to the one given
in the request does not exist. This is achieved through a universal quantification over the
resource Product (line 15) and we say that for each representation of Product the name in
the request is different from the name in the representation (lines 16 to 18). The fact that
this assertion corresponds to the success case of creation of a product is reflected in the
response code 201 that is provided in the response. The post-condition additionally states
that the response body has type ProductResponse and that a resource of type Product was
indeed created. This is achieved through an existential quantification over the resource
Product and its representations, and a comparison of every field (with the exception of the
id) against the response body.

The second assertion addresses the case in which the operation fails because the
uniqueness condition is not met. The post-condition states what the service sends in the
response in this case. This separation between assertions is very useful to model different
cases that might happen when sending a request to an endpoint, due to the provided input
or the state of the system.

More concretely, in the second assertion, the pre-condition states that request body is
of type ProductData (line 37) and there is already a product with a representation whose
name is equal to the one in the request (lines 38 to 41) and the post-condition states that,
in this case, a response with a 409 code (line 47) will be provided. This means that there
is a conflict relating to the resource’s current state. The response also carries in its body
an ErrorResponse (line 11) detailing what has gone wrong (line 48).

We could additionally define a third assertion specifying what happens when the
request body is not of type ProductData but, for the sake of readability, we have decided
not to cover this case.

This example shows that HeadREST has an expressive power that is not found in other
specification languages and enables the description of many aspects of APIs in ways that,
when other specification languages are used, are only described through comments in
natural language.

Chapter 3. The HeadREST Language 32

3.2 Syntax

HeadREST’s syntax has been evolving since its inception [17]. Herein we present the
syntax of the language over which this work was developed, presented in [9]. It is divided
into two parts: the core syntax and the derived syntax. The core syntax defines the basic
types and expressions that compose HeadREST, while the derived syntax uses the core to
extend the language with new useful types and expressions.

3.2.1 Core Syntax

HeadREST specifications always start with the statement, specification CapitalisedName

and are composed of three key types of declarations: resources (resource a), variables
(var x : T) and assertions for a set of endpoints. An endpoint consists of a URI template
(denoting a a group of resources’ URIs) and an HTTP method, namely get, post, put or
delete. The type declarations and constant declarations are handled as aliases.

Expression e ::= x | c | ⊕(e1, . . . , en) | e1 ? e2 : e3 | e in T

| {l1 = e1, . . . , ln = en} | e.l | [e1, . . . , en] | e1[e2]
| forall x : T :: e | exists x : T :: e

Scalar constant c ::= n | s | true | false | u | r | null

Type T ::= Any | G | {} | {l : T} | T [] | (x : T where e) | α
Basic type G ::= Integer | String | Boolean | Regexp | URITemplate

Verb m ::= get | put | post | delete

Specification S ::= ε | var x : T S | resourceα S | typex = T S

| constx = e S | {e1}mu {e2} S

Figure 3.3: HeadREST syntax

The declarations to which order is relevant are type, variable and constant declarations.
If we want to use a type A inside of another type B, A must be declared before B. The same
applies to the other declarations. If for example, we want to use a variable V in a constant
expression C, V must be declared beforehand.

HeadREST has five scalar types Integer, String, Boolean, URITemplate and Regexp
(representing regular expressions which are useful to work on strings). Along with these
basic types, HeadREST has the type Any (serves as the top type), array types (T[]), object
types complemented with an empty object type ({}) that serves as the top type for all
object types, refinement types ({ x: T where e}) and a resource type (α).

HeadREST does not have a null type, the null scalar constant is an expression that
evaluates to Any. Resources, a key component in REST, can be represented with the
resource type (α). To manipulate resources HeadREST offers quantifier expressions,

Chapter 3. The HeadREST Language 33

forall and exists. These two quantifiers are necessary to specify constraints related to
resources and their representations. They are also useful to specify complex types such
an ordered integer array.

To inhabit the Regexp and URITemplate types, two scalar types of constants were added:
regular expressions and URI templates values, denoted as r and u respectively. The
regular expressions of HeadREST form a subset of those in JavasScript (defined in EC-
MAScript [61]). The syntax of URI Templates conforms to RCF 6570 [25], see fig. 3.4.

URI Template u ::= ‘t‘

Term t ::= ε | l t | {v, . . . , v} t | {?v, . . . , v} t
Literal l ::= ([ˆ"’%<>\ˆ‘{|}] | %[0-9A-F]{2})+

Variable v ::= ([0-9A-Z_a-z]|%[0-9A-F]{2})([.0-9A-Z_a-z]|%[0-9A-F]{2})*

Figure 3.4: The syntax of URI templates

In terms of expressions, HeadREST has: variables, constants, ternary operators, the in
type test predicate, object values as well as object member access expressions, arrays along
with array access expressions and finally quantifiers. Operators also yield expressions.
Quantifiers, as we have seen, are a crucial component of HeadREST’s syntax. Quantifiers
are not common in other REST IDLs. They enable us to reason about collections of
resources and their representations. Objects and arrays are useful to model many different
types of data that might be present in RESTful APIs. The in type test expression checks
whether some expression belongs to a type. This predicate is useful to specify the types
of data that are exchanged when interacting with a RESTful API. This small core of
expressions is what makes HeadREST. It is small, but powerful enough to expressively
specify many properties of RESTful APIs.

HeadREST has an extensive repertoire of operators and functions. The functions
length and size give the length of an array and a string respectively. The matches function
operates on regular expressions. It checks if some string matches an HeadREST regular
expression (Regexp). The contains function is used to see if a string is contained within
another string. The expand function is specially important. The expand function creates
a string from a URI template which is expanded according to what is defined in RFC
6570 [25].

The infix operators repof and uriof, as discussed before, are essential to reason about
the state of the service. The repof operator checks whether a value is a representation of
a resource and the uriof operator checks if a certain value is the identifier of a certain
resource.

Chapter 3. The HeadREST Language 34

<=> : Boolean,Boolean→ Boolean

| : Boolean,Boolean→ Boolean

==: Any,Any→ Boolean

< : Integer, Integer→ Boolean

> : Integer, Integer→ Boolean

repof : Any, α→ Boolean

+: Integer, Integer→ Integer

++: String, String→ String

%: Integer, Integer→ Integer

! : Boolean→ Boolean

length : Any []→ Integer

expand : URITemplate, {} → String

contains : String, String→ Boolean

=> : Boolean,Boolean→ Boolean

&: Boolean,Boolean→ Boolean

! =: Any,Any→ Boolean

<=: Integer, Integer→ Boolean

>=: Integer, Integer→ Boolean

uriof : String, α→ Boolean

− : Integer, Integer→ Integer

∗ : Integer, Integer→ Integer

/ : Integer, Integer→ Integer

− : Integer→ Integer

size : String→ Integer

matches : Regexp, String→ Boolean

Figure 3.5: Operators signatures: ⊕ : T1, . . . , Tn → T

3.2.2 Derived Syntax

With the types and expressions given by the core syntax we can introduce various useful
derivations. The predicate in (from [6]) is specially useful for defining derivations of
additional types. Figure 3.6 shows some of the derived types given by HeadREST out of
the box. The fv(·) represents the free variables present in an expression or type.

[e : T] , (x : T where x == e) x /∈ fv(e)

[e] , [e : Any]

T | U , (x : Any where (x in T | x in U)) x /∈ fv(T, U)

T & U , (x : Any where (x in T & x in U)) x /∈ fv(T, U)

!T , (x : Any where !(x in T)) x /∈ fv(T)

‖e‖ , (x : Any where e) x /∈ fv(e)

if e then T else U , (T where e) | (U where !e)

{?l : T} , (x : {} where x in {l : Any} ⇒ x in {l : T}) x /∈ fv(T)

{?l1 : T1, . . . , ?ln : Tn} , {?l1 : T1}& . . .&{?ln : Tn} where ? is ? or ε n ≥ 2

Natural , (x : Integer where x ≥ 0)

Empty , (x : Any where false)

Figure 3.6: Type abbreviations

Chapter 3. The HeadREST Language 35

Types denote sets of values. For example, the Integer type inhabits multiple values.
In HeadREST, unlike most languages, we can write [e] to denote a type inhabited by a
single value, that of expression e. Hence, the most precise type for an expression like
10 - (2* 2) is [10 - (2* 2)]. This singleton type corresponds to the refinement type
(x: Any where x == 6).

isdefined(e.l1.l2 . . . ln) , e in {l1 : {l2 : {. . . {ln : Any} . . . }}
e && f , e ? f : false

e || f , e ? true : f

e =⇒ f , e ? f : true

[e1 . . . e2] , [e1, ..., e2 − 1] where e is Integer

Figure 3.7: Derived expressions

From the core syntax we can also derive other useful types and expressions. Figure 3.7
describes the derived syntax present in HeadREST. In particular, the isdefined expression
is specially useful to reason about optional fields in objects. The isdefined expression can
specify whether an optional field exists or not. The other operators shown in fig. 3.7 are
converted to ternary operators. The ternary operator is somewhat different than the other
operators in that it carries information about the evaluation of branches of the expression
into the context. This means that if we evaluate the true branch of a ternary, the fact that
the condition e1 is true will be added to the context. Likewise, if the evaluation of the
condition e1 is false this information will also be added to the context. For example, if o is
a variable of type {} then the expression o in {b: Boolean} ? o.b : false is valid. This
happens because the condition guarantees that we have o.b.

3.2.3 Validation

Albeit very expressive, subtyping in refinement types and the type test predicate in can
become quite challenging. Refinement types and the in type test predicate do not allow
for a purely syntactical approach to type checking. To evaluate the subtyping relation
between refinement types, HeadREST’s type system relies on the translation of types and
contexts into first-order logic formulas. These formulas are then passed into an SMT
solver. HeadREST’s implementation uses the Z3 SMT solver [13].

In more detail, the validation algorithm is based on a bidirectional system of inference
rules. This system is composed of two parts: type synthesis and the check against system.
Type synthesis consists in synthesising types for expressions, while the check against
system compares the synthesised type with the expected type. The judgements involved
in the algorithmic type checking are shown in fig. 3.8, where Γ is a variable context that

Chapter 3. The HeadREST Language 36

maps variables in scope to their declared types, and ∆ is a resource context, i.e., a list of
resources.

∆ ` Γ ≡ in ∆, context Γ is well formed
∆; Γ ` T ≡ in ∆; Γ, type T is well formed

∆; Γ ` e � T ≡ in ∆; Γ, expression e synthesises type T
∆; Γ ` e � T ≡ in ∆; Γ, expression e checks against type T

∆; Γ ` T <: U ≡ in ∆; Γ, type T is a subtype of type U
` u_ T ≡ URI template u synthesises type T
∆; Γ ` S ≡ in ∆; Γ, specification S is well formed

Figure 3.8: Judgments of the algorithmic type system

The basis of the check against system is subtyping. In HeadREST, T is a subtype
of U if and only if all values that inhabit T also inhabit U . Whenever the bidirectional
algorithm fails to resolve a subtyping relation the SMT solver springs into action. This step
is achieved by translating the expression e in T into a first order logic formula F′JT K(e).
The subtyping relation is then represented as F′JT K(x) ⇒ F′JUK(x). If the implication
holds for all x values, then T is a subtype of U . The rules for HeadREST’s type checking
are fully detailed in [9].

3.3 Limitations & Issues

In this section we describe the various limitations and issues that we have identified in
HeadREST and motivated the work presented in this thesis. These limitations and issues
are concernedwith two different aspects: HeadREST’s usability andHeadREST’s inability
to specify aspects related with security, namely authentication and authorisation.

3.3.1 Language Usability

Although HeadREST is quite expressive it is quite easy to obtain very complex speci-
fications, that are difficult not only to get right but also difficult to read. Some of this
complexity is essential, i.e., it results from APIs that have many endpoints and manipulate
data with complex data types or our wish to specify the behaviour of all endpoints in great
detail.

An API endpoint that manipulates two or more resources can quickly balloon in size.
As an example, consider an endpoint that specifies many properties from two resources.
We would need two quantifiers just to introduce the resources and then two more to access
their representations not counting all the properties we might want to specify. Moreover,

Chapter 3. The HeadREST Language 37

we would possibly want to specify different cases for this same endpoint, depending on
how much detail we want. This leads to many considerably large assertions with a high
level of nesting in the specification. A concrete example of complexity in HeadREST can
be seen in the last endpoint of the FeaturesService API listing B.2.

When working with HeadREST it becomes apparent that there is a lot of repetition
across the specification. The idiomatic way of expressing certain constraints involves
boilerplate that detracts users from what they want to specify. This means that there is
also some complexity in specifications that is accidental and is caused by the lack of the
right specification primitives. In what follows, we characterise the situations that we have
identified that more contribute to accidental complexity.

Quantifiers define new scopes and, hence, having multiple chained quantifiers inter-
leaved with expressions can significantly increase reading difficulty as nested scopes can
become quite difficult to follow. The use of chained quantifiers is inevitable for expressing
the existence or non existence of a resource with a given property since resources can
only be observable through their representations and a resource might have more than one
representation.

Let us look at an operation in HeadREST that manipulates resources and their repre-
sentations. Consider the excerpt presented below in listing 3.4.
1 ...
2 {
3 ... &&
4 (forall p : Product ::
5 (exists pr : ProductData ::
6 pr repof p =>
7 pr.name == request.body.name
8)
9)
10 }
11 post ‘/product‘
12 {
13 ... &&
14 (exists p : Product ::
15 (exists pr : ProductData ::
16 pr repof p &&
17 pr.name == response.body.name &&
18 pr.price == response.body.price &&
19 pr.quantity == response.body.quantity
20)
21)
22 }

Listing 3.4: Write properties about resources in HeadREST

As shown in this example, we can specify properties of resources through their repre-
sentations by quantifying over the instances of a resource type and their representations
resorting to resource types, representation types and the repof operator. Properties that
depend on multiple resources can quickly lead to expressions with many quantifiers. For
example, if we are specifying a property involving two resources we would need two
quantifiers for the resources, and another two to access their representations.

Chapter 3. The HeadREST Language 38

Although resources might admit different representations, often APIs only provide a
single representation for each resource and properties over these resources shouldn’t require
any quantification over the resource type. The same happens if resources admit more than
one representation but the API specification only needs to address representations of given
types.

Properties over arrays and their content are also quite common in specifications. As
shown in the example presented in listing 3.5, in HeadREST, elements of an array need
to be accessed using an index variable of type x: Integer where 0<= x && x < length(a)

(assuming a is an expression of type array) or equivalent. The fact that is necessary to
always write this type adds a lot of unnecessary repetition in the specification.
1 ...
2 {
3 ...
4 }
5 get ‘/products{?price}‘
6 {
7 ... &&
8 response in {body: ProductData[]} &&
9 (forall i: (x: Integer where
10 0 <= x && x < length(response.body)) ::
11 response.body[i].price == request.template.price
12)
13 }

Listing 3.5: Array access in HeadREST

The uriof operator also has a syntactical particularity. The operator specifies that a
String is a URI of some resource. However, many times the URI template has variable
expansions. The concrete values of these variable expansions are not known when writing
the specification. Therefore it is not possible to construct a String that accurately describes
the URI. For example, the URI ‘/product/{id}‘ has the variable {id}. To create a String
that describes this URI we need to use the expand operator. As shown in the example
presented in listing 3.6, the expand operator can be used to specify that a URI is indeed the
identifier of a given resource. The expand function is rather contrived. It requires an object
value that serves to replace the templates in the URI. Should a URI have many templates,
the expression of the expand function can become quite large. Also, the object value does
not take into consideration the order of the URI templates. This means that users might
need to figure out which object value field connects with which URI template if no order
is enforced.
1 ...
2 {
3 request.template in {id: Integer} &&
4 (exists p : Product ::
5 expand(‘/product/{id}‘,
6 {id = request.template.id}) uriof p
7)
8 }
9 get ‘/product/{id}‘
10 {

Chapter 3. The HeadREST Language 39

11 ...
12 }

Listing 3.6: An URI built with the expand operator in HeadREST

To address the repetition across specifications, HeadREST provides the def declaration.
This definition works a a sort of macro for expressions. This is useful to abstract certain
patterns and constants that are present in many HeadREST specifications. However, the
def construct does not provide enough flexibility. Often, many def constructs are repeated
with minor changes. This leads to seemingly duplicated def constructs scattered in the
specification. Moreover, the variable name of the def construct is the only thing that helps
users distinguish between similar defs. If the name is not descriptive enough it can cause
confusion about what it abstracts in the specification.

3.3.2 Limitations in Expressiveness

Unlike the usability problem, the inability to express security properties is an issue that
hampers the expressiveness of the language. Being able to document and specify security
requirements is the main problem faced by HeadREST in terms of expressiveness.

Let us consider again the service and endpoint addressed in listing 3.3 and let suppose
that the service requires a given scheme of authentication and authorisation for accessing
a Product. We show in listing 3.7 an attempt to address these requirements.
1 ...
2 post ‘/product‘
3 {
4 (response.code == 200 &&
5 response in {body: ProductResponse} &&
6 (exists p : Product ::
7 (exists pr : ProductRepr ::
8 pr repof p &&
9 pr.name == response.body.name &&
10 pr.price == response.body.price &&
11 pr.quantity == response.body.quantity)
12)
13)
14 // user can be unauthenticated or unauthorised
15 || response.code == 401 || response.code == 403
16 }

Listing 3.7: Capturing cases related with authentication and authorisation in HeadREST

The post-condition now states that there are two response codes referring to unauthen-
ticated or unauthorised access. We do not know beforehand if the user is authenticated
in the pre-condition, nor do we know if the user has authorisation to do this operation.
Therefore, the only avenue is to add response codes that capture the associated failure
cases.

To better illustrate the limitations with authentication and authorisation let us consider
an example of an API with endpoint get ‘/services/tolldata‘ that returns data about the
current tolls. The basic specification of this API is shown in listing 3.8. It specifies that

Chapter 3. The HeadREST Language 40

a call to that endpoint either succeeds and returns 200 or fails due lack of authentication
information or lack of authorisation to access the resource.
1 resource Toll
2
3 /*
4 * Toll resource data
5 */
6 type TollData = {
7 id: String,
8 stationId: String,
9 licensePlate: String,
10 timestamp: String
11 }
12
13 {
14 true
15 }
16 get ‘/services/tolldata ‘
17 {
18 (response.code == 200 &&
19 response in {body: TollData[]}) ||
20 // capturing failure cases with response codes
21 response.code == 401 ||
22 response.code == 403
23 }

Listing 3.8: Example of the TollUsage API

Suppose also that the security of the service is based on two roles, OPERATOR and USER

and also on OAuth with two scopes, toll_read and toll_report. Concretely, a call to
the endpoint only succeeds if the user is authenticated and has the role OPERATOR and the
OAuth scope toll_read.

Despite its simplicity we can see that we have no way of referring to an authenticated
entity. We can not express anything regarding authentication. It also demonstrates
that attribute based authorisation policies used by various APIs cannot be expressed in
HeadREST.

Authorisation policies that go beyond RBAC can be found for instance in the GitLab
API. GitLab uses different security schemes to control the access to its API; the one we
will be looking at in the next examples is the one that is based on a personal access
token. This token represents the user’s identity and carries certain privileges associated
with said user. The token must be sent in requests to endpoints that are accessible only to
authenticated users in the Authorization header.

Let us consider the endpoint delete ‘/projects/{id}/wikis/{slug}‘, for deleting a
Wiki resource. In GitLab, members of projects have a role in the project that is represented
by different numbers (10 for guest, 20 for reporter, 30 for developer, 40 for maintainer and
50 for owner). To delete a project wiki through a call to this endpoint, the user must have
the role of maintainer or owner for that project. If none of these roles apply to the user,
then the operation results in a response with code 401.

Once again, HeadREST is unable to express these requirements and the best we can

Chapter 3. The HeadREST Language 41

do is to add ... || response.code == 403 to the post-condition of the assertion in order to
capture the failure case, as shown in listing 3.9 (some types and expressions are omitted
for brevity).
1 resource Project, Wiki
2
3 type ProjectData = {
4 id: String|Integer,
5 ...
6 }
7
8 type WikiData = {
9 slug: String,
10 ...
11 }
12
13 {
14 request.template in {id: String|Integer, slug: String} &&
15 (exists p: Project ::
16 (forall pr: ProjectData ::
17 pr repof p =>
18 pr.id == request.template.id &&
19 ...
20)
21)
22 }
23 delete ‘/projects/{id}/wikis{slug}‘
24 {
25 response.code == 204 ||
26 // capturing failure cases with response codes
27 response.code == 401 ||
28 response.code == 403
29 }

Listing 3.9: Example of deleting a GitLab project wiki

The next GitLab API example demonstrates another facet of the impact of authorisa-
tion policies when specifying API data exchanges. In this example we have the simple
endpoint get ‘/users/{id}‘. This endpoint works on the resource User and simply returns
information regarding the user with the given id. However, in GitLab some users can
see more information than others according to the administration roles they have been
assigned—Administrator, Auditor and Regular. If a user with a Regular administration
role calls the endpoint get ‘/users/{id}‘, the information provided in the response will
be less detailed than if the user had the role of Administrator.

This example demonstrates that there are important security policies in RESTful APIs
that go beyond the access control to a resource. Naturally, we also do not have a way of
specifying these properties in HeadREST. An example of this endpoint in HeadREST can
be seen in listing 3.10. Some types are omitted for brevity.
1 resource User
2
3 type UserData = {
4 id: String|Integer,
5 ...
6 }

Chapter 3. The HeadREST Language 42

7
8 type RegularData = {
9 id: String|Integer,
10 username: String,
11 ...
12 }
13
14 type AdminData = RegularData & {
15 is_admin: Boolean,
16 ...
17 }
18
19 {
20 request.template in {id: String|Integer} &&
21 (exists u: User ::
22 (forall ur: UserData ::
23 ur repof u => ur.id == request.template.id
24)
25)
26 }
27 get ‘/users/{id}‘
28 {
29 response.code == 201 &&
30 // can have different responses depending on the role
31 (response in {body: RegularData} ||
32 response in {body: AdminData})
33 }

Listing 3.10: Example of retrieving information about a GitLab user

The examples we have presented so far are all quite complex and include many things
such as attributes and roles. However, often the API security requirements are simply
authentication. Consider the following example taken from the PetStore API [34]. The
following endpoint get ‘/pet/{petId}‘ returns information about the pet with the given
petId variable. This endpoint has only one requirement: the user must send a valid API
key to authenticate himself. This requirement is very simple compared to the previous
ones. However, the API key being one of the most common methods of securing RESTful
APIs means that this requirement is very common across RESTful APIs. An example of
this endpoint can be seen in listing 3.11. Still, we are unable to express this requirement
in HeadREST.
1 resource Pet
2
3 type PetData = {
4 id: Integer,
5 ?name: String,
6 category: {id: Integer, name: String},
7 ?photoUrls: String[],
8 ...
9 }
10
11 // how do we know we are authenticated?
12 {
13 request.template.petId in Integer &&
14 (exists p: Pet ::
15 (forall pr: PetData ::
16 pr repof p =>

Chapter 3. The HeadREST Language 43

17 pr.id == request.template.petId
18)
19)
20 }
21 get ‘/pet/{petId}‘
22 {
23 response.code == 200 &&
24 response in {body: PetData}
25 }

Listing 3.11: Example of a GET operation in the PetStore API

Chapter 3. The HeadREST Language 44

Chapter 4

New Developments on HeadREST

In this chapter we present our proposals to address the limitations and issues present in the
HeadREST specification language that were discussed in the previous chapter. First, we
present the new language constructs that were introduced in order to address some of the
usability issues. Then, we present the language extension to support the specification of
API security policies. Lastly, we briefly discuss the implementation of these extensions.

4.1 Syntax Extensions

To address some usability problems of HeadREST, we introduced new language con-
structs that allow to capture recurring patterns in specifications and, in this way, reduce
their complexity. With one exception, all the new language constructs can be defined as
derived expressions. This has the advantage of leveraging the already existing implemen-
tation of HeadREST’s core syntax, simplifying the implementation process and reducing
complexity.

Extract operator. Quantifiers contribute greatly toHeadREST’s expressiveness asmuch
as they contribute to its complexity. Quantifiers are used for different reasons. The most
common reason is for describing properties about resources and their representations.

As discussed before, often RESTful APIs provide only one type of representation for a
resource type. In this situation, to streamline the access to that representation, we devised
the extract operator (’) applicable to variables of a resource type. The fact that resources
of a given type R are represented by a single value of a type T can be declared with
type T represents R = ... , where represents is a new keyword. Naturally, to use the
extract operator on a variable of type T there must be exactly one type which is declared
to represent that type of resources.

This new operator is illustrated in the example presented in listing 4.1, a modified
version of the example presented in listing 3.3. Note that, in this example, only type
ProductData declares that it represents the resource Product and, hence, we can use the

45

Chapter 4. New Developments on HeadREST 46

extract operator on variable p : Product and write p’.

1 resource Product
2
3 type ProductData represents Product = {
4 name: (x: String where x != ""),
5 price: Natural,
6 quantity: Natural
7 }
8
9 ...
10
11 {
12 request in {body: ProductData} &&
13 (forall p : Product ::
14 p’.name != request.body.name
15)
16 }
17 post ‘/product‘
18 {
19 response.code == 200 &&
20 response in {body: ProductResponse} &&
21 (exists p : Product ::
22 p’.name == response.body.name &&
23 p’.price == response.body.price &&
24 p’.quantity == response.body.quantity
25)
26 }

Listing 4.1: Example of the extract operator

If we want to use the extract operator and write p’ for a variable p:R, R must have been
declared as having a unique representation (say, T represents R). Otherwise, we would
not know to which type of representation p’ refers to. Another important issue is whether
we should consider a universal or a existential quantification over the representations of
p of type T. Stating that all representations have some properties is very different from
stating that exists a representation that has some properties and here we had no option
other than to choose one of them arbitrarily (the choice was exists). Note, however, that
this choice is not relevant if resources have single representations since both options result
in equivalent expressions.

So, in our example, the pre-condition of the assertion states that every product has
a representation of type ProductData with a name different from the name given in the
request. The assertion states that, in this situation, a call to the endpoint post ‘/product‘

ensures the creation of a product that has a representation with the name, price and quantity
given in the request.

Expressions with the extract operator can be translated into expressions written with
the core syntax. Two different translation rules are needed: one for local variables (i.e.,
variables introduced by a quantifier) and another for global variables (introduced at highest
level of the specification).

The elimination of the extract operator over local variables works as follows:

Chapter 4. New Developments on HeadREST 47

Q x : R :: ϕ , Q x : R :: exists t : T :: t repof x && ϕ[t/x′] (4.1)

where Q is either exists or forall, R is resource type declared as having representations
of a single type T , and ϕ is a expression with one or more occurrences of x′.

The translation introduces an existential quantification over a new variable of type T
that is constrained to be a representation of resource x and to which the property ϕ applies.

The elimination of the extract operator over global variables is similar, but we have to
deal with all global variables simultaneously:

ϕ , exists t1 : T1 :: t1 repof x1 &&

(. . .&& (exists tn : Tn :: tn repof xn &&

ϕ[t1 . . . tn/x
′
1 . . . x

′
n]))

(4.2)

where ϕ is a top-level expression (such as a pre-condition or a post-condition), x1 :

R1, . . . , xn : Rn is the set of global variables with resource types declared as having
representations of a single type Ti.

Iterators. Properties over arrays often require the use of quantifiers over their elements.
Iterators were introduced in the language to simplify the writing of these properties. The
iterator gives users a more direct access to array elements while also making the access
more descriptive.

Existential and universal quantification over the elements of an array is achieved
through the keywords forsome and foreach, respectively. An example that illustrates this
new construct is presented in listing 4.2. This example is a modified version of the example
presented previously, in listing 3.5.
1 ...
2 {
3 ...
4 }
5 get ‘/products{?price}‘
6 {
7 ... &&
8 response in {body: ProductData[]} &&
9 (foreach product of response.body ::
10 product.price == request.template.price
11)
12 }

Listing 4.2: Universal property over an array with an iterator in HeadREST

The expressions written with iterators can be translated into expressions written with
the core syntax as follows:

foreach x of e :: ϕ , forall i : TR :: ϕ[e[i]/x]

forsome x of e :: ϕ , exists i : TR :: ϕ[e[i]/x]
(4.3)

Chapter 4. New Developments on HeadREST 48

where x is the iteration variable, e is an expression of array type and TR is

x : Natural where x < length(e)

Interpolation. The other issue at hand is the usage of the expand function in conjunction
with the uriof operator. We added interpolation to the language to address this issue.

Interpolation allows to express an expansion of a URI template into a URI (i.e.,
substitute templates for expressions). This means that whenever we want to specify that
an expansion of a URI template has a particular value, we can directly plug the value into
the URI template as an expression. This is a much more direct way of creating a URI
from URI templates than the expand function, which requires two arguments — the URI
template and an object containing the values that are used by the URI template expansion.

Interpolation has a particularity that is not shared by the other extensions. This new
extension is a HeadREST expression that sees other HeadREST expressions inside of a
itself. Adding this to HeadREST’s grammar greatly increases it’s complexity. To simplify
this issue, we parse and make the necessary transformations during the validation process.
In this way HeadREST’s grammar does not require a major restructuring in order to fit in
this extension. The syntax for interpolation is presented in fig. 4.1.

Interpolation String g ::= ‘b‘

Body b ::= (te | t)∗
Text t ::= ([a-zA-Z_]([a-zA-Z0-9-_])*|/| |\n|\t|.)

Template Expression te ::= {e} where e is an HeadREST expression

Figure 4.1: The syntax of Interpolation

The use of interpolation is illustrated below in listing 4.3. This example is a modified
version of the example presented previously, in listing 3.6.
1 ...
2 {
3 request.template in {id: Integer} &&
4 (exists p : Product ::
5 $’/product/{request.template.id}’ uriof p
6)
7 }
8 get ‘/product/{id}‘
9 {
10 ...
11 }

Listing 4.3: Interpolation in HeadREST

The expressions written with interpolation can be translated into expressions written
with the core syntax. Naturally, the translation is defined in terms of the expand function

Chapter 4. New Developments on HeadREST 49

as follows:
$g , expand(u, {x1 = e1 . . . xn = en}) (4.4)

where g is an Interpolation string, the first argument of the expand function is a URI u
created from g by substituting the interpolated expressions in g with the fresh variables
x1 . . . xn. The interpolated string with the fresh variables is then transformed into a
HeadREST URI. The second argument of the expand function is an object value with
members x1 . . . xn containing the interpolated expressions. The members from the object
value are used in u to replace the expressions from g.

User-defined Functions. Specifications often have many repeating patterns. To give
users a way of reusing patterns that emerge when writing specifications we introduced
user-defined functions in the language. These functions can take in an arbitrary number
of arguments. This makes them specially useful for situations in which we have several
expressions that only differ in the values that are used in specific points. The syntax for
user-defined functions and predicates is presented in fig. 4.2. The syntax was added to the
specification in fig. 3.3.

Specification S ::= ε | var x : T S | resourceα S | {e1}mu {e2} S
| typex = T S | constx = e S

| function f(x1 : T1, . . . , xn : Tn) : U = e S

| predicate f(x1 : T1, . . . , xn : Tn) = e S

Figure 4.2: Syntax for user-defined functions and predicates

In listing 4.4 we illustrate the definition of a user-defined function (in fact, a predicate)
and its use in two different assertions.
1 predicate existsProductWithId(id: Integer) =
2 exists p: Product ::
3 exists pr: ProductData ::
4 pr repof p && pr.id == id
5
6 // successful retrieval of information about a product
7 {
8 request.template in {id: Integer} &&
9 existsProductWithId(request.template.id)
10 }
11 get ‘/product/{id}‘
12 {
13 response.code == 200 &&
14 ...
15 }
16
17 // product not found
18 {
19 request.template in {id: Integer} &&

Chapter 4. New Developments on HeadREST 50

20 !existsProductWithId(request.template.id)
21 }
22 get ‘/product/{id}‘
23 {
24 response.code == 404 &&
25 ...
26 }

Listing 4.4: Functions in HeadREST

Functions replace the language construct def that was available in the previous version
of the language. In previous HeadREST versions, def was a macro of some sorts and was
clearly being used as an attempt to surpass a reusability limitation in the language. What
mostly happened was that these macros themselves were repeating each other with very
small changes. Functions serve as a way to surpass this limitation.

However, not all expressions that are repeated are large and cumbersome to write.
Sometimes we want to store simple expressions somewhere in the specification to reuse
later whenever they are required (for example, numbers). This was previously done with
the help of the def construct. We do not want to use functions just to abstract repeated
numbers, names or any other type of expressions that are simple in nature. To solve this,
we repurposed the implementation of the def construct and renamed it to const to better
signify the intent behind its use. The const works along with functions in order to provide
users with ways of abstracting repeated expressions and patterns that might occur in a
HeadREST specification.

Functions are new syntax additions that cannot be expressed with the core syntax. The
inclusion of completely new syntax means that we had to extend the rules of HeadREST’s
specification formation algorithm detailed in [9]. The new formation rules for functions
are presented in fig. 4.3.

∆; Γ ` T1 . . .∆; Γ ` Tn ∆; Γ ` x1: T1 . . .∆; Γ ` xn: Tn
∆; Γ ` U ∆; Γ ` e � U ′ ∆; Γ ` U ′ <: U ∆; Γ ` S

∆; Γ ` function f(x1 : T1, . . . , xn : Tn) : U = e;S

∆; Γ ` T1 . . .∆; Γ ` Tn ∆; Γ ` x1: T1 . . .∆; Γ ` xn: Tn
∆; Γ ` e � Boolean ∆; Γ ` S

∆; Γ ` predicate f(x1 : T1, . . . , xn : Tn) = e;S

Figure 4.3: Algorithmic specification formation for functions: ∆; Γ ` S

The user-defined functions introduced in HeadREST have only one expression as body.
The arguments and return type leverage HeadREST’s type system and give a good amount
of flexibility. Users can specify the return type of the function. However, most of the time,
the return type is a Boolean. Therefore, we specialise functions into predicates. Predicates

Chapter 4. New Developments on HeadREST 51

work in the same way as normal functions, the only difference is that the return type is an
implicit Boolean.

4.2 Expressing Security Policies

In this sectionwe discuss howHeadRESTwas extended in order to address the specification
of properties concerning authentication and authorisation in RESTful APIs. The goal was
that the language become flexible and expressive enough to capture dynamic, state-based
dependencies that exist in the access control policies that we found in RESTful APIs.

Principals. In the area of security, principal is a term used to designate an entity that
uses the system and can be authenticated. For example, in the GitLab API (discussed in
the previous chapter), GitLab users can be authenticated and, hence, are principals.

To be able to refer to these entities in HeadREST and model security policies, we add
the Principal type to HeadREST. This type represents in HeadREST the entities that can
be authenticated in a RESTful API and to which authorisation policies apply. We consider
a single type of principals as we have not found examples that require multiple types and
this keeps things simple.

The Principal is a primitive type in HeadREST, which requires the addition of a new
type formation axiom to the rules shown in [9]. The new axiom is shown in fig. 4.4.

∆; Γ ` Principal

Figure 4.4: Algorithmic type formation for Principal type: ∆; Γ ` T

To reason about principals in HeadREST, we add a new uninterpreted function,
principalof. This function receives an argument of type Any and returns the union type
Principal | [null]. Note that, [null] is a type inhabited by the single value null. The
fact that principalof(e) is nullmeans that e does not authenticate an entity and, hence, is
not a principal. The example presented in listing 4.5 illustrates the use of type Principal
and the function principalof.

1 resource Pet
2
3 type PetData = {
4 id: Integer,
5 ?name: String,
6 category: {id: Integer, name: String},
7 ?photoUrls: String[],
8 ...
9 }
10

Chapter 4. New Developments on HeadREST 52

11 // authentication with ApiKey
12
13 // success case
14 {
15 request.template.petId in Integer &&
16 request.header in {api_key: String} &&
17 principalof(request.header.api_key) in Principal &&
18 (exists p: Pet ::
19 (forall pr: PetData ::
20 pr repof p =>
21 pr.id == request.template.petId
22)
23)
24 }
25 get ‘/pet/{petId}‘
26 {
27 response.code == 200 &&
28 response in {body: PetData}
29 }
30
31 // failure case: invalid ApiKey
32 {
33 request.template.petId in Integer &&
34 request.header in {api_key: String} &&
35 principalof(request.header.api_key) == null
36 }
37 get ‘/pet/{petId}‘
38 {
39 response.code == 401
40 }

Listing 4.5: Expressing authentication in the PetStore API

This example shows how to use the new language constructs to specify the authenti-
cation requirements of the PetStore API presented in the previous chapter, in listing 3.11.
The API key is expected to be sent in the request as a header. The precondition of the
first assertion identifies the success case for this form of authentication. In the second
assertion, we specify the failure case caused by the transmission of an invalid api key in
the request.

Uninterpreted functions over Principals. The uninterpreted function principalof, be-
ing rather abstract, allows to cover different authentication schemas but we still lack
expressive power to describe complex access control policies, that are dynamic and state-
dependent. To tackle this problem, we introduced user-defined uninterpreted functions
over principals in the language, i.e., functions that take at least one argument of type
Principal and do not have a body. They provide abstractions for properties of principals
that are important to express the authorisation policy constraints of a given API.

The addition of these uninterpreted functions to the language makes use of the imple-
mentation for the functions and predicates, fig. 4.3. The rules for type checking are also
similar and are shown in fig. 4.5. The only difference is that uninterpreted functions do
not have a body.

Chapter 4. New Developments on HeadREST 53

∆; Γ ` T1 . . .∆; Γ ` Tn ∆; Γ ` x1: T1 . . .∆; Γ ` xn: Tn
∆; Γ ` U ∆; Γ ` S

∆; Γ ` function f(x1 : T1, . . . , xn : Tn) : U ;S

∆; Γ ` T1 . . .∆; Γ ` Tn ∆; Γ ` x1: T1 . . .∆; Γ ` xn: Tn
∆; Γ ` S

∆; Γ ` predicate f(x1 : T1, . . . , xn : Tn) ;S

Figure 4.5: Algorithmic specification formation for uninterpreted functions: ∆; Γ ` S

The syntax for user-defined uninterpreted functions and predicates is reused from the
syntax for user-defined functions. We simply say that the body of the function can be
optional.

Example: TollUsage API To understand how this addition helps with the specification
of authorisation policies we revisit the TollUsage API shown in listing 3.8. Recall that the
endpoint get ‘/services/tolldata‘ can only be called by an authenticated user that has
the role OPERATOR and the OAuth scope toll_read.
1 resource Toll
2
3 type TollData represents Toll = {
4 id: String,
5 stationId: String,
6 licensePlate: String,
7 timestamp: String
8 }
9
10 var authN: Principal
11
12 type Role = ["OPERATOR"]|["USER"]
13
14 type Scope = ["toll_read"]|["toll_report"]
15
16 // uninterpreted functions
17 predicate hasRole(p: Principal , role: Role)
18 predicate hasScope(p: Principal , scope: Scope)
19
20 // authentication with OAuth token
21
22 // success case
23 {
24 request.header in {Authorization: String} &&
25 authN == principalof(request.header.Authorization) &&
26 hasRole(authN, "OPERATOR") &&
27 hasScope(authN, "toll_read")
28 }
29 get ‘/services/tolldata ‘
30 {
31 response.code == 200 &&
32 response in {body: TollData}
33 }

Chapter 4. New Developments on HeadREST 54

34
35 // failure case: invalid token
36 {
37 request.header in {Authorization: String} &&
38 authN == principalof(request.header.Authorization) &&
39 !hasScope(authN, "toll_read")
40 }
41 get ‘/services/tolldata ‘
42 {
43 response.code == 403 &&
44 response in {body: {scope: Scope}} &&
45 response.body.scope == "toll_read"
46 }

Listing 4.6: Expressing authorisation in the TollUsage API

To express the scopes and the roles, we 1) introduce types that define the values they can
take and 2) specify the uninterpreted functions hasRole and hasScope. These two functions
take a principal type argument and, respectively, a role and a scope. They identify the
concepts associated with principals that are needed to express the access control policy of
the API. The assertions also specify that the authorisation token is expected to be sent in
the Authorization header.

The two uninterpreted functions are then used in conjunction with the return value
of the principalof function to express that the principal has a certain role, in this case
OPERATOR, and a certain scope, in this case toll_read. With this we successfully specify the
authorisation policy of TollUsage API. Furthermore, note that now we have assertions for
the different cases and do not need to rely solely on response codes. The second assertion
captures the failure case when the principal authenticated by the authorisation token does
not have the correct scope. In this case, we can see that the post-condition specifies that
the response is 403 (Forbidden) and identifies, in the body, the required scope.

Example: GitLab API To illustrate the power of the proposed extension we addressed
the specification of the authorisation policies of GitLab discussed in the previous chapter
(see listing 4.7).
1 ...
2 var authN: Principal
3
4 type Id = String|Integer
5 // GitLab project role access levels
6 type ProjectRole = [10]|[20]|[30]|[40]|[50]
7 // GitLab scopes
8 type Scope = ["api"]|
9 ["read_user"]|
10 ["read_repository"]|
11 ["write_repository"]
12
13 // uninterpreted functions
14 predicate hasScope(p: Principal , s: Scope)
15 function userFromPrincipal(p: Principal) : User
16
17 // functions

Chapter 4. New Developments on HeadREST 55

18 predicate hasProjectRole(u: User, r: ProjectRole ,
19 projectMembersRoot: String) =
20 (exists mData: MemberData ::
21 mData.access_level == r &&
22 $’{projectMembersRoot}/all/{mData.id}’ uriof u
23)
24
25 {
26 request.template in {id: Id, slug: String} &&
27 request.header in {Authorization: String} &&
28 authN == principalof(request.header.Authorization) &&
29 hasScope(authN, "api") &&
30 (exists project: Project ::
31 project ’.id == request.template.id &&
32 (exists user: User ::
33 user == userFromPrincipal(authN) &&
34 !(hasProjectRole(user, 40,

project ’._links.members.href) ||
35 hasProjectRole(user, 50,

project ’._links.members.href)) &&
36 ...
37)
38)
39 }
40 delete ‘/projects/{id}/wikis{slug}‘
41 {
42 response.code == 403 &&
43 ...
44 }

Listing 4.7: Deleting project wiki with authorisation in GitLab

In this example, we express the scopes used to access the GitLab API and the roles
associated to projects by defining types to represent them. Then, we introduce two
uninterpreted functions hasScope and userFromPrincipal in order to describe properties
regarding the Principal. With this, we can now begin to specify properties related with
authentication and authorisation in the endpoint, delete ‘/projects/{id}/wikis{slug}‘.

GitLab API provides several schemes for authentication and authorisation but we focus
the example on the personal access token. Recall that, in GitLab, project members have
roles and roles have a numeric access level that ranges from 10 to 50 (10 being the lowest
access level). The api scope gives full access to the API’s resources. The endpoint in the
example performs the delete operation over a project wiki. The authorisation policy that
constraints this operation requires members to have a project access level greater than 30.

To this end, in the pre-condition; we state that the authentication method (token in
request.header.Authorization) is valid with the principalof function; the principal has
the api scope, but state that the principal does not have a project access level of 40, nor
50. Effectively, we are capturing a failure case of the operation. Then we state that there
is a project with an id equal to the one in the request.template.id. Finally, we specify
that the user is associated with the authentication token through the uninterpreted function
userFromPrincipal. With this, we can now describe the failure case for this endpoint. We
state that, if the user does not possess the required access level, then the response code

Chapter 4. New Developments on HeadREST 56

will be 403 (Forbidden).
We can also make statements about authorisation policies that are not simply denying

access to resources. The example in listing 3.10 in the previous chapter demonstrates a
case where the authorisation policies control the amount of information that entities are
allowed to view. Lets see how we can specify the requirements from that example in
listing 4.8.
1 ...
2
3 predicate userIsAdmin(u: User) =
4 (exists adminData: AdminUserData ::
5 adminData repof u &&
6 adminData.is_admin
7)
8
9 predicate userFromPrincipal(p: Principal) : User
10
11 // Data exchanged when user is Regular
12 {
13 ...
14 request.header in {Authorization: String} &&
15 authN == principalof(request.header.Authorization) &&
16 !userIsAdmin(userFromPrincipal(authN)) &&
17 ...
18 }
19 get ‘/users/{id}‘
20 {
21 response.code == 201 &&
22 response in {body: RegularData}
23 }
24
25 // Data exchanged when user is Admin
26 {
27 ...
28 request.header in {Authorization: String} &&
29 authN == principalof(request.header.Authorization) &&
30 userIsAdmin(userFromPrincipal(authN)) &&
31 ...
32 }
33 get ‘/users/{id}‘
34 {
35 response.code == 201 &&
36 response in {body: AdminData}
37 }

Listing 4.8: GitLab different response content on administrative role

In this example, we make use of the uninterpreted function userFromPrincipal to
access the user associated with the principal. In GitLab, besides project roles there are
also administrative roles. To describe properties regarding these roles we need only to
know if an entity is an administrator or not. For this, we employ the uninterpreted predicate
userIsAdmin.

Once again, we specify the association between a user and a principal with the help
of the userFromPrincipal uninterpreted function. Now, we can split the assertion shown
in listing 3.10 in two. On one assertion we specify in the pre-condition that the principal

Chapter 4. New Developments on HeadREST 57

is valid and that the user associated with the principal is not an administrator. In the
post-condition, we specify that the body of the response carries RegularData when the
user is not an administrator. For the other, we specify that the user is an administrator and
therefore, the response body contains AdminData. With the ability to specify constraints
around principals we can differentiate assertions that previously would have to be coupled.

Example: Time Constraints With this extension, we are also able to specify autho-
risation policies based on time constraints. To exemplify this, we revisit the example of
a time based authorisation policy shown in listing 2.3. This authorisation policy denies
access to users if they login seven days after the current date.
1 function lastLoginFromToday(p: Principal) : Natural
2
3 var authN: Principal
4
5 {
6 request.template in {credential: String} &&
7 authN == principalof(request.template.credential) &&
8 lastLoginFromToday(authN) > 7
9 }
10 get ‘/login/{?credential}‘
11 {
12 response.code == 403
13 }

Listing 4.9: Denie access if login is more than 7 days away from today

In this example we declare the uninterpreted function lastLoginFromToday. This un-
interpreted functions returns a Natural that represents the difference between the current
date and the last time the user logged in. The operation to login into the service requires a
credential that serves as a way to authenticate the user. For simplicity’s sake, the credential
is simply a String. In the pre-condition we state that the request.template contains the
credential, that the credential is valid and finally, we specify that the lastLoginFromToday
function returns a value greater than seven. If the pre-condition holds, the post-condition
specifies that the response code will be a 403 (Forbidden).

Limitations Although this extension gives HeadREST the ability to express security
aspects of APIs that use a multiple of authentication schemes and authorisation policies,
there are several aspects related with security of RESTful APIs that can not be specified
in HeadREST. For example, some APIs limit the rate of requests that a client can make.
The rate limit can change from user to user depending on their profile or subscription
model. OpenAPI can handle this policy through custom fields (i.e. x-ratelimit-limit,
x-ratelimit-remaining) while HeadREST does not have the ability to express this property.
Another example is the restriction of access to operations based on subscription tiers.
This information is not always present in the data that is exchanged and is handled by the
service internally. Therefore, with the current extension to express security policies we
have no way of expressing this property.

Chapter 4. New Developments on HeadREST 58

Another type of limitation concerns the lack of ability to describe the behaviour of
endpoints used for login or logout. An example of this is the assertion get ‘/user/logout‘

in line 153 of listing B.12. In this assertion a user logs out, however there is nothing we
can say about this in terms of the state of the service as we have no information to work
with.

HeadREST is also unable to express security beyond authentication and authorisation.
For example, there is no way to express deeper security concepts such as confidentiality,
non-repudiation, integrity and other mechanisms that are also part of a RESTful service’s
security. HeadREST is only capable of expressing security policies with the data present
in the data exchanges between client and server, and the URI. There is no way of expressing
how the communication between client and server is secured in HeadREST. For example,
a common protocol used to secure RESTful service’s communication is TLS. Expressing
properties regarding the TLS version, or the cipher suits that are supported is not possible.

4.3 Implementation

In this section we briefly discuss what the proposed extensions required in terms of the
implementation of HeadREST. We start by providing an overview of the module structure
of HeadREST’s implementation.

Since HeadREST was developed with the help of Xtext [14, 5], it comprises multiple
projects that focus on different aspects such as testing, controlling the behaviour of the
editor and the Eclipse plug-in for the language. Figures 4.6a and 4.6b show HeadREST’s
Xtext plug-in for the Eclipse IDE in action. Herein, we focus on the project that contains
the core of the implementation of the language, corresponding to the syntax, parsing,
validation and type checking of the language.

(a) Editor for HeadREST’s Xtext plug-in
(b) Error marker in HeadREST’s Xtext plug-in

Figure 4.6: HeadREST’s Xtext plug-in

Xtext is a development environment for creating programming languages and DSLs
(Domain Specific Languages). Xtext makes use of grammar specification files similarly

Chapter 4. New Developments on HeadREST 59

to ANTLR [49] to handle the syntax for any language we want to create. From this
grammar specification file, Xtext creates an EMF (Eclipse Modeling Framework) model
and generates the lexer, parser and AST (Abstract Syntax Tree). See fig. 4.7 for a view of
Xtext’s generator model.

Xtext Runtime

EMF
Classes

Uses

Editor

ParserLexer

Syntax
Highlighter

...

Xtext
Grammar
File

Generates

Xtext Generator

Figure 4.7: Xtext generator model

Figure 4.8 shows the top level module view of the the project that contains the core of
the implementation of the language.

src.org.headrest.lang

validation typing

structures generator

grammarutils

smt

parser

src-gen.org.headrest.lang

validation

structures

validation

structures

grammarutils

generator

parser

Classes generated by Xtext
from the grammar specification
file and from Xtend files

com.microsoft.z3

library containing
classes that serve as
an interface for Z3

Figure 4.8: HeadREST’s module view

The grammarutils package has helper classes for object creation and pretty printing.
The structures package contains a scoped table to deal with different variable scopes in
expressions. The parser package provides classes to parse HeadREST expressions and
specifications. The main class is located in the generator package. Finally, the core of
the implementation is in the validation and typing packages. The validation package

Chapter 4. New Developments on HeadREST 60

handles errors, HeadREST’s environment and has some helper classes for expression
substitutions. The typing package is responsible for HeadREST’s type checking, with
sub-package typing.smt responsible for the interface to the SMT solver.

The changes for the extension of the language mainly impacted on the validation and
typing packages. Fig. 4.9 presents a more detailed view of the these packages.

src.org.headrest.lang

typing

SpecificationFormation

AlgorithmicSubtyping

smt

InTypeGenerator

Z3Instance

ValueGenerator

validation

src-gen.org.headrest.lang

VariableSubstitutionExpression

Z3Generator

...

VariableSubstitutionType

HeadRESTSwitchWithDerivedDerivedInterpolation

GeneralSubstitutionExpression

IssueCodes

GeneralSubstitutionType

HeadRESTSwitchWithDerived

ExtractSubstitutionSwitch

ExtractValidator

FunctionSwitch

VariableSubstitutionExpression

HeadRESTValidator

Environment

FreeVariableSearch

ExtractSubstitutionSwitch

Key

Changed Unchanged New

uses

Classes generated by Xtext
from the grammar specification
file and from Xtend files

package

com.microsoft.z3

library containing
classes that serve as
an interface for Z3

Figure 4.9: HeadREST’s typing and validation modules view

Recall that the new language constructs, with the exception of functions, are derived
expressions. For implementing these constructs, we just made use of HeadREST’s existing
implementation as it already have derived expressions and provides a solid base with which
we can define new derivations. The class of interest to add new derived expressions is
the HeadRESTSwitchWithDerived. This class extends another visitor class generated by
Xtext that traverses HeadREST’s syntax tree. This custom visitor makes the necessary
derivations as it visits the HeadREST’s AST. The iterators and interpolation were both
implemented in this class. The iterator derived expression makes use of the already
existing VariableSubstitutionExpression to replace variable names with array access
expressions. Interpolation is accompanied by a helper class, DerivedInterpolation, that
visits an interpolation expression and creates a URI template.

Chapter 4. New Developments on HeadREST 61

In contrast, the implementation of the extract operator required a different approach
since parts of the translation into the core syntax are not modular. The extract operator
has two cases for translation, a local expression translation and a top-level expression
translation. Local translations simply introduce a quantifier for the resource representation.
However, top-level translations introduce quantifiers at the top of the assertions’ pre-
condition and post-condition. This case makes it slightly more complicated to handle as
we need to modify the assertions’ top-level expressions to have quantifiers at the top.

The implementation of the operator is divided in two classes, ExtractSubstitutionSwitch
and ExtractValidator. Thefirst is a visitor that extends the GeneralSubstitutionExpression
(substitutes expressions in HeadREST) andmakes the necessarymodifications to the asser-
tions’ expressions. The second is responsible for validating each extract operator present
in the expression that is currently being visited (checks for unique representations of
resources and the type of the variable to which the operator applies to).

Functions are type-checked in the SpecificationFormation class. A first pass is made
by the FunctionSwitch class present in the validation package. This pass serves to catch
any problems related with functions that are not type related. Functions open the door
to some problems. HeadREST does not account for termination. With the addition of
functions, recursion is now possible. So for example, if there is a function A that calls
another function B, and in turn B calls A, we have indirect recursion. When this happens
HeadREST displays an error to warn the user that recursion is being used.

To detect recursion in HeadREST, we store the function application names for each
function we are visiting when we are making the first pass with the FunctionSwitch class.
Then, a second pass is made (in the same class). This second pass consists in using
depth-first search to traverse the function application names to try and find instances of
recursion in the specification. If we find a function application name equal to the name
of the function we are currently visiting then we have recursion. See listing 4.10 for
an example of recursion in HeadREST. In the example, function A calls itself by calling
function C which in turn calls function A again.
1 // A stores the function applications B and C
2 function A() : Integer = B() + C()
3
4 // B does not store any function application
5 function B() : Integer = 4
6
7 // C stores the function application A
8 function C() : Integer = A()

Listing 4.10: Recursion in HeadREST functions

Another issue that can happen in functions is associated with the extract operator. The
extract operator introduces quantifiers into existing expressions. Quantifier expressions
are of Boolean type. Therefore, using the extract operator in a user-defined function can
lead to the change of type in an expression. To simplify the validation process, we disallow
the use of the extract operator inside of user-defined functions.

Chapter 4. New Developments on HeadREST 62

The type checking algorithm for function applications was already implemented in
HeadREST, the only required change was to add the new type checking rules for the
user-defined functions themselves in the SpecificationFormation class.

To add the concept of principal into HeadREST, it was decided that a new primitive
would be introduced, the Principal type. To this end, a new rule was introduced in
the algorithmic type formation (in the AlgorithmicSubtyping class) presented in fig. 4.4.
It was also necessary for the Z3 SMT solver to know that the Principal type exists.
For this, we added the Principal to Z3’s formalisation. A rule that accounts for the good
formation of the Principal type was also added, see appendix A. The principalof function
is uninterpreted and is added to HeadREST’s environment at runtime. The uninterpreted
functions make use of the implementation for the user-defined functions and required only
some tweaks to handle not having a body.

Chapter 5

Evaluation

In this chapter we evaluate the extensions for HeadREST described in the previous chapter.
This evaluation mainly aims to investigate whether, on the one hand, the new primitives
targeting the usability issues were effective and, on the other hand, the expressive power
of the language allows us to express complex security policies found in existing RESTful
APIs.

5.1 Methodology

The evaluation of the extensions targeting usability (see section 4.1) attempts to answer
the following five questions:

RQ1 Are specifications in the new HeadREST language easier to understand?

RQ2 Are specifications in the new HeadREST language easier to write?

RQ3 Are specifications in the new HeadREST language easier to get right?

RQ4 What is the impact of new specification primitives in the complexity of specifica-
tions?

RQ5 What is the impact of using new specification primitives in terms of performance
of the validation process?

Questions RQ1 - RQ3 were subject to a qualitative analysis, based on a user study,
whereas questions RQ4 and RQ5 were subject to a quantitative analysis, with experiments
aiming to measure complexity and performance metrics.

To evaluate the expressive power of the extensions targeting the specification of security
policies (see section 4.2), we developed several case studies focusing on various RESTful
APIs that have authentication and authorisation requirements.

63

Chapter 5. Evaluation 64

5.2 User Study

The goal of the user study was to find answers for questions RQ1 - RQ3, testing the
usability of the resulting language compared to that of its predecessor.

This study, with multiple reading, writing and comprehension tasks, was performed
with the help of a questionnaire with two parts, one for each version of the language, and
a small survey in the end. In what follows, we use A to refer to the HeadREST version
presented in this work, and B to refer to the previous version.

A well known threat to validity in this type of user study are learning effects: partici-
pants learning more about HeadREST as they progress in the questionnaire, and therefore
skewing their perception of the language. If all participants completed a questionnaire
starting with questions about the old version of HeadREST, when they reached the new
version they would have grown accustomed to the language. To soften this problem,
participants were assigned to one of two groups— AB and BA—determining the com-
position of the questionnaire they get to answer, namely the version of the language that is
first addressed by the questionnaire.

Another validity threat is that the questions in both versions are different. Since they
are not exactly the same questions, it is possible that the degrees of difficulty between the
two versions is different. To address this, we attempted to maintain the same degree of
difficulty between the questions of both versions by using similar examples.

Each group of the questionnaire has five questions, of the same type and with similar
complexity. Participants were asked to input the time at which they started each part and
the time at which they ended it. At the end of the questionnaire, there was a small survey for
obtaining the users perception about the two versions of the language. The questionnaire
was distributed as a google form andwas complementedwith a tutorial. Participants would
first see the tutorial in order to learn about how HeadREST specifications are written and
how to read and understand the meaning of assertions in HeadREST specifications. The
questionnaire is presented in appendix C.1. The tutorial was distributed through a github
page and is presented in appendix C.2. The material of this tutorial was subsequently used
to make the HeadREST tutorial available in http://rss.di.fc.ul.pt/tryit/HeadREST/.

Twenty one participants answered the questionnaire; eleven participants in group BA
and ten participants in group AB. Figure 5.1 presents the distribution of the participants
for both versions of the questionnaire by occupation.

To recruit relevant subjects, we sent email invitations mostly toMSc and PhD students,
as well as computer science professors at our, and other universities. We also sent some
invitations to colleagues that are already working in the IT industry and to Bachelor’s
students. The distribution of participants for version BA is: 7 MSc students, 3 professors
and 1 software engineer. For version AB the distribution is: 5 MSc students, 2 PhD
students, 2 Bachelor’s students and 1 professor.

In table 5.1 we provide a summary of the main results of the study. A detailed analysis

http://rss.di.fc.ul.pt/tryit/HeadREST/

Chapter 5. Evaluation 65

Professor
27.3%

MSc Student
63.6%

Software
Engineer
9.1%

Professor
10%

PhD Student
20%

MSc Student
50%

Bachelor’s Student
20%

Figure 5.1: Participants in the user study divided by occupation. The first pie chart is for
version BA, the second is for version AB.

of the results is presented in the following subsections.

Version Correctness Time to Complete Understandability Readability Writing
(minutes) 7=hard to understand 7=hard to read 7=hard to write

With Extensions (A) 87.6% 17.86(±9.8) 2.8 / 7(±0.5) 2.8 / 7 (±0.5) 3.4 / 7 (±1)
Without Extensions (B) 84.8% 23.76(±10.98) 4 / 7 (±1) 3.9 / 7 (±1) 4.8 / 7 (±1.5)

Table 5.1: Summary of the user study results

5.2.1 Time Analysis

For this user study we conducted inferential and descriptive statistical analysis in order
to see how the participants faired with each HeadREST version. First, we looked at how
much time was taken for participants to complete each part of the questionnaire.

(a) Without the new extensions (b) With the new extensions

Figure 5.2: Time to complete the questions in the questionnaire.

The data presented in fig. 5.2 shows that the participants spent more time on the part

Chapter 5. Evaluation 66

of the questionnaire that does not feature the new extensions. The values for this part
concentrate more from the tens to the thirties, while the values for the part with the new
extensions concentrates more around the tens and twenties. The mean for the times in
fig. 5.2a is 23.76 with a standard deviation of 10.97. The mean for the times in fig. 5.2b is
17.86 with a standard deviation of 9.80.

From these values, we formulate the hypothesis that participants take less time to
complete HeadREST tasks when they use the new version of the language. We perform
statistical hypothesis testing and test it with a null hypothesis that the timing for answering
the questions about the old version of the language is equal to that for the new version. For
this hypothesis we use a confidence interval (α) of 0.05. To be able to select an appropriate
statistical test, we start by checking the normality of the data we collected. To this end,
we use the Shapiro-Wilk normality test.

In the Shapiro-Wilk test the null hypothesis is that the collected data come from a
normally distributed population. We reject this hypothesis if the p value is less than the
set confidence interval of 0.05. The p value for the times collected for the part of the
questionnaire without the new extensions is 0.03553. While for the other part, the p value
is 0.0002299. Interpreting these p values according the Shapiro-Wilk test we know that
both samples do not follow a normal distribution.

Now that we know that our samples are not normally distributed we can pick an
appropriate test to check our hypothesis. Since the samples are dependent and paired,
the decision was to use the Wilcoxon signed rank test, one-tailed version, to compare our
samples. As alternative hypothesis we picked that the mean time is smaller when the new
language is used. Applying the Wilcoxon signed rank test to the samples yields a p value
of 0.01482, with our confidence interval of 0.05 we reject the null hypothesis. This means
our initial hypothesis holds, that is, we find a positive effect on the time taken to complete
tasks when the proposed constructs are available in the language.

One thing to take note is that the Wilcoxon signed rank test assumes continuous values
and no ties. These requirements do not exactly match our data. For this reason, the
Wilcoxon signed rank test was applied with a continuity correction.

5.2.2 User Perception

To measure user perception, after performing all tasks with both versions of the language,
the participants were asked for their subjective assessment of the complexity of the tasks
performed in each part. Three metrics were collected using seven-point Likert scales:
ratings of understandability, difficulty of solving tasks that required writing HeadREST,
and perceived effort of solving questions that required reading HeadREST. There was also
open ended questions for participants provide more information about the difficulties they
had in answering the questions.

Figure 5.3 summarises the preferences of the participants. User preference is subjec-

Chapter 5. Evaluation 67

Figure 5.3: User perception

tive. Nonetheless, it provides a look into the users’ perception of HeadREST versions.
From the data represented in this figure we can see that the reception towards the new
extensions was overall positive as the participants thought that the different type of tasks
were easier when they were performed using the new language constructs.

Understandability In fig. 5.4 we can see the results for the difficulty of understanding
HeadREST specifications with and without the new extensions.

1 2 3 4 5 6 7

0

2

4

6

8

10

(a)

0

3

6

4

7

1
0

Difficulty (1 - lowest, 7 - highest)

N
um

be
ro

fP
ar
tic

ip
an
ts

(a) Without the new extensions

1 2 3 4 5 6 7

0

5

10

15

(b)

0

13

4

1

3

0 0

Difficulty (1 - lowest, 7 - highest)

(b) With the new extensions

Figure 5.4: Difficulty of understanding HeadREST specifications

From the figures, we can see that most participants considered specifications with the
new extensions easier to understand. These figures reinforce the preferences shown in
fig. 5.3.

Chapter 5. Evaluation 68

For the analysis, we proceeded as in the time analysis. From the data that is presented,
the assumption that we make is that HeadREST specifications that make use of the new
extensions are easier to understand. To test this assumption we again check the normalcy
of the data. For the version without the new extensions, applying the Shapiro-Wilk test
yields a p value of 0.03171. For the version with the new extensions the p value is
0.00001329. The confidence interval in use is 0.05. Therefore, we reject the hypothesis
that the populations are normal.

The Wilcoxon signed rank test is then used to compare both samples. The null
hypothesis we are testing is, that there is no difference in the perceived difficulty regarding
understandability between the two HeadREST versions. As alternative hypothesis we
picked that specifications that do not use the extensions are easier to understand. The test
gives a p value of 0.001617. This is firmly under the confidence interval of 0.05. For
this reason we reject the null hypothesis. This means that our initial assumption, that
HeadREST specifications are easier to understand when using the new extensions, holds.

Readability The analysis of reading effort is carried in the same way. In fig. 5.5 we
present the results for reading effort when the new extensions are used or not.

1 2 3 4 5 6 7

0

5

10

(a)

0

4 4

8

4

1
0

Difficulty (1 - lowest, 7 - highest)

N
um

be
ro

fP
ar
tic

ip
an
ts

(a) Without the new extensions

1 2 3 4 5 6 7

0

5

10

(b)

1

10

6

2 2

0 0

Difficulty (1 - lowest, 7 - highest)

(b) With the new extensions

Figure 5.5: Effort of reading HeadREST specifications

We first check if the sample follows a normal distribution. The Shapiro-Wilk test
returns a p value of 0.05899 for the sample without the new extensions and a p value of
0.003267 for the sample with the new extensions. This time one of the samples has a
normal distribution, the other one however, does not. However, the Wilcoxon signed rank
test still a good option. The null hypothesis we are testing is, that there is no difference
in the perceived difficulty regarding readability between the two HeadREST versions. As

Chapter 5. Evaluation 69

alternative hypothesis we picked that specifications that do not use the extensions are
easier to read. Applying the Wilcoxon signed rank test to the samples yields a p value of
0.0005834. With a confidence interval of 0.05 we reject this hypothesis.

Writing Finally, fig. 5.6 presents the results for the perceived difficulty of writing Head-
REST specifications.

1 2 3 4 5 6 7

0

5

10

(a)

0
1

5

3 3

7

2

Difficulty (1 - lowest, 7 - highest)

N
um

be
ro

fP
ar
tic

ip
an
ts

(a) Without the new extensions

1 2 3 4 5 6 7

0

5

10

(b)

0

7

4

7

2

0
1

Difficulty (1 - lowest, 7 - highest)

(b) With the new extensions

Figure 5.6: Difficulty of writing HeadREST specifications

Once again we test whether the data samples follow a normal distribution. The
normality test gives the p values 0.03684 and 0.005933. We reject the null hypothesis for
the Shapiro-Wilk test for both samples with a confidence interval of 0.05. The samples do
not follow a normal distribution.

The null hypothesis we are testing is, that there is no difference in the perceived
difficulty of writing specifications between the two HeadREST versions. As alternative
hypothesis we picked that specifications that do not use the extensions are easier to write.
Applying the Wilcoxon signed rank test with the samples yields a p value of 0.0005777.
Therefore, we reject the null hypothesis.

5.2.3 Correctness

We also want to know if participants performed better, i.e., got more answers right,
when using the new version. The correctness of the answers were evaluated as "correct",
"partially correct" or "incorrect". We also take into account questions that were not
answered ("NA").

Chapter 5. Evaluation 70

In fig. 5.7a and fig. 5.7b we can see how many questions the participants got right in
both versions of the questionnaire.

Inc
orr
ect

Pa
rtia
lly
Co
rre
ct

Co
rre
ct NA

0

20

40

60

(a)

2 4

48

10
4

50

1N
um

be
ro

fQ
ue
sti
on

s

(a) Participants in group BA (starting with old version)

Old Version
New Version

Inc
orr
ect

Pa
rtia
lly
Co
rre
ct

Co
rre
ct NA

0

20

40

60

(b)

3 5

41

12
6

42

0

(b) Participants in group AB

Old Version
New Version

Figure 5.7: Correctness

From these figures we can see quite clearly that there is no difference in the correctness
of the participants independently of them using the new extensions or not. These results
are further reinforced when we visualize the correlation plots for the correctness and
perceived difficulty.

This correlation is an important aspect to take into consideration when checking for
the correctness in both HeadREST versions.

(a) Without the new extensions (b) With the new extensions

Figure 5.8: Correlation of user perception of understandability difficulty and correctness

Chapter 5. Evaluation 71

(a) Without the new extensions (b) With the new extensions

Figure 5.9: Correlation of user perception of reading effort and correctness

(a) Without the new extensions (b) With the new extensions

Figure 5.10: Correlation of user perception of difficulty in writing and correctness

The correlation plots in figures 5.8, 5.9 and 5.10, show the correlation between the
correctness of the questions and the participants’ perceived difficulty of said questions
in terms of understandability, readability and writing. The scale on the right side of the
figures measures the strength of correlation in a cell of the table. That is, the larger
and darker the circle, the stronger the correlation on that cell. For example, if a lot of
participants perceived the questions as having a difficulty of 2 and got them right, then,
the cell corresponding to a perceived difficulty of 2 and the question being correct will
have a larger circle.

Checking the correlation between the perceived difficulty and the number of correct
answers also helps to see if the survey questions were not answered randomly by the
participants. For example, a participant might have put the perceived difficulty very low
and then not get any answer right. By visualising the correlation between the correctness
and the perceived difficulty we can see that the participants, in most cases, answered
the questions without the new extensions correctly despite reporting a higher perceived
difficulty.

To check the statistical significance of the correlation between the two variables we use
Fisher’s exact test. This test tells the significance of the association between two variables.
Usually it is used when we have 2x2 matrices. However, it also works for NxM matrices.
The null hypothesis for Fisher’s exact test is that there is not a strong correlation between
the variables (they are independent). To test this hypothesis we chose a confidence interval
of 0.05. Applying Fisher’s exact test to each table in order results in the p values: 0.8101

Chapter 5. Evaluation 72

and 0.2849 for understandability, 0.6147 and 0.1834 for readability, 0.01149 and 0.01699

for writing.
With these values we can not reject the null hypothesis for Fisher’s exact test for

the measures of understandability and readability. That is, we have not found a strong
enough correlation between the variables correctness and perceived difficulty. There is an
exception though, the test rejects the null hypothesis on the questions related with writing
HeadREST specifications.

From fig. 5.10a and fig. 5.10b, the tests’ p values report that there is a correlation
between the perceived difficulty and the correctness of the questions related with writing
specifications. This result implies that the participants’ perceived difficulty matches the
correctness of the questions more regularly.

The figures show that in general, participants report higher, and more dispersed dif-
ficulties when not using the new extensions. We can also see that only rarely does a
participant perceive that a question is difficult and then get it wrong.

Conclusions concerning RQ1, RQ2 and RQ3 From the analysis that was performed
we conclude that the new extensions added to the HeadREST language make it so that
specifications are both easier to understand and to write. However, in terms of getting
HeadREST specifications right, there are no evidences that the new extensions added to
the HeadREST language provide any improvement over the old version of the language.

5.3 Quantitative Analysis

As mentioned before, to address research questions RQ4 and RQ5, we performed some
experiments to study the impact of the changes introduced in the language in terms of
measures regarding the complexity of specifications and the performance of the language
validator.

Complexity For measuring complexity, we considered Halstead complexity measures
(HCM) [26]. They were proposed as a means of determining a quantitative measure of
program’s complexity directly from the source code but they can also be applied to formal
specifications. Code complexity metrics are considered to provide strong indicators for
how difficult is to understand and to maintain a program and also the number of defects.
In the case of a specification language, there is no reason to think that the same does not
apply.

HCM are based on four basic measures: the number of operands (N1), operators (N2),
unique operands (η1) and unique operators (η2). As shown in Table 5.2, these measures
are then used to calculate other measures such as program length, vocabulary, volume,

Chapter 5. Evaluation 73

difficulty, effort, time required to program and number of delivered bugs. These measures
are estimates.

Measures Formula
Program Length (N) N1 +N2

Vocabulary (η) η1 + η2
Volume (V) N ∗ log2 η
Difficulty (D) η2

2
∗ N1

η1

Effort (E) D ∗ V
Time Required to Program (sec.) (T) E

18

Number of Delivered Bugs (B) V
3000

Table 5.2: Table with HCM formulas

Applying these formulas to specifications in HeadREST, requires to identify Head-
REST’s operators and operands. Operators refer to specific keywords and punctuation
marks. A comprehensive list of HeadREST operators is shown fig. 3.5. To this list of
operators we add the keywords in, forall, exists, foreach and forsome. The values true,
false and null are also considered operators. Types are considered to be operands as are
URIs (e.g., ‘/product/{id}‘ counts as one operand). Variables, strings and numbers are
also operands. Interpolation is in itself an operand, however, we also count the operands
and operators inside each interpolated expression (the interpolation string delimiters: $
and ’, are operators).

We additionally consider three other metrics: the number of lines of code, the number
of characters and the level of nesting. With these metrics we can, on multiple fronts, view
the impact of the proposed extensions for HeadREST.

Let us see how these metrics work on a simple example shown in listing 5.1.
1 {
2 request.template in {id: Integer} &&
3 // state that a product with the given ID exists
4 (exists p: Product ::
5 (exists pr: ProductData ::
6 pr repof p &&
7 pr.id == request.template.id
8)
9)
10 }
11 get ‘/product/{id}‘
12 {
13 response.code == 200 &&
14 response in {body: ProductData} &&
15 (exists p: Product ::
16 expand(‘/products/{id}‘, {id = response.body.id})

uriof p
17)
18 }

Listing 5.1: Example of an assertion without extensions

Calculating the measures for this example gives the values presented in table 5.3.

Chapter 5. Evaluation 74

Measures Count
Operands 29
Operators 45
Unique Operands 13
Unique Operators 16
Program Length 74
Vocabulary 29
Volume 296
Difficulty 16
Effort 4736
Time Required to Program (sec.) 263
Number of Delivered Bugs 0.10
Lines of Code 17
Total Characters 340
Max Nesting 2

Table 5.3: HCM measures for listing 5.1

We then transformed the assertion in listing 5.1 by taking advantage of the new
specification primitives introduced in the language and calculated the HCM and the
custom measures over the resulting specification. The results are presented in table 5.4.
1 {
2 request.template in {id: Integer} &&
3 // state that a product with the given ID exists
4 (exists p: Product ::
5 p’.id == request.template.id
6)
7 }
8 get ‘/product/{id}‘
9 {
10 response.code == 200 &&
11 response in {body: ProductData} &&
12 (exists p: Product ::
13 $’/products/{response.body.id}’ uriof p
14)
15 }

Listing 5.2: Example of an assertion with extensions

In this simple example we can see that there is a reduction in the number of operands
and operators when we used the new primitives. Consequently, the other complexity
measures also decrease (except the number of delivered bugs which stays the same). In
terms of our custom metrics, even on very small examples such as this one, we can see a
reduction in all of them. The extract operator contributes greatly to our custom metrics. It
reduces the number of lines, characters and nesting because we do not need to introduce
a quantifier expression to manipulate a resource representation.

We systematically repeated this process over a collection of HeadREST specifications
that were already available: MazesMacros, FeaturesService, DummyAPI, PetStoreAPI
and SimpleAPI.

Chapter 5. Evaluation 75

Measures Count
Operands 24
Operators 37
Unique Operands 12
Unique Operators 15
Program Length 61
Vocabulary 27
Volume 290
Difficulty 15
Effort 4350
Time Required to Program (sec.) 242
Number of Delivered Bugs 0.10
Lines of Code 14
Total Characters 267
Max Nesting 1

Table 5.4: Measures for listing 5.2

The MazesMacros specification comes from a prior work [17]. The specification was
originally called Mazes API, however, it was changed to contain a greater amount of def
constructs to abstract a lot of repeated expressions. Therefore, it was changed to have
"Macros" in the name. FeaturesService, specifies a RESTful service for managing prod-
ucts feature models (see https://github.com/JavierMF/features-service). The DummyAPI
specifies the API of a very simple service that manages employees. The PetStoreAPI spec-
ifies the API of a service that, we have already provided as example in chapter 2, which
manages pets (see https://petstore3.swagger.io/). Finally, the SimpleAPI is a specification
for a service that handles email contacts.

These specifications are different in size and complexity. The FeaturesService and
MazesMacros are the largest and most complex specifications. The other three specifica-
tions are smaller. In table 5.5 and table 5.6 we present the HCMand other custommeasures
for the considered case studies. In the first table, we show the measures for the original
specifications. The second table presents the values for the HeadREST specifications that
were developed taking advantage of the new extensions. Table 5.7 displays the percentage
differences from table 5.5 to table 5.6.

Tables 5.5 and table 5.6 show that the use of the new primitives leads to a decrease in
most measures. One thing to note is that the program length is smaller in all cases while,
in some cases, the vocabulary (unique operands and operators) increases. This happens
because the new extensions introduce new operators and operands to HeadREST’s syntax.
In particular, despite having a lower program length, vocabulary and volume, the Mazes-
Macros specification sees an increase in difficulty and effort estimates. Consequently, the
measure of time required to program also increases.

https://github.com/JavierMF/features-service
https://petstore3.swagger.io/

Chapter 5. Evaluation 76

Measures Specifications

MazesMacros FeaturesService DummyAPI PetStoreAPI SimpleAPI

Unique Operands 78 60 42 52 30
Unique Operators 32 33 25 33 20
Operands 920 1287 343 264 188
Operators 1382 2123 444 401 239
Lines of Code 705 658 222 219 146
Prog. Length 2302 3410 787 665 427
Vocabulary 110 93 67 85 50
Volume 15611 22299 4774 4262 2410
Difficulty 189 354 102 84 63
Effort 2950479 7893846 486948 358008 151830
Time Required to Program (sec.) 163916 438547 27053 19890 8435
Number of Delivered Bugs 5,21 7,44 1,60 1,43 0,81
Max Nesting 5 6 3 3 2
Total Chars 19333 23463 6009 5042 2987

Table 5.5: Measures for specifications using HeadREST without new extensions

Measures Specifications

MazesMacros FeaturesService DummyAPI PetStoreAPI SimpleAPI

Unique Operands 60 64 45 44 30
Unique Operators 38 40 31 34 21
Operands 796 744 274 217 140
Operators 1192 1208 374 333 170
Lines of Code 617 538 191 215 122
Prog. Length 1988 1952 648 550 310
Vocabulary 98 104 76 78 51
Volume 13150 13079 4049 3457 1758
Difficulty 252 233 94 84 49
Effort 3313800 3047407 380606 290388 86142
Time Required to Program (sec.) 184100 169301 21145 16133 4786
Number of Delivered Bugs 4,39 4,36 1,35 1,16 0,59
Max Nesting 3 2 2 2 2
Total Chars 14547 18880 5718 5015 2487

Table 5.6: Measures for specifications using HeadREST with new extensions

Measures Specifications

MazesMacros FeaturesService DummyAPI PetStoreAPI SimpleAPI

Lines of Code -13% -19% -14% -2% -17%
Prog. Length -14% -43% -18% -18% -28%
Vocabulary -11% 12% 14% -9% 2%
Volume -16% -42% -16% -19% -28%
Difficulty 34% -35% -8% 0% -23%
Effort 13% -62% -22% -19% -44%
Time Required to Program (sec.) 13% -62% -22% -19% -44%
Number of Delivered Bugs -16% -42% -16% -19% -28%
Max Nesting -40% -67% -34% -34% 0%
Total Chars -25% -20% -5% -1% -17%

Table 5.7: Percentage differences for the key measures from table 5.5 to table 5.6

Chapter 5. Evaluation 77

Validation Time Another important aspect we want to see is how the new extensions
affect HeadREST’s validation time. For this, we consider the same collection of specifi-
cations that we used before and we run some experiments to see how much time it takes to
validate them. We run the validator five times for each specification and use the average
of the times. This helps curb outliers caused by the calls to the SMT solver which is
responsible for great variations in the time taken to validate the same specification. To
test how the new extensions impact the validation time, we compare the old HeadREST
validator with the new one. First we check the time to validate for the specifications
with the old HeadREST validator. Next, we test the new HeadREST validator on the
same specifications without using new extensions (only small syntactical changes). Then,
we test the new HeadREST validator on the same specifications, but this time, they are
modified to make use of the new extensions. Figure 5.11 presents the time results obtained
for each specification in milliseconds.

Ma
zes
Ma
cro
s

Fe
atu
res
Se
rvi
ce

Du
mm

yA
PI

Pe
tSt
ore
AP
I

Sim
ple
AP
I

0

5000

10000

15000

20000

25000

30000

21
67

8

95
14

19
00

15
31

11
34

22
49

0

95
74

18
43

14
76

11
82

57
54 79

78

14
59

15
32

10
24

Ti
m
e
to

Va
lid

at
e
(m

s)

Old Validator on Specifications Without New Extensions
New Validator on Specifications Without New Extensions
New Validator on Specifications With New Extensions

Figure 5.11: Bar graph comparing the validation time for HeadREST specifications with
different versions of HeadREST’s validator

In fig. 5.11 we can see that the new HeadREST implementation has very similar times
when validating HeadREST specifications without using the new extensions. However,
when we use the new extensions we can see that there is a reduction in the validation time
of the MazesMacros and FeaturesService specifications. In the other three specifications,
the values are similar. This might seem strange as technically, with the addition of new

Chapter 5. Evaluation 78

primitives that do not affect the type checking, the times should maybe be greater. After
all, the new primitives are derived.

It is important to note that one of the new primitives, functions, greatly affects the
validation time because the body of a function is evaluated once even if the function is used
several times in the specification. Larger specifications (MazesMacros and FeaturesSer-
vice), unlike smaller ones, presented a lot more opportunities to use functions that were
explored in the rewriting process. Before, if we used the same expression twice, it would
have been evaluated twice as well. With the expression encapsulated in a function the
evaluation will happen once, reducing the time to validate.

There is also another primitive that has some impact on HeadREST’s validation pro-
cess. Recall how the interpolation extension works. We process a HeadREST expression
during the validation process. This can cause major delays in the validation process. The
reason behind this is that we are building potentially multiple new ASTs for HeadREST
expressions and also type checking them to guarantee that they are well formed before
transforming everything into existing syntax.

Conclusions concerning RQ4 and RQ5 From the quantitative analysis that was per-
formed on the HeadREST language we conclude that in terms complexity, the new exten-
sions have a positive impact. They reduce the overall complexity of specifications with
regards to the metrics considered.

The new HeadREST validator does not appear to take more time to validate specifi-
cations than the older counterpart. In fact, when using the new extensions, the time to
validate specifications in the new HeadREST validator is generally improved.

5.4 Case Studies

To evaluate the extension of HeadREST in order to support the specification of aspects
related with authentication and authorisation, we considered several RESTful APIs and
developed some case studies around them. In this sectionwe discuss the aspects considered
more relevant in these APIs and how the new extensions helped to specify their security
policies.

PetStore PetStore [34], as mentioned before, is a simple RESTful API of a service by
Swagger (https://swagger.io). This API is often used to exemplify the specification of
RESTful APIs. It has been specified using several OpenAPI versions. Currently, it is
documented with OpenAPI’s third version (OpenAPI 3.0).

It has three resources: store, pet and user. It also features authentication and autho-
risation policies. Authentication is done through an API key, while for authorisation the
API uses OAuth with two scopes. We have seen previously an example of how we can

https://swagger.io

Chapter 5. Evaluation 79

describe authentication and authorisation in the PetStore API in listing 4.5. We present a
couple of more examples in HeadREST with this API in listing 5.3.

1 /**
2 * This specification illustrates the use of the new security
3 * primitives added to the language. This specification is
4 * based on the PetStoreAPI.
5 * The PetStoreAPI has two authentication methods, ApiKeys
6 * and OAuth 2.0.
7 */
8 specification SecurePetStore
9
10 resource User
11
12 type UserData represents User = {
13 id: Integer,
14 username: String,
15 firstName: String,
16 lastName: String,
17 email: String,
18 password: String,
19 phone: String,
20 userStatus: Integer
21 }
22
23 type Scope = ["read"] | ["write"] |
24 ["read:pets"] | ["write:pets"]
25
26 predicate hasName(p: Principal , name: String)
27
28 predicate hasScope(p: Principal , s: Scope)
29
30 type ApiKey = {apiKey: String}
31
32 var authN: Principal
33
34 /*
35 * Get a user using an ApiKey as the form of authentication.
36 * This can only be done if the ApiKey is for the target user
37 */
38 {
39 request.template in {name: String} &&
40 request.header in ApiKey &&
41 authN == principalof(request.header.apiKey) &&
42 hasName(authN, request.template.name) &&
43 (exists user: User ::
44 user’.username == request.template.name
45)
46 }
47 get ‘/user/{name}‘
48 {
49 response.code == 200 &&
50 response in {body: UserData}
51 }
52
53 /*
54 * Get a user using OAuth 2.0 token as authentication
55 * and scopes as authorization
56 * In the PetStore API, OAuth blocks the user only
57 * when all scopes are denied. If we attempt to be selective
58 * with our scopes we see no changes to our permissions.

Chapter 5. Evaluation 80

59 */
60 {
61 request.template in {name: String} &&
62 request.header in {Authorization: String} &&
63 authN == principalof(request.header.Authorization) &&
64 hasScope(authN, "read") &&
65 (exists user: User ::
66 user’.username == request.template.name
67)
68 }
69 get ‘/user/{name}‘
70 {
71 response.code == 200 &&
72 response in {body: UserData}
73 }

Listing 5.3: Expressing aspects related with authentication and authorisation in the
PetStore API

This specifications presents two assertions that describe the same endpoint, get
‘/user/{name}‘. This endpoint returns information about a user with the name that is sent
in the URI template. Both assertions cover success cases. If there is a user with the given
name, then, the response is successful with the code 200 and the body contains information
about the user. The assertions differ in the authentication schema that is used.

In the first assertion we express a successful case of authentication using the API key
by specifying the principalof function with the argument request.header.apiKey is valid.
As we have seen in previous example, this is enough to express authentication using API
keys.

In the second assertion, we specify that the access can also be granted when OAuth is
used as an authentication schema. For the pre-condition to hold, the Authorization header
must exist and must identify a principal that has the scope read.

In listing 5.4 we present the same example as before. However, this time we join
both assertions into one. We use two predicates, entityAuthenticatedWithApiKey and
entityAuthenticatedWithOAuth to describe the cases where authentication is done through
the ApiKey and the case where OAuth is used for authorisation.
1 ...
2 predicate existsUserWithName(username: String) =
3 exists user: User ::
4 exists userData: UserData ::
5 userData repof user &&
6 userData.name == username
7
8 predicate entityAuthenticatedWithApiKey(username: String) =
9 request.header in ApiKey &&
10 authN == principalof(request.header.apiKey) &&
11 hasName(authN, username) &&
12 existsUserWithName(username)
13
14 predicate entityAuthenticatedWithOAuth(username: String) =
15 request.header in {Authorization: String} &&
16 authN == principalof(request.header.Authorization) &&
17 hasScope(authN, "read") &&

Chapter 5. Evaluation 81

18 existsUserWithName(username)
19
20 {
21 request.template in {name: String} &&
22 (
23 entityAuthenticatedWithApiKey(request.template.name) ||
24 entityAuthenticatedWithOAuth(request.template.name)
25)
26
27 }
28 get ‘/user/{name}‘
29 {
30 response.code == 200 &&
31 response in {body: UserData}
32 }

Listing 5.4: Joining two assertions in the PetStore API

This API does not have very complex authorisation policies. We can specify it fully
in HeadREST.

GitLab GitLab is a software repository manager akin to GitHub. It also comprises
services such as CI/CD, wikis and many others. It has a very large, and extensively doc-
umented, RESTful API [24] that we can interact with. For authentication, GitLab offers
various options: personal access tokens, OAuth tokens, project access tokens, imperson-
ation tokens. GitLab’s API also has many authorisation policies that are interesting to try
to model in HeadREST. We have already shown some example specifications for this API
in listing 4.7 and listing 4.8.

The examples we present here illustrate in a more complete manner HeadREST’s
expressive power in terms of authentication and authorisation. In these examples we make
use of uninterpreted functions and the Principal type in tandem with information given
by the API in order to express authorisation policies present in GitLab’s API. For these
examples, see listing 5.5 and listing 5.6.
1
2 resource User, Project, Commit, Wiki
3
4 type Id = Integer | String
5
6 type Link = {
7 href: String
8 }
9
10 type ErrorMessage = {
11 msg: String
12 }
13
14 /**
15 * Scope types
16 */
17 type Scopes = ["api"] | ["read_user"] | ["read_repository"] |

["write_repository"]
18
19 /**

Chapter 5. Evaluation 82

20 * General functions
21 */
22 predicate hasValidPasswordParameters(u: UserPostData) =
23 !(isdefined(u.reset_password) &&
24 isdefined(u.force_random_password)) ==>
25 isdefined(u.password)
26
27 predicate userIsAdmin(user: User) =
28 (exists adminData: AdminUserData ::
29 adminData repof user &&
30 adminData.is_admin
31)
32
33 /**
34 * Principal functions
35 */
36 predicate hasScope(p: Principal , s: Scopes)
37
38 predicate hasUserRole(p: Principal , r: UserRole)
39
40 function userFromPrincipal(p: Principal) : User
41
42 /**
43 * User types
44 */
45 type UserData represents User = {
46 id: Id,
47 name: String,
48 username: String,
49 state: ["active"] | ["blocked"],
50 avatar_url: Link,
51 web_url: Link
52
53 }
54
55 type UserPostData = {
56 email: String,
57 ?password: String,
58 ?reset_password: Boolean,
59 ?force_random_password: Boolean,
60 username: String,
61 name: String
62 }
63
64 /**
65 * User views, data that comes in the response body
66 */
67 type AdminUserData represents User = UserData & {
68 is_admin: Boolean,
69 created_at: String,
70 bio: String,
71 location: String,
72 skype: String,
73 linkedin: String,
74 twitter: String,
75 website_url: Link,
76 organization: String,
77 job_title: String,
78 last_sign_in_at: String,
79 confirmed_at: String,
80 last_activity_on: String,

Chapter 5. Evaluation 83

81 can_create_group: Boolean,
82 can_create_project: Boolean,
83 current_sign_in_at: String,
84 identities: {provider: String, extern_uid: Id}[],
85 private_profile: Boolean
86 }
87
88 /**
89 * Variables
90 */
91 var impersonate: User
92
93 var user: User
94
95 var authN: Principal
96
97 /**
98 * Administrator can impersonate a user that is not an
99 * administrator. Therefore , it should not be allowed
100 * for the administrator impersonating a regular user
101 * to create another user.
102 */
103 {
104 // the sudo query enables admins to impersonate users, it is

an id
105 request.template in {sudo: Id} &&
106 request in {body: UserPostData} &&
107 request.header in {Private-Token: String} &&
108 authN == principalof(request.header.Private-Token) &&
109 hasValidPasswordParameters(request.body) &&
110 user == userFromPrincipal(authN) &&
111 // to use sudo, user must be an administrator
112 userIsAdmin(user) &&
113 // the user we want to impersonate must exist
114 (exists adminUserData: AdminUserData ::
115 adminUserData repof impersonate &&
116 adminUserData.id == request.template.sudo
117)
118 }
119 post ‘/users{?sudo}‘
120 {
121 // impersonated user is an admin and therefore can create users
122 (response.code == 201 ==> userIsAdmin(user)) ||
123 // impersonated user is not an admin and thus it cannot create

users
124 (response.code == 403 ==> !userIsAdmin(user) && response in

{body: ErrorMessage})
125 }

Listing 5.5: Example of an administrator impersonating another user in GitLab

In this example we are modelling a feature that allows administrators to impersonate
another user in the service. The operation we are specifying, post ‘/users/{?sudo}‘,
creates another user. Only administrators can create users. In the pre-condition we
start by stating that the token that is sent in the request header for authentication is
valid. To create a new user we need to provide them with some password parameters,
the hasValidPasswordParameters predicate serves to specify that the parameters are valid.
Then, we specify that there is a user that is associated with the token. For this we

Chapter 5. Evaluation 84

use the principalHasUserId predicate. Since only administrators can create users, we
need to specify that the principal that is currently requesting this operation is in fact an
administrator. We state this with the hasUserRole uninterpreted predicate. Finally, we
specify that the user the administrator wants to impersonates must exist.

In the post-condition there are two possible results. We could have split this into two
assertions, but for simplicities sake we specify the possibilities of the operation in one
assertion. If the response code is 201 we specify that the user must be an administrator.
We specify that a user is an administrator with the userIsAdmin predicate. Notice that we
are using the variable user, which refers to the user that we are impersonating. Should
the response code return 403, we specify that the user is not an administrator, and an error
message is sent.
1 ...
2
3 type ProjectRole = [50] | [40] | [30] | [20] | [10] | [0]
4
5 /**
6 * Project related types
7 */
8 type ProjectData represents Project = {
9 id: Id,
10 visibility: ["public"] | ["private"],
11 description: String,
12 name: String,
13 name_with_namespace: String,
14 path: String,
15 path_with_namespace: String,
16 tag_list: String[],
17 ssh_url_to_repo: Link,
18 http_url_to_repo: Link,
19 web_url: Link,
20 readme_url: Link,
21 avatar_url: Link,
22 star_count: Integer,
23 forks_count: Integer,
24 last_activity_at: String,
25 namespace: {
26 id: Integer,
27 name: String,
28 path: String,
29 kind: String,
30 full_path: String,
31 parent_id: Integer,
32 avatar_url: Link,
33 web_url: Link
34 },
35 _links: {
36 self: Link,
37 members: Link,
38 repo_branches: Link,
39 issues: Link,
40 merge_requests: Link,
41 events: Link,
42 labels: Link
43 }
44 }

Chapter 5. Evaluation 85

45
46 type MemberData represents User = {
47 id: Id,
48 username: String,
49 name: String,
50 state: ["active"],
51 avatar_url: Link,
52 web_url: Link,
53 expires_at: String,
54 access_level: ProjectRole ,
55 group_saml_identity: {
56 extern_id: Id,
57 provider: String,
58 small_provider_id: Id
59 }
60 }
61
62 var project: Project
63
64 /**
65 * Get information about a project with a given id.
66 * The project must be accessible to the user in question.
67 * In this assertion the project visibility is "private".
68 * Therefore , either the user is an administrator , or
69 * the user belongs to the members of the project.
70 */
71 {
72 request.template in {id: Id} &&
73 request.header in {Private-Token: String} &&
74 authN == principalof(request.header.Private-Token) &&
75 project ’.id == request.template.id &&
76 project ’.visibility == "private" &&
77 user == userFromPrincipal(authN) &&
78 userIsAdmin(user) || (
79 hasScope(authN, "api") &&
80 (exists mData: MemberData ::
81 $’{project ’._links.members}/all/{mData.id}’ uriof user
82)
83)
84 }
85 get ‘/projects/{id}‘
86 {
87 response.code == 200 &&
88 response in {body: ProjectData} &&
89 project ’.id == response.body.id
90 }

Listing 5.6: Example of retrieving information from a private project in GitLab

In this example we are specifying the endpoint, get ‘/projects/{id}‘. This endpoint
returns the representation of the project with the id given in the URI template. In the pre-
condition we state that the personal access token sent in the request is valid and belongs
to a user in the service. We also specify that the visibility of this project is "private",
reflecting the fact that only members that are inserted in the project, and administrators,
can view it. In this way, this assertion only covers the case in which the user that makes
this operation either has the administrative role of administrator or belongs to the project in
question. Personal access tokens can also carry scopes. If the user is not an administrator

Chapter 5. Evaluation 86

we specify that the personal access token that authenticates the user has the scope "api"

which allows full access to the API.
We are specifying a successful case. Therefore, in the post-condition the response

code is 200 and in the response body we receive the information about the project we have
requested.

These are only some of themany examples that can be found in GitLab’s API. However,
they go to show that the HeadREST is now able to specify many authentication schemes
and authorisation policies present in real-world APIs.

In table 5.8, we summarise several components for the case studies’ specifications.
We see the number of endpoints and assertions (an endpoint can be described by many
assertions), number of types that were used, and the number of user-defined uninterpreted
functions. We also see what types of authentication and authorisation were specified in
each specification.

For the PetStore API, we covered a couple of endpoints since it is a very simple
API. The endpoints that use authentication and authorisation in the API follow the same
schemes, which are the Api Key and OAuth. Therefore, there is not a lot of variety in
terms of expressing it’s security policies.

In the GitLab API we specify a couple of endpoints that we found that were interesting
to model with the new HeadREST extensions for authentication and authorisation through
interaction with the API. To authenticate and authorise with the API a personal access
token was used. Despite being larger than the PetStore API, the number of user-defined
uninterpreted functions did not vary too much.

Components Specifications

PetStore API GitLab API

Authentication Api Key Personal Access Token
(scopes: api, read_user, read_repository,
write_repository)

Authorisation OAuth 2.0 (scopes: read, write,
read:pets, write:pets)

Personal Access Token
(scopes: api, read_user, read_repository,
write_repository)

#Endpoints 7 4
#Assertions 19 5
#Types 10 13
#Uninterpreted functions 2 3

Table 5.8: Summary of the case studies

Chapter 6

Impact in HeadREST’s Ecosystem

In this chapter we present the different tools that comprise the HeadREST’s ecosystem
and discuss how we foresee the potential impact of the new developments in HeadREST
in these tools.

6.1 HeadREST-RTester

HeadREST was originally developed in the context of a work aimed at testing RESTful
APIs [17]. This work put forward a first version of a tool, RTester, that automatically
tests the conformance of an implementation of a RESTful service against a HeadREST
specification of its API. Roughly, this is achieved by, repeatedly, (1) selecting an assertion
for which it is possible to generate a request that meets its pre-condition, (2) generating
and sending the request and (3) validating that the obtained response and the resulting
system’s state meet the post-condition of that assertion. Since the API might not provide
direct access to the resources that are referred in assertions, the tool has to maintain a
view of the state of system as tests are constructed. Concretely, the tool maintains a set of
existing resources and updates it whenever a request is made. As output, the tool provides
(1) a report that contains information regarding the test cases and (2) the generated tests
(executed as the generation proceeds) in the form of a suit of JUnit tests, which can be
run independently. The generation process, namely the selection of the next assertion, is
guided by a score based algorithm that attempts to increase assertion coverage.

A simplified overview of the tool’s behaviour is presented in fig. 6.1. A top level view
of the key components of RTester the interactions between them is shown in fig. 6.2.

The HeadREST-RTester tool can be used to test whether the documentation provided
for a service, in the form of a HeadREST specification, is correct or to test whether the
intended behaviour of the service is correctly implemented. This is possible because
HeadREST specifications are quite flexible. We can fully specify the behaviour of an
endpoints or only specify some properties that we want to make publicly available to
developers. For testing the correctness of the implementation of the service, it is useful

87

Chapter 6. Impact in HeadREST’s Ecosystem 88

HeadREST
Specification

RTester JUnit
Tests

Test
Report

Figure 6.1: HeadREST-RTester simplified overview

parse

evaluate
post-condition

refresh

report

RTesterMain

generate

Parser

find

TestCaseGeneratorfind AssertionEvaluator

ResourceRepository

Reporter

Figure 6.2: HeadREST-RTester top level runtime view

to fully specify the endpoints as much as possible. By doing so, we are specifying with
greater detail how each endpoint call affects the state of the service. Consequently, we
are more likely to find errors with the implementation. This leads to a more efficient
development as errors are caught earlier.

Impact of the extensions The extension of HeadREST in order to support the speci-
fication of security policies makes possible the extension of the HeadREST-RTester tool
so that the conformance between the specified policies and the implementation also gets
tested.

With the addition of the new extensions comes a new set of challenges for this tool.
The main challenge is how to test the authentication schemes and authorisation policies
that are present in RESTful APIs.

To test an operation on an endpoint, HeadREST-RTester creates a valid request by
looking at the requirements for said operation. When we are testing an endpoint that has
authentication and authorisation, we need to be able to create a valid request. For this we
would require information about a principal from the service. For example, if we want to
test a failed authorisation case (i.e. a lack of privileges) that is described in the HeadREST
specification, we would need a principal that does not have the necessary privileges.
Effectively, to test the service in terms of authentication and authorisation, we would need

Chapter 6. Impact in HeadREST’s Ecosystem 89

valid information regarding multiple principals with different sets of privileges to test
all the different authorisation and authentication cases we might have in the HeadREST
specification. This is not always possible as we might not have full access to the service
of an API.

Syntactically, the HeadREST-RTester tool does not face any major difficulties since
most of the new extensions are derived expressions.

6.2 HeadREST-Codegen

HeadREST’s ecosystemwas later equippedwith a tool, HeadREST-Codegen, that supports
the creation of client and server stubs from specifications [55]. This tool works by leverag-
ing the already present code generation tools that are part of the OpenAPI ecosystem, and
extending them to accommodate HeadREST’s expressiveness. To this end, HeadREST
specifications are converted into OpenAPI specifications. The OpenAPI specification is
extended with extra properties that encode HeadREST properties into the OpenAPI spec-
ification as natively as possible. The tool that is used as a base for HeadREST-Codegen
is the OpenAPI tool Swagger Codegen. An overview of the HeadREST-Codegen tool can
be seen in fig. 6.3.

Figure 6.3: High level view for HeadREST-Codegen

Impact of the extensions Like with the HeadREST-RTester, the main issue that is
introduced with the addition of the new extensions to HeadREST is related with expressing
authentication and authorisation. HeadREST-Codegen is able to encode HeadREST’s
expressions and refined types (almost all, see [55] for limitations) into an OpenAPI
specification. We can encode the new HeadREST extensions by taking advantage of
OpenAPI’s custom fields.

The challenge lies in generating code based on these extensions. Since HeadREST-
Codegen generates Java code, it could be possible to use existing libraries in order to help

Chapter 6. Impact in HeadREST’s Ecosystem 90

generate code to handle authentication and authorisation. For the uninterpreted functions,
we could generate stubs that developers would later be able to complete according to their
services’ implementation.

For example, the OpenAPI specification has a generator tool (https://openapi-genera
tor.tech/) that is able to create stubs to handle the security components in OpenAPI spec-
ifications. This tool looks at the security component and sees the types of authentication
or authorisation that are declared. It then uses this information to generate the appropriate
code for each security type.

In HeadREST, due to the principalof function’s nature, it is not easy to see which
authentication and authorisation schemes are being used in HeadREST specifications.
However, with types (i.e. type ApiKey, type OAuth, etc.), we could side-step this is-
sue and give HeadREST-Codegen enough information to know which authorisation and
authentication schemes are being specified and, generate the corresponding code for each.

6.3 SafeRestScript

The main goal of this work [9] was to develop an approach to static type checking of
programs that enables validating not only calls to local functions or to functions provided
by libraries but also calls to RESTful services through their published APIs. This was
achieved through the development of a new programming language, SafeRestScript.
SafeRestScript is intended to be a type safe JavaScript with native support for REST calls.
It was designed to have a syntax as close as possible to JavaScript in order to be used by
JavaScript developers. The language itself compiles to JavaScript. SafeRestScript adopts
HeadREST’s type system as it is quite powerful and the validator uses the information
provided in imported HeadREST specifications to validate REST calls. An overview of
the tool is shown in fig. 6.4.

Parser Validator Translator JavaScript
code

SafeRestScript
program

Boogie
Verifier

errors
boogie
code

Z3 SMT
solver

sat?
smt code

HeadREST
Validator

file path
AST

smt code
sat?

HeadREST
specs

.js.srs

refers

.hr

AST AST

Figure 6.4: SafeRestScript compilation time work flows

Unlike the other tools, SafeRestScript does not handle specifications with resources.
Conditions that depend on the state of the system (such as those built with operations
uriof and repof) are not relevant while programming consumer code as they cannot be

https://openapi-generator.tech/
https://openapi-generator.tech/

Chapter 6. Impact in HeadREST’s Ecosystem 91

controlled by consumers individually. In this way, if we already have a full specification
with resources and we want to use SafeRestScript, it must be stripped of resources.
Currently, we will have to do it manually.

Impact of the extensions Once again, the main challenge faced by SafeRestScript
in lieu of the new HeadREST extensions is authentication and authorisation. Since
SafeRestScript does not know the state of the service at compile time, we can only
verify the structure of the data that is sent. Therefore, we will not be able to fully utilise
HeadREST’s specification expressiveness in terms of authorisation and authentication.

With this in mind, a challenge is knowing which authentication and authorisation
policies we can keep (the ones that rely on data exchanges and not in the service’s state)
in the HeadREST specification in order to be used by SafeRestScript.

Syntactically, the newextensions, with the exception of functions, are already translated
into HeadREST’s core syntax. SafeRestScript already implements user-defined functions,
therefore converting HeadREST functions into SafeRestScript functions does not appear
to have any apparent issues.

6.4 Future Work

HeadREST is a specification language for RESTful APIs that was created to surpass the
limitations present in other IDLs. Despite all the development endeavors on the language
there is still work to be done. In this section we discuss future work for the HeadREST
language.

Resourceless Specifications SafeRestScript is a language that makes use of HeadREST
specifications in order to perform static analysis of REST calls. As we have discussed
before, HeadREST resource types and the resource related operations (uriof, repof) cannot
be translated to SafeRestScript expressions. For this reason, HeadREST specifications
must be stripped of resources and expressions containing resources, before being used.
This is a tedious task as users must make all modifications manually.

It would be useful to automatise this process. For this, we could traverse a HeadREST
specification and with a set of rules, decide what to delete from the specification. For ex-
ample, removing any expressions that might contain resources or resource representations.
This is no simple task in part due to HeadREST’s semantic expressivity.

By removing resources, we are also hampering HeadREST’s expressiveness in terms
of authorisation policies. Therefore, another issue that presents itself is knowing which
expressions to remove in regards to authorisation and authentication in the specification.

Chapter 6. Impact in HeadREST’s Ecosystem 92

Consistency in Specifications An issue related with assertions in HeadREST is the
consistency of specifications in the sense that endpoints do not conflict with each other.
For example, consider the assertions of the form {a} . . . {c} and {b} . . . {!c}. If we
specify a and b such that a ∧ b is satisfiable, then we have an inconsistent specification.
Essentially, this means that potentially, we have two (or more) assertions with the same
input but different outputs.

One way we could address this problem is by making use of the SMT solver. The SMT
solver can find these types of conflicts in HeadREST specifications. However, depending
on the number of conflicting assertions, it could be a very slow process.

Chapter 7

Conclusion

RESTful services are currently the most used on the web. RESTful APIs are created
in order to interact with these services. Documentation is essential to bring out the
maximum potential from RESTful APIs. Several IDLs exist for the purpose of aiding
developers create and, at the same time, document RESTful APIs. Many of these IDLs
have limitations in terms of specifying RESTful APIs. To address these limitations the
HeadREST specification language was created.

HeadREST is different fromother IDLs in its expressiveness. The usage of assertions to
specify the different cases on endpoint calls gives HeadREST a great amount of flexibility.
Also, HeadREST’s powerful type system with refinement types and a type test predicate
that sees whether a value belongs to a type, allow HeadREST to specify in great detail
the data exchanges in RESTful services. However, like with other IDL, HeadREST is
not without its own limitations. A key component of web services is security, namely,
authentication and authorisation. While most IDLs have some way of specifying security
properties of RESTful APIs, even if in limited ways, HeadREST does not.

In this work, we delved into HeadREST with the goal of identifying and addressing
some of its issues. This work can be divided in two parts. On one, we study and
present solutions regardingHeadREST’s usability. On the other, we augment HeadREST’s
expressiveness in order to be able to specify authentication schemes and authorisation
policies that are present in RESTful APIs.

Regarding HeadREST’s usability, several extensions were added to the language.
These extensions, with the exception of functions, were built upon already existing syntax.
The extensions added to the language are: interpolation, iterators, an extract operator and
user defined functions. Each of these aims to address a usability issue identified in Head-
REST. To see whether the extensions accomplished their goal of improving HeadREST’s
usability, we conducted a quantitative and a qualitative analysis.

For the quantitative analysis we utilised Halstead complexity measures and some
custom measures of our own (number of lines of code, characters and nesting). We also
evaluated the impact the extensions have in terms of validation time. From this analysis

93

Chapter 7. Conclusion 94

we concluded that in general, the new extensions reduce the complexity of HeadREST
specifications with regards to the considered metrics. For the time to validate, we see that
functions have a positive influence in the time taken to validate HeadREST specifications.
This is due to the fact that the body of a function only needs to be checked once. On
the other hand, interpolation has a negative impact on the time to validate. The other
extensions do not appear to have a meaningful impact on the measure of time to validate.

The qualitative analysis was realised through a user study. This study consisted
of a questionnaire composed of ten questions. Five questions were about HeadREST
without extensions, while the other five featured the new extensions. The objective of this
questionnaire was to ascertain whether users considered that specifications were easier
to understand, write and get right. From the results of the questionnaire we saw that
users had a preference towards the new extensions. Despite this preference however, we
have not found any indication from the data that the new extensions improved the users’
correctness.

To give HeadREST the ability to specify authentication and authorisation, we added
three new elements to HeadREST. The first one is the Principal type. This type represents
an entity that can be authenticated. The second is an uninterpreted function, principalof.
This function helps us specify whether the authentication is successful or not. The third
one pertains to specifying authorisation policies in RESTful APIs. For this we give users
the ability to introduce their own uninterpreted functions. By combining the Principal
type with user defined uninterpreted functions we can specify many different authorisation
policies. To see these how these new elements increase HeadREST’s expressiveness in
terms of expressing authentication and authorisation, we conducted a few case studies.
These are based on specifying the security properties of RESTful APIs. From these case
studies, we see that we are now able to specify to express authentication and authorisation
properties in HeadREST.

On a more personal note, this work was an interesting challenge and a look into the
REST architectural style and its challenges. Despite all the work surrounding REST’s
ecosystem, there is still a lot more work to be done. Hopefully, this work has contributed
to the overall understanding of REST and improved the HeadREST language somewhat.

Appendix A

Z3 SMT-LIB Axiomatization in
HeadREST

1 (set-info :smt-lib-version 2.0)
2
3 (set-option :auto_config false)
4 (set-option :smt.mbqi false)
5
6 (set-option :smt.string_solver z3str3)
7
8 (set-option :model_evaluator.completion false)
9 (set-option :model.v1 true)
10 (set-option :smt.phase_selection 0)
11 (set-option :smt.restart_strategy 0)
12 (set-option :smt.restart_factor 1.5)
13 (set-option :nnf.sk_hack true)
14 (set-option :smt.qi.eager_threshold 100.0)
15 (set-option :smt.arith.random_initial_value true)
16 (set-option :smt.case_split 3)
17 (set-option :smt.delay_units true)
18 (set-option :smt.delay_units_threshold 16)
19 (set-option :type_check true)
20 (set-option :smt.bv.reflect true)
21 (set-option :timeout 2000)
22 ;(set-option :smt.timeout 2000)
23
24 ; -------------------------------
25 ; Values
26 ; -------------------------------
27
28 (declare-datatypes () ((U_VarList
29 EmptyList
30 (U_Vars (headVar String) (tailVars U_VarList))
31)))
32
33 (declare-datatypes () ((U_Fragment
34 (U_Literal (of_U_Literal String))
35 (U_Expression (of_U_Expression U_VarList) (optional Bool))
36)))
37
38 (declare-datatypes () ((UriTemplate
39 EmptyUriTemplate
40 (U_Fragments (headFragment U_Fragment) (tailFragments

UriTemplate))

95

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 96

41)))
42
43 (declare-datatypes () ((General
44 (G_Boolean (of_G_Boolean Bool))
45 (G_Integer (of_G_Integer Int))
46 (G_String (of_G_String String))
47 (G_Regexp (of_G_Regexp (RegEx String)))
48 (G_UriTemplate (of_G_UriTemplate UriTemplate))
49 G_Null
50)))
51
52 (declare-sort SVMap)
53 (declare-sort IVMap)
54
55 (declare-datatypes () ((Value
56 (G (out_G General))
57 (O (out_O SVMap))
58 (A (out_A IVMap) (length Int))
59 (R (id Int) (type String))
60 (P) ; Principal primitive type, simply P
61)))
62
63 (declare-datatypes () ((ValueOption
64 NoValue
65 (SomeValue (of_SomeValue Value))
66)))
67
68 (declare-fun Good_A (Value) Bool)
69 (assert (forall ((v Value))
70 (! (iff
71 (Good_A v)
72 (is-A v)
73) :pattern(Good_A v))
74))
75
76 (declare-fun Good_O (Value) Bool)
77 (assert (forall ((v Value))
78 (! (iff
79 (Good_O v)
80 (is-O v)
81) :pattern(Good_O v))
82))
83
84 (declare-fun Good_R (Value) Bool)
85 (assert (forall ((v Value))
86 (! (iff
87 (Good_R v)
88 (is-R v)
89) :pattern(Good_R v))
90))
91
92 (declare-fun Good_P (Value) Bool)
93 (assert (forall ((v Value))
94 (! (iff
95 (Good_P v)
96 (is-P v)
97) :pattern(Good_P v))
98))
99
100
101 ; ----------------------------------

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 97

102 ; Operations...?
103 ; ----------------------------------
104
105 (declare-const v_tt Value)
106 (declare-const v_ff Value)
107 (declare-const v_null Value)
108
109 (assert (= v_tt (G (G_Boolean true))))
110 (assert (= v_ff (G (G_Boolean false))))
111 (assert (= v_null (G G_Null)))
112
113 (declare-fun In_Boolean (Value) Bool)
114 (assert (forall ((v Value))
115 (! (=
116 (In_Boolean v)
117 (and (is-G v) (is-G_Boolean (out_G v)))
118) :pattern(In_Boolean v))
119))
120
121 (declare-fun In_Integer (Value) Bool)
122 (assert (forall ((v Value))
123 (! (=
124 (In_Integer v)
125 (and (is-G v) (is-G_Integer (out_G v)))
126) :pattern(In_Integer v))
127))
128
129 (declare-fun In_String (Value) Bool)
130 (assert (forall ((v Value))
131 (! (=
132 (In_String v)
133 (and (is-G v) (is-G_String (out_G v)))
134) :pattern(In_String v))
135))
136
137 (declare-fun In_Regexp (Value) Bool)
138 (assert (forall ((v Value))
139 (! (=
140 (In_Regexp v)
141 (and (is-G v) (is-G_Regexp (out_G v)))
142) :pattern(In_Regexp v))
143))
144
145 (declare-fun In_UriTemplate (Value) Bool)
146 (assert (forall ((v Value))
147 (! (=
148 (In_UriTemplate v)
149 (and (is-G v) (is-G_UriTemplate (out_G v)))
150) :pattern(In_UriTemplate v))
151))
152
153 (declare-fun O_Equiv (Value Value) Value)
154 (declare-fun O_Implies (Value Value) Value)
155 (declare-fun O_Sum (Value Value) Value)
156 (declare-fun O_Sub (Value Value) Value)
157 (declare-fun O_Mult (Value Value) Value)
158 (declare-fun O_IntDiv (Value Value) Value)
159 (declare-fun O_Rem (Value Value) Value)
160 (declare-fun O_EQ (Value Value) Value)
161 (declare-fun O_NE (Value Value) Value)

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 98

162 (declare-fun O_Not (Value) Value)
163 (declare-fun O_Minus (Value) Value)
164 (declare-fun O_And (Value Value) Value)
165 (declare-fun O_Or (Value Value) Value)
166 (declare-fun O_GE (Value Value) Value)
167 (declare-fun O_GT (Value Value) Value)
168 (declare-fun O_LT (Value Value) Value)
169 (declare-fun O_LE (Value Value) Value)
170 (declare-fun O_++ (Value Value) Value)
171
172 (assert (forall ((v1 Value) (v2 Value))
173 (! (=
174 (O_Equiv v1 v2)
175 (ite (= v1 v2) v_tt v_ff)
176) :pattern(O_Equiv v1 v2))
177))
178
179 (assert (forall ((v1 Value) (v2 Value))
180 (! (=
181 (O_Implies v1 v2)
182 (O_Or (O_Not v1) v2)
183) :pattern(O_Implies v1 v2))
184))
185
186 (assert (forall ((v1 Value) (v2 Value))
187 (! (=
188 (O_Sum v1 v2)
189 (G (G_Integer (+ (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))
190) :pattern(O_Sum v1 v2))
191))
192
193 (assert (forall ((v1 Value) (v2 Value))
194 (! (=
195 (O_Sub v1 v2)
196 (G (G_Integer (- (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))
197) :pattern(O_Sub v1 v2))
198))
199
200 (assert (forall ((v1 Value) (v2 Value))
201 (! (=
202 (O_Mult v1 v2)
203 (G (G_Integer (* (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))
204) :pattern(O_Mult v1 v2))
205))
206
207 (assert (forall ((v1 Value) (v2 Value))
208 (! (=
209 (O_IntDiv v1 v2)
210 (G (G_Integer (div (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))
211) :pattern(O_IntDiv v1 v2))
212))
213
214 (assert (forall ((v1 Value) (v2 Value))
215 (! (=
216 (O_Rem v1 v2)
217 (G (G_Integer (rem (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 99

218) :pattern(O_Rem v1 v2))
219))
220
221 (assert (forall ((v1 Value) (v2 Value))
222 (! (=
223 (O_EQ v1 v2)
224 (ite (= v1 v2) v_tt v_ff)
225) :pattern(O_EQ v1 v2))
226))
227
228 (assert (forall ((v1 Value) (v2 Value))
229 (! (=
230 (O_NE v1 v2)
231 (ite (= v1 v2) v_ff v_tt)
232) :pattern(O_NE v1 v2))
233))
234
235 (assert (forall ((v Value))
236 (! (=
237 (O_Not v)
238 (ite (not (= v v_tt)) v_tt v_ff)
239) :pattern(O_Not v))
240))
241
242 (assert (forall ((v Value))
243 (! (=
244 (O_Minus v)
245 (G (G_Integer (- (of_G_Integer (out_G v)))))
246) :pattern(O_Minus v))
247))
248
249 (assert (forall ((v1 Value) (v2 Value))
250 (! (=
251 (O_And v1 v2)
252 (ite (and (= v1 v_tt) (= v2 v_tt)) v_tt v_ff)
253) :pattern(O_And v1 v2))
254))
255
256 (assert (forall ((v1 Value) (v2 Value))
257 (! (=
258 (O_Or v1 v2)
259 (ite (or (= v1 v_tt) (= v2 v_tt)) v_tt v_ff)
260) :pattern(O_Or v1 v2))
261))
262
263 (assert (forall ((v1 Value) (v2 Value))
264 (! (=
265 (O_GE v1 v2)
266 (ite (>= (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
267) :pattern(O_GE v1 v2))
268))
269
270 (assert (forall ((v1 Value) (v2 Value))
271 (! (=
272 (O_GT v1 v2)
273 (ite (> (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
274) :pattern(O_GT v1 v2))
275))

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 100

276
277 (assert (forall ((v1 Value) (v2 Value))
278 (! (=
279 (O_LT v1 v2)
280 (ite (< (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
281) :pattern(O_LT v1 v2))
282))
283
284 (assert (forall ((v1 Value) (v2 Value))
285 (! (=
286 (O_LE v1 v2)
287 (ite (<= (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
288) :pattern(O_LE v1 v2))
289))
290
291 (assert (forall ((v1 Value) (v2 Value))
292 (! (=
293 (O_++ v1 v2)
294 (G (G_String (str.++ (of_G_String (out_G v1)) (of_G_String

(out_G v2)))))
295) :pattern(O_++ v1 v2))
296))
297
298 ; ----------------------------------
299 ; Primitive operators
300 ; ----------------------------------
301
302 (declare-fun v_size (Value) Value)
303 (declare-fun v_matches (Value Value) Value)
304 (declare-fun v_old (Value) Value)
305
306 ;; Link v_size to str.len
307 (assert (forall ((v Value))
308 (! (=
309 (v_size v)
310 (G (G_Integer (str.len (of_G_String (out_G v)))))
311) :pattern((v_size v)))
312))
313
314 (assert (forall ((v1 Value) (v2 Value))
315 (! (=
316 (v_matches v1 v2)
317 (G (G_Boolean (str.in.re (of_G_String (out_G v2))

(of_G_Regexp (out_G v1)))))
318) :pattern((v_matches v1 v2)))
319))
320
321 ;; old internal function is only used on repof and uriof

operations ,
322 ;; so it is only necessary to define for the boolean case
323 (assert (forall ((v Value))
324 (! (=>
325 (In_Boolean v)
326 (In_Boolean (v_old v))
327) :pattern((v_old v)))
328))
329
330 ; ---------------------------------
331 ; Contains

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 101

332 ; ---------------------------------
333
334 (declare-fun v_contains (Value Value) Value)
335
336 (assert (forall ((v1 Value) (v2 Value))
337 (! (=
338 (v_contains v1 v2)
339 (G (G_Boolean (str.contains (of_G_String (out_G v1))

(of_G_String (out_G v2)))))
340) :pattern((v_contains v1 v2)))
341))
342
343 ; ---------------------------------
344 ; Objects
345 ; ---------------------------------
346
347 ;; Entity related sorts/functions
348 (define-sort SVMapArray () (Array String ValueOption))
349 (declare-fun alphas (SVMap) SVMapArray)
350 (declare-fun betas (SVMapArray) SVMap)
351
352 (declare-fun v_dot (Value String) Value)
353 (declare-fun v_has_field (Value String) Bool)
354
355 ;; SVMap and the arrays in SVMapArray are isomorphic
356 (assert (forall ((am SVMapArray))
357 (! (= (alphas (betas am)) am)
358 :pattern(alphas (betas am)))
359))
360 (assert (forall ((svm SVMap))
361 (! (= (betas (alphas svm)) svm)
362 :pattern(betas (alphas svm)))
363))
364
365 ;; why necessary?
366 ;(assert (forall ((svm SVMapArray))
367 ; (= (default svm) NoValue)
368 ;))
369
370 (assert (forall ((v Value) (l String))
371 (! (iff
372 (v_has_field v l)
373 (not (= (select (alphas (out_O v)) l) NoValue))
374) :pattern(v_has_field v l))
375))
376
377 (assert (forall ((v Value) (l String))
378 (! (=
379 (v_dot v l)
380 (of_SomeValue (select (alphas (out_O v)) l))
381) :pattern(v_dot v l))
382))
383
384 ; ---------------------------------
385 ; Arrays
386 ; ---------------------------------
387
388 ;; Array related sorts/functions
389 (define-sort IVMapArray () (Array Int ValueOption))
390 (declare-fun alphai (IVMap) IVMapArray)

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 102

391 (declare-fun betai (IVMapArray) IVMap)
392
393 (declare-fun v_nth (Value Value) Value)
394 (declare-fun v_array_has_value (Value Int) Bool)
395 (declare-fun v_length (Value) Value)
396
397 ;; IVMap and the arrays in IVMapArray are isomorphic
398 (assert (forall ((am IVMapArray))
399 (! (= (alphai (betai am)) am)
400 :pattern(alphai (betai am)))
401))
402 (assert (forall ((ivm IVMap))
403 (! (= (betai (alphai ivm)) ivm)
404 :pattern(betai (alphai ivm)))
405))
406
407 ;; why necessary?
408 ;(assert (forall ((ivm IVMapArray))
409 ; (= (default ivm) NoValue)
410 ;))
411
412 (assert (forall ((v Value) (i Int))
413 (! (iff
414 (v_array_has_value v i)
415 (not (= (select (alphai (out_A v)) i) NoValue))
416) :pattern(v_array_has_value v i))
417))
418
419 (assert (forall ((v Value) (i Int))
420 (! (iff
421 (v_array_has_value v i)
422 (and (Good_A v) (>= i 0) (< i (length v)))
423) :pattern(v_array_has_value v i))
424))
425
426 (assert (forall ((v Value) (i Value))
427 (! (=
428 (v_nth v i)
429 (of_SomeValue (select (alphai (out_A v)) (of_G_Integer

(out_G i))))
430) :pattern(v_nth v i))
431))
432
433 (assert (forall ((v Value))
434 (! (=>
435 (Good_A v)
436 (=
437 (v_length v)
438 (G (G_Integer (length v)))
439)
440) :pattern(v_length v))
441))
442
443 ; ---------------------------------
444 ; Resources
445 ; ---------------------------------
446
447 (declare-fun r_repof (Value Value) Value)
448 (declare-fun r_uriof (Value Value) Value)
449

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 103

450 (declare-fun is_resource_of (Value String) Bool)
451 (assert (forall ((v Value) (s String))
452 (! (=
453 (is_resource_of v s)
454 (= (type v) s)
455) :pattern(is_resource_of v s))
456))
457
458 ; ---------------------------------
459 ; Expand of UriTemplate
460 ; ---------------------------------
461
462 (declare-fun v_expand (Value Value) Value)
463 (declare-fun expand (UriTemplate Value) String)
464 (declare-fun expandFragment (U_Fragment Value) String)
465 (declare-fun expandVars (U_VarList Value) String)
466 (declare-fun expandOptionalVars (U_VarList Value Bool) String)
467
468 (declare-fun toString (Value) String)
469 (declare-fun intToString (Int) String)
470 (declare-fun intToStringAux (Int) String)
471 (declare-fun arrayToString (Value Int) String)
472
473 (assert (forall ((v1 Value) (v2 Value))
474 (! (=
475 (v_expand v1 v2)
476 (G (G_String (expand (of_G_UriTemplate (out_G v1)) v2)))
477) :pattern(v_expand v1 v2))
478))
479
480 (assert (forall ((ut UriTemplate) (v Value))
481 (! (=
482 (expand ut v)
483 (ite (is-EmptyUriTemplate ut)
484 ""
485 (str.++ (expandFragment (headFragment ut) v) (expand

(tailFragments ut) v))
486)
487) :pattern(expand ut v))
488))
489
490 (assert (forall ((uf U_Fragment) (v Value))
491 (! (=
492 (expandFragment uf v)
493 (ite (is-U_Literal uf)
494 (of_U_Literal uf)
495 (ite (optional uf)
496 (str.++ "?" (expandOptionalVars (of_U_Expression uf) v

false))
497 (expandVars (of_U_Expression uf) v)
498)
499)
500) :pattern(expandFragment uf v))
501))
502
503 (assert (forall ((uvl U_VarList) (v Value))
504 (! (=
505 (expandVars uvl v)
506 (ite (is-EmptyList uvl)
507 ""
508 (str.++

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 104

509 (ite (v_has_field v (headVar uvl))
510 (toString (v_dot v (headVar uvl)))
511 ""
512)
513 (expandVars (tailVars uvl) v)
514)
515)
516) :pattern(expandVars uvl v))
517))
518
519 (assert (forall ((uvl U_VarList) (v Value) (b Bool))
520 (! (=
521 (expandOptionalVars uvl v b)
522 (ite (is-EmptyList uvl)
523 ""
524 (ite (v_has_field v (headVar uvl))
525 (str.++ (ite b "&" "") (headVar uvl) "=" (toString

(v_dot v (headVar uvl))) (expandOptionalVars
(tailVars uvl) v true))

526 (expandOptionalVars (tailVars uvl) v b)
527)
528)
529) :pattern(expandOptionalVars uvl v b))
530))
531
532 (assert (forall ((v Value))
533 (! (=>
534 (In_Boolean v)
535 (=
536 (toString v)
537 (ite (of_G_Boolean (out_G v)) "true" "false")
538)
539) :pattern(toString v))
540))
541
542 (assert (forall ((v Value))
543 (! (=>
544 (In_Integer v)
545 (=
546 (toString v)
547 (intToString (of_G_Integer (out_G v)))
548)
549) :pattern(toString v))
550))
551
552 (assert (forall ((v Value))
553 (! (=>
554 (In_String v)
555 (=
556 (toString v)
557 (of_G_String (out_G v))
558)
559) :pattern(toString v))
560))
561
562 (assert (forall ((v Value))
563 (! (=>
564 (and (is-G v) (is-G_Null (out_G v)))
565 (=
566 (toString v)
567 ""

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 105

568)
569) :pattern(toString v))
570))
571
572 (assert (forall ((v Value))
573 (! (=>
574 (Good_A v)
575 (=
576 (toString v)
577 (arrayToString v 0)
578)
579) :pattern(toString v))
580))
581
582 (define-const _base String "0123456789")
583
584 (assert (forall ((n Int))
585 (! (=
586 (intToString n)
587 (ite (= n 0)
588 "0"
589 (ite (> n 0)
590 (intToStringAux n)
591 (str.++ "-" (intToStringAux n))
592)
593)
594) :pattern(intToString n))
595))
596
597 (assert (forall ((n Int))
598 (! (=
599 (intToStringAux n)
600 (ite (= n 0)
601 ""
602 (str.++ (intToStringAux (div n 10)) (str.at _base (rem n

10)))
603)
604) :pattern(intToStringAux n))
605))
606
607 (assert (forall ((array Value) (i Int))
608 (! (=
609 (arrayToString array i)
610 (ite (= i (length array))
611 ""
612 (ite (= i 0)
613 (str.++ (toString (v_nth array (G (G_Integer i))))

(arrayToString array (+ i 1)))
614 (str.++ "," (toString (v_nth array (G (G_Integer i))))

(arrayToString array (+ i 1)))
615)
616)
617) :pattern(arrayToString array i))
618))

Listing A.1: Z3 formalisation

Appendix A. Z3 SMT-LIB Axiomatization in HeadREST 106

Appendix B

Specifications

B.1 Without the New Extensions

1 specification MazesMacros

2
3 // Resources

4 resource Maze

5 resource Room

6 resource Door

7
8
9 // Some constants to avoid magical numbers and ease maintenance

10 const SUCCESS = 200

11 const CREATED = 201

12 const NO_CONTENT = 204

13 const BAD_REQUEST = 400

14 const NOT_FOUND = 404

15 const CONFLICT = 409

16
17 type URI = String

18
19 // hypermedia

20 type Link = {

21 href: URI

22 }

23
24 // meta

25 type CollectionMeta = {

26 totalResults: Integer,

27 resultPerPage: Integer

28 }

29
30 // errors

31 type GenericError = {

32 error: String,

33 explanation: String

34 }

35
36 type BadRequestViolationResponse = {

37 constraintType: (x : String where x == "PROPERTY" || x == "PARAMETER"),

38 path: String,

39 message: String,

40 value: String

41 }

107

Appendix B. Specifications 108

42
43 type BadRequestResponse = {

44 exception: String | [null],
45 fieldViolations: BadRequestViolationResponse[],

46 propertyViolations: BadRequestViolationResponse[],

47 classViolations: BadRequestViolationResponse[],

48 parameterViolations: BadRequestViolationResponse[],

49 returnValueViolations: BadRequestViolationResponse[]

50 } | { error: String }

51
52 type NotFoundMessage = {

53 source: ["MAZE"] | ["ROOM"] | ["DOOR"],

54 message: (x: String where x == "Resource not found")

55 }

56
57 type RoomRep = {

58 _links: {

59 self: Link,

60 doors: Link,

61 maze: Link

62 },

63 id: Integer,

64 name: String

65 }

66
67 type MazeRep = {

68 _links: {

69 self: Link,

70 start: Link[] | [null]

71 },

72 id: Integer,

73 name: String,
74 _embedded: {

75 orphanedRooms: RoomRep[]

76 }

77 }

78
79 type MazePostData = {

80 name: (x : String where matches(^[\w\s]{3,50}$, x))

81 }

82
83 type MazePutData = {

84 name: (x : String where matches(^[\w\s]{3,50}$, x))

85 }

86
87 type MazeList = {

88 _embedded: {

89 mazes: MazeRep[]

90 },

91 _links: {

92 self: Link,

93 prev: Link | [null],

94 next: Link | [null],

95 last: Link

96 },

97 meta: CollectionMeta

98 }

99
100 type RoomData = {

101 name: (x: String where matches(^[\w\s]{3,50}$, x))

102 }

Appendix B. Specifications 109

103
104 type DoorDirection = (x: String where matches(^[a-zA-Z_\-]{1,15}$, x))

105
106 type DoorPostData = {

107 toRoomId: Integer,

108 direction: DoorDirection

109 }

110
111 type DoorRep = {

112 _links: {

113 self: Link,

114 from: Link,

115 to: Link

116 },

117 direction: DoorDirection

118 }

119
120 type DoorList = {

121 _links: {

122 self: Link

123 },

124 _embedded: {

125 doors: DoorRep[]

126 }

127 }

128
129 type DoorData = {

130 toRoomId: Integer

131 }

132
133
134 // Variables

135 var maze: Maze

136 var room: Room

137 var door: Door

138
139 // Definitions

140
141 const ExistsMaze_With_id_EqualsTo_request_template_mazeId =

142 (request in {template: {mazeId: Integer}} &&

143 (exists maze: Maze ::

144 (forall mazeRep : MazeRep :: mazeRep repof maze =>

145 mazeRep.id == request.template.mazeId

146)

147)

148)

149
150 const maze_Has_id_EqualsTo_request_template_mazeId =

151 (request in {template: {mazeId: Integer}} && (root ++ expand(‘/mazes/{mazeId}‘ , {mazeId =
request.template.mazeId})) uriof maze)

152
153 const NotExistsMazeWith_id_EqualsTo_request_template_mazeId =

154 (request in {template: {mazeId: Integer}} &&

155 (forall maze : Maze :: (forall mazeRep: MazeRep ::

156 mazeRep repof maze => mazeRep.id != request.template.mazeId)

157)

158)

159
160 const ExistsMazeWith_name_EqualsTo_request_body_name =

161 (request in {body: {name: String}} &&

162 (exists maze : Maze :: (forall mazeRep: MazeRep ::

Appendix B. Specifications 110

163 mazeRep repof maze => mazeRep.name == request.body.name)

164)

165)

166
167 const NotExistsMazeWith_name_EqualsTo_request_body_name =

168 (request in {body: {name: String}} &&

169 (forall maze : Maze :: (forall mazeRep: MazeRep ::

170 mazeRep repof maze => mazeRep.name != request.body.name)

171)

172)

173
174 const maze_HasNoRoomsWith_name_request_body_name =

175 (request in {body: {name: String}} &&

176 (forall mazeRep: MazeRep :: mazeRep repof maze =>

177 (forall room : Room ::

178 (forall roomRep: RoomRep ::

179 (roomRep repof room && roomRep._links.maze == mazeRep._links.self) =>
roomRep.name != request.body.name

180)

181)

182)

183)

184
185 const maze_HasNoRoomsWith_id_request_template_roomId =

186 (request in {template: {roomId: Integer}} &&

187 (forall mazeRep: MazeRep :: mazeRep repof maze =>

188 (forall room : Room ::

189 (forall roomRep: RoomRep ::

190 (roomRep repof room && roomRep._links.maze == mazeRep._links.self) =>
roomRep.id != request.template.roomId

191)

192)

193)

194)

195
196 const maze_HasRoomWith_name_request_body_name =

197 (request in {body: {name: String}} &&

198 (forall mazeRep: MazeRep :: mazeRep repof maze =>

199 (exists room : Room ::

200 (forall roomRep: RoomRep ::

201 roomRep repof room => (roomRep.name == request.body.name && roomRep._links.maze
== mazeRep._links.self)

202)

203)

204)

205)

206
207 const maze_HasDifferentRoomWith_name_request_body_name =

208 (request in {body: {name: String}} &&

209 (forall mazeRep: MazeRep :: mazeRep repof maze =>

210 (exists otherRoom : Room :: otherRoom != room &&

211 (forall roomRep: RoomRep ::

212 roomRep repof otherRoom => (roomRep.name == request.body.name &&
roomRep._links.maze == mazeRep._links.self)

213)

214)

215)

216)

217
218 const ExistsRoomWith_id_EqualsTo_request_template_roomId =

219 (request in {template: {roomId: Integer}} &&

Appendix B. Specifications 111

220 (exists room : Room :: (forall roomRep: RoomRep :: roomRep repof room =>

221 request.template.roomId == roomRep.id)

222)

223)

224
225 const NotExistsRoomWith_id_EqualsTo_request_template_roomId =

226 (request in {template: {roomId: Integer}} &&

227 (forall room : Room :: (forall roomRep: RoomRep :: roomRep repof room =>

228 request.template.roomId != roomRep.id)

229)

230)

231
232
233 const maze_HasRooms =

234 (forall mazeRep: MazeRep :: mazeRep repof maze => mazeRep._links.start != null)

235
236 const maze_HasNoRooms =

237 (forall mazeRep: MazeRep :: mazeRep repof maze => mazeRep._links.start == null)

238
239 const maze_HasNoOtherRoomsWith_name_request_body_name =

240 (request in {body: {name: String}} &&

241 (forall mazeRep: MazeRep :: mazeRep repof maze =>

242 (forall otherRoom : Room :: room != otherRoom =>

243 (forall roomRep: RoomRep ::

244 (roomRep repof otherRoom && roomRep._links.maze == mazeRep._links.self) =>

245 roomRep.name != request.body.name

246)

247)

248)

249)

250
251 const maze_room_DefinedBy_request_template_ids =

252 (request in {template: {mazeId: Integer, roomId: Integer}} &&

253 ((root ++ expand(‘/mazes/{mazeId}‘ , {mazeId = request.template.mazeId})) uriof maze &&

254 (root ++ expand(‘/mazes/{mazeId}/rooms/{roomId}‘ , {mazeId = request.template.mazeId,

255 roomId = request.template.roomId})) uriof room)

256)

257
258 const room_Of_maze_IsNotStart =

259 (forall mazeRep : (m: MazeRep where m._links.start in Link[]) :: mazeRep repof maze =>

260 mazeRep._links.start in Link[] &&

261 (forall roomRep: RoomRep :: roomRep repof room =>

262 (forall i: (x: Natural where x < length(mazeRep._links.start)) ::

263 mazeRep._links.start[i] != roomRep._links.self)

264)

265)

266
267 const room_Of_maze_IsStart =

268 (forall mazeRep : (m: MazeRep where m._links.start in Link[]) :: mazeRep repof maze =>

269 (forall roomRep: RoomRep :: roomRep repof room =>

270 !(forall i: (x: Natural where x < length(mazeRep._links.start)) ::

271 mazeRep._links.start[i] != roomRep._links.self)

272)

273)

274
275
276 // Assertions

277
278 // MAZES

279
280 // add maze, created

Appendix B. Specifications 112

281 {

282 request in {body: MazePostData} &&

283 NotExistsMazeWith_name_EqualsTo_request_body_name

284 }

285 post ‘/mazes‘

286 {

287 response.code == CREATED &&

288 response in {body: MazeRep, header: {location: URI}} && (

289 response.body.name == request.body.name &&

290 response.body._links.start == null &&

291 (exists maze : Maze ::

292 response.header.location uriof maze &&

293 response.body repof maze)

294)

295 }

296
297 // add maze, CONFLICT

298 {

299 request in {body: MazePostData} &&

300 ExistsMazeWith_name_EqualsTo_request_body_name

301 }

302 post ‘/mazes‘

303 {

304 response.code == CONFLICT &&

305 response in {body: GenericError} &&

306 response.body.error == "Duplicated maze"

307 }

308
309
310 // add maze, bad request

311 {

312 isdefined(request.body) ==> !(request in {body: MazePostData})

313 }

314 post ‘/mazes‘

315 {

316 response.code == BAD_REQUEST &&

317 response in {body: BadRequestResponse}

318 }

319
320 type refinedTemplate = {

321 page: (i : Integer where 1<= i && i <= 100000),

322 limit: (i : Integer where 1<= i && i <= 50)

323 }

324
325 // get mazes

326 {

327 request in {template: refinedTemplate}

328 }

329 get ‘/mazes{?page,limit}‘

330 {

331 response.code == SUCCESS &&

332 response in {body: MazeList} &&

333 response.body.meta.totalResults >= 0

334 }

335
336
337 // delete maze, success

338 {

339 request in {template:{mazeId: Integer}} &&

340 maze_Has_id_EqualsTo_request_template_mazeId

341 }

Appendix B. Specifications 113

342 delete ‘/mazes/{mazeId}‘

343 {

344 response.code == NO_CONTENT &&

345 (forall maze : Maze :: !(request.location uriof maze) &&

346 (forall mazeRep : MazeRep :: mazeRep repof maze => mazeRep.id != request.template.mazeId))

347 }

348
349
350 // delete maze, not found

351 {

352 request in {template:{mazeId: Integer}} &&

353 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

354 }

355 delete ‘/mazes/{mazeId}‘

356 {

357 response.code == NOT_FOUND &&

358 (forall maze : Maze :: !(request.location uriof maze))

359 }

360
361
362 // get maze, success

363 {

364 request in {template:{mazeId: Integer}} &&

365 maze_Has_id_EqualsTo_request_template_mazeId

366 }

367 get ‘/mazes/{mazeId}‘

368 {

369 response.code == SUCCESS &&

370 response in {body: MazeRep} &&

371 response.body repof maze

372 }

373
374
375 // get maze, not found

376 {

377 request in {template: {mazeId: Integer}} &&

378 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

379 }

380 get ‘/mazes/{mazeId}‘

381 {

382 response.code == NOT_FOUND

383 }

384
385
386 // update maze, success

387 {

388 request in {body: MazePutData, template:{mazeId: Integer}} &&

389 maze_Has_id_EqualsTo_request_template_mazeId

390 }

391 put ‘/mazes/{mazeId}‘

392 {

393 response.code == SUCCESS &&

394 response in {body: MazeRep} &&

395 response.body repof maze &&

396 request.location uriof maze

397 }

398
399
400 // update maze, bad request

401 {

402 (isdefined(request.body) ==> !(request in {body: MazePutData})) &&

Appendix B. Specifications 114

403 request in {template: {mazeId: Integer}} &&

404 maze_Has_id_EqualsTo_request_template_mazeId

405 }

406 put ‘/mazes/{mazeId}‘

407 {

408 response.code == BAD_REQUEST &&

409 response in {body: BadRequestResponse}

410 }

411
412
413 // update maze, not found

414 {

415 request in {body: MazePutData, template: {mazeId: Integer}} &&

416 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

417 }

418 put ‘/mazes/{mazeId}‘

419 {

420 response.code == NOT_FOUND

421 }

422
423 // MAZE ROOMS

424
425 // add maze room (first room for that maze), success

426 {

427 request in {body: RoomData, template: {mazeId: Integer}} &&

428 (ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

429 maze_Has_id_EqualsTo_request_template_mazeId &&

430 maze_HasNoRooms)

431 }

432 post ‘/mazes/{mazeId}/rooms‘

433 {

434 response.code == CREATED &&

435 response in {body: RoomRep, header: {location: URI}} &&

436 (forall mr : MazeRep :: mr repof maze =>

437 mr.id == request.template.mazeId &&

438 mr._links.start in Link[] &&

439 (exists room : Room ::

440 forall rr: RoomRep :: rr repof room =>

441 response.header.location uriof room && rr.name == request.body.name &&

442 rr._links.maze == mr._links.self &&

443 !(forall i: (x: Natural where x < length(mr._links.start)) ::

444 mr._links.start[i] != rr._links.self)))

445 }

446
447 // add maze room (other rooms), success

448 {

449 request in {body: RoomData, template: {mazeId:Integer}} &&

450 (ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

451 maze_Has_id_EqualsTo_request_template_mazeId &&

452 maze_HasRooms &&

453 maze_HasNoRoomsWith_name_request_body_name)

454
455 }

456 post ‘/mazes/{mazeId}/rooms‘

457 {

458 response.code == CREATED &&

459 response in {body: RoomRep, header: {location: URI}} &&

460 (exists room : Room ::

461 response.body repof room &&

462 response.header.location uriof room &&

463 (forall roomRep: RoomRep ::

Appendix B. Specifications 115

464 roomRep repof room => roomRep.name == request.body.name &&

465 (forall mazeRep: MazeRep ::

466 mazeRep repof maze => roomRep._links.maze == mazeRep._links.self

467)

468)

469)

470 }

471
472 // add maze room, bad request

473 {

474 request in {template: {mazeId: Integer}} &&

475 ((isdefined(request.body) ==> !(request in {body: RoomData})) &&

476 maze_Has_id_EqualsTo_request_template_mazeId)

477 }

478 post ‘/mazes/{mazeId}/rooms‘

479 {

480 response.code == BAD_REQUEST &&

481 response in {body: BadRequestResponse}

482 }

483
484 // add maze room, maze not found

485 {

486 request in {body: RoomData, template: {mazeId: Integer}} &&

487 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

488 }

489 post ‘/mazes/{mazeId}/rooms‘

490 {

491 response.code == NOT_FOUND

492 }

493
494 // add maze room, CONFLICT

495 // the maze already has a room with the same name

496 {

497 request in {body: RoomData, template:{mazeId: Integer}} &&

498 (ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

499 maze_Has_id_EqualsTo_request_template_mazeId &&

500 maze_HasRoomWith_name_request_body_name)

501 }

502 post ‘/mazes/{mazeId}/rooms‘

503 {

504 response.code == CONFLICT &&

505 response in {body: GenericError}

506 }

507
508 // get

509
510 // get maze room, success

511 {

512 request in {template: {mazeId: Integer, roomId: Integer}} &&

513 maze_room_DefinedBy_request_template_ids

514 }

515 get ‘/mazes/{mazeId}/rooms/{roomId}‘

516 {

517 response.code == SUCCESS &&

518 response in {body: RoomRep} &&

519 response.body repof room

520 }

521
522 // get maze room, maze not found

523 {

524 request in {template:{mazeId: Integer, roomId: Integer}} &&

Appendix B. Specifications 116

525 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

526 }

527 get ‘/mazes/{mazeId}/rooms/{roomId}‘

528 {

529 response.code == NOT_FOUND

530 }

531
532 // get maze room, maze found but room not found

533 {

534 request in {template:{mazeId: Integer, roomId: Integer}} &&

535 (ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

536 maze_Has_id_EqualsTo_request_template_mazeId &&

537 maze_HasNoRoomsWith_id_request_template_roomId)

538 }

539 get ‘/mazes/{mazeId}/rooms/{roomId}‘

540 {

541 response.code == NOT_FOUND

542 }

543
544 // get room doors

545
546 {

547 request in {template:{mazeId: Integer, roomId: Integer}} &&

548 (

549 ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

550 ExistsRoomWith_id_EqualsTo_request_template_roomId

551)

552 }

553 get ‘/mazes/{mazeId}/rooms/{roomId}/doors‘

554 {

555 response.code == SUCCESS &&

556 response in {body: DoorList}

557 }

558
559 // get room doors, but room not found

560
561 {

562 request in {template:{mazeId: Integer, roomId: Integer}} &&

563 (

564 ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

565 NotExistsRoomWith_id_EqualsTo_request_template_roomId

566)

567 }

568 get ‘/mazes/{mazeId}/rooms/{roomId}/doors‘

569 {

570 response.code == NOT_FOUND

571 }

572
573 // get room doors, but maze not found

574
575 {

576 request in {template:{mazeId: Integer, roomId: Integer}} &&

577 (

578 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

579)

580 }

581 get ‘/mazes/{mazeId}/rooms/{roomId}/doors‘

582 {

583 response.code == NOT_FOUND

584 }

585

Appendix B. Specifications 117

586
587
588 // put

589
590 // update maze room, success

591 {

592 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

593 (maze_room_DefinedBy_request_template_ids &&

594 maze_HasNoOtherRoomsWith_name_request_body_name)

595 }

596 put ‘/mazes/{mazeId}/rooms/{roomId}‘

597 {

598 response.code == SUCCESS &&

599 response in {body: RoomRep} &&

600 (response.body repof room &&

601 response.body.name == request.body.name)

602 }

603
604 // update maze room, bad request

605 {

606 request in {template: {mazeId: Integer, roomId: Integer}} &&

607 (maze_room_DefinedBy_request_template_ids &&

608 (isdefined(request.body) ==> !(request in {body: RoomData})))

609 }

610 put ‘/mazes/{mazeId}/rooms/{roomId}‘

611 {

612 response.code == BAD_REQUEST &&

613 response in {body: BadRequestResponse}

614 }

615
616 // update maze room, maze not found

617 {

618 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

619 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

620 }

621 put ‘/mazes/{mazeId}/rooms/{roomId}‘

622 {

623 response.code == NOT_FOUND

624 }

625
626 // update maze room, maze found but room not found

627 {

628 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

629 (ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

630 maze_Has_id_EqualsTo_request_template_mazeId &&

631 maze_HasNoRoomsWith_id_request_template_roomId)

632 }

633 put ‘/mazes/{mazeId}/rooms/{roomId}‘

634 {

635 response.code == NOT_FOUND

636 }

637
638 // update maze room, CONFLICT

639 {

640 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

641 (maze_room_DefinedBy_request_template_ids &&

642 maze_HasDifferentRoomWith_name_request_body_name)

643 }

644 put ‘/mazes/{mazeId}/rooms/{roomId}‘

645 {

646 response.code == CONFLICT &&

Appendix B. Specifications 118

647 response in {body: GenericError}

648 }

649
650
651 // delete

652
653 // delete maze room, success

654 {

655 request in {template:{mazeId: Integer, roomId: Integer}} &&

656 (maze_room_DefinedBy_request_template_ids &&

657 room_Of_maze_IsNotStart)

658 }

659 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

660 {

661 response.code == NO_CONTENT &&

662 (forall mazeRep: MazeRep :: mazeRep repof maze => mazeRep.id == request.template.mazeId &&

663 !(exists room:Room ::

664 (forall roomRep: RoomRep ::

665 roomRep repof room =>

666 roomRep.id == request.template.roomId &&

667 roomRep._links.maze == mazeRep._links.self

668)

669)

670)

671 }

672
673 // delete maze room, maze not found

674 {

675 request in {template: {mazeId: Integer, roomId: Integer}} &&

676 NotExistsMazeWith_id_EqualsTo_request_template_mazeId

677 }

678 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

679 {

680 response.code == NOT_FOUND

681 }

682
683 // delete maze room, maze found but room not found

684 {

685 request in {template: {mazeId: Integer, roomId: Integer}} &&

686 (ExistsMaze_With_id_EqualsTo_request_template_mazeId &&

687 maze_Has_id_EqualsTo_request_template_mazeId &&

688 maze_HasNoRoomsWith_id_request_template_roomId)

689 }

690 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

691 {

692 response.code == NOT_FOUND

693 }

694
695 // delete maze room, room is maze start room

696 {

697 request in {template: {mazeId: Integer, roomId: Integer}} &&

698 (maze_room_DefinedBy_request_template_ids &&

699 room_Of_maze_IsStart)

700 }

701 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

702 {

703 response.code == CONFLICT &&

704 response in {body: GenericError} &&

705 response.body.error == "Constraint violation"

Appendix B. Specifications 119

706 }

Listing B.1: MazesMacros specification

1 specification Features-service

2
3 //------------ Constants

4
5 // Some constants to avoid magical numbers and ease maintenance

6
7 const SUCCESS = 200

8 const CREATED = 201

9 const NO_CONTENT = 204

10 const BAD_REQUEST = 400

11 const NOT_FOUND = 404

12 const CONFLICT = 409

13
14
15 //------------ Resources

16
17 // Although constraints and features are resources (they can be deleted),

18 // it is not possible to get their representation though a get...

19
20 resource ProductR

21 resource ProductConfigurationR

22
23 //------------ Types

24 type URIString = (x: String where matches(^[\w]{3,50}$, x))

25
26
27 type Feature = {

28 id: Integer,

29 name: String,

30 description: String | [null]

31 }

32
33
34 // source, required and excluded FeatureName are not described in swagger

35 type Constraint = (x: {

36 id: Integer,

37 typeName: String,

38 sourceFeatureName: String | [null],

39 ?requiredFeatureName: String | [null],

40 ?excludedFeatureName: String | [null]

41 } where isdefined(x.excludedFeatureName) & isdefined(x.requiredFeatureName))

42
43
44 type ProductConfiguration = {

45 name: String,

46 valid: Boolean,
47 activeFeatures: Feature[]

48 }

49
50
51 type Product = {

52 id: Integer,

53 name: String,
54 features: Feature[],

55 constraints: Constraint[]

56 }

57
58

Appendix B. Specifications 120

59 // ------------ Variables

60 var productR: ProductR

61 var configurationR: ProductConfigurationR

62
63
64 // ------------ Assertions

65
66 //*********************** PRODUCTS ***************************

67
68 // get products

69 // > to request a list with the names of all available products

70 {

71 true

72 }

73 get ‘/products‘

74 {

75 response.code == SUCCESS &&

76 response in {body: String[]} && (

77 (forall i: (x: Integer where x >= 0&& x < length(response.body)) ::

78 (exists productR: ProductR ::

79 (exists product: Product :: product repof productR &&

80 product.name == response.body[i])

81)

82) &&

83 (forall productR: ProductR ::

84 (exists product: Product :: product repof productR &&

85 (exists i: (x: Integer where x >= 0&& x < length(response.body)) ::

86 product.name == response.body[i])

87)

88)

89)

90 }

91
92 // get product

93 // > to request the features and constraints of a product

94 {

95 request in {template: {productName: URIString}} &&

96 request.location uriof productR

97 }

98 get ‘/products/{productName}‘

99 {

100 response.code == SUCCESS &&

101 response in {body: Product} && (

102 response.body repof productR &&

103 response.body.name == request.template.productName

104)

105 }

106
107
108 // >add a new product

109 {

110 request in {template: {productName: URIString}}

111 }

112 post ‘/products/{productName}‘

113 {

114 response.code == CREATED &&

115 response in {header: {location: URIString}} &&

116 (exists productR: ProductR ::

117 response.header.location uriof productR &&

118 (forall product: Product :: product repof productR &&

119 product.name == request.template.productName &&

Appendix B. Specifications 121

120 product.features == [] && product.constraints == []

121)

122)

123 }

124
125 // delete product

126 // > to remove an existing product and all its configurations

127 {

128 request in {template: {productName: URIString}} &&

129 request.location uriof productR

130 }

131 delete ‘/products/{productName}‘

132 {

133 response.code == NO_CONTENT &&

134 (forall productR: ProductR :: !(request.location uriof productR) &&

135 (forall product : Product :: product repof productR =>

136 product.name != request.template.productName)) &&

137 (forall configurationR: ProductConfigurationR ::

138 !(exists configurationName2: URIString ::

139 (root ++ expand(‘/products/{productName}/configurations/{configurationName}‘ ,

140 { productName = request.template.productName,

141 configurationName = configurationName2 })) uriof configurationR

142)

143)

144 }

145
146 //*********************** FEATURES ***************************

147
148 // get a list with the features of a product

149 {

150 request in {template: {productName: URIString}} &&

151 (

152 (root ++ expand(‘/products/{productName}‘ ,

153 {productName = request.template.productName})) uriof productR

154)

155 }

156 get ‘/products/{productName}/features‘

157 {

158 response.code == SUCCESS &&

159 response in {body: Feature[]} && (

160 (forall product: Product :: product repof productR =>

161 (forall i: (x: Integer where x >= 0&& x < length(response.body)) ::

162 (exists j: (x: Integer where x >= 0&& x < length(product.features)) ::

163 product.features[j] == response.body[i]

164)

165)

166) &&

167 (forall product: Product :: product repof productR =>

168 (forall j: (x: Integer where x >= 0&& x < length(product.features)) ::

169 (exists i: (x: Integer where x >= 0&& x < length(response.body)) ::

170 product.features[j] == response.body[i]

171)

172)

173)

174)

175 }

176
177
178 // add a feature to a product - with description

179 // unfolding was required (assertion with isdefined in pos not supported)

180 {

Appendix B. Specifications 122

181 request in {template: {productName: URIString, featureName: URIString, description:
URIString}} &&

182 (

183 isdefined(request.template.description) &&

184 (root ++ expand(‘/products/{productName}‘ ,

185 {productName = request.template.productName})) uriof productR

186)

187 }

188 post ‘/products/{productName}/features/{featureName}{?description}‘

189 {

190 response.code == CREATED &&

191 response in {header: {location: URIString}} &&

192 (exists product: Product :: product repof productR &&

193 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

194 product.features[i].name == request.template.featureName &&

195 product.features[i].description == request.template.description

196)

197)

198 }

199
200 // add a feature to a product - without description

201 {

202 request in {template: {productName: URIString, featureName: URIString}} &&

203 (

204 !isdefined(request.template.description) &&

205 (root ++ expand(‘/products/{productName}‘ ,

206 {productName = request.template.productName})) uriof productR

207)

208 }

209 post ‘/products/{productName}/features/{featureName}{?description}‘

210 {

211 response.code == CREATED &&

212 response in {header: {location: URIString}} &&

213 (exists product: Product :: product repof productR &&

214 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

215 product.features[i].name == request.template.featureName &&

216 product.features[i].description == null

217)

218)

219 }

220
221
222 // delete a product feature

223 {

224 request in {template: {productName: URIString, featureName: URIString}} &&

225 (

226 (root ++ expand(‘/products/{productName}‘ ,

227 {productName = request.template.productName})) uriof productR &&

228 (exists product: Product :: product repof productR &&

229 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

230 product.features[i].name == request.template.featureName

231)

232)

233)

234 }

235 delete ‘/products/{productName}/features/{featureName}‘

236 {

237 response.code == NO_CONTENT &&

238 (forall product: Product :: product repof productR &&

239 (forall i: (x: Integer where x >= 0&& x < length(product.features)) ::

240 product.features[i].name != request.template.featureName

Appendix B. Specifications 123

241)

242)

243 }

244
245
246 // update a feature of a product - with description

247 {

248 request in {template: {productName: URIString, featureName: URIString, description:
URIString}} &&

249 (root ++ expand(‘/products/{productName}‘ ,

250 {productName = request.template.productName})) uriof productR &&

251 (exists product: Product :: product repof productR &&

252 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

253 product.features[i].name == request.template.featureName

254)

255)

256 }

257 put ‘/products/{productName}/features/{featureName}{?description}‘

258 {

259 response.code == SUCCESS &&

260 response in {body: Feature} &&

261 response.body.name == request.template.featureName &&

262 response.body.description == request.template.description &&

263 (exists product: Product :: product repof productR &&

264 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

265 product.features[i] == response.body

266)

267)

268 }

269
270 // update a feature of a product - without description

271
272 //*********************** CONSTRAINTS ***************************

273
274 // add a excluded constraint to a product

275 // with source and exclude

276 {

277 request in {template: {productName: URIString, sourceFeature: URIString, excludedFeature:
URIString}} &&

278 (

279 isdefined(request.template.sourceFeature) && isdefined(request.template.excludedFeature) &&

280 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

281)

282 }

283 post ‘/products/{productName}/constraints/excludes{?sourceFeature,excludedFeature}‘

284 {

285 response.code == CREATED &&

286 response in {header: {location: URIString}} && //o uri eh
‘/products/{productName}/constraints/{id}‘

287 (exists product: Product :: product repof productR &&

288 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

289 product.constraints[i].typeName == "excludes" &&

290 product.constraints[i].sourceFeatureName == request.template.sourceFeature &&

291 product.constraints[i].excludedFeatureName == request.template.excludedFeature

292)

293)

294 }

295
296 // add a excluded constraint to a product

297 // without source

Appendix B. Specifications 124

298 {

299 request in {template: {productName: URIString, excludedFeature: URIString}} &&

300 (

301 !isdefined(request.template.sourceFeature) &&

302 (root ++ expand(‘/products/{productName}‘ ,

303 {productName = request.template.productName})) uriof productR

304)

305 }

306 post ‘/products/{productName}/constraints/excludes{?sourceFeature,excludedFeature}‘

307 {

308 response.code == CREATED &&

309 response in {header: {location: URIString}} &&

310 (exists product: Product :: product repof productR &&

311 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

312 product.constraints[i].typeName == "excludes" &&

313 product.constraints[i].sourceFeatureName == null &&

314 product.constraints[i].excludedFeatureName == request.template.excludedFeature

315)

316)

317 }

318
319 // add a required constraint to a product

320 // with source and required

321 {

322 request in {template: {productName: URIString, sourceFeature: URIString, requiredFeature:
URIString}} &&

323 isdefined(request.template.sourceFeature) && isdefined(request.template.requiredFeature) &&

324 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

325 }

326 post ‘/products/{productName}/constraints/requires{?sourceFeature,requiredFeature}‘

327 {

328 response.code == CREATED &&

329 response in {header: {location: URIString}} &&

330 (exists product: Product :: product repof productR &&

331 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

332 product.constraints[i].typeName == "requires" &&

333 product.constraints[i].sourceFeatureName == request.template.sourceFeature &&

334 product.constraints[i].requiredFeatureName == request.template.requiredFeature

335)

336)

337 }

338
339
340 // add a required constraint to a product

341 // without source

342 {

343 request in {template: {productName: URIString, requiredFeature: URIString}} &&

344 !isdefined(request.template.sourceFeature) &&

345 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

346 }

347 post ‘/products/{productName}/constraints/requires{?sourceFeature,requiredFeature}‘

348 {

349 response.code == CREATED &&

350 response in {header: {location: URIString}} &&

351 (exists product: Product :: product repof productR &&

352 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

353 product.constraints[i].typeName == "requires" &&

354 product.constraints[i].sourceFeatureName == null &&

355 product.constraints[i].requiredFeatureName == request.template.requiredFeature

Appendix B. Specifications 125

356)

357)

358 }

359
360
361 // delete a constraint of a product

362 // product and constraint exist

363 {

364 request in {template: {productName: URIString, constraintId: Integer}} &&

365 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR &&

366 (exists product: Product :: product repof productR &&

367 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

368 product.constraints[i].id == request.template.constraintId

369)

370)

371 }

372 delete ‘/products/{productName}/constraints/{constraintId}‘

373 {

374 response.code == NO_CONTENT &&

375 (forall product: Product :: product repof productR &&

376 (forall i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

377 product.constraints[i].id != request.template.constraintId

378)

379)

380 }

381
382
383 // delete a constraint of a product

384 // only product exists

385 {

386 request in {template: {productName: URIString, constraintId: Integer}} &&

387 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR &&

388 (exists product: Product :: product repof productR &&

389 (forall i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

390 product.constraints[i].id != request.template.constraintId

391)

392)

393 }

394 delete ‘/products/{productName}/constraints/{constraintId}‘

395 {

396 response.code == NO_CONTENT // found through interaction

397 }

398
399
400 //**

401 //*********************** PRODUCT CONFIGURATIONS ***************************

402 //**

403
404 // get a list with the names of the configurations of a product

405 {

406 request in {template: {productName: URIString}} &&

407 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

408 }

409 get ‘/products/{productName}/configurations‘

410 {

411 response.code == SUCCESS &&

412 response in {body: String[]} &&

413 (

Appendix B. Specifications 126

414 (forall i: (x: Integer where x >= 0&& x < length(response.body)) ::

415 (exists configurationR: ProductConfigurationR ::

416 (root ++ expand(‘/products/{productName}/configurations/{configurationName}‘ , {

417 productName = request.template.productName,

418 configurationName = response.body[i]})

419) uriof configurationR

420)

421) &&

422 (forall configurationR: ProductConfigurationR ::

423 (exists configurationName: URIString ::

424 (root ++ expand(‘/products/{productName}/configurations/{configurationName}‘ , {

425 productName = request.template.productName,

426 configurationName = configurationName })

427) uriof configurationR

428)

429 =>

430 (forall configuration: ProductConfiguration ::

431 configuration repof configurationR =>

432 (exists i: (x: Integer where x >= 0&& x < length(response.body)) ::

433 configuration.name == response.body[i])

434)

435)

436)

437 }

438
439
440 // get a product configuration

441 {

442 request in {template: {productName: URIString, configurationName: URIString}} &&

443 request.location uriof configurationR

444 }

445 get ‘/products/{productName}/configurations/{configurationName}‘

446 {

447 response.code == SUCCESS &&

448 response in {body: ProductConfiguration}

449 && (

450 response.body repof configurationR &&

451 response.body.name == request.template.configurationName

452)

453 }

454
455 // add a product configuration

456 {

457 request in {template: {productName: URIString, configurationName: URIString}} &&

458 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

459 }

460 post ‘/products/{productName}/configurations/{configurationName}‘

461 {

462 response.code == CREATED &&

463 response in {header: {location: URIString}} &&

464 (exists configurationR: ProductConfigurationR ::

465 response.header.location uriof configurationR &&

466 (forall configuration: ProductConfiguration ::

467 configuration repof configurationR => (

468 configuration.name == request.template.configurationName &&

469 configuration.valid &&

470 configuration.activeFeatures == [])

471)

472)

473 }

Appendix B. Specifications 127

474
475 // delete a product configuration

476 {

477 request in {template: {productName: URIString, configurationName: URIString}} &&

478 request.location uriof configurationR

479 }

480 delete ‘/products/{productName}/configurations/{configurationName}‘

481 {

482 response.code == NO_CONTENT &&

483 (forall configurationR: ProductConfigurationR :: !(request.location uriof configurationR))

484 }

485
486
487
488 //*********************** FEATURES OF PRODUCTCONFIGURATIONS ***************************

489
490 // get a list with the names of the features that are active in a configurations of a product

491 {

492 request in {template: {productName: URIString, configurationName: URIString}} &&

493 (root ++ expand(‘/products/{productName}/configurations/{configurationName}‘ ,

494 {productName = request.template.productName,

495 configurationName = request.template.configurationName

496 }

497)) uriof configurationR

498 }

499 get ‘/products/{productName}/configurations/{configurationName}/features‘

500 {

501 response.code == SUCCESS &&

502 response in {body: String[]} && (

503 (forall i: (x: Integer where x >= 0&& x < length(response.body)) ::

504 (exists configuration: ProductConfiguration :: configuration repof configurationR &&

505 (exists j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

506 configuration.activeFeatures[j].name == response.body[i]

507)

508)

509) &&

510 (exists configuration: ProductConfiguration :: configuration repof configurationR &&

511 (forall j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

512 (exists i: (x: Integer where x >= 0&& x < length(response.body)) ::

513 configuration.activeFeatures[j].name == response.body[i]

514)

515)

516)

517)

518 }

519
520
521 // add an active feature to a configuration

522
523 {

524 request in {template: {productName: URIString, configurationName: URIString, featureName:
URIString}} &&

525 (

526 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

527 &&

528 (exists product: Product :: product repof productR &&

529 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

530 product.features[i].name == request.template.featureName

531)

532) &&

Appendix B. Specifications 128

533 (root ++ expand(‘/products/{productName}/configurations/{configurationName}‘ ,

534 {productName = request.template.productName,

535 configurationName = request.template.configurationName

536 })) uriof configurationR

537 &&

538 (forall configuration: ProductConfiguration :: configuration repof configurationR =>

539 (forall j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

540 configuration.activeFeatures[j].name != request.template.featureName

541)

542)

543)

544 }

545 post ‘/products/{productName}/configurations/{configurationName}/features/{featureName}‘

546 {

547 response.code == CREATED &&

548 (forall configuration: ProductConfiguration :: configuration repof configurationR =>

549 (exists j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

550 configuration.activeFeatures[j].name == request.template.featureName)

551 &&

552 (configuration.valid == true ||

553 (exists product: Product ::

554 product repof productR &&

555 (exists j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

556 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

557 product.constraints[i].sourceFeatureName == configuration.activeFeatures[j].name &&

558 (

559 (product.constraints[i].typeName == "requires" &&

560 (forall k: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

561 configuration.activeFeatures[k].name != product.constraints[i].sourceFeatureName

562)

563)

564 ||

565 (product.constraints[i].typeName == "excludes" &&

566 (exists k: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

567 configuration.activeFeatures[k].name ==
product.constraints[i].excludedFeatureName

568)

569)

570)

571)

572)

573)

574)

575)

576 }

577
578
579 // delete an active feature to a configuration

580
581 {

582 request in {template: {productName: URIString, configurationName: URIString, featureName:
URIString}} &&

583 (

584 (root ++ expand(‘/products/{productName}‘ , {productName = request.template.productName}))
uriof productR

585 &&

586 (exists product: Product :: product repof productR &&

587 (exists i: (x: Integer where x >= 0&& x < length(product.features)) ::

588 product.features[i].name == request.template.featureName

589)

590) &&

591 (root ++ expand(‘/products/{productName}/configurations/{configurationName}‘ ,

Appendix B. Specifications 129

592 {productName = request.template.productName,

593 configurationName = request.template.configurationName

594 })) uriof configurationR

595 &&

596 (exists configuration: ProductConfiguration :: configuration repof configurationR &&

597 (exists j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

598 configuration.activeFeatures[j].name == request.template.featureName

599)

600)

601)

602 }

603 delete ‘/products/{productName}/configurations/{configurationName}/features/{featureName}‘

604 {

605 response.code == NO_CONTENT &&

606 (forall configuration: ProductConfiguration :: configuration repof configurationR =>

607 (forall j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

608 configuration.activeFeatures[j].name != request.template.featureName)

609 &&

610 (configuration.valid == true ||

611 (exists product: Product ::

612 product repof productR &&

613 (exists j: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

614 (exists i: (x: Integer where x >= 0&& x < length(product.constraints)) ::

615 product.constraints[i].sourceFeatureName == configuration.activeFeatures[j].name &&

616 (

617 (product.constraints[i].typeName == "requires" &&

618 (forall k: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

619 configuration.activeFeatures[k].name != product.constraints[i].sourceFeatureName

620)

621)

622 ||

623 (product.constraints[i].typeName == "excludes" &&

624 (exists k: (x: Integer where x >= 0&& x < length(configuration.activeFeatures)) ::

625 configuration.activeFeatures[k].name ==
product.constraints[i].excludedFeatureName

626)

627)

628)

629)

630)

631)

632)

633)

634 }

Listing B.2: FeaturesService specification

1 specification DummyAPI

2
3 resource Employee

4
5 type StringId = (s: String where matches(^[0-9]*$, s))

6
7 type EmployeeRepresentation = {

8 employee_name: String,

9 employee_salary: String,

10 employee_age: String,

11 profile_image: String,

12 id: String

13 }

14
15 type EmployeeRequest = {name: String, salary: String, age: String}

Appendix B. Specifications 130

16
17 type EmployeeResponse = EmployeeRequest & {id:String}

18
19
20 type SuccessMessage = {success: {text: String}}

21 type ErrorMessage = {error: {text: String}}

22
23 const OK = 200

24 const CREATED = 201

25 const BAD_REQUEST = 400

26 const NOT_FOUND = 404

27 const CONFLICT = 409

28
29 //

30 // get all employees

31
32 {

33 true

34 }

35
36 get ‘/employees‘

37
38 {

39 response.code == OK &&

40 response in {body: EmployeeRepresentation []}

41 }

42
43 //

44 // get specific employee

45
46 {

47 request in {template: {id:String}} && // O id do template eh integer e o da rep eh string?

48 (exists e: Employee ::

49 exists eR: EmployeeRepresentation ::

50 eR repof e && request.template.id == eR.id

51)

52 }

53
54 get ‘/employee/{id}‘

55
56 {

57 response.code == OK &&

58 response in {body: EmployeeRepresentation} &&

59 response.body.id == request.template.id &&

60 (forall e: Employee ::

61 (forall eR: EmployeeRepresentation ::

62 eR repof e && eR.id == response.body.id ==>

63 eR == response.body

64)

65)

66 }

67
68 //

69 // id does not exist --> get request fails

70
71 {

72 (request in {template: {id: String}} &&

73 !(exists e: Employee ::

74 exists eR: EmployeeRepresentation ::

75 eR repof e && request.template.id == eR.id

76))

Appendix B. Specifications 131

77 }

78
79 get ‘/employee/{id}‘

80
81 {

82 response.code == OK &&

83 response in {body: (b: Boolean where !b)}

84 }

85
86
87 //

88 // create employee

89
90 // employee created successfully

91 {

92 request in {body: EmployeeRequest} &&

93 (forall e: Employee ::

94 (forall eR: EmployeeRepresentation ::

95 eR repof e ==> eR.employee_name != request.body.name

96)

97)

98 }

99
100 post ‘/create‘

101
102 {

103 response.code == OK &&

104 response in {body: EmployeeResponse} &&

105 response.body.name == request.body.name &&

106 response.body.salary == request.body.salary &&

107 response.body.age == request.body.age &&

108 (exists e: Employee ::

109 exists eR: EmployeeRepresentation ::

110 eR repof e && eR.employee_name == response.body.name &&

111 eR.employee_salary == response.body.salary &&

112 eR.employee_age == response.body.age &&

113 (forall otherR: EmployeeRepresentation ::

114 otherR.id == eR.id || otherR.employee_name == eR.employee_name ==> otherR == eR

115)

116)

117 }

118
119
120 //

121 // if a employee with the name already exists

122 {

123 request in {body: EmployeeRequest} &&

124 (exists e: Employee ::

125 (exists eR: EmployeeRepresentation ::

126 eR repof e && eR.employee_name == request.body.name

127)

128)

129 }

130
131 post ‘/create‘

132
133 {

134 response.code == OK &&

135 response in {body: ErrorMessage} &&

136 response.body.error.text == "SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate
entry ’" ++

Appendix B. Specifications 132

137 request.body.name ++ "’ for key ’employee_name_unique’"

138 }

139
140 //

141 // update employee

142
143 // if some field in EmployeeRequest is missing then

144 // the response body has a null value on that field

145 // if some other field appears in request it will

146 // appear too on the response with the respective value

147 // example: {"salary":"1000","age":"22","height":"180cm"} --

148 // --> {"name":null,"salary":"1000","age":"22","height":"180cm"}

149
150 {

151 request in {body: EmployeeRequest, template:{id:String}} &&

152 !(exists e: Employee ::

153 exists eR: EmployeeRepresentation ::

154 eR repof e && request.template.id == eR.id)

155 }

156
157 put ‘/update/{id}‘

158
159 {

160 response.code == OK &&

161 response in {body: EmployeeRequest} &&

162 response.body == request.body

163 }

164
165
166 //// successful update

167 {

168 request in {body: EmployeeRequest, template:{id:String}}

169 &&

170 (exists e: Employee ::

171 exists eR: EmployeeRepresentation ::

172 eR repof e && request.template.id == eR.id)

173 &&

174 !(exists e: Employee ::

175 exists eR: EmployeeRepresentation ::

176 eR repof e && request.body.name == eR.employee_name &&

177 eR.id != request.template.id)

178 }

179
180 put ‘/update/{id}‘

181
182 {

183 response.code == OK &&

184 response in {body: EmployeeRequest} &&

185 response.body == request.body &&

186 (exists e:Employee ::

187 exists eR: EmployeeRepresentation ::

188 eR repof e && eR.employee_name == request.body.name &&

189 eR.employee_salary == request.body.salary &&

190 eR.employee_age == request.body.age &&

191 eR.id == request.template.id &&

192 (forall eR2: EmployeeRepresentation ::

193 eR.id == eR2.id ==> eR == eR2

194)

195)

196 }

197

Appendix B. Specifications 133

198 //

199 //// name already exists

200 //

201 {

202 request in {body: EmployeeRequest, template:{id:String}} &&

203 (exists e: Employee ::

204 exists eR: EmployeeRepresentation ::

205 eR repof e && request.body.name == eR.employee_name &&

206 eR.id != request.template.id)

207 }

208
209 put ‘/update/{id}‘

210
211 {

212 response.code == OK &&

213 response in {body: ErrorMessage} &&

214 response.body.error.text == "SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate
entry ’’ for key ’employee_name_unique’"

215 }

216
217 //

218 //// delete employee

219 //

220 // the response is always the same, and the state after the method too

221 //

222 {

223 request in {template: {id: String}}

224 }

225
226 delete ‘/delete/{id}‘

227
228 {

229 response.code == OK &&

230 response in {body: SuccessMessage} &&

231 response.body.success.text == "successfully! deleted Records" &&

232 !(exists e: Employee ::

233 exists eR: EmployeeRepresentation ::

234 eR repof e && eR.id == request.template.id)

235 }

Listing B.3: DummyAPI specification

1 /**

2 * The PetStore in HeadREST.

3 *

4 * Based on OpenAPI Specification v3.0 petstore.yaml,

5 */

6 specification PetStoreAPI

7
8 /**

9 * Resource

10 */

11 resource Pet, Store, User

12
13 type URI = String

14
15 type Category = {

16 ?id: Integer,

17 ?name: String

18 }

19
20 type Tag = {

Appendix B. Specifications 134

21 id: Integer,

22 name: String

23 }

24
25 type ApiResponse = {

26 code: Integer,

27 case: String,

28 message: String

29 }

30
31 type InlineModelAux = {

32 ?id: Integer,

33 ?category: Category,

34 name: String,

35 photoUrls: URI[],

36 ?tags: Tag[],

37 ?status: ["available"] | ["pending"] | ["sold"]

38 }

39
40 type InlineModel = {

41 model: InlineModelAux[]

42 }

43
44 /**

45 * Types

46 */

47 type PetRep = {

48 ?id: Integer,

49 ?category: Category,

50 name: String,

51 photoUrls: URI[],

52 tags: Tag[],

53 ?status: (x: String where x == "available" || x == "pending" || x == "sold")

54 }

55
56
57 type UserRep = {

58 ?id: Integer,

59 ?username: String,

60 ?firstName: String,

61 ?lastName: String,

62 ?email: String,

63 ?password: String,

64 ?phone: String,

65 ?userStatus: Integer

66 }

67
68 /**

69 * CODES

70 */

71 const SUCCESS = 200

72 const CREATED = 201

73 const BAD_REQUEST = 400

74 const NOT_FOUND = 404

75 const INVALID_INPUT = 405

76 const DUPLICATE = 409

77
78 // addPet 200, If pet doesn’t exist

79 {

80 request in {body: PetRep} &&

81 (isdefined(request.body.id) ==>

Appendix B. Specifications 135

82 (forall pet:Pet ::

83 (forall petRep:PetRep ::

84 isdefined(petRep.id) &&

85 petRep repof pet && petRep.id != request.body.id

86)

87)

88)

89 }

90 post ‘/pet‘

91 {

92 response.code == SUCCESS &&

93 response in {body: PetRep} &&

94 (isdefined(request.body.id) => response.body == request.body) &&

95 (exists pet:(p: Pet where response.body repof p) ::

96 isdefined(response.body.id) &&

97 expand(‘/pet/{petid}‘, {petid = response.body.id}) uriof pet

98)

99 }

100
101 // addPet 200, If pet exists

102 var pet: Pet

103 {

104 (request in {body: PetRep} && isdefined(request.body.id)) ?

105 (exists petRep: (pr: PetRep where pr repof pet && isdefined(pr.id)) ::

106 petRep.id == request.body.id

107)

108 : false

109 }

110 post ‘/pet‘

111 {

112 response.code == SUCCESS &&

113 response in {body: PetRep} &&

114 response.body == request.body &&

115 response.body repof pet

116 }

117
118 // addPet 405, Invalid input

119 {

120 !(request in {body: PetRep})

121 }

122 post ‘/pet‘

123 {

124 response.code == INVALID_INPUT &&

125 response in {body: ApiResponse} &&

126 response.body.code == INVALID_INPUT &&

127 response.body.case == "unknown" &&

128 response.body.message == "bad input"

129 }

130
131 // updatePet 200

132 // hard copies request.body on a pet representation

133 {

134 request in {body: (pr: PetRep where isdefined(pr.id))} &&

135 (exists petRep: (pr: PetRep where pr repof pet) ::

136 isdefined(petRep.id) &&

137 petRep.id == request.body.id

138)

139 }

140 put ‘/pet‘

141 {

142 response.code == SUCCESS &&

Appendix B. Specifications 136

143 response in {body: PetRep} &&

144 (exists petRep: (pr: PetRep where pr repof pet) ::

145 petRep == request.body

146)

147 }

148
149 // updatePet 400

150 {

151 !(request in {body: PetRep})

152 }

153 put ‘/pet‘

154 {

155 response.code == BAD_REQUEST &&

156 response in {body: ApiResponse} &&

157 response.body.code == BAD_REQUEST &&

158 response.body.case == "unknown" &&

159 response.body.message == "bad input"

160 }

161
162 // findPetsByStatus 200

163 {

164 request in {template: {status: (x:String where x == "available" || x == "pending" || x ==
"sold")[]}}

165 }

166 get ‘/pet/findByStatus{?status}‘

167 {

168 response.code == SUCCESS &&

169 response in {body: InlineModel} &&

170 (forall i: (x: Integer where 0<= x && x < length(response.body.model)) ::

171 (exists j: (y: Integer where 0<= y && y < length(request.template.status)) ::

172 isdefined(response.body.model[i].status) &&

173 response.body.model[i].status == request.template.status[j]

174)

175)

176 }

177
178 // findPetsByStatus 400

179 {

180 request in {template: {status: (x:String where x != "available" && x != "pending" && x !=
"sold")[]}}

181 }

182 get ‘/pet/findByStatus{?status}‘

183 {

184 response.code == BAD_REQUEST

185 }

186
187 // createUser 200

188 var user: User

189 {

190 request in {body: UserRep}

191 }

192 post ‘/user‘

193 {

194 response.code == SUCCESS

195 }

196
197 // loginUser 200 & 400, if invalid it creates as new account

198 {

199 request in {template: (ur: UserRep where

200 isdefined(ur.username) &&

201 isdefined(ur.password))} &&

Appendix B. Specifications 137

202 (exists user:User ::

203 (exists userRep:UserRep ::

204 isdefined(userRep.name) && isdefined(userRep.password) &

205 userRep repof user && userRep.name == request.template.username &&

206 userRep.password == request.template.password))

207 }

208 get ‘/user/login{?username,password}‘

209 {

210 response.code == SUCCESS

211 }

Listing B.4: PetStore specification

1 specification SimpleAPI

2
3 // Resource declaration

4
5 resource Contact

6
7 // Type declaration

8
9 type Email = String //missing @ declaration with where and contains

10
11 type ContactRepresentation = {

12 id: Integer,

13 name: (x : String where size(x) > 2),

14 email: Email

15 }

16
17 type ContactPutData = {

18 id: Integer,

19 name: String

20 }

21
22 type GenericError = {

23 error: String,

24 explanation: String

25 }

26
27 // Constant declaration

28 const SUCCESS = 200

29 const CREATED = 201

30 const BAD_REQUEST = 400

31 const NOT_FOUND = 404

32 const CONFLICT = 409

33
34 // Variable declaration

35 var contact: Contact

36
37 //---------------------------- Available Operations and their behavior

38
39 // add contact, CREATED

40 {

41 request in {body: ContactPutData} &&

42 (forall c: Contact ::

43 (forall cR: ContactRepresentation ::

44 cR repof c => cR.id != request.body.id
45)

46)

47 }

48 post ‘/contacts‘

49 {

Appendix B. Specifications 138

50 response.code == CREATED &&

51 response in {body: ContactRepresentation, header: {Location: String}} &&

52 (exists c: Contact :: response.body repof c && response.header.Location uriof c)

53 }

54
55 // add contact, CONFLICT

56 {

57 request in {body: ContactPutData} &&

58 (exists cR: ContactRepresentation :: cR repof contact &&

59 cR.id == request.body.id

60)

61 }

62 post ‘/contacts‘

63 {

64 response.code == CONFLICT &&

65 response in {body: GenericError} &&

66 response.body.error == "Duplicated contact"

67 }

68
69 // add contact, BAD_REQUEST

70 {

71 !(request in {body: ContactPutData})

72 }

73 post ‘/contacts‘

74 {

75 response.code == BAD_REQUEST

76 }

77
78 // get contact, SUCCESS

79 {

80 request.template.id in Integer &&

81 (exists cR:ContactRepresentation ::

82 cR repof contact && cR.id == request.template.id

83)

84
85 }

86 get ‘/contacts/{id}‘

87 {

88 response.code == SUCCESS &&

89 response in {body: ContactRepresentation} && (

90 response.body.id == request.template.id &&

91 response.body repof contact

92)

93 }

94
95 // get contact, NOT_FOUND

96 {

97 request.template.id in Integer &&

98 (forall c:Contact ::

99 (forall cR:ContactRepresentation ::

100 cR repof c => cR.id != request.template.id

101)

102)

103 }

104 get ‘/contacts/{id}‘

105 {

106 response.code == NOT_FOUND

107 }

108
109 // delete contact, SUCCESS

110 {

Appendix B. Specifications 139

111 request.template.id in Integer &&

112 (exists c:Contact ::

113 (exists cR:ContactRepresentation ::

114 cR repof c && cR.id == request.template.id

115)

116)

117 }

118 delete ‘/contacts/{id}‘

119 {

120 response.code == SUCCESS &&

121 (forall c:Contact ::

122 (forall cR:ContactRepresentation ::

123 cR repof c => cR.id != request.template.id

124)

125)

126 }

127
128 // update contact, SUCCESS

129 {

130 request in {body: ContactPutData} &&

131 request.template.id in Integer &&

132 request.body.id == request.template.id &&

133 (exists cR:ContactRepresentation ::

134 cR repof contact => cR.id == request.template.id

135)

136 }

137 put ‘/contacts/{id}‘

138 {

139 response.code == SUCCESS && (

140 (forall cR:ContactRepresentation ::

141 cR repof contact => cR.name == request.body.name

142) &&

143 (exists cR:ContactRepresentation ::

144 cR repof contact => cR.name == request.body.name

145)

146)

147 }

Listing B.5: SimpleAPI specification

B.2 With the New Extensions

1 specification MazesMacros

2
3 // Resources

4 resource Maze

5 resource Room

6 resource Door

7
8
9 // Some constants to avoid magical numbers and ease maintenance

10 const SUCCESS = 200

11 const CREATED = 201

12 const NO_CONTENT = 204

13 const BAD_REQUEST = 400

14 const NOT_FOUND = 404

15 const CONFLICT = 409

16
17 type URI = String

18

Appendix B. Specifications 140

19 // hypermedia

20 type Link = {

21 href: URI

22 }

23
24 // meta

25 type CollectionMeta = {

26 totalResults: Integer,

27 resultPerPage: Integer

28 }

29
30 // errors

31 type GenericError = {

32 error: String,

33 explanation: String

34 }

35
36 type BadRequestViolationResponse = {

37 constraintType: (x : String where x == "PROPERTY" || x == "PARAMETER"),

38 path: String,

39 message: String,

40 value: String

41 }

42
43 type BadRequestResponse = {

44 exception: String | [null],
45 fieldViolations: BadRequestViolationResponse[],

46 propertyViolations: BadRequestViolationResponse[],

47 classViolations: BadRequestViolationResponse[],

48 parameterViolations: BadRequestViolationResponse[],

49 returnValueViolations: BadRequestViolationResponse[]

50 } | { error: String }

51
52 type NotFoundMessage = {

53 source: ["MAZE"] | ["ROOM"] | ["DOOR"],

54 message: (x: String where x == "Resource not found")

55 }

56
57 type RoomRep represents Room = {

58 _links: {

59 self: Link,

60 doors: Link,

61 maze: Link

62 },

63 id: Integer,

64 name: String

65 }

66
67 type MazeRep represents Maze = {

68 _links: {

69 self: Link,

70 start: Link[] | [null]

71 },

72 id: Integer,

73 name: String,
74 _embedded: {

75 orphanedRooms: RoomRep[]

76 }

77 }

78
79 type MazePostData = {

Appendix B. Specifications 141

80 name: (x: String where matches(^[\w\s]{3,50}$, x))

81 }

82
83 type MazePutData = {

84 name: (x: String where matches(^[\w\s]{3,50}$, x))

85 }

86
87 type MazeList = {

88 _embedded: {

89 mazes: MazeRep[]

90 },

91 _links: {

92 self: Link,

93 prev: Link | [null],

94 next: Link | [null],

95 last: Link

96 },

97 meta: CollectionMeta

98 }

99
100 type RoomData = {

101 name: (x: String where matches(^[\w\s]{3,50}$, x))

102 }

103
104 type DoorDirection = (x: String where matches(^[a-zA-Z_\-]{1,15}$, x))

105
106 type DoorPostData = {

107 toRoomId: Integer,

108 direction: DoorDirection

109 }

110
111 type DoorRep represents Door = {

112 _links: {

113 self: Link,

114 from: Link,

115 to: Link

116 },

117 direction: DoorDirection

118 }

119
120 type DoorList = {

121 _links: {

122 self: Link

123 },

124 _embedded: {

125 doors: DoorRep[]

126 }

127 }

128
129 type DoorData = {

130 toRoomId: Integer

131 }

132
133
134 // Variables

135 var maze: Maze

136 var room: Room

137 var door: Door

138
139 // Functions

140

Appendix B. Specifications 142

141 predicate existsMazeURI(maze: Maze, id: Integer) =

142 (root ++ $’/mazes/{id}’) uriof maze

143
144 predicate existsMazeRoomURI(mi: Integer, ri: Integer) =

145 (root ++ $’/mazes/{mi}’) uriof maze &&

146 (root ++ $’/mazes/{mi}/rooms/{ri}’) uriof room

147
148 predicate existsMazeWithId(id: Integer) =

149 exists maze : Maze ::

150 forall mr : MazeRep :: mr repof maze =>

151 mr.id == id

152
153 predicate mazeHasNoRoomWithId(maze: Maze, id: Integer) =

154 forall mr: MazeRep :: mr repof maze =>

155 (forall room : Room ::

156 forall rr: RoomRep ::

157 (rr repof room && rr._links.maze == mr._links.self) => rr.id != id

158)

159
160 predicate mazeHasRooms(maze: Maze) =

161 forall mr: MazeRep :: mr repof maze => mr._links.start != null

162
163 predicate existsRoomWithId(id: Integer) =

164 exists room : Room ::

165 forall rr: RoomRep :: rr repof room =>

166 id == rr.id

167
168 predicate mazeStartsInRoom() =

169 forall mr : (m: MazeRep where m._links.start in Link[]) ::

170 mr repof maze =>

171 (forall rr: RoomRep :: rr repof room =>

172 (forsome link of mr._links.start ::

173 link == rr._links.self)

174)

175
176
177 // Assertions

178
179 // MAZES

180
181 // add maze, created

182 {

183 request in {body: MazePostData} &&

184 (forall maze : Maze :: maze’.name != request.body.name)

185 }

186 post ‘/mazes‘

187 {

188 response.code == CREATED &&

189 response in {body: MazeRep, header: {location: URI}} && (

190 response.body.name == request.body.name &&

191 response.body._links.start == null &&

192 (exists maze : Maze ::

193 response.header.location uriof maze &&

194 response.body repof maze)

195)

196 }

197
198 // add maze, CONFLICT

199 {

200 request in {body: MazePostData} &&

201 (exists maze : Maze :: maze’.name == request.body.name)

Appendix B. Specifications 143

202 }

203 post ‘/mazes‘

204 {

205 response.code == CONFLICT &&

206 response in {body: GenericError} &&

207 response.body.error == "Duplicated maze"

208 }

209
210
211 // add maze, bad request

212 {

213 isdefined(request.body) ==> !(request in {body: MazePostData})

214 }

215 post ‘/mazes‘

216 {

217 response.code == BAD_REQUEST &&

218 response in {body: BadRequestResponse}

219 }

220
221 type refinedTemplate = {

222 page: (i : Integer where i in [1..100000+1]), // exclusive

223 limit: (i : Integer where i in [1..50+1])

224 }

225
226 // get mazes

227 {

228 request in {template: refinedTemplate}

229 }

230 get ‘/mazes{?page,limit}‘

231 {

232 response.code == SUCCESS &&

233 response in {body: MazeList} &&

234 response.body.meta.totalResults >= 0

235 }

236
237
238 // delete maze, success

239 {

240 request in {template:{mazeId: Integer}} &&

241 existsMazeURI(maze, request.template.mazeId)

242 }

243 delete ‘/mazes/{mazeId}‘

244 {

245 response.code == NO_CONTENT &&

246 (forall maze : Maze :: !(request.location uriof maze) =>

247 maze’.id != request.template.mazeId)

248 }

249
250
251 // delete maze, not found

252 {

253 request in {template:{mazeId: Integer}} &&

254 !existsMazeWithId(request.template.mazeId)

255 }

256 delete ‘/mazes/{mazeId}‘

257 {

258 response.code == NOT_FOUND &&

259 (forall maze : Maze :: !(request.location uriof maze))

260 }

261
262

Appendix B. Specifications 144

263 // get maze, success

264 {

265 request in {template:{mazeId: Integer}} &&

266 existsMazeURI(maze, request.template.mazeId)

267 }

268 get ‘/mazes/{mazeId}‘

269 {

270 response.code == SUCCESS &&

271 response in {body: MazeRep} &&

272 response.body repof maze

273 }

274
275
276 // get maze, not found

277 {

278 request in {template: {mazeId: Integer}} &&

279 !existsMazeWithId(request.template.mazeId)

280 }

281 get ‘/mazes/{mazeId}‘

282 {

283 response.code == NOT_FOUND

284 }

285
286
287 // update maze, success

288 {

289 request in {body: MazePutData, template:{mazeId: Integer}} &&

290 existsMazeURI(maze, request.template.mazeId)

291 }

292 put ‘/mazes/{mazeId}‘

293 {

294 response.code == SUCCESS &&

295 response in {body: MazeRep} &&

296 response.body repof maze &&

297 request.location uriof maze

298 }

299
300
301 // update maze, bad request

302 {

303 (isdefined(request.body) ==> !(request in {body: MazePutData})) &&

304 request in {template: {mazeId: Integer}} &&

305 existsMazeURI(maze, request.template.mazeId)

306 }

307 put ‘/mazes/{mazeId}‘

308 {

309 response.code == BAD_REQUEST &&

310 response in {body: BadRequestResponse}

311 }

312
313
314 // update maze, not found

315 {

316 request in {body: MazePutData, template: {mazeId: Integer}} &&

317 !existsMazeWithId(request.template.mazeId)

318 }

319 put ‘/mazes/{mazeId}‘

320 {

321 response.code == NOT_FOUND

322 }

323

Appendix B. Specifications 145

324 // MAZE ROOMS

325
326 // add maze room (first room for that maze), success

327 {

328 request in {body: RoomData, template: {mazeId: Integer}} &&

329 (

330 existsMazeWithId(request.template.mazeId) &&

331 existsMazeURI(maze, request.template.mazeId) &&

332 maze’._links.start == null

333)

334 }

335 post ‘/mazes/{mazeId}/rooms‘

336 {

337 response.code == CREATED &&

338 response in {body: RoomRep, header: {location: URI}} &&

339 maze’.id == request.template.mazeId &&

340 maze’._links.start in Link[] &&

341 (exists room : Room ::

342 response.header.location uriof room &&

343 room’.name == request.body.name &&

344 room’._links.maze == maze’._links.self &&

345 (forsome link of maze’._links.start ::

346 link == room’._links.self

347)

348)

349 }

350
351 // add maze room (other rooms), success

352
353 {

354 request in {body: RoomData, template: {mazeId:Integer}} &&

355 (

356 existsMazeWithId(request.template.mazeId) &&

357 existsMazeURI(maze, request.template.mazeId) &&

358 maze’._links.start != null &&

359 (forall room : Room ::

360 room’._links.maze == maze’._links.self =>

361 room’.name != request.body.name

362)

363)

364 }

365 post ‘/mazes/{mazeId}/rooms‘

366 {

367 response.code == CREATED &&

368 response in {body: RoomRep, header: {location: URI}} &&

369 (exists room : Room ::

370 response.body repof room &&

371 response.header.location uriof room &&

372 room’.name == request.body.name &&

373 room’._links.maze == maze’._links.self

374)

375 }

376
377 // add maze room, bad request

378 {

379 request in {template: {mazeId: Integer}} &&

380 ((isdefined(request.body) ==> !(request in {body: RoomData})) &&

381 existsMazeURI(maze, request.template.mazeId))

382 }

383 post ‘/mazes/{mazeId}/rooms‘

384 {

Appendix B. Specifications 146

385 response.code == BAD_REQUEST &&

386 response in {body: BadRequestResponse}

387 }

388
389 // add maze room, maze not found

390 {

391 request in {body: RoomData, template: {mazeId: Integer}} &&

392 !existsMazeWithId(request.template.mazeId)

393 }

394 post ‘/mazes/{mazeId}/rooms‘

395 {

396 response.code == NOT_FOUND

397 }

398
399 // add maze room, CONFLICT

400 // the maze already has a room with the same name

401 {

402 request in {body: RoomData, template:{mazeId: Integer}} &&

403 existsMazeWithId(request.template.mazeId) &&

404 existsMazeURI(maze, request.template.mazeId) &&

405 (exists room : Room ::

406 room’._links.maze == maze’._links.self &&

407 room’.name == request.body.name

408)

409 }

410 post ‘/mazes/{mazeId}/rooms‘

411 {

412 response.code == CONFLICT &&

413 response in {body: GenericError}

414 }

415
416 // get

417
418 // get maze room, success

419 {

420 request in {template: {mazeId: Integer, roomId: Integer}} &&

421 existsMazeRoomURI(request.template.mazeId, request.template.roomId)

422 }

423 get ‘/mazes/{mazeId}/rooms/{roomId}‘

424 {

425 response.code == SUCCESS &&

426 response in {body: RoomRep} &&

427 response.body repof room

428 }

429
430 // get maze room, maze not found

431 {

432 request in {template:{mazeId: Integer, roomId: Integer}} &&

433 !existsMazeWithId(request.template.mazeId)

434 }

435 get ‘/mazes/{mazeId}/rooms/{roomId}‘

436 {

437 response.code == NOT_FOUND

438 }

439
440 // get maze room, maze found but room not found

441 {

442 request in {template:{mazeId: Integer, roomId: Integer}} &&

443 existsMazeWithId(request.template.mazeId) &&

444 existsMazeURI(maze, request.template.mazeId) &&

445 mazeHasNoRoomWithId(maze, request.template.roomId)

Appendix B. Specifications 147

446 }

447 get ‘/mazes/{mazeId}/rooms/{roomId}‘

448 {

449 response.code == NOT_FOUND

450 }

451
452 // get room doors

453
454 {

455 request in {template:{mazeId: Integer, roomId: Integer}} &&

456 (

457 existsMazeWithId(request.template.mazeId) &&

458 existsRoomWithId(request.template.roomId)

459)

460 }

461 get ‘/mazes/{mazeId}/rooms/{roomId}/doors‘

462 {

463 response.code == SUCCESS &&

464 response in {body: DoorList}

465 }

466
467 // get room doors, but room not found

468
469 {

470 request in {template:{mazeId: Integer, roomId: Integer}} &&

471 (

472 existsMazeWithId(request.template.mazeId) &&

473 !existsRoomWithId(request.template.roomId)
474)

475 }

476 get ‘/mazes/{mazeId}/rooms/{roomId}/doors‘

477 {

478 response.code == NOT_FOUND

479 }

480
481 // get room doors, but maze not found

482
483 {

484 request in {template:{mazeId: Integer, roomId: Integer}} &&

485 !existsMazeWithId(request.template.mazeId)

486 }

487 get ‘/mazes/{mazeId}/rooms/{roomId}/doors‘

488 {

489 response.code == NOT_FOUND

490 }

491
492 // put

493
494 // update maze room, success

495 {

496 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

497 existsMazeRoomURI(request.template.mazeId, request.template.roomId) &&

498 (forall otherRoom : Room ::

499 room != otherRoom =>

500 otherRoom’._links.maze == maze’._links.self &&

501 otherRoom’.name != request.body.name

502)

503 }

504 put ‘/mazes/{mazeId}/rooms/{roomId}‘

505 {

506 response.code == SUCCESS &&

Appendix B. Specifications 148

507 response in {body: RoomRep} &&

508 (response.body repof room &&

509 response.body.name == request.body.name)

510 }

511
512 // update maze room, bad request

513 {

514 request in {template: {mazeId: Integer, roomId: Integer}} &&

515 (existsMazeRoomURI(request.template.mazeId, request.template.roomId) &&

516 (isdefined(request.body) ==> !(request in {body: RoomData})))

517 }

518 put ‘/mazes/{mazeId}/rooms/{roomId}‘

519 {

520 response.code == BAD_REQUEST &&

521 response in {body: BadRequestResponse}

522 }

523
524 // update maze room, maze not found

525 {

526 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

527 !existsMazeWithId(request.template.mazeId)

528 }

529 put ‘/mazes/{mazeId}/rooms/{roomId}‘

530 {

531 response.code == NOT_FOUND

532 }

533
534 // update maze room, maze found but room not found

535 {

536 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

537 existsMazeWithId(request.template.mazeId) &&

538 existsMazeURI(maze, request.template.mazeId) &&

539 mazeHasNoRoomWithId(maze, request.template.roomId)

540 }

541 put ‘/mazes/{mazeId}/rooms/{roomId}‘

542 {

543 response.code == NOT_FOUND

544 }

545
546 // update maze room, CONFLICT

547 {

548 request in {body: RoomData, template: {mazeId: Integer, roomId: Integer}} &&

549 existsMazeRoomURI(request.template.mazeId, request.template.roomId) &&

550 (exists otherRoom : Room ::

551 otherRoom != room &&

552 otherRoom’.name == request.body.name &&

553 otherRoom’._links.maze == maze’._links.self

554)

555 }

556 put ‘/mazes/{mazeId}/rooms/{roomId}‘

557 {

558 response.code == CONFLICT &&

559 response in {body: GenericError}

560 }

561
562 // delete

563
564 // delete maze room, success

565 {

566 request in {template:{mazeId: Integer, roomId:Integer}} &&

567 existsMazeRoomURI(request.template.mazeId, request.template.roomId) &&

Appendix B. Specifications 149

568 !mazeStartsInRoom()

569 }

570 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

571 {

572 response.code == NO_CONTENT &&

573 maze’.id == request.template.mazeId &&

574 !(exists room: Room ::

575 room’.id == request.template.roomId &&

576 room’._links.maze == maze’._links.self

577)

578 }

579
580 // delete maze room, maze not found

581 {

582 request in {template: {mazeId: Integer, roomId: Integer}} &&

583 !existsMazeWithId(request.template.mazeId)

584 }

585 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

586 {

587 response.code == NOT_FOUND

588 }

589
590 // delete maze room, maze found but room not found

591 {

592 request in {template: {mazeId: Integer, roomId: Integer}} &&

593 existsMazeWithId(request.template.mazeId) &&

594 existsMazeURI(maze, request.template.mazeId) &&

595 mazeHasNoRoomWithId(maze, request.template.roomId)

596 }

597 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

598 {

599 response.code == NOT_FOUND

600 }

601
602 // delete maze room, room is maze start room

603 {

604 request in {template: {mazeId: Integer, roomId: Integer}} &&

605 existsMazeRoomURI(request.template.mazeId, request.template.roomId) &&

606 mazeStartsInRoom()

607 }

608 delete ‘/mazes/{mazeId}/rooms/{roomId}‘

609 {

610 response.code == CONFLICT &&

611 response in {body: GenericError} &&

612 response.body.error == "Constraint violation"

613 }

Listing B.6: MazesMacros specification

1 specification Features-service

2
3 //------------ Constants

4
5 // Some constants to avoid magical numbers and ease maintenance

6
7 const SUCCESS = 200

8 const CREATED = 201

9 const NO_CONTENT = 204

10 const BAD_REQUEST = 400

11 const NOT_FOUND = 404

12 const CONFLICT = 409

13

Appendix B. Specifications 150

14
15 //------------ Resources

16
17 // Although constraints and features are resources (they can be deleted),

18 // it is not possible to get their representation though a get...

19
20 resource ProductR

21 resource ProductConfigurationR

22
23 //------------ Types

24
25 type URIString = (x: String where matches(^[\w]{3,50}$, x))

26
27
28 type Feature = {

29 id: Integer,

30 name: String,

31 description: String | [null]

32 }

33
34
35 // source, required and excluded FeatureName are not described in swagger

36 type Constraint = (x: {

37 id: Integer,

38 typeName: String,

39 sourceFeatureName: String | [null],

40 ?requiredFeatureName: String | [null],

41 ?excludedFeatureName: String | [null]

42 } where isdefined(x.excludedFeatureName) | isdefined(x.requiredFeatureName))

43
44
45 type ProductConfiguration represents ProductConfigurationR = {

46 name: String,
47 valid: Boolean,

48 activeFeatures: Feature[]

49 }

50
51
52 type Product represents ProductR = {

53 id: Integer,
54 name: String,
55 features: Feature[],

56 constraints: Constraint[]

57 }

58
59
60 // ------------ Variables

61 var productR: ProductR

62 var configurationR: ProductConfigurationR

63
64
65 // ------------ Functions

66
67 function pathOfProd(product: String) : String =

68 root ++ $’/products/{product}’

69
70 function pathOfConfig(product: String, configuration: String) : String =

71 root ++ $’/products/{product}/

72 configurations/{configuration}’

73
74 /*

Appendix B. Specifications 151

75 The constraint has the type "excludes" and it’s fields are equal to the passed

76 parameters. sfn might be null.

77 */

78 predicate excludesConstraintIs(constraint: Constraint, sfn: Any|URIString, fn: URIString) =

79 isdefined(constraint.excludedFeatureName) &&

80 constraint.typeName == "excludes" &&

81 constraint.sourceFeatureName == sfn &&

82 constraint.excludedFeatureName == fn

83
84 /*

85 The constraint has the type "requires" and it’s fields are equal to the passed

86 parameters. sfn might be null.

87 */

88 predicate requiresConstraintIs(constraint: Constraint, sfn: Any|URIString, fn: URIString) =

89 isdefined(constraint.requiredFeatureName) &&

90 constraint.typeName == "requires" &&

91 constraint.sourceFeatureName == sfn &&

92 constraint.requiredFeatureName == fn

93
94 predicate existsNameInFeatures(features: Feature[], name: String | [null]) =

95 forsome feature of features :: name == feature.name

96
97 predicate checkRequiresFeature(features: Feature[], constraint: Constraint) =

98 constraint.typeName == "requires" &&

99 !existsNameInFeatures(features, constraint.sourceFeatureName)

100
101 predicate checkExcludesFeature(features: Feature[], constraint: Constraint) =

102 constraint.typeName == "excludes" &&

103 isdefined(constraint.excludedFeatureName) &&

104 existsNameInFeatures(features, constraint.excludedFeatureName)

105
106 /*

107 Describe the existence of a constraint with the id passed as parameter.

108 */

109 predicate hasIdConstraint(constraints: Constraint[], id: Integer) =

110 forsome c of constraints :: c.id == id

111
112 // ------------ Assertions

113
114 //*********************** PRODUCTS ***************************

115
116 // get products

117 // > to request a list with the names of all available products

118 {

119 true

120 }

121 get ‘/products‘

122 {

123 response.code == SUCCESS &&

124 response in {body: String[]} && (

125 (foreach name of response.body ::

126 (exists productR: ProductR ::

127 productR’.name == name

128)

129) && // this is the same as the above, only one representation ?

130 (forall productR: ProductR ::

131 (forsome name of response.body ::

132 productR’.name == name

133)

134)

135)

Appendix B. Specifications 152

136 }

137
138 // get product

139 // > to request the features and constraints of a product

140 {

141 request in {template: {productName: URIString}} &&

142 request.location uriof productR

143 }

144 get ‘/products/{productName}‘

145 {

146 response.code == SUCCESS &&

147 response in {body: Product} && (

148 response.body repof productR &&

149 response.body.name == request.template.productName

150)

151 }

152
153
154 // >add a new product

155 {

156 request in {template: {productName: URIString}}

157 }

158 post ‘/products/{productName}‘

159 {

160 response.code == CREATED &&

161 response in {header: {location: URIString}} &&

162 (exists productR: ProductR ::

163 response.header.location uriof productR &&

164 productR’.name == request.template.productName &&

165 productR’.features == [] && productR’.constraints == []

166)

167 }

168
169 // delete product

170 // > to remove an existing product and all its configurations

171 {

172 request in {template: {productName: URIString}} &&

173 request.location uriof productR

174 }

175 delete ‘/products/{productName}‘

176 {

177 response.code == NO_CONTENT &&

178 (forall productR: ProductR ::

179 !(request.location uriof productR) &&

180 productR’.name != request.template.productName) &&

181 (forall configurationR: ProductConfigurationR ::

182 !(exists configurationName2: URIString ::

183 pathOfConfig(request.template.productName, configurationName2) uriof configurationR

184)

185)

186 }

187
188 //*********************** FEATURES ***************************

189
190 // get a list with the features of a product

191 {

192 request in {template: {productName: URIString}} &&

193 pathOfProd(request.template.productName) uriof productR

194 }

195 get ‘/products/{productName}/features‘

196 {

Appendix B. Specifications 153

197 response.code == SUCCESS &&

198 response in {body: Feature[]} &&

199 (foreach responseFeature of response.body ::

200 existsNameInFeatures(productR’.features, responseFeature.name)

201)

202 &&

203 (foreach productFeature of productR’.features ::

204 existsNameInFeatures(response.body, productFeature.name)

205)

206 }

207
208 // add a feature to a product - with description

209 // unfolding was required (assertion with isdefined in pos not supported)

210 {

211 request in {template: {productName: URIString, featureName: URIString, description:
URIString}} &&

212 (

213 isdefined(request.template.description) &&

214 pathOfProd(request.template.productName) uriof productR

215)

216 }

217 post ‘/products/{productName}/features/{featureName}{?description}‘

218 {

219 response.code == CREATED &&

220 response in {header: {location: URIString}} &&

221 (forsome feature of productR’.features ::

222 feature.name == request.template.featureName &&

223 feature.description == request.template.description

224)

225 }

226
227 // add a feature to a product - without description

228 {

229 request in {template: {productName: URIString, featureName: URIString}} &&

230 !isdefined(request.template.description) &&

231 pathOfProd(request.template.productName) uriof productR

232 }

233 post ‘/products/{productName}/features/{featureName}{?description}‘

234 {

235 response.code == CREATED &&

236 response in {header: {location: URIString}} &&

237 (forsome feature of productR’.features ::

238 feature.name == request.template.featureName &&

239 feature.description == null

240)

241 }

242
243
244 // delete a product feature

245 {

246 request in {template: {productName: URIString, featureName: URIString}} &&

247 pathOfProd(request.template.productName) uriof productR &&

248 existsNameInFeatures(productR’.features, request.template.featureName)

249 }

250 delete ‘/products/{productName}/features/{featureName}‘

251 {

252 response.code == NO_CONTENT &&

253 !existsNameInFeatures(productR’.features, request.template.featureName)

254 }

255
256 // update a feature of a product - with description

Appendix B. Specifications 154

257 {

258 request in {template: {productName: URIString, featureName: URIString, description:
URIString}} &&

259 pathOfProd(request.template.productName) uriof productR &&

260 existsNameInFeatures(productR’.features, request.template.featureName)

261 }

262 put ‘/products/{productName}/features/{featureName}{?description}‘

263 {

264 response.code == SUCCESS &&

265 response in {body: Feature} &&

266 response.body.name == request.template.featureName &&

267 response.body.description == request.template.description &&

268 existsNameInFeatures(productR’.features, response.body.name)

269 }

270
271 // update a feature of a product - without description

272
273 //*********************** CONSTRAINTS ***************************

274
275 // add a excluded constraint to a product -- simplificado

276
277 // add a excluded constraint to a product

278 // with source and exclude

279 {

280 request in {template: {productName: URIString, sourceFeature: URIString, excludedFeature:
URIString}} &&

281 isdefined(request.template.sourceFeature) && isdefined(request.template.excludedFeature) &&

282 pathOfProd(request.template.productName) uriof productR

283 }

284 post ‘/products/{productName}/constraints/excludes{?sourceFeature,excludedFeature}‘

285 {

286 response.code == CREATED &&

287 response in {header: {location: URIString}} && //o uri eh
‘/products/{productName}/constraints/{id}‘

288 (forsome constraint of productR’.constraints ::

289 excludesConstraintIs(constraint, request.template.sourceFeature,
request.template.excludedFeature)

290)

291 }

292
293 // add a excluded constraint to a product

294 // without source

295 {

296 request in {template: {productName: URIString, excludedFeature: URIString}} &&

297 !isdefined(request.template.sourceFeature) &&

298 pathOfProd(request.template.productName) uriof productR

299 }

300 post ‘/products/{productName}/constraints/excludes{?sourceFeature,excludedFeature}‘

301 {

302 response.code == CREATED &&

303 response in {header: {location: URIString}} &&

304 (forsome constraint of productR’.constraints ::

305 excludesConstraintIs(constraint, null, request.template.excludedFeature)

306)

307 }

308
309 // add a required constraint to a product

310 // with source and required

311 {

312 request in {template: {productName: URIString, sourceFeature: URIString, requiredFeature:
URIString}} &&

313 isdefined(request.template.sourceFeature) && isdefined(request.template.requiredFeature) &&

Appendix B. Specifications 155

314 pathOfProd(request.template.productName) uriof productR

315 }

316 post ‘/products/{productName}/constraints/requires{?sourceFeature,requiredFeature}‘

317 {

318 response.code == CREATED &&

319 response in {header: {location: URIString}} &&

320 (forsome constraint of productR’.constraints ::

321 requiresConstraintIs(constraint, request.template.sourceFeature,
request.template.requiredFeature)

322)

323 }

324
325
326 // add a required constraint to a product

327 // without source

328 {

329 request in {template: {productName: URIString, requiredFeature: URIString}} &&

330 !isdefined(request.template.sourceFeature) &&

331 pathOfProd(request.template.productName) uriof productR

332 }

333 post ‘/products/{productName}/constraints/requires{?sourceFeature,requiredFeature}‘

334 {

335 response.code == CREATED &&

336 response in {header: {location: URIString}} &&

337 (forsome constraint of productR’.constraints ::

338 requiresConstraintIs(constraint, null, request.template.requiredFeature)

339)

340 }

341
342 // delete a constraint of a product

343 // product and constraint exist

344 {

345 request in {template: {productName: URIString, constraintId: Integer}} &&

346 pathOfProd(request.template.productName) uriof productR &&

347 hasIdConstraint(productR’.constraints, request.template.constraintId)

348 }

349 delete ‘/products/{productName}/constraints/{constraintId}‘

350 {

351 response.code == NO_CONTENT &&

352 !hasIdConstraint(productR’.constraints, request.template.constraintId)

353 }

354
355
356 // delete a constraint of a product

357 // only product exists

358 {

359 request in {template: {productName: URIString, constraintId: Integer}} &&

360 pathOfProd(request.template.productName) uriof productR &&

361 !hasIdConstraint(productR’.constraints, request.template.constraintId)

362 }

363 delete ‘/products/{productName}/constraints/{constraintId}‘

364 {

365 response.code == NO_CONTENT // found through interaction

366 }

367
368
369 // delete a constraint of a product

370 // product does not exist

371
372 //**

373 //*********************** PRODUCT CONFIGURATIONS ***************************

Appendix B. Specifications 156

374 //**

375
376 // get a list with the names of the configurations of a product

377 {

378 request in {template: {productName: URIString}} &&

379 pathOfProd(request.template.productName) uriof productR

380 }

381 get ‘/products/{productName}/configurations‘

382 {

383 response.code == SUCCESS &&

384 response in {body: String[]} &&

385 (

386 (foreach name of response.body ::

387 (exists configurationR: ProductConfigurationR ::

388 pathOfConfig(request.template.productName, name) uriof configurationR

389)

390) &&

391 (forall configurationR: ProductConfigurationR ::

392 (exists configurationName: URIString ::

393 pathOfConfig(request.template.productName, configurationName) uriof configurationR

394)

395 =>

396 (forsome name of response.body ::

397 configurationR’.name == name

398)

399)

400)

401 }

402
403
404 // get a product configuration

405 {

406 request in {template: {productName: URIString, configurationName: URIString}} &&

407 request.location uriof configurationR

408 }

409 get ‘/products/{productName}/configurations/{configurationName}‘

410 {

411 response.code == SUCCESS &&

412 response in {body: ProductConfiguration}

413 && (

414 response.body repof configurationR &&

415 response.body.name == request.template.configurationName

416)

417 }

418
419 // add a product configuration

420 {

421 request in {template: {productName: URIString, configurationName: URIString}} &&

422 pathOfProd(request.template.productName) uriof productR

423 }

424 post ‘/products/{productName}/configurations/{configurationName}‘

425 {

426 response.code == CREATED &&

427 response in {header: {location: URIString}} &&

428 (exists configurationR: ProductConfigurationR ::

429 response.header.location uriof configurationR &&

430 configurationR’.name == request.template.configurationName &&

431 configurationR’.valid == true && // nao diz na spec mas na wiki

432 configurationR’.activeFeatures == []

433)

434 }

Appendix B. Specifications 157

435
436 // delete a product configuration

437 {

438 request in {template: {productName: URIString, configurationName: URIString}} &&

439 request.location uriof configurationR

440 }

441 delete ‘/products/{productName}/configurations/{configurationName}‘

442 {

443 response.code == NO_CONTENT &&

444 (forall configurationR: ProductConfigurationR :: !(request.location uriof configurationR))

445 }

446
447
448
449 //*********************** FEATURES OF PRODUCTCONFIGURATIONS ***************************

450
451
452 // get a list with the names of the features that are active in a configurations of a product

453 {

454 request in {template: {productName: URIString, configurationName: URIString}} &&

455 pathOfConfig(request.template.productName, request.template.configurationName) uriof
configurationR

456 }

457 get ‘/products/{productName}/configurations/{configurationName}/features‘

458 {

459 response.code == SUCCESS &&

460 response in {body: String[]} &&

461 (

462 (foreach activeFeatureName of response.body ::

463 existsNameInFeatures(configurationR’.activeFeatures, activeFeatureName)

464)

465 &&

466 (foreach confActiveFeature of configurationR’.activeFeatures ::

467 (forsome name of response.body ::

468 confActiveFeature.name == name

469)

470)

471)

472 }

473
474
475 // add an active feature to a configuration

476
477 {

478 request in {template: {productName: URIString, configurationName: URIString, featureName:
URIString}} &&

479 (

480 pathOfProd(request.template.productName) uriof productR &&

481 existsNameInFeatures(productR’.features, request.template.featureName) &&

482 pathOfConfig(request.template.productName, request.template.configurationName) uriof
configurationR &&

483 !existsNameInFeatures(configurationR’.activeFeatures, request.template.featureName)

484)

485 }

486 post ‘/products/{productName}/configurations/{configurationName}/features/{featureName}‘

487 {

488 response.code == CREATED &&

489 existsNameInFeatures(configurationR’.activeFeatures, request.template.featureName) &&

490 (configurationR’.valid == true ||

491 (forsome confActiveFeature of configurationR’.activeFeatures ::

492 (forsome constraint of productR’.constraints ::

493 constraint.sourceFeatureName == confActiveFeature.name &&

Appendix B. Specifications 158

494 (checkRequiresFeature(configurationR’.activeFeatures, constraint) ||

495 checkExcludesFeature(configurationR’.activeFeatures, constraint))

496)

497)

498)

499 }

500
501
502 // delete an active feature to a configuration

503
504 {

505 request in {template: {productName: URIString, configurationName: URIString, featureName:
URIString}} &&

506 (

507 pathOfProd(request.template.productName) uriof productR &&

508 existsNameInFeatures(productR’.features, request.template.featureName) &&

509 pathOfConfig(request.template.productName, request.template.configurationName) uriof
configurationR &&

510 existsNameInFeatures(configurationR’.activeFeatures, request.template.featureName)

511)

512 }

513 delete ‘/products/{productName}/configurations/{configurationName}/features/{featureName}‘

514 {

515 response.code == NO_CONTENT &&

516 !existsNameInFeatures(configurationR’.activeFeatures, request.template.featureName) &&

517 (configurationR’.valid == true ||

518 (forsome confActiveFeature of configurationR’.activeFeatures ::

519 (forsome constraint of productR’.constraints ::

520 constraint.sourceFeatureName == confActiveFeature.name &&

521 (checkRequiresFeature(configurationR’.activeFeatures, constraint) ||

522 checkExcludesFeature(configurationR’.activeFeatures, constraint))

523)

524)

525)

526 }

Listing B.7: FeaturesService specification

1 specification DummyAPI

2
3 resource Employee

4
5 type StringId = (s: String where matches(^[0-9]*$, s))

6
7 type EmployeeRepresentation represents Employee = {

8 employee_name: String,

9 employee_salary: String,

10 employee_age: String,

11 profile_image: String,

12 id: String

13 }

14
15 type EmployeeRequest = {name: String, salary: String, age: String}

16
17 type EmployeeResponse = EmployeeRequest & {id:String}

18
19 type Exchange = EmployeeRequest|EmployeeResponse

20
21 type SuccessMessage = {success: {text: String}}

22 type ErrorMessage = {error: {text: String}}

23
24 const OK = 200

Appendix B. Specifications 159

25 const CREATED = 201

26 const BAD_REQUEST = 400

27 const NOT_FOUND = 404

28 const CONFLICT = 409

29
30 //

31 // get all employees

32
33 {

34 true

35 }

36 get ‘/employees‘

37 {

38 response.code == OK &&

39 response in {body: EmployeeRepresentation[]}

40 }

41
42 predicate existsEmployeeWithId(id: String) =

43 exists e: Employee ::

44 forall er: EmployeeRepresentation ::

45 er repof e => id == er.id

46
47 predicate existsEmployeeWithName(name: String) =

48 exists e: Employee ::

49 exists er: EmployeeRepresentation ::

50 er repof e && er.employee_name == name

51
52 predicate sqlIntegrity(name: String, id: String) =

53 forall e: Employee ::

54 exists er: EmployeeRepresentation :: er repof e =>

55 name != er.employee_name && er.id == id

56
57 predicate compareEmployee(emp: EmployeeRepresentation, msg: Exchange) =

58 emp.employee_name == msg.name &&

59 emp.employee_salary == msg.salary &&

60 emp.employee_age == msg.age

61
62 //

63 // get specific employee

64
65 {

66 request in {template: {id:String}} && // O id do template eh integer e o da rep eh string?

67 existsEmployeeWithId(request.template.id)

68 }

69 get ‘/employee/{id}‘

70 {

71 response.code == OK &&

72 response in {body: EmployeeRepresentation} &&

73 response.body.id == request.template.id &&

74 (forall e: Employee ::

75 e’.id == response.body.id ==> e’ == response.body

76)

77 }

78
79 //

80 // id does not exist --> get request fails

81
82 {

83 request in {template: {id: String}} &&

84 !existsEmployeeWithId(request.template.id)

85 }

Appendix B. Specifications 160

86 get ‘/employee/{id}‘

87 {

88 response.code == OK &&

89 response in {body: (b: Boolean where !b)}

90 }

91
92
93 //

94 // create employee

95 //

96
97 // employee created successfully

98 {

99 request in {body: EmployeeRequest} &&

100 !existsEmployeeWithName(request.body.name)

101 }

102 post ‘/create‘

103 {

104 response.code == OK &&

105 response in {body: EmployeeResponse} &&

106 (exists e: Employee ::

107 request.body.name == response.body.name &&

108 request.body.salary == response.body.salary &&

109 request.body.age == response.body.age &&

110 compareEmployee(e’, response.body) &&

111 (forall otherR: EmployeeRepresentation ::

112 otherR.id == e’.id || otherR.employee_name == e’.employee_name ==> otherR == e’

113)

114)

115 }

116
117
118 //

119 // if a employee with the name already exists

120 {

121 request in {body: EmployeeRequest} &&

122 existsEmployeeWithName(request.body.name)

123 }

124 post ‘/create‘

125 {

126 response.code == OK &&

127 response in {body: ErrorMessage} &&

128 response.body.error.text == "SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate
entry ’" ++

129 request.body.name ++ "’ for key ’employee_name_unique’"

130 }

131
132 //

133 // update employee

134
135 // if some field in EmployeeRequest is missing then

136 // the response body has a null value on that field

137 // if some other field appears in request it will

138 // appear too on the response with the respective value

139 // example: {"salary":"1000","age":"22","height":"180cm"} --

140 // --> {"name":null,"salary":"1000","age":"22","height":"180cm"}

141
142 {

143 request in {body: EmployeeRequest, template: {id:String}} &&

144 !existsEmployeeWithId(request.template.id)

145 }

Appendix B. Specifications 161

146 put ‘/update/{id}‘

147 {

148 response.code == OK &&

149 response in {body: EmployeeRequest} &&

150 response.body == request.body

151 }

152
153 //// successful update

154 {

155 request in {body: EmployeeRequest, template:{id:String}} &&

156 existsEmployeeWithId(request.template.id) &&

157 sqlIntegrity(request.body.name, request.template.id)

158 }

159 put ‘/update/{id}‘

160 {

161 response.code == OK &&

162 response in {body: EmployeeRequest} &&

163 response.body == request.body &&

164 (exists e: Employee ::

165 compareEmployee(e’, request.body) &&

166 e’.id == request.template.id &&

167 (forall eR: EmployeeRepresentation ::

168 e’.id == eR.id ==> e’ == eR

169)

170)

171 }

172
173 //

174 //// name already exists

175 //

176
177 {

178 request in {body: EmployeeRequest, template:{id:String}} &&

179 !sqlIntegrity(request.body.name, request.template.id)

180 }

181 put ‘/update/{id}‘

182
183 {

184 response.code == OK &&

185 response in {body: ErrorMessage} &&

186 response.body.error.text == "SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate
entry ’’" ++

187 "for key ’employee_name_unique’"

188 }

189
190 //

191 //// delete employee

192 //

193 // the response is always the same, and the state after the method too

194 //

195 {

196 request in {template: {id: String}}

197 }

198 delete ‘/delete/{id}‘

199 {

200 response.code == OK &&

201 response in {body: SuccessMessage} &&

202 response.body.success.text == "successfully! deleted Records" &&

203 !existsEmployeeWithId(request.template.id)

204 }

Listing B.8: DummyAPI specification

Appendix B. Specifications 162

1 /**

2 * The Petstore in HeadREST.

3 *

4 * Based on OpenAPI Specification v3.0 petstore.yaml

5 */

6 specification PetStoreAPI

7
8 /**

9 * Resources

10 */

11 resource Pet, Store, User

12
13 type URI = String

14
15 type Category = {

16 ?id: Integer,

17 ?name: String

18 }

19
20 type Tag = {

21 id: Integer,

22 name: String

23 }

24
25 type ApiResponse = {

26 code: Integer,

27 case: String,

28 message: String

29 }

30
31 type InlineModelAux = {

32 ?id: Integer,

33 ?category: Category,

34 name: String,

35 photoUrls: URI[],

36 ?tags: Tag[],

37 ?status: ["available"] | ["pending"] | ["sold"]

38 }

39
40 type InlineModel = {

41 model: InlineModelAux[]

42 }

43
44 /**

45 * Types

46 */

47 type PetRep represents Pet = {

48 ?id: Integer,

49 ?category: Category,

50 name: String,

51 photoUrls: URI[],

52 tags: Tag[],

53 ?status: (x: String where x == "available" || x == "pending" || x == "sold")

54 }

55
56
57 type UserRep represents User = {

58 ?id: Integer,

59 ?username: String,

60 ?firstName: String,

61 ?lastName: String,

Appendix B. Specifications 163

62 ?email: String,

63 ?password: String,

64 ?phone: String,

65 ?userStatus: Integer

66 }

67
68 /**

69 * CODES

70 */

71 const SUCCESS = 200

72 const CREATED = 201

73 const BAD_REQUEST = 400

74 const NOT_FOUND = 404

75 const INVALID_INPUT = 405

76 const DUPLICATE = 409

77
78 // addPet 200, If pet doesn’t exist

79 {

80 request in {body: PetRep} &&

81 (isdefined(request.body.id) ==>

82 (forall pet:Pet ::

83 isdefined(pet’.id) ==>

84 pet’.id != request.body.id

85)

86)

87 }

88 post ‘/pet‘

89 {

90 response.code == SUCCESS &&

91 response in {body: PetRep} &&

92 (isdefined(request.body.id) => response.body == request.body) &&

93 (exists pet: (p: Pet where response.body repof p) ::

94 isdefined(response.body.id) &&

95 $’/pet/{response.body.id}’ uriof pet)

96 }

97
98 // addPet 200, If pet exists

99 var pet: Pet

100 {

101 (request in {body: PetRep} && isdefined(request.body.id)) ?

102 (isdefined(pet’.id) &&

103 pet’.id == request.body.id)

104 : false

105 }

106 post ‘/pet‘

107 {

108 response.code == SUCCESS &&

109 response in {body: PetRep} &&

110 response.body == request.body &&

111 response.body repof pet

112 }

113
114 // addPet 405, Invalid input

115 {

116 !(request in {body: PetRep})

117 }

118 post ‘/pet‘

119 {

120 response.code == INVALID_INPUT &&

121 response in {body: ApiResponse} &&

122 response.body.code == INVALID_INPUT &&

Appendix B. Specifications 164

123 response.body.case == "unknown" &&

124 response.body.message == "bad input"

125 }

126
127 // updatePet 200

128 // hardcopies request.body on a pet representation

129 {

130 request in {body: PetRep} &&

131 isdefined(pet’.id) &&

132 isdefined(request.body.id) &&

133 pet’.id == request.body.id

134 }

135 put ‘/pet‘

136 {

137 response.code == SUCCESS &&

138 response in {body: PetRep} &&

139 pet’ == request.body

140 }

141
142 // updatePet 400

143 {

144 !(request in {body: PetRep})

145 }

146 put ‘/pet‘

147 {

148 response.code == BAD_REQUEST &&

149 response in {body: ApiResponse} &&

150 response.body.code == BAD_REQUEST &&

151 response.body.case == "unknown" &&

152 response.body.message == "bad input"

153 }

154
155 predicate validPetStatus(status: String) =

156 status == "available" || status == "pending" || status == "sold"

157
158 // findPetsByStatus 200

159 {

160 request in {template: {status: (x: String where validPetStatus(x))[]}}

161 }

162 get ‘/pet/findByStatus{?status}‘

163 {

164 response.code == SUCCESS &&

165 response in {body: InlineModel} &&

166 (foreach i of response.body.model ::

167 (forsome j of request.template.status ::

168 isdefined(i.status) && i.status == j

169)

170)

171 }

172
173 // findPetsByStatus 400

174 {

175 request in {template: {status: (x: String where !validPetStatus(x))[]}}

176 }

177 get ‘/pet/findByStatus{?status}‘

178 {

179 response.code == BAD_REQUEST

180 }

181
182 // createUser 200

183 var user: User

Appendix B. Specifications 165

184
185 {

186 request in {body: UserRep}

187 }

188 post ‘/user‘

189 {

190 response.code == SUCCESS

191 }

192
193 predicate isValidLogin(user: UserRep, account: UserRep) =

194 isdefined(user.name) && isdefined(account.name) &&

195 isdefined(user.password) && isdefined(account.password) &&

196 user.name == account.name && user.password == account.password

197
198 // loginUser 200 & 400, if invalid it creates as new account

199 {

200 request in {template: UserRep} &&

201 (exists user: User :: isValidLogin(user’, request.template))

202 }

203 get ‘/user/login{?username,password}‘

204 {

205 response.code == SUCCESS

206 }

Listing B.9: PetStore specification

1 specification SimpleAPI

2
3 // Resource declaration

4
5 resource Contact

6
7 // Type declaration

8
9 type Email = String //missing @ declaration with where and contains

10
11 type ContactRepresentation represents Contact = {

12 id: Integer,

13 name: (x : String where size(x) > 2),

14 email: Email

15 }

16
17 type ContactPutData = {

18 id: Integer,

19 name: String

20 }

21
22 type GenericError = {

23 error: String,

24 explanation: String

25 }

26
27 // Constant declaration

28 const SUCCESS = 200

29 const CREATED = 201

30 const BAD_REQUEST = 400

31 const NOT_FOUND = 404

32 const CONFLICT = 409

33
34 // Variable declaration

35 var contact: Contact

Appendix B. Specifications 166

36
37 //---------------------------- Available Operations and their behavior

38
39 predicate contactHasId(id: Integer) =

40 exists c : Contact ::

41 forall cr : ContactRepresentation ::

42 cr repof c => cr.id == id

43
44 // add contact, CREATED

45 {

46 request in {body: ContactPutData} &&

47 !contactHasId(request.body.id)

48 }

49 post ‘/contacts‘

50 {

51 response.code == CREATED &&

52 response in {body: ContactRepresentation, header: {Location: String}} &&

53 (exists c: Contact :: response.body repof c && response.header.Location uriof c)

54 }

55
56 // add contact, CONFLICT

57 {

58 request in {body: ContactPutData} &&

59 contact’.id == request.body.id

60 }

61 post ‘/contacts‘

62 {

63 response.code == CONFLICT &&

64 response in {body: GenericError} &&

65 response.body.error == "Duplicated contact"

66 }

67
68 // add contact, BAD_REQUEST

69 {

70 !(request in {body: ContactPutData})

71 }

72 post ‘/contacts‘

73 {

74 response.code == BAD_REQUEST

75 }

76
77 // get contact, SUCCESS

78 {

79 request.template.id in Integer &&

80 contact’.id == request.template.id

81 }

82 get ‘/contacts/{id}‘

83 {

84 response.code == SUCCESS &&

85 response in {body: ContactRepresentation} && (

86 response.body.id == request.template.id &&

87 response.body repof contact

88)

89 }

90
91 // get contact, NOT_FOUND

92 {

93 request.template.id in Integer &&

94 !contactHasId(request.template.id)

95 }

96 get ‘/contacts/{id}‘

Appendix B. Specifications 167

97 {

98 response.code == NOT_FOUND

99 }

100
101 // delete contact, SUCCESS

102 {

103 request.template.id in Integer &&

104 contactHasId(request.template.id)

105 }

106 delete ‘/contacts/{id}‘

107 {

108 response.code == SUCCESS &&

109 !contactHasId(request.template.id)

110 }

111
112 // update contact, SUCCESS

113 {

114 request in {body: ContactPutData} &&

115 request.template.id in Integer &&

116 request.body.id == request.template.id &&

117 contact’.id == request.template.id

118 }

119 put ‘/contacts/{id}‘

120 {

121 response.code == SUCCESS &&

122 contact’.name == request.body.name

123 }

Listing B.10: SimpleAPI specification

B.3 Case Studies

1 specification GitLab

2
3 resource User, Project, Commit, Wiki

4
5 type Id = Integer | String

6
7 type Link = {

8 href: String

9 }

10
11 type ErrorMessage = {

12 msg: String

13 }

14
15 /**

16 * Scope types

17 * @api

18 * - Grants complete read/write access to the API, including all

19 * groups and projects, the container registry, and the package registry.

20 * @read_user

21 * - Grants read-only access to the authenticated user’s profile

22 * through the /user API endpoint, which includes username, public email,

23 * and full name. Also grants access to read-only API endpoints under /users.

24 * @read_repository

25 * - Grants read-only access to repositories on private projects

26 * using Git-over-HTTP or the Repository Files API.

27 * @write_repository

28 * - Grants read-write access to repositories on private

Appendix B. Specifications 168

29 * projects using Git-over-HTTP (not using the API).

30 */

31 type Scopes = ["api"] | ["read_user"] | ["read_repository"] | ["write_repository"]

32
33 /**

34 * Role types

35 */

36 type ProjectRole = [50] | [40] | [30] | [20] | [10] | [0]

37
38 /**

39 * User types

40 */

41 type UserData represents User = {

42 id: Id,

43 name: String,
44 username: String,
45 state: ["active"] | ["blocked"],

46 avatar_url: Link,

47 web_url: Link

48
49 }

50
51 type UserPostData = {

52 email: String,

53 ?password: String,
54 ?reset_password: Boolean,
55 ?force_random_password: Boolean,

56 username: String,
57 name: String

58 }

59
60 /**

61 * User views, data that comes in the response body

62 */

63 type AdminUserData represents User = UserData & {

64 is_admin: Boolean,

65 created_at: String,

66 bio: String,

67 location: String,

68 skype: String,

69 linkeding: String,

70 twitter: String,

71 website_url: Link,

72 organization: String,

73 job_title: String,
74 last_sign_in_at: String,
75 confirmed_at: String,

76 last_activity_on: String,
77 can_create_group: Boolean,

78 can_create_project: Boolean,

79 current_sign_in_at: String,

80 identities: {provider: String, extern_uid: Id}[],

81 private_profile: Boolean

82 }

83
84 /**

85 * Project related types

86 */

87 type ProjectData represents Project = {

88 id: Id,

89 visibility: ["public"] | ["private"],

Appendix B. Specifications 169

90 description: String,

91 name: String,

92 name_with_namespace: String,

93 path: String,

94 path_with_namespace: String,

95 tag_list: String[],

96 ssh_url_to_repo: Link,

97 http_url_to_repo: Link,

98 web_url: Link,

99 readme_url: Link,

100 avatar_url: Link,

101 star_count: Integer,

102 forks_count: Integer,

103 last_activity_at: String,

104 namespace: {

105 id: Integer,

106 name: String,

107 path: String,

108 kind: String,

109 full_path: String,

110 parent_id: Integer,

111 avatar_url: Link,

112 web_url: Link

113 },

114 _links: {

115 self: Link,

116 members: Link,

117 repo_branches: Link,

118 issues: Link,

119 merge_requests: Link,

120 events: Link,

121 labels: Link

122 }

123 }

124
125 type MemberData represents User = {

126 id: Id,

127 username: String,

128 name: String,

129 state: ["active"],

130 avatar_url: Link,

131 web_url: Link,

132 expires_at: String,

133 access_level: ProjectRole,

134 group_saml_identity: {

135 extern_id: Id,

136 provider: String,

137 smal_provider_id: Id

138 }

139 }

140
141 type CommitData represents Commit = {

142 id: Id,

143 short_id: Id,

144 title: String,

145 author_name: String,

146 author_email: String,

147 authored_date: String,

148 comitter_name: String,

149 comitted_date: String,

150 created_at: String,

Appendix B. Specifications 170

151 message: String,

152 parent_ids: String[]

153 }

154
155 /**

156 * Received when requesting an individual commit

157 */

158 type ResponseCommitData = CommitData & {

159 project_id: Id

160 }

161
162 type WikiData represents Wiki = {

163 slug: String,

164 format: String,

165 ?content: String,

166 title: String

167 }

168
169 /**

170 * General functions

171 */

172 predicate userIsAdmin(user: User) =

173 (exists adminData: AdminUserData ::

174 adminData repof user &&

175 adminData.is_admin

176)

177
178 predicate commitHasId(commitData: CommitData, id: Id) =

179 commitData.id == id || commitData.short_id == id

180
181 predicate hasProjectRole(u: User, r: ProjectRole, projectRoot: String) =

182 (exists mData: MemberData ::

183 mData repof u &&

184 mData.access_level == r &&

185 $’{projectRoot}/all/{mData.id}’ uriof u

186)

187
188 /**

189 * Principal functions

190 */

191 predicate hasScope(p: Principal, s: Scopes)

192
193 predicate hasPassword(p: Principal, s: String)

194
195 function userFromPrincipal(p: Principal) : User

196
197 {

198 request.template in {id: String|Integer, slug: String} &&

199 request.header in {Authorization: String} &&

200 authN == principalof(request.header.Authorization) &&

201 hasScope(authN, "api") &&

202 (exists project: Project ::

203 project’.id == request.template.id &&

204 (exists user: User ::

205 user == userFromPrincipal(authN) &&

206 !(hasProjectRole(user, 40, project’._links.members.href) ||

207 hasProjectRole(user, 50, project’._links.members.href)

208)

209)

210)

211 }

Appendix B. Specifications 171

212 delete ‘/projects/{id}/wikis{slug}‘

213 {

214 response.code == 403

215 }

216
217
218 /**

219 * Variables

220 */

221 var project: Project

222
223 var impersonate: User

224
225 var user: User

226
227 var commit: Commit

228
229 var authN: Principal

230
231 /**

232 * Deleting a project wiki with role level below maintainer is forbidden.

233 * Wiki access is done through slugs (e.g. "Hello There" has the corresponding slug
"Hello-There").

234 */

235 {

236 request.template in {id: Id, slug: String} &&

237 request.header in {Private-Token: String} &&

238 authN == principalof(request.header.Private-Token) &&

239 user == userFromPrincipal(authN) &&

240 !userIsAdmin(user) &&

241 hasScope(authN, "api") &&

242 (exists project: Project ::

243 project’.id == request.template.id &&

244 (!hasProjectRole(user, 40, project’._links.members.href) ||

245 !hasProjectRole(user, 50, project’._links.members.href)

246) &&

247 (exists wiki: Wiki ::

248 wiki’.slug == request.template.slug

249)

250)

251 }

252 delete ‘/projects/{id}/wikis/{slug}‘

253 {

254 response.code == 403&&

255 response in {body: ErrorMessage}

256 }

257
258
259 predicate hasValidPasswordParameters(u: UserPostData) =

260 !(isdefined(u.reset_password) &&

261 isdefined(u.force_random_password)) ==>

262 isdefined(u.password)

263
264 /**

265 * Creating a user can only be accomplished by users with administrator privileges.

266 */

267 {

268 request in {body: UserPostData} &&

269 hasValidPasswordParameters(request.body) &&

270 request.header in {Private-Token: String} &&

271 authN == principalof(request.header.Private-Token) &&

Appendix B. Specifications 172

272 user == userFromPrincipal(authN) &&

273 !userIsAdmin(user)

274 }

275 post ‘/users‘

276 {

277 response.code == 403&&

278 response in {body: ErrorMessage}

279 }

280
281
282 /**

283 * Administrator can impersonates a user that is not an

284 * administrator. Therefore, it should not be allowed

285 * for the administrator impersonating a regular user

286 * to create another user.

287 */

288 {

289 // the sudo query enables admins to impersonate users, it is an id

290 request.template in {sudo: Id} &&

291 request in {body: UserPostData} &&

292 request.header in {Private-Token: String} &&

293 authN == principalof(request.header.Private-Token) &&

294 hasValidPasswordParameters(request.body) &&

295 user == userFromPrincipal(authN) &&

296 // to use sudo, user must have an admin role

297 userIsAdmin(user) &&

298 // the user we want to impersonate must exist

299 (exists adminUserData: AdminUserData ::

300 adminUserData repof impersonate &&

301 adminUserData.id == request.template.sudo

302)

303 }

304 post ‘/users{?sudo}‘

305 {

306 // impersonated user is an admin and therefore can create users

307 (response.code == 201==> userIsAdmin(user)) ||

308 // impersonated user is not an admin and thus it cannot create users

309 (response.code == 403==> !userIsAdmin(user) && response in {body: ErrorMessage})

310 }

311
312 /**

313 * Get information about a project with a given id.

314 * The project must be accessible to the user in question.

315 * In this assertion the project visibility is "private".

316 * Therefore, either the user is an administrator, or

317 * the user belongs to the members of the project.

318 */

319 {

320 request.template in {id: Id} &&

321 request.header in {Private-Token: String} &&

322 authN == principalof(request.header.Private-Token) &&

323 project’.id == request.template.id &&

324 project’.visibility == "private" &&

325 user == userFromPrincipal(authN) &&

326 userIsAdmin(user) || (

327 hasScope(authN, "api") &&

328 (exists mData: MemberData ::

329 $’{project’._links.members}/all/{mData.id}’ uriof user

330)

331)

332 }

Appendix B. Specifications 173

333 get ‘/projects/{id}‘

334 {

335 response.code == 200&&

336 response in {body: ProjectData} &&

337 project’.id == response.body.id

338 }

339
340
341
342 /**

343 * Get information about a specific commit in a private repository.

344 */

345 {

346 request.template in {id: Id, sha: Id} &&

347 request.header in {Private-Token: String} &&

348 authN == principalof(request.header.Private-Token) &&

349 project’.id == request.template.id &&

350 project’.visibility == "private" &&

351 commitHasId(commit’, request.template.sha) &&

352 (exists userData: UserData ::

353 userData repof user &&

354 (

355 userIsAdmin(user) ||

356 (

357 hasScope(authN, "api") &&

358 (exists mData: MemberData ::

359 $’{project’._links.members}/all/{userData.id}’ uriof user

360)

361)

362)

363)

364 }

365 get ‘/projects/{id}/repository/commits/{sha}‘

366 {

367 response.code == 200&&

368 response in {body: ResponseCommitData} &&

369 response.body.project_id == project’.id &&

370 commitHasId(commit’, response.body.id)

371 }

372
373 /**

374 * Attempt to view user activities using a token with only the "read_user" scope.

375 * This scope includes username, public email, and full name. However it does not include

376 * the activities, therefore it is forbidden.

377 */

378 {

379 request.header in {Authorization: String} &&

380 authN == principalof(request.header.Authorization) &&

381 !hasScope(authN, "api") &&

382 hasScope(authN, "read_user")

383 }

384 get ‘/user/activities‘

385 {

386 response.code == 403&&

387 response in {body: ErrorMessage}

388 }

389
390 /**

391 * Attempt to get activities without "api" scope.

392 */

393 {

Appendix B. Specifications 174

394 request.header in {Authorization: String} &&

395 authN == principalof(request.header.Authorization) &&

396 !hasScope(authN, "api")

397 }

398 get ‘/user/activities‘

399 {

400 response.code == 403&&

401 response in {body: ErrorMessage}

402 }

Listing B.11: GitLab specification

1 /**

2 * Partial API of Petstore

3 *

4 * Based on OpenAPI Specification v3.0 petstore.yaml,

5 * https://github.com/swagger-api/swagger-petstore/blob/master/src/main/resources/openapi.yaml

6 * PetStore version 3

7 *

8 *

9 * This specification illustrates the use of the new security primitives

10 * added to the language. This specification is based on the PetStoreAPI.

11 * The PetStoreAPI has two authentication methods, ApiKeys and OAuth 2.0.

12 *

13 * Endpoints

14 * user login,

15 * user logout,

16 * creating a user,

17 * updating a user,

18 * retrieving user by name,

19 * retrieving a pet by id,

20 * finding pet by status

21 *

22 * Confident team

23 */

24 specification PetStoreAPI

25
26 /**

27 * Security

28 */

29
30
31 // oauth2

32 type Scope = ["read"] | ["write"] | ["read:pets"] | ["write:pets"]

33 predicate hasName(p: Principal, name: String)

34 predicate hasScope(p: Principal, s: Scope)

35
36 // apiKey

37 type ApiKey = {apiKey: String}

38
39 // aux variable

40 var authN: Principal

41
42
43 /**

44 * Users : Types definition

45 */

46
47 resource User

48
49 type UserRep represents User = {

50 id: Integer,

Appendix B. Specifications 175

51 username: String,

52 firstName: String,

53 lastName: String,
54 email: String,
55 password: String,

56 phone: String,
57 userStatus: Integer

58 }

59
60 /**

61 * Pets : Types definition

62 */

63 resource Pet

64
65 type URI = String

66
67 type Category = {

68 ?id: Integer,

69 ?name: String

70 }

71
72 type Tag = {

73 id: Integer,
74 name: String
75 }

76
77 type Status = (x: String where x == "available" || x == "pending" || x == "sold")

78
79 type PetRep represents Pet = {

80 ?id: Integer,

81 ?category: Category,

82 name: String,

83 photoUrls: URI[],

84 tags: Tag[],

85 ?status: Status

86 }

87
88
89 /**

90 * Other useful types

91 */

92
93 type ApiResponse = {

94 code: Integer,

95 case: String,

96 message: String

97 }

98
99 type InlineModel = {

100 model: PetRep[]

101 }

102
103 /**

104 * CODES

105 */

106
107 const SUCCESS = 200

108 const CREATED = 201

109 const BAD_REQUEST = 400

110 const NOT_FOUND = 404

111 const INVALID_INPUT = 405

Appendix B. Specifications 176

112 const DUPLICATE = 409

113
114
115 //---------------------------- Some Operations and their behavior

116
117 /**

118 * USERS

119 */

120
121 // loginUser, 200

122 {

123 request in {template: UserRep} &&

124 isdefined(request.template.username) &&

125 isdefined(request.template.password) &&

126 (exists user:User ::

127 user’.username == request.template.username &&

128 user’.password == request.template.password

129)

130 }

131 get ‘/user/login{?username,password}‘

132 {

133 response.code == SUCCESS

134 }

135
136 // loginUser, 400

137 {

138 request in {template: UserRep} &&

139 (!isdefined(request.template.username) ||

140 !isdefined(request.template.password) ||

141 !(exists user:User ::

142 user’.username == request.template.username &&

143 user’.password == request.template.password

144))

145 }

146 get ‘/user/login{?username,password}‘

147 {

148 response.code == BAD_REQUEST

149 }

150
151 // logoutUser

152 // nothing we can say about this

153 {true}

154 get ‘/user/logout‘

155 {true}

156
157
158 // createUser

159 // This can only be done by the logged in user but we have no means to say it.

160 {

161 true

162 }

163 post ‘/user‘

164 {

165 response.code == SUCCESS ==> request in {body: UserRep}

166 }

167
168
169 /*

170 * Get a user using an ApiKey as the form of authentication.

171 * This can only be done if the ApiKey is for the target user

172 */

Appendix B. Specifications 177

173 {

174 request.template in {name: String} &&

175 request.header in ApiKey &&

176 authN == principalof(request.header.apiKey) &&

177 hasName(authN, request.template.name) &&

178 (exists user: User :: user’.username == request.template.name)

179 }

180 get ‘/user/{name}‘

181 {

182 response.code == 200&&

183 response in {body: UserRep}

184 }

185
186 /*

187 * Get a user using OAuth 2.0 token as authentication and scopes as authorization

188 * In the PetStore API, OAuth blocks the user only when all scopes are denied. If we attempt

189 * to be selective with our scopes we see no changes to our permissions.

190 */

191 {

192 request.template in {name: String} &&

193 request.header in {Authorization: String} &&

194 authN == principalof(request.header.Authorization) &&

195 hasName(authN, request.template.name) &&

196 hasScope(authN, "read") &&

197 (exists user: User :: user’.username == request.template.name)

198 }

199 get ‘/user/{name}‘

200 {

201 response.code == 200&&

202 response in {body: UserRep}

203 }

204
205 // updateUser

206 // This can only be done by the logged in user but we have no means to say it.

207 {

208 true

209 }

210 put ‘/user/{name}‘

211 {

212 response.code == SUCCESS ==> request in {body: UserRep}

213 }

214
215
216 /**

217 * PETS

218 */

219
220 // addPet 200, if does not exist

221 {

222 request in {body: PetRep} &&

223 request.header in {Authorization: String} &&

224 authN == principalof(request.header.Authorization) &&

225 hasScope(authN, "read:pets") &&

226 hasScope(authN, "write:pets") &&

227 isdefined(request.body.id) &&

228 (forall pet:Pet :: isdefined(pet’.id) ==> pet’.id != request.body.id)

229 }

230 post ‘/pet‘

231 {

232 response.code == SUCCESS &&

233 response in {body: PetRep} &&

Appendix B. Specifications 178

234 response.body == request.body &&

235 (exists pet: (p: Pet where response.body repof p) ::

236 $’/pet/{response.body.id}’ uriof pet

237)

238 }

239
240 // addPet 200, if already exists

241 var pet: Pet

242 {

243 request in {body: PetRep} &&

244 request.header in {Authorization: String} &&

245 authN == principalof(request.header.Authorization) &&

246 hasScope(authN, "read:pets") &&

247 hasScope(authN, "write:pets") &&

248 isdefined(request.body.id) &&

249 isdefined(pet’.id) && pet’.id == request.body.id

250 }

251 post ‘/pet‘

252 {

253 response.code == SUCCESS &&

254 response in {body: PetRep} &&

255 response.body == request.body &&

256 response.body repof pet

257 }

258
259 // addPet 405, Invalid input

260 {

261 !(request in {body: PetRep}) &&

262 request.header in {Authorization: String} &&

263 authN == principalof(request.header.Authorization) &&

264 hasScope(authN, "read:pets") &&

265 hasScope(authN, "write:pets")

266 }

267 post ‘/pet‘

268 {

269 response.code == INVALID_INPUT &&

270 response in {body: ApiResponse} &&

271 response.body.code == INVALID_INPUT &&

272 response.body.case == "unknown" &&

273 response.body.message == "bad input"

274 }

275
276 // updatePet 200, pet exists

277 {

278 request in {body: PetRep} &&

279 request.header in {Authorization: String} &&

280 authN == principalof(request.header.Authorization) &&

281 hasScope(authN, "read:pets") &&

282 hasScope(authN, "write:pets") &&

283 isdefined(request.body.id) &&

284 isdefined(pet’.id) && pet’.id == request.body.id

285 }

286 put ‘/pet‘

287 {

288 response.code == SUCCESS &&

289 response in {body: PetRep} &&

290 pet’ == request.body

291 }

292
293 // updatePet 404, pet does not exist

294 {

Appendix B. Specifications 179

295 request in {body: PetRep} &&

296 request.header in {Authorization: String} &&

297 authN == principalof(request.header.Authorization) &&

298 hasScope(authN, "read:pets") &&

299 hasScope(authN, "write:pets") &&

300 isdefined(request.body.id) &&

301 (forall pet:Pet :: isdefined(pet’.id) ==> pet’.id != request.body.id)

302 }

303 put ‘/pet‘

304 {

305 response.code == NOT_FOUND

306 }

307
308 // updatePet 400

309 {

310 !(request in {body: PetRep}) &&

311 request.header in {Authorization: String} &&

312 authN == principalof(request.header.Authorization) &&

313 hasScope(authN, "read:pets") &&

314 hasScope(authN, "write:pets")

315 }

316 put ‘/pet‘

317 {

318 response.code == BAD_REQUEST &&

319 response in {body: ApiResponse} &&

320 response.body.code == BAD_REQUEST &&

321 response.body.case == "unknown" &&

322 response.body.message == "bad input"

323 }

324
325 // getPet 200, api_key

326 {

327 request.template.petId in Integer &&

328 request.header in {api_key: ApiKey} &&

329 // for api keys we only need to see if the key is valid

330 principalof(request.header.api_key) in Principal &&

331 (exists pet:Pet :: isdefined(pet’.id) && pet’.id == request.template.petId)

332 }

333 get ‘/pet/{petId}‘

334 {

335 response.code == SUCCESS &&

336 response in {body: PetRep}

337 }

338
339 // getPet 200, oauth

340 {

341 request.template.petId in Integer &&

342 request.header in {Authorization: String} &&

343 authN == principalof(request.header.Authorization) &&

344 hasScope(authN, "write:pets") &&

345 hasScope(authN, "read:pets") &&

346 (exists pet:Pet :: isdefined(pet’.id) && pet’.id == request.template.petId)

347 }

348 get ‘/pet/{petId}‘

349 {

350 response.code == SUCCESS &&

351 response in {body: PetRep}

352 }

353
354 // getPet 404, api_key

355 {

Appendix B. Specifications 180

356 request.template.petId in Integer &&

357 request.header in {api_key: ApiKey} &&

358 principalof(request.header.api_key) in Principal &&

359 (forall pet:Pet :: isdefined(pet’.id) ==> pet’.id != request.template.petId)

360 }

361 get ‘/pet/{petId}‘

362 {

363 response.code == NOT_FOUND

364 }

365
366 // getPet 404, oauth

367 {

368 request.template.petId in Integer &&

369 request.header in {Authorization: String} &&

370 authN == principalof(request.header.Authorization) &&

371 hasScope(authN, "write:pets") &&

372 hasScope(authN, "read:pets") &&

373 (forall pet:Pet :: isdefined(pet’.id) ==> pet’.id != request.template.petId)

374 }

375 get ‘/pet/{petId}‘

376 {

377 response.code == NOT_FOUND

378 }

379
380
381 // findPetsByStatus 200

382 {

383 request in {template: {status: Status[]}} &&

384 request.header in {Authorization: String} &&

385 authN == principalof(request.header.Authorization) &&

386 hasScope(authN, "read:pets") &&

387 hasScope(authN, "write:pets")

388 }

389 get ‘/pet/findByStatus{?status}‘

390 {

391 response.code == SUCCESS &&

392 response in {body: InlineModel} &&

393 (foreach i of response.body.model ::

394 (forsome j of request.template.status ::

395 isdefined(i.status) && i.status == j

396)

397)

398 }

399
400 // findPetsByStatus 400

401 {

402 request in {template: {status: !Status[]}} &&

403 request.header in {Authorization: String} &&

404 authN == principalof(request.header.Authorization) &&

405 hasScope(authN, "read:pets") &&

406 hasScope(authN, "write:pets")

407 }

408 get ‘/pet/findByStatus{?status}‘

409 {

410 response.code == BAD_REQUEST

411 }

Listing B.12: PetStore specification

Appendix C

User Study

C.1 Questionnaire

181

Informed
Consent

This questionnaire is being distributed in support of a masters thesis conducted at LASIGE. Participation in this
questionnaire is voluntary. The responses for this questionnaire are anonymous.

1.

2.

Mark only one oval.

Other:

Bachelor's Student

MSc Student

PhD Student

Professor

Tutorial
Before starting, read the tutorial for the language at (fredmenezes.github.io) to familiarize yourself with the language.

Skip to question 10

Part TWO
In the next section you will be presented with five questions concerning HeadREST's previous features.

3.

Example: 8.30 a.m.

Questions

HeadREST Questionnaire
Thank you for participating. I'm Francisco Medeiros a masters student at the Faculty of Sciences of the University of
Lisbon, and this study is being conducted at LASIGE as a part of an ongoing masters thesis.

The thesis is named, Authentication and Authorization in REST Specification Languages and is being advised by
professor Vasco Vasconcelos and professor Antónia Lopes.

This questionnaire is aimed at understanding how some syntactical changes made to the HeadREST language impact
developers understanding of the language.
*Required

Age *

Occupation *

Time *
Write down the current time.

4.

5.

Tick all that apply.

For this pre-condition to hold request.template.amount must be a natural number

This pre-condition holds if there is an account with the id provided in request.template.id

The pre-condition does not hold if the account amount is equal to request.template.amount

For this pre-condition to hold request.template.id must be a String

For this pre-condition to hold the account must have an amount greater than request.template.amount

Expand Function *
Complete the following sentence. This pre-condition holds if and only if, request.template.wineId is defined, its value is a string,
request.template.reviewId is defined, its value is a string, there is a resource wine of type Wine with the URI
/wine/request.template.wineId and ...

Use of Repof (Read 1) *
Select ALL correct sentences.

6. Array Access (Read 2) *
According with this assertion, we can use this endpoint for what?

7. Use of Repof + Array Access (Read 3) *
According to this assertion, we can use this endpoint for what?

8.

9.

Example: 8.30 a.m.

Skip to question 17

Part ONE
In the next section you will be presented with five questions concerning HeadREST's new features.

10.

Example: 8.30 a.m.

Questions

Written *
Write what you believe is the most complete way of specifying the deletion of a contact in the following specification. The endpoint
should state that if we get 204 in response.code, there is no longer a contact with the name given in the request.

Time *
Write down the current time.

Time *
Write down the current time.

11.

12.

Tick all that apply.

For the pre-condition to hold, request.template.id must be a string

If AccountData does not declare "represents Account", then account' could still be used

The variable account' has type AccountData

For this pre-condition to hold, there must be an account with id equal to request.template.id

For this pre-condition to hold the account needs a balance greater or equal to request.template.amount

String Interpolation *
Complete the following sentence. This post-condition holds if and only if response code is 204 (no content), there is a resource of
type Wine with the URI /wine/request.template.wineId and ...

Use of Extract (Read 1) *
Select ALL correct sentences.

13. Use of Extract + Iteration (Read 2) *
According to this assertion, we can use this endpoint for what?

14.

15.

Use of Extract + Iteration (Read 3) *
In what situation does the pre-condition below hold?

Written *
Complete the pos-condition so that it says that if we get a response.code of 200, there is a pet with the name given in the request
and it is adopted. You should take advantage of the extract operator since PetData is the unique representation of Pet.

16.

Example: 8.30 a.m.

Skip to question 3

What do you think?

17.

Mark only one oval.

Very Easy

1 2 3 4 5 6 7

Very Difficult

18.

Mark only one oval.

No Effort

1 2 3 4 5 6 7

A Lot of Effort

19.

Mark only one oval.

Very Easy

1 2 3 4 5 6 7

Very Difficult

20.

Mark only one oval.

Very Easy

1 2 3 4 5 6 7

Very Difficult

Time *
Write the current time.

Consider the 5 questions in PART ONE of the questionnaire. How difficult was it to understand the
specifications in those questions? *

Consider the 5 questions in PART ONE of the questionnaire. How much effort was required to answer
the questions concerning HeadREST readability? *

Consider the 5 questions in PART ONE of the questionnaire. How difficult was it to answer the
questions that required writing HeadREST? *

Consider the 5 questions in PART TWO of the questionnaire. How difficult was it to understand the
specifications in those questions? *

21.

Mark only one oval.

No Effort

1 2 3 4 5 6 7

A Lot of Effort

22.

Mark only one oval.

Very Easy

1 2 3 4 5 6 7

Very Difficult

23.

24.

25.

This content is neither created nor endorsed by Google.

Consider the 5 questions in PART TWO of the questionnaire. How much effort was required to answer
the questions concerning HeadREST readability? *

Consider the 5 questions in PART TWO of the questionnaire. How difficult was it to answer the
questions that required writing HeadREST? *

Consider the 5 questions in PART ONE of the questionnaire. What were your major difficulties in
answering these questions?

Consider the 5 questions in PART TWO of the questionnaire. What were your major difficulties in
answering these questions?

If you are interested in the results of this questionnaire write your Email Address.

 Forms

Appendix C. User Study 192

C.2 Tutorial

HeadREST Tutorial
The HeadREST specification language makes use of refinement types and assertions in order to expressively
specify REST APIs.

REST API

Specification

Types

Request & Response

Iterators

Operators Repof and Uriof

Quantifiers

Built-in Functions

Extract Operator

Interpolation

Complete Specification

REST API
A REST API defines how clients can access and manipulate representations of resources, identified by Unique
Resource Identifiers, by using the operations offered by HTTP.

In this tutorial, we will use an example of a very simple REST API with two endpoints that allow to access and
manipulate a single type of resource - Person. Persons are identified by URIs that adhere to the template
“/person/{name}”. A textual representation of a person at a given point in time, obtained with a call to the
first endpoint is shown below.

Specification
An API without documentation is not useful. In this tutorial we show how we can use HeadREST to formally
describe the behaviour of our example API. The behaviour of the service at each endpoint is specified by one
or more assertions of the form {pre-condition} method uri-template {post-condition}. An assertion states
that if a call to that endpoint is executed in a state that satisfies the pre-condition, then it should terminate in

a state that satisfies the post-condition. In our example, as shown below, we will define one assertion for
each endpoint,

Types
A HeadRest specification declares the resources that can be accessed and manipulated through the API. The
specification can also include definition of data types that are useful to characterise the data sent in requests
or received in the responses in the different endpoints. Particularly useful is the definition of types that are
declared to represent a particular resource type.

resource Person

type PersonData represents Person = {
 name: (x : String where size(x) >= 3),
 age: (x : Integer where x >= 0),
 friends: String[]
}

type InputData = {
 name: (x : String where size(x) >= 3),
 friend: (x : String where size(x) >= 3)
}

type OptionalData = {
 ?metadata: String
}

Resource types enable us to reason about collections of entities in the specification. Resource type
declarations can declare one or more resources. For instance, the declaration resource A, B, C
simultaneously declares three resource types. Note that the represents keyword is not obligatory in type
declarations that represent resources.

In our example we see that the type PersonData is declared to be the type of the representations of the
resource Person. Notice the use of refinement types to express that age is a natural number and that the
name must have at least three characters. The PersonData type is an object type, declared as type
ObjectType = {...}, however types can also be aliases for other types. For example, the type Natural
can be defined as, type Natural = (x : Integer where x >= 0).

In the OptionalData type, we see a parameter with a preceding question mark, this signifies that this
parameter is optional. To use optional parameters we must first state that they are defined. There are two
ways of achieving this, through the isdefined predicate and through the in operator, as illustrated below.

isdefined(optionalData.metadata)
optionalData in {metadata: String}

Both properties hold only if the optionalData has the parameter metadata.

Request & Response
Conditions in assertions, besides the state of the system, address the data sent by the client in the request
and the data sent back by the service in the response. In HeadREST, variables request and response serve
to refer to this data, i.e., to the input and output of a call to an operation exposed in an endpoint. The types
for these variables are shown below.

The type of the request reflects that the parameters used in the URI template of an endpoint are
encapsulated in the field template; additional data can be sent in the request body and headers. The type of
the response reflects that the response carries a response status code indicating whether the request has
been successfully completed and might additionally carry other data in the body and headers.

type Request = {
 location: String,
 ?template: {},
 header: {},
 ?body: Any
}

type Response = {
 code: Integer,
 header: {},
 ?body: Any
}

The use of the variables request and response in the context of an assertion is illustrated below. This
assertion expresses that if the data sent in the request template is of type InputData, then the response is
guaranteed to contain the success code and the data in the response body belongs to the requested friend.

{
 request.template in InputData
}
 get `/person/{name}/friends/{friend}`
{
 response.code == 200 &&
 response in {body: PersonData} &&
 response.body.name == request.template.friend
}

Iterators
HeadREST has the iterators foreach and forsome to express universal/existential properties concerning the
elements of an array. We illustrate the use of forsome in the condition presented below.

(forsome friendName of response.body.friends ::
 friendName == request.template.name
)

We could include this property in the post-condition of the previous example. This would mean that the
request.template.name is included in the friends list of the current friend.

Operators repof & uriof
HeadREST has two binary operators to reason about resources - repof and uriof. The expression t repof
r states that a data value t is a representation of resource r and u uriof r states that a string u is a URI of
resource r.

As illustrated below, these two operators allow us to specify important properties, such as: the value in data
is a representation of the resource in person, and the String on the left side of the uriof expression is a URI
of the resource in person.

data repof person &&
("/person/" ++ request.template.name) uriof person && ...

Quantifiers
To reason about collections of data values and resources, HeadREST provides universal (forall) and
existential (exists) quantifiers. Quantifiers are quite common and useful to express properties concerning
the state of the system before and after the execution of an operation exposed by an endpoint.

For instance, in the assertion below, they allow us to express that, if there isn’t already a person with the
name provided in the request and the age being provided is greater or equal to 18, then the request is
successful and it is ensured that there is a person with the name and age that was provided in the request.

{
 request.template in {name: String} &&
 request in {body: Integer &&
 (forall person : Person ::
 (exists data : PersonData ::
 data repof person &&
 data.name != request.template.name
)
) &&
 request.body.age >= 18
}
 post `/person/{name}`
{
 response.code == 201 &&
 (exists person : Person ::
 (exists data : PersonData ::
 data repof person &&
 data.name == request.template.name &&
 data.age == request.body.age &&
 data.friends == []
)
)
}

It is possible to express iterators using quantifiers. The example presented in Iterators could be the
following:

(exists i : (x : Natural where x < length(response.body.friends)) ::
 response.body.friends[i] == request.template.name
)

Built-in Functions
HeadREST has some built-in functions, such as length (for arrays), size (for strings), matches (for strings
and regular expressions), isdefined (for checking the existence of optional fields) and expand (for
expanding a URI template to a URI, once values for the template parameters are provided).

{
 request.template in {name: String} &&
 (exists person : Person ::
 expand(`/person/{name}`,
 {name = request.template.name}
) uriof person
)
}
 get `/person/{name}`
{
 response.code == 200 &&
 response in {body: PersonData} &&
 response.body.name == request.template.name
}

As illustrated in this example, the second argument of the expand function is an object with the values of the
parameters (marked by “{}”) present in the URI given in the first argument. This allows us to reason about
the URIs of resources. Another function already used in a previous example is the length function which
receives an array and allows us to reason about its size.

In this assertion, if there is a resource whose URI contains the same name as in the request, then, we will
have a response with a representation whose name is the same as the requested name.

Extract Operator

Often, resources have a single representation of a given type. In this case, the extract operator, represented
by a single quotation mark ('), simplifies the access to such representation: we use r' to denote the
representation of the resource r.

Take note that to use the extract operator on a resource there must be exactly one type which represents
that resource. In our example, only type PersonData declares that represents Person, therefore we can
use the extract operator on resources with type Person.

The example below illustrates the use of this operator as well as the foreach/forsome in our running
example which declares that resources of type Person have a single representation of type PersonData.

{
 request.template in InputData &&
 (exists person : Person ::
 person'.name == request.template.name &&
 (forsome friendName of person'.friends ::
 friendName == request.template.friend
)
)
}
 delete `/person/{name}/friends/{friend}`
{
 response.code == 200 &&
 (exists person : Person ::
 person'.name == request.template.name &&
 (foreach friendName of person'.friends ::
 friendName != request.template.friend
)
)
}

This assertion specifies that if there is a person with request.template.name that has a friend with name
request.template.friend, then the request is successful and it is ensured that there is a person with the
name request.template.name that does not have a friend with the name request.template.friend.

It is also possible to simplify the post-condition of the assertion presented in Quantifiers by using the extract
operator on resource person:

(exists person : Person ::
 person'.name == request.template.name &&
 person'.age == request.body.age &&
 person'.friends == []
)

Interpolation
Interpolation allows to express an expansion of a URI template (substitute templates for expressions).
Interpolation is expressed with a special string with single quotes that starts with $ and can contain
expressions inside curly brackets to indicate how parameters are instantiated.

{
 request.template in {name: String} &&
 request in {body: String} &&
 (exists person : Person ::
 $'/person/{request.template.name}' uriof person &&
 (foreach name of person'.friends ::
 request.body != name
)
) &&
 (exists friend : Person ::
 $'/person/{request.body}' uriof friend
)
}
 put `/person/{name}`
{
 response.code == 201 &&
 (exists person : Person ::

 person'.name == request.template.name &&
 (forsome name of person'.friends ::
 request.body == name
)
)
}

In the assertion above interpolation is used in the pre-condition, to require the existence of two persons in
the target URL. The assertion states that, in this case, the request is successful and it is ensured that exists a
person with the same name as in the request.

In the pre-condition, we ascertain the existence of a person with the name request.template.name, and it
does not have a friend with the name request.body. We also state the existence of a person with the name
request.body. If the pre-condition holds, it is guaranteed that the target person, with name
request.template.name, gets a new friend with the name given in request.body.

Interpolation can be emulated with the expand function. The underlined interpolation present in the
assertion above is equivalent to the expand function in the pre-condition of the assertion presented in Built-
in Functions.

Complete Specification
This example specification mixes up some of the features presented above in each assertion.

specification PersonAPI

resource Person

type PersonData represents Person = {
 name: (x : String where size(x) >= 3),
 age: (x : Integer where x >= 0),
 friends: String[]
}

type InputData = {
 name: (x : String where size(x) >= 3),
 friend: (x : String where size(x) >= 3)
}

type OptionalData = {
 ?metadata: String
}

{
 request.template in {name: String} &&
 request in {body: Integer} &&
 (forall person : Person ::
 (exists data : PersonData ::
 data repof person &&
 data.name != request.template.name
)
) &&
 request.body.age >= 18
}
 post `/person/{name}`
{
 response.code == 201 &&
 (exists person : Person ::
 person'.name == request.template.name &&
 person'.age == request.body.age &&
 person'.friends == []
)
}

{
 request.template in {name: String} &&
 (exists person : Person ::
 expand(`/person/{name}`,
 {name = request.template.name}

) uriof person
)
}
 get `/person/{name}`
{
 response.code == 200 &&
 response in {body: PersonData} &&
 response.body.name == request.template.name
}

{
 request.template in InputData &&
 (exists person : Person ::
 expand(`/person/{name}`,
 {name = request.template.name}
) uriof person &&
 (exists friend : Person ::
 $'/person/{request.template.friend}' uriof friend
)
)
}
 get `/person/{name}/friends/{friend}`
{
 response.code == 200 &&
 response in {body: PersonData} &&
 response.body.name == request.template.friend
}

{
 request.template in InputData &&
 (exists person : Person ::
 person'.name == request.template.name &&
 (forsome friendName of person'.friends ::
 friendName == request.template.name
)
)
}
 delete `/person/{name}/friends/{friend}`
{
 response.code == 200 &&
 (exists person : Person ::
 person'.name == request.template.name &&
 (foreach friendName of person'.friends ::
 friendName != request.template.friend
)
)
}

{
 request.template in {name: String} &&
 request in {body: String} &&
 (exists person : Person ::
 $'/person/{request.template.name}' uriof person &&
 (foreach name of person'.friends ::
 request.body != name
)
) &&
 (exists friend : Person ::
 $'/person/{request.body}' uriof friend
)
}
 put `/person/{name}`
{
 response.code == 201 &&
 (exists person : Person ::
 person'.name == request.template.name &&
 (forsome name of person'.friends ::
 request.body == name
)
)
}

Appendix C. User Study 202

Bibliography

[1] TheMarkup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings
of Balisage: TheMarkupConference 2013. Balisage Series onMarkup Technologies,
vol. 10 (2013), volume 10 of Balisage Series on Markup Technologies, 2013.

[2] 42Crunch. 42Crunch api firewall protection overview. https://42crunch.com/tutoria
l-api-firewall-protection/.

[3] Gilles Barthe, editor. Programming Languages and Systems - 20th European Sympo-
sium on Programming, ESOP 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, volume 6602 of Lecture Notes in Computer Science.
Springer, 2011.

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Koblitz [38], pages 1–15.

[5] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing, 2013.

[6] Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David E. Langworthy.
Semantic subtyping with an SMT solver. J. Funct. Program., 22(1):31–105, 2012.

[7] Api Blueprint. Documentation. https://apiblueprint.org/documentation/.

[8] Michele Boreale, Flavio Corradini, Michele Loreti, and Rosario Pugliese, editors.
Models, Languages, and Tools for Concurrent andDistributed Programming - Essays
Dedicated to Rocco De Nicola on the Occasion of His 65th Birthday, volume 11665
of Lecture Notes in Computer Science. Springer, 2019.

[9] Nuno Miguel Pereira Burnay. Types to the rescue: verification of rest apis consumer
code. Master’s thesis, Universidade de Lisboa, Faculdade de Ciências, 2019.

[10] Luís Caires, Jorge A. Pérez, João Costa Seco, Hugo Torres Vieira, and Lúcio Ferrão.
Type-based access control in data-centric systems. In Barthe [3], pages 136–155.

[11] Google Cloud. Google cloud computing. https://cloud.google.com/apis/.

203

https://42crunch.com/tutorial-api-firewall-protection/
https://42crunch.com/tutorial-api-firewall-protection/
https://apiblueprint.org/documentation/
https://cloud.google.com/apis/

Bibliography 204

[12] Nicodemos Damianou, Naranker Dulay, Emil Lupu, andMorris Sloman. The ponder
policy specification language. InMorris Sloman, Jorge Lobo, and Emil Lupu, editors,
Policies for Distributed Systems and Networks, International Workshop, POLICY
2001 Bristol, UK, January 29-31, 2001, Proceedings, volume 1995 of Lecture Notes
in Computer Science, pages 18–38. Springer, 2001.

[13] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Ramakrishnan and Rehof [50], pages 337–340.

[14] Eclipse. Xtext - language engineering made easy. https://www.eclipse.org/Xtext/.

[15] David Ferraiolo andRichardKuhn. Role-based access control. In In 15th NIST-NCSC
National Computer Security Conference, pages 554–563, 1992.

[16] F. Ferreira, T. Santos, F. Martins, A. Lopes, and V. Vasconcelos. Especificação de
interfaces aplicacionais rest. Actas do 9º Encontro Nacional de Informática, 2017.

[17] Fábio Alexandre Canada Ferreira. Automatic tests generation for restful apis. Mas-
ter’s thesis, Universidade de Lisboa, Faculdade de Ciências, 2017.

[18] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Mas-
inter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol - HTTP/1.1.
RFC, 2616:1–176, 1999.

[19] Roy T. Fielding and Julian F. Reschke. Hypertext transfer protocol (HTTP/1.1):
semantics and content. RFC, 7231:1–101, 2014.

[20] Roy T. Fielding, Richard N. Taylor, Justin R. Erenkrantz, Michael M. Gorlick, Jim
Whitehead, Rohit Khare, and Peyman Oreizy. Reflections on the REST architectural
style and "principled design of the modern web architecture" (impact paper award).
In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors,
Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 4–14. ACM,
2017.

[21] RoyThomas Fielding. Architectural Styles and theDesign of Network-based Software
Architectures. PhD thesis, 2000. AAI9980887.

[22] Timothy S. Freeman and Frank Pfenning. Refinement types for ML. In Wise [70],
pages 268–277.

[23] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas
in satisfiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors,
Computer Aided Verification, pages 306–320, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

https://www.eclipse.org/Xtext/

Bibliography 205

[24] GitLab. Gitlab api documentation. https://docs.gitlab.com/ee/api/, 2014.

[25] Joe Gregorio, Roy T. Fielding, Marc Hadley, Mark Nottingham, and David Orchard.
URI template. RFC, 6570:1–34, 2012.

[26] Maurice Howard Halstead et al. Elements of software science, volume 7. Elsevier
New York, 1977.

[27] Dick Hardt. The oauth 2.0 authorization framework. RFC, 6749:1–76, 2012.

[28] Hoare and C. A. R. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[29] Vincent C. Hu, David Ferraiolo, Richard Kuhn, Adam Schnitzer, Kenneth Sandlin,
Robert Miller, and Karen Scarfone. Guide to attribute based access control (abac)
definition and considerations, 2014.

[30] Marc Hüffmeyer and Ulf Schreier. Designing efficient xacml policies for restful
services. In Thomas Hildebrandt, António Ravara, Jan Martĳn van der Werf, and
Matthias Weidlich, editors, Web Services, Formal Methods, and Behavioral Types,
pages 86–100, Cham, 2016. Springer International Publishing.

[31] Luigi Lo Iacono, Hoai Viet Nguyen, and Peter Leo Gorski. On the need for a general
rest-security framework. Future Internet, 11(3):56, 2019.

[32] Apiary Inc. Markdown syntax for object notation. technical report.
https://github.com/apiaryio/mson, 2020.

[33] OpenAPI Initiative. Openapi. https://www.openapis.org/.

[34] OpenAPI Initiative. Petstore api. https://petstore3.swagger.io/, 2017.

[35] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov.
Microservices: The journey so far and challenges ahead. IEEE Software, 35(3):24–
35, 2018.

[36] Michael B. Jones, John Bradley, and Nat Sakimura. JSON web token (JWT). RFC,
7519:1–30, 2015.

[37] Andrew Kennedy and Amal Ahmed, editors. Proceedings of TLDI’09: 2009 ACM
SIGPLAN International Workshop on Types in Languages Design and Implementa-
tion, Savannah, GA, USA, January 24, 2009. ACM, 2009.

[38] Neal Koblitz, editor. Advances in Cryptology - CRYPTO ’96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science. Springer, 1996.

https://docs.gitlab.com/ee/api/
https://www.openapis.org/
https://petstore3.swagger.io/

Bibliography 206

[39] Chandra Krintz and Emery Berger, editors. Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, June 13-17, 2016. ACM, 2016.

[40] Rustan Leino. This is boogie 2. Microsoft Research, June 2008.

[41] Sean Leonard. Guidance on markdown: Design philosophies, stability strategies,
and select registrations. RFC, 7764:1–28, 2016.

[42] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah. First
experiences using xacml for access control in distributed systems. In Proceedings of
the 2003 ACM Workshop on XML Security, XMLSEC ’03, page 25–37, New York,
NY, USA, 2003. Association for Computing Machinery.

[43] Mattermost. Mattermost. https://mattermost.com/, 2015.

[44] Microsoft. Azure. https://docs.microsoft.com/en-us/rest/api/compute/cloudservice
s/.

[45] Microsoft. Typescript. https://www.typescriptlang.org/.

[46] Hoai Viet Nguyen, Jan Tolsdorf, and Luigi Lo Iacono. On the security expressiveness
of rest-based API definition languages. In Javier López, Simone Fischer-Hübner,
and Costas Lambrinoudakis, editors, Trust, Privacy and Security in Digital Business
- 14th International Conference, TrustBus 2017, Lyon, France, August 30-31, 2017,
Proceedings, volume 10442 of Lecture Notes in Computer Science, pages 215–231.
Springer, 2017.

[47] Ulf Norell. Dependently typed programming in agda. In Kennedy and Ahmed [37],
pages 1–2.

[48] OASIS. Xacml rest profile version 1.1. http://docs.oasis-open.org/xacml/xacml-rest
/v1.1/csprd01/xacml-rest-v1.1-csprd01.html, 2019.

[49] Terence Parr. Antlr parser generator. https://www.antlr3.org/.

[50] C. R. Ramakrishnan and Jakob Rehof, editors. Tools and Algorithms for the Con-
struction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science. Springer, 2008.

[51] RAML. Welcome - raml. https://raml.org/.

[52] Julian F. Reschke. The ’basic’ HTTP authentication scheme. RFC, 7617:1–15, 2015.

https://mattermost.com/
https://docs.microsoft.com/en-us/rest/api/compute/cloudservices/
https://docs.microsoft.com/en-us/rest/api/compute/cloudservices/
https://www.typescriptlang.org/
http://docs.oasis-open.org/xacml/xacml-rest/v1.1/csprd01/xacml-rest-v1.1-csprd01.html
http://docs.oasis-open.org/xacml/xacml-rest/v1.1/csprd01/xacml-rest-v1.1-csprd01.html
https://www.antlr3.org/
https://raml.org/

Bibliography 207

[53] Jonathan Robie, Rémon Sinnema Rob Cavicchio, and Erik Wilde. Restful service
description language (rsdl): Describing restful services without tight coupling. In
TheMarkup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings
of Balisage: TheMarkupConference 2013. Balisage Series onMarkup Technologies,
vol. 10 (2013) [1].

[54] N. Sakimura, NRI, J. Bradley, Ping Identity M. Jones, Microsoft, B. de Medeiros,
Google, and C. Mortimore Salesforce. Openid connect. https://openid.net/specs/o
penid-connect-core-1_0.html, 2014.

[55] Telmo da Silva Santos. Code generation for restful apis in headrest. Master’s thesis,
Universidade de Lisboa, Faculdade de Ciências, 2018.

[56] API Security. Api contract security audit. https://apisecurity.io/tools/audit/, 2019.

[57] Amazon Web Services. Amazon web services. https://aws.amazon.com/api-gatew
ay/.

[58] Rifaat Shekh-Yusef, David Ahrens, and Sophie Bremer. HTTP digest access authen-
tication. RFC, 7616:1–32, 2015.

[59] Bojan Suzic, BerndPrünster, andDominikZiegler. On the structure and authorization
management of restful web services. In Hisham M. Haddad, Roger L. Wainwright,
and Richard Chbeir, editors, Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC 2018, Pau, France, April 09-13, 2018, pages 1716–1724.
ACM, 2018.

[60] Nikhil Swamy, Catalin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, and Jean-Karim Zinzindohoue. Dependent types and multi-
monadic effects in F*. Draft, July 2015.

[61] Brian Terlson. Ecmascript 2018 language specification. https://www.ecma-internati
onal.org/ecma-262/9.0/index.html, last accessed on 2018-06-26.

[62] Vasco T. Vasconcelos, Antónia Lopes, and Francisco Martins. Headrest: A specifi-
cation language for restful apis. 24th International Conference on Types for Proofs
and Programs, 2018.

[63] Vasco T. Vasconcelos, Francisco Martins, Antónia Lopes, Fábio Ferreira, Telmo
Santos, and Nuno Burnay. Confident. http://rss.di.fc.ul.pt/tools/confident/.

[64] Vasco T. Vasconcelos, Francisco Martins, Antónia Lopes, and Nuno Burnay. Head-
rest: A specification language for restful apis. In Boreale et al. [8], pages 428–434.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://apisecurity.io/tools/audit/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
http://rss.di.fc.ul.pt/tools/confident/

Bibliography 208

[65] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract refinement types. In
Matthias Felleisen and Philippa Gardner, editors, Programming Languages and
Systems, pages 209–228, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[66] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for type-
script. In Krintz and Berger [39], pages 310–325.

[67] W3C. Web services description language. https://www.w3.org/TR/wsdl20-adjunct
s/, 2001.

[68] W3C.Web application description language. https://www.w3.org/Submission/wadl/,
2009.

[69] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. O’Reilly Media, Inc., 1st edition, 2010.

[70] David S. Wise, editor. Proceedings of the ACM SIGPLAN’91 Conference on Pro-
gramming LanguageDesign and Implementation (PLDI), Toronto, Ontario, Canada,
June 26-28, 1991. ACM, 1991.

[71] Erik Wittern, Annie T. T. Ying, Yunhui Zheng, Jim Alain Laredo, Julian Dolby,
Christopher C. Young, and Aleksander Slominski. Opportunities in software engi-
neering research for web API consumption. CoRR, abs/1705.06586, 2017.

https://www.w3.org/TR/wsdl20-adjuncts/
https://www.w3.org/TR/wsdl20-adjuncts/
https://www.w3.org/Submission/wadl/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Context
	Objectives and Contributions
	Structure of the document

	Background & Related Work
	REST
	Resource & Representation
	Communication Protocol
	RESTful services

	RESTful APIs
	Authentication and Authorisation in RESTful APIs
	Access Control
	Authentication and Authorisation Schemes

	Specification of Security Aspects in RESTful APIs
	OpenAPI/Swagger
	RAML
	API Blueprint
	RSDL
	WSDL
	WADL

	Conclusions

	The HeadREST Language
	Overview
	Key Concepts
	Example

	Syntax
	Core Syntax
	Derived Syntax
	Validation

	Limitations & Issues
	Language Usability
	Limitations in Expressiveness

	New Developments on HeadREST
	Syntax Extensions
	Expressing Security Policies
	Implementation

	Evaluation
	Methodology
	User Study
	Time Analysis
	User Perception
	Correctness

	Quantitative Analysis
	Case Studies

	Impact in HeadREST's Ecosystem
	HeadREST-RTester
	HeadREST-Codegen
	SafeRestScript
	Future Work

	Conclusion
	Z3 SMT-LIB Axiomatization in HeadREST
	Specifications
	Without the New Extensions
	With the New Extensions
	Case Studies

	User Study
	Questionnaire
	Tutorial

	Bibliography

