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I. Resumo 

Assinaturas isotópicas de carbono sugerem que a vida na terra existe há mais de 3.95 Ga, mas 

pouco se sabe como e onde poderá ter surgido1,2. Na comunidade científica da Origem da Vida 

a via metabólica Acetil-coA desperta curiosidade pela sua simplicidade e origens longínquas. 

Esta via requer H2 para fixar CO2 e enzimas ricas em Ni e Fe nos seus centros catalíticos, para 

de forma exotérmica, produzir acetil-CoA tioéster como produto final3,4. A sua simplicidade 

permite que as reações possam ser replicadas no laboratório sem utilizar moléculas orgânicas. 

Varma et al. usou metais de valência zero e temperaturas entre os 30º–100 ºC  para reduzir CO2, 

a produtos intermédios da via acetil-coA, como acetato e piruvato5. Preiner et al. utilizou H2 

gasoso e com o auxilio de minerais férricos também conseguiu obter produtos desta via 

metabólica6. O sucesso destas experiências trouxe mais apoio para uma teoria altamente 

debatida de que a vida surgiu em fontes hidrotermais alcalinas no fundo do oceano. O exemplo 

mais mencionado destas estruturas é Lost City. As águas que circulam nesta fonte são altamente 

alcalinas (pH 9–11), com temperaturas moderadas (40–90 ºC) e ricas em H2
7,8. O processo de 

serpentinação que ocorre nestas estruturas sustenta uma fonte de hidrogénio molecular e calor 

constante9, que contrastam com a àgua fria e acídica do oceano do Hadeano éon10, criando 

gradientes de pH e temperatura nos poros das fontes hidrotermais4. Juntamente com os minerais 

untramáficos presentes nas suas paredes, que podem catalizar reações da via acetyl-coA6, estas 

condições variadas atraem muita atenção dos cientistas que estudam a origem de biomoléculas 

e do primeiro metabolismo11. Contrariamente às suas propriedades químicas e geológicas, 

poucos testes experimentais existem sobre as propriedades físicas das fontes, nomeadamente a 

sua estrutura microporosa aberta. Alguns autores sugerem que os poros poderão ter sido 

importantes para favorecer a acumulação de produtos até concentrações suficientes para que 

um sistema autorreplicativo possa ter surgido10,12 mas o trabalho de Yang et al. sugere 

contrariamente, que a sua estrutura aberta favorece o transporte de produtos, mantendo um 

constante estado de desequilíbrio13. Estruturas igualmente porosas, como argilas e aerogéis são 

altamente utilizados na indústria pelas suas capacidades de absorção, intercalação, propriedades 

de swelling e intercamadas altamente personalizáveis14,15. Zeolites são argilas de 

aluminossilicato de especial interesse industrial para catálise e para quando é necessária uma 

boa resistência hidrotérmica. A sua estrutura microporosa (< 1 nm) atribui-lhe uma área de 

superfície extensa com inúmeros centros ativos ácidos de Lewis e Brønsted mas também limita 

o transporte de produtos16,17. Consequentemente, zeolites hierárquicos são desenvolvidos 

artificialmente para promover a circulação de produtos pela estrutura, sem danificar as 
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propriedades catalíticas e de suporte catalítico destes minerais, combinando a sua estrutura 

microporosa com outra mesoporosa (2 – 50 nm)17.  

Para este trabalho foi desenvolvido um zeólito hierárquico com o propósito de replicar 

laboratorialmente a estrutura porosa das fontes hidrotermais e avaliar as vantagens e 

desvantagens catalíticas da mesma na redução de CO2. Durante a composição do protocolo, 

foram testadas diferentes Laponites – argilas de silicato de magnésio sintéticas18 – para 

averiguar a contaminação das mesmas com compostos orgânicos. Embora não tenha sido 

possível obter uma mistura sem qualquer contaminação, foi selecionada aquela em que foi 

detetada a menor quantidade de compostos orgânicos sem abdicar de uma estrutura porosa 

aberta, consistente e manuseável no laboratório (2.7 % Laponite-RD e 7.3 % zeolite (%w/w) 

em água pura; Figure 3.5.A, Appendix A. 1).  A mistura de argilas foi colocada em tubos de 

vidro de 3 mL fechados e estes foram por sua vez colocados num reator de aço inoxidável onde 

foi realizado o trabalho experimental. Para comparar a eficiência com que este meio catalisa a 

redução de CO2, também foram testadas amostras contendo apenas água, simulando um meio 

sem estrutura. Durante 16h, as amostras estiveram sob agitação a 70 ºC e 25 bar de H2 e CO2 

(Table 2.2). Finalmente, os resultados foram avaliados por ressonância magnética nuclear de 

protões (RMN 1H) e cromatografia líquida de alta eficiência (CLAE) para a deteção de etanol, 

metanol, acetato, formato e piruvato.  

Os controlos efetuados revelaram que a contaminação é um problema mais extenso e profundo 

do que o antecipado. Não só o Laponite-RD apresentava contaminação, mas também foram 

detetadas contaminações nos utensílios utilizados ao longo do protocolo. Uma vez que a 

grandeza dos produtos nas amostras encontrava-se na escala nano e micro molar, mesmo após 

descontaminação dos materiais laboratoriais, era inevitável detetar contaminações vestigiais.  

No entanto, foi possível observar de forma consistente o favorecimento da síntese de moléculas 

mais longas como acetato e piruvato no meio poroso, em vez de moléculas mais simples como 

o formato que foi detetado em quantidades mais significativas nas amostras com apenas água 

(Figure 3.7 Formate and acetate as a product of CO2 reduction compared between waterS, 

KOHS, and ZeoLapS. All samples had 15 bar of CO2 in addition to 10 bar of Ar or H2, to a 

total of 25 bar. In addition, samples could have magnetite (Fe3O4), nickel (Ni)). No contexto 

das fontes hidrotermais alcalinas, estes resultados sugerem que a sua estrutura geológica, não 

só poderá ter facilitado a catálise das primeiras moléculas orgânicas a partir de carbono e 



4 

 

hidrogénio abiótico, como poderá ter fornecido um meio onde a produção de moléculas mais 

complexas e com longas cadeias de carbono poderão ter sido favorecidas.  

Consecutivamente, o segundo tópico deste trabalho reflete sobre o potencial redutor de 

hidrogénio abiótico e a estabilidade que as fontes hidrotermais poderão fornecer a moléculas 

orgânicas de maior complexidade, nomeadamente a dinucleótido de nicotinamida e adenina 

(NAD). Esta coenzima está presente no metabolismo de todos os organismos vivos e participa 

em inúmeras atividades metabólicas como a transferência de hidrogénio, sinalização, tem 

atividade transicional e participa como cofator em reações redox19,20. Na via acetil-coA 

participa juntamente com a ferridoxina na bifurcação de hidrogénio, um passo essencial para a 

ativação da molécula. Para o desenvolvimento do primeiro sistema catalítico autossustentável 

ter ocorrido nas fontes hidrotermais, moléculas antigas e essenciais para o metabolismo, como 

o NAD, teriam de ser estáveis e interagir com o meio eficientemente21,22.  

Para o efeito foram simuladas em laboratório  várias condições hidrotermais com diferentes sais 

em solução e magnetita, um mineral presente nas fontes hidrotermais capaz de catalisar a 

redução de CO2 a piruvato5,6. 3 mM de NAD em água pura ou em soluções salinas foram 

colocados em tubos de vidro de 1 mL num reator semelhante ao indicado anteriormente durante 

2 h a 30 ºC, usando H2 a diferentes pressões (2 bar e 10 bar) como a única fonte de hidrogénio 

para a redução de NAD+ a NADH (Figure 1.3, Table 2.2). Uma vez que estes dois compostos 

têm espetros de absorvência distintos, os resultados foram obtidos por espectrofotometria e 

discutidos tendo em consideração controlos efetuados com Ar em vez de H2. 

Uma vez que as amostras não continham um sistema tampão nem um forte agente alcalino, 

tendiam para pHs acídicos após a adição de sais e durante o trabalho experimental com 

hidrogénio, o que poderá ter dificultado o favorecimento de reações de redução. No entanto, a 

10 bar e na presença de magnetita, foi observado um grande aumento de absorvência do início 

para o fim da reação, no comprimento de onda correspondente a NADH (340 nm). Embora 

nenhuma amostra com sais em solução tenha apresentado resultados significantes, as amostras 

com ambos magnésio e magnetita tiveram o melhor resultado experimental deste projeto. 

Possivelmente o magnésio não é capaz de catalisar a redução de NAD+ diretamente, mas poderá 

ter um papel importante na catálise realizada pela magnetita, ao facilitar a transferência do 

hidreto (Figure 3.1112). Finalmente, foi obtido o espetro total de amostras com NAD+ e 

magnetita após a reação (30 ºC, 10 bar H2, 2 h) onde é possível visualizar concretamente um 

pico a 340 nm, confirmando a síntese de NADH nestas condições. 
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Embora seja indispensável um esforço maior no desenvolvimento de protocolos livres de 

contaminações e com maior discriminação de produtos, este trabalho apresenta resultados  

concretos que sublinham a importância que as condições geoquímicas das fontes hidrotermais 

alcalinas poderão ter tido no desenvolvimento do primeiro sistema metabólico autocatalítico. 

 

Palavras-chave: Fontes hidrotermais; estrutura microporosa; origem do metabolismo; redução; 

magnetite 
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II. Abstract 

Alkaline hydrothermal vents are ancient ocean structures, H2-producing, with pH, temperature 

and redox gradients which promote reduction and have been of great interest for Origin of Life 

researchers10,23,24. In the laboratory, CO2 can be reduced under hydrothermal conditions to 

organic molecules, such as ethanol, formate, methane, acetate and pyruvate 255,6. These 

molecules are also part of the ancient acetyl-CoA pathway, an exergonic, H2-dependent, CO2 

reducing metabolic pathway, which possibly dates back to the Last Universal Common 

Ancestor (LUCA)3,26. In addition, the minerals within alkaline hydrothermal vents are rich in 

iron and nickel, two metals that are commonly found in the catalytic centers of modern-day 

enzymes, including the acetyl-CoA pathway27. They were also essential to catalyze CO2 

reduction to synthesize more complex molecules such as pyruvate in the laboratory28,29. The 

idea that alkaline hydrothermal vents can be associated to an ancient metabolic pathway leads 

to an interesting argument for the location of the origin of metabolism. In this work I looked to 

expand the range of studies with hydrothermal conditions to new topics beyond CO2 reduction, 

exploring the effects of the complex microporous structure of these vents and if such 

rudimentary conditions could support modern day coenzymes and its redox reactions. For the 

first study an open microporous framework with zeolite and Laponite-RD was developed to 

simulate the vents’ structure and reproduced previous CO2 reduction experiments in this new 

setting. Secondly, the stability and reduction of nicotinamide adenine dinucleotide (NAD) 

under hydrothermal conditions was studied, an ancient coenzyme essential for 

metabolism.Results suggest that the framework used promotes the synthesis of more complex 

molecules such as pyruvate and acetate, in detriment of the production of simpler ones such as 

formate and that NAD is not only stable in alkaline fluids, but also can be reduced in the 

presence magnetite (Fe3O4). Reducing contamination and improving analytic methods are 

important next steps to take for this work, which already presents an avenue that further 

connects alkaline hydrothermal vents to the origin of metabolism. 

 

Key words: Hydrothermal vents; microporous structure; origin of metabolism; reduction; 

magnetite 
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1. Introduction 

1.1 Origin of Metabolism and Hydrothermal vents 

Life as we know it emerged from LUCA, an entity that shared the same genetic code and amino 

acid chirality, as all known living beings do, capable of proto-metabolism, 

compartmentalization, and inheritance1. The earliest living organism observed in the form of a 

fossil is 3.35 Ga, but carbon isotope signatures advocate for life being around for longer than 

3.95 Ga1,2. How and where life could have emerged are topics of a vast debate on the Origin of 

Life (OoL) scientific community. Acetyl-CoA is a microbial, H2-dependent CO2 fixation 

pathway of great chemical simplicity and ancient roots, possibly dating back to LUCA3,26. It 

stands out for its exergonic properties, reducing CO2 to a methyl group and CO, and through 

intermediate enzymatic nickel assisted reactions, it generates thioester acetyl-CoA as a final 

product3,4. Even though these reactions are enzymatically assisted, the catalysts are composed 

of native metals in their active sites, containing Fe, Ni, and other carbon-metal bonds4,26,30. 

Besides, the reactions are simple enough to occur spontaneously under a reducing environment, 

without the aid of enzymes9,30. Preiner et al. described it best, claiming that “the chemical 

reactions of the acetyl-CoA pathway themselves are older than the enzymes that catalyze 

them”9. However, in the absence of organic catalysts, for H2-dependent CO2 reduction to be at 

the origin of biochemistry, it needs an H2 source and means for molecular hydrogen activation30. 

In the absence of a structured cell and a structured metabolism, these demands needed to be 

answered by the geochemical conditions surrounding such a primitive chemical system. That 

is at the bottom of the sea in alkaline hydrothermal vents, a highly discussed and supported 

theory for where the origin of life occurred. The best example is Lost City, a strongly alkaline 

hydrothermal vent (pH 9–11) rich in H2 from olivine serpentinization and reduced warm water 

with temperatures ranging from 40–90 ºC7,8. Structures like this are exceptionally well 

preserved since the Hadean eon, and the conditions observed nowadays are most likely a good 

indicator of how these vents worked millions of years ago31 There, cold water travels deep into 

cracks in the ocean’s crust, and it heats up to 200ºC as it reacts with ultramafic rocks (high Fe2+ 

and Mg2+ and low silicate content) present in the lithosphere, bringing its products in the current 

that resurges warm alkaline fluids from the vents25. This exergonic reaction synthesizes mostly 

mafic minerals, but others can be produced: magnetite (Fe3O4), a typical product of 

serpentinization, hydrogen (H2 and OH-) produced as a result of Fe(II) minerals oxidation gives 

the vents their alkaline properties, methane (CH4) and other low-molecular-mass hydrocarbons. 
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This convective current can also carry intermediate products, ions (Mg2+, Fe2+, Fe3+, HS-, 

HCO3
−, etc.) and other molecules depending on the vent’s mineralogy, that add to the 

complexity of these vents4,9,24,25. Contrastingly, during the Hadean, the ocean was twice as 

deep32, its water was incredibly rich in CO2, due to intense volcanic activity, and accordingly 

acidulous (pH 5–6)10,11.As the warm alkaline fluid rises, it contacts cold, acidulous ocean water, 

resulting in carbonate precipitation13,25. This leads to the synthesis of precipitation membranes, 

which, together with water erosion and hydroxylation of the crust’s minerals, constitute the 

vent’s walls and complex network of open micropores (< 2 nm)7,8,31. In these interconnected 

pores, water from the crust and the sea interact to form pH and temperature gradients4, further 

promoting a strong redox gradient that favors spontaneous CO2 reduction in a H2-rich system 

with temperatures that integrate the biologically relevant temperature range (0–120 ºC), making 

these vents an attractive possible location for the origin of metabolism11. These vents are also 

rich in native metals such as iron and nickel, which have been proved to catalyze acetyl-CoA 

reactions efficiently28,29. In this pathway, hydrogenases require iron in their active sites to 

activate hydrogen toprovide an electron source, and contain iron in their active sites27,33. Nickel, 

as mentioned before, is deeply involved in the intermediate steps of acetyl-CoA, being 

preserved within the active site of a central enzyme in CO2 reduction – carbon monoxide 

dehydrogenase (CODH)27,34. Varma et al. used zero-valent metals involved in this pathway to 

reduce CO2 at temperatures between 30–100 ºC and all showed to catalyze acetate production 

and other simpler molecules (10–200 µM of reduced carbon compounds). Fe0, Ni0, and Co0 also 

promoted the synthesis of pyruvate up to ~0.1 mM5. Preiner et al. tested if minerals frequently 

found in hydrothermal vents, which contain native metals, could catalyze CO2 reduction with 

hydrogen gas as the electron source (instead of metals). Greigite (Fe3S4), magnetite, and 

awaruite (Ni3Fe) all catalyzed the synthesis of formate, acetate, methanol, and pyruvate under 

hydrothermal vent conditions6. Such studies such  can help to understand how a biochemical 

system could have arisen. Most experiments focus singularly on a variety of hydrothermal 

conditions and how these can impact biosynthesis. Even though the geological environment 

and location are heavily debated, few experimental tackle how these settings could affect 

biosynthesis, in laboratory conditions.  
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Figure 1.1 The chemical reactions of the linear acetyl-CoA pathway described by Fuch et al.3. Later it was found by Wagner 

et al.35 that free formate is formed in the methanogen pathway and edited by Preiner et al.6. The “⊥” sign represents protein 

cofactors bound to carbon groups by nitrogen, cobalt, nickel, or sulfur atoms. In yellow boxes are highlighted formate, methane, 

acetate, and pyruvate, which were products obtained from CO2 reduction using iron mineral catalysts in laboratory conditions5,6. 

One argument for the geological characteristics of alkaline hydrothermal vents as sites for the 

origin of life aretheir open porous structures. They have been described as a solution for product 

accumulation, possibly leading to sufficiently high concentrations for a self-replicating system 

to arise10,12. On the other hand, Yang et al. experimented on the “leakiness” of hydrothermal 

vents’ structures, finding it promoted enhanced transportation, sustaining disequilibrium across 

sections of the vents13. Ultimately, alkaline hydrothermal vents stand out not only for their 

unique chemical properties but also fortheir geological composition and structure in assisting 

the origin of a proto-metabolism. Nonetheless, researchers frequently limit experiments to 

either one of the two properties when applied to CO2 reduction. Replicating the alkaline 

hydrothermal vents’ conditions, both morphological and chemical aspects could lead to a 

clearer picture of these deep oceanic structures' role in the origin of biochemistry. Therefore, 

this thesis presents a study on the effect of different media, structured and unstructured, on 

reducing both abiotic (CO2) and biotic (NAD+) compounds under alkaline hydrothermal vent 

conditions.  

1.2 ZeoLap experiments 

Replicating the complex system of interconnected micropores with a variety of gradients and 

minerals can be challenging. Herschy et al. attempted to do this by building a benchtop reactor 

with foam ceramics. While it stands out for engendering a complex system with precipitation 

chambers and two fluids that generated a pH gradient, it was also limited to mild hydrothermal 

conditions and ambient pressure36. The use of a foam ceramics to obtain a microporous structure 
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however, can be further explored. Ceramics are part of a broader group of clay minerals, notable 

for their absorption, intercalation, swelling properties, and changeable interlayers14,15. The 

interlayers constitute two sublayers of tetrahedral and octahedral sheets, in which chemical 

composition can be extensively tuned for the better interest of the developer37,38. Thus, not only 

can clays be found in nature, but a growing interest in their catalytic value for the industry, has 

dramatically expanded the library of these layered materials39.  

Zeolites are microporous clay minerals with extended surface area, excellent hydrothermal 

stability, Lewis and Brønsted acids as active sites, and shape selectivity, which makes these 

clays great catalysts and catalyst supports16. This aluminosilicate’s microporous framework 

(typical pore size < 1 nm) also constitutes its most significant limitation, leading to slow reagent 

and product transfers to the active sites and formation of deposits that can affect production 

rates. Contrarily, mesoporous (2 – 50 nm) materials allow an excellent mass transfer but lack 

active sites and hydrothermal stability17,40. Hierarchical zeolites are the industry’s answer to 

this problem, adding meso- and/or macropores (> 50 nm) to zeolites' structure. Even though 

they still contain fewer acid sites than standard zeolites, the enhanced circulation of mass 

provided by the larger pores increases the efficiency of each site17,41. Consequently, hierarchical 

zeolites have great mass diffusion without abandoning other advantageous properties of the 

usual microporous framework.   

 

Figure 1.2 Schematic illustration of Laponite’s and zeolite’s molecular structure; A) Laponite’s gel formation-house of cards 

structure, made by the suppliers18;  B) Selvam’s et al. take on the structure of clay minerals42. 

Referring to the problems and limitations encountered in replicating the hydrothermal vent 

conditions mentioned before, the next step for bottom-up approaches could be hierarchical 

zeolites. Both alkaline hydrothermal vents and hierarchical zeolites have a complex 

microporous structure, good mass flow, and metal-silicate based compositions. In the 

laboratory, hierarchical zeolites could reproduce the geochemical conditions in the vents and 
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unlock the possibility for more detailed studies on CO2 reduction. Thus, for this work, a mixture 

of the two-layered silicates was developed to obtain a hierarchical zeolite: Laponite and zeolite, 

to which we called “ZeoLap”. Laponite is a synthetic clay mineral, manufactured mainly as a 

rheology modifier and film former18. Its crystals are disk-shaped magnesium silicates with 

hydrated sodium ions that, through electrostatic forces, arrange in a “house of cards” structure. 

These small particles (25 nm wide and 0.92 nm tall) form a thixotropic gel stable at a wide 

range of temperatures, pH, and pressures43,44. Thus, it functions as a rheological additive to 

control matter flow even in harsh conditions. In theory, zeolite’s ordered microporous structure 

with Laponite’s “house of cards” structure could combine to generate a new complex porous 

framework, resistant to a diverse set of hydrothermal conditions and with excellent catalytic 

properties. Upon obtaining a mixture that maintained a stable gel-like structure under 

hydrothermal vents conditions, more tests were performed to finally access the problem 

proposed: how does the geochemical structure observed in hydrothermal vents affect CO2 

reduction? For this purpose, ZeoLap and ultra-pure water were used as a framework and 

frameless templates, respectively, for CO2 reduction under hydrothermal conditions (70 ºC, 25 

bar of CO2, and H2). The catalytic properties of nickel and iron were further explored by testing 

additional samples with Ni nano-powder and magnetite separately. Controls were performed in 

a CO2-free environment, where the synthesis of organic compounds should not occur. The 

samples were analyzed via nuclear magnetic resonance (1H-NMR) and high-performance liquid 

chromatography (HPLC) to detect the synthesis of formate, ethanol, acetate, methanol, and 

pyruvate, organic molecules already detected in previous similar studies after CO2 reduction6.  

1.3 NAD experiments 

So far in this work, simple reactions from the acetyl-CoA linear pathway were discussed, 

conditioned by far from equilibrium conditions provided inside the vents. But it is also essential 

to study if such setting could have supported the inevitable transition to a more complex and 

self-structured system. In this environment, minerals and native metals could have represented 

the first driving forces for geochemical reactions to be more complex and ordered. As 

mentioned before, the majority of the acetyl-CoA pathway enzymes are abounding of transition 

metals in their catalytic centers34,45. Thus, as it has been the norm for evolution, it is possible 

thatminerals were continuously preserved and merged with peptides to become protein active 

sites or cofactors46. The early involvement of electron carriers has been mainly discussed in the 

context of hydrothermal vents for electron bifurcation26 – an endergonic redox reaction coupled 
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to an exergonic redox reaction as an energy-conserving mechanism47. As already pointed out 

earlier, hydrogenases are employing this process. Thereby electron carrier cofactors are 

involved both as electron donors and acceptors. Within anaerobes with necessary iron supplies, 

ferredoxins are the electron acceptors more frequently found48. This iron-sulfur protein is the 

most stable reducing molecule found in the cell, competing with nicotinamide adenine 

dinucleotide (NAD) for their ancient roots49.  

 

Figure 1.3 Nicotinamide adenine dinucleotide’s structure was discovered by the Nobel Prize Laureates Arthur Harden and 

Hans von Euler-Chelpin of 1929 while studying sugar’s fermentation. Otto Warburg later discovered the coenzyme role in 

hydrogen transfer in 193619. 

NAD is an hydrogen carrier present in every organism and is composed of two 

mononucleotides: adenosine monophosphate (AMP) and nicotinamide mononucleotide 

(NMN). It is capable of hydrogen-transfer, several signaling events, transcriptional activity, 

participates as a cofactor in redox reactions, and others. Besides, many enzymes are NAD-

dependent, predominantly hydrogenases19,20. NAD can be involved in electron bifurcation, both 

as hydrogen acceptor and donor, and its oxidation is often coupled to ferredoxin’s reduction48. 

In alkaline hydrothermal vents, hydrogen donors for electron bifurcation could have 

represented the first step for a self-sustaining autocatalytic system, balancing the far from 

equilibrium conditions that stand far on the side of reduction. Whereas their role in 

hydrothermal vents is up for debate, their roles in ancient metabolic networks are not. In the 

last two decades, ferredoxin and NAD have been found to be essential elements of methanogens 

and acetogens’ electron bifurcation and the acetyl-CoA pathway21,22,50. Certainly, for life to 

have had emerged in these vents, it would depend on electron bifurcation, thus such conditions 

would have to support molecules like ferredoxin and NAD, in a stable and functional manner, 
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for the development of a proto-metabolism. In addition, because the serpentenizing system of 

hydrothermal vents comprise an important hydrogen and energy source for CO2 reduction, it is 

also important to ascertain if this abiotic source of hydrogen can also reduce more complex 

molecules such as NAD. While ferredoxin’s iron-sulfur composition has been compared to that 

of hydrothermal vents’ minerals, iron sulfides are capable of electron transfer and not hydride 

transfer. NAD’s correlation to this environment has never been experimentally tested51,52. If 

this coenzyme was stable under such conditions while also effectively functioning as an hydride 

acceptor from abiotic H2, it could represent an important transition point in the development of 

an autocatalytic system and would mean that these vents can support more complex organic 

molecules. Some studies have addressed NAD’s stability under a comprehensive range of pH 

(~2 – ~8) and temperatures (15 ºC – 100 ºC)53–56. However, to date, there are no studies 

regarding NAD stability under vastly alkaline media, such as one of the alkaline hydrothermal 

vents. Thus, in this work it was studied the stability of NAD in mild hydrothermal conditions 

(30 ºC and 2/10 bar H2), in its oxidized state (NAD+), and if such reducing and austere 

environment would convert the molecule to its reduced state (NADH). As NAD reduction is 

often coupled with another compound’s oxidation and requires an electron donor, we tested this 

hypothesis in different solutions, with either biologically relevant salts (NaCl and MgCl2) or 

ferrous compounds (Cl2Fe, FeCl3, and Fe3O4) under the same conditions as mentioned above. 

NAD’s reduced and oxidized forms present different photometric spectrums, with the first one 

presenting absorption peaks at 260 nm and 340 nm and the other only at 260nm53. 

Consequently, it was possible to compare NAD’s spectra under different conditions and time 

points to address its stability and redox state, by verifying the presence of a peak at 340 nm 

through spectrophotometric analysis. 
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2. Methods and Materials 

2.1 Laponite-RD and Zeolite Clay (ZeoLap) 

2.1.1 ZeoLap Preparation 

A protocol was developed for ZeoLap preparation. 10 mL of the ZeoLap solution was prepared 

in order to have three replicates for each sample. A glass beaker with a polytetrafluoroethylene 

(PTFE)-coated magnetic stirrer was used to prepare the mixture. 230 mg of Laponite-RD (BYK 

chemicals, Wesel, Germany) and 730 mg of Zeolite (Sigma-Aldrich, Steinheim, Germany) 

were added, composing about 10 % (w/w) of the final solution (Appendix A. 1). After placing 

the glass beaker on a stirring plate (400 rpm; Arex heating magnetic stirrer, VELP Scientifica, 

Usmate Velate (MB), Italy ), 9 mL of ultra-pure water ( pH 8,8; HPLC-grade, Fisher chemicals, 

Loughborough, UK) was gradually added to the mix.  The beaker was sealed with aluminum 

foil to avoid significant water loss by evaporation and left mixing for 1 h, the necessary time to 

attain a homogenous gel-like consistency.  

2.1.2 Assembly 

3.33 mL of either ZeoLap or 3 mL of (HPLC-water), which have the same water content 

(Appendix A. 1), were pipetted to screw-capped 5 mL glass vials (VWR International, 

Längenfeld, Germany) with a small PTFE-coated magnetic stirrer. For each of the four 

atmospheric settings (Table 2.2.A), six types of samples were prepared: three for each medium 

(ZeoLap and water). Within each of the three, 1 mMol of metal atoms of Fe3O4 (231.53 mg) 

was added to one, and zero valence nickel nano-powder (177 mg) to another, leaving one 

without any metal added (Appendix A. 1 Mass characterization of each of the six different types 

of samples for ZeoLapLastly, the samples were mixed in a table vortex (1,500 rpm; Heidolph 

Instruments, Schwabach, Germany) until homogeneity was achieved and were subsequently 

covered with perforated PTFE screw caps to allow gas exchange inside the reactor5,6. For the 

next steps and assembly of the reactor, proceeded to “Reactor Setup”. 

2.1.3 After Reaction Processing 

The content inside each glass vial was carefully collected to a sterile 2 mL polypropylene 

syringe (B. Braun, Melsungen, Germany) connected to a polyethersulfone (PES) filter 
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membrane (pore size: 0.20 m; SARSTEDT, Nümbrecht, Germany) and processed via hard 

filtration. The Zeolap mixture, together with the heterogeneous minerals, remained mostly on 

the filter. The remaining aqueous content was carefully extracted to 2 mL Eppendorf tubes. The 

liquid sample was then centrifuged (13,000 rpm; Biofuge fresco, Thermo Fisher Scientific, 

United States of America) for 15 min, transferred to new Eppendorf tubes, and centrifuged 

again to isolate any remaining particles in suspension. 

Additional replicates were made to assure products were not lost in filtration, due to metal-

carbon bonds formed during synthesis. Thus, in order to cleave such bonds through alkaline 

hydrolysis, replicates of water samples were made and processed differently, adding potassium 

hydroxide pellets (KOH pellets, Fisher chemicals, Loughborough, UK) to the glass vials 

immediately after reaction and mixing in a table vortex before transferring it to polypropylene 

syringes attached to a polyethersulfone (PES) membrane filter, as described above in this 

subsection5.  

 2.1.4 Proton Nuclear Magnetic Resonance (1 H-NMR) Data Analysis 

Products were identified using the standards described in Appendix B. 1. Any peaks detected 

besides DSS’s and water’s were considered contaminations or false positives in samples with 

Ar instead of CO2 (Appendix A. 3 and Appendix A. 5). The baseline for runs done with CO2 

was thus set at the values obverted in each respective control5,6.  

2.2 Nicotinamide Adenine Dinucleotide (NAD) And Ionic Solutions 

For all NAD related experiments a new protocol needed to be established, taking into 

consideration previous studies under similar hydrothermal conditions6. 

2.2.1 Sample Preparation 

For all stock solutions, KOH pellets were added to HPLC-grade water with the assistance of a 

pH meter (alkaline water at pH 11; SCHOTT Instruments, Mainz, Germany), to be used as a 

solvent. A batch solution was made with 6 mM of NAD, twice the concentration needed for 

each sample. For that purpose, 39.8 g of NAD were placed in a beaker and diluted in 20 mL of 

the alkaline water. Then, it was gently mixed in a capped falcon tube until all visible particles 

dissolved, and a transparent homogeneous liquid was obtained.  

Following the same protocol, the remaining solutions were made according to Table 2.1.   
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Table 2.1  Description of stock solutions for NAD experiments and their final concentrations 

 Supplier 
Mass 

(g) 

Solution 

(mL) 

Concentration 

(mM) 

Sodium chloride 

(NaCl) 
Carl Roth, Karlsruhe, Germany 11.70 10 20 

Magnesium chloride 

Hexahydrate (MgCl2 · 6H2O) 
Carl Roth, Karlsruhe, Germany 40.70 10 20 

Iron(II) chloride tetrahydrate 

(Cl2FeH8O4) 

Thermo Fisher Scientific, 

Schwerte, Germany 
39.80 10 20 

Iron (III) chloride anhydrous 

(FeCl3) 

Thermo Fisher Scientific, 

Schwerte, Germany 
32.40 10 20 

PIPES (≥99 % titration) 

(C8H18N2O6S2) 
Merck, Darmstadt, Germany 60.50 10 200 

2.2.2 Assembly 

For each set of experiments, four samples were prepared in 1 mL glass vials (VWR 

International, Langenfeld, Germany). Three of them were 1 mL replicates with one part of the 

6 mM NAD batch solution and another equal part of a different solution (Table 1) or 77.10 mg 

of Fe3O4 in alkaline water. The fourth sample was a control containing alkaline water instead 

of the NAD solution. As an additional control, for every run, another four samples were 

prepared also using NAD’s batch solution, but with a second part only containing alkaline 

water, as visually described in Figure 2.4. The same samples were prepared in 2 mL Eppendorf 

tubes and immediately measured as specified in “Spectrophotometric Analysis”. The samples 

in the glass vials, however, were covered with perforated PTFE screw caps to allow gas 

exchange and placed on a stainless-steel reactor. For more details on the preparation of these 

samples, placed in the reactor, proceed to “Reactor Setup”.  



21 

 

 

Figure 2.4 Figurative representation of the different parts that were mixed to obtain the pretended solution. In laboratory 

conditions, the different liquid phases mixed into a homogeneous solution, but the magnetite (Fe3O4) persisted mostly as a 

precipitate; A: Example of the parts of a sample with a salt solution (red) and a solution of NAD (yellow). Samples with PIPES 

and NAD would be prepared similarly; B: Example of the parts of a sample with magnetite (Fe3O4) and NAD. To dilute the 

NAD solution to half of its concentration, an equal part of water was added. Samples that also contained a part of magnesium 

chloride in solution would not require the addition of water; C: Figurative representation of the different parts of NAD controls.  

2.2.3 After Reaction Processing 

Samples that did not contain any form of iron were immediately measured in the 

spectrophotometer, as described below (“Spectrophotometric Analysis”). As per samples 

containing iron (as salt or mineral), 10 µL of 0.5 mM KOH were added to each sample to 

facilitate precipitation. The solutions in the glass vials were transferred to 2 mL Eppendorf 

tubes and centrifuged at 13,000 rpm for 15 min. Afterward, the supernatants were transferred 

to new Eppendorf tubes and centrifuged again, leaving behind a pellet with any amount of 

precipitated iron. The remaining supernatantwas then analyzed in the spectrophotometer.  

2.3 Reactor Setup  

All tubes were placed vertically in a stainless-steel reactor (Berghof Products + Instruments, 

Eningen unter Achalm, Germany), and the reactor lid carefully locked to create a controlled 

system that could be either an open system, allowing gas exchange through the lid valves or a 

closed system during the reaction, allowing heat exchange through the reactor walls. Before 

introducing the reaction gases to the reactor, it was flushed with 5 bar of Ar gas three times to 
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replace the internal atmosphere. Afterward, gases were added as presented in Table 2.2 and 

brought to a final pressure of 25 bar for the Zeolap experiments and 10 bar for the NAD 

experiments. Finally, the reactor was placed in a heating mantle (Heidolph Instruments, 

Schwabach, Germany) with the experimental required settings for stirring, temperature, and 

time (Table 2.2). The system inside the reactor heated slowly from room temperature until the 

tabled value and maintained it for the duration of the experiment, starting to cool down once 

the timer reached zero. As soon as the reactors cooled to approximately 35 °C, they were 

depressurized, removed from the heating mantle, and opened to recover the samples5,57. 

 

Table 2.2 A) Setup of the reactor after closing it for ZeoLap experiments. Two different setups were tested composed by 

CO2+H2 and CO2+Ar and two other setups for the respective controls H2+Ar and Ar. Each gas was introduced to the system in 

the indicated order until a final pressure of 25 bar was reached. The purity of these gases was 99.999 %, 99.998 %, and 99.995 

%  for H2, Ar, and CO2, respectively; B) Reactor setup after closing for NAD experiments. Two different setups were tested, 

composed of 2 bar of H2 and 10 bar of the same gas, and two other setups for the respective controls with Ar. The purity of 

these gases was 99.999 % and 99.998 % for H2 and Ar, respectively. 

A CO2 + H2 CO2+ Ar H2 + Ar Ar 

1st 10 bar of H2 10 bar of Ar 10 bar of H2 25 bar of Ar 

2nd 15 bar of CO2 15 bar of CO2 15 bar of Ar - 

Specifications 1,400 rpm; 70 ºC; 16 h 

 

B H2 Ar 

Pressure 10 bar 2 bar 10 bar 2 bar 

Specifications 30 ºC; 2 h 

2.4 1H-NMR Analysis 

Immediately after sample processing, 600 µL of supernatant was collected from the centrifuged 

samples to a fresh batch of Eppendorf tubes containing 100 µL of a solution comprising 0.7 

mM of DSS in deuterium oxide (D2O), and the same protocol was applied once more for 

centrifuging. The ending result was transferred to NMR tubes and capped (VWR International, 

Längenfeld, Germany). Lastly, these probes were analyzed on a Bruker Avance III – 600 MHz 

at 297 K, using a ZGESGP pulse program. Each sample was scanned 32 times with a relaxation 

delay of 40 s, and a spectral width of 12,315 ppm. Spectra analysis and integration were 

performed using MestReNova (10.0.1 version) software5. 
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2.5 Ultra-High-Performance Liquid Chromatography (UHPLC) Analysis 

After concluding “After Reaction Processing”, 400 µL of supernatant was pipetted to fresh 1 

mL glass vials (VWR International, Längenfeld, Germany). A Dionex UltiMate 3,000 Standard 

Systems UHPLC machine (ThermoFisher, United States of America) with a LC column - Rezex 

ROA-Organic Acid H+ (8 %; Phenomenex, Aschaffenburg, Germany) - was used for sample 

analysis through flexible UV-Vis absorbance detection. Spectra analysis and data collection 

were completed using Chromeleon (7 version) software6. 

2.6 Stereomicroscopy 

Dried samples of ZeoLap were observed in a Nikon SMZ18 Stereo Microscope (Nikon, Japan), 

the respective digital images collected by a DS-Ri1 Digital Microscope Camera (Nikon, Japan) 

and obtained from NIS-Elements SMZ18 software.  

2.8 Spectrophotometric Analysis 

1 mL of each NAD sample was pipetted into 1mL plastic cuvettes for analysis on the visible 

(tungsten lamp) and ultra-violet spectrums (UV; deuterium-halogen lamp) with a DU 800 

Spectrophotometer (Beckman Coulter, Sinsheim, Germany). Through the DU 800 UV/Vis 

Spectrophotometer software, samples were analyzed at fixed wavelengths (260 nm, 280 nm, 

and 340 nm), and it was obtained wavelength curves of the totality of both visible and UV 

spectrums. 

2.9 Water activity (aw) 

Preliminary tests were done to evaluate water activity of ZeoLap samples. Pure water is usually 

used as a reference in aw tests, corresponding to the maximum value of one. To assess the impact 

that clays could have on this front, HPLC-grade water was used as a standard in the tests 

performed using aw measuring instrument (LabMaster-aw neo, Novasina AG, Lachen, 

Switzerland)  with a CM-3/awSens-ELS sensor and samples with different concentrations of 

Zeolite, Laponite and salts were tested (Table 3.4).  
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3. Results and Discussion 

3.1 Laponite-RD and Zeolite experiments  

3.1.1 Protocol development 

During this work, two different media were tested. The results helped to compare the role of 

different frameworks and media in CO2 reduction: water and ZeoLap. Water samples that were 

dealt with in the exact same way as ZeoLap samples will be called “WaterS”. Water samples, 

to which was added a KOH pellet after the reaction, will be called “KOHS”. Thus, ZeoLap 

samples will be called “ZeoLapS”. 

While developing the protocol for a Laponite-RD and Zeolite based clay, numerous data was 

collected over a broad set of variants that could help to build the best framework. This clay 

should provide a porous framework for the experiments while still being manageable in the 

laboratory, both for assembly and analytic purposes, and also be appropriate in the 

hydrothermal vents’ context. Limitations encountered during this process were: 

▪ The structure of the clay was sensitive to variations in the water pH, leading to a 

heterogeneous solution with separated liquid and solid phases when the sample’s pH 

was too acidic. 

▪ Water loss by evaporation either before or during the reaction would make the clay too 

rigid, making it unfeasible to filtrate. It was important that each beaker was covered 

during the preparation of samples and did not use temperatures of 100 ºC or higher 

during reactor runs, limiting them to 70 ºC. 

▪ The first type of Laponite used was Laponite-EP (BYK chemicals, Wesel, Germany), 

which proved to contain remaining organic matter, overflowing results with a 

significant amount of contamination (Appendix A. 2) 

▪ A homogeneous gel was hard to obtain with Laponite-RD concentrations lower than 3 

% (Figure 3.5.B), and higher concentrations than 7 % made it too rigid. Because this 

material still showed some contamination (Appendix A. 5), it was used the lowest 

percentage possible (2.7 %), requiring an additional mixing time of 1h to obtain 

homogeneity. 
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The protocol used to prepare samples before analysis and during analysis was based on 

Preiner’s et al. work on samples with hydrothermal vents’ minerals and conditions in water6 

and adapted to correspond to the restrictions of having a gel-like framework.  

3.1.2 Sample characterization 

To provide a more fair-minded comparison between both media used in this work, they were 

characterized by pH, water activity (aw), and structure (Table 3.3, Table 3.4, and Figure 3.5, 

respectively). The water pH was adjusted to match ZeoLap’s initial conditions before the 

reaction occurred. Continuously, every sample contained the same amount of water (3 mL), and 

a more detailed characterization of their composition can be found attached (Appendix A. 1) 

Table 3.3 Description of punctual alterations of pH of a standard ZeoLap sample and a standard water sample. 

 ZeoLap water 

Initial 10.6 10.5 

After 1h Mixing 10.5  

After reaction 8.0 4.8 

 

Even though both media would have the same starting point, ZeoLap would maintain an 

alkaline pH during the reaction, acting as a buffer. Water media showed to have a significant 

decrease, observable after the reaction (Table 3.3), a consequence of CO2 uptake by water and 

subsequent synthesis of carbonic acid58. While adding KOH to water samples after the reaction 

assumedly reestablished an alkaline environment, the 16 h long reaction of KOHS still ran 

under the same conditions as waterS. Whereas having a controlled alkaline environment favors 

reduction, the oxidizing properties of acidic media such as water samples might inhibit the 

reduction of CO2. 

Table 3.4 Water activity essay on different media. These media include ZeoLap with different concentrations of Laponite and 

Zeolite, highly saturated salt solutions, and ZeoLap (2.7 % of Laponite) prepared in these same salt solutions instead of ultra-

pure water. 

Medium tested Water activity (aw) Bond water (%) 

Control (ultra-pure water) 1.000 0.0 

7.3 (%w/w) of Laponite and 2.7 (%w/w) of  Zeolite in 

ZeoLap 
1.010 -1.0 

4 (%w/w) of Laponite and 6 (%w/w) of  Zeolite in ZeoLap 0.998 0.2 

6 (%w/w) of Laponite and 4 (%w/w) of  Zeolite in ZeoLap 0.997 0.3 
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2.7 (%w/w) of Laponite and 7.3 (%w/w) of  Zeolite in 

ZeoLap 
0.989 1.1 

Supersaturated CaCl2 Solution 0.241 75.9 

5 M CaCl2 Solution 0.581 41.9 

ZeoLap mixture in 5 Molar CaCl2 Solution 0.571 42.9 

Supersaturated MgCl2 Solution 0.398 60.2 

MgCl2 Solution (Unknown Concentration) 0.791 20.9 

ZeoLap mixture in MgCl2 Solution (Unknown 

Concentration) 
0.777 41.9 

 

Preliminary water activity tests were made to determine the amount of free water in ZeoLapS. 

Conventionally, pure water corresponds to a maximum reference value of one, where 100 % of 

the water is free, and 0 % is bond water. Thus, waterS and KOHS, which media was ultra-pure 

water, have aw = 1. Results revealed that the percentage of Zeolite in the clay is inversely 

proportional to water activity measurements in ZeoLapS. This aligns with previous studies 

which suggest that most zeolites absorb less than half of its mass in water59. Accordingly, with 

an overall weight by weight percentage of clay materials of 10 %, aw reduction was predictably 

less than 5 %. With the addition of Laponite, ZeoLap presents a much wider porosity than 

typical zeolites, which also leads to a decrease in the amount of bond water60. Although silica 

gels and zeolites are materials commonly used for their high sorption capacity, hygroscopic 

salts are known to be significantly better. Hence, highly concentrated saline solutions presented 

a much more significant aw reduction, being its lowest when supersaturated. Mixing ZeoLap in 

magnesium chloride and calcium chloride solutions showed to have an additive result but lead 

to the precipitation of the clay. This behavior has already been observed in other salt-silica gel 

composites that have better water sorption than either of the materials individually61,62. 

However, the de-gelling of ZeoLapS constitutes an irrevocable disadvantage for the purpose of 

this work.  

Structurally, ZeoLapS presented the open and irregular porous structure that was pretended 

(Figure 3.5.A) to simulate the internal structure of hydrothermal vents, with pore size up to 1 

mm. Nickel and magnetite integrated quickly in the structure, being accessible to the reactants 

on the surface of the pores.  
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Water samples, as mentioned before, did not provide any framework for the reactions to occur, 

but the stirring would help to increase the contact surface area between the metals and water. 

Samples containing magnetite presented solid discs after the reaction, above the solution, as in 

Figure 3.5.D. This barrier could limit iron oxidation and, consequently, the synthesis of other 

reduced forms of carbon6. 

 

 

A                             B                                         C               C                                D 

E                                                                                                                 

                                                                                                         

1000 µm                                                                                                                   1000 µm 

 

Figure 3.5 ZeoLap and water samples after reaction and after slow drying. A) The gel-like ZeoLap mixture placed into the 

reactor would lose some water, during the 16 h experiment at 70 ºC, and obtain a firmer porous structure. From right to left 

there are tubes with only the ZeoLap mix, ZeoLap with nickel powder and ZeoLap with magnetite; B) During the development 

of the protocol, samples with low concentration of Laponite or a short mixing time would present a similar result, where both 

the ZeoLap powders and the added metals did not mix properly and would deposit at the bottom of the tube; C) Structureless 

water samples collected from the reactor, after a 16 h experiment at 70 ºC. From right to left there are tubes with samples with 

only water, water and nickel powder and water with magnetite; D) Water samples with magnetite would often form a solid 

disc of oxidized iron, dividing the gas phase; E) The structure of ZeoLapS is visible through stereomicroscopy. To preserve 

its structure, it was dried slowly at 70 ºC for 5 h in an oven. The added metals would evenly distribute over the surface of the 

gel, in a granular pattern. 
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3.1.3 Final data 

Complementary to the work developed by Preiner et al., samples were screened for acetate, 

ethanol, formate, methanol, and pyruvate detection and quantification. All products were not 

only detected in standard samples but also controls (CO2-free). Most importantly, methanol and 

ethanol were detected consistently in every control, before and after the reaction, meaning that 

contamination was still a considerable problem (Appendix A. 3 and Appendix A. 5). Despite 

all materials used being assumedly sterile and not containing organic compounds, working on 

a micromolar scale proved to be an inherent limitation, detecting even the smallest of 

contaminations.  

After considering all contaminations, the concentrations of methanol and ethanol in most 

samples were revealed to be either insignificant or arbitrary. The lack of an observable pattern 

indicates that they are most likely only contamination and not synthesized during the reaction. 

However, because the background contamination is so high, we cannot entirely exclude the 

possibility that these molecules are being synthesized in small quantities.  

Formate, as expected, was found in higher concentrations in nickel-containing samples63–65. Its 

synthesis was more pronounced in water samples, up to 106.8 µM in waterS and 152.5 µM in 

KOHS (Figure 3.7). It is the first intermediate product of the acetyl-CoA pathway, leading to 

the synthesis of acetate (Figure 1.1)66,67. Thus, composing the initial stage of CO2 reduction, 

formate is essential for the synthesis of more complex molecules but also a product of their 

degradation. Even though all experiments started under alkaline conditions, water samples 

presented a final pH as low as 4.8, which could promote the oxidation of other hydrocarbons 

synthesized at the beginning of the reaction, to produce formate, in addition to CO2 reduction 

(equation (3.1)). Overall, it was the product found in higher concentrations, as similar studies 

have reported from H2 and CO2
68,69, and from CO2 with hydrothermal minerals and native 

metals5,6,70 

𝐻2 + 𝐶𝑂2  →  𝐻𝐶𝑂𝑂− +  𝐻+ 

Contrastingly, acetate was not found in waterS above the contamination threshold, and 

concentrations of this molecule were found in KOHS up to 5.09 µM (Figure 3.7). Acetate has 

an additional methyl group than formic acid and occurs five steps later in the acetyl-CoA 

pathway than formate3,66 (). Primarily, it could be speculated that by increasing the sample’s 

pH after the reaction, reducing conditions would favor the synthesis of more complex 

hydrocarbon species such as acetate (equation (3.2)). However, this reaction is endergonic at 

(3.1) 
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room temperature, requiring either high CO2 concentrations or a good catalyst71. In addition, it 

would lead to the consumption of formate, which, even in the presence of catalysts and at 100 

ºC, catalysis is not far on the side of acetate synthesis (equation (3.3))6. Lastly, the production 

of acetate in KOHS does not seem to be associated with a reduced amount of formate in the 

same samples, compared to waterS.  On the other hand, it is likely that both KOHS and waterS 

are producing similar amounts of acetate, as the conditions during the reaction are identical, 

and the difference observed is due to alkaline hydrolysis that breaks metal-carbon bonds and 

frees acetate to be quantified.  

4𝐻2 + 2𝐶𝑂2  →  𝐶𝐻3𝐶𝑂𝑂− +  2𝐻2𝑂 + 𝐻+ 

3𝐻2 + 𝐶𝑂2 + 𝐶𝐻𝑂𝑂− →  𝐶𝐻3𝐶𝑂𝑂− +  2𝐻2𝑂 

Analysis of ZeoLapS revealed the highest production of acetate out of all samples. Given the 

constant alkaline conditions and the low concentration of formate detected, it is possible that, 

contrary to what was discussed previously, the reduction of CO2 to acetate was vastly favored 

over the accumulation of formate on these samples.  

 

Figure 3.7 Formate and acetate as a product of CO2 reduction compared between waterS, KOHS, and ZeoLapS. All samples 

had 15 bar of CO2 in addition to 10 bar of Ar or H2, to a total of 25 bar. In addition, samples could have magnetite (Fe3O4), 

nickel (Ni) 

(3.2) 

(3.3) 
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Previous experiments revealed that iron plays an indispensable role in catalyzing the synthesis 

of pyruvate, and again it was only observed in magnetite containing samples5,6,72. 

Approximately 24 µM of pyruvate were produced in waterS (magnetite, CO2 + Ar), but it was 

not observed pyruvate to the same extent in any other medium nor conditions, possibly being 

contamination. In ZeoLapS (magnetite, CO2 + Ar), a two-fold smaller amount of pyruvate was 

detected, matching similar quantities to what previous studies reported5,6. However, these same 

studies also reported pyruvate to be produced in water, which was not reproduced in this work. 

The lack of pyruvate can be explained due to various reasons. This molecule is found in low 

concentrations, even compared to other products. Thus, contamination quickly rejects any 

amount of pyruvate detected. Additionally, magnetite could be oxidized before the reaction, not 

playing its role in the reaction. Finally, these results are based on small sample sizes, possibly 

misrepresenting the truth.  

Overall, runs performed without H2 lead to more product accumulation, despite CO2 reduction 

being more favorable with H2. Controls were contaminated with organic molecules previously 

to reactor runs, as it was already mentioned. Possibly, these compounds also reacted and 

produced molecules in similar patterns to our samples, increasing the threshold for 

contamination. Accordingly, controls with H2 had higher background contamination than 

controls with only argon, as shown in attachments (Appendix A. 3 and Appendix A. 5). 

3.2 Nicotinamide adenine dinucleotide (NAD) reduction experiments 

3.2.1 Controls 

The stability of NADH was tested in ultra-pure water and a 0.1 M PIPES solution throughout 

2 h and 24 h at room temperature (Figure 3.8). A minimal decrease in concentration was 

observed over time, independently of the medium. In any case, less than 5 % was lost over 24 

h, proving to be extremely stable. This suggests that if a certain amount of NADH was to be 

synthesized during the experiments, it would mostly remain stable in solution. 

For the purpose of this work, absorbance values were corrected by subtracting the average 

absorbance detected in each triplicate control (ΔA, NAD-free). The NAD+ spectrum, which 

peaks at 260 nm, extends its curve over 340 nm (NADH peak’s wavelength) in the 

concentrations used (Figure 3.1213). Because absorbance is additive73 the difference of ΔA  

measured before and ΔA  measured after the run was calculated (ΔΔA) to detect NAD+ 
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reduction, and NADH synthesis was considered only when ΔΔA was positive. ΔΔA was also 

calculated for additional controls, with Ar instead of H2, and both values were compared to 

discuss if hydrothermal conditions can reduce NAD+.  

Table 3.5 Reference table for NAD’s data processing and calculus. 

 Ar H2 

Raw data: absorbance at 340 nm A A 

Correction values: ΔA ANAD – AControl ANAD – AControl 

Progression during reaction: ΔΔA ΔAafter – ΔAbefore ΔAafter – ΔAbefore 

Final value ΔΔAAr ΔΔAH2 

 

 

 

Unpredictably, most controls with Ar revealed to have a positive ΔΔA. Even though H2 can be 

generated from water by native iron and other reductants, an increase in ΔA was also observed 

Figure 3.8 The determined degradation rate of NADH is 4 nm.min-1 over 24 h (graph B, y = – 4E – 6x + 0.2368, R2 = 0.945) 

in a PIPES solution and 5 nm.ml-1.min-1 in ultra-pure water (graph A, y = – 5E – 6x + 0.229, R2 = 0.936).  
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in samples with only water and NAD+. The opposite behavior was expected, as NAD+ should 

start degrading, and the overlap at 340 nm diminish. This could be attributed to errors in the 

preparation of the replicates. The variance introduced by human hands is likely more noticeable 

than the prolonged degradation of NADH. On the other hand, this can suggest that in the 

absence of H2, other reactions are occurring and affecting absorbance measurements.  

Even though using different iron sources is useful for the purposes of this work, it constituted 

some difficulties. Dissolved iron has color and can affect spectrophotometry measurements. 

Thus, before analysis, KOH was added to each sample containing iron to precipitate and break 

any metal-carbon bonds. To study the effects that KOH can have in NADH’s stability, it was 

measured the absorbance of different NADH solutions with known concentration with or 

without KOH (Figure 3.89). At the concentrations used, no significant difference was observed 

between controls. This indicated that if any NADH is present after the reaction, the additional 

variant and the drastic change in pH ( 

Appendix C. 1), should not affect the spectrophotometric analysis.  

 

Figure 3.89Average absorbance of 5 different concentration of NADH in between 0,005 and 0,05 mM with (red) and without 

(black) adding KOH to the solution.  

To further investigate the possible consequences of using KOH, absorbance was measured at 

340 nm for two hours after adding KOH to a solution of 3 mM NAD (Figure 3.910).Over a 

period of ninety minutes, the absorbance measured almost doubled, stabilizing afterward. In the 
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absence of a catalyst or even a hydrogen source, an increase of absorbance over time indicates 

once more that secondary reactions are most likely happening and affecting measurements. 

Although KOH is only added after the reaction run is completed, measurements are made after 

two fifteen minutes long centrifugations, enough time for absorbance to potentially increase 

140 % at 340 nm. These controls can partially explain why Ar controls have high absorbance 

values, but KOH was only added to iron-containing controls and samples, leaving the rest of 

the observed values to unknown sources. Assuming the same secondary reactions are occurring 

in controls and samples, except for NAD reduction, then a difference in absorbance should be 

detectable.  

3.2.2 Final data 

The transition from the oxidized state to the reduced state of NAD in water requires the transfer 

of a hydride (equation (3.4)). In the laboratory setup, hydrogen was added to the system as a 

gas, which does not dissolve in water easily74. Thus, to improve solubility, samples were tested 

at different pressures and compared.  

𝑁𝐴𝐷+ +  𝐻2  + 𝐻20 →   𝑁𝐴𝐷𝐻 + 𝐻3𝑂+ 

At only 2 bar, none of the samples showed consistent results. After two hours in the reactor, 

only samples with NAD+  and with both NAD+ and NaCl had a significant increase in 

(3.4) 

Figure 3.910 Absorbance (340nm) progression every five minutes after adding 10 µL of 0.5 M of KOH to 3 mM of NAD at 

time zero. 
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absorption. Generally, samples that displayed an increase in absorbance relative to their controls 

(ΔΔAAr < ΔΔAH2) were considered positive results, as if there was NADH synthesis. However, 

as mentioned before, only positive ΔΔAH2 can be considered, even if ΔΔAAr < ΔΔAH2 is still 

observed. Thus, data that only obliged to the first rule and not to the second was highlighted in 

red as a false positive in 10. Overall results seem arbitrary. The difference between  ΔΔA was 

biggest with only ultra-pure water and NAD+ (0.03314 ΔΔΔA; 14.47 µM NADH), and there 

was no reductant involved in the reaction. Thus, it would be expected that other samples with 

reductants would present better results.   

The addition of salts and minerals to the solutions did not show a positive effect on NAD+ 

reduction. Except for NaCl, all of these samples presented either a lower absorbance than its 

respective control with Ar or a decrease in absorbance during the reaction. What was observed 

was that these compounds lead to a substantial decrease in the solution’s pH (Appendix C. 1), 

which can easily cause NAD+’s degradation53,56, hence the values observed.   

 

Figure 3.1011Compared side by side are controls made with 2 bar of argon (black) and results obtained with 2 bar of H2 (yellow 

and red). Samples which values are higher than the respective control but still negative are highlighted in red, as false positives. 

Each bar represents the progress of absorbance values from before the reaction to after the reaction (ΔΔA), in argon or molecular 

hydrogen. 

At 10 bar, however, results were more consistent, and the discrepancy between controls and 

samples was sharper (Figure 3.1112). Samples with iron performed the best out of all tested, 

increasing its absorbance the most, noticeably a mixture of magnetite and magnesium chloride 
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(0.339 ΔΔΔA; 147.91 µm/mL NADH). All samples without iron did not increase in absorbance 

compared to their controls, and the variation between ΔΔA was smaller. 

Even so, results are not precise. An accentuated increase in absorbance does not imply that a 

more significant concentration of NADH is in the sample compared to a different sample were 

an increase was also observed. Most samples have more than one variable that differentiates 

them from another. Consequently, it is essential that we only compare them to their own control. 

For example, besides the salt in solution or the mineral added, parameters such as solution pH, 

which was dependent on the salt solution used, and KOH treatment, vary across samples, 

making it harder to compare results. 

Possibly, samples that were considered false positives can be a result of both NAD+ degradation 

(ΔΔA < 0) and NAD+ reduction (ΔΔAAr < ΔΔAH2), but given the unpredictability of results 

observed at 2 bar, such a conclusion would require a more in-depth analysis.  

Magnesium salt alone did not catalyze NAD reduction, but potentially facilitated magnetite’s 

catalysis, leading to a significant increase from ΔΔAAr to ΔΔAH2 when compared to samples 

with only magnetite or MgCl2. Magnesium is a material of growing interest in the industry for 

hydride transfer75–77. It has excellent hydrogen storage potential, reacting to form magnesium 

hydride (MgH2), but the reverse reaction is highly endergonic. In the absence of a catalyst or 

high temperatures (> 250 ºC), the magnesium hydride retains the hydrogen, which aligns with 

the results found in samples only with magnisium78. For hydride transfer porposes, many metal 

composites, some with iron and magnesium, have been developed to facilitate the hydride 

desorption without affecting its absorpion78,79. Even though our experiments do not use such 

materials, magnetite could have an impactful role in the transfer of the hydrogen, as we have 

seen its effectiveness before for CO2 reduction. 
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Figure 3.1112Compared side by side are controls made with 10 bar of argon (black) and results obtained with 10 bar of H2 

(yellow). Each bar represents the progress of absorbance from before the reaction to after the reaction (ΔΔA), in argon or 

molecular hydrogen. 

Since NAD+ has a different spectrum from NADH, NAD+’s reduction in the presence of 

magnetite should be confirmed by obtaining the spectrum of this solution after reaction. Thus, 

a schematic representation of the spectrums (Appendix B.1) of NAD+ and NADH before and 

after the reaction is in 12. Reinforcing the discussion of Erro! A origem da referência não foi 

encontrada.8, where it was stated that KOH does not affect the spectrophotometric analysis of 

the reduced form of NAD, the spectrum defined by NADH in the presence and absence of KOH 

are visually identical. NAD+ alternatively has two different spectrums, in red and blue, also 

supporting the ideas already discussed. Noteworthy is the difference between adding KOH to 

NAD+ in solution and adding KOH, after the reaction (30 ºC, 10 bar H2), to a solution with 

NAD and magnetite. The first has a large peak that extends itself past 340 nm and has similar 

to the absorbance of a 0.05 mM NADH solution, at 340 nm. The second, after the reaction, has 

2 distinct peaks. The added peak observed at 340nm matches the peak of NADH’s spectrum, 

which suggests that the reduction of NAD+ is in fact happening. Lastly, it seems that there are 

two different mechanism that lead to an increase of absorbance at 340nm but while it is not 

clear which reactions occur as consequence of mixing KOH and NAD, it seems highly likely 

that magnetite can catalyze NAD+ reduction with H2 as a simple abiotic source of hydrides. 
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Figure 3.1213Schematic representation of spectrophotometric curves based on Appendix B. 2. Samples were prepared 

individually and measured. All samples with NAD+ had 3 mM of this molecule, and samples with NADH had only 0.05 mM. 

In blue its represented the final segment of NAD+’s peak at 260nm, which extends when KOH is added (red). With magnetite 

(Fe3O4), after a 2 h long reaction (30 ºC, 10bar H2), adding KOH does not provoke the same effect, appearing a different peak 

at 340 nm (green). In yellow are represented both curves for NADH and NADH with KOH, as they overlap, and in gray a 

control with only water. 
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4. Conclusion 

An open mesoporous framework was effectively developed to represent the structure of alkaline 

hydrothermal vents. For analytic proposes, however, it constituted a significant barrier, as there 

was a significant amount of contamination. In addition to the clay being contaminated, it was 

also persistently in the laboratory materials used. Contrastingly, the filter proved to cause 

product retention. In future experiments it is essential to increase sample size, but more 

meaningful results would be obtained simply by using pure materials and sterile single-use 

utensils, in addition to previously testing them for product retention. Even so, ZeoLap tended 

to promote the synthesis of longer molecules (acetate and pyruvate), while water samples 

produced mostly formate. This predisposition is shared among many porous materials and is 

what makes layered silicates of most interest in catalysis17,42. During this work, the production 

of specific molecules was observed. For future studies, it could be of most interest to examine 

if a porous framework could promote the reduction of CO2 even further within the metabolic 

pathway. To move in this direction, controlling hydrolysis would be an essential step to take. 

Alkaline hydrothermal vents’ water is rich in oxidized minerals and salts, which bind to water 

and reduce its activity. While water can act as a catalyst for both reduction and hydrolysis, in 

aqueous solutions, hydrolysis reactions are often favored over synthesis. Conventionally, pure 

water corresponds to a maximum reference value of one. Thus, high water activity values are 

associated with increasing hydrolysis. Synthesis is accordingly favored more often when aw 

values are closer to zero80. In this study, mixing ZeoLap with supersaturated solutions leads to 

its precipitation, as the clays need free water to form its layered structure. Thus, assessing what 

concentration of salt ZeoLap can tolerate without precipitating could lead to exciting reduction 

experiments in the future. Overall, results suggest that the porous structure of hydrothermal 

vents could have had a significant impact on the origin of metabolism, the acetyl-CoA pathway, 

and organic matter, by shifting the thermodynamic equilibrium in favor of longer hydrocarbons.   

The stability and reduction of NAD+ were also studied. Once again, the most significant 

limitation was in methods and materials. Spectrophotometric analysis is sensitive to any 

emission in the same wavelength, independently of its source, which leads to a significant 

amount of variability in our results, especially at 2 bar. Other techniques, such as 13C-NMR or 

1H-NMR, can distinguish NAD+ from NADH better, such as other side products that might be 

affecting our results. A better collection of information about what is in solution could lead to 

more complete understanding of the reactions that are occurring, such as NAD+ degradation, 
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carbon-metal bonds, or NAD dimers. In addition, results suggest that this coenzyme can be 

stable under alkaline conditions, but not in acidic mediums. Adding a buffer to our experiments, 

such as PIPES, could help to maintain a high pH after adding salts and during the reaction. 

Screening NAD+’s stability with other buffers that can support a more alkaline environment, 

also of most interest for studying hydrothermal conditions. However, this preliminary 

experiment gave some clues on how NAD could have been involved in the first metabolisms. 

In the absence of enzymes and other organic electron carriers, at 10 bar (H2), magnetite was 

able to catalyze the synthesis of NADH, up to 147.91 µM. The irreplaceable role of iron has 

already been discussed for hydrogen bifurcation and CO2 reduction under hydrothermal 

conditions, and here we hypothesize about its importance in the later stages of metabolism 

evolution. As discussed, ferredoxin is not only involved in the acetyl-CoA pathway directly and 

through hydrogenase redox reactions, but is also part of NAD’s redox pathways. Thus, studying 

NAD+’s reduction through iron-sulfur minerals, which resemble ferredoxin’s catalytic center, 

could lead to interesting findings as Preiner et al. already used Fe3S4 to effectively reduce CO2
6. 

Furthermore, this work suggests that magnesium can be fit as a hydride transfer mechanism for 

NAD+ reduction, and opens space for further discussion on its role in the origin of life. 

Magnesium is found in abundance both in the ocean’s water and the hearth’s crust. Nowadays, 

because it is highly soluble, it is available to organism’s consumption. On the cellular level, it 

is the second most common cation, vital for multiple metabolic functions81. Wherever life 

started, salts must have played its part, and magnesium was likely present. Other works have 

used multiple inorganic molecules to mediate the interconversion of NAD+ and NADH82,83, and 

composites of magnesium hydrides are being developed and studied for hydrogen storage as do 

metal ammine salts, subject to specific catalysis for hydride desorption79,84. Moreover, Guan et 

al. already used iron composites to catalyze the reduction of aqueous CO2
29. Such materials, 

which are being developed for fuel and industry, could be applied in a different field of science 

to deeper investigate the role of metals and salts in the origin of metabolism.    
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6. Appendix A 

 

Standard ZeoLapS 

 Mass (mg) Relative percentage to ZeoLap Weight concentration (% w/w) 

ZeoLap mix 333,33 100,00 10,00 

Ultra-pure water  3000 
 

90,00 

Total 3333,33 100,00 

Standard ZeoLapS with Magnetite 

  Mass (mg) Relative percentage to ZeoLap Weight concentration (% w/w) 

Magnetite (Fe3O4) 231,50 69,45 6,49 

ZeoLap Mix 333,33 100,00 9,35 

Ultra-pure water  3000  84,16 

Total 3564,83  100,00 

Standard ZeoLapS with Nickel 

  Mass (mg) Relative percentage to ZeoLap (%) Weight concentration (% w/w) 

Nickel  177,00 53,10 5,04 

ZeoLap Mix 333,33 100,00 9,50 

Ultra-pure water  3000  85,46 

Total 3510,33  100,00 

Standard WaterS 

 Mass (mg) Weight concentration (% w/w) 

Ultra-pure water 3000,00 100,00 

Total 3000 100,00 

Standard WaterS with magnetite 

 Mass (mg) Weight concentration (% w/w) 

Fe3O4 231,50 7,16 

Ultra-pure water 3000,00 92,84 

Total 3231,5 100,00 

 

 

 

Appendix A. 1 Mass characterization of each of the six different types of samples for ZeoLap 
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 Mass (mg) Weight concentration (% w/w) 

Nickel 177,00 5,57 

Ultra-pure water 3000,00 94,43 

Total 3177 100,00 
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Appendix A. 2 HPLC essay on four contaminants relative to the percentage of Laonite-EP  in the ZeoLap mixture and the amount 

of time it was heated and stirred on a magnetic heating mantle. All contaminations show a direct correlation with the two 

parameters tested, except for oxaloacetic acid. 
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Appendix A. 3 H-NMR analysis controls for water samples.  

 Concentration (mM) 

Gas phase Formate Methanol Pyruvate Acetate Ethanol 

Arg 0,0025 0,0005 0,0000 0,0020 0,0051 

Arg+Ni 0,0038 0,0005 0,0000 0,0037 0,0071 

Arg+Mag 0,0074 0,0006 0,0000 0,0255 0,0115 

H2+Arg 0,0057 0,0022 0,0000 0,0048 0,0065 

H2+Arg+Ni 0,0063 0,0023 0,0000 0,0072 0,0068 

H2+Arg+Mag 0,0203 0,0020 0,0003 0,0200 0,0095 

Appendix A. 5 H-NMR analysis controls for ZeoLapS 

 Concentration (mM) 

Gas phase Formate Methanol Pyruvate Acetate Ethanol 

Arg 0,0031 0,0005 0,0000 0,0023 0,0063 

Arg+Ni 0,0198 0,0005 0,0000 0,0028 0,0078 

Arg+Mag 0,0108 0,0009 0,0002 0,0257 0,0117 

H2+Arg 0,0047 0,0270 0,0005 0,0057 0,0106 

H2+Arg+Ni 0,0091 0,0235 0,0000 0,0065 0,0068 

H2+Arg+Mag 0,0175 0,0231 0,0008 0,0313 0,0084 
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Appendix A. 4  Pyruvate, acetate and ethanol as a product of CO2 reduction compared between waterS, KOHS and ZeoLapS in mM.  
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7. Appendix B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. 1 H-NMR analysis standards provided by the laboratory 
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Appendix B. 2 NAD absorbance spectra under different conditions (270 nm – 400 nm). On the upper image, there are the 

spectra collected from solutions with NAD (3 mM) or NADH (0.05 mM), with and without KOH. On the bottom image, there 

are the spectra collected from solutions with NAD (3 mM) and triplicates with NAD (3 mM) and magnetite (Fe3O4). For the 

triplicates, the supernatant was collected, and the precipitated (magnetite) discarded.   
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8. Appendix C 

 

Appendix C. 1 pH values of 10 mM concentrated solutions and water, with and without KOH. All samples were prepared with 

a previously made batch of alkaline water (pH = 10.2) 

pH Controls Before Reaction 10 bar Ar 

H2O 8,75 9,76 

H2O+10µl (of 0.5 mM KOH) 8,86 11,76 

H2O+10µl (of 1 mM KOH) 8,73 12,08 

MgCl2 6,77 - 

FeCl2 3,36 - 

FeCl2+10µl (of 1 mM KOH) 6,06 - 

 

 

 

 

 

 

 

 


