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Resumo

O conceito de triclustering estende o conceito de biclustering para um espaço tridimensional, cujo o
objetivo é encontrar subespaços coerentes em dados tridimensionais. Considerando dados com dimensão
temporal, a necessidade de aprender padrões temporais interessantes e usá-los para aprender modelos
preditivos efetivos e interpretáveis, despoleta necessidade em investigar novas metodologias para análise
de dados tridimensionais. Neste trabalho, propomos duas metodologias para esse efeito.

Na primeira metodologia, encontramos os melhores parâmetros a serem usados em triclustering para
descobrir os melhores triclusters (conjuntos de objetos com um padrão coerente ao longo de um dado con-
junto de pontos temporais) para que depois estes padrões sejam usados como features por um dos mais
apropriados classificadores encontrados na literatura. Neste caso, propomos juntar o classificador com
uma abordagem de triclustering temporal. Para isso, idealizámos um algoritmo de triclustering com uma
restrição temporal, denominado TCtriCluster para desvendar triclusters temporalmente contínuos (consti-
tuídos por pontos temporais contínuos). Na segunda metodologia, adicionámos uma fase de biclustering
para descobrir padrões nos dados estáticos (dados que não mudam ao longo do tempo) e juntá-los aos
triclusters para melhorar o desempenho e a interpretabilidade dos modelos. Estas metodologias foram
usadas para prever a necessidade de administração de ventilação não invasiva (VNI) em pacientes com
Esclerose Lateral Amiotrófica (ELA). Neste caso de estudo, aprendemos modelos de prognóstico geral,
para os dados de todos os pacientes, e modelos especializados, depois de feita uma estratificação dos
pacientes em 3 grupos de progressão: Lentos, Neutros e Rápidos. Os resultados demonstram que, além
de serem bastante equiparáveis e por vezes superiores quando comparados com os resultados obtidos por
um classificador de alto desempenho (Random Forests), os nossos classificadores são capazes de refinar
as previsões através das potencialidades da interpretabilidade do modelo. De facto, quando usados os
triclusters (e biclusters) como previsores, estamos a promover o uso de padrões de progressão da doença
altamente interpretáveis. Para além disso, quando usados para previsão de prognóstico em doentes com
ELA, os nossos modelos preditivos interpretáveis desvendaram padrões clinicamente relevantes para um
grupo específico de padrões de progressão da doença, ajudando os médicos a entender a elevada hetero-
geneidade da progressão da ELA. Os resultados mostram ainda que a restrição temporal tem impacto na
melhoria da efetividade e preditividade dos modelos.

Palavras Chave: Triclustering; Dados Tridimensionais; Modelos Preditivos; Padrões de Progressão
de Doença; Esclerose Lateral Amiotrófica
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Abstract

Triclustering extends biclustering to the three-dimensional space, aiming to find coherent subspaces in
three-way data (sets of objects described by subsets of features in a subset of contexts). When the context
is time, the need to learn interesting temporal patterns and use them to learn effective and interpretable
predictive models triggers the need for new research methodologies to be used in three-way data anal-
ysis. In this work, we propose two approaches to learn predictive models from three-way data: 1) a
triclustering-based classifier (considering just temporal data) and 2) a mixture of biclustering (with static
data) and triclustering (with temporal data). In the first approach, we find the best triclustering parame-
ters to uncover the best triclusters (sets of objects with a coherent pattern along a set of time-points) and
then use these patterns as features in a state-of-the-art classifier. In the case of temporal data, we propose
to couple the classifier with a temporal triclustering approach. With this aim, we devised a temporally
constrained triclustering algorithm, termed TCtriCluster algorithm to mine time-contiguous triclusters.
In the second approach, we extended the triclustering-based classifier with a biclustering task, where
biclusters are discovered in static data (not changed over the time) and integrated with triclusters to im-
prove performance and model explainability. The proposed methodologies were used to predict the need
for non-invasive ventilation (NIV) in patients with Amyotrophic Lateral Sclerosis (ALS). In this case
study, we learnt a general prognostic model from all patients data and specialized models after patient
stratification into Slow, Neutral and Fast progressors. Our results show that besides comparable and
sometimes outperforming results, when compared to a high performing random forest classifier, our pre-
dictive models enhance prediction with the potentialities of model interpretability. Indeed, when using
triclusters (and biclusters) as predictors, we promoting the use of highly interpretable disease progression
patterns. Furthermore, when used for prognostic prediction in ALS, our interpretable predictive mod-
els unravelled clinically relevant and group-specific disease progression patterns, helping clinicians to
understand the high heterogeneity of ALS disease progression. Results further show that the temporal
restriction is effective in improving the effectiveness of the predictive models.

Keywords: Triclustering; Three-way Data; Predictive Models; Disease Progression Patterns; Amy-
otrophic Lateral Sclerosis
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Resumo Alargado

Considerando que o conceito de biclustering, cujo seu objetivo é encontrar subespaços coerentes numa
matriz (ou tabela) de dados (conjuntos de objetos descritos por subconjuntos de características), não é
suficientemente eficaz se considerarmos um espaço tridimensional, em que deixamos de ter apenas uma
matriz de dados e passamos a ter um cubo de dados, é necessário estender esta abordagem para que
possamos explorar também subespaços dos dados tendo em conta a sua terceira dimensão (conjuntos de
objetos descritos por subconjunto de características num dado conjunto de contextos), surgindo assim
o conceito de triclustering. Quando consideramos o tempo como contexto (terceira dimensão para o
conjunto de dados), a necessidade de aprender padrões temporais interessantes e usá-los para aprender
modelos preditivos que sejam efetivos e interpretáveis despoleta uma necessidade de investigar novas
metodologias para análise de dados tridimensionais.

Até à atualidade, várias aplicações promissoras de triclustering em domínios clínicos têm vindo a
ser utilizadas, tais como a análise de dados multivariados de comportamento fisiológico, em que os tri-
clusters obtidos foram capazes de capturar respostas fisiológicas coerentes para grupos de indivíduos; a
análise de dados de imagens cerebrais (através de ressonâncias magnéticas) em que os triclusters obtidos
conseguiram identificar funções hemodinâmicas de resposta e conectividade entre regiões do cérebro e
a análise de registos de saúde eletrónicos em que os triclusters são usados para identificar grupos de
pacientes com determinadas características clinicas correlacionadas ao longo do tempo.

Neste trabalho propomos duas abordagens para análise de dados de 3 dimensões. A primeira us-
ando apenas dados temporais para aprender modelos preditivos baseado em triclustering. Na segunda,
juntamos dados estáticos para complementar a análise anterior e aproveitar os padrões descobertos para
melhorar a o desempenho dos modelos.

Inicialmente, propomos uma abordagem para aprender modelos preditivos a partir de dados tridi-
mensionais através de um classificador baseado em triclustering. Esta metodologia apresenta três fases.
Na primeira fase, pretendemos encontrar os melhores parâmetros a serem passados ao algoritmo de tri-
clustering para de modo a que sejam descobertos os melhores triclusters (conjuntos de objetos com um
padrão coerente ao longo de um dado conjunto de pontos temporais) e depois usá-los como features
num dos mais apropriados classificadores recentes encontrado na literatura. Para isso, propomos que
em conjunto com o classificador seja usada uma abordagem de triclustering temporal, na qual é usado
um algoritmo de triclustering que tenha em conta uma restrição temporal (neste caso a contiguidade dos
pontos temporais), denominado TCtriCluster, idealizado para desvendar triclusters temporalmente con-

IX



tíguos (constituído apenas por pontos temporais contíguos). Na fase seguinte, o modelo final é aprendido
tendo por base os melhores triclusters obtidos anteriormente, culminando num ummodelo preditivo final
baseado em triclustering capaz de, além de fazer previsões, traçar perfis de características de acordo com
os padrões mais relevantes identificados pelo modelo. A fase final desta metodologia, consiste em usar
os triclusters e o respetivo modelo para, dado um determinado novo objeto, realizar uma previsão da sua
classe e avaliar as suas semelhanças com determinados padrões relevantes descobertos na fase anterior.

A segunda metodologia foi concebida partindo da primeira e tirando proveito do conjunto de dados
estáticos (dados que não mudam ao longo do tempo) que tipicamente existe, em contexto clínico, em
conjunto com os dados temporais. Esta abordagem introduz uma mistura de biclustering nos dados com
triclustering nos dados temporais. Os biclusters e triclusters são depois usados pelo classificador para
construir modelos preditivos de modo a fazer previsões e traçar os perfis das características baseadas nos
dados aprendidos.

As metodologias propostas foram usadas para prever a necessidade de ventilação não invasiva (VNI)
em paciente com Esclerose Lateral Amiotrófica (ELA). A ELA é uma doença neurodegnerativa caracter-
izada por uma fraqueza muscular de progressão rápida, que tipicamente provoca a morte dos pacientes
por paragem respiratória em 3 a 5 anos depois de diagnosticada. Dada a sua heterogeneidade, muitos
pacientes podem viver menos de um ano, enquantro outros sobrevivem por mais de 10 anos com esta
patologia. Em Portugal, a ELA afeta 10 em cada 100 mil habitantes. Muitos pacientes desenvolvem
hipoventilação associada a hipoxemia e hipercapnia, passando a necessitar da ajuda de ventilação não
invasiva. Neste sentido, torna-se importante prever o início destas complicações em pacientes com ELA,
para que se possa intervir atempadamente e assim providenciar melhor qualidade de vida aos doentes.

Neste caso de estudo, foram usados dados de pacientes com ELA, recolhidos no Hospital de Santa
Maria, em Lisboa (Centro Hospitalar Universitário de Lisboa), para aprender modelos de prognóstico
geral a partir de todos os dados dos pacientes, bem como modelos especializados depois de feita uma
estratificação dos pacientes em 3 grupos de progressão: Lentos, Neutros e Rápidos.

Os nossos resultados demonstram que, além de serem bastante equiparáveis e por vezes superiores
quando comparados com os resultados obtidos por um classificador (Random Forests) de alto desem-
penho, os nossos classificadores baseados em triclustering são capaz de refinar as previsões através das
potencialidades da interpretabilidade do modelo. De facto, quando usados os triclusters (e biclusters)
como previsores, estamos neste caso a usar padrões de progressão da doença altamente interpretáveis.
Para além disso, quando usados para previsão de prognóstico em doentes com ELA, os nossos mode-
los preditivos interpretáveis desvendaram padrões clinicamente relevantes e para um grupo específico
de padrões de progressão da doença, ajudando os médicos a entender a elevada heterogeneidade da pro-
gressão da ELA. Os resultados mostram ainda que a restrição temporal tem impacto na melhoria da
efetividade e preditividade dos modelos.
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Introduction 1
1.1 Context and Motivation

Considering a (real-valued, symbolic or heterogenous) three-dimensional dataset (three-way data), tri-
clustering aims to discover subsets of objects, features and contexts (triclusters), satisfying certain ho-
mogeneity and statistical significance criteria. Given the increasing prevalence of three-way data across
biomedical and social domains, triclustering — the discovery of coherent subspaces within three-way
data — became a key technique to enhance the understanding of complex biological, individual, and
societal systems [24]. Clustering is limited in this context, since objects in three-way data domains are
typically only meaningfully correlated on subspaces of the overall space. Although biclustering is enables
subspaces of both objects and features, context is disregarded. This thesis targets the use of triclustering
for clinical data analysis. [35].

In this context, promising triclustering applications in clinical domains are multivariate physiolog-
ical signal data analysis, where triclusters can capture coherent physiological responses for a group of
individuals; neuroimaging data analysis, where triclusters can capture hemodynamic response functions
and connectivity between brain regions; and clinical records analysis, where triclusters identify groups
of patients with correlated clinical features along time [2, 27, 24].

Having labelled observations, triclustering can be applied to differentiate classes and support real-
world decisions [31]. With this in mind, we propose a triclustering-based classifier to learn predictive
models from three-way data, taking advantage of the temporal dependence between the features, and
enhancing model interpretability by learning from local temporal patterns. In order to incorporate static
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1.2. GOALS AND CONTRIBUTIONS

data, we further propose a prognostic prediction approach combining biclustering (with static data) and
triclustering (temporal data), where both biclusters and triclusters are used as features in a supervised
learning approach.

As case study, we use the analysis of three-way data from clinical records (patient-feature-time data).
We target prognostic prediction in Amyotrophic Lateral Sclerosis (ALS) using a large cohort of Por-
tuguese patients, where the triclusters learnt from patients’ follow-up data can be interpreted as disease
progression patterns.

ALS is a highly heterogeneous neurodegenerative disease characterized by a rapidly progressive mus-
cular weakness. In general, patients with ALS generally die from respiratory failure within 3 to 5 years.
However, some patients can live for less than one year, while others can live more than 10 years [22].

Worldwide, ALS affects between 5.9 and 39 people per 100.000 inhabitants [10]. In Portugal, 10 in
100.000 inhabitants suffer from this disease [11]. Most patients develop hypoventilation with hypoxemia
and hypercapnia, requiring non-invasive ventilation (NIV) support [22]. In this context, foreseeing the
beginning of hypoventilation is key to anticipate opportune interventions, such us the start of NIV. NIV
was demonstrated to be effective in prolonging life and improving quality of life in ALS, in particular in
patients without major bulbar muscles weakness [3, 5].

1.2 Goals and Contributions

This dissertation follows the work developed by Carreiro et al. [8] proposing the first prognostic models
based on clinically defined time windows to predict the need for NIV in ALS. Following this work, Pires
et al. [39] stratified patients according to their state of disease progression, and proposed specialized
learning models based on three ALS progression groups (slow, neutral and fast). They further used
patient and clinical profiles with promising results [40]. Nevertheless, neither the approach using patient
stratification or using clinical and patient profiles for prognostic prediction, took into account the temporal
dependence between the features. Matos et al. [37] used biclustering-based classification. Biclustering
was used to find groups of patients with coherent values in subsets of clinical features (biclusters), then
used as features together with static demographic data. The results were interesting but no temporal data
were used.

In this context, the first goal of this thesis was to design and implement triclustering-based approaches
to learn predictive models from temporal three-way data, enabling the learn of class-discriminative tem-
poral patterns, and further enhancing model interpretability .
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1.3. THE ALS CASE STUDY

The second goal was to learn prognostic models using the proposed triclustering-based classifiers.
As case study, we analyses three-way data from clinical records (patient-feature-time data) and target
prognostic prediction in Amyotrophic Lateral Sclerosis (ALS) using a large cohort of Portuguese pa-
tients, where the triclusters learnt from patients’ follow-up data can be interpreted as disease progression
patterns. The goal is to predict whether an ALS patient will need NIV in the next 90 days (after a set of
appointments). Furthermore, we aimed at using the model learned to obtain temporal disease progression
patterns.

To achieve these goals, we designed and used TCtriCluster, a temporally constrained triclustering
algorithm able to mine time-contiguous triclusters. TCtriCluster is an extension of TriCluster [47], a
pioneer and highly cited triclustering algorithm, proposed by Zhao and Zaki to mine patterns in three-way
gene expression data, extended to cope with three-way heterogeneous data and incorporate a temporal
contiguity constraint.

In this scenario, the contributions of this thesis are the following:

• A preliminary study on the use of a triclustering-based classifier for prognostic prediction in ALS
using triCluster. This work was published in proceedings of 14th International Conference on
Practical Applications of Computational Biology and Bioinformatics (PACBB 2020) [43] (see Ap-
pendix A).

• TCtriCluster: an extension of triCluster adapted to mine time-contiguous triclusters and deal with
possible missing values. We further applied TCtriCluster in prognostic prediction in ALS with
improved performance and targeted model interpretability by analysing the disease progression
patterns uncovered by triclustering (with and without patient stratification in Slow, Neutral and
Fast Progressors [39]). This work originated a journal paper in Appendix B, currently under review
in BMC Medical Informatics and Decision Making;

• BicTric: a new approach to learn predictive models combining biclustering and triclustering;

• Source Code in Python of triCluster and TCtriCluster [Git Repository].

1.3 The ALS Case Study

As mentioned above, worldwide, ALS affects between 5.9 and 39 people per 100.000 inhabitants [10]. In
Portugal, 10 in 100.000 inhabitants suffer from this disease [11]. Most patients develop hypoventilation
with hypoxemia and hypercapnia, requiring non-invasive ventilation (NIV) support [22]. In this context,
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1.3. THE ALS CASE STUDY

foreseeing the beginning of hypoventilation is key to anticipate opportune interventions, such us the start
of NIV. NIV was demonstrated to be effective in prolonging life and improving quality of life in ALS, in
particular in patients without major bulbar muscles weakness [3, 5].

With this in mind, in our case study we intend to build a prognostic prediction model to tackle the
following questions:

• Given a set of consecutive patient appointments (T1, T2,..., Tk) can we predict if the patient will
require NIV within a certain time window after evaluation Tk?

• Can we identify the most expressive combination of features that most describe the ALS patient
disease progression profiles?

We use the Lisbon ALS clinic dataset containing Electronic Health Records from ALS Patients reg-
ularly followed at the local ALS clinic, since 1995 and last updated in March 2020. Its current ver-
sion contains 1374 patients. Each patient has a set of static features (demographics, disease severity,
co-morbidities, medication, genetic information, habits, trauma/surgery information and occupations)
together with temporal features (collected repeatedly at follow-up), such as disease progression tests
(ALSFRS-R scale, respiratory tests, etc) and clinical laboratory investigations.

Following previous work [39] and clinical feedback from the ALS experts we used the following
features. From static data, we used Gender, BodyMass Index (BMI), MND familiar history, Age at onset,
Disease duration, El Escorial reviewed criteria, UMN vs LMN, Onset form, C9orf72. From temporal
data, we used 10 features per time point, the Functional Scores (ALSFRS-R), briefly described below,
and respiratory tests: Forced Vital Capacity (FVC), Maximal Inspiratory Pressure (MIP) and Maximal
Expiratory Pressure (MEP).

ALSFRS-R scores for disease progression rating are an aggregation of integers on a scale of 0 to 4
(where 0 is the worst and 4 is the best), providing different evaluations of the patient functional abilities
at a given time point [14]. This functional evaluation is based on 13 questions, explained in Table 1.1.
Different functional scores are then computed using subsets of scores, as shown in Table 1.2.
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1.4. THESIS OUTLINE

Table 1.1: ALSFRS-R Questions

Q1 - Speech
Q2 - Salivation
Q3 - Swallowing
Q4 - Handwriting
Q5 - Cutting food and Handling Utensils
Q6 - Dressing and Hygiene
Q7 - Turning bed ans adjusting bed clothes
Q8 - Walking
Q9 - Climbing Stairs
Q10 - Respiration
QR1 - Dyspnea
QR2 - Orthopnea
QR3 - Respiratory Insufficiency

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 1 gives an introduction, explain the goals and contributions of this work and introduce the ALS
case study.

Chapter 2 describes all the background concepts and definitions needed to better understand this dis-
sertation.

Chapter 3 presents the proposed methodology to learn and use a triclustering-based classifier, together
with the TCtriCluster algorithm.

Chapter 4 presents and discusses the results obtained in the ALS case study and shows the performed
model interpretability analysis, pinpointing the patterns discovered and used by the predictive mod-
els.

Chapter 5 presents the proposed prognostic prediction approach combining biclustering and tricluster-
ing and discusses the results obtained in the same case study.

Chapter 6 presents the conclusions and future work.
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Table 1.2: Functional Scores and Sub-scores according to ALSFRS-R.

Functional Score Description

ALSFRS sum of Q1 to Q10

ALSFRS-R sum of Q1 to Q9 + QR1 + QR2 + QR3

ALSFRSb Q1 + Q2 + Q3

ALSFRSsUL Q4 + Q5 + Q6

ALSFRSsLL Q7 + Q8 + Q9

ALSFRSr Q10

R QR1 + QR2 + QR3
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Background and Related Work 2
This chapter discusses background and related work. We first introduce the necessary concepts on

clinical and multiway data, data preprocessing and classification. We then provide key knowledge on
clustering, biclustering and triclustering. Finally, we present related work on triclustering applications in
biomedical data, (bi)clustering classification and other analyses using the ALS data used as case study.

2.1 Clinical Data and Multiway Data

In clinical domains data is in general composed of static and temporal data (as shown in Figure 5.1).
When this is the case, static data corresponds to 2W dataset, while temporal data corresponds to a 3W
dataset (composed of several 2W datasets). Two and three way datasets are formally defined as follows:

2W dataset A two-way dataset C (also refered as matrix, two-dimensional (2D), or 2W data in short)
with n rows and m columns, is defined by n observations (rows) X = {x1, . . . , xn}, m attributes
(columns) Y = {y1, . . . , ym}, and n × m elements (values) aij . Elements aij relate observation xi

and attribute yj . 2W data can be real-valued (aij ∈ R), symbolic (aij ∈ Σ , where Σ is a set of nominal
or ordinal symbols) or integer (aij ∈ Z) [35, 24].

3W dataset A three-way dataset A (also referred as tridiac data, cube data, three-dimensional (3D) or
3W data in short) is defined by n observations X = {x1, . . . , xn},m attributes Y = {y1, . . . , ym}, and
p contexts Z = {z1, . . . , zp}. Elements aijk relate observation xi , attribute yj , and context zk. 3W data
can be real-valued (aijk ∈ R), symbolic (aijk ∈ Σ , where Σ is a set of nominal or ordinal symbols) or
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integer (aijk ∈ Z). [24]

2.2 Data Preprocessing

Real-world data tend to be incomplete, noisy and inconsistent [20]. Since we intend to keep all data clean
(or as clean as possible), it is necessary to adapt all data analysis processes to meet this requirement, pro-
viding them with the most appropriate techniques for that purpose. Dealing with missing and imbalanced
data are important tasks in this dissertation context.

2.2.1 Missing Data

It is rare for a research investigation not to have missing data [38]. However, ignoring their existence
will make the analysis more difficult and biased. Strategies for handling missing values are based on
different assumptions and have different limitations. Key questions to consider when selecting a method
for handling missing values include: 1) Why are data missing?; 2) How do records with missing and
complete data differ?; and 3) Do the observed data help predict the missing values? [38].

We can consider three types of missing data: Missing Completely at Random (MCAR) , Missing at
Random (MAR) and Missing Not at Random (MNAR) [32], described as follows:

• MCAR: when the probability of amissing value is independent of the feature itself and any external
influences (e.g. lost information caused by system crash, human error);

• MAR: when the probability of a missing value is still independent of the feature itself but not of
external influences, with the missing values having a predictable pattern (e.g. sensor fail);

• MNAR: when the probability of a missing value is dependent of the feature itself (e.g. if a sensor
can not acquire information outside a certain range).

To deal with this issue, there are three main types of approaches that can be applied according to the
type of missing value: Deletion, Imputation or Prediction [15], characterized as follows. In practice, we
usually use a combination of these approaches.

Deletion methods consist in removing either instances or columns mostly composed by missing values
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(according to a user-defined threshold). However, in datasets with low quantities of data or with
many missing data this can lead to a considerable loss of information ;

Imputation methods can be divided into two groups: Single Imputation (SI) or Multiple Imputation
(MI). Single imputation methods replace the missing value with plausible values by observing the
characteristics of the population. The most common method is Mean Imputation which imputes
missing values using the population mean for the variable. However, when performed in datasets
with large quantities of missing data, it leads to a loss of feature variance and correlation distortion
that can lead to a biased dataset [42]. Last Observation Carried Forward (LOCF) presents as an
alternative to Mean Imputation, by assuming that the value does not change from the last observa-
tion [38]. This methodology is especially common in clinical datasets, where longitudinal data is
available. [42];

Prediction methods are the most recently approaches and consists in using predictive models learned
from the remaining data to predict missing values [12, 16].

According to the type of data analysis task and the used algorithms it can be useful to keep missing
values, since their replacement can also introduce bias in data.

2.2.2 Data Imbalance

An imbalanced dataset is a dataset containing more labeled instances as from one of the classes values
than the others, meaning that one of the classes is more represented within data. This contrast will have
a lot of influence on many machine learning problems, more specifically on classification problems.

Since overcoming this challenge improves the performance and reliability of the results, there are two
techniques that are being used widely to deal with it: Oversampling and Undersampling. The first one
consists in adding “artificial” instances of the minority class(es) and the second in removing instances
from the majority class, ensuring the balance of data [20].

There are several different approaches considered for the both techniques. Concerning Undersam-
pling the most common is Random Undersampling, which consists in randomly remove instances from
the majority class until obtain the same proportions of classes in the dataset [20]. This approach faces
some problems, such as the loss of information by removing instances that would be informative [21]. On
the other hand, with Undersampling techniques this problem does not appear, since we can just randomly
add copies of instances of the minority class to the dataset until we get equal instance numbers for both
classes. However this approach easily can lead to a biased dataset [21].
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Synthetic Minority Over-sampling Technique (SMOTE) proposes an oversampling alternative, as it
creates synthetic learning instances for the minority class by using k-Nearest Neighbors method to find
similar k instances to one of the minority class examples, and use them to create a new instance [9].
Combining the two approaches, could be the solution to overcome some of the problems of both, when
considering binary class dataset [28]. However, since with a multiclass dataset this problem is not easily
overcome many authors tried to obtain an effective solution [20, 48, 41].

In practice when the imbalance is huge and enough data is available the best can be to first do under-
sampling and then use SMOTE [37, 39, 6].

2.3 Classification

In Machine Learning, Classification, which can be defined as the process of finding a model that de-
scribes and distinguishes data classes or concepts, is a Supervised Learning task assuming the existence
of labelled from which the classifier should be learnt. [20].

Classification Task is a two-step process. First, in the learning step, the classification model is built
and latter the learned model is used to predict class label for a new given data, in classification step [20].
More concretely in the first step, a classification algorithm builds the model by examining a training set
composed by observations and their associated class labels. An observation or tuple,X is an-dimensional
feature vector, X = (x1, x2, ..., xn), where it is assumed that X belongs to a predefined class. In the
context of classification, tuples can be referred as samples, examples, instances, data points or objects
[20].

2.3.1 Decision Trees

Decision Trees (DTs) are widely used models in Classification due to being easy to visualize, understand
and interpret. Most algorithms used to learn a DT from training data (e.g. ID3, C4.5 and CART) employ
a greedy top-down recursive divide-and-conquer strategy: the data is recursively divided into smaller
partitions by selecting in each iteration the feature which separates best the data entries into their respec-
tive classes (the splitting attribute), by using an attribute selection measure (e.g. Information Gain, Gain
Ratio or Gini Index) [20].

Figure 2.1 depicts an example of DT to predict whether a patient has flu. The top of the DT is the
feature which better separates data, according to the class values of each instance. The next internal node
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Fever?

Fatigue?

Cought?

Yes No

No Yes

YesNo

YESNO

NO

YES

Figure 2.1: Example of Decision Tree for problem: ”Have the patient flu?”

for each branch will be the best describing feature for the data subset that follows each branch. This last
step is repeated until either all features have been used, or all the final branches lead to a prediction. When
we reach a feature in which each value leads to a single prediction, then there is no need to look further
in the remaining features and the branches of that feature will lead to the leaves (final predictions) of the
tree. In situations where even with all available features, there is no combination that allows reaching
single predictions, we have often resort to majority voting. This consists of choosing the prediction value
for each branch according to the most popular value [20].

2.3.2 Ensemble Classifiers and Random Forests

An ensemble method combines a set of k learned models (base classifiers),M1,M2, ...,Mk with the aim
of creating an improved composite classification model. A given dataset,D, is partitioning into k training
sets, D1, D2, Dk, where Di (1 ≤ i ≤ k − 1) is used to learnMi. To classify a new tuple, the ensemble
will return a class prediction based on the predicted classes (votes) by the base classifiers. Due to it’s
composition by several classifiers, ensemble tends to be more accurate than the separated classifiers [20].

Random Forests (RF) is an ensemble where the base classifiers are Decision Trees, composing a “for-
est”. The individual DTs are generated using a random selection of attributes at each node to determine
the split. To make a prediction, each tree votes and the most popular class is the predicted class by RF.
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2.3. CLASSIFICATION

Random Forests are more robust to errors and able to compensate for the overfitting individual DTs tend
to suffer (as long as the number of trees is large) and are capable of returning internal estimates of Feature
Importance [20].

2.3.3 Performance Evaluation

The building of a classification model requires a proper evaluation in order to measure if the classifier
works like we expect. Considering Classification with Binary class problems (having a two class dataset)
can be considered two types of tuples: Positive tuples, tuples of the main class of interest, and Negative
tuples, the remaining tuples [20]. There are four additional terms useful to understand some metrics:

True positives (TP) represents the positive tuples correctly labeled by the classifier;

True negatives (TN) represents the negative tuples correctly labeled by the classifier;

False positives (FP) represents the negative tuples that were incorrectly labeled as positive by the clas-
sifier;

False negatives (FN) represents the positive tuples that were mislabeled as negative [20].

This four concepts can be summarized in a table called Confusion Matrix, represented in Figure 2.2.

With the concepts represented in the confusion matrix, it is possible to compute some metrics that are
summarized in Table 2.1 . This metrics are used to evaluate the performance of classification.

Accuracy is the most frequently metric used to evaluate the classifier performance. Despite its good
representative character it is necessary to take into account class imbalance problem. If the dataset dis-
tribution reflects a significant majority of one of the classes, accuracy tends to provide inconclusive
evaluations, since the classifier could be correctly labeling only tuples that belong to one of the classes
and misclassifying all the others. With this, it is important to couple accuracy with other metrics like
Specificity and Sensitivity since this metrics can assess how well the classifier recognize positive and
negative tuples [20].

As aforementioned, to evaluate a classifier using the metrics described above, need careful and take
into account the proportions of each class value as to not be biased by the results. The ROC curve
combines the Sensitivity and Specificity metrics in a graph displaying the trade-off between the rate at
which a model can classify correctly Positive tuples (Sensitivity) versus the rate at which it misclassifies
Negative tuples (Specificity) for different portions of the Test set.
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Figure 2.2: Confusion Matrix. TP, TN, FP, FN, P, N, P’, N’ refer to the number of true positives, true neg-
atives, false positives, false negatives, actual positive, actual negative, predicted positive and predicted
negative tuples, respectively.

The ROC is also used to compute one of the most popular metrics in performance evaluation, the
Area Under the ROC Curve, also known as AUC. As it says in the name, this metric measures the area
under the ROC curve. The AUC metric can be defined as either the representation of the classifier ability
to separate the classes or the probability of an instance with a given class value being classified as such
[20]. Figure 2.3 depicts an example of a ROC curve with AUC highlighted.

K-fold Cross-Validation (CV) is a popular method for performance evaluation in Classification. This
method consists in split the data in a number of subsets in order to evaluate the performance of classifier
using one subset as test set and the remaining as training set. Concretely, in k-fold CV the original dataset
is randomly partitioned into k mutually exclusive subsets or “folds”, each of approximately equal size.
The process of training and testing is performed k times, once per iteration. In iteration i, partition Di

is used as the Test set, and the remaining partitions are collectively used to train the model. The final
evaluation metrics are calculated by performing the mean of each metric between all folds [20]. There
are some approaches to be considered according to the type of problem, such as:

Leave-One-Out (LOO) When k is set to the number of tuples in the original dataset, leaving only one
tuple per iteration on the Test set;

Stratified Cross-Validation When the “folds” are stratified so that the class distribution of the tuples in
each fold is approximately the same as that in the initial data
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Table 2.1: Performance Evaluation Metrics.

Metric Description Formula

Accuracy
Represents the percentage of tuples
correctly classified.

TP+TN
P+N

Sensitivity, Recall
or True Positive Rate (TPR)

Shows the proportion of positive tuples
that were correctly classified.

TP
P

Specificity or
True Negative Rate (TNR)

Shows the proportion of negative tuples
that were correctly classified.

TN
N

Precision
Represents the percentage of tuples
correctly classified as positive.

TP
P ′

F-measure Harmonic mean of Precision and Recall. 2×Precision×Recall
Precision+Recall

1 - Specificity

Se
ns

iti
vi

ty

Figure 2.3: A ROC example

As described in [20] the most recommended approach is stratified 10-fold CV for estimating accuracy
due to its relatively low bias and variance.
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2.3.4 Feature Importance

In life sciences, interpretability of machine learning models is as important as their prediction accuracy
[1]. With this in mind, becomes important to understand how the predictive features have an influence on
training a classification model to predict some interesting target variable. It is then necessary to evaluate
the importance that a given feature has in the predictive model in order to withdraw some assumptions
of the reason for the influence. The more a feature is used to better split the data space, the higher its
relative importance will be [1, 34]

2.4 Clustering and Biclustering

2.4.1 Clustering

Given a 2W dataset with n observations, X = {x1, . . . , xn}, described by m features, Y , the cluster-
ing task aims to find subsets of observations (clusters), {I1, . . . , Ir}, where Ii ⊆ X satisfies certain
intracluster and intercluster criteria of (dis)similarity over the whole space [24].

Despite the relevance of the clustering task the (dis)similarity between observation becomes biased
considering an high number of attributes per observation [24]. A way to tackle this problem is to per-
form clustering in data subspaces so that a group of observations needs only to be similar on a subset of
attributes. Biclustering targets this problem [24].

2.4.2 Biclustering

Bicluster Given a 2W dataset (matrix),M , with n observations X andm features Y , a real-valued or
symbolic matrix biclusterB = (I, J) is a subspace given by a subset of observations, I ⊆ X and subset
of features, J ⊆ Y [35, 24].

Biclustering Solution Given M , the biclustering task aims to find a set of biclusters {B1, . . . , Bq},
such that each bicluster Bi satisfies specific criteria of homogeneity and statistical significance [35, 24].

As we will see in what follows, by adding a third dimension to 2W data, similar assumptions can be
done in order to get triclusters.

15



2.5. TRICLUSTERING

Figure 2.4: Comparison between Clustering, Biclustering and Triclustering

2.5 Triclustering

Tricluster Given a 3W datasetC with n observationsX ,m attributes Y , and p contexts Z, a tricluster
T = (I, J,K) is a subspace of the original space, where I ⊆ X , J ⊆ Y , and K ⊆ Z are subsets of
observations, features, and contexts, respectively [24].

Triclustering Solution GivenC, the triclustering task aims to find a set of triclusters {T1, . . . , Tl} such
that each tricluster Ti satisfies specific criteria of homogeneity and statistical significance [24]. Figure 2.5
depicts the concepts used in 3W data analysis.

The homogeneity criterion determines the structure, coherence, and quality of a triclustering solution,
where:

– the structure is described by the number, size, shape, and position of triclusters;

– the coherence of a tricluster is defined by the observed correlation of values (coherence assumption)
and the allowed deviation from expectations (coherence strength); and

– the quality of a tricluster is defined by the type and amount of tolerated noise.

2.5.1 Tricluster Coherence

The coherence assumption defines the type of correlation between the values of a tricluster, and it can
be:
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Figure 2.5: Concepts of 3W data analysis

1. Cubic, when established among all values in tricluster

2. Intraplane, if established for each slice of a tricluster

3. Interplane when established between the slices of a tricluster

Considering Cubic coherence, let T = (I, J,K) be a tricluster with aijk values. If T has only
categorical values and aijk ∈ Σ we said that T corresponds to a tricluster with:

Constant symbol if aijk = c

Constant pattern if aijk = cj (or ci or ck)

Considering that T has only real values, aijk ∈ R, whose values respecting aijk = c + αi + βj +

γk + ηijk (where c ∈ R and αi, βj and γk ∈ R are contributions from xi observation, yj attribute, and zk
context) it is said that B follows a:

Fully additive assumption when αi ̸= 0, βj ̸= 0 and
γk ̸= 0; or

Partially additive assumption when αi = 0, βj = 0 or
γk = 0.

When the values of the tricluster are better described by aijk = c× αi × βj × γk + ηijk is said that
it follows a:

Fully multiplicative assumption when αi ̸= 0, βj ̸= 0 and γk ̸= 0; or

Partially multiplicative assumption when αi = 0, βj = 0 or γk = 0.
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Figure 2.6: Tricluster Types according Cubic Coherence: (a) Constant symbol, (b) Constant pattern, (c)
Fully additive, (d) Partially additive.

A tricluster considering the cumulative effects from other triclusters follows a plaid asumption and
is defined as:

aijk = µ0 +

q∑
t=0

θijktρitκjtτkt (2.1)

where θijkt defines the contribution from the tricluster Tt = (It,Jt,Kt) to aijk when ρit, κjt and τkt are
true, i.e., xi ∈ It, yj ∈ Jt and zk ∈ Kt.

Regarding the intraplane coherence the majority of models are adapted from Biclustering, since a
slice of a Tricluster can be seen a matrix with 2 dimensions [24].

Figure 2.6 shows four examples of values for a tricluster with different types of cubic coherence.
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2.5.2 Temporality of 3W Data

When contexts correspond to time points, we are in the presence of a temporal 3W dataset (also referred
as three-way time series or temporal 3D dataset), where each observation is a multivariate time series with
m order [24].

The context of 3W data is very extensive and plentiful. It is then necessary to take into account the
various data-related specificities with impact on the triclustering task [24]. In the context of this work we
will explore in a better way the temporality of data.

The vast majority of available 3W data comes from periodic observations on biological, individual
and societal systems. Henriques andMadeira [24] identified some unique challenges of 3W temporal data,
such as (1) place adequate homogeneity criteria to capture meaningful forms of temporal progression, (2)
handle arbitrarily high temporal lags on observations, (3) place proper contiguity criteria, and (4) deal
with the complex stochasticity inherent to temporal 3W data.

2.6 Related Work

This section presents related work on the concepts covered in this thesis. We first discuss relevant state-
of-the-art triclustering algorithms and their applications. Finally, we present studies performed with the
same data.

2.6.1 Triclustering Algorithms and Applications

The first steps in triclustering research were taken by Zhao and Zaki. They conceived triCluster al-
gorithm to extract patterns in 3D gene expression data. This algorithm mines arbitrarily positioned and
overlapping scaling and shifting patterns [46]. One year latter, Jiang et al. [25] proposed an extended and
generalized version of the TriCluster algorithm, named gTriCluster that improved this proposal consider-
ing inter temporal coherence while generating triclusters. Many others researches have been done about
Triclustering [18, 17, 19, 45, 33, 29, 4, 44, 30, 2, 26] . These will be briefly presented in Section 2.6.2.

In order to categorize the different algorithms according to the aspects of the triclustering tasks (di-
versity of data inputs, behavioral options, desirable homogeneity criteria), Henriques and Madeira [24]
proposed to divide the algorithms relative to (1) whether their behaviour is based on iterative searches
(greedy) or on distribution parameter identification (stocastic) and (2) whether they are able to offer guar-
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antees of optimality (exhaustive) or not. Each approach can be further categorized according to whether
the behaviour relies on biclustering algorithms, pattern mining procedures or evolutionary multiobjective
optimization, among other possibilities.

Triclustering algorithms can be applied to different types of data, from biological andmedical to social
domains. Specifically this work will focus on biological and clinical data analysis. The main applica-
tions for biological data are: analysis of 3D omic, augmented, network, multispecious, chemical, drug
and sample-by-sample data [24]. In clinical domains there are three major triclustering applications, ac-
cordingHenriques andMadeira [24]: (1) multivariate physiological signal (individual-feature-time signal
data) analysis where triclusters can capture coherent physiological responses for a group of individuals;
(2) neuroimaging data analysis, where triclusters can capture hemodynamic response functions and con-
nectivity between brain regions; and (3) clinical records analysis, where triclusters correspond to groups
of patients with correlated clinical features along time.

2.6.2 Triclustering Applications in Biomedical Data

This section presents the various applications and experiments made with the different types of 3D data,
biological and medical, whose goals are typically:

1. Study response of patients to specific conditions/ treatment;

2. Evaluate disease progression;

3. Identify biological patterns/modules

Bhar et al. [4] proposed in 2013, a novel algorithm - δ-TRIMAX which was used to mine 3D gene
expression datasets by introducing a 3D mean square residue (MSR). This new proposal extracts per-
fectly shifting triclusters with hub genes from breast cancer cells. Rubio-Escudero and Gutiérrez-Avilés
[18] triclustered human genes (GDS 4472), using a multislope measure (MSL) to compute the similarity
between triclusters by averaging differences on the angles of the plane slopes for all pairs of observations,
attributes and contexts in a given subspace.

Amar et al. [2] proposed an algorithm for finding coherent and flexible modules in three-way data,
based on hierarchical Bayesian data model and Gibbs sampling. This algorithm was applied to data from
time series measurements of gene expression about humans septic shock response and brain functional
magnetic resonance imaging (fmri) time series.

Li et al. [29] used TRI-Clustering with Yeast cell cycle dataset to explore regulated expression values
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and mine time-delayed gene expression patterns from microarray data and conclude that this model can
be extended to 3D gene× sample× time datasets to identify 3D td-clusters. MultiFacTV algorithm was
proposed to extract modules that are composed of some genes, conditions and time-points based on tensor
factorization objective [30].

TriGen, implemented by Gutiérrez-Avilés and Rubio-Escudero, is a triclustering-genetic algorithm
based on an evolutionary heuristic, genetic algorithms, which finds patterns of similarity for genes on
a three dimensional space, thus taking into account the gene, conditions and time factors. They experi-
mented this algorithm together with 2 evaluation measures: LSL [17] and MSL [18].

More recently, Kakati et al. [26] developed an algorithm with the intent of solving the underlying
problem of most of triclustering algorithms, they are not able to handle co-occurring shifting-and-scaling
patterns. THD-Tricluster, identify triclusters over the Gene × Sample × Time (GST) domain and was
applied on HIV-1 progression data to identifies disease-specific genes.

Table 2.2 summarize these algorithms and gives a brief explanation of their algorithmic approaches
and datasets used for validation.

2.6.3 (Bi)clustering-based Classification

Considering clustering-based classification, we can consider a set of found clusters by any clustering al-
gorithm, as a class-discriminative features, taking advantage of the fact that the objects are grouped and
that there is a clear similarity between them to evidence the separation of the data. If we consider Bi-
clustering instead of just Clustering given the relationship between features within the biclusters, we can
obtain better results, taking advantage of the subset of features’ space of the pattern from each Bicluster
[6, 7].

Themost simple approach to use Biclustering-based classification is to build a matrix (observations×
biclusters) considering biclusters as features and assign the observations to biclusters using binary labels
(1 if the observation is contained in bicluster; 0 otherwise). This matrix will be used next by the classifier
to make predictions based on bicluster composition patterns. Many variants of this simple approach can
be found in [6, 7].

Matos et al. [37] used biclustering-based classification, using the pattern-based biclustering algorithm
BICPAM [23] andRandomForests, to extract discriminativemeta-features. These so calledmeta-features
corresponded to the patterns of discriminative biclusters.
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Table 2.2: State-of-the-art triclustering algorithms for biomedical data analysis. The goals are: (1) Study
response of patients to specific conditions/treatment; (2) Evaluate disease progression and (3) Identify
biological patterns/modules.

Algorithm Year Data set Algorithmic Approach Goals

triCluster [46] 2005 Yeast cell cycle
Biclustering based (quasi-
exhaustive) with graph consensus

(3)

gTRICLUSTER [25] 2006 Yeast cell cycle regulated
Biclustering based (quasi-
exhaustive) with graph consensus

(3)

MOGA3C [33] 2007 Yeast cell cycle regulated
Multiobjective optimization (quasi-
exhaustive)

(3)

TRI-Clustering [29] 2009 Yeast genome Greedy (divide-and-conquer) (3)

TD-Clustering [45] 2010 Yeast gene expression Pattern based (quasi-exhaustive) (3)

δ - TRIMAX [4] 2012
Human estrogen induced
breast cancer cell

Greedy (Divide-and-conquer) (3)

OPTricluster [44] 2012
Mice, Arabidopsis
thaliana, Brassica napu

Biclustering-based (greedy) (3)

MultiFacTV [30] 2013
Arabidopsis thaliana and
Yeast cell cycle

Stochastic (tensor factorization ob-
jective)

(3)

LSL-TriGen [17] 2014
Yeast cell cycle and
human inflammation and
host response to injury

Multiobjective optimization (quasi-
exhaustive)

(3)

MSL-TriGen [18] 2015
Yeast cell cycle, Mice
(GDS4510) and Humans
(GDS4472)

Multiobjective optimization (quasi-
exhaustive)

(3)

TWIGS [2] 2015

Microarray dataset for
transcriptional response
of patients to sepsis and
fMRI data

Stochastic (hierarchical Bayesian
model)

(1), (3)

THD - Tricluster [26] 2018
Yeast cell cycle andHIV-1
disease progression

Biclustering based (2)
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2.6.4 Previous Work with similar ALS Patients Data

Carreiro et al. [8] proposed the first prognostic models based on clinically defined timewindows to predict
the need for NIV in ALS. Following this work, Pires et al. [39] stratified patients according to their
state of disease progression, and proposed specialized learning models based on three ALS progression
groups (slow, neutral and fast). They further used patient and clinical profiles with promising results [40].
Nevertheless, neither the approach using patient stratification or using clinical and patient profiles for
prognostic prediction, took into account the temporal dependence between the features. Matos et al. [37]
used biclustering-based classification. Biclustering was used to find groups of patients with coherent
values in subsets of clinical features (biclusters), then used as features together with static demographic
data. The results were interesting but no temporal data were used.
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Triclustering-based Classification 3
Considering a temporal and heterogeneous three-way dataset, composed by a set of observations, fea-

tures and time-points as shown in Figure 3.1, we aim to learn a classification model based on triclustering
not only to effectively classify pre-labelled observations but also to unravel the most important temporal
patterns used for classification in order to promote model explainability.

Features

Tim
e

P
at

ie
nt

s

Figure 3.1: Example of temporal and heterogeneous three-way data: Electronic Health Records with
Patients, Features and Time as dimensions

In this context, we propose a new triclustering-based classification, where triclusters are first discov-
ered and then used as features to construct a predictive model and identify the most important temporal
patterns to be analyzed. Figure 3.2 depicts the overall workflow.
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Figure 3.2: Proposed Workflow to Learn a Triclustering-based Classifier

This chapter describes the proposed methodology to learn a triclustering-based classifier from three-
way data, from preprocessing (including creating learning examples) to classifier performance evaluation,
exploring several approaches in each step. We further describe TCtriCluster, the proposed triclustering
algorithm to mine temporally constrained triclusters.

In what follows, consider that a three-way dataset, D, is defined by n objects X = {x1, ..., xn}, m
features Y = {y1, ..., ym}, and p contexts Z = {z1, ..., zp}, where the elements dijk relate object xi,
feature yj , and context zk. Consider also that, a bicluster B = (I, J) is a subspace given by a subset of
objects, I ⊆ X , and a subset of features, J ⊆ Y [35]. Similarly, a tricluster T = (I, J, Z), contains
I ⊆ X objects, J ⊆ Y features andK ⊆ Z contexts, and tijk denote the elements of T , where 1 ≤ i ≤ I ,
1 ≤ j ≤ J and 1 ≤ k ≤ K [24]. In this context, each tricluster T can be represented as a set of K
biclusters T = {B1,B2, . . . ,BK}:

B1 =



t111 t121 · · · t1J1

t211 t221 · · · t2J1

...
... . . . ...

tI11 tI21 · · · tIJ1



B2 =



t112 t122 · · · t1J2

t212 t222 · · · t2J2

...
... . . . ...

tI12 tI22 · · · tIJ2
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...

BK =



t11K t12K · · · t1JK

t21K t12K · · · t1JK

...
... . . . ...

tI1K tI2K · · · tIJK



3.1 Creating Learning Examples and Preprocessing Data

Three-way data can have different formats. As such, and in order to apply the proposed approach, data
needs to be preprocessed in order to create learning examples (snapshots) composed of sets of features
from consecutive time-points. Our approach follows the work of Carreiro et al. [6] and Pires et al. [39].
Depending on the dataset, dealing with missing values and class imbalance, might also be needed.

3.2 TCtriCluster: A new Temporal Triclustering Algorithm

For thesemethodology, we considered TriCluster [47], the pioneer and highly cited triclustering approach,
proposed and implemented by Zhao and Zaki in 2005. It is a quasi-exhaustive approach, able to mine
arbitrarily positioned and overlapping triclusters with constant, scaling, and shifting patterns from three-
way data. Given that TriCluster was proposed to mine coherent triclusters in three-way gene expression
data (gene-sample-time), at this point it is important to understand that clinical data can be preprocessed
in order to have a similar structure, in which gene-sample-time data becomes patient-feature-time data,
for instance. TriCluster has 3 main steps: 1) construct a multigraph with similar value ranges between
all pairs of samples; 2) mine maximal biclusters from the multigraph formed for each time point (slices
of the 3D dataset); and 3) extract triclusters by merging similar biclusters from different time-points.
Optionally, it can delete or merge triclusters, according to the overlapping criteria used.

However, since our goal is to mine temporal three-way data, meaning the Z dimension (contexts)
is time, we borrowed the idea in CCC-Biclustering [36], a state of the art and highly efficient temporal
biclustering algorithm, and introduced a temporal constraint in triclustering. The goal thus became to
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mine Time-Contiguous Triclusters (TCTriclusters), triclusters with consecutive time-points. In this con-
text, we re-implemented TriCluster in Python and extended it to cope with a time constrain. The new
TCtriCluster algorithm implements this time constrain on its 3rd phase, as shown in Algorithm 1 (line 9).

Allowing missing values directly in triclustering, thus preventing previous imputation, can improve
the interpretability of obtained triclusters and reduce the noise imposed by imputation with other artificial
values. With this in mind, we decided to introduce a step in the algorithm (2nd step - biCluster) to handle
missing values. This step evaluates the missing values with respect to each observation and compares the
similarity between these observations (withmissing values) with the observations composing the obtained
biclusters. If the similarity value is within the limits dictated by the ratio threshold, the observation is
added to the bicluster if the proportion between the number of features withmissing values and the number
of features in bicluster is less than missing threshold.

TCtriCluster allows different combinations of input parameters, that should be explored in order to
discover the best parameters, with which the final classifier should be learnt. The input parameters are:
ε,mx,my,mz, δx, δy, δz, η and γ, corresponding to maximum ratio value, minimum size of tricluster
dimensions x, y and z, maximum range threshold along dimensions x, y and z, overlapping and merging
threshold, respectively.

3.3 Learning Triclustering Best Parameters

In this step, the goal is to compute the best parameters to be used as input by the triclustering algorithm (we
used both triCluster and the proposed temporal triclustering algorithm TCtriCluster) in order to obtain the
best classification performance. The workflow, depicted in Figure 3.3, starts by performing triclustering
on the preprocessed data to obtain triclusters. Next, the virtual pattern 3D is computed for each tricluster.
The proposed virtual pattern 3D, extended from the 2D version defined in [13], is computed as follows,
using the virtual pattern of each bicluster composing the tricluster.

Definition 1. (Virtual Pattern 3D). Given a tricluster T , its virtual patternP is defined as a set of elements
P = {ρ1, ρ2, ..., ρI}, where ρi, 1 ≤ i ≤ I is defined as the mean (or the mode, in case of categorical
features) of values in the ith row for each context:

ρi =
1

J · Z

Z∑
z=1

J∑
j=1

bijz (3.1)

To assess how well a specific object (patient) follows the general tendency of a given tricluster T ,
we proposed three approaches: (1) Binary - consider that if an observation pi is contained in T it follows
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Algorithm 1: TCtriCluster: Extension of triCluster able to mine TCTriclusters
Input: ε,mx,my,mz, δx, δy, δz , bicluster sets {Ct} of all contexts (time-points), set of objects

X, features Y and contexts (time-points) Z
Output: cluster set C

1 Initialisation: C = ∅, call TCtriCluster(T = X × Y ×∅, Z)
2 TCtriCluster (T = I × J ×K, U)
3 if T satisfies δx, δy, δz then
4 if |T .K| ≥ mz then
5 if T ̸⊂ T ′ ∈ C then
6 Delete any T ′′ ∈ C, if T ′′ ⊂ T
7 Add T to C

8 foreach ti ∈ U do
9 if (T new = ∅) ∨ (T .K−1 + 1 = ti) then
10 T new.K ←− T .K + ti

11 Remove ti from U

12 forall tk ∈ T .K and each bicluster
btki ∈ Ctk , such that |b

tk
i .I ∩ T .I| ≥ mx and |btki .J ∩ T .J | ≥ my do

13 T new.I ←− btki .I ∩ T .I
14 T new.J ←− btki .J ∩ T .J
15 if |T new.I| ≥ mx and |T new.J | ≥ my and the ratios at time ti, tk are coherent

then
16 TCTriCluster (T new, P )
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Triclustering Task

Param: Xi

Triclusters

Compute Virtual Pattern 3D

Compute Similarities between
patients and virtual patterns

Similarities Matrix

5 x 10-fold Stratified cross-validation

Testing Data Training Data

Training Classifier

Testing Classifier

Performance
Evaluation

Exploring Triclustering 
Parameters Values

Best Triclustering
Parameters

Preprocessed
Data

Learning Triclustering Best Parameters

Figure 3.3: Learning Triclustering Best Parameters: Workflow
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the trend of the tricluster totally (1) and nothing otherwise (0); (2) compute the Euclidean distance; or (3)
compute Pearson correlation between the 3D virtual pattern P and the equivalent pattern (same features
and contexts) of pi.

We denote last two assessments as Virtual Distance 3D and Virtual Correlation 3D, and define them
as follows:

Definition 2. (Virtual Distance 3D). The virtual distance between an observation pi and a tricluster T is
defined as

VD3D(pi, T ) = E(pi, ρ) =

√√√√ I∑
e=1

(pie − ρe)2 (3.2)

Definition 3. (Virtual Correlation 3D). The virtual correlation between an object pi and a tricluster T is
defined as

VC3D(pi, T ) = r(pi, ρ) =

I∑
e=1

(pie − p̄i)(ρe − ρ̄)√√√√ I∑
e=1

(pie − p̄i)
2

I∑
e=1

(ρe − ρ̄)2

(3.3)

Considering as an example a Tricluster T (I, J,K), mined from three-way data S(X,Y, Z), com-
posed by 3 objects, 3 features and 3 contexts, such that I = {X1, X3, X7}, J = {Y1, Y3, Y7}, K =

{Z2, Z3, Z4}. Y1 and Y3 contains only categorical values. For simplicity, consider T = {B2, B3, B4} :

B2 =


1 3.1 5

1 2.8 3

3 2.1 10

 ;B3 =


2 3.0 3

3 2.8 3

3 2.9 9

 ;B4 =


3 2.9 3

2 2.9 3

3 2.4 8


and an object (patient) P (Xp, I,K) defined as P = {C2, C3, C4} : C2 =

[
1 2.22 5

]
; C3 =[

1 2.26 7

]
; C4 =

[
2 2.35 8

]

TheVirtual Patterns are: ρ(B2) =

[
1 2.6667 5

]
; ρ(B3) =

[
3 2.9 3

]
; ρ(B4) =

[
3 2.7333 3

]
;

and ρ(T ) =
[
3 2.7667 3

]
.

After computing similarity matrices according to the proposed approaches, a 5×10-fold Stratified
Cross-Validation is performed using the Triclustering-based Classifier in order to find the best tricluster-
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ing parameters, using classification performance as a metric. The best parameters then fed to the next
step.

3.4 Learning Triclustering-based Classifier

Figure 3.4 depicts the steps involved in learning the final model. With the best parameters output in
the previous step, a final iteration is performed in order to obtain the final Triclustering-based predictive
model and the final triclusters, then used to make predictions in the next step.

3.5 Using the Triclustering-based Predictive Model

After learning the final triclustering-based predictive model, it can be used to classify new three-way
objects. To do this, it is necessary to first calculate the array of similarities between the new object and
the triclusters obtained in the previous steps. This array will be fed to the classifier that will in turn return
the classification for the new object with a percentage of accuracy. Figure 3.5 depicts an example using
clinical three-way data (case study described in the section 1.3).

3.6 Final Remarks

This Chapter presented a promising approach to learn predictive models based on temporal triclustering.
We proposed a new triclustering algorithm able to identify temporal patterns and cope with missing values
used in a triclustering-based classifier. In clinical domains, temporal data analysis is an important task
since the assessment of patients evolution during their follow-up is a critical task for clinicians. As such,
being able to identify progression patterns and use them to predict how will the patient evolve is key.
With this in mind, we applied the proposed methodology to ALS patients’ data. Results are presented in
the next chapter.
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Figure 3.4: Learning Final Triclustering-based Model: Workflow.
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Figure 3.5: Using the Model: Workflow with three-way Clinical Data
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Learning Predictive Models
Using a Triclustering-based
Classifier: A Case Study in ALS 4

In this chapter we use the triclustering-based classification approach proposed in Chapter 3 to learn
predictive models for the ALS case study. The goal is to predict whether a patient will require NIV within
90 days after last evaluation, using 3W data corresponding to patient follow-up.

We first discuss ALS data preprocessing, then present and discuss results for the prognostic models,
and finally tackle model interpretability.

4.1 Preprocessing ALS Data

The Lisbon ALS clinic dataset described in Section 1.3 was preprocessed as described by Carreiro et
al. [8] and Pires et al. [39] to obtain patient snapshots and then compute the Evolution class for each
snapshot using NIV administration date: a patient is labelled Y, if 90 days after the snapshot he/she was
administrated NIV, and N otherwise.

We performed experiments using training examples composed by: 3, 4 and 5 consecutive snapshots
(CS) for each patient (corresponding to clinical evaluations at 3, 4 and 5 consecutive appointments, re-
spectively) were used as features, and the NIV evolution value of the last snapshot was used as class. For
each remaining patient, we performedmissing value imputation by using values in previous appointments
to input latter missing values (Last Observation Carried Forward), when possible, and mean/mode of all
patients values, otherwise.

After tackling missing values, we had to deal with class imbalance. In our case, and due to the time
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window of 90 days (next appointment) used as case study, the number of patients labeled as N, non-
evolutions, largely outnumbered those labelled as Y, identifying the patients requiring NIV within 90
days, key for the learning task. To deal with this issue, we first used a Random Undersampler (RU) to
reduce N examples until obtaining a class proportion of 2/3 - 1/3 and then used SMOTE [9] to balance
datasets to 50%/50% class proportion. Values for the class proportions obtained after RU and SMOTE
are depicted in Table 4.1.

Table 4.1: Number and Class Distribution of Learning Examples.

Total RU SMOTE

N Y N Y N Y

3 CS 1721 227 457 227 454 454

4 CS 1335 166 332 166 332 332

5 CS 1038 121 242 121 242 242

4.2 Learning Prognostic Models

This section provides results and discussion for the following experiments (with and without missing
values imputation):

1. Baseline: Random Forests classification with original features

2. Triclustering-based Classification with all data

3. Triclustering-based Classification with patient stratification

4.2.1 Baseline Results: Random Forests with original features

To obtain baseline results, to whom compare the predictive models learned with triclustering-based clas-
sifiers, we trained a Random Forest using the original features (respiratory tests and ALSFRS-R scores)
treated as independent features (number of CS × 10 features). Table 4.2 shows the baseline results. We
can observe that baseline classifier achieved classification accuracies around 0.80 in CV with low stan-
dard deviation. Sensitivity and specificity show approximately the same values, meaning all classifiers
perform well when predicting both classes.
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Table 4.2: Baseline Results using RandomForests andOriginal Features (withmissing values imputation)

CS AUC Accuracy Sensitivity Specificity

3 0.87 ± 0.0326 0.79 ± 0.0371 0.83 ± 0.0437 0.74 ± 0.0702
4 0.89 ± 0.0370 0.80 ± 0.0509 0.84 ± 0.0659 0.75 ± 0.0899
5 0.89 ± 0.0462 0.80 ± 0.0577 0.78 ± 0.0818 0.75 ± 0.0879

Random Forest itself can deal with missing values, so we decide to verify the similar baseline results
disregarding imputation step on data preprocessing, in order to verify if results are skewed by the artificial
values planted in those stage. Table 4.3 shows the results, and as we can see, with this case study data
missing values imputation does not affect the classifier performance, since results are quite the same.

Table 4.3: Baseline Results using Random Forests and Original Features (allowing missing values)

CS AUC Accuracy Sensitivity Specificity

3 0.88 ± 0.0314 0.80 ± 0.0408 0.84 ± 0.0582 0.76 ± 0.0663
4 0.90 ± 0.0371 0.80 ± 0.0473 0.85 ± 0.0614 0.76 ± 0.0831
5 0.89 ± 0.0506 0.80 ± 0.0581 0.85 ± 0.0670 0.75 ± 0.0994

4.2.2 Triclustering-based Classification Results

To test the proposed triclustering-based classifier on the ALS case study, allowing fair comparisons with
the baseline, we also use Random Forests as classifier.

Since TriCluster allows different parameterizations, potentially discovering triclusters with different
types of coherence, we run the algorithm using three different settings: Unconstrained, to capture all
coherent triclusters across the three dimensions (x-patient, y-feature and z-time); δx = δy = δz = 0,
to capture triclusters with constant values across the three dimensions; and δx = 0, to force constant
coherence on patient dimension while relaxing the others two. Together with these parameterizations, we
varied deletion (η) and merging (γ) thresholds from 0.45 to 0.95 (and none). We set minimum number
of features and time-points in each tricluster as 1 and 2 respectively, and minimum number of patients
as 25, 20 and 15 for 3, 4 and 5 consecutive snapshots (CS). We performed the experiments with data
preprocessed with missing values imputation and without.

To compute the similarities matrix, to be used by each triclustering-based classifier, we tried the three
proposed approaches: binary (B), distance (D) and correlation (C). Regarding the last two approaches,
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was computed the similarities between the patients and the different biclusters that compose the triclus-
ters, since according to the case study and for interpretability concerns, this will make the features more
informative, than when considering similarities with the general trend of the complete tricluster.

Table 4.4 shows the best triclustering parameters obtained with the different CS experiments. As we
can see, Unconstrained was chosen as the best parameter in the most of the experiments.

Table 4.4: Learned Triclustering Best Parameters

AP CS With MV imputation Without MV imputation

3 δx = δy = δz = 0 Unconstrained
B 4 Unconstrained Unconstrained

5 Unconstrained Unconstrained

3 Unconstrained; η = 0.95 Unconstrained
D 4 Unconstrained Unconstrained

5 Unconstrained Unconstrained

3 Unconstrained; γ = 0.50 Unconstrained
C 4 Unconstrained δx = 0

5 Unconstrained; γ = 0.95 Unconstrained

Table 4.5: Performance Evaluation Results of Triclustering-based Classifier using original TriCluster
Algorithm

AP CS AUC Accuracy Sensitivity Specificity

B
3 0.74 ± 0.0011 0.69 ± 0.0037 0.76 ± 0.0023 0.66 ± 0.0028
4 0.74 ± 0.0016 0.65 ± 0.0016 0.66 ± 0.0165 0.62 ± 0.0093
5 0.75 ± 0.0087 0.68 ± 0.0028 0.66 ± 0.0135 0.70 ± 0.0022

D
3 0.79 ± 0.0384 0.72 ± 0.0364 0.72 ± 0.0561 0.72 ± 0.0631
4 0.79 ± 0.0021 0.70 ± 0.0071 0.71 ± 0.0096 0.72 ± 0.0045
5 0.82 ± 0.0016 0.76 ± 0.0048 0.76 ± 0.0088 0.75 ± 0.0044

C
3 0.79 ± 0.0010 0.71 ± 0.0064 0.71 ± 0.0089 0.71 ± 0.0050
4 0.78 ± 0.0023 0.70 ± 0.0066 0.69 ± 0.0045 0.71 ± 0.0096
5 0.85 ± 0.0019 0.75 ± 0.0086 0.74 ± 0.0146 0.75 ± 0.0049

Table 4.5 shows the results obtained by Triclustering-based classifier using the original version of
triCluster [47] and Table 4.6 depicts the results obtained with the extended version TCtriCluster (see
Algorithm 1). As we can see although these results still do not exceed the same results obtained by the
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baseline, they generally exceed the results of Table 4.5, which proves the effectiveness of the temporal
constraint, allowing to improve group coherence and consequently classifier performance.

Table 4.6: Performance Evaluation Results of Triclustering-based Classifier learned from ALS Lisbon
Clinic Data using TCtriCluster Algorithm (with missing values imputation)

AP CS AUC Accuracy Sensitivity Specificity

B
3 0.78 ± 0.0453 0.72 ± 0.0444 0.77 ± 0.0748 0.67 ± 0.0675
4 0.81 ± 0.0408 0.74 ± 0.0444 0.73 ± 0.0763 0.74 ± 0.0719
5 0.85 ± 0.0544 0.78 ± 0.0630 0.81 ± 0.0871 0.75 ± 0.1004

D
3 0.84 ± 0.0384 0.76 ± 0.0364 0.78 ± 0.0561 0.74 ± 0.0631
4 0.86 ± 0.0389 0.78 ± 0.0432 0.80 ± 0.0706 0.76 ± 0.0830
5 0.85 ± 0.0615 0.76 ± 0.0669 0.78 ± 0.0967 0.75 ± 0.0979

C
3 0.84 ± 0.0380 0.75 ± 0.0379 0.78 ± 0.0560 0.72 ± 0.0649
4 0.85 ± 0.0428 0.75 ± 0.0456 0.76 ± 0.0780 0.74 ± 0.0767
5 0.85 ± 0.0546 0.75 ± 0.0598 0.80 ± 0.0856 0.71 ± 0.0967

Analyzing the results in Table 4.6, we can verify that the highest precision values were obtained by the
classifiers using the distance approach to compute the similarity matrix, and that these are comparable
to those obtained by the baseline. We note that despite not outperforming the baseline, these results
improve the interpretability of the model, since the different temporal patterns used can uncover disease
progression patterns and help clinicians in their predictive task.

Observing the results obtained with preprocessing data without missing values imputation, depicted
in Table 4.7, we can verify that the results are quietly the same as those obtained with missing values
imputation, meaning that using data with missing values does not affect the results obtained by the clas-
sifier.

4.2.3 Results with Patient Stratification

Using the same data, we stratified the patients in three groups according with their disease progression
and following the approach used by Pires et al. [39]. The patients thus were stratified in Slow, Neutral
and Fast progressors according to a Progression Rate (PR) value, computed by:

PR =
48− ALSFRS-R1st Visit
∆t1st Symptoms; 1st Visit

, (4.1)
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Table 4.7: Performance Evaluation Results of Triclustering-based Classifier learned from ALS Lisbon
Clinic Data using TCtriCluster Algorithm (without missing values imputation)

AP CS AUC Accuracy Sensitivity Specificity

B
3 0.79 ± 0.0415 0.73 ± 0.0452 0.78 ± 0.0536 0.68 ± 0.0678
4 0.80 ± 0.0458 0.74 ± 0.0563 0.72 ± 0.0615 0.72 ± 0.0636
5 0.85 ± 0.0498 0.78 ± 0.0630 0.79 ± 0.0745 0.76 ± 0.0958

D
3 0.84 ± 0.0416 0.75 ± 0.0484 0.78 ± 0.0624 0.73 ± 0.0840
4 0.87 ± 0.0402 0.79 ± 0.0486 0.81 ± 0.0703 0.77 ± 0.0845
5 0.85 ± 0.0538 0.75 ± 0.0586 0.79 ± 0.0922 0.72 ± 0.0933

C
3 0.83 ± 0.0401 0.74 ± 0.0393 0.73 ± 0.0574 0.74 ± 0.0539
4 0.85 ± 0.0429 0.77 ± 0.0519 0.78 ± 0.0689 0.76 ± 0.0912
5 0.85 ± 0.0538 0.75 ± 0.0554 0.77 ± 0.0890 0.73 ± 0.0963

where 48 is the maximum score for ALSFRS-R feature, ALSFRS-R1st Visit is the ALSFRS-R score in
the first appointment (diagnosis) and∆t1st Symptoms; 1st Visit is the time in months between the dates of first
symptoms and the first appointment [39]. Progression rates are computed for each patient, and then based
on these values they are divided into three groups based the distribution of PR values, and as suggested by
the clinicians: 25% of patients with lower and higher values are stratified as Slow and Fast progressors,
respectively. The remaining 50% are grouped and considered Neutral progressors. Table 4.8 shows the
class distribution after patient stratification.

After stratifying the patients in the three groups of patients, we apply our triclustering-based method-
ology to learn a specialized predictive model for each group of patients. Table 4.9 shows the results,
obtained in the same way as those for the model learned with all data, as baseline. As expected, the
results after patient stratification outperform the results obtained when learning from all patients, since
patients are now more homogeneous. The small number patients with 4 and 5 CS in the Fast group
prevented us from obtaining reliable results in these cases.

Table 4.10 shows the results obtained by the specialized models for each disease progression group,
according to the number of consecutive snapshots considered. We can see that the results outperform the
baseline for 3 and 4 CS in the Neutral group, using the distance approach for similarities, confirming the
evidence that this approach is the most appropriate to this type of data. Comparing these results with
those obtained by the general classifier we can see that there is a noticeable increase in classification
performance, resulting from being able to discover and use group specific disease progression patterns.
Since the general model learns from heterogeneous patients, with a wide spectrum of disease progression
patterns, where the Neutral group is dominant, it potentially misses significant patterns from patients who
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Table 4.8: Distribution of Classes with Patient Stratification

TOTAL RU SMOTE

N Y N Y N Y

3CS
Slow 921 58 116 58 116 116
Neutral 600 134 268 134 268 268
Fast 120 22 44 22 44 44

4CS
Slow 767 50 100 50 100 100
Neutral 426 96 192 96 192 192
Fast 80 11 22 11 22 22

5CS
Slow 635 43 86 43 86 86
Neutral 299 67 134 67 134 134
Fast 55 5 10 5 10 10

not follow a common disease progression trend and whose specific disease progression patterns are not
discovered. Despite the good results in the Neutral group, the results concerning the Slow and Fast groups
slightly decreased, since the class imbalance in these groups is even more accentuated than in complete
dataset or in the neutral group. This imbalance has hampered the computation of some metrics given the
bias.

We decided to verify again if the results are skewed by missing values imputation and we performed
same experiments without missing values imputation. The results can be seen in Table 4.12, and it is
possible to verify that results are slightly the same with a little penalization for those obtained without
missing values imputation for some disease progression groups.

In order to assess whether the general model would also be better for Slow and Faster progressors in
the same way that the specialized model would be better for the Neutral group, we perform experiments
with the general model to evaluate its performance with patients from the different three groups. Table
4.13 shows the results obtained, and we can see that even for Slow and Fast progressors the general
model performs well, but specialized models achieved more balanced results in the prediction of both
classes (values of sensitivity and specificity are closer). As already mentioned the general model by the
specialized model in the Neutral group.

We note however, that these results could be improved with a larger collection of patients data from
the Slow and Fast groups, as shown by the slightly higher values of standard deviation in these cases.
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Table 4.9: Baseline Results: Random Forests with Original Features per Disease Progression Group

CS Group AUC Accuracy Sensitivity Specificity

Slow 0.89 ± 0.0713 0.80 ± 0.0841 0.84 ± 0.1083 0.76 ± 0.1201
3 Neutral 0.87 ± 0.0407 0.79 ± 0.0474 0.80 ± 0.0677 0.78 ± 0.0787

Fast 0.81 ± 0.1668 0.74 ± 0.1454 0.74 ± 0.2627 0.74 ± 0.1998

Slow 0.93 ± 0.0986 0.86 ± 0.0895 0.87 ± 0.0996 0.85 ± 0.1236
4 Neutral 0.85 ± 0.0683 0.771 ± 0.0645 0.81 ± 0.0797 0.73 ± 0.1112

Fast

Slow 0.92 ± 0.0562 0.839 ± 0.0730 0.84 ± 0.1166 0.84 ± 0.1178
5 Neutral 0.87 ± 0.0729 0.79 ± 0.0788 0.79 ± 0.1021 0.79 ± 0.1235

Fast

4.3 Model Interpretability

The relevance of a triclustering-based classifier methodology should be evaluated not only by analysing
its performance regarding classification results, but also by its potential concerning model interpretabil-
ity. This means analysing the temporal patterns uncovered through triclustering, regarding their domain
relevance, clinical in this case, and their importance for the predictive model, by computing the pat-
tern/feature importance according to the learnt classifier. To this aim, we chose to analyse the patterns
discovered when triclustering the 3 CS dataset. The goal is to understand what are the most relevant fea-
tures, what features appear together, and whether the patterns found to be relevant in the general model,
putative patterns of the average patient, differ from those relevant to the specialized models, that should
be group-specific, highlighting disease progression patterns of Slow, Neutral and Fast progressors.

Table 4.18 shows the characterization of triclusters obtained by the 4 learnt models (General, Slow,
Neutral and Fast), where |I|, |J | and |K| represent the number of patients, features and time-points
composing each tricluster. The patterns are represented by feature values across the time-points. Tables
4.14, 4.15, 4.16 and 4.17 depict the most important as used patterns by the classifier, ranked by their
feature importance.

An overall analysis of the most important patterns discovered shows that the majority of the patterns
refer to the last snapshot/time-point of the tricluster. This makes sense, since this is the snapshot closer to
the target. However, other patterns not corresponding to the last snapshot that remain important, are also
relevant for further clinical analysis, since these features can be relevant in identifying disease progression
pattern leading to the need of NIV in a given time-window.
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Table 4.10: Performance Evaluation Results obtained with Triclustering-based Classifier (Specialized for
each Disease Progression Group, with missing values imputation)

AP CS Group AUC Accuracy Sensitivity Specificity

D

Slow 0.84 ± 0.0933 0.77 ± 0.0924 0.81 ± 0.1386 0.73 ± 0.1377
3 Neutral 0.86 ± 0.0415 0.794 ± 0.0393 0.79 ± 0.0583 0.80 ± 0.0694

Fast 0.70 ± 0.1798 0.66 ± 0.1582 0.81 ± 0.2211 0.51 ± 0.2397

Slow 0.87 ± 0.0797 0.81 ± 0.0835 0.85 ± 0.1063 0.77 ± 0.1221
4 Neutral 0.84 ± 0.0635 0.774 ± 0.0731 0.77 ± 0.0826 0.78 ± 0.1059

Fast 0.70 ± 0.2666 0.74 ± 0.2094 0.80 ± 0.2442 0.68 ± 0.3177

Slow 0.89 ± 0.0739 0.841 ± 0.0908 0.88 ± 0.1221 0.81 ± 0.1178
5 Neutral 0.81 ± 0.0808 0.72 ± 0.0839 0.71 ± 0.1118 0.74 ± 0.1204

Fast

C

Slow 0.85 ± 0.0827 0.75 ± 0.0874 0.76 ± 0.1394 0.75 ± 0.1470
3 Neutral 0.86 ± 0.0404 0.78 ± 0.0471 0.76 ± 0.0769 0.79 ± 0.0746

Fast 0.66 ± 0.1768 0.66 ± 0.1586 0.80 ± 0.2201 0.51 ± 0.2447

Slow 0.85 ± 0.0762 0.79 ± 0.0933 0.81 ± 0.1237 0.78 ± 0.1436
4 Neutral 0.83 ± 0.0655 0.77 ± 0.0660 0.78 ± 0.0819 0.76 ± 0.0968

Fast 0.63 ± 0.2414 0.70 ± 0.1854 0.77 ± 0.2424 0.62 ± 0.2978

Slow 0.88 ± 0.0822 0.83 ± 0.0858 0.88 ± 0.1021 0.78 ± 0.1343
5 Neutral 0.81 ± 0.0780 0.73 ± 0.0800 0.71 ± 0.1159 0.75 ± 0.1194

Fast
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Table 4.11: Learned Triclustering Best Parameters: TCtricluster without missing values imputation for
each disease progression group

AP CS Group Best Parameters

D

3
Slow Unconstrained
Neutral Unconstrained
Fast δx = δy = δz = 0

4
Slow Unconstrained; γ = 0.90

Neutral Unconstrained
Fast Unconstrained; η = 0.75

5
Slow Unconstrained
Neutral Unconstrained

C

3
Slow Unconstrained
Neutral Unconstrained
Fast Unconstrained; η = 0.95

4
Slow Unconstrained; γ = 0.95

Neutral Unconstrained
Fast Unconstrained; η = 0.75

5
Slow Unconstrained; γ = 0.95

Neutral Unconstrained; η = 0.50

As expected, most of the important set of features used by the General model are the same as those
discovered for the Neutral group, corresponding to the common tendency within the set of all patients,
corresponding to the average patient (Neutral progressor). However, the highest values observed for the
features in Neutral model expose the influence that the other groups (Slow and Fast progressors) created
in the General model. Comparing patterns of Slow progressors with those of Neutral progressors, we can
confirm that, as expected the values for the same set of features are smaller in the first.

When analysing the most important patterns used by the model learnt for Fast progressors, it is in-
teresting to witness that these patterns are typically very different from those of the other models. This
confirms the fact that Fast progressors are very different patients and can be useful to help understanding
their unique progression patterns. Furthermore, a quick identification of Fast progressors, whose clinical
condition degrades very quickly, through their progression patterns, can promote timely intervention and
prolong survival.
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Table 4.12: Performance Evaluation Results obtained with Triclustering-based Classifier (Specialized for
each Disease Progression Group, without missing values imputation)

AP CS Group AUC Accuracy Sensitivity Specificity

D

Slow 0.87 ± 0.0686 0.79 ± 0.0825 0.81 ± 0.1264 0.76 ± 0.1135
3 Neutral 0.85 ± 0.0511 0.78 ± 0.0615 0.77 ± 0.0935 0.80 ± 0.0797

Fast 0.68 ± 0.1674 0.63 ± 0.1543 0.80 ± 0.1975 0.45 ± 0.2476

Slow 0.87 ± 0.0846 0.82 ± 0.0851 0.87 ± 0.1157 0.76 ± 0.1368
4 Neutral 0.82 ± 0.0686 0.74 ± 0.0665 0.73 ± 0.0934 0.76 ± 0.1045

Fast 0.70 ± 0.2272 0.68 ± 0.2138 0.73 ± 0.2843 0.63 ± 0.3029

Slow 0.89 ± 0.0707 0.81 ± 0.0882 0.83 ± 0.1214 0.79 ± 0.1160
5 Neutral 0.78 ± 0.0791 0.72 ± 0.0765 0.71 ± 0.1206 0.74 ± 0.1140

Fast

C

Slow 0.87 ± 0.0635 0.77 ± 0.0813 0.79 ± 0.1296 0.75 ± 0.1088
3 Neutral 0.85 ± 0.0527 0.77 ± 0.0618 0.74 ± 0.0893 0.79 ± 0.0874

Fast 0.60 ± 0.1772 0.62 ± 0.1457 0.81 ± 0.2069 0.45 ± 0.2247

Slow 0.88 ± 0.0791 0.81 ± 0.0845 0.83 ± 0.1207 0.78 ± 0.1433
4 Neutral 0.83 ± 0.0587 0.75 ± 0.0552 0.73 ± 0.0805 0.77 ± 0.0930

Fast 0.70 ± 0.2590 0.71 ± 0.1877 0.77 ± 0.2807 0.64 ± 0.2736

Slow 0.86 ± 0.0725 0.79 ± 0.0872 0.80 ± 0.1174 0.77 ± 0.1168
5 Neutral 0.77 ± 0.0806 0.72 ± 0.0801 0.69 ± 0.1074 0.75 ± 0.1243

Fast
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Table 4.13: Performance Evaluation Results obtained with Triclustering-based Classifier (General) per
Disease Progression Group

CS Group AUC Accuracy Sensitivity Specificity

Slow 0.85 ± 0.1094 0.81 ± 0.0754 0.67 ± 0.3053 0.84 ± 0.0765
3 Neutral 0.82 ± 0.0536 0.74 ± 0.0924 0.78 ± 0.0745 0.69 ± 0.0879

Fast 0.78 ± 0.0965 0.70 ± 0.0956 0.76 ± 0.1082 0.59 ± 0.1629

Slow 0.89 ± 0.0986 0.82 ± 0.0895 0.70 ± 0.2680 0.86 ± 0.0923
4 Neutral 0.84 ± 0.0683 0.77 ± 0.0776 0.80 ± 0.0897 0.74 ± 0.1420

Fast 0.81 ± 0.1100 0.75 ± 0.0937 0.85 ± 0.1086 0.57 ± 0.2116

Slow 0.86 ± 0.0474 0.80 ± 0.0844 0.65 ± 0.2256 0.85 ± 0.1192
5 Neutral 0.82 ± 0.0760 0.72 ± 0.0508 0.78 ± 0.0784 0.63 ± 0.1192

Fast 0.75 ± 0.1198 0.74 ± 0.0890 0.85 ± 0.0794 0.52 ± 0.1532

4.4 Final Remarks

This chapter presented promising results onALS prognostic predictionwith temporal using the triclustering-
based approach proposed in Chapter 3. We show that model interpretability is a key advantage for better
understanding patients’ evolution and pinpoint relevant patterns for clinical analysis. Besides the rel-
evance of these results obtained with temporal data, commonly clinical data is composed not only by
temporal data but also by static data, which we discarded in the presented approach. Considering static
data, will provide more information on patients that can improve prognostic prediction models and in-
terpretability. With this in mind, we developed a new classification approach combining biclustering in
static data with triclustering in temporal data, presented in the next chapter.
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Table 4.14: Top 20 patterns discovered in the general model trained with all data (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 10 2 0.031960 ALS-FRS = 38
2 18 2 0.029058 ALS-FRS-R = 46
3 54 0 0.027954 MIP = 53.5705; MEP = 65.0705
4 53 0 0.023513 FVC = 88.2423; MEP = 66.6423
5 12 2 0.022829 ALS-FRS = 31
6 54 1 0.022564 MIP = 53.2824; MEP = 66.1471
7 35 2 0.018606 ALS-FRSsUL = 9; R = 12
8 13 2 0.017853 ALS-FRS = 30
9 53 1 0.017221 FVC = 89.15; MEP = 67.5577
10 55 1 0.012898 ALS-FRS = 24; ALS-FRS-R = 32
11 25 2 0.012194 ALS-FRS-R = 33
12 66 1 0.011938 ALS-FRS = 38
13 7 1 0.011871 ALS-FRS = 26; ALS-FRS-R = 34
14 15 2 0.011854 ALS-FRS = 27
15 69 1 0.011695 ALS-FRS = 27; R = 12
16 0 1 0.011637 ALS-FRS = 24
17 87 1 0.011274 ALS-FRSsUL = 12; ALS-FRSsLL = 12
18 29 2 0.011250 ALS-FRSb = 12; R = 12
19 22 2 0.010727 ALS-FRS-R = 35
20 83 1 0.010561 ALS-FRS-R = 46
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Table 4.15: 20 Best discovered patterns in the specialized model for Slow group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 1 2 0.059431 ALS-FRS = 37; ALS-FRS-R = 45
2 2 2 0.043924 ALS-FRS-R = 45
3 120 0 0.027597 ALS-FRS = 37; ALS-FRS-R = 45
4 120 1 0.027366 ALS-FRS = 37; ALS-FRS-R = 45
5 46 2 0.026735 ALS-FRSb = 12; ALS-FRSr = 4; R = 12
6 71 2 0.026688 ALS-FRSsLL = 12; ALS-FRSr = 4
7 47 2 0.025992 ALS-FRSsLL = 12; R = 12
8 3 0 0.025549 ALS-FRS = 37
9 0 1 0.024103 ALS-FRS = 37; ALS-FRS-R = 45
10 4 0 0.023486 ALS-FRS-R = 45
11 62 1 0.023258 ALS-FRSsUL = 9; ALS-FRSr = 4; R = 12
12 31 2 0.023019 ALS-FRS-R = 12
13 2 0 0.022919 ALS-FRS-R = 45
14 1 1 0.022609 ALS-FRS = 37; ALS-FRS-R = 45
15 2 1 0.022548 ALS-FRS-R = 45
16 3 1 0.021562 ALS-FRS = 37
17 4 1 0.020758 ALS-FRS-R = 45
18 71 1 0.019888 ALS-FRSsLL = 12; ALS-FRSr = 4
19 60 1 0.019324 ALS-FRSsUL = 12; R = 12
20 55 1 0.019007 ALS-FRSsUL = 12; ALS-FRSr = 4
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Table 4.16: 20 Best discovered patterns in the specialized model for Neutral group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 4 2 0.018618 ALS-FRS = 38; ALS-FRS-R = 46
2 260 2 0.016051 ALS-FRSsUL = 12; ALS-FRSsLL = 12
3 238 2 0.014534 ALS-FRSsUL = 12; ALS-FRSr = 4
4 5 2 0.013115 ALS-FRS = 35
5 291 2 0.013027 ALS-FRSsUL = 12; ALS-FRSr = 4; R = 12
6 551 1 0.012610 MIP = 58.355; MEP = 66.5
7 261 2 0.012074 ALS-FRSsUL = 12
8 1 2 0.011431 ALS-FRS = 29; ALS-FRS-R = 37
9 11 2 0.011142 ALS-FRS-R = 43
10 551 0 0.011140 MIP = 54.2; MEP = 63.8
11 3 2 0.011110 ALS-FRS = 33; ALS-FRS-R = 41
12 190 2 0.010652 ALS-FRSb = 12; ALS-FRSr = 4
13 550 0 0.010239 FVC = 87.3571; MEP = 65.7071
14 550 1 0.010007 FVC = 88.7429; MEP = 66.9928
15 2 2 0.009997 ALS-FRS = 31; ALS-FRS-R = 39
16 13 2 0.009706 ALS-FRS-R = 41
17 10 2 0.009301 ALS-FRS-R = 39
18 226 2 0.008809 ALS-FRSb = 12; ALS-FRSr = 4; R = 12
19 244 2 0.007572 ALS-FRSb = 12; R = 12
20 342 2 0.007409 ALS-FRSsLL = 12; R = 12

Table 4.17: Discovered patterns in the specialized model for Fast group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 1 2 0.251100 R = 12
2 2 2 0.198099 ALS-FRSr = 3
3 2 1 0.100364 ALS-FRSr = 4
4 0 0 0.100323 R = 12
5 1 0 0.093527 R = 12
6 2 0 0.093015 ALS-FRSr = 4
7 1 1 0.091529 R = 12
8 0 1 0.072043 R = 12
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Table 4.18: Characterization of Triclusters obtained with different learned models (with 3 CS)

General Model

#Tricluster |I| |J | |K| Patterns

0 24 1 2 [ALS-FRS=28], [ALS-FRS=24]
7 25 2 2 [ALS-FRS=27; ALS-FRS-R=35], [ALS-FRS=26; ALS-FRS-R=34]
10 59 1 3 [ALS-FRS=38], [ALS-FRS=38], [ALS-FRS=38]
12 54 1 3 [ALS-FRS=35], [ALS-FRS=35], [ALS-FRS=31]
13 42 1 3 [ALS-FRS=36], [ALS-FRS=36], [ALS-FRS=30]
15 41 1 3 [ALS-FRS=33], [ALS-FRS=33], [ALS-FRS=27]
18 56 1 3 [ALS-FRS-R=46], [ALS-FRS-R=46], [ALS-FRS-R=46]
22 38 1 3 [ALS-FRS-R=41], [ALS-FRS-R=41], [ALS-FRS-R=35]
25 28 1 3 [ALS-FRS-R=40], [ALS-FRS-R=36], [ALS-FRS-R=33]
29 151 2 3 [ALS-FRSb=12; R=12], [ALS-FRSb=12; R=12], [ALS-FRSb=12; R=12]
35 20 2 3 [ALS-FRSsUL=9; R=12], [ALS-FRSsUL=9; R=12], [ALS-FRSsUL=9; R=12]
53 26 2 2 [FVC=88.2423; MEP=66.6423], [FVC=89.15; MEP=67.5577]
54 34 2 2 [MIP=53.5706; MEP=65.0706], [MIP=57.2824; MEP=66.1471]
55 22 2 2 [ALS-FRS=27; ALS-FRS-R=35], [ALS-FRS=24; ALS-FRS-R=32]
66 31 1 2 [ALS-FRS=38], [ALS-FRS=38]
69 23 2 2 [ALS-FRS=37; R=12], [ALS-FRS=37; R=12]
83 29 1 2 [ALS-FRS-R=46], [ALS-FRS-R=46]
87 44 2 2 [ALS-FRSsUL=12; ALS-FRSsLL=12], [ALS-FRSsUL=12; ALS-FRSsLL=12]

Specialized Model for Slow Progressors

#Tricluster |I| |J | |K| Patterns

0 29 2 2 [ALS-FRS=38.0; ALS-FRS-R=46.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]
1 26 2 3 [ALS-FRS=38.0; ALS-FRS-R=46.0], [ALS-FRS=37.0; ALS-FRS-R=45.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]
2 13 1 3 [ALS-FRS-R=45.0], [ALS-FRS-R=45.0], [ALS-FRS-R=45.0]
3 13 1 2 [ALS-FRS=37.0], [ALS-FRS=37.0]
4 14 1 2 [ALS-FRS-R=45.0], [ALS-FRS-R=45.0]
31 58 2 3 [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0]
46 51 3 3 [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0]
47 51 2 3 [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0]
55 17 2 2 [ALS-FRSsUL=12.0; ALS-FRSr=4.0], [ALS-FRSsUL=12.0; ALS-FRSr=4.0]
60 14 2 2 [ALS-FRSsUL=12.0; R=12.0], [ALS-FRSsUL=12.0; R=12.0]
62 15 3 2 [ALS-FRSsUL=9.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSsUL=9.0; ALS-FRSr=4.0; R=12.0]
71 14 2 3 [ALS-FRSsLL=12.0; ALS-FRSr=4.0], [ALS-FRSsLL=12.0; ALS-FRSr=4.0], [ALS-FRSsLL=12.0; ALS-FRSr=4.0]
120 28 2 2 [ALS-FRS=37.0; ALS-FRS-R=45.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]

Specialized Model for Neutral Progressors

#Tricluster |I| |J | |K| Patterns

1 59 2 3 [ALS-FRS=33.0; ALS-FRS-R=41.0], [ALS-FRS=31.0; ALS-FRS-R=38.0], [ALS-FRS=29.0; ALS-FRS-R=37.0]
2 48 2 3 [ALS-FRS=33.0; ALS-FRS-R=41.0], [ALS-FRS=33.0; ALS-FRS-R=41.0], [ALS-FRS=31.0; ALS-FRS-R=39.0]
3 53 2 3 [ALS-FRS=35.0; ALS-FRS-R=43.0], [ALS-FRS=35.0; ALS-FRS-R=43.0], [ALS-FRS=33.0; ALS-FRS-R=41.0]
4 12 2 3 [ALS-FRS=38.0; ALS-FRS-R=46.0], [ALS-FRS=36.0; ALS-FRS-R=44.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]
5 17 1 3 [ALS-FRS=37.0], [ALS-FRS=35.0], [ALS-FRS=35.0]
10 18 1 3 [ALS-FRS=37.0], [ALS-FRS=35.0], [ALS-FRS=35.0]
11 14 1 3 [ALS-FRS-R=45.0], [ALS-FRS-R=43.0], [ALS-FRS-R=43.0]
13 19 1 3 [ALS-FRS-R=46.0], [ALS-FRS-R=41.0], [ALS-FRS-R=41.0]
190 18 2 3 [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0]
226 64 3 3 [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0]
238 19 1 3 [ALS-FRSb=12.0], [ALS-FRSb=12.0], [ALS-FRSb=12.0]
244 67 2 3 [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0]
260 20 2 3 [ALS-FRSsUL=12.0; ALS-FRSsLL=12.0], [ALS-FRSsUL=12.0; ALS-FRSsLL=12.0], [ALS-FRSsUL=12.0; ALS-FRSsLL=12.0]
261 19 1 3 [ALS-FRSsUL=12.0], [ALS-FRSsUL=12.0], [ALS-FRSsUL=12.0]
291 19 3 3 [ALS-FRSsUL=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSsUL=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSsUL=12.0; ALS-FRSr=4.0; R=12.0]
342 20 2 3 [ALS-FRSsLL=12.0; R=12.0], [ALS-FRSsLL=12.0; R=12.0], [ALS-FRSsLL=12.0; R=12.0]
550 14 2 2 [FVC=87.3571; MEP=65.7071], [FVC=88.7429; MEP=66.9929]
551 20 2 2 [MIP=54.2; MEP=63.8], [MIP=58.355; MEP=66.5]

Specialized Model for Fast Progressors

#Tricluster |I| |J | |K| Patterns

0 10 1 2 [R=12.0], [R=12.0]
1 8 1 3 [R=12.0], [R=12.0], [R=12.0]
2 8 1 3 [ALS-FRSr=4.0], [ALS-FRSr=4.0], [ALS-FRSr=3.0]
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Learning Predictive
Models Using a Mixture of
Biclustering and Triclustering 5

In Chapter 3 we proposed a methodology based on triclustering for temporal and heterogeneous data
analysis. However, clinical data is in general composed not only by temporal features but also by static
features (demographics, medication, genetic information, habits, trauma/surgery information, etc), that
remain unchanged over the different time points (Figure 5.1).
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Figure 5.1: Example of heterogeneous dataset composed by static and temporal data.

In this context, this chapter proposes a new classification approach combining the previous triclustering-
based approach with biclustering on static data. The idea is improve the performance of predictive model
previously learnt with triclustering results, by enabling the use of patterns obtained when biclustering
static data. The explainability of the model should also be improved by using static patterns (learnt with
biclustering) together with the temporal patterns (learnt with triclustering).
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5.1. LEARNING BICTRIC CLASSIFIER

5.1 Learning BicTric Classifier

Following the triclustering-based classifier in Chapter 3, we now propose BicTric to learn predictive
models using a mixture of biclustering and triclustering, enabling to take advantage not only of temporal
patterns but also of static patterns. We thus analyse static data using biclustering to explore subspaces in
static features and use these biclusters to complement the learning data to be used by the classifier.

Triclustering Task

Best Params

Triclusters

Compute Virtual Pattern 3D

Compute Similarities between
patients and virtual patterns

Similarities Matrix

5 x 10-fold Stratified cross-validation

Testing Data Training Data

Training Classifier

Testing Classifier

Performance
Evaluation

Final Model

Preprocessed
Data

Learning BicTric Classifier

Biclustering Task

Biclusters

Compute Virtual Pattern 2D

Compute Similarities between
patients and virtual patterns

Similarities Matrix

Temporal Data Static Data

Triclusters Biclusters

Figure 5.2: BicTric: Workflow.

52



5.1. LEARNING BICTRIC CLASSIFIER

The workflow of the new proposed methodology depicted in Figure 5.2 differs from the one presented
in Figure 3.2 in the second step, where we couple a triclustering task with a biclustering task. We now
find triclusters on temporal data and biclusters on static data, then used as features in the classifier.

In the biclustering task, we can use any biclustering algorithm able to deal with heterogeneous data.
Since we used an extension of triCluster for triclustering, and taking advantage that this algorithm is
biclustering-based, we used biCluster from triCluster to mine biclusters (see Chapter 3). We adapted
biCluster to handle missing values. This enables to use data with missing values not only in biclustering
but also in triclustering.

To build the similarity matrix to be used by classifier, the virtual pattern 2D is computed for each
bicluster (similarly to what was performed for each tricluster). The virtual pattern 2D, defined in [13], is
computed as follows:

Definition 4. (Virtual Pattern 2D). Given a biclusterB, its virtual patternP is defined as a set of elements
P = {ρ1, ρ2, ..., ρI}, where ρi, 1 ≤ i ≤ I is defined as the mean (or the mode, in case of categorical
features) of values in the ith:

ρi =
1

J

J∑
j=1

bij . (5.1)

To assess how well a specific object (patient) follows the general tendency of a given bicluster B,
we proposed two approaches: (2) compute the Euclidean distance; or (3) compute Pearson correlation
between the virtual pattern 2D P and the equivalent pattern (same features) of pi.

We denoted (1) and (2) as Virtual Distance 2D and Virtual Correlation 2D, respectively, and defined
them as follows:

Definition 5. (Virtual Distance 2D). The virtual distance between an observation pi and a bicluster B is

VD2D(pi,B) = E(pi, ρ) =

√√√√ I∑
e=1

(pie − ρe)2. (5.2)

Definition 6. (Virtual Correlation 2D). The virtual correlation between an object pi and a bicluster B is

VC2D(pi,B) = r(pi, ρ) =

I∑
e=1

(pie − p̄i)(ρe − ρ̄)√√√√ I∑
e=1

(pie − p̄i)
2

I∑
e=1

(ρe − ρ̄)2.

(5.3)
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5.2. LEARNING PREDICTIVE MODELS USING BICTRIC IN THE ALS CASE STUDY

The triclustering task is performed as explained in Chapter 3, and the BicTric classifier is then learnt
from learning examples using a mixture of biclusters and triclusters as features.

5.2 Learning Predictive Models using BicTric in the ALS Case Study

We used again the Lisbon ALS dataset containing Electronic Health Records fromALS Patients regularly
followed at the local ALS clinic, since 1995 and last updated in March 2020. Its current version contains
1374 patients. For these experiments with BicTric we use not only the temporal features but also the
following static features: Gender, Body Mass Index (BMI), MND familiar history, Age at onset, Disease
duration, El Escorial reviewed criteria, UMN vs LMN, Onset form, C9orf72. Data was preprocessed as
explained in Chapter 4. Since both biclustering and triclustering tasks can deal with missing values we
did not perform any imputations. In this context, following what we did in Chapter 4, we performed the
following experiments:

1. Random Forests with original features (static and temporal),

2. Random Forests with original static features and triclusters,

3. BicTric classification,

4. BicTric classification with patient stratification.

5.2.1 Baseline Results: Random Forests with original features (static and temporal)

The baseline results, to be compared with the predictive models learned with BicTric classifiers, were ob-
tained by training a Random Forest with the original features (static and temporal) treated as independent
features (number of CS × 10 temporal features + 8 static features). Table 5.1 shows the baseline results,
which are slightly worst than those obtained using just the temporal features (Table 4.2). Apparently,
static data (individually) do not introduce relevant performance improvements when the model is trained
with original features. Moreover, we can observe that Sensitivity and Specificity have more variance
than when only temporal features were considered, meaning that static data are introducing an unbalance
in both classes prediction.
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5.2. LEARNING PREDICTIVE MODELS USING BICTRIC IN THE ALS CASE STUDY

Table 5.1: Baseline Results using Random Forests and Original Features (static and temporal)

CS AUC Accuracy Sensitivity Specificity

3 0.79 ± 0.0044 0.72 ± 0.0035 0.77 ± 0.0025 0.61 ± 0.0067
4 0.81 ± 0.0033 0.75 ± 0.0070 0.78 ± 0.0092 0.67 ± 0.0104
5 0.79 ± 0.0074 0.71 ± 0.0065 0.76 ± 0.0080 0.58 ± 0.0106

5.2.2 Random Forests with Original Static Features and Triclusters

To further assess the relevance of static features in the performance of classifiers in this case study, we
added the original static features to the similaritymatrices used in the triclustering-basedmodels presented
in Chapter 4. We observed (Table 5.2) that in fact this experiment outperforms the baseline with original
static and temporal features. Furthermore, comparing with the results presented in Section 4.2.2 we can
see a slight performance improvement, pinpointing that static features are contributing to the model. This
could be confirmed by inspecting the feature ranking used by random forests, which shows static features
in the top 10 of the best-used features. Despite this performance improvement when using the original
static features together triclusters, we show next that the use of biclustering in the static data can add
further improvements not only in the performance of the models but also in the interpretability of the
patterns of features that can be found in the static data.

Table 5.2: Performance Evaluation Results of Random Forests with original static features and triclusters.

AP CS AUC Accuracy Sensitivity Specificity

D
3 0.84 ± 0.0421 0.75 ± 0.0435 0.77 ± 0.0637 0.73 ± 0.0590
4 0.88 ± 0.0443 0.79 ± 0.0484 0.81 ± 0.0697 0.78 ± 0.0805
5 0.85 ± 0.0535 0.75 ± 0.0545 0.80 ± 0.0845 0.72 ± 0.0999

C
3 0.84 ± 0.0391 0.74 ± 0.0369 0.74 ± 0.0590 0.74 ± 0.0592
4 0.87 ± 0.0443 0.73 ± 0.0576 0.74 ± 0.0779 0.75 ± 0.0957
5 0.85 ± 0.0524 0.75 ± 0.0572 0.77 ± 0.0903 0.72 ± 0.0988

5.2.3 BicTric Classification

To test the proposed BicTric classifier on the ALS case study, allowing fair comparisons with the baseline,
we also used Random Forests as classifier.
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5.2. LEARNING PREDICTIVE MODELS USING BICTRIC IN THE ALS CASE STUDY

For these experiments, we followed the same steps as explained in Chapter 4, using the same tri-
clusters obtained with the best parameters described in Table 4.4. We performed biclustering in static
features, using biCluster algorithm from triCluster [47], and computed the similarities between patients
and biclusters using two approaches: distance (D) and correlation (C).

Table 5.3 shows the performance results obtained by BicTric classifier. We can observe that, overall,
the results exceed the baseline, meaning biclustering and triclustering features improve the performance
results of Random Forest learnt with original features. Moreover, we can see that Sensitivity and Speci-
ficity are now more balanced and thus the classifier performs well on predicting both classes, contrary to
what happened in the baseline.

Although these results exceeded the baseline results, when compared with the results obtained by
triclustering-based classifier (Table 4.7), the results are similar. However, there is improvement in Sen-
sitivity and Specificity balancing.

Table 5.3: Performance Evaluation Results of BicTric Classifier.

AP CS AUC Accuracy Sensitivity Specificity

D
3 0.85 ± 0.0348 0.76 ± 0.0407 0.78 ± 0.0588 0.74 ± 0.0658
4 0.88 ± 0.0367 0.78 ± 0.0403 0.79 ± 0.0704 0.76 ± 0.0747
5 0.82 ± 0.0016 0.76 ± 0.0048 0.76 ± 0.0088 0.75 ± 0.0044

C
3 0.84 ± 0.0404 0.74 ± 0.0468 0.73 ± 0.0696 0.76 ± 0.0592
4 0.86 ± 0.0450 0.75 ± 0.0493 0.75 ± 0.0912 0.76 ± 0.0855
5 0.85 ± 0.0019 0.75 ± 0.0086 0.74 ± 0.0146 0.75 ± 0.0049

5.2.4 Results with Patient Stratification

As in Chapter 4, we also used data from patients stratified in Slow, Neutral and Fast progressors and used
BicTric to learn a specialized predictive model for each group of patients. Table 5.4 shows the results,
obtained in the same way as those for the model learned with all data, as baseline. Similar to what
happened when considering only the temporal features, the results after patient stratification outperform
the results obtained when learning from all patients, since patients are now more homogeneous. The
small number of patients with 5 CS in the Fast group prevented us from obtaining reliable results in this
case.

Table 5.5 presents the performance results obtained with BicTric specialized models for each progres-
sion group according to the considered number of consecutive snapshots considered. We can see that,
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5.2. LEARNING PREDICTIVE MODELS USING BICTRIC IN THE ALS CASE STUDY

Table 5.4: Baseline Results: Random Forests with Original Features (temporal + static) per Disease
Progression Group.

CS Group AUC Accuracy Sensitivity Specificity

Slow 0.82 ± 0.0069 0.75 ± 0.0187 0.79 ± 0.0139 0.64 ± 0.0319
3 Neutral 0.76 ± 0.0043 0.71 ± 0.0018 0.75 ± 0.0027 0.60 ± 0.0057

Fast 0.57 ± 0.0175 0.59 ± 0.0199 0.64 ± 0.0102 0.08 ± 0.1118

Slow 0.85 ± 0.0065 0.77 ± 0.0211 0.82 ± 0.0175 0.67 ± 0.0314
4 Neutral 0.75 ± 0.0050 0.71 ± 0.0081 0.75 ± 0.0073 0.60 ± 0.0141

Fast 0.69 ± 0.0170 0.66 ± 0.0285 0.68 ± 0.0165 0.57 ± 0.0748

Slow 0.84 ± 0.0047 0.77 ± 0.0203 0.81 ± 0.0166 0.67 ± 0.0318
5 Neutral 0.69 ± 0.0048 0.68 ± 0.0100 0.72 ± 0.0075 0.52 ± 0.0225

Fast

overall, these results outperform baseline, improving not only classification accuracy and AUC but also
the performance on predicting both classes (verified by similar values of Sensitivity and Specificity). The
expressive improvements are in the fast progressors group, the group with the lower number of patients,
whose results benefited from the increasing of features, resulting from biclustering and triclustering.
These results show that using stratified data and considering static and temporal features, applying Bic-
Tric methodology can be better than learning the classifier with the original features, even when using a
powerful classifier as Random Forests, that performs feature selection by itself.

5.2.5 Model Interpretability

Similarly to Chapter 4, besides the analysis of performance results in classification, we are interested in
analyzing model interpretability by studying the patterns discovered by biclustering and triclustering and
highlighted by the classifiers. To this aim, we chose to analyse the patterns discovered when applying
BicTric in the 3 CS dataset. The goal is to identify the most relevant features, what features appear to-
gether, and whether the temporal patterns found to be relevant in the general model (putative patterns of
the average patient) differ from those relevant to the specialized models (group-specific patterns high-
lighting disease progression patterns of Slow, Neutral and Fast progressors). Tables 5.6, 5.7, 5.8 and 5.9
depict the most important patterns used by the classifier, ranked by their feature importance.

As in the case of triclustering-based classifier (Chapter 4), an overall analysis of the most important
patterns discovered shows that the majority of the patterns refer to the last snapshot/time-point of the
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5.2. LEARNING PREDICTIVE MODELS USING BICTRIC IN THE ALS CASE STUDY

Table 5.5: Performance Evaluation Results obtained with BicTric Classifier (SpecializedModels for each
Disease Progression Group).

AP CS Group AUC Accuracy Sensitivity Specificity

D

Slow 0.87 ± 0.0461 0.76 ± 0.0650 0.78 ± 0.1075 0.74 ± 0.0857
3 Neutral 0.84 ± 0.0390 0.75 ± 0.0430 0.72 ± 0.0609 0.79 ± 0.0639

Fast 0.78 ± 0.0877 0.72 ± 0.0883 0.71 ± 0.1969 0.73 ± 0.1365

Slow 0.85 ± 0.0361 0.76 ± 0.0604 0.78 ± 0.1027 0.73 ± 0.0776
4 Neutral 0.83 ± 0.0391 0.74 ± 0.0436 0.73 ± 0.0611 0.76 ± 0.0684

Fast 0.86 ± 0.1102 0.77 ± 0.1265 0.77 ± 0.1828 0.77 ± 0.1896

Slow 0.89 ± 0.0422 0.81 ± 0.0526 0.83 ± 0.0660 0.79 ± 0.0771
5 Neutral 0.80 ± 0.0570 0.73 ± 0.0554 0.70 ± 0.1075 0.76 ± 0.0564

Fast

C

Slow 0.86 ± 0.0513 0.76 ± 0.0713 0.77 ± 0.1094 0.76 ± 0.0911
3 Neutral 0.83 ± 0.0452 0.74 ± 0.0496 0.70 ± 0.0879 0.78 ± 0.0510

Fast 0.78 ± 0.0858 0.71 ± 0.1018 0.69 ± 0.1886 0.73 ± 0.1398

Slow 0.86 ± 0.0334 0.76 ± 0.0499 0.77 ± 0.0990 0.75 ± 0.0793
4 Neutral 0.84 ± 0.0370 0.75 ± 0.0386 0.72 ± 0.0666 0.77 ± 0.0649

Fast 0.89 ± 0.0963 0.80 ± 0.1146 0.78 ± 0.1794 0.81 ± 0.1905

Slow 0.89 ± 0.0396 0.80 ± 0.0628 0.81 ± 0.0663 0.78 ± 0.0950
5 Neutral 0.81 ± 0.0557 0.72 ± 0.0566 0.67 ± 0.0972 0.77 ± 0.0651

Fast
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tricluster. This is understandable as the last snapshots are closer to the horizon of prediction. However,
other patterns, not corresponding to the last snapshot, and in this case, including static patterns, also
remained important. These patterns are also relevant for further clinical analysis, since these features
can prove to be important to identify disease progression patterns leading to the need of NIV for a given
time-window.

Neutral patients is the group benefiting more from considering static patterns. This can actually make
sense, since these patients are the most common type of patient, whose evolution does not suffer from
temporal issues. Fast progressors, the minority class in the dataset, have more advantages when static
features are used to complement the short time analysis that can be made with temporal data with more
valuable information.

5.3 Final Remarks

This Chapter presented the BicTric approach to learn predictive models based on a mixture of biclustering
and triclustering. The results are very promising, showing the impact that the biclusters mined from static
data can have in the models, when compared with the results in Chapter 4 using only temporal data and
triclustering.
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Table 5.6: 20 Top patterns discovered by the general BicTric model trained with all data (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 29 2 0.010270 [ALS-FRS-R = 45.0]
2 7 2 0.010214 [ALS-FRS = 37.0]
3 4 2 0.009750 [ALS-FRS = 38.0]
4 45 2 0.009580 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
5 1 2 0.009246 [ALS-FRS = 31.0; ALS-FRS-R = 39.0]
6 693 2 0.008568 [ALS-FRSb = 12.0; ALS-FRSsUL = 11.0]
7 70 2 0.007903 [ALS-FRS = 36.0]
8 115 2 0.007147 [ALS-FRS-R = 45.0]
9 2 2 0.006982 [ALS-FRS = 37.0]
10 20 2 0.006513 [ALS-FRS = 36.0]
11 6043 1 0.006133 [ALS-FRS = 21.0; ALS-FRSsUL = 11.0]
12 56 2 0.005767 [ALS-FRS = 37.0]
13 428 1 0.005476 [ALS-FRS-R = 23.0; ALS-FRSsUL = 11.0]
14 106 2 0.005042 [ALS-FRS-R = 43.0]
15 878 2 0.004823 [ALS-FRSb = 12.0; ALS-FRSsLL = 12.0]
16 184 2 0.004744 [ALS-FRS = 37.0]
17 118 2 0.004324 [ALS-FRS-R = 43.0]
18 739 2 0.004233 [ALS-FRSb = 12.0; ALS-FRSsUL = 11.0; ALS-FRSr = 4.0; R = 12.0]
19 32 2 0.004115 [ALS-FRS-R = 43.0]
20 45 1 0.004026 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
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Table 5.7: 20 Top patterns used by the specialized BicTric model for Slow group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 1 2 0.043831 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
2 36 2 0.027715 [ALS-FRSb = 12.0; ALS-FRSr = 4.0]
3 101 2 0.026623 [ALS-FRSsUL = 12.0; R = 12.0]
4 71 2 0.024176 [ALS-FRSb = 12.0; ALS-FRSr = 4.0; R = 12.0]
5 78 2 0.022699 [ALS-FRSb = 12.0; R = 12.0]
6 14 2 0.018968 [ALS-FRSb = 12.0; ALS-FRSsUL = 12.0; ALS-FRSr = 4.0]
7 99 2 0.017771 [ALS-FRSsUL = 12.0; ALS-FRSr = 4.0; R = 12.0]
8 1 1 0.017201 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
9 9 2 0.017198 [ALS-FRSb = 12.0; ALS-FRSsUL = 12.0]
10 0 1 0.016896 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
11 91 2 0.015057 [ALS-FRSsUL = 12.0; ALS-FRSr = 4.0]
12 232 1 0.014542 [ALS-FRSsUL = 9.0; ALS-FRSr = 4.0]
13 1 0 0.013147 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
14 16 1 0.012980 [ALS-FRSb = 12.0; ALS-FRSsUL = 12.0; ALS-FRSr = 4.0; R = 12.0]
15 89 1 0.012738 [ALS-FRSsUL = 12.0; ALS-FRSr = 4.0]
16 115 1 0.011652 [ALS-FRSsLL = 12.0; ALS-FRSr = 4.0]
17 0 0 0.011566 [ALS-FRS = 38.0; ALS-FRS-R = 46.0]
18 98 1 0.011276 [ALS-FRSsUL = 12.0; ALS-FRSr = 4.0; R = 12.0]
19 192 2 0.011155 [ALS-FRSr = 3.0; R = 11.0]
20 100 1 0.010942 [ALS-FRSsUL = 12.0; R = 12.0]
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Table 5.8: 20 Top patterns used by the specialized BicTric model for Neutral group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 4 2 0.011258 [ALS-FRS = 35.0; ALS-FRS-R = 43.0]
2 430 2 0.006566 [ALS-FRSsUL = 12.0; ALS-FRSr = 4.0; R = 12.0]
3 1 2 0.006397 [ALS-FRS = 31.0; ALS-FRS-R = 39.0]
4 431 2 0.005939 [ALS-FRSsUL = 12.0; R = 12.0]
5 115 2 0.005829 [ALS-FRSsUL = 11.0]
6 450 2 0.005619 [ALS-FRSsUL = 11.0; R = 12.0]
7 3 2 0.005417 [ALS-FRS = 33.0; ALS-FRS-R = 41.0]
8 1 1 0.005299 [ALS-FRS = 33.0; ALS-FRS-R = 41.0]
9 95 B 0.005261 [Gen = 2.0; Age_onset = 60.0]
10 216 B 0.004814 [MND_fh = 2.0; Disea_dur = 12.0; Onset_f = 1.0]
11 2 2 0.004757 [ALS-FRS = 27.0; ALS-FRS-R = 35.0]
12 3 1 0.004706 [ALS-FRS = 33.0; ALS-FRS-R = 41.0]
13 415 2 0.004666 [ALS-FRSsUL = 12.0]
14 4 1 0.004604 [ALS-FRS = 37.0; ALS-FRS-R = 45.0]
15 292 B 0.004463 [Disea_dur = 12.0; UMN_LMN = 1.0]
16 249 2 0.004420 [ALS-FRSr = 3.0]
17 16 1 0.004416 [ALS-FRS = 34.0]
18 865 1 0.004403 [ALS-FRS = 33.0; ALS-FRS-R = 41.0]
19 306 2 0.004378 [ALS-FRSb = 12.0; ALS-FRSr = 4.0; R = 12.0]
20 453 2 0.004369 [ALS-FRSsUL = 11.0; ALS-FRSr = 4.0]

62



5.3. FINAL REMARKS

Table 5.9: 20 Top patterns used by the specialized BicTric model for Fast group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 0 0 0.200922 [ALS-FRSr = 4.0]
2 0 1 0.079393 [ALS-FRSr = 4.0]
3 58 B 0.041575 [MND_fh = 2.0; UMN_LMN = 2.0; Onset_f = 1.0]
4 68 B 0.027542 [UMN_LMN = 2.0; Onset_f = 1.0908]
5 44 B 0.026792 [MND_fh = 2.0; EErC = 5.0; UMN_LMN = 1.0; C9orf72 = 2.0]
6 65 B 0.026326 [EErC = 2.0; UMN_LMN = 2.0]
7 12 B 0.024469 [Gen = 1.0; MND_fh = 2.0; Onset_f = 1.0; C9orf72 = 1.0]
8 32 B 0.024212 [Gen = 1.0; UMN_LMN = 2.0; Onset_f = 1.133]
9 2 B 0.022883 [Gen = 1.0; MND_fh = 2.0; EErC = 5.0; UMN_LMN = 1.0]
10 4 B 0.022584 [Gen = 1.0; MND_fh = 2.0; EErC = 5.0; UMN_LMN = 1.0; C9orf72 = 2.0]
11 43 B 0.019859 [MND_fh = 2.0; EErC = 5.0; UMN_LMN = 1.0; Onset_f = 2.0; C9orf72 = 2.0]
12 1 B 0.019478 [Gen = 1.0; MND_fh = 2.0; EErC = 5.0]
13 3 B 0.016088 [Gen = 1.0; MND_fh = 2.0; EErC = 5.0; UMN_LMN = 1.0; Onset_f = 1.0]
14 41 B 0.015916 [MND_fh = 2.0; EErC = 5.0; UMN_LMN = 1.0; Onset_f = 1.0; C9orf72 = 2.0]
15 69 B 0.015903 [UMN_LMN = 2.0; C9orf72 = 1.534]
16 34 B 0.015156 [Gen = 1.0; Onset_f = 1.4546; C9orf72 = 1.4546]
17 6 B 0.014366 [Gen = 1.0; MND_fh = 2.0; EErC = 5.0; C9orf72 = 2.0]
18 45 B 0.013959 [MND_fh = 2.0; EErC = 5.0; Onset_f = 1.0]
19 46 B 0.013859 [MND_fh = 2.0; EErC = 5.0; Onset_f = 1.0; C9orf72 = 2.0]
20 17 B 0.012948 [Gen = 2.0; MND_fh = 2.0; EErC = 5.0]
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Conclusions and Future Work 6
We proposed a new methodology to learn predictive models using a triclustering-based classifier. It

has three phases: PreprocessingData, Learning Triclustering Best Parameters and Learning Triclustering-
based Classifier. The key step uses TCtriCluster, an extension of triCluster, incorporating a temporal con-
straint when mining triclusters. This restriction was shown to be effective in improving the effectiveness
of the predictive models, highlighting its importance when triclustering temporal data. We further show
that triclustering-based classification enhances prediction with the potentialities of model interpretability,
enabling the discovery of domain relevant temporal patterns, then used as features in the models.

As case study we used clinical three-way data and tackled the challenge of predicting the need for
NIV in ALS patients within a time window of 90 days. We performed experiments using all patients and
patients stratified by their disease progression rate as Slow, Neutral and Fast progressors.

The prognostic prediction results are promising, in particular when patient stratification is performed,
specially for Neutral progressors. Concerning model interpretation, it was interesting to confirm the
existence of group-specific patterns, corresponding to different disease progression patterns, then used
by the specialized models as important features. In particular, Fast progressors have unique patterns,
whose quick identification could help to improve prognosis, by anticipating NIV.

We further proposed a new methodology combining biclustering and triclustering, BicTric, able to
analyse not only temporal data but also static data, by using biclusters and triclusters as features.

The prognostic predictionmodels learned by BicTric in the ALS case study outperformed the previous
results and baselines, meaning that in this case the application of this methodology can achieve higher
accuracies in ALS data.

The proposed triclustering-based methodologies can further be used to learn predictive models with
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different types of three-way-data, from other heterogeneous diseases or other domains, with the particu-
larity that in these methodologies it is possible to use any biclustering/triclustering algorithm.

This work will be followed up in a PhD thesis that intends to tackle the problems identified during
this research together with other challenges of triclustering in temporal three-way data and biomedical
applications. More specifically, we plan to explore different types of algorithmic approaches to develop
problem-specific triclustering algorithms, targeting specific biomedical data analysis problems.

66



References

[1] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer. Permutation importance: a corrected feature
importance measure. Bioinformatics, 26(10):1340–1347, 2010. 15

[2] D. Amar, D. Yekutieli, A. Maron-Katz, T. Hendler, and R. Shamir. A hierarchical bayesian model
for flexible module discovery in three-way time-series data. Bioinformatics, 31(12):i17–i26, 2015.
1, 19, 20, 22

[3] S. A. Andersena, G. D. Borasioc, M. de Carvalho, A. Chioe, P. Van Dammef, O. Hardimang,
K. Kolleweh, K. E. Morrisoni, et al. Efns guidelines on the clinical management of amyotrophic
lateral sclerosis (mals)–revised report of an efns task force. European Journal of Neurology, 19:
360–375, 2011. 2, 4

[4] A. Bhar, M. Haubrock, A. Mukhopadhyay, and E. Wingender. Application of a novel triclustering
method (δ-trimax) to mine 3d gene expression data of breast cancer cells. GCB 2013 Göttingen-
Highlight Papers, 2013. 19, 20, 22

[5] S. C. Bourke, M. Tomlinson, T. L. Williams, R. E. Bullock, P. J. Shaw, and G. J. Gibson. Effects of
non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis:
a randomised controlled trial. The Lancet Neurology, 5(2):140–147, 2006. 2, 4

[6] A. V. Carreiro, O. Anunciação, J. A. Carriço, and S. C. Madeira. Prognostic prediction through
biclustering-based classification of clinical gene expression time series. Journal of integrative bioin-
formatics, 8(3):73–89, 2011. 10, 21, 27

[7] A. V. Carreiro, A. J. Ferreira, M. A. Figueiredo, and S. C. Madeira. Towards a classification ap-
proach using meta-biclustering: impact of discretization in the analysis of expression time series.
Journal of integrative bioinformatics, 9(3):105–120, 2012. 21

[8] A. V. Carreiro, P. M. Amaral, S. Pinto, P. Tomás, M. de Carvalho, and S. C. Madeira. Prognostic
models based on patient snapshots and time windows: Predicting disease progression to assisted

67



ventilation in amyotrophic lateral sclerosis. Journal of biomedical informatics, 58:133–144, 2015.
2, 23, 35

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence research, 16:321–357, 2002. 10, 36

[10] A. Chiò, G. Logroscino, B. Traynor, J. Collins, J. Simeone, L. Goldstein, and L. White. Global
epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neu-
roepidemiology, 41(2):118–130, 2013. 2, 3

[11] B. Conde, J. C. Winck, and L. F. Azevedo. Estimating amyotrophic lateral sclerosis and motor
neuron disease prevalence in portugal using a pharmaco-epidemiological approach and a bayesian
multiparameter evidence synthesis model. Neuroepidemiology, 53(1-2):73–83, 2019. 2, 3

[12] F. O. de França, G. P. Coelho, and F. J. Von Zuben. Predicting missing values with biclustering: A
coherence-based approach. Pattern Recognition, 46(5):1255–1266, 2013. 9

[13] F. Divina, B. Pontes, R. Giráldez, and J. S. Aguilar-Ruiz. An effective measure for assessing the
quality of biclusters. Computers in biology and medicine, 42(2):245–256, 2012. 28, 53

[14] ENCALS. Als functional rating scale revised (als-frs-r). version: May 2015. https:
//www.encals.eu/wp-content/uploads/2016/09/ALS-Functional-Rating-Scale-
Revised-fill-in-form.pdf, 2015. [Online]. 4

[15] P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal. Pattern classification with
missing data: a review. Neural Computing and Applications, 19(2):263–282, 2010. 8

[16] F. Gerber, R. de Jong, M. E. Schaepman, G. Schaepman-Strub, and R. Furrer. Predicting miss-
ing values in spatio-temporal remote sensing data. IEEE Transactions on Geoscience and Remote
Sensing, 56(5):2841–2853, 2018. 9

[17] D. Gutierrez-Aviles and C. Rubio-Escudero. Lsl: A new measure to evaluate triclusters. In 2014
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 30–37. IEEE,
2014. 19, 21, 22

[18] D. Gutiérrez-Avilés and C. Rubio-Escudero. Msl: a measure to evaluate three-dimensional patterns
in gene expression data. Evolutionary Bioinformatics, 11:EBO–S25822, 2015. 19, 20, 21, 22

[19] D. Gutiérrez-Avilés, C. Rubio-Escudero, and J. Riquelme. Unravelling the yeast cell cycle using
the trigen algorithm. 7023:155–163, 11 2011. doi: 10.1007/978-3-642-25274-7_16. 19

[20] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Tecniques: 3rd edition. Morgan
Kaufmann Publishers, 2012. 8, 9, 10, 11, 12, 13, 14

68

https://www.encals.eu/wp-content/uploads/2016/09/ALS-Functional-Rating-Scale-Revised-fill-in-form.pdf
https://www.encals.eu/wp-content/uploads/2016/09/ALS-Functional-Rating-Scale-Revised-fill-in-form.pdf
https://www.encals.eu/wp-content/uploads/2016/09/ALS-Functional-Rating-Scale-Revised-fill-in-form.pdf


[21] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on knowledge and
data engineering, 21(9):1263–1284, 2009. 9

[22] C. Heffernan, C. Jenkinson, T. Holmes, H. Macleod, W. Kinnear, D. Oliver, N. Leigh, and M. Am-
pong. Management of respiration in mnd/als patients: An evidence based review. Amyotrophic
Lateral Sclerosis, 7(1):5–15, 2006. 2, 3

[23] R. Henriques and S. C. Madeira. Bicpam: Pattern-based biclustering for biomedical data analysis.
Algorithms for Molecular Biology, 9(1):27, 2014. 21

[24] R. Henriques and S. C. Madeira. Triclustering algorithms for three-dimensional data analysis: A
comprehensive survey. ACM Computing Surveys (CSUR), 51(5):95, 2019. 1, 7, 8, 15, 16, 18, 19,
20, 26

[25] H. Jiang, S. Zhou, J. Guan, and Y. Zheng. gtricluster: a more general and effective 3d clustering
algorithm for gene-sample-time microarray data. In International Workshop on Data Mining for
Biomedical Applications, pages 48–59. Springer, 2006. 19, 22

[26] T. Kakati, H. A. Ahmed, D. K. Bhattacharyya, and J. K. Kalita. Thd-tricluster: A robust tri-
clustering technique and its application in condition specific change analysis in hiv-1 progres-
sion data. Computational Biology and Chemistry, 75:154 – 167, 2018. ISSN 1476-9271. doi:
https://doi.org/10.1016/j.compbiolchem.2018.05.007. URL http://www.sciencedirect.com/
science/article/pii/S1476927115302243. 19, 21, 22

[27] T. Kakati, H. A. Ahmed, D. K. Bhattacharyya, and J. K. Kalita. Thd-tricluster: A robust triclus-
tering technique and its application in condition specific change analysis in hiv-1 progression data.
Computational biology and chemistry, 75:154–167, 2018. 1

[28] P. Kaur and A. Gosain. Comparing the behavior of oversampling and undersampling approach of
class imbalance learning by combining class imbalance problem with noise. In ICT Based Innova-
tions, pages 23–30. Springer, 2018. 10

[29] A. Li and D. Tuck. An effective tri-clustering algorithm combining expression data with gene
regulation information. Gene regulation and systems biology, 3:GRSB–S1150, 2009. 19, 20, 22

[30] X. Li, Y. Ye, M. Ng, and Q. Wu. Multifactv: module detection from higher-order time series
biological data. BMC genomics, 14(4):S2, 2013. 19, 21, 22

[31] Y. Li and A. Ngom. Classification of clinical gene-sample-time microarray expression data via
tensor decomposition methods. In International Meeting on Computational Intelligence Methods
for Bioinformatics and Biostatistics, pages 275–286. Springer, 2010. 1

69

http://www.sciencedirect.com/science/article/pii/S1476927115302243
http://www.sciencedirect.com/science/article/pii/S1476927115302243


[32] R. J. Little. Rd. statistical analysis with missing data. Statistics. WsiPa, editor. New York2002, 2002.
8

[33] J. Liu, Z. Li, X. Hu, and Y. Chen. Multi-objective evolutionary algorithm for mining 3d clusters in
gene-sample-time microarray data. In 2008 IEEE International Conference on Granular Comput-
ing, pages 442–447. IEEE, 2008. 19, 22

[34] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances in forests
of randomized trees. In Advances in neural information processing systems, pages 431–439, 2013.
15

[35] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 1(1):24–45, 2004.
1, 7, 15, 26

[36] S. C. Madeira, M. C. Teixeira, I. Sa-Correia, and A. L. Oliveira. Identification of regulatory mod-
ules in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 7(1):153–165, 2008. 27

[37] J.Matos, S. Pires, H. Aidos, M. Gromicho, S. Pinto, M. de Carvalho, and S. C.Madeira. Unravelling
disease presentation patterns in als using biclustering for discriminative meta-features discovery. In
International Work-Conference on Bioinformatics and Biomedical Engineering, pages 517–528.
Springer, 2020. 2, 10, 21, 23

[38] C. D. Newgard and R. J. Lewis. Missing data: how to best account for what is not known. Jama,
314(9):940–941, 2015. 8, 9

[39] S. Pires, M. Gromicho, S. Pinto, M. Carvalho, and S. C. Madeira. Predicting non-invasive venti-
lation in als patients using stratified disease progression groups. In 2018 IEEE International Con-
ference on Data Mining Workshops (ICDMW), pages 748–757. IEEE, 2018. 2, 3, 4, 10, 23, 27, 35,
39, 40

[40] S. Pires, M. Gromicho, S. Pinto, M. de Carvalho, and S. C. Madeira. Patient stratification using
clinical and patient profiles: Targeting personalized prognostic prediction in als. In International
Work-Conference on Bioinformatics and Biomedical Engineering, pages 529–541. Springer, 2020.
2, 23

[41] J. A. Sáez, B. Krawczyk, and M. Woźniak. Analyzing the oversampling of different classes and
types of examples in multi-class imbalanced datasets. Pattern Recognition, 57:164–178, 2016. 10

[42] F. M. Shrive, H. Stuart, H. Quan, and W. A. Ghali. Dealing with missing data in a multi-question
depression scale: a comparison of imputation methods. BMC medical research methodology, 6(1):
57, 2006. 9

70



[43] D. Soares, R. Henriques, M. Gromicho, S. Pinto, M. de Carvalho, and S. C. Madeira. Towards
triclustering-based classification of three-way clinical data: A case study on predicting non-invasive
ventilation in als. In International Conference on Practical Applications of Computational Biology
& Bioinformatics, pages 112–122. Springer, 2020. 3

[44] A. B. Tchagang, S. Phan, F. Famili, H. Shearer, P. Fobert, Y. Huang, J. Zou, D. Huang, A. Cutler,
Z. Liu, et al. Mining biological information from 3d short time-series gene expression data: the
optricluster algorithm. BMC bioinformatics, 13(1):54, 2012. 19, 22

[45] G. Wang, L. Yin, Y. Zhao, and K. Mao. Efficiently mining time-delayed gene expression patterns.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(2):400–411, 2009.
19, 22

[46] L. Zhao and M. J. Zaki. Tricluster: An effective algorithm for mining coherent clusters in 3d mi-
croarray data. pages 694–705, 2005. doi: 10.1145/1066157.1066236. URL http://doi.acm.org/
10.1145/1066157.1066236. 19, 22

[47] L. Zhao and M. J. Zaki. Tricluster: An effective algorithm for mining coherent clusters in 3d mi-
croarray data. In Proceedings of the 2005 ACM SIGMOD International Conference onManagement
of Data, SIGMOD ’05, pages 694–705, New York, NY, USA, 2005. ACM. 3, 27, 38, 56

[48] T. Zhu, Y. Lin, and Y. Liu. Synthetic minority oversampling technique for multiclass imbalance
problems. Pattern Recognition, 72:327–340, 2017. 10

71

http://doi.acm.org/10.1145/1066157.1066236
http://doi.acm.org/10.1145/1066157.1066236




Scientific Paper: PACBB2020 A
Published Papper in proceedings of 14th International Conference on Practical Applications of Compu-
tational Biology and Bioinformatics (PACBB2020) - starts on next page.

73



Towards Triclustering-Based
Classification of Three-Way Clinical Data:
A Case Study on Predicting Non-invasive

Ventilation in ALS

Diogo Soares1(B), Rui Henriques2, Marta Gromicho3, Susana Pinto3,
Mamede de Carvalho3, and Sara C. Madeira1

1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
{dfsoares,sacmadeira}@ciencias.ulisboa.pt
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Abstract. The importance to learn disease progression patterns from
longitudinal clinical data and use them effectively to improve progno-
sis, triggers the need for new approaches for three-way data analysis.
In this context, triclustering has been widely researched for its poten-
tial in biomedical problems, showing promising results in the discovery of
putative biological modules, patient profiles, and disease progression pat-
terns. In this work, we propose a triclustering-based approach for three-
way data classification, resulting from a combination of triclustering with
random forests, and use it to predict the need for non-invasive ventilation
in ALS patients. We analyse ALSFRS-R functional scores together with
respiratory function tests collected from patient follow-up. The results
are promising, enabling to understand the potential of triclustering and
pinpointing improvements towards an effective triclustering-based clas-
sifier for clinical domains, taking advantage of the benefits of exploring
disease progression patterns mined from three-way clinical data.

Keywords: Triclustering · Three-dimensional data · Three-way
clinical data · Amyotrophic lateral sclerosis · Prognostic prediction

1 Introduction

Given a (real-valued, symbolic or heterogenous) three-dimensional dataset (three-
way data), triclustering aims to discover subsets of observations, attributes, and
contexts (triclusters) satisfying certain homogeneity and statistical significance
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criteria [10]. Promising triclustering applications in clinical domains are:multivari-
ate physiological signal data analysis, where triclusters can capture coherent phys-
iological responses for a group of individuals; neuroimaging data analysis, where
triclusters can capture hemodynamic response functions and connectivity between
brain regions; and clinical records analysis (patient-feature-time data), where tri-
clusters correspond to groups of patients with correlated clinical features along
time [10]. This work focuses on this latter class.

Amyotrophic Lateral Sclerosis (ALS) is a highly heterogeneous neurodegen-
erative disease characterized by a rapidly progressive muscular weakness. In gen-
eral, patients with ALS generally die from respiratory failure within 3 to 5 years.
However, some patients can live for less than one year, while others can live more
than 10 years [9]. Worldwide, ALS affects between 5.9 and 39 people per 100.000
inhabitants [6]. In Portugal, 10 in 100.000 inhabitants suffer from this disease [7].
Most patients develop hypoventilation with hypoxemia and hypercapnia, requir-
ing non-invasive ventilation (NIV) support [9]. In this context, foreseeing the
beginning of hypoventilation is key to anticipate opportune interventions, such
us the start of NIV. NIV was demonstrated to be effective in prolonging life and
improving quality of life in ALS, in particular in patients without major bulbar
muscles weakness [2,3]. In clinical practice, the Revised ALS Functional Rating
Scale (ALSFRS-R) is broadly used to help clinicians disclose the state of disease
progression [2]. In this scenario, Carreiro et al. [4] proposed the first prognostic
models based on clinically defined time windows to predict the need for NIV in
ALS. Following this work, Pires et al. [12] stratified patients according to their
state of disease progression, and proposed specialized learning models based on
three ALS progression groups (slow, normal and fast). Despite the promising
results concerning using patient stratification for prognostic prediction, their
prognostic models did not take into account the temporal dependence between
the features. Matos [11] used biclustering-based classification. Biclustering was
used to find groups of patients with coherent values in subsets of clinical features
(biclusters), then used as features together with static demographic data. The
results were interesting but no temporal data were used.

In this work, we propose to couple triclustering with Random Forests and
train a triclustering-based classifier able to use disease progression patterns as
features. The goal is to predict if a given patient will need NIV in the next 90
days using a classifier learned from temporal data from the follow-up of patients.
We use the Lisbon ALS clinical dataset (version September 2019), developed at
Hospital de Santa Maria (CHULN) in Lisbon since 1995, which was preprocessed
and first used for prognostic prediction using time windows by Carreiro et al. [4].

In this case study, we use triclustering to find disease progression patterns
in three-way clinical data, corresponding to groups of patients with coherent
temporal evolution, which are then used for prognostic prediction. To this aim,
we use triCluster [13], a pioneer and highly cited triclustering algorithm, pro-
posed by Zhao and Zaki to mine patterns in three-way gene expression data.
Despite not being proposed for clinical data, we believe it is a good starting
point due to its algorithmic approach and type of patterns that it is able to
find: quasi-exhaustive approach, mining arbitrarily positioned, potentially over-
lapping, scaling and shifting patterns.
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In what follows we propose the triclustering-based classification approach for
three-way clinical data, present results in ALS case study, and draw conclusions.

2 Methods

This section describes a new triclustering-based classification approach, where
triclusters are discovered and then used as features in a Random Forest classifier.
Figure 1 depicts the workflow. In what follows, we first cover triclustering clinical
three-way data, briefly explaining triCluster, the triclustering algorithm used
here to mine patterns in three-way data [13]. We then propose the triclustering-
based Random Forests approach for three-way clinical data classification.

Fig. 1. Workflow of the proposed triclustering-based classifier.

2.1 Triclustering Three-Way Clinical Data

In this work, we use triCluster to identify triclusters on three-way clinical data
from ALS patients. triCluster [13], proposed and implemented by Zhao and
Zaki in 2005, is a pioneer and highly cited triclustering approach. It is a quasi-
exhaustive approach, able to mine arbitrarily positioned and overlapping triclus-
ters with constant, scaling, and shifting patterns from three-way data. Given
triCluster was proposed to mine coherent triclusters in three-way gene expres-
sion data (gene-sample-time), at this point it is important to understand that
clinical data can be preprocessed in order to have a similar structure, in which
gene-sample-time data becomes patient-feature-time data. Figure 2 presents the
analogy we made between these two different, but similar, three-way types of
data, that enables triclustering three-way clinical data using triCluster.
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triCluster has 3 main steps: 1) construct a multigraph with similar value
ranges between all pairs of samples; 2) mine maximal biclusters from the multi-
graph formed for each time point (slices of the 3D dataset); and 3) extract
triclusters by merging similar biclusters from different time-points. Optionally,
it can delete or merge triclusters, according to the overlapping criteria used.

(a) Gene Expression Time-series. (b) Electronic Health Records.

Fig. 2. Gene expression and clinical three-way data representation.

2.2 Triclustering-Based Random Forest

After running triclustering the goal is to use triclusters for patient classification.
To tackle this goal, we consider triclusters as features and construct a matrix of
patients × triclusters to be used by the classifier. The approach followed here was
to build a binary matrix, where the relation between a patient i and tricluster j
is 1 if patient i is in tricluster j and 0 otherwise. After computing the class for
each learning example a Random Forest is used to learn the predictive model.

In our ALS case study, three-way clinical data are composed by observa-
tions of patients at different appointments during follow-up (patient snapshots
computed as in Carreiro et al. [4]. Since the goal is to predict the need for non-
invasive ventilation within a given time window (90 days, corresponding to the
next clinical appointment, in our case), the class used for each patient in the
learning examples is binary and represents the patient evolution/non-evolution
to a state where NIV is needed within 90 days (see [4] for details on computing
patient snapshots and learning examples). The designed experimental pipeline
mines triclusters from patients with at least two appointments and uses the
binary matrix with labelled patients as input to a Random Forest classifier.
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3 Results and Discussion

This section presents the results and discusses the challenges of learning a
triclustering-based classifier, able to use disease progression patterns as features,
from three-way clinical data. We used triCluster for triclustering and Random
Forests for classification as described above. The goal is to predict if a given ALS
patient will need NIV within 90 days given current and past clinical evaluations.
We learn from the Lisbon ALS clinical dataset described below.

3.1 Data

We use the Lisbon ALS clinic dataset containing Electronic Health Records from
ALS Patients regularly followed in our clinic, since 1995 and last updated in
September 2019. Its current version (updated after the work of Pires et al. [12])
contains 1319 patients. Each patient has a set of static features (demograph-
ics, disease severity, co-morbidities, medication, genetic information, habits,
trauma/surgery information and occupations) together with temporal features
(collected repeatedly at follow-up), such as disease progression tests (ALSFRS-R
scale, respiratory tests, etc.) and clinical laboratory investigations.

Since the focus of this work is three-way clinical data analysis, we focus on
temporal data, discarding static data. We used 10 features per time point, the
Functional Scores (ALSFRS-R), briefly described below, and respiratory tests:
Forced Vital Capacity (FVC), Maximal Sniff Nasal Inspiratory Pressure (SNIP),
Maximal Inspiratory Pressure (MIP) and Maximal Expiratory Pressure (MEP).

ALSFRS-R scores for disease progression rating are an aggregation of integers
on a scale of 0 to 4 (where 0 is the worst and 4 is the best), providing different
evaluations of the patient functional abilities at a given time point [8]. This
functional evaluation is based on 13 questions, explained in Table 1. Different
functional scores are then computed using subsets of scores, as shown in Table 2.

Table 1. ALSFRS-R Questions

Q1 - Speech

Q2 - Salivation

Q3 - Swallowing

Q4 - Handwriting

Q5 - Cutting food and handling utensils

Q6 - Dressing and hygiene

Q7 - Turning bed ans adjusting bed clothes

Q8 - Walking

Q9 - Climbing stairs

Q10 - Respiration

QR1 - Dyspnea

QR2 - Orthopnea

QR3 - Respiratory insufficiency
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3.2 Data Preprocessing

The above ALS dataset with static and temporal features, was preprocessed as
described by Carreiro et al. [4] and Pires et al. [12] to obtain patient snapshots
and then compute the Evolution class for each snapshot using NIV adminis-
tration date: a patient is labelled ‘Y’, if 90 days after the snapshot he/she
was administrated NIV, and ‘N’ otherwise. In this work, and in order to apply
triCluster [13], we performed experiments using training examples computed as
follows: 2, 3 and 4 consecutive snapshots for each patient (corresponding to clin-
ical evaluations at 2, 3 and 4 consecutive appointments, respectively) were used
as features, and the NIV evolution value of the last snapshot was used as class.

The first challenge was dealing with missing values, since triCluster does not
support them. This is certainly a drawback, since missing values are common
in clinical data, that should be taken into account in the triclustering step. In
this work, and in order to test triCluster, we were thus forced to select only
features with low levels of missing values for further analysis, leading to a subset
of respiratory tests and the ALSFRS-R scores described above. We then removed
all patients with missing values in more than 2 snapshots. For each remaining
patient, we performed missing value imputation by using values in previous
appointments to input latter missing values (Last Observation Carried Forward),
when possible, and mean/mode of all patients values, otherwise.

After tackling missing values, we had to deal with class imbalance. In our
case, and due to the time window of 90 days (next appointment) used as case
study, the number of patients labeled as ‘N’, non-evolutions (2179, 1666 and
1283 examples, for 2, 3 and 4 snapshots, respectively), largely outnumbered
those labelled as ‘Y’ (326, 224 and 162 examples, for 2, 3 and 4 snapshots,
respectively), identifying the patients requiring NIV within 90 days, key for the
learning task. To deal with this issue we first used a Random Undersampler to
reduce ‘N’ examples until obtaining a class proportion of 2/3–1/3 (652, 448,
324 of ‘N’ and 326, 224, 162 of ‘Y’, for 2, 3 and 4 snapshots, respectively), and
then used SMOTE [5] to balance datasets to 50%/50% class proportion, leading
to 1304, 896 and 648 learning examples, for 2, 3 and 4 snapshots, respectively.

Table 2. Functional scores and sub-scores according to ALSFRS-R.

Functional score Description

ALSFRS Sum of Q1 to Q10

ALSFRS-R Sum of Q1 to Q9 + QR1 + QR2 + QR3

ALSFRSb Q1 + Q2 + Q3

ALSFRSsUL Q4 + Q5 + Q6

ALSFRSsLL Q7 + Q8 + Q9

ALSFRSr Q10

R QR1 + QR2 + QR3
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3.3 Model Evaluation

Since the main goal of this work is to evaluate the results of learning models for
prognostic prediction in ALS patients using triclusters as features, we compare
the performance of the proposed triclustering-based classification approach with
a baseline obtained by training Random Forests with the original temporal fea-
tures (used to compute the triclusters). To evaluate results, we use 5 × 10-fold
Stratified Cross-Validation (CV) and compute Area Under the Curve (AUC),
accuracy, and sensitivity and specificity, commonly used in clinical applications.

3.4 Baseline Results Using Random Forests and Original Features

Table 3 shows the baseline results using the original features: respiratory tests
and ALSFRS-R scores for each appointment and treated as independent features
(3 × 10 features). We can observe that baseline classifiers achieved classifica-
tion accuracies around 0.78 in CV with low standard deviation. These are good
results, considering those obtained by Pires et al. [12], using patient stratification
and a large number of features. Sensitivity and specificity show approximately
the same values, meaning all classifiers perform well when predicting both classes.

Table 3. Baseline results (Random Forest with original features).

AUC Accuracy Sensitivity Specificity

2TP 0.87 ± 0.0024 0.79 ± 0.0076 0.81 ± 0.0054 0.77 ± 0.0079

3TP 0.87 ± 0.0019 0.78 ± 0.0042 0.80 ± 0.0021 0.78 ± 0.0020

4TP 0.87 ± 0.0030 0.78 ± 0.0142 0.80 ± 0.0087 0.76 ± 0.0026

3.5 Results Using Random Forests and Triclusters as Features

Since triCluster allows different parameterizations, potentially discovering tri-
clusters with different types of coherence, we run the algorithm using 3 dif-
ferent parameterizations: Case 1 - Unconstrained, to capture all coherent tri-
clusters across the three dimensions (x-patient, y-feature and z-time); Case 2 -
δx = δy = δz = 0, to capture triclusters with constant values across the three
dimensions; and Case 3 − δx = 0, to force constant coherence on patient dimen-
sion while relaxing the others two. In all cases we set the minimum number of
patients, features and time-points in each tricluster as 25, 2 and 3, respectively.
triCluster discovered a total of 460 (121, 61 and 278), 179 (22, 32 and 125),
1250 triclusters (392, 459 and 399), for 2, 3 and 4 snapshots, respectively. In
parentheses we show the triclusters found in Case 1, 2 and 3, respectively. We
then used these triclusters as features for each case independently and for all
cases altogether.
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Can Triclusters Outperform Original Features? Table 4 shows the results
obtained by the triclustering-based classifier using the triclusters obtained in
each case above. It is possible to see that constant triclusters (Case 2) are the
worst performing of the 3 cases. As expected, since the different cases capture
different progression patterns, the performance improved when we trained the
classifier using the triclusters obtained in the 3 cases. We tried to remove con-
stant triclusters to evaluate if they are needless, but results were worse. Unfor-
tunately, these results are not better than those obtained by baseline, meaning
these triclusters cannot outperform the original features. Potential causes might
rely on triCluster limitations: it was designed to analyse gene expression time
series (real-valued) and not clinical data (mix of real-valued and categorical fea-
tures); and its approach to deal with highly overlapping triclusters leads to the
creation of redundant features, probably preventing other relevant triclusters to
be discovered. Nevertheless, we are still interested to know if these triclusters
(temporal features) can be used to improve baseline performance.

Table 4. Triclustering-based results using different parameterizations.

AUC Accuracy Sensitivity Specificity

2TP

Case 1 0.77 ± 0.0018 0.71 ± 0.0113 0.72 ± 0.0068 0.70 ± 0,0077

Case 2 0.73 ± 0.0016 0.68 ± 0.0028 0.75 ± 0.0042 0.64 ± 0.0026

Case 3 0.77 ± 0.0004 0.71 ± 0.0062 0.73 ± 0.0069 0.69 ± 0.0043

All 0.79 ± 0.0023 0.72 ± 0.0054 0.72 ± 0.0047 0.71 ± 0.0054

3TP

Case 1 0.71 ± 0.0013 0.68 ± 0.0016 0.68 ± 0.0013 0.66 ± 0.0014

Case 2 0.68 ± 0.0010 0.66 ± 0.0019 0.77 ± 0.0011 0.61 ± 0.0013

Case 3 0.74 ± 0.0011 0.69 ± 0.0037 0.76 ± 0.0023 0.66 ± 0.0028

All 0.77 ± 0.0008 0.71 ± 0.0043 0.74 ± 0.0031 0.69 ± 0.0021

4TP

Case 1 0.74 ± 0.0016 0.65 ± 0.0016 0.66 ± 0,0165 0.62 ± 0.0093

Case 2 0.72 ± 0.0014 0.66 ± 0.0073 0.71 ± 0.0031 0.63 ± 0.0020

Case 3 0.72 ± 0.0022 0.66 ± 0.0030 0.70 ± 0.0059 0.67 ± 0.0072

All 0.74 ± 0.0008 0.76 ± 0.0031 0.67 ± 0.0072 0.66 ± 0.0056

Can Triclusters Be Used to Improve Baseline Performance? In order to
evaluate if triclusters can improve the results of baseline classifiers, we trained
Random Forests using the triclusters together with the original features. As seen
in Table 5, results without feature selection are approximately the same as those
obtained as baseline. Furthermore, we also expected that when using temporal
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features performance would improve. These results might be misleading, leading
us to conclude triclusters are not important and original features are enough.

In this context, we decided to inspect feature importance at baseline (original
features), and when triclusters are used together with original features. Figure 3
depicts the importance of used features for three snapshots and shows that, as we
expected, some triclusters (being temporal features) arouse as more important
than some original features. This lead us to believe that Random Forests are not
dealing well with the 256 features. We thus decided to perform feature selection
(FS), selecting the best 120 features (including triclusters) to be used by the
classifier. The slight improvement in FS results in Table 5 confirms our intuition.

Table 5. Classification results with triclusters and original features.

AUC Accuracy Sensitivity Specificity

2TP

Before FS 0.88 ± 0.0018 0.79 ± 0.0024 0.82 ± 0.0056 0.78 ± 0.0062

After FS 0.88 ± 0.0026 0.80 ± 0.0041 0.83 ± 0.0046 0.78 ± 0.0037

3TP

Before FS 0.87 ± 0.0026 0.78 ± 0.0092 0.79 ± 0.0025 0.78 ± 0.0019

After FS 0.87 ± 0.0025 0.79 ± 0.0052 0.79 ± 0.0021 0.77 ± 0.0018

4TP

Before FS 0.85 ± 0.0029 0.76 ± 0.0045 0.77 ± 0.0072 0.75 ± 0.0062

After FS 0.86 ± 0.0011 0.77 ± 0.0046 0.78 ± 0.0027 0.75 ± 0.0078

Fig. 3. Feature ranking (top 15): feature importance for original features (left) and
including triclusters (right). Images from Orange3 Data Mining Toolkit [1].
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4 Conclusions

We proposed to couple triclustering with Random Forests and train a
triclustering-based classifier able to use disease progression patterns as features.
The goal was to predict if a given patient will need NIV in the next 90 days
using temporal data from follow-up. In this case study, we used triclustering
to find disease progression patterns in three-way clinical data, corresponding to
groups of patients with coherent temporal evolution, then used for prognostic
prediction.

The results are promising but pinpoint the limitations of the triclustering
algorithm used when dealing with clinical data. In our opinion, a key advan-
tage of a triclustering-based classification is the possibility to provide a better
understanding of the results, promoting model interpretability (critical in clinical
applications) together with potential improvements in classification (by incor-
porating temporal features). Since the triclusters identify subsets of patients
with subsets of features showing coherent evolution patterns over contiguous
time-points, we hypothesize they may uncover disease progression patterns, that
might be key to boost classification results. We will thus work towards an effec-
tive triclustering-based classifier starting by improving triclustering results and
in next make it able to yield improvements against state-of-the-art classifiers.
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Abstract

Triclustering extends biclustering to three-dimensional data spaces, offering the
possibility to retrieve interpretable temporal patterns from three-way time series
data. Despite the highlighted relevance of triclustering for comprehensively mining
discriminative patterns of disease progression, the role of these patterns in aiding
clinical prognostics remains largely unexplored. This work proposes a new class of
explainable predictive models from three-way data using discriminative triclusters.
Triclustering searches are dynamically hyperparameterized to comprehensively
find for informative triclusters (groups of individuals with a coherent pattern
along a subset of variables and time points) and then use these temporal patterns
as features within a state-of-the-art classifier with strict guarantees of
interpretability. To this end, a temporally constrained triclustering algorithm,
termed TCtriCluster algorithm, is devised to mine time-contiguous triclusters.
The proposed methodology is used to predict the need for non-invasive ventilation
(NIV) in Amyotrophic Lateral Sclerosis (ALS) patients. In this case study, we
learnt a general prognostic model from all patients data and specialized models
after patient stratification into Slow, Neutral and Fast progressors. The gathered
results show that besides comparable and sometimes outperforming results
against state-of-the-art alternatives, our triclustering-based classifier enhances
prediction with the potentialities of model explainability by revealing the clinically
relevant disease progression patterns underlying prognostics. Results further show
that the temporal restriction is effective in improving the effectiveness of the
predictive models. The proposed approach was validated in clinical practice,
supporting healthcare professionals understanding the link between the highly
heterogeneous patterns of ALS disease progression and NIV needs.

Keywords: Triclustering; Three-way Data; Predictive Models; Disease
Progression Patterns; Amyotrophic Lateral Sclerosis

1 Introduction
Considering a (real-valued, symbolic or heterogenous) three-dimensional dataset

(three-way data), triclustering aims to discover subsets of objects, features and

contexts (triclusters), satisfying certain homogeneity and statistical significance cri-

teria. Given the increasing prevalence of three-way data across biomedical and social

domains, triclustering — the discovery of coherent subspaces within three-way data

— became a key technique to enhance the understanding of complex biological, indi-

vidual, and societal systems [1]. Clustering is limited in this context, since objects in
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three-way data domains are typically only meaningfully correlated on subspaces of

the overall space, and although biclustering is more powerfull by enabling subspaces

of both objects and features, it disregards context [2].

Promising triclustering applications in clinical domains are multivariate physi-

ological signal data analysis, where triclusters can capture coherent physiological

responses for a group of individuals; neuroimaging data analysis, where triclusters

can capture hemodynamic response functions and connectivity between brain re-

gions; and clinical records analysis, where triclusters identify groups of patients with

correlated clinical features along time [1, 3, 4].

In this context, we propose a triclustering-based classifier to learn predictive mod-

els from three-way data, taking advantage of the temporal dependence between

the features, and enhancing model interpretability by learning from local tempo-

ral patterns. In the proposed methodology, we designed and use TCtriCluster,

a temporally constrained triclustering algorithm able to mine time-contiguous tri-

clusters. TCtriCluster is an extension of TriCluster [5], a pioneer and highly

cited triclustering algorithm, proposed by Zhao and Zaki to mine patterns in three-

way gene expression data, extended to cope with three-way heterogeneous data and

incorporate a temporal contiguity constraint.

As case study, we use the analysis of three-way data from clinical records (patient-

feature-time data). We target prognostic prediction in Amyotrophic Lateral Sclero-

sis (ALS) using a large cohort of Portuguese patients, where the triclusters learnt

from patients’ follow-up data can be interpreted as disease progression patterns.

ALS is a highly heterogeneous neurodegenerative disease characterized by a rapidly

progressive muscular weakness. In general, patients with ALS generally die from

respiratory failure within 3 to 5 years. However, some patients can live for less

than one year, while others can live more than 10 years [6]. Worldwide, ALS affects

between 5.9 and 39 people per 100.000 inhabitants [7]. In Portugal, 10 in 100.000

inhabitants suffer from this disease [8]. Most patients develop hypoventilation with

hypoxemia and hypercapnia, requiring non-invasive ventilation (NIV) support [6].

In this context, foreseeing the beginning of hypoventilation is key to anticipate

opportune interventions, such us the start of NIV. NIV was demonstrated to be

effective in prolonging life and improving quality of life in ALS, in particular in

patients without major bulbar muscles weakness [9,10]. In clinical practice, the Re-

vised ALS Functional Rating Scale (ALSFRS-R) is broadly used by clinicians to

evaluate disease progression [9]. However, the highly heterogeneity of this disease

turns prognosis into a challenge, pinpointing the need for advanced interpretable

machine learning models, to help unravelling the complexity of the disease by iden-

tifying disease progression patterns that can be effectively used by clinicians to

increase survival and promote patient care.

In this scenario, Carreiro et al. [11] proposed the first prognostic models based

on clinically defined time windows to predict the need for NIV in ALS. Following

this work, Pires et al. [12] stratified patients according to their state of disease pro-

gression, and proposed specialized learning models based on three ALS progression

groups (slow, neutral and fast). They further used patient and clinical profiles with

promising results [13]. Nevertheless, neither the approach using patient stratifica-

tion or using clinical and patient profiles for prognostic prediction, took into account
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Figure 1 Proposed Workflow to Learn a Triclustering-based Classifier

the temporal dependence between the features. Matos et al. [14] used biclustering-

based classification. Biclustering was used to find groups of patients with coherent

values in subsets of clinical features (biclusters), then used as features together with

static demographic data. The results were interesting but no temporal data were

used.

In this work, we use triclustering to find disease progression patterns in three-way

clinical data, corresponding to groups of patients with coherent temporal evolution,

which are then used for prognostic prediction. To this aim, we used the proposed

methodology to learn a prognostic model using a triclustering-based classifier to

predict whether a patient will need NIV in the next 90 days. The proposed TC-

triCluster algorithm is used to mine the triclusters, ALS progression patterns,

then used in the predictive models. We learnt a general prognostic model, from all

patients data, and specialized models after patient stratification into Slow, Neutral

and Fast progressors, as performed by Pires et al. [12]. The results are promis-

ing, highlighting the potential of the proposed methodology, not only concerning

predictability, but also interpretability.

Furthermore, the proposed triclustering-based classifier can be used straightfor-

wardly to learn other prognostic models from follow-up data in other diseases, or

other predictive models from 3-way data, from other domains. The TCtriCluster

algorithm can be further used as standalone tool to mine arbitrarily positioned, over-

lapping, and temporally constrained triclusters, with constant, scaling, and shifting

patterns from three-way data.

The paper is organized as follows: Section II presents the proposed methodology

to learn and use a triclustering-based classifier, together with the TCtriCluster

algorithm; Section III presents and discusses the results obtained in the ALS case

study; Section IV shows the performed model interpretability analysis, magnify-

ing the patterns discovered and used by the predictive models; finally Section IV

presents the conclusions and future work.

2 Methods
This section describes the proposed methodology to learn a triclustering-based clas-

sifier from three-way data, from preprocessing (including creating learning exam-

ples) to classifier performance evaluation, exploring several approaches in each step.

It further describes TCtriCluster, the proposed triclustering algorithm to mine

temporally constrained triclusters. Figure 1 depicts the overall workflow.

In what follows, consider that a three-way dataset, D, is defined by n objects

X = {x1, ..., xn}, m features Y = {y1, ..., ym}, and p contexts Z = {z1, ..., zp},
where the elements dijk relate object xi, feature yj , and context zk. Consider also

that, a bicluster B = (I, J) is a subspace given by a subset of objects, I ⊆ X, and

a subset of features, J ⊆ Y [2]. Similarly, a tricluster T = (I, J, Z), contains I ⊆ X
objects, J ⊆ Y features and K ⊆ Z contexts, and tijk denote the elements of T ,
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Figure 2 Learning Triclustering Best Parameters: Workflow

where 1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k ≤ K [1]. In this context, each tricluster T
can be represented as a set of K biclusters T = {B1,B2, . . . ,BK}:

B1 =


t111 t121 · · · t1J1

t211 t221 · · · t2J1
...

...
. . .

...

tI11 tI21 · · · tIJ1



B2 =


t112 t122 · · · t1J2

t212 t222 · · · t2J2
...

...
. . .

...

tI12 tI22 · · · tIJ2


...

BK =


t11K t12K · · · t1JK

t21K t12K · · · t1JK
...

...
. . .

...

tI1K tI2K · · · tIJK


2.1 Preprocessing Data

The three-way dataset, composed by several heterogeneous features measured over

a number of time-points, is first preprocessed to obtain learning examples. Depend-

ing on the dataset dealing with missing values and class imbalance, might also be

needed.

2.2 Learning Triclustering Best Parameters

In this step, the goal is to compute the best parameters to be used as input by

the triclustering algorithm (described later) in order to obtain the best classification

performance. The workflow, depicted in Figure 2, starts by performing tricluster-

ing on the preprocessed data to obtain triclusters. Next, the virtual pattern 3D is

computed for each tricluster. The proposed virtual pattern 3D, extended from the

2D version defined in [15], is computed as follows, using the virtual pattern of each

bicluster composing the tricluster.

Definition 1 (Virtual Pattern 3D). Given a tricluster T , its virtual pattern P is

defined as a set of elements P = {ρ1, ρ2, ..., ρI}, where ρi, 1 ≤ i ≤ I is defined as

the mean (or the mode, in case of categorical features) of values in the ith row for

each context:

ρi =
1

J · Z

Z∑
z=1

J∑
j=1

bijz (1)
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We use the computed virtual pattern 3D, P, to assess how well a specific object

(patient), pi, follows the general tendency of a given tricluster T . We propose two

approaches: (1) compute the Euclidean distance; or (2) compute Pearson correlation

between the 3D virtual pattern P and the equivalent pattern (same features and

contexts) of pi.

We denote these assessments as Virtual Distance 3D and Virtual Correlation 3D,

and define them as follows:

Definition 2 (Virtual Distance 3D). The virtual distance between an observation

pi and a tricluster T is defined as

VD3D(pi, T ) = E(pi, ρ) =

√√√√ I∑
e=1

(pie − ρe)2 (2)

Definition 3 (Virtual Correlation 3D). The virtual correlation between an object

pi and a tricluster T is defined as

VC3D(pi, T ) = r(pi, ρ) =

I∑
e=1

(pie − p̄i)(ρe − ρ̄)√√√√ I∑
e=1

(pie − p̄i)2
I∑

e=1

(ρe − ρ̄)2

(3)

Considering as an example a Tricluster T (I, J,K), mined from three-way data

S(X,Y, Z), composed by 3 objects, 3 features and 3 contexts, such that I =

{X1, X3, X7}, J = {Y1, Y3, Y7}, K = {Z2, Z3, Z4}. Y1 and Y3 contains only cat-

egorical values. For simplicity, consider T = {B2, B3, B4} :

B2 =

1 3.1 5

1 2.8 3

3 2.1 10

 ;B3 =

2 3.0 3

3 2.8 3

3 2.9 9

 ;B4 =

3 2.9 3

2 2.9 3

3 2.4 8


and an object (patient) P (Xp, I,K) defined as P = {C2, C3, C4} : C2 =[
1 2.22 5

]
; C3 =

[
1 2.26 7

]
; C4 =

[
2 2.35 8

]
The Virtual Patterns are: ρ(B2) =

[
1 2.6667 5

]
; ρ(B3) =

[
3 2.9 3

]
; ρ(B4) =[

3 2.7333 3
]
; and ρ(T ) =

[
3 2.7667 3

]
.

2.2.1 Triclustering Algorithm

For these methodology, we considered TriCluster [5], the pioneer and highly cited

triclustering approach, proposed and implemented by Zhao and Zaki in 2005. It is

a quasi-exhaustive approach, able to mine arbitrarily positioned and overlapping

triclusters with constant, scaling, and shifting patterns from three-way data. Given

that TriCluster was proposed to mine coherent triclusters in three-way gene

expression data (gene-sample-time), at this point it is important to understand that

clinical data can be preprocessed in order to have a similar structure, in which gene-

sample-time data becomes patient-feature-time data, for instance. TriCluster has
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3 main steps: 1) construct a multigraph with similar value ranges between all pairs of

samples; 2) mine maximal biclusters from the multigraph formed for each time point

(slices of the 3D dataset); and 3) extract triclusters by merging similar biclusters

from different time-points. Optionally, it can delete or merge triclusters, according

to the overlapping criteria used.

However, since our goal is to mine temporal three-way data, meaning the Z dimen-

sion (contexts) is time, we borrowed the idea in CCC-Biclustering [16], a state of the

art and highly efficient temporal biclustering algorithm, and introduced a temporal

constraint in triclustering. The goal thus became to mine Time-Contiguous Tri-

clusters (TCTriclusters), triclusters with consecutive time-points. In this context,

we re-implemented TriCluster in Python and extended it to cope with a time

constrain. The new TCtriCluster algorithm implements this time constrain on

its 3rd phase, as shown in Algorithm 1 (line 9).

TCtriCluster allows different combinations of input parameters, that should

be explored in order to discover the best parameters, with which the final classi-

fier should be learnt. The input parameters are: ε,mx,my,mz, δx, δy, δz, η and γ,

corresponding to maximum ratio value, minimum size of tricluster dimensions x,

y and z, maximum range threshold along dimensions x, y and z, overlapping and

merging threshold, respectively.

Algorithm 1: TCtriCluster: Extension of triCluster able to mine TC-

Triclusters
Input: ε,mx,my,mz, δx, δy , δz , bicluster sets {Ct} of all contexts (time-points), set of

objects X, features Y and contexts (time-points) Z
Output: cluster set C

1 Initialisation: C = ∅, call TCtriCluster(T = X × Y × ∅, Z)
2 TCtriCluster (T = I × J ×K, U)
3 if T satisfies δx, δy , δz then
4 if |T .K| ≥ mz then
5 if T 6⊂ T ′ ∈ C then
6 Delete any T ′′ ∈ C, if T ′′ ⊂ T
7 Add T to C

8 foreach ti ∈ U do
9 if (T new = ∅) ∨ (T .K−1 + 1 = ti) then

10 T new.K ←− T .K + ti
11 Remove ti from U
12 forall tk ∈ T .K and each bicluster

b
tk
i ∈ C

tk , such that |btki .I ∩ T .I| ≥ mx and |btki .J ∩ T .J | ≥ my do

13 T new.I ←− btki .I ∩ T .I
14 T new.J ←− btki .J ∩ T .J
15 if |T new.I| ≥ mx and |T new.J | ≥ my and the ratios at time ti, tk are

coherent then
16 TCTriCluster (T new, P )

After computing similarities matrices based on the virtual patterns (based on

distance or correlation) a 5×10-fold Stratified Cross-Validation is performed using

the Triclustering-based Classifier in order to find the best triclustering parameters,

using classification performance as metric. The best parameters and then fed to the

next step.
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Figure 3 Learning Final Triclustering-based Model: Workflow
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Figure 4 Using the Model: Workflow with three-way Clinical Data

2.3 Learning Final Classifier

Figure 4 depicts the steps involved in learning the final model. With the best pa-

rameters output in the previous step, a final iteration is perform in order to obtain

the final Triclustering-based predictive model and the final triclusters, then used to

make predictions in the next step.

2.4 Using Model

After learning the final triclustering-based predictive model, it can be used to

classify new three-way objects. To do this, it is necessary to first calculate the array

of similarities between the new object and the triclusters obtained in the previous

steps. This array will be fed to the classifier that will in turn return the classification

for the new object with a percentage of accuracy. Figure 4 depicts an example using

clinical three-way data (case study described in the next section).

3 Results and Evaluation
3.1 Data

We use the Lisbon ALS clinic dataset containing Electronic Health Records from

ALS Patients regularly followed at the local ALS clinic, since 1995 and last updated

in March 2020. Its current version contains 1374 patients. Each patient has a set of

static features (demographics, disease severity, co-morbidities, medication, genetic

information, habits, trauma/surgery information and occupations) together with

temporal features (collected repeatedly at follow-up), such as disease progression

tests (ALSFRS-R scale, respiratory tests, etc) and clinical laboratory investigations.

Since the focus of the proposed methodology in three-way clinical data analysis, we

focus on temporal data, discarding static data. We used 10 features per time point,

the Functional Scores (ALSFRS-R), briefly described below, and respiratory tests:

Forced Vital Capacity (FVC), Maximal Inspiratory Pressure (MIP) and Maximal

Expiratory Pressure (MEP).

ALSFRS-R scores for disease progression rating are an aggregation of integers on

a scale of 0 to 4 (where 0 is the worst and 4 is the best), providing different evalu-

ations of the patient functional abilities at a given time point [17]. This functional

evaluation is based on 13 questions, explained in Table 1. Different functional scores

are then computed using subsets of scores, as shown in Table 2.

3.2 Preprocessing

The Lisbon ALS clinic dataset with several different features, was preprocessed as

described by Carreiro et al. [11] and Pires et al. [12] to obtain patient snapshots

and then compute the Evolution class for each snapshot using NIV administration
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Table 1 ALSFRS-R Questions

Q1 - Speech
Q2 - Salivation
Q3 - Swallowing
Q4 - Handwriting
Q5 - Cutting food and Handling Utensils
Q6 - Dressing and Hygiene
Q7 - Turning bed ans adjusting bed clothes
Q8 - Walking
Q9 - Climbing Stairs
Q10 - Respiration
QR1 - Dyspnea
QR2 - Orthopnea
QR3 - Respiratory Insufficiency

Table 2 Functional Scores and Sub-scores according to ALSFRS-R.

Functional Score Description

ALSFRS sum of Q1 to Q10

ALSFRS-R sum of Q1 to Q9 + QR1 + QR2 + QR3

ALSFRSb Q1 + Q2 + Q3

ALSFRSsUL Q4 + Q5 + Q6

ALSFRSsLL Q7 + Q8 + Q9

ALSFRSr Q10

R QR1 + QR2 + QR3

date: a patient is labelled Y, if 90 days after the snapshot he/she was administrated

NIV, and N otherwise.

We performed experiments using training examples composed by: 3, 4 and 5 con-

secutive snapshots (CS) for each patient (corresponding to clinical evaluations at 3,

4 and 5 consecutive appointments, respectively) were used as features, and the NIV

evolution value of the last snapshot was used as class. For each remaining patient,

we performed missing value imputation by using values in previous appointments

to input latter missing values (Last Observation Carried Forward), when possible,

and mean/mode of all patients values, otherwise.

After tackling missing values, we had to deal with class imbalance. In our case,

and due to the time window of 90 days (next appointment) used as case study, the

number of patients labeled as N, non-evolutions, largely outnumbered those labelled

as Y, identifying the patients requiring NIV within 90 days, key for the learning task.

To deal with this issue, we first used a Random Undersampler (RU) to reduce N

examples until obtaining a class proportion of 2/3 - 1/3 and then used SMOTE [18]

to balance datasets to 50%/50% class proportion. Values for the class proportions

obtained after RU and SMOTE are depicted in Table 3.

Table 3 Number and Class Distribution of Learning Examples.

Total RU SMOTE

N Y N Y N Y

3 CS 1721 227 457 227 454 454

4 CS 1335 166 332 166 332 332

5 CS 1038 121 242 121 242 242
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3.3 Baseline Results: Random Forests with Original Features

To obtain baseline results, to whom compare the predictive models learned with

triclustering-based classifiers, we trained a Random Forest using the original fea-

tures (respiratory tests and ALSFRS-R scores) treated as independent features

(number of CS × 10 features). Table 4 shows the baseline results. We can observe

that baseline classifier achieved classification accuracies around 0.80 in CV with low

standard deviation. Sensitivity and specificity show approximately the same values,

meaning all classifiers perform well when predicting both classes.

Table 4 Baseline Results using Random Forests and Original Features

CS AUC Accuracy Sensitivity Specificity

3 0.87 ± 0.0326 0.79 ± 0.0371 0.83 ± 0.0437 0.74 ± 0.0702
4 0.89 ± 0.0370 0.80 ± 0.0509 0.84 ± 0.0659 0.75 ± 0.0899
5 0.89 ± 0.0462 0.80 ± 0.0577 0.78 ± 0.0818 0.75 ± 0.0879

3.4 Triclustering-based Classification Results

To test the proposed triclustering-based classifier on the ALS case study, allowing

fair comparisons with the baseline, we also use Random Forests as classifier.

Since TriCluster allows different parameterizations, potentially discovering tri-

clusters with different types of coherence, we run the algorithm using three different

settings: Unconstrained, to capture all coherent triclusters across the three dimen-

sions (x-patient, y-feature and z-time); δx = δy = δz = 0, to capture triclusters

with constant values across the three dimensions; and δx = 0, to force constant

coherence on patient dimension while relaxing the others two. Together with these

parameterizations, we varied deletion (η) and merging (γ) thresholds from 0.45 to

0.95 (and none). We set minimum number of features and time-points in each tri-

cluster as 1 and 2 respectively, and minimum number of patients as 25, 20 and 15

for 3, 4 and 5 consecutive snapshots (CS).

To compute the similarities matrix, to be used by each triclustering-based clas-

sifier, we tried the two proposed approaches: distance (D) and correlation (C). We

decided to compute the similarities between the patients and the different biclusters

that compose the triclusters, since according to the case study and for interpretabil-

ity concerns this will make the features more informative, than when considering

similarities with the general trend of the complete tricluster.

Table 5 shows the best triclustering parameters obtained with the different CS

experiments. As we can see, Unconstrained was chosen as best parameter with all

the experiments.

Table 5 Learned Triclustering Best Parameters

A CS Best Parameters

3 Unconstrained; η = 0.95
D 4 Unconstrained

5 Unconstrained

3 Unconstrained; γ = 0.50
C 4 Unconstrained

5 Unconstrained; γ = 0.95

Table 6 shows the results obtained by Triclustering-based classifier using the orig-

inal version of triCluster [5] and Table 7 depicts the results obtained with the
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Table 6 Performance Evaluation Results of Triclustering-based Classifier using original TriCluster
Algorithm

AP CS AUC Accuracy Sensitivity Specificity

D
3 0.79 ± 0.0384 0.72 ± 0.0364 0.72 ± 0.0561 0.72 ± 0.0631
4 0.79 ± 0.0021 0.70 ± 0.0071 0.71 ± 0.0096 0.72 ± 0.0045
5 0.82 ± 0.0016 0.76 ± 0.0048 0.76 ± 0.0088 0.75 ± 0.0044

C
3 0.79 ± 0.0010 0.71 ± 0.0064 0.71 ± 0.0089 0.71 ± 0.0050
4 0.78 ± 0.0023 0.70 ± 0.0066 0.69 ± 0.0045 0.71 ± 0.0096
5 0.85 ± 0.0019 0.75 ± 0.0086 0.74 ± 0.0146 0.75 ± 0.0049

extended version TCtriCluster (see Algorithm 1). As we can see although these

results still do not exceed the same results obtained by the baseline, they gener-

ally exceed the results of Table 6, which proves the effectiveness of the temporal

constraint, allowing to improve group coherence and consequently classifier perfor-

mance.

Table 7 Performance Evaluation Results of Triclustering-based Classifier learned from ALS Lisbon
Clinic Data

AP CS AUC Accuracy Sensitivity Specificity

D
3 0.84 ± 0.0384 0.76 ± 0.0364 0.78 ± 0.0561 0.74 ± 0.0631
4 0.86 ± 0.0389 0.78 ± 0.0432 0.80 ± 0.0706 0.76 ± 0.0830
5 0.85 ± 0.0615 0.76 ± 0.0669 0.78 ± 0.0967 0.75 ± 0.0979

C
3 0.84 ± 0.0380 0.75 ± 0.0379 0.78 ± 0.0560 0.72 ± 0.0649
4 0.85 ± 0.0428 0.75 ± 0.0456 0.76 ± 0.0780 0.74 ± 0.0767
5 0.85 ± 0.0546 0.75 ± 0.0598 0.80 ± 0.0856 0.71 ± 0.0967

Analyzing the results in Table 7, we can verify that the highest precision values

were obtained by the classifiers using the distance approach to compute the sim-

ilarity matrix, and that these are comparable to those obtained by the baseline.

We note that despite not outperforming the baseline, these results improve the in-

terpretability of the model, since the different temporal patterns used can uncover

disease progression patterns and help clinicians in their predictive task.

3.5 Results using Patient Stratification

Using the same data, we stratified the patients in three groups according with their

disease progression and following the approach used by Pires et al. [12]. The patients

thus were stratified in Slow, Neutral and Fast progressors according to a Progression

Rate (PR) value, computed by:

PR =
48−ALSFRS-R1st Visit

∆t1st Symptoms; 1st Visit
, (4)

where 48 is the maximum score for ALSFRS-R feature, ALSFRS-R1st Visit is the

ALSFRS-R score in the first appointment (diagnosis) and ∆t1st Symptoms; 1st Visit is

the time in months between the dates of first symptoms and the first appointment

[12]. Progression rates are computed for each patient, and then based on these

values they are divided into three groups based the distribution of PR values, and

as suggested by the clinicians: 25% of patients with lower and higher values are

stratified as Slow and Fast progressors, respectively. The remaining 50% are grouped

and considered Neutral progressors.
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After stratifying the patients in the three groups of patients, we apply our

triclustering-based methodology to learn a specialized predictive model for each

group of patients. Table 8 shows the results, obtained in the same way as those for

the model learned with all data, as baseline. As expected, the results after patient

stratification outperform the results obtained when learning from all patients, since

patients are now more homogeneous. The small number patients with 4 and 5 CS

in the Fast group prevented us from obtaining reliable results in these cases.

Table 8 Baseline Results: Random Forests with Original Features per Disease Progression Group

CS Group AUC Accuracy Sensitivity Specificity

Slow 0.89 ± 0.0713 0.80 ± 0.0841 0.84 ± 0.1083 0.76 ± 0.1201
3 Neutral 0.87 ± 0.0407 0.79 ± 0.0474 0.80 ± 0.0677 0.78 ± 0.0787

Fast 0.81 ± 0.1668 0.74 ± 0.1454 0.74 ± 0.2627 0.74 ± 0.1998

Slow 0.93 ± 0.0986 0.86 ± 0.0895 0.87 ± 0.0996 0.85 ± 0.1236
4 Neutral 0.85 ± 0.0683 0.771 ± 0.0645 0.81 ± 0.0797 0.73 ± 0.1112

Fast

Slow 0.92 ± 0.0562 0.839 ± 0.0730 0.84 ± 0.1166 0.84 ± 0.1178
5 Neutral 0.87 ± 0.0729 0.79 ± 0.0788 0.79 ± 0.1021 0.79 ± 0.1235

Fast

Table 9 shows the results obtained by the specialized models for each disease pro-

gression group, according to the number of consecutive snapshots considered. We

can see that the results outperform the baseline for 3 and 4 CS in the Neutral group,

using the distance approach for similarities, confirming the evidence that this ap-

proach is the most appropriate to this type of data. Comparing these results with

those obtained by the general classifier we can see that there is a noticeable increase

in classification performance, resulting from being able to discover and use group

specific disease progression patterns. Since the general model learns from hetero-

geneous patients, with a wide spectrum of disease progression patterns, where the

Neutral group is dominant, it potentially misses significant patterns from patients

who not follow a common disease progression trend and whose specific disease pro-

gression patterns are not discovered. Despite the good results in the Neutral group,

the results concerning the Slow and Fast groups slightly decreased, since the class

imbalance in these groups is even more accentuated than in complete dataset or in

the neutral group. This imbalance has hampered the computation of some metrics

given the bias.

In order to assess whether the general model would also be better for Slow and

Faster progressors in the same way that the specialized model would be better for

the Neutral group, we perform experiments with the general model to evaluate

its performance with patients from the different three groups. Table 10 shows the

results obtained, and we can see that even for Slow and Fast progressors the general

model performs well, but specialized models achieved more balanced results in the

prediction of both classes (values of sensitivity and specificity are closer). As already

mentioned the general model by the specialized model in the Neutral group.

We note however, that these results could be improved with a larger collection of

patients data from the Slow and Fast groups, as shown by the slightly higher values

of standard deviation in these cases.
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Table 9 Performance Evaluation Results obtained with Triclustering-based Classifier (Specialized for
each Disease Progression Group)

AP CS Group AUC Accuracy Sensitivity Specificity

D

Slow 0.84 ± 0.0933 0.77 ± 0.0924 0.81 ± 0.1386 0.73 ± 0.1377
3 Neutral 0.86 ± 0.0415 0.794 ± 0.0393 0.79 ± 0.0583 0.80 ± 0.0694

Fast 0.70 ± 0.1798 0.66 ± 0.1582 0.81 ± 0.2211 0.51 ± 0.2397

Slow 0.87 ± 0.0797 0.81 ± 0.0835 0.85 ± 0.1063 0.77 ± 0.1221
4 Neutral 0.84 ± 0.0635 0.774 ± 0.0731 0.77 ± 0.0826 0.78 ± 0.1059

Fast 0.70 ± 0.2666 0.74 ± 0.2094 0.80 ± 0.2442 0.68 ± 0.3177

Slow 0.89 ± 0.0739 0.841 ± 0.0908 0.88 ± 0.1221 0.81 ± 0.1178
5 Neutral 0.81 ± 0.0808 0.72 ± 0.0839 0.71 ± 0.1118 0.74 ± 0.1204

Fast

C

Slow 0.85 ± 0.0827 0.75 ± 0.0874 0.76 ± 0.1394 0.75 ± 0.1470
3 Neutral 0.86 ± 0.0404 0.78 ± 0.0471 0.76 ± 0.0769 0.79 ± 0.0746

Fast 0.66 ± 0.1768 0.66 ± 0.1586 0.80 ± 0.2201 0.51 ± 0.2447

Slow 0.85 ± 0.0762 0.79 ± 0.0933 0.81 ± 0.1237 0.78 ± 0.1436
4 Neutral 0.83 ± 0.0655 0.77 ± 0.0660 0.78 ± 0.0819 0.76 ± 0.0968

Fast 0.63 ± 0.2414 0.70 ± 0.1854 0.77 ± 0.2424 0.62 ± 0.2978

Slow 0.88 ± 0.0822 0.83 ± 0.0858 0.88 ± 0.1021 0.78 ± 0.1343
5 Neutral 0.81 ± 0.0780 0.73 ± 0.0800 0.71 ± 0.1159 0.75 ± 0.1194

Fast

Table 10 Performance Evaluation Results obtained with Triclustering-based Classifier (General) per
Disease Progression Group

CS Group AUC Accuracy Sensitivity Specificity

Slow 0.85 ± 0.1094 0.81 ± 0.0754 0.67 ± 0.3053 0.84 ± 0.0765
3 Neutral 0.82 ± 0.0536 0.74 ± 0.0924 0.78 ± 0.0745 0.69 ± 0.0879

Fast 0.78 ± 0.0965 0.70 ± 0.0956 0.76 ± 0.1082 0.59 ± 0.1629

Slow 0.89 ± 0.0986 0.82 ± 0.0895 0.70 ± 0.2680 0.86 ± 0.0923
4 Neutral 0.84 ± 0.0683 0.77 ± 0.0776 0.80 ± 0.0897 0.74 ± 0.1420

Fast 0.81 ± 0.1100 0.75 ± 0.0937 0.85 ± 0.1086 0.57 ± 0.2116

Slow 0.86 ± 0.0474 0.80 ± 0.0844 0.65 ± 0.2256 0.85 ± 0.1192
5 Neutral 0.82 ± 0.0760 0.72 ± 0.0508 0.78 ± 0.0784 0.63 ± 0.1192

Fast 0.75 ± 0.1198 0.74 ± 0.0890 0.85 ± 0.0794 0.52 ± 0.1532



Soares et al. Page 13 of 16

4 Model Interpretability
The relevance of a triclustering-based classifier methodology should be evaluated

not only by analysing its performance regarding classification results, but also by

its potential concerning model interpretability. This means analysing the temporal

patterns uncovered through triclustering, regarding their domain relevance, clinical

in this case, and their importance for the predictive model, by computing the pat-

tern/feature importance according to the learnt classifier. To this aim, we chose to

analyse the patterns discovered when triclustering the 3 CS dataset. The goal is to

understand what are the most relevant features, what features appear together, and

whether the patterns found to be relevant in the general model, putative patterns

of the average patient, differ from those relevant to the specialized models, that

should be group-specific, highlighting disease progression patterns of Slow, Neutral

and Fast progressors.

Table 15 shows the characterization of triclusters obtained by the 4 learnt models

(General, Slow, Neutral and Fast), where |I|, |J | and |K| represent the number

of patients, features and time-points composing each tricluster. The patterns are

represented by feature values across the time-points. Tables 11, 12, 13 and 14 de-

pict the most important as used patterns by the classifier, ranked by their feature

importance.

An overall analysis of the most important patterns discovered shows that the

majority of the patterns refer to the last snapshot/time-point of the tricluster. This

makes sense, since this is the snapshot closer to the target. However, other patterns

not corresponding to the last snapshot that remain important, are also relevant for

further clinical analysis, since these features can be relevant in identifying disease

progression pattern leading to the need of NIV in a given time-window.

As expected, most of the important set of features used by the General model are

the same as those discovered for the Neutral group, corresponding to the common

tendency within the set of all patients, corresponding to the average patient (Neutral

progressor). However, the highest values observed for the features in Neutral model

expose the influence that the other groups (Slow and Fast progressors) created in

the General model. Comparing patterns of Slow progressors with those of Neutral

progressors, we can confirm that, as expected the values for the same set of features

are smaller in the first.

When analysing the most important patterns used by the model learnt for Fast

progressors, it is interesting to witness that these patterns are typically very different

from those of the other models. This confirms the fact that Fast progressors are very

different patients and can be useful to help understanding their unique progression

patterns. Furthermore, a quick identification of Fast progressors, whose clinical

condition degrades very quickly, through their progression patterns, can promote

timely intervention and prolong survival.

5 Conclusions
We proposed a new methodology to learn predictive models using a triclustering-

based classifier.

The key step uses TCtriCluster, an extension of triCluster, incorporating a tem-

poral constraint when mining triclusters. This restriction was shown to be effective
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Table 11 20 Best discovered patterns in the general model trained with all data (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 10 2 0.031960 ALS-FRS = 38
2 18 2 0.029058 ALS-FRS-R = 46
3 54 0 0.027954 MIP = 53.5705; MEP = 65.0705
4 53 0 0.023513 FVC = 88.2423; MEP = 66.6423
5 12 2 0.022829 ALS-FRS = 31
6 54 1 0.022564 MIP = 53.2824; MEP = 66.1471
7 35 2 0.018606 ALS-FRSsUL = 9; R = 12
8 13 2 0.017853 ALS-FRS = 30
9 53 1 0.017221 FVC = 89.15; MEP = 67.5577

10 55 1 0.012898 ALS-FRS = 24; ALS-FRS-R = 32
11 25 2 0.012194 ALS-FRS-R = 33
12 66 1 0.011938 ALS-FRS = 38
13 7 1 0.011871 ALS-FRS = 26; ALS-FRS-R = 34
14 15 2 0.011854 ALS-FRS = 27
15 69 1 0.011695 ALS-FRS = 27; R = 12
16 0 1 0.011637 ALS-FRS = 24
17 87 1 0.011274 ALS-FRSsUL = 12; ALS-FRSsLL = 12
18 29 2 0.011250 ALS-FRSb = 12; R = 12
19 22 2 0.010727 ALS-FRS-R = 35
20 83 1 0.010561 ALS-FRS-R = 46

Table 12 20 Best discovered patterns in the specialized model for Slow group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 1 2 0.059431 ALS-FRS = 37; ALS-FRS-R = 45
2 2 2 0.043924 ALS-FRS-R = 45
3 120 0 0.027597 ALS-FRS = 37; ALS-FRS-R = 45
4 120 1 0.027366 ALS-FRS = 37; ALS-FRS-R = 45
5 46 2 0.026735 ALS-FRSb = 12; ALS-FRSr = 4; R = 12
6 71 2 0.026688 ALS-FRSsLL = 12; ALS-FRSr = 4
7 47 2 0.025992 ALS-FRSsLL = 12; R = 12
8 3 0 0.025549 ALS-FRS = 37
9 0 1 0.024103 ALS-FRS = 37; ALS-FRS-R = 45

10 4 0 0.023486 ALS-FRS-R = 45
11 62 1 0.023258 ALS-FRSsUL = 9; ALS-FRSr = 4; R = 12
12 31 2 0.023019 ALS-FRS-R = 12
13 2 0 0.022919 ALS-FRS-R = 45
14 1 1 0.022609 ALS-FRS = 37; ALS-FRS-R = 45
15 2 1 0.022548 ALS-FRS-R = 45
16 3 1 0.021562 ALS-FRS = 37
17 4 1 0.020758 ALS-FRS-R = 45
18 71 1 0.019888 ALS-FRSsLL = 12; ALS-FRSr = 4
19 60 1 0.019324 ALS-FRSsUL = 12; R = 12
20 55 1 0.019007 ALS-FRSsUL = 12; ALS-FRSr = 4

in improving the effectiveness of the predictive models, highlighting its importance

when triclustering temporal data. We further show that triclustering-based classifi-

cation enhances prediction with the potentialities of model interpretability, enabling

the discovery of domain relevant temporal patterns, then used as features in the

models.

As case study we used clinical three-way data and tackled the challenge of pre-

dicting the need for NIV in ALS patients within a time window of 90 days. We

performed experiments using all patients and patients stratified by their disease

progression rate as Slow, Neutral and Fast progressors.

The prognostic prediction results are promising when patient stratification is per-

formed, specially for Neutral progressors. Concerning model interpretation, it was

interesting to confirm the existence of group-specific patterns, corresponding to

different disease progression patterns, then used by the specialized models as im-

portant features. In particular, Fast progressors have unique patterns, whose quick

identification could help to improve prognosis, by antecipating NIV.

The proposed triclustering-based methodology can further be used to learn pre-

dictive models with different types of three-way-data, from other heterogeneous

diseases or other domains.
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Table 13 20 Best discovered patterns in the specialized model for Neutral group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 4 2 0.018618 ALS-FRS = 38; ALS-FRS-R = 46
2 260 2 0.016051 ALS-FRSsUL = 12; ALS-FRSsLL = 12
3 238 2 0.014534 ALS-FRSsUL = 12; ALS-FRSr = 4
4 5 2 0.013115 ALS-FRS = 35
5 291 2 0.013027 ALS-FRSsUL = 12; ALS-FRSr = 4; R = 12
6 551 1 0.012610 MIP = 58.355; MEP = 66.5
7 261 2 0.012074 ALS-FRSsUL = 12
8 1 2 0.011431 ALS-FRS = 29; ALS-FRS-R = 37
9 11 2 0.011142 ALS-FRS-R = 43

10 551 0 0.011140 MIP = 54.2; MEP = 63.8
11 3 2 0.011110 ALS-FRS = 33; ALS-FRS-R = 41
12 190 2 0.010652 ALS-FRSb = 12; ALS-FRSr = 4
13 550 0 0.010239 FVC = 87.3571; MEP = 65.7071
14 550 1 0.010007 FVC = 88.7429; MEP = 66.9928
15 2 2 0.009997 ALS-FRS = 31; ALS-FRS-R = 39
16 13 2 0.009706 ALS-FRS-R = 41
17 10 2 0.009301 ALS-FRS-R = 39
18 226 2 0.008809 ALS-FRSb = 12; ALS-FRSr = 4; R = 12
19 244 2 0.007572 ALS-FRSb = 12; R = 12
20 342 2 0.007409 ALS-FRSsLL = 12; R = 12

Table 14 Discovered patterns in the specialized model for Fast group (with 3 CS)

Rank #Tricluster TP Feat. Import Pattern

1 1 2 0.251100 R = 12
2 2 2 0.198099 ALS-FRSr = 3
3 2 1 0.100364 ALS-FRSr = 4
4 0 0 0.100323 R = 12
5 1 0 0.093527 R = 12
6 2 0 0.093015 ALS-FRSr = 4
7 1 1 0.091529 R = 12
8 0 1 0.072043 R = 12
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Table 15 Characterization of Triclusters obtained with different learned models (with 3 CS)

General Model

#Tricluster |I| |J | |K| Patterns

0 24 1 2 [ALS-FRS=28], [ALS-FRS=24]
7 25 2 2 [ALS-FRS=27; ALS-FRS-R=35], [ALS-FRS=26; ALS-FRS-R=34]

10 59 1 3 [ALS-FRS=38], [ALS-FRS=38], [ALS-FRS=38]
12 54 1 3 [ALS-FRS=35], [ALS-FRS=35], [ALS-FRS=31]
13 42 1 3 [ALS-FRS=36], [ALS-FRS=36], [ALS-FRS=30]
15 41 1 3 [ALS-FRS=33], [ALS-FRS=33], [ALS-FRS=27]
18 56 1 3 [ALS-FRS-R=46], [ALS-FRS-R=46], [ALS-FRS-R=46]
22 38 1 3 [ALS-FRS-R=41], [ALS-FRS-R=41], [ALS-FRS-R=35]
25 28 1 3 [ALS-FRS-R=40], [ALS-FRS-R=36], [ALS-FRS-R=33]
29 151 2 3 [ALS-FRSb=12; R=12], [ALS-FRSb=12; R=12], [ALS-FRSb=12; R=12]
35 20 2 3 [ALS-FRSsUL=9; R=12], [ALS-FRSsUL=9; R=12], [ALS-FRSsUL=9; R=12]
53 26 2 2 [FVC=88.2423; MEP=66.6423], [FVC=89.15; MEP=67.5577]
54 34 2 2 [MIP=53.5706; MEP=65.0706], [MIP=57.2824; MEP=66.1471]
55 22 2 2 [ALS-FRS=27; ALS-FRS-R=35], [ALS-FRS=24; ALS-FRS-R=32]
66 31 1 2 [ALS-FRS=38], [ALS-FRS=38]
69 23 2 2 [ALS-FRS=37; R=12], [ALS-FRS=37; R=12]
83 29 1 2 [ALS-FRS-R=46], [ALS-FRS-R=46]
87 44 2 2 [ALS-FRSsUL=12; ALS-FRSsLL=12], [ALS-FRSsUL=12; ALS-FRSsLL=12]

Specialized Model for Slow Progressors

#Tricluster |I| |J | |K| Patterns

0 29 2 2 [ALS-FRS=38.0; ALS-FRS-R=46.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]
1 26 2 3 [ALS-FRS=38.0; ALS-FRS-R=46.0], [ALS-FRS=37.0; ALS-FRS-R=45.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]
2 13 1 3 [ALS-FRS-R=45.0], [ALS-FRS-R=45.0], [ALS-FRS-R=45.0]
3 13 1 2 [ALS-FRS=37.0], [ALS-FRS=37.0]
4 14 1 2 [ALS-FRS-R=45.0], [ALS-FRS-R=45.0]

31 58 2 3 [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0]
46 51 3 3 [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0]
47 51 2 3 [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0]
55 17 2 2 [ALS-FRSsUL=12.0; ALS-FRSr=4.0], [ALS-FRSsUL=12.0; ALS-FRSr=4.0]
60 14 2 2 [ALS-FRSsUL=12.0; R=12.0], [ALS-FRSsUL=12.0; R=12.0]
62 15 3 2 [ALS-FRSsUL=9.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSsUL=9.0; ALS-FRSr=4.0; R=12.0]
71 14 2 3 [ALS-FRSsLL=12.0; ALS-FRSr=4.0], [ALS-FRSsLL=12.0; ALS-FRSr=4.0], [ALS-FRSsLL=12.0; ALS-FRSr=4.0]

120 28 2 2 [ALS-FRS=37.0; ALS-FRS-R=45.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]

Specialized Model for Neutral Progressors

#Tricluster |I| |J | |K| Patterns

1 59 2 3 [ALS-FRS=33.0; ALS-FRS-R=41.0], [ALS-FRS=31.0; ALS-FRS-R=38.0], [ALS-FRS=29.0; ALS-FRS-R=37.0]
2 48 2 3 [ALS-FRS=33.0; ALS-FRS-R=41.0], [ALS-FRS=33.0; ALS-FRS-R=41.0], [ALS-FRS=31.0; ALS-FRS-R=39.0]
3 53 2 3 [ALS-FRS=35.0; ALS-FRS-R=43.0], [ALS-FRS=35.0; ALS-FRS-R=43.0], [ALS-FRS=33.0; ALS-FRS-R=41.0]
4 12 2 3 [ALS-FRS=38.0; ALS-FRS-R=46.0], [ALS-FRS=36.0; ALS-FRS-R=44.0], [ALS-FRS=37.0; ALS-FRS-R=45.0]
5 17 1 3 [ALS-FRS=37.0], [ALS-FRS=35.0], [ALS-FRS=35.0]

10 18 1 3 [ALS-FRS=37.0], [ALS-FRS=35.0], [ALS-FRS=35.0]
11 14 1 3 [ALS-FRS-R=45.0], [ALS-FRS-R=43.0], [ALS-FRS-R=43.0]
13 19 1 3 [ALS-FRS-R=46.0], [ALS-FRS-R=41.0], [ALS-FRS-R=41.0]

190 18 2 3 [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0], [ALS-FRSb=12.0; ALS-FRSr=4.0]
226 64 3 3 [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSb=12.0; ALS-FRSr=4.0; R=12.0]
238 19 1 3 [ALS-FRSb=12.0], [ALS-FRSb=12.0], [ALS-FRSb=12.0]
244 67 2 3 [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0], [ALS-FRSb=12.0; R=12.0]
260 20 2 3 [ALS-FRSsUL=12.0; ALS-FRSsLL=12.0], [ALS-FRSsUL=12.0; ALS-FRSsLL=12.0], [ALS-FRSsUL=12.0; ALS-FRSsLL=12.0]
261 19 1 3 [ALS-FRSsUL=12.0], [ALS-FRSsUL=12.0], [ALS-FRSsUL=12.0]
291 19 3 3 [ALS-FRSsUL=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSsUL=12.0; ALS-FRSr=4.0; R=12.0], [ALS-FRSsUL=12.0; ALS-FRSr=4.0; R=12.0]
342 20 2 3 [ALS-FRSsLL=12.0; R=12.0], [ALS-FRSsLL=12.0; R=12.0], [ALS-FRSsLL=12.0; R=12.0]
550 14 2 2 [FVC=87.3571; MEP=65.7071], [FVC=88.7429; MEP=66.9929]
551 20 2 2 [MIP=54.2; MEP=63.8], [MIP=58.355; MEP=66.5]

Specialized Model for Fast Progressors

#Tricluster |I| |J | |K| Patterns

0 10 1 2 [R=12.0], [R=12.0]
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