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RESUMO

A diabetes é uma doença metabólica multifatorial, caracterizada por níveis elevados de glucose no sangue
(hiperglicemia). Esta é uma condição crónica, resultante da progressiva destruição ou disfunção das células
beta presentes no pâncreas, onde se dá a produção de insulina, uma hormona anabólica envolvida na absorção
e metabolismo da glucose. Sintomas clássicos de diabetes incluem fome e sede excessivas (polifagia e po-
lidipsia, respetivamente), vontade frequente de urinar (poliúria) e cansaço. Se o nível de glucose no sangue
estiver continuamente acima do normal, podem ocorrer manifestações mais graves da doença, como sejam
cetoacidose e coma hiperosmolar, com perigo de morte associado. A longo-prazo, indivíduos com diabetes
têm um risco aumentado de complicações micro e macro vasculares, tais como retinopatia, nefropatia, neu-
ropatia e doenças cardiovasculares. O controlo da doença é feito através de tratamento farmacológico, aliado
a um estilo de vida saudável, procurando evitar ou retardar, tanto quanto possível, consequências graves. No
entanto, uma baixa-autopercepção do risco de complicações e falhas no acompanhamento destes doentes ao
nível dos cuidados de saúde primários contribuem para piores resultados clínicos, com eventual necessidade
de cuidados de saúde hospitalares.

O presente trabalho teve por objetivo descrever e modelar uma série temporal de internamentos hospitalares
por diabetes em Portugal, com ênfase na predição. Para tal, foram usados dados constantes da Base de dados
de Morbilidade Hospitalar, cedida pela Administração Central do Sistema de Saúde (ACSS), I.P., do Minis-
tério da Saúde. Foram selecionados todos os diagnósticos de diabetes como causa primária de admissão,
codificados, até ao terceiro dígito, por 250 (diabetes mellitus), de acordo com a Classificação Internacional
de Doenças (ICD), 9ª revisão, Modificação Clínica (ICD-9-CM) ou E10 (diabetes tipo 1), E11 (diabetes
tipo 2), E13 (outro tipo de diabetes), segundo a 10ª revisão da ICD (ICD-10-CM/PCS). Cada um destes
registos foi associado a um episódio específico, através de um número sequencial único entre bases de da-
dos, selecionando-se aqueles com data de admissão entre 1 de janeiro de 2010 e 31 de dezembro de 2018
e internamento mínimo de um dia. Com base nestes dados, foi construída uma série temporal do número
mensal internamentos por diabetes entre 2010 e 2018, num total de 108 observações. Um subconjunto destes
dados, composto por observações entre janeiro de 2010 e dezembro de 2016, foi utilizado na identificação
e estimação do modelo (conjunto de treino; 84 meses), e as restantes observações, entre janeiro de 2017 e
dezembro de 2018, usadas exclusivamente para validação do modelo (conjunto de teste; 24 meses). Seguindo
a metodologia de Box e Jenkins para modelos Autorregressivos e de Médias Móveis Integrados Sazonais
(SARIMA), vários modelos foram identificados com base na análise gráfica das funções de autocorrelação
e autocorrelação parcial e estimados por máxima verosimilhança. Na seleção do melhor modelo, foi con-
siderado o critério de informação de Akaike (AIC), avaliando-se posteriormente a sua adequação aos dados
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através da estatística de Ljung-Box e inspeção visual dos resíduos. A capacidade preditiva do modelo sele-
cionado foi investigada por comparação entre as previsões obtidas e os dados do conjunto de teste, através de
um procedimento de avaliação de origem móvel, em que novos valores são imputados ao modelo à medida
que, supostamente, se tornam conhecidos. Neste caso, considerou-se quer a atualização do modelo, quer a
sua recalibração, tendo por base uma janela fixa, onde se incluem todas as observações disponíveis até ao
momento, ou móvel, composta pelas 84 observações mais recentes. Medidas como o erro absoluto médio
(MAE), a raiz do erro quadrático médio (RMSE) e o erro percentual absoluto médio (MAPE) foram utilizadas
para quantificar a precisão do modelo em cada contexto de predição, permitindo a sua comparação com um
método de referência, um passeio aleatório sazonal, segundo o qual cada previsão iguala o valor da série no
mesmo mês do ano anterior.

Entre janeiro de 2010 e dezembro de 2018, foram contabilizados em Portugal 73.050 episódios de interna-
mento por diabetes (676 casos por mês, em média), o que representa 35% de todas as admissões hospitalares
por esta causa. Este número resulta, na sua maioria, de admissões urgentes (79,5%). A distribuição por sexo
mostrou-se relativamente equilibrada (52,5% de homens), tendo sido observado um maior número de inter-
namentos entre indivíduos com idade igual ou superior a 60 anos e na região Norte do país. Globalmente,
o número de episódios diminuiu 45% entre 2010 e 2018 (10.011 e 5.530 internamentos, respetivamente).
Para além da tendência decrescente, foram também observadas flutuações sazonais, com um pico de ca-
sos nos meses de Inverno e números mais baixos no Verão. Tendo por base o número de internamentos
por mês entre 2010 e 2016, foram identificados e estimados nove modelos candidatos para a série origi-
nal e diferenciada, quer na componente regular, quer sazonal. Entre estes, o modelo mais parcimonioso,
SARIMA(1, 1, 2)×(0, 1, 1)12 (AIC = 10,647), foi usado para prever o número mensal de internamentos em
2017 e 2018. Considerando a disponibilidade de novos dados a cada mês, foi avaliada a capacidade preditiva
do modelo para os horizontes temporais de 1, 3, 6 e 12 meses. De uma forma geral, o modelo re-estimado
teve um melhor desempenho do que o modelo atualizado, registando-se o menor erro médio em previsões a
um mês obtidas por meio de um janela móvel (MAE = 39,5; RMSE = 47,4; MAPE = 7,8%). Independente-
mente de ser usada uma janela fixa ou móvel na recalibração do modelo, a capacidade preditiva deste piorou
com o aumento do horizonte temporal para 3, 6 e 12 meses. Em todo o caso, quer por via da atualização,
quer da recalibração do modelo, foi observado um erro relativo inferior a 10% num horizonte temporal até
seis meses. Foi ainda calculado o MAPE para 2017 e 2018, considerando a re-estimação do modelo com
janela móvel a cada 1, 3, 6 e 12 meses. Neste caso, previsões a três meses apresentaram a maior precisão,
com um erro anual médio de 7,7%, muito próximo do obtido com previsões a um mês (MAPE = 7,8%). Da
re-estimação do modelo a cada 12 meses resultou o maior erro de previsão (MAPE = 12,4%), representando,
ainda assim, uma redução de 30% face ao modelo de referência (MAPE = 17,7%). A representação gráfica
das previsões do modelo SARIMA mostrou que estas ficaram maioritariamente acima da série observada,
sobretudo em 2018. Não obstante, com a exceção de fevereiro de 2017 e maio de 2018, todos os valores
observados se situaram entre os limites obtidos para as previsões. Estes resultados suportam a aplicação de
modelos SARIMA na previsão de internamentos por diabetes em Portugal a curto/médio prazo, permitindo
que decisões ao nível da gestão hospitalar sejam tomadas atempadamente. Esta seria uma forma de melhorar
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a capacidade de resposta dos serviços de saúde, sobretudo em períodos de maior fluxo de pacientes. Permi-
tiria, igualmente, um uso mais eficiente do orçamento, pela adequação de recursos às reais necessidades dos
pacientes, sem comprometer a qualidade dos cuidados prestados.

Não desvirtuando o estudo de um ponto de vista clínico e epidemiológico, este tem associadas algumas
limitações metodológicas. Começar por referir que foram incluídos apenas os diagnósticos principais de
diabetes e os tipos mais comuns da doença, subestimando quer o seu impacto, quer a procura de cuidados
de saúde específicos por esta causa. Por outro lado, o uso de dados agregados a nível nacional inviabiliza o
uso das previsões obtidas em contextos reais de prática clínica. No que concerne à modelação dos dados, o
uso do AIC como critério de seleção pode ter levado a uma interpretação errónea da qualidade dos modelos,
dada a sua aplicação a diferentes conjuntos de dados (série original e diferenciada).

Como trabalho futuro neste campo de investigação, conta-se a realização de uma análise espaciotemporal
de internamentos hospitalares por diabetes, segundo métodos Bayesianos hierárquicos de mapeamento de
doenças, considerando características sociodemográficas da população e indicadores de acesso a cuidados de
saúde a nível regional.

Palavras-chave: Modelos SARIMA, Previsão, Avaliação de origem móvel, Diabetes, Internamentos
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ABSTRACT

Diabetes is a chronic disease characterized by high blood sugar levels, as a result of the progressive destruction
or dysfunction of the pancreatic 𝛽-cells that produce insulin, an anabolic hormone involved in cellular glucose
uptake and metabolism. Poor self-management and inefficient monitoring at primary health care contribute
to an inadequate glycaemic control, which often leads patients to seek hospital health care, while facing acute
or long-term complications of diabetes. The objective of this study is then to describe and model a series of
hospitalizations due to diabetes in Portugal, with an emphasis on prediction.

Episodes of hospital admissions occurred between 2010 and 2018 with main diagnosis of diabetes, coded, up
to the third digit, by 250, according to International Classification of Diseases (ICD), 9th Revision, Clinical
Modification (ICD-9-CM), or E10, E11, E13, based on the 10th revision of ICD (ICD-10-CM/PCS), and
duration of at least one day were selected from the Hospital Morbidity Databases provided by the Central
Administration of the Health System (ACSS), I.P. Following the Box-Jenkins approach for Seasonal Autore-
gressive Integrated Moving Average (SARIMA) modelling, a time series analysis on monthly hospitaliza-
tions in Portugal from January 2010 to December 2018 was conducted. Using data from 2010 to 2016 (84
observations), several models were identified as suitable and estimated by maximum likelihood. Akaike´s
information criterion (AIC) was used to select the best model, whose adequacy was further investigated by
residual analysis. For the selected model, 1, 3, 6 and 12-month forecasts were computed and compared
against the observed series in 2017 and 2018, based on rolling-origin-update and rolling-origin-recalibration
evaluation, with either a fixed (all available data) or rolling window (data from the last 84 months). The
predictive ability of this model was assessed using the Mean Absolute Error (MAE), the Root Mean Square
Error (RMSE) and the Mean Absolute Percentage Error (MAPE), and compared with a benchmark method,
namely a Seasonal Random Walk.

From 2010 to 2018, there were 73,050 hospitalizations due to diabetes in Portugal, representing 35% of all
admissions for this cause. The series of monthly hospitalizations exhibits a decreasing trend and apparent
seasonality, with a higher number of episodes observed in winter months. From nine candidate models, the
SARIMA(1, 1, 2) × (0, 1, 1)12 (AIC = 10.647) was selected as the most parsimonious and used to predict
hospitalizations in 2017 and 2018. For both rolling-origin-update and rolling-origin-recalibration, the rela-
tive error was lower than 10% for a forecast horizon up to six months. Overall, rolling-origin-recalibration
performed better, with the lowest MAPE obtained with one-month forecasts, given either a fixed or a rolling
window (8.2% and 7.8%, respectively). As the forecast timespan increased, up to 3, 6 and 12-months, the
predictive accuracy of the model worsened. The average error for 2017 and 2018, obtained by using a rolling
window to re-estimate the model every 1, 3, 6 and 12months, revealed predictions at three months as the most
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accurate (MAPE = 7,7%), followed by those at one month (MAPE = 7,8%). The highest error was obtained
with 12-month forecasts (MAPE = 12,4%), still representing a 30% reduction in relation to the benchmark
model (MAPE = 17,7%). The graphical representation of the forecasts showed that the selected model often
overestimated the observed series, yet, all but two observations were in the 95% prediction interval.

The selected model was able to capture the seasonal patterns of the series, revealing a good predictive ability
up to six months. These findings suggest that SARIMA models can be used to forecast hospitalizations due
to diabetes at short/medium term with good accuracy, allowing for management decisions to be taken timely.
Future work on this field of research includes a spatiotemporal analysis of hospitalizations due to diabetes in
Portugal, following a Bayesian hierarchical disease mapping approach, while taking into account population
socioeconomic characteristics and access to health care.

Keywords: SARIMA, Forecasting, Accuracy, Rolling-origin, Diabetes, Hospitalizations
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Chapter 1

Introduction

As defined by the World Health Organization (WHO), the term diabetes describes a group of chronic
metabolic disorders characterized by high blood sugar levels (hyperglycaemia), as a result of the progressive
destruction or dysfunction of 𝛽-cells present in pancreatic islets, where insulin is produced [1]. In normal
conditions, insulin promotes the cellular uptake of glucose so it can be used to produce energy [2]. As the
body becomes unable to produce or make proper use of this hormone, glucose starts to accumulate in the
blood and the classical symptoms of diabetes turn up. These include excessive thirst (polydipsia), hunger
(polyphagia) and urination (polyuria), blurred vision, fatigue, and weight loss. Severe manifestations of
the disease include ketoacidosis, in type 1 diabetes (T1D), and nonketotic hyperosmolar coma, in type 2
diabetes (T2D), possible life-threatening conditions. These are the major types of diabetes, accounting for
more than 95% of all cases. Other types of diabetes are defined by the WHO as: hybrid forms of diabetes,
other specific types, unclassified diabetes and hyperglycaemia first detected during pregnancy, including
diabetes mellitus in pregnancy and gestational diabetes mellitus. With the exception of the latter condition,
for which lower cutoffs for plasma glucose are defined, the diagnose of diabetes requires that at least one of
the following criteria be met: fasting plasma glucose ⩾ 126 mg/dl; 2-hour post-load plasma glucose ⩾ 200
mg/dl; glycosylated haemoglobin (HbA1c, a measure of the average blood glucose levels over the past two
to three months) ⩾ 6.5% [1].

Further classification of the disease relays on clinical features such as age of onset, presence of diabetes-
related biomarkers (pancreatic autoantibodies), and level of dysfunction of 𝛽-cells [1, 3]. The mechanisms
involved in loss of 𝛽-cells mass and/or function are themselves multifactorial, including genetic and epi-
genetic factors, autoimmunity, insulin resistance, co-existence illnesses, inflammation, and environmental
factors [1]. Still, despite diabetes different types and rate of progression, chronic hyperglycaemia confers a
higher risk for micro and macrovascular complications [4]. Retinopathy, nephropathy and neuropathy are
some of the long-term effects of diabetes, along with an increased risk for other diseases, such as peripheral
artery disease cardio and cerebrovascular disease, cataracts, nonalcoholic fatty liver disease and infectious
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diseases [1]. Compared to non-diabetic people, people with diabetes have a two-fold increase in the risk of
cardiovascular diseases (CVD), explaining the highest morbidity and mortality of the disease [2]. Besides
CVD, diabetes is a modifiable risk factor for some types of cancer and dementia [5].

Type 1 diabetes

In T1D, pancreatic 𝛽-cells are attacked by the immune system due to genetic susceptibility and environmen-
tal/behavioural conditions (e.g., viral infections, exposure to toxins, dietary factors) [2, 3]. Although not fully
understood, the effect of environmental factors and their interaction with genetic factors is supported by the
evidence that having highest-risk HLA alleles is neither a necessary nor sufficient condition for developing
T1D [3, 4]. Regardless, there is no evidence that this type of the disease can be prevented [3].

The first stage of the disease reassembles to islet autoimmunity (i.e., the presence of antibodies to pancreatic
islet antigens) [6] when, despite the progressive destruction of 𝛽-cells, euglycaemia (i.e., blood glucose at
levels considered normal and healthy) is maintained due to pancreatic ‘functional’ reserve. Further attack
to pancreas, with destruction of most 𝛽-cells, results in a decrease of insulin production followed by an
increase in the concentration of blood glucose, until diagnosis [7]. At this point, patients present the classical
symptoms of diabetes and insulin administration is required, on a daily basis, to assure their well-being and,
ultimately, their survival [2].

This type of diabetes is usually recognized by having its onset in childhood, but it can occur later in life,
although the classic symptoms may not be observed [2, 3]. In fact, about 50% of cases occur in adulthood and
up to 50% of those might be misclassified as T2D at first [3]. Heterogeneity with respect to pathomorphology
of the pancreatic islet, severity of auto-immune response and efficacy of therapy is also observed in these
patients [6, 7]. Nonetheless, a faster rate of destruction of 𝛽-cells is common in children and adolescents,
with ketoacidosis being the first manifestation of the disease in some cases [1]. As for hyperglycaemia, also
hypoglycaemic episodes, which result in 4 to 10% of T1D-related deaths, must be prevented by carefully
monitoring glucose levels. An adequate glycaemic control depends on the correct dose adjustments given
the quantity of carbohydrates consumed, the practice of physical activity, as well as the co-occurrence of
illness and stress. Other than that, even without a cure, people with T1D can live a healthy and long life [3].

At long term, maintaining ‘near-to-normal’ glucose blood levels— international guidelines suggest as targets
for adult and paediatric patients values of HbA1c lower than 7.0% and 7.5%, respectively — reduces micro
(e.g., retinopathy, neuropathy, nephropathy) and macrovascular (e.g., atherosclerosis, cerebral and coronary
heart disease) complications of this disease [3] and preserves any 𝛽-cell mass or function, thus contributing
to a better quality of life, itself a predictor of a better glycaemic control [3, 7].
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Type 2 diabetes

The pathophysiology of T2D is based on the body’s inability to trigger an adequate response to insulin, a
phenomenon known as insulin resistance. In an attempt to lower the levels of glucose in blood, the pancreas
increases the production of insulin which, ultimately, results in the failure of 𝛽-cells [2]. This form of the dis-
ease is the result of genetic and epigenetic influences, along with environmental and behavioural factors (e.g.,
unhealthy diet, physical inactivity, smoking and drinking habits) [8–10], justifying its link with overweight
and obesity. Such conditions, or just a significant accumulation of fat in abdominal region, either cause or
exacerbate insulin resistance [1].

Visceral adiposity and obesity contribute to decreased insulin sensibility, initially compensated by hypersecre-
tion of this hormone in 𝛽-cells (euglycaemic hyperinsulinaemia). Over time, obese people stop responding to
the increased production of insulin, which results in the elevation of blood glucose concentration (hypergly-
caemic hyperinsulinaemia). At a certain point, with the ongoing deterioration of 𝛽-cells, the over-stimulated
pancreas becomes unable to secrete enough insulin and hyperglycaemia turns evident (hyperglycaemic hy-
poinsulinaemia) with subsequent diagnosis of T2D. From abnormal insulin sensitivity to the moment of clin-
ical diagnosis, several years may pass [7]. Weight loss improves insulin sensitivity, but with limited effects
— the reverse of long-standing diabetes is a difficult achievement, even with large weight loss, as observed
after bariatric surgery [4]. Other medical conditions, directly related to behavioural factors, may make people
more prone to T2D. The list includes hypertension and dyslipidemia (hypercholesterolemia and hypertriglyc-
eridemia) [11]. Hence, the management of the disease depends greatly on the adoption of a healthy lifestyle,
in addition to antidiabetic mediation [2].

The clinical pattern of T2D is generally less obvious than T1D, and the precise moment of its onset is difficult
to determine. Thus, people tend to keep undiagnosed for long periods and some complications are already
present when they are diagnosed [2]. Moreover, most patients have other chronic conditions, which makes
it difficult to control diabetes and increases mortality [12]. The clinical manifestations of the disease include
fatigue, lethargy, recurrent infections, and visual impairment that, in many cases, motivates the medical
appointment that propitiates the diagnosis. With severe loss of 𝛽-cells, the classical symptoms observed in
T1D then occur [8].

Although hypoglycaemia is more common in T1D, it can occur in T2D, accounting for the underlying mor-
bidity of this disease. For inpatients, episodes of hypoglycaemia, even non-severe, are associated both with
increased length of stay and in-hospital mortality [13]. The risk for hypoglycaemia increases with diabetes
duration, multi-morbidity and use of specific medicines, such as sulfonylureas [12, 14]. With respect to mi-
crovascular complications, people with T2D benefit from intensive glycaemic control. The same observation
is not so evident when it comes to macrovascular events, such as cardiovascular disease and stroke [14]. Also,
T2D is associated with a wide range of cancers (e.g., breast, endometrial, colorectal, liver) [2], mental and
nervous system disorders and infections [7].
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1.1 Epidemiology of diabetes

Type 2 diabetes is the most common form of the disease, representing 90 and 95% of the cases worldwide [1].
Type 1 diabetes follows, accounting for 5 to 10% of all diabetes cases [15]. Together, they affect over 460
million adults aged 20-79 years worldwide, 59 million in Europe [2], representing an important risk factor for
vascular diseases and early mortality [16–18]. These values refer to both diagnosed and undiagnosed cases,
with the latter estimated to account for 40.7% of all cases in Europe Region (as defined by the International
Diabetes Federation) [2]. In Portugal, diabetes affects 9.8% of the population aged between 20 and 79 years,
above the age-adjusted prevalence of diabetes in Europe (6.3%). It is the third highest value in this region,
only surpassed by Germany and Turkey [2].

Worldwide, the prevalence of diabetes is slightly higher in men (9.6%), compared to women (9.0%), being
expected to increase in both groups according to projections for 2030 and 2045 [2]. In Portugal, the results
from the first National Health examination Survey (INSEF 2015) point out a greater difference between men
(12.1%) and women (7.8%) [11]. Differences between age groups are also noticeable, with higher prevalence
of diabetes at older ages. Along with age, ethnicity, obesity, and family history, with a highly increased risk
for people with first-degree relatives with the disease, are major risk factors for T2D [8] — in Portugal, 68%
of people with diabetes reported having a first-degree family member with diabetes [11]. On the other hand,
lower prevalences of diabetes are observed for those having more education and being employed, even after
age-standardization [11]. As opposed, due to its impact in other aspects of life, low socioeconomic status
increases the risk of developing T2D [4].

In the group of children and adolescents (0-19 years), the prevalence of T1D in Portugal was 15% in 2018
[19]. In Europe, it affects almost 300,000 of those aged under 20 years, with about 31,000 new cases per year,
more than in any other regions of World. Nonetheless, the incidence of T1D has been increasing worldwide,
with changes in non-genetic, lifestyle related, factors as the most probable cause. More, there is evidence of
an increasing prevalence of T2D in this age group, posing a great burden for families and society, as these
individuals will present complications sooner in life [2].

Briefly, ageing populations and unhealthy lifestyles, including a poor diet (rich in sugars, fat and calories) and
physical inactivity, have contributed to the increase in the prevalence of diabetes and its complications, being
the clinical evolution of patients largely influenced by education, access to health care and co-occurrence
of risk factors [1, 2]. Lifestyle modification, with the adoption of healthy habits early in life, is essential
for primary prevention of T2D [20, 21], whereas control of risk factors and early intervention on disease
complications can prevent the need of hospitalization, reducing costs and improving quality of life [2].

In 2018, diabetes was the main cause of 3.8% of all deaths in Portugal [19], with more than a quarter of the
people who die in hospitals suffering from this disease [22]. Worldwide, estimates point to 4.2 million deaths
in 2019 as a result of diabetes and its complications [2].
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1.2 Importance of primary health care in diabetes management

To achieve better results when facing the disease, people benefit from support systems that combine educa-
tional strategies, including glucose self-management, dietary counselling as well as programmes of physical
exercise, and psychological support [14, 23, 24]. Likewise, patient-centred care, conducted by multidisci-
plinary teams (e.g., doctor, nurse, nutritionist, pharmacist, exercise physiologists, psychologists, social work-
ers) considering individual specific needs (patient empowerment, along with ongoing support) has proved to
improve clinical outcomes. In this regard, primary health care is of paramount importance. One of its most
valuable aspects is its broad spectrum of action, coordinated among patients, family, community and other
health care providers, in which multiple health determinants and risk factors for diabetes are considered [5].
Unfortunately, many patients still do not have access to this model of care [2, 5]. Taken as example, only
half of individuals are subjected to risk assessment for T2D in primary health care in Portugal Mainland,
and regional discrepancies exist (from 23% in Regional Health Administration (ARS) of Algarve and ARS
of Lisboa e Vale do Tejo, to 48% in ARS Norte). Plus, ARS of Algarve and Lisboa e Vale do Tejo are the
regions with higher percentage of patients without general practitioner (11.7% and 13.1%, respectively) and
greater ratio of patients by doctor (1964 and 1957, respectively) [19].

Thus, despite the access to new drugs and a better understanding of disease pathology, the control of diabetes
remains unsatisfactory, in part due to poor self-management and inefficient monitoring by health services,
and hospital admissions becomemore frequent than would be desirable [2, 19]. The low perception of the risk
of diabetes-related complications in T2D also contributes for this outcome [25], which negatively impacts
individuals, health systems and, ultimately, society [26, 27]. In face of that, hospital admissions by diabetes
deserve careful analysis, with particular emphasis on hospitalizations, to which most costs with diabetes are
attributable (53% of identified costs with diabetes in 2017, in mainland Portugal) [19]. In 2017, hospitaliza-
tions with diabetes as main diagnosis represented a cost of almost 15 million Euro, greatly exceeded by costs
with hospitalizations associated to diabetes, although not entirely attributable to it (361 M) [19]. Indirect
costs result from disability, absenteeism and early mortality due to diabetes [2].

1.3 Hospital admissions for diabetes in Portugal

In Portugal, data regarding hospital admissions aremade available by the Central Administration of theHealth
System (Administração Central do Sistema de Saúde, ACSS), I.P. of the Portuguese Ministry of Health in
the Hospital Morbidity Databases. Each episode has associated one or more diagnoses, allowing its analysis
in view of the problems that led to or result from the admission on the health facility.

From 2010 to 2018, there were 208,882 hospital admissions due to diabetes (i.e., diabetes as the primary
cause of admission) in Portugal, more frequently diabetes with ophthalmic complications (65.6%).
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Overall, admissions due to diabetes show an increasing trend between 2010 and 2017 (13,647 and 34,458
cases, respectively), with a small decrease in 2018 (33,042 cases), and mimic the evolution of ambulatory
episodes (61% of all admissions). The same pattern is shown by planned admissions (71% of all admissions),
as these are mostly represented by ambulatory episodes. Opposite trend is observed for the emergencies, with
a 40% decrease from 7,959 records in 2010 to 4,808 in 2018 (Figure 1.1).
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Figure 1.1: Series of hospital admissions due to diabetes in Portugal from 2010 to 2018: total admissions, planned admissions and
emergencies.

1.4 Objectives and outline

A better understanding of the epidemiology of the disease is crucial to support medical decisions and allocate
health resources, as the number of hospital admissions can provide useful information on the level and quality
of assistance provided in primary health care to individuals with diabetes [19].

Facing the burden of this disease from individual, familiar and social perspectives, this study focus on the
temporal evolution of hospitalizations due to diabetes in Portugal, aiming to describe and model a time series
of monthly hospitalizations for this cause, with an emphasis on prediction.

The thesis is structured in six chapters. The first and current one introduces the research theme, to bring into
focus the clinical and the epidemiological relevance of the study. Its main objectives were also enunciated,
with the following chapter describing the series and variables under study (Chapter 2). In Chapter 3, a theo-
retical framework for time series is given, from general concepts to modelling and forecasting approaches. It
follows the implementation of these methods, with the results of the time series analysis being presented in
Chapter 4 and further discussed in Chapter 5, in the light of scientific evidence about the theme and statistical
methodologies addressed, exploring both strengths and limitations of the work conducted. Finally, Chapter 6
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includes the main conclusions of the study and their relevance from an epidemiological point of view, along
with perspectives of future research.

Some of the results of this work have been presented in poster format at the meeting Statistics on Health
Decision Making: clinical trials, in October 2020, and published as an extended abstract in the Journal of
Statistics on Health Decision [28].
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Chapter 2

Study description

The data used in this thesis were obtained from Hospital Morbidity Databases, provided by the ACSS, and
relate to the period from January 2010 to December 2018. Section 2.1 refers to the procedure followed for
the construction of the time series, while other variables of interest are described in Section 2.2.

2.1 Study series

Records of hospital admissions occurred from 2010 to 2018 (provisional data for 2017 and 2018) were firstly
joined, and further filtered by code and type. Admissions with main diagnose coded, up to the third digit, by
250 (diabetes mellitus), according to the International Classification of Diseases (ICD), 9th Revision, Clinical
Modification (ICD-9-CM) or E10 (diabetes type 1), E11 (diabetes type 2), E13 (other type of diabetes),
following the 10th revision of ICD (ICD-10-CM/PCS), were selected (Tables 2.1 and 2.2, respectively). In
turn, admissions caused by secondary diabetes and gestational diabetes, coded apart both in ICD-9-CM and
ICD-10-CM/PCS, were purposely not included.

Each of the selected diagnosis was associated to a specific episode. Therefore, the previously obtained list
was merged with episode data through a unique sequential number, used as identifier in the national database.
Given the available information, episodes were selected by date of admission and length of stay in the health
facility, thus keeping those starting between 1 January 2010 and 31 December 2018 and lasting at least one
day, henceforth referred to as hospitalizations due to diabetes.

Given the month and year of admission of the patient to the health facility, a time series of monthly hospital-
izations due to diabetes in Portugal between January 2010 and December 2018 was constructed. This series,
in a total of 108 observations, was analysed according to Box-Jenkins approach, as detailed in Chapter 3.
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Table 2.1: ICD-9-CM codes and description for diabetes.

Code Description

250 Diabetes mellitus
250.0 Diabetes mellitus without mention of complication
250.1 Diabetes with ketoacidosis
250.2 Diabetes with hyperosmolarity
250.3 Diabetes with other coma
250.4 Diabetes with renal manifestations
250.5 Diabetes with ophthalmic manifestations
250.6 Diabetes with neurological manifestations
250.7 Diabetes with peripheral circulatory disorders
250.8 Diabetes with other specified manifestations
250.9 Diabetes with unspecified complication

Table 2.2: ICD-10-CM/PCS codes and description for diabetes.

Code Description

E10 Type 1 diabetes mellitus
E10.1 Type 1 diabetes mellitus with ketoacidosis
E10.2 Type 1 diabetes mellitus with kidney complications
E10.3 Type 1 diabetes mellitus with ophthalmic complications
E10.4 Type 1 diabetes mellitus with neurological complications
E10.5 Type 1 diabetes mellitus with circulatory complications
E10.6 Type 1 diabetes mellitus with other specified complications
E10.8 Type 1 diabetes mellitus with unspecified complications
E10.9 Type 1 diabetes mellitus without complications

E11 Type 2 diabetes mellitus
E11.0 Type 2 diabetes mellitus with hyperosmolarity
E11.1 Type 2 diabetes mellitus with ketoacidosis
E11.2 Type 2 diabetes mellitus with kidney complications
E11.3 Type 2 diabetes mellitus with ophthalmic complications
E11.4 Type 2 diabetes mellitus with neurological complications
E11.5 Type 2 diabetes mellitus with circulatory complications
E11.6 Type 2 diabetes mellitus with other specified complications
E11.8 Type 2 diabetes mellitus with unspecified complications
E11.9 Type 2 diabetes mellitus without complications

E13 Other specified diabetes mellitus
E13.0 Other specified diabetes mellitus with hyperosmolarity
E13.1 Other specified diabetes mellitus with ketoacidosis
E13.2 Other specified diabetes mellitus with kidney complications
E13.3 Other specified diabetes mellitus with ophthalmic complications
E13.4 Other specified diabetes mellitus with neurological complications
E13.5 Other specified diabetes mellitus with circulatory complications
E13.6 Other specified diabetes mellitus with other specified complications
E13.8 Other specified diabetes mellitus with unspecified complications
E13.9 Other specified diabetes mellitus without complications
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For model identification and estimation, a subset of the series composed by data from January 2010 to De-
cember 2016 (84 values) was used, leaving the remaining 24 observations (22% of the data available) for
model validation. To assess the predictive ability of the selected model, forecasts were computed for the
years 2017 and 2018, and compared against the observed values of the series. The chosen model was further
evaluated by comparison with a benchmark method with respect to forecast accuracy.

2.2 Variables description

For the purpose of this study, variables concerning episodes (i.e., hospitalizations in medical facilities) and
diagnostic data were retrieved from Hospital Morbidity Databases and listed bellow.

Diagnostic variables:

cod_diagnostico: Diagnosis code;

tipo_p_s: Type of diagnosis. Categorical variable with possible outcomes:

− Main diagnosis (diagnosis considered responsible for the patient’s admission)

− Additional diagnostics (any diagnosis assigned to a patient in a given care episode,
in addition to the main diagnosis)

Episode variables:

sexo: Patient sex. Categorical variable:

− Male
− Female
− Undefined

idade: Patient age, when admitted, in years;

distrito: Patient district of residence (two digit code);

concelho: Patient county of residence (two digit code);

freguesia: Patient parish of residence (two digit code);

data_entrada: Date of admission of the patient, in dd-mm-yyyy format;

data_saida: Date of discharge of the patient, in dd-mm-yyyy format;

dias_int: Length of stay of the patient in the health facility, in days;
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dsp: Patient destination after discharge from a hospital service. Categorical variable:

− Unknown
− Discharge home
− Another institution (with hospitalization)
− Home care
− Discharge against medical opinion
− Specialized aftercare (tertiary)
− Deceased
− Palliative care at medical centre
− Post-hospital care
− Long-term hospital care

adm_tip: Nature or mode of admission of a patient to a health institution. Categorical variable:

− Planned admission
− Emergency
− Private Medicine
− Access plan to Ophthalmologic Surgery

n_ficticio_utente: Fictitious patient number;

versao_icd: Coding version (ICD-9 or ICD-10).

For each episode of interest, sociodemographic — sex, age, region of residence (Nomenclature of Territorial
Units for Statistics (NUTS) regions of level 2 (NUTS 2), known from the county of residence) —, and
clinical variables — mode of admission, length of hospitalization and patient destination after discharge —
are detailed, with descriptive statistics being presented.

For a better perspective on regional disparities, annual estimates of population by region of residence were
obtained from the website of Statistics Portugal (Instituto Nacional de Estatística) and used to calculate the
number of hospitalizations due to diabetes per 100,000 inhabitants by NUTS 2, from 2010 to 2018.
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Chapter 3

Statistical background on time series

The present chapter introduces theoretical concepts and methods on time series analysis, further applied in
this thesis to the series of monthly hospitalizations due to diabetes. In Section 3.1 are defined stochastic
processes, whereas Sections 3.2 and 3.3 describe specific models for time series. Box-Jenkins methods for
model building are presented in Section 3.4, and, finally, forecasting approaches are described in Section 3.5.

3.1 Stochastic processes and time series

A stochastic process is a collection of random variables indexed by t, {𝑌𝑡}, in a parameter set T [29]. When-
ever this set corresponds to ordered moments of time, {𝑌𝑡} is defined for each t and the observed values
at different time points constitute a time series [30]. Thus, a series of N observations generated over time,
(𝑦1, … , 𝑦𝑁), is a sample realization (from an infinite population) of a stochastic process [29].

One example of a time series would be the sequence of pH measures taken every day, from hour to hour
(𝑡 = 1, … , 24). In this case, 𝑌𝑡 is the random variable that represents pH at time t and the set of measurements
of each day constitutes a sample realization of the stochastic process. If data of many days were available (in a
week, it would be seven realizations of the process), it would be possible to obtain the probability distribution
of the variables that comprise the process, assuming that the pool is in similar conditions.

For simplicity of notation, and also for closer proximity to Box et al. [29], 𝑦𝑡 will henceforth be used to
represent the random variable 𝑌𝑡 and its observed value 𝑦𝑡, i.e., the time series that is a realization of the
stochastic process and its observed values.

The mean function of the stochastic process represents the expected value of the marginal distributions of the
random variables for each moment t,
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𝐸[𝑦𝑡] = 𝜇𝑡.

If all the variables have equal mean, the mean function is constant and the process is said to be stable in the
mean [30]. Similarly, it would be stable in the variance if this moment is constant over time,

Var [𝑦𝑡] = 𝜎2.

Still to note that a process can be stable in the mean, but not in the variance, with the opposite being also
true. Regardless, for most situations with practical interest, it is not possible to observe multiple realizations
of the process. Given that limitation, in order to estimate ‘momentary’ characteristics of the process, such
as its mean, one must assume that the marginal distribution of the random variables at any instant t is stable
over time. These stability proprieties are the base of the concept of stationarity [30].

Events taking stable values over time, not showing any trends, are called stationary. On the other hand,
phenomena showing non constant values over time, by means of trend, seasonality or other effects, are called
nonstationary. A given time series, depending on the period of observation, can be stationary or not [30].

Conceptually, stationary processes represent a particular class of stochastic processes, characterized by the
assumption of statistical equilibrium [29]. If the proprieties of some stochastic process remain constant over
time, that is, if the joint probability distribution of m observations 𝑦𝑡1

, 𝑦𝑡2
, … , 𝑦𝑡𝑚

is identical to that of
𝑦𝑡1+𝑘, 𝑦𝑡2+𝑘, … , 𝑦𝑡𝑚+𝑘, for any set of indices {𝑡1, 𝑡2, … , 𝑡𝑚} and lag k, that process is defined as strictly
stationary [29, 31]. This implies that 1) all the variables 𝑦𝑡 have identical marginal distributions and 2) for
any set of variables, the finite-dimensional distributions depend only on the lags k by which they are separated
[30].

As these assumptions can not be easily fulfilled, a concept of weak stationarity is usually considered, leading
to a stochastic process with less rigid conditions (restricted to the first two moments) — weakly stationary
(or second-order stationary) process — defined by:

1. 𝐸 [𝑦𝑡] = 𝜇, for all times 𝑡;
2. Var [𝑦𝑡] = 𝜎2

𝑦 < ∞, for all times 𝑡;
3. Cov [𝑦𝑡, 𝑦𝑡−𝑘] = 𝛾𝑘 depends only on lag 𝑘 for all times 𝑡.

To note, however, that strict stationarity does not imply weak stationarity, as the first does not assume finite
variance. In either case, for univariate time series, when 𝑚 = 1, the assumption of stationarity presupposes
that the probability distribution of 𝑦𝑡, 𝑝(𝑦𝑡), is equal for all times t, so that the notation can be simplified as
𝑝(𝑦) [29]. It follows that the stochastic process has constant mean,

𝜇 = ∫
∞

−∞
𝑦 ⋅ 𝑝(𝑦) 𝑑𝑦, (3.1)
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that defines the level about which the process fluctuates. It can be estimated by the sample mean,

̄𝑦 = 1
𝑁

𝑁
∑
𝑡=1

𝑦𝑡. (3.2)

The stochastic process has also constant variance,

𝜎2
𝑦 = 𝐸 [(𝑦𝑡 − 𝜇)2] = ∫

∞

−∞
(𝑦 − 𝜇)2 ⋅ 𝑝(𝑦) 𝑑𝑦, (3.3)

that measures the dispersion of values about the series level. Like mean, the variance can be estimated by the
sample variance of the time series [29],

𝜎̂2
𝑦 = 1

𝑁
𝑁

∑
𝑡=1

(𝑦𝑡 − ̄𝑦)2. (3.4)

In time series, the values of the variables 𝑦𝑡 tend to be correlated, as the observations occur consecutively
over time. It is, in fact, a particular characteristic of these processes, with values at a given moment affecting
values later observed. This kind of dependence between two variables at different points in time, 𝑦𝑡 and 𝑦𝑡+𝑘,
is described by the autocovariance and the autocorrelation functions.

Under the assumption of stationarity, the covariance between 𝑦𝑡 and some value k lags (i.e., k intervals of
time) apart must be the same for all t, that is, covariance must depend on time differences only, not the time
point. This function is called autocovariance at lag k and is defined by

𝛾𝑘 = Cov [𝑦𝑡, 𝑦𝑡+𝑘] = 𝐸 [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)] , (3.5)

with 𝛾𝑘 = 𝛾−𝑘 and 𝛾0 = Var [𝑦𝑡] = 𝜎2. From that follows the definition of autocorrelation at lag k:

𝜌𝑘 = 𝐸 [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]
√𝐸 [(𝑦𝑡 − 𝜇)2] 𝐸 [(𝑦𝑡+𝑘 − 𝜇)2]

= 𝐸 [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]
𝜎2𝑦

= 𝛾𝑘
𝛾0

,

(3.6)

with 𝜌𝑘 = 𝜌−𝑘 and 𝜌0 = 1. These functions are related to each other by the variance 𝜎2
𝑦 of the process, given

that 𝛾𝑘 = 𝜌𝑘 ⋅ 𝜎2
𝑦 [29].

The plots of 𝛾𝑘 and 𝜌𝑘 versus lag k represent the autocovariance and autocorrelation functions of the stochastic
process, respectively [29]. The graphical projection of the autocorrelation function (ACF) for different lags
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(correlogram) is particularly useful to see the dependence structure of the process [32].

In practice, both autocovariance and autocorrelation functions are unknown and replaced by sample estimates.
The sample autocorrelation function, 𝑟𝑘, can be obtained by

𝑟𝑘 = ̂𝜌𝑘 = ̂𝛾𝑘
̂𝛾0
, (3.7)

where

̂𝛾𝑘 = 1
𝑁

𝑁−𝑘
∑
𝑡=1

(𝑦𝑡 − ̄𝑦)(𝑦𝑡+𝑘 − ̄𝑦), (3.8)

for 𝑘 = 0, 1, … , 𝐾, is the autocovariance estimate of the series. For large N, the vector of sample autocor-
relations approximates to normal distribution with mean 𝝆, the theoretical vector of autocorrelations, and
approximate variance given by Bartlett’s formula,

Var [𝑟𝑘] ≃ 1
𝑁

∞
∑

𝑢=−∞
(𝜌2

𝑢 + 𝜌𝑢+𝑘𝜌𝑢−𝑘 − 4𝜌𝑘𝜌𝑢𝜌𝑢−𝑘 + 2𝜌2
𝑢𝜌2

𝑘). (3.9)

For any process with autocorrelations 𝜌𝑣 = 0 for 𝑣 > 𝑞, this expression can be simplified [29, 30]. In that
case, at large lags, the variance of the estimated autocorrelations is approximated by

Var [𝑟𝑘] ≃ 1
𝑁 (1 + 2

𝑞
∑
𝑣=1

𝜌2
𝑣) 𝑘 > 𝑞.

The purpose of time series analysis is, indeed, to explore the dependence structure between different time
points, naturally correlated [33]. In its essence, a time series model attempts to explain the correlation present
in the data, improving their ability to predict future observations [32]. By accounting for some or all of such
dependence, it is expected that the residuals obtained will be uncorrelated, with constant mean and variance,
as if they were white noise [33]. This concept refers to a sequence of random variables with mean zero and
constant variance,𝑤𝑡 ∼ 𝑊𝑁(0, 𝜎2

𝑤), representing aweakly stationary process, where all𝑤𝑡 are uncorrelated
with autocovariance function defined as

𝛾𝑘 = 𝐸 [𝑤𝑡𝑤𝑡+𝑘] =
⎧{
⎨{⎩

𝜎2
𝑤, 𝑘 = 0

0, 𝑘 ≠ 0.
(3.10)

Also defined as white noise, a sequence of random variables that, more than uncorrelated, are independent and
identically distributed (iid),𝑤𝑡 ∼ iid(0, 𝜎2

𝑤), represents themost simple example of a strict stationary process.
If the variables follow a normal distribution, with both non-correlation and independence assumptions being
fulfilled, the resulting process is defined as a Normal ou Gaussian white noise [29, 31]. Either in a strict or
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weak sense, a white noise process has no memory, which is the same as saying that past values of the series
provide no information for predicting future values [30].

From the sum of white noise terms, 𝑤𝑡 ∼ iid(0, 𝜎2
𝑤), results a process known as Random Walk:

𝑦𝑡 = 𝑦𝑡−1 + 𝑤𝑡 𝑡 = 1, 2, … , (3.11)

where 𝑦𝑡−1 = ∑𝑡−1
𝑖=1 𝑤𝑖, having as start point 𝑦1 = 𝑤1 [34]. This time series is a particular case of the

process 𝑦𝑡 = 𝛿 + 𝑦𝑡−1 + 𝑤𝑡, 𝑡 = 1, 2, …, when the drift, 𝛿, equals 0, representing a stochastic process in
which the value of the series at time t depends only on the value of the series at time 𝑡 − 1 plus a random
shock (𝑤𝑡) [29, 34]. From a practical point of view, 𝑤𝑡 can be interpreted as steps, back or forward, taken by
some person and whose sequence (sum) define his/her position at time t [31].

From Equation 3.11, it can easily be obtained the mean,

𝜇𝑡 = 𝐸 [𝑦𝑡] = 𝐸 [𝑤1 + 𝑤2 + ⋯ + 𝑤𝑡]
= 𝐸 [𝑤1] + 𝐸 [𝑤2] + ⋯ + 𝐸 [𝑤𝑡]
= 0,

(3.12)

and the variance of the process {𝑦𝑡∶ 𝑡 = 1, 2, … },

Var [𝑦𝑡] = Var [𝑤1 + 𝑤2 + ⋯ + 𝑤𝑡]
= Var [𝑤1] + Var [𝑤2] + ⋯ + Var [𝑤𝑡]
= 𝜎2

𝑤 + 𝜎2
𝑤 + ⋯ + 𝜎2

𝑤

= 𝑡𝜎2
𝑤.

(3.13)

This is a clear example of a stochastic process stable in the mean (𝜇𝑡 = 0 for all t), but not in the variance,
as it increases linearly with time (𝑡𝜎2

𝑤; Figure 3.1) [31].
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Figure 3.1: Simulation of one hundred steps of a random walk (100 realizations).
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3.2 Models for stationary time series

Time series generated by a linear combination of independent, random, shocks can be represented by station-
ary models, of great importance in modelling a myriad of processes.

3.2.1 General linear process

A stochastic process represented as a weighted sum of actual and past values of white noise terms is a general
linear process, defined by

̃𝑦𝑡 = 𝑤𝑡 + 𝜓1𝑤𝑡−1 + 𝜓2𝑤𝑡−2 + …

= 𝑤𝑡 +
∞

∑
𝑖=1

𝜓𝑖𝑤𝑡−𝑖,
(3.14)

with ̃𝑦𝑡 = 𝑦𝑡 − 𝜇 as the ‘distance’ of the process, if stationary, from its level 𝜇 = 𝐸 [𝑦𝑡]. For this process,
𝐸 [𝑦𝑡] = 0 and 𝛾𝑘 = 𝜎2

𝑤 ∑∞
𝑖=0 𝜓𝑖𝜓𝑖+𝑘 [29].

Equation 3.14 can be rewritten in terms of the backward shift operator, B, 𝐵𝑗𝑦𝑡 = 𝑦𝑡−𝑗, as

̃𝑦𝑡 = 𝑤𝑡 + 𝜓1𝑤𝑡−1 + 𝜓2𝑤𝑡−2 + …
= 𝜓(𝐵)𝑤𝑡,

(3.15)

where 𝜓(𝐵) = 1 + 𝜓1𝐵 + 𝜓2𝐵2 + … is the transfer function of the linear filter that transforms the white
noise process 𝑤𝑡 into the process ̃𝑦𝑡 [29].

Concerning the right-hand side of Equation 3.14, ̃𝑦𝑡 represents a valid stationary process if the series 𝜓𝑖 is
either finite or infinite under the condition ∑∞

𝑖=1 |𝜓𝑖| < ∞ [29]. This process can also be interpreted as a
weighted linear combination of past values of the process { ̃𝑦𝑡} plus a random white noise term 𝑤𝑡:

̃𝑦𝑡 = 𝜋1 ̃𝑦𝑡−1 + 𝜋2 ̃𝑦𝑡−2 ⋯ + 𝑤𝑡

=
∞

∑
𝑗=1

𝜋𝑗 ̃𝑦𝑡−𝑖 + 𝑤𝑡.
(3.16)

To associate present observations with past series values in an interpretable manner, an invertibility condition
must be fulfilled. The invertibility assumption for a general linear process requires the weights 𝜋𝑗 to be
entirely summable, that is ∑∞

𝑗=0 |𝜋𝑗| < ∞, given 𝜋(𝐵) = 𝜓−1(𝐵) = 1 − ∑∞
𝑗=1 𝜋𝑗𝐵𝑗 [29].

In either forms (Equations 3.14 and 3.16), the practical application of the general linear process is limited
due to its infinite number of parameters [29, 31].
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3.2.2 Autoregressive process

Retaining from Equation 3.16 the first 𝑝 parameters 𝜋 of the expression, it is obtained the process

̃𝑦𝑡 = 𝜙1 ̃𝑦𝑡−1 + 𝜙2 ̃𝑦𝑡−2 + ⋯ + 𝜙𝑝 ̃𝑦𝑡−𝑝 + 𝑤𝑡, (3.17)

with the symbol 𝜙 now representing the set of weight parameters (𝜙1, … , 𝜙𝑝). Such process, denoted as
autoregressive (AR) process of order p, AR(p) process, can also be written as

𝜙(𝐵) ̃𝑦𝑡 = 𝑤𝑡, (3.18)

where

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 (3.19)

is the autoregressive operator of order 𝑝 and 𝜙(𝐵) = 0 is the characteristic equation. This AR process has
𝑝 + 2 unknown parameters to be estimated, namely 𝜇, 𝜙1, 𝜙2, … , 𝜙𝑝, and 𝜎2

𝑤 [29].

The employed name autoregressive derives from the fact that the actual value of the series, ̃𝑦𝑡, is the result
of a weighted combination of its last p values plus a random value, 𝑤𝑡, in which is contemplated all the
information at time t that could not be explained by previous values [31].

Since the series 𝜙(𝐵) is finite, an autoregressive process is invertible without any conditions over its param-
eters. Nevertheless, an AR process needs the autoregressive operator to have all its roots (the solutions of
𝜙(𝐵) = 0) greater than one in absolute value (that is, outside the unit circle) to ensure stationarity [29]. For
the general case, the following statements are necessary, but not sufficient, to satisfy this condition [31]:

⎧{
⎨{⎩

𝜙1 + 𝜙2 + ⋯ + 𝜙𝑝 < 1
|𝜙𝑝| < 1.

(3.20)

When 𝑝 = 1, the so called first-order AR process ̃𝑦𝑡 = 𝜙 ̃𝑦𝑡−1 + 𝑤𝑡 just requires |𝜙| < 1 to fulfil this
requirement [29].

From multiplying Equation 3.17 by ̃𝑦𝑡−𝑘, for 𝑘 ⩾ 0, and taking expectations of the resulting values, follows
that:

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 + ⋯ + 𝜙𝑝𝛾𝑘−𝑝 𝑘 > 0, (3.21)

which divided by 𝛾0 results in
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𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 + ⋯ + 𝜙𝑝𝜌𝑘−𝑝 𝑘 > 0, (3.22)

that is, the autocorrelation function of a stationary AR(p) process, generally represented by a combination of
damped exponentials and damped sine waves [29, 31].

Taking 𝑘 = 1, 2, … , 𝑝 in Equation 3.22, with 𝜌0 = 1, follows the sequence of equations known as Yule-
Walker equations:

⎧{{{
⎨{{{⎩

𝜌1 = 𝜙1 + 𝜙2𝜌1 + ⋯ + 𝜙𝑝𝜌𝑝−1

𝜌2 = 𝜙1𝜌1 + 𝜙2 + ⋯ + 𝜙𝑝𝜌𝑝−2

⋮
𝜌𝑝 = 𝜙1𝜌𝑝−1 + 𝜙2𝜌𝑝−2 + ⋯ + 𝜙𝑝.

(3.23)

Estimates of the𝜙 parameters can be obtained by replacing the theoretical autocorrelations 𝜌𝑘 by the estimated
autocorrelations 𝑟𝑘 in the Yule-Walker equations [29].

The variance of an AR process, 𝛾0 = 𝜎2
𝑦, can be expressed in terms of the parameters 𝜎2

𝑤, 𝜙1, 𝜙2, … , 𝜙𝑝 and
autocorrelation values, as following [29, 31]:

𝛾0 = 𝜎2
𝑤

1 − 𝜙1𝜌1 − 𝜙2𝜌2 − ⋯ − 𝜙𝑝𝜌𝑝
. (3.24)

The order p of an AR process is generally unknown and needs to be defined from the sample data [29]. For
that purpose, the autocorrelation function can not be said to provide useful information as it is infinitely
extensive, that is, autocorrelations do not became zero after a specific number of lags, instead they tail off
(Figure 3.2) [31]. The information provided by the autocorrelation function is, therefore, complemented by
the partial autocorrelation function (PACF) at lag k, 𝜙𝑘𝑘, defined as

𝜙𝑘𝑘 = Corr [𝑦𝑡 − ̂𝑦𝑡, 𝑦𝑡−𝑘 − ̂𝑦𝑡−𝑘] , (3.25)

where ̂𝑦𝑡 = 𝜙𝑘−1,1 𝑦𝑡−1 + 𝜙𝑘−1,2 𝑦𝑡−2 + ⋯ + 𝜙𝑘−1,𝑘−1 𝑦𝑡−𝑘+1 and, equivalently, ̂𝑦𝑡−𝑘 = 𝜙𝑘−1,1 𝑦𝑡−𝑘+1 +
𝜙𝑘−1,2 𝑦𝑡−𝑘+2 + ⋯ + 𝜙𝑘−1,𝑘−1 𝑦𝑡−1 are the best linear predictors of 𝑦𝑡 and 𝑦𝑡−𝑘, respectively, based on
the values 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑘+1 [29]. Hence, the partial autocorrelation function quantifies the correlation
between the residuals from these regressions or, simply, the correlation between 𝑦𝑡 and 𝑦𝑡−𝑘 not accounting
for the effect of the intermediary values 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑘+1 [29, 31].

For anAR(p) process, the partial autocorrelation function cuts off after lag p, meaning that𝜙𝑘𝑘 are nonzero for
all 𝑘 ⩽ 𝑝 and zero for 𝑘 > 𝑝 (Figure 3.2) [29]. Estimates for these values, ̂𝜙𝑘𝑘, can be obtained by recursive
methods, as the one proposed by Levinson (1947) and Durbin (1960) for either theoretical or sample partial
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autocorrelations,

𝜙𝑘𝑘 =
𝜌𝑘 − ∑𝑘−1

𝑗=1 𝜙𝑘−1,𝑗𝜌𝑘−𝑗

1 − ∑𝑘−1
𝑗=1 𝜙𝑘−1,𝑗𝜌𝑗

, (3.26)

where 𝜙𝑘,𝑗 = 𝜙𝑘−1,𝑗 − 𝜙𝑘𝑘𝜙𝑘−1,𝑘−𝑗 for 𝑗 = 1, 2, … , 𝑘 − 1 [31].
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Figure 3.2: Simulation of an AR(1) process with parameter 𝜙 = 0.5. Sequence plot (at top) and correlogram for the ACF and the
PACF (at bottom). ACF, Autocorrelation Function; PACF, Partial Autocorrelation Function.

3.2.3 Moving Average process

Considering as nonzero only the first q weights 𝜓 of the expression 3.14, the resulting process,

̃𝑦𝑡 = 𝑤𝑡 − 𝜃1𝑤𝑡−1 − 𝜃2𝑤𝑡−2 − ⋯ − 𝜃𝑞𝑤𝑡−𝑞, (3.27)

is referred to asmoving average (MA) process of order q, or MA(q) process, that can be written, alternatively,
as

̃𝑦𝑡 = 𝜃(𝐵)𝑤𝑡, (3.28)
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where

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 (3.29)

is the moving average operator of order q [29].

The weights 1, −𝜃1, −𝜃2, … , 𝜃𝑞 are applied to the white noise variables 𝑤𝑡, 𝑤𝑡−1, 𝑤𝑡−2, … , 𝑤𝑡−𝑞 to obtain
𝑦𝑡 and then ‘moved’ over 𝑤𝑡+1, 𝑤𝑡, 𝑤𝑡−1, 𝑤𝑡−2, … , 𝑤𝑡−𝑞+1 to get 𝑦𝑡+1, and so on, justifying the name
moving average [31].

The variance and the autocovariance function of the process ̃𝑦𝑡 are, respectively,

𝜎2
𝑦 = 𝛾0 = 𝜎2

𝑤(1 + 𝜃2
1 + 𝜃2

2, … , 𝜎2
𝑞) (3.30)

and

𝛾𝑘 =
⎧{
⎨{⎩

𝜎2
𝑤(−𝜃𝑘 + 𝜃1𝜃𝑘+1 + 𝜃2𝜃𝑘+2 + ⋯ + 𝜃𝑞−𝑘𝜃𝑞), 𝑘 = 1, 2, … , 𝑞

0, 𝑘 > 𝑞.
(3.31)

From that follows the autocorrelation function of the process, recognized by its cutoff after q lags,

𝜌𝑘 =
⎧{
⎨{⎩

−𝜃𝑘+𝜃1𝜃𝑘+1+𝜃2𝜃𝑘+2+⋯+𝜃𝑞−𝑘𝜃𝑞
1+𝜃2

1+𝜃2
2+⋯+𝜃2𝑞

, 𝑘 = 1, 2, … , 𝑞
0, 𝑘 > 𝑞.

(3.32)

Rephrasing, the autocorrelations of a moving average process of order q take the value zero beyond lag q,
in a similar way as the partial autocorrelation function of an AR(p) process cuts off after lag p. Conversely,
the partial autocorrelations of a MA(q) process show a behaviour similar to the autocorrelations of an AR(p)
process (Figure 3.3). Estimates for 𝜃1, 𝜃2, … , 𝜃𝑞 can be obtained by replacing the theoretical autocorrelations
for their estimates, 𝑟𝑘, in Equation 3.32. The level of the process MA(q), 𝜇, and the variance of the white
noise process, 𝜎2

𝑤, are also unknown, making a total of 𝑞 + 2 parameters to be estimated from the sample
data [29].

Moving average processes are subject to invertibility conditions, independent of stationarity requirements.
To be invertible, the roots of 𝜃(𝐵) (𝜃(𝐵) = 0) must all lie outside the unit circle, that is, they need to be
greater than one in absolute value. No further conditions are required to ensure stationarity, since 𝜃(𝐵) is a
finite series [29].
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Figure 3.3: Simulation of a MA(1) process with parameter 𝜃 = 0.7. Sequence plot (at top) and correlogram for the ACF and the
PACF (at bottom). ACF, Autocorrelation Function; PACF, Partial Autocorrelation Function.

3.2.4 Mixed Autoregressive Moving Average process

In practice, some time series are better explained by both moving average and autoregressive terms. Such
processes are represented by mixed Autoregressive Moving Average (ARMA) models with parameters p and
q, ARMA(p,q):

̃𝑦𝑡 = 𝜙1 ̃𝑦𝑡−1 + ⋯ + 𝜙𝑝 ̃𝑦𝑡−𝑝 + 𝑤𝑡 − 𝜃1𝑤𝑡−1 − ⋯ − 𝜃𝑞𝑤𝑡−𝑞 (3.33)

or, recurring to moving average and autoregressive operators,

𝜙(𝐵) ̃𝑦𝑡 = 𝜃(𝐵)𝑤𝑡, (3.34)

where 𝜙(𝐵) and 𝜃(𝐵) are the polynomial operators in B of orders p and q defined in Equations 3.19 and 3.29,
respectively. Thus, an ARMA process has 𝑝+𝑞 +2 unknown parameters (𝜇, 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞, 𝜎2

𝑤) [29].

As ̃𝑦𝑡 = 𝑦𝑡 − 𝜇, the general ARMA process can be expressed in terms of the original series 𝑦𝑡 as 𝜙(𝐵)𝑦𝑡 =
𝜃0 + 𝜃(𝐵)𝑤𝑡, where the constant 𝜃0 is a function of 𝜇:
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𝜃0 = 𝜇(1 − 𝜙1 − 𝜙2 − ⋯ − 𝜙𝑝). (3.35)

Given the proprieties of the processes it integrates, the mixed process ARMA(p,q) takes as condition for
stationarity that all the roots of 𝜙(𝐵) = 0 lie outside the unit circle. The same requirement applies to the
roots of 𝜃(𝐵) = 0 so that 𝜙(𝐵) ̃𝑦𝑡 = 𝜃(𝐵)𝑤𝑡 defines an invertible process [29].

The autocovariance function of an ARMA(p,q) process is

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 + ⋯ + 𝜙𝑝𝛾𝑘−𝑝 𝑘 > 𝑞, (3.36)

from what follows its autocorrelation function

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 + ⋯ + 𝜙𝑝𝜌𝑘−𝑝 𝑘 > 𝑞. (3.37)

The ‘look’ of the ACF of a mixed process largely depends on the orders p and q: if 𝑞 −𝑝 < 0, all the function
will show a pattern of mixed damped exponentials and/or damped sine waves; if, instead, 𝑞 −𝑝 ⩾ 0, the first
𝑞 − 𝑝 + 1 values (𝜌0, 𝜌1, … , 𝜌𝑞−𝑝) will not follow such pattern. In turn, the partial autocorrelation function
of an ARMA(p,q) process shows a pattern similar to the partial autocorrelation function of a MA(q) process,
being characterized, once again, by damped exponentials and/or damped sine waves (Figure 3.4) [29].
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Figure 3.4: Simulation of an ARMA(1,1) process with parameters 𝜙 = 0.5 and 𝜃 = 0.5. Sequence plot (at top) and correlogram
for the ACF and the PACF (at bottom). ACF, Autocorrelation Function; PACF, Partial Autocorrelation Function.
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Table 3.1: Summary of properties of Autoregressive, Moving Average and Mixed processes.

Autoregressive process Moving Average process Mixed process

Model in terms of
previous ̃𝑦′𝑠

𝜙(𝐵) ̃𝑦𝑡 = 𝑤𝑡 𝜃−1(𝐵) ̃𝑦𝑡 = 𝑤𝑡 𝜃−1(𝐵)𝜙(𝐵) ̃𝑦𝑡 = 𝑤𝑡

Model in terms of
previous 𝑤′𝑠

̃𝑦𝑡 = 𝜙−1(𝐵)𝑤𝑡 ̃𝑦𝑡 = 𝜃(𝐵)𝑤𝑡 ̃𝑦𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑤𝑡

𝜓 weights Infinite series Finite series Infinite series

𝜋 weights Finite series Infinite series Infinite series

Stationarity condition Roots of 𝜙(𝐵) = 0 outside the
unit circle

Always stationary Roots of 𝜙(𝐵) = 0 outside the
unit circle

Invertibility condition Always invertible Roots of 𝜃(𝐵) = 0 outside the
unit circle

Roots of 𝜃(𝐵) = 0 outside the
unit circle

Autocorrelation
function

Infinite (damped exponentials
and/or damped sine waves)

Finite Infinite (damped exponentials
and/or damped sine waves after
first 𝑞 − 𝑝 lags)

Tails off Cuts off after lag 𝑞 Tails off

Partial autocorrelation
function

Finite Infinite (damped exponentials
and/or damped sine waves)

Infinite (dominated by damped
exponentials and/or damped
sine waves after first 𝑝 − 𝑞
lags)

Cuts off after lag 𝑝 Tails off Tails off

Source: Box, Jenkins and Reinsel [29].

3.3 Models for nonstationary time series

Many time series, in areas like economy and health, exhibit a nonstationary behaviour, presenting trend,
seasonality, or both. To accommodate/describe such behaviour, a new class of models is considered, by
assuming that some difference of process is, indeed, stationary. This class of models can be further extended
to include seasonal terms.

3.3.1 Autoregressive Integrated Moving Average Process

As explained in the previous section, a mixed ARMA(p,q) model (Equation 3.34) is stationary if all the roots
of 𝜙(𝐵) = 0 are greater than one in absolute value. Otherwise, the process is nonstationary. If the roots take
some value lower than one, it can be shown that the series has exponential growth, clearly incompatible with
a stationarity assumption. The remaining case, when at least one of the roots of 𝜙(𝐵) = 0 lies on the unit
circle, seems to more closely describe the behaviour of nonstationary time series [29].

Given the general model
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𝜙(𝐵)(1 − 𝐵)𝑑 ̃𝑦𝑡 = 𝜃(𝐵)𝑤𝑡 (3.38)

or

𝜑(𝐵) ̃𝑦𝑡 = 𝜃(𝐵)𝑤𝑡,

where

− 𝜑(𝐵) is a nonstationary autoregressive operator, with d roots of 𝜑(𝐵) = 0 on the unit circle (d unit
roots);

− 𝜙(𝐵) is a stationary autoregressive operator, with all the roots of 𝜙(𝐵) = 0 outside the unit circle;
− 𝜃(𝐵) is an invertible moving average operator, with all the roots of 𝜃(𝐵) = 0 greater than one in

absolute value [29],

becomes evident that such process is stationary if 𝑑 = 0. Alternatively, making use of the differencing
operator ∇ = 1 − 𝐵, and given that ∇𝑑 ̃𝑦𝑡 = ∇𝑑𝑦𝑡, the previous equation can be written as

𝜙(𝐵)∇𝑑𝑦𝑡 = 𝜃(𝐵)𝑤𝑡, (3.39)

denoting an Autoregressive Integrated Moving Average (ARIMA) process of order (p,d,q) obtained by inte-
gration (i.e. sum) of a stationary ARMA(p,q) process d times,

𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑤𝑡, (3.40)

where 𝑧𝑡 = ∇𝑑𝑦𝑡, that is, the d-th order difference of the series 𝑦𝑡. Hence, if 𝑧𝑡 is represented by a stationary
ARMA(p,q) process, then 𝑦𝑡 is said to follow an ARIMA(p,d,q) model (Figure 3.5) [29, 31].

In some contexts, when a deterministic component exists, it may be useful to extend the model (3.39) to the
form

𝜙(𝐵)∇𝑑𝑦𝑡 = 𝜃0 + 𝜃(𝐵)𝑤𝑡, (3.41)

where 𝜃0 is a constant term representing a nonzero mean in the sense that

𝐸 [𝑧𝑡] = 𝐸 [∇𝑑𝑧𝑡] = 𝜇𝑧 = 𝜃0
1 − 𝜙1 − 𝜙2 − ⋯ − 𝜙𝑝

.

The inclusion of this constant gives the model the capacity to represent series with deterministic trends, as a
function of time. Still, the assumption of a stochastic trend seems more adequate to most series, and, for that
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reason, the mean is assumed to be zero unless clear evidence in contrary [29].

This general model can be expressed, and therefore interpreted, in terms of:

− actual (𝑤𝑡) and previous shocks (𝑤𝑡−𝑗, 𝑗 = 1, 2, …),
− previous values of the process (𝑦𝑡−𝑗, 𝑗 = 1, 2, …) and actual shock (𝑤𝑡), or, more conveniently,
− previous values of the process (𝑦𝑡−𝑗, 𝑗 = 1, 2, …) and actual (𝑤𝑡) and previous shocks (𝑤𝑡−𝑗, 𝑗 =

1, 2, …).

For this last case, the difference equation form of the model, with 𝜃0 = 0, is used:

𝑦𝑡 = 𝜑1𝑦𝑡−1 + ⋯ + 𝜑𝑝+𝑑𝑦𝑡−𝑝−𝑑 + 𝑤𝑡 − 𝜃1𝑤𝑡−1 − ⋯ − 𝜃𝑞𝑤𝑡−𝑞. (3.42)
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Figure 3.5: Simulation of an ARIMA(1,1,0) process with parameter 𝜙 = 0.9. Sequence plot (at top) and correlogram for the ACF
and the PACF (at bottom). ACF, Autocorrelation Function; PACF, Partial Autocorrelation Function.

3.3.2 Seasonal Autoregressive Integrated Moving Average process

Many time series present periodic fluctuations around the mean, as could be exemplified by the increasing
sales of ice cream in the summer months. This effect is known as seasonality and must be explicitly incorpo-
rated into the model [33].
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Seasonal time series are commonly analysed through its decomposition in trend, seasonal and random com-
ponents [35–38], with exponential smoothing and seasonal loess (locally weighted scatterplot smoothing) as
common methods, but some concerns can arise from that approach. While trend and seasonality from data
can be properly fitted by a polynomial and a Fourier series, respectively, such methods can reveal some in-
flexibility when the objective is to predict future values of the series [29]. To deal with such components and
the resulting departure of the series from the concept of stationarity, a seasonal process is considered.

Given 𝐵𝑠𝑦𝑡 = 𝑦𝑡−𝑠 and ∇𝑠𝑦𝑡 = (1 − 𝐵𝑠)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑠, where the nonstationary operator 1 − 𝐵𝑠 has s
unit roots for 𝑒𝑖(2𝜋𝑘/𝑠) (𝑘 = 0, 1, … , 𝑠 − 1) [29], a multiplicative seasonal ARIMA (SARIMA) process can
be defined as

𝜙𝑝(𝐵)Φ𝑃 (𝐵𝑠)∇𝑑∇𝐷
𝑠 𝑦𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑤𝑡, (3.43)

with nonseasonal orders p, d, q, seasonal orders P, D, Q and seasonal period s, where Φ(𝐵𝑠) and Θ(𝐵𝑠)
are the seasonal AR and MA polynomials in 𝐵𝑠 of degrees P and Q, respectively, satisfying stationarity and
invertibility conditions [29, 31]. Hence, a series 𝑦𝑡 is said to follow a seasonal ARIMA(𝑝, 𝑑, 𝑞)×(𝑃 , 𝐷, 𝑄)𝑠
process if 𝑧𝑡 = ∇𝑑∇𝐷

𝑠 𝑦𝑡 is represented by a stationary ARMA(𝑝, 𝑞)×(𝑃 , 𝑄)𝑠 process, with seasonal period
s (Figure 3.6).
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Figure 3.6: Simulation of a SARIMA(0,1,1)×(0,1,1)12 process with parameters 𝜃 = 0.4 and Θ = 0.6. Sequence plot (at top) and
correlogram for the ACF and the PACF (at bottom). ACF, Autocorrelation Function; PACF, Partial Autocorrelation Function.
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3.4 Time series modelling

Box and Jenkins defined a three stage iterative method for model building — identification, estimation and
diagnostic. This approach is one of the most popularized and will be further presented.

3.4.1 Model identification

Following the Box-Jenkins approach, time series analysis must start with the identification of an appropriate
class of models to represent the process under study, given the general ARIMA family 𝜙(𝐵)∇𝑑𝑦𝑡 = 𝜃0 +
𝜃(𝐵)𝑤𝑡 [29].

As stated before, stationarity is an important feature of time series and to assess the validity of such assumption
will be the first step in the analysis of a specific time series. Moreover, the presence of significant seasonality,
that needs to be accounted for, must be investigated. Graphical methods are useful and commonly used tools
in the preliminary identification of possible models to be fitted and checked later. Particular emphasis is
given to sample autocorrelation and partial autocorrelation functions to assess the stationarity of 𝑦𝑡. If the
estimated autocorrelation function, that follows the behaviour of the theoretical function, does not fall off
quickly it could be taken as a signal that there may exist a root close to one. It suggests that the process under
study should be treated as nonstationary in 𝑦𝑡, but eventually as stationary in ∇𝑑𝑦𝑡 with 𝑑 ⩾ 1, reducing the
process to a mixed ARMA model

𝜙(𝐵)𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑤𝑡,

where

𝑧𝑡 = (1 − 𝐵)𝑑𝑦𝑡 = ∇𝑑𝑦𝑡.

For series with non-constant variance, possible transformations can be tested to stabilize it [33]. Power
transformations, introduced by Box and Cox (1964) [31], stand out as one of the most popular, taking the
form

𝑔(𝑦𝑡) =
⎧{
⎨{⎩

𝑦𝜆
𝑡 −1
𝜆 , 𝜆 ≠ 0

log(𝑦𝑡), 𝜆 = 0,
(3.44)

where 𝜆 could be considered an additional parameter to be estimated from the data. However, instead of a
point estimation, a log-likelihood value is calculated for a range of selected values of 𝜆, and the appropriate
transformation chosen according to the parameter value that results in the maximum likelihood value [29].
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This approach benefits from its simplicity, as the result can be easily interpreted, although it can not be
applied to negative data. In that case, a preliminary step, where a positive constant is added to all of the
observed values, must be taken before the transformation. An alternative would be to use another family of
transformations [39].

Both transformation and differencing are intended to produce a series with constant scale and location [33].
Thus, the objective at this point is to identify the degree of differencing d, assuming that stationarity has
been achieved when the estimated autocorrelations of 𝑦𝑡 die out quickly. The inspection of the first 20 or
so estimated autocorrelations of the original series (𝑑 = 0) and its first two differences, that is, 𝑑 = 1 and
𝑑 = 2, is recommended and usually enough, as most series will need no more than two differences to achieve
stationarity. Further differencing, beyond the strictly necessary to achieve stationarity, will not improve the
model, quite the opposite, it could introduce extra correlation into the series [29]. In addition, it could violate
the assumption of invertibility and make it difficult to estimate model parameters [31].

While the initial evaluation of process stationarity is often made informally, based on characteristics of the
series and its sample autocorrelation function, the decision on the need for differencing can be formally
evaluated by testing for a unit root in the autoregressive operator of the model [31].

Considering the model 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝑤𝑡, 𝑡 = 1, 2, …, with 𝑦0 = 0, the process {𝑦𝑡} is stationary if |𝜙| < 1,
but nonstationary when 𝜙 = 1. To test the hypothesis of a unit root, one can use the Dickey-Fuller test, based
on the the statistic

̂𝜏 =
̂𝜙 − 1

𝑠𝑤( ∑𝑛
𝑡=2 𝑦2

𝑡−1)
−1/2 ,

where ̂𝜙 is the conditional least-squares estimate of the parameter 𝜙 and 𝑠2
𝑤 = (𝑛 − 2)−1( ∑𝑛

𝑡=2 𝑦2
𝑡 −

̂𝜙 ∑𝑛
𝑡=2 𝑦𝑡−1𝑦𝑡) is the residual mean square. The alternative hypothesis is that the AR characteristic poly-

nomial has no unit roots and so the process is stationary. As this is a one-sided test, the null hypothesis of
𝜙 = 1 is rejected for small values of the test statistic, ̂𝜏 . These results can be extended for higher order mod-
els, AR(𝑝 + 1), by using the augmented Dickey-Fuller (ADF) test. It is also valid for mixed ARIMA(𝑝, 1, 𝑞)
or higher order differencing models. In that case, the model is approximated by an autoregressive model,
whose order get to be estimated before the ADF test is applied. Other tests have also been considered for
ARIMA models, such as Phillip and Perron tests or tests of the type of likelihood ratio. Notwithstanding, to
a greater or lesser extent, unit root tests raise concerns regarding power for time series of short length [29].

Once defined the differencing order, the following step is to identify the AR and MA orders of the model
for 𝑧𝑡. Suitable choices are identified based on the proprieties of the theoretical autocorrelation and partial
autocorrelation functions previously described for moving average, autoregressive and mixed autoregressive
moving average processes (Table 3.1). Given a MA(q) process, the autocorrelation function cuts off after lag
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q, that is, 𝜌𝑘 takes the value zero for lags greater than q, whereas the partial autocorrelation function tails off.
Based on that, the identification of the order q of the model becomes possible through the inspection of the
estimated autocorrelation function, whose behaviour tends to be identical to the theoretical function. Corre-
spondingly, the order of an AR(p) process could be hypothesized considering the behaviour of the estimated
partial autocorrelation function, as it cuts off after lag p (𝜙𝑘𝑘 = 0, 𝑘 > 𝑝), while the autocorrelation function
tails off. For mixed ARMA(p,q) processes, both functions tail off, reassembling damped exponentials and/or
damped sine waves [29].

One aspect to be noted about the estimated autocorrelations is that large covariance can exist between near
values, in such a way that the estimated function does not perfectly match the behaviour of the theoretical
function. Some large estimated autocorrelations can, thus, occur after lags q or p, justifying the need to
further investigate some related models beyond the one suggested by the analysis of the ACF and the PACF
[29]. Any indication on whether the autocorrelation and partial autocorrelations are effectively zero beyond
specific lags q or p, respectively, is important.

For an hypothetical moving average process, with nonzero 𝜌 up to lag q, the standard errors of estimated
autocorrelations can be obtained by replacing theoretical autocorrelations for their estimates in Bartlett’s
approximation formula,

𝜎̂ [𝑟𝑘] ≃
√√√
⎷

1
𝑛 (1 + 2

𝑞
∑
𝑣=1

𝑟2𝑣) 𝑘 > 𝑞, (3.45)

referred to as large-lag standard error, as it applies to lags greater than q [29]. For particular cases where
𝑞 = 0, and thus 𝜌 = 0 for all lags but lag 0, the series is perfectly random (white noise) and the standard
errors for the estimated autocorrelations are simply

𝜎̂ [𝑟𝑘] ≃ 1√𝑛 𝑘 > 0. (3.46)

For time series of moderate size and theoretical autocorrelations equal to zero, the distribution of the corre-
spondent estimated autocorrelations approximates to normal distribution, so that the statistic 𝑟𝑘 / 𝜎̂ [𝑟𝑘], to
test 𝜌 = 0, will approximate to a standard normal distribution [29]. It remains valid for partial autocorrela-
tions, given the hypothesis of an AR(p) process. In that case, each estimated partial autocorrelation is divided
by its standard error, defined as

𝜎̂ [ ̂𝜙𝑘𝑘] ≃ 1√𝑛 𝑘 > 𝑝, (3.47)

as shown by Quenouille (1949) [29].

Hence, based on the assumption that the process under analysis is white noise, it is possible to obtain limits
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for autocorrelations and partial autocorrelations, usually plotted by dashed lines against their estimates as a
visual clue to check whether the functions effectively cut off after lag q or p, respectively [29].

Other approaches may be considered for identification purposes, to complement the sample autocorrelation
and partial autocorrelation functions which, in case of mixed processes, can give non-clear insights [29]. One
of the most popular are the model selection criteria as the Akaike´s Information Criterion (AIC) proposed by
Akaike (1974) and further normalized by the sample size n,

AIC = −2 ln(𝐿̂) + 2𝑟
𝑛

≈ ln(𝜎̂2
𝑤) + 𝑟 2

𝑛 + constant,
(3.48)

and the related Schwarz’s Bayesian Information Criterion (BIC),

BIC = AIC + 𝑟(ln(𝑛) − 2)

= −2 ln(𝐿̂) + 𝑟ln(𝑛)
𝑛

≈ ln(𝜎̂2
𝑤) + 𝑟 ln(𝑛)

𝑛 ,

(3.49)

where 𝐿̂ is the maximized value of the likelihood function, 𝜎̂2
𝑤 is the maximum likelihood estimate of the

error variance, 𝜎2
𝑤, and 𝑟 = 𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝑐 + 1 is the number of estimated parameters, with 𝑐 = 1

if the model includes a constant term, 𝑐 = 0 otherwise [29]. When comparing several models, the one with
the minimum value of AIC or BIC should be preferred. As the likelihood value naturally increases if a larger
number of parameters is considered (more information imputed), the second term in Equations 3.48 and 3.49
intends to penalize the inclusion of additional parameters, leading to the choice of the most parsimonious
model, that is, the best model with the minimal complexity. Such penalization is greater in BIC, so that the
model chosen according to this criterion will have, at maximum, the same number of parameters as the model
that would be chosen if the AIC was used [29].

Hurvich and Tsai (1989) proposed a new criterion, intended to eliminate the bias associated to AIC and
defined, accordingly, as corrected AIC (AICc):

AICc = (𝑛AIC + 2𝑟2 + 2𝑟
𝑛 − 𝑟 − 1) / 𝑛, (3.50)

where r represents the number of parameters to be estimated, and n is the effective sample size (for an ARIMA
model it would be 𝑛 = 𝑁 − 𝑑). The authors have shown a better performance of AICc, compared to other
criteria (e.g., AIC, BIC), when the value of r exceeds 10% of n (𝑟/𝑛 > 0.1) [31].

Both AIC and BIC require models in analysis to be estimated by maximum likelihood, meaning that, for
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ARMA models, multiple combinations of p and q need to be maximized, which may result in overfitting.
This problem was addressed by Hannan and Rissanen (1982), that proposed a two-step approach to model
selection, in which an AR model of high order, selected by using the AIC criterion, is firstly fitted, with the
residuals obtained being used as estimates for the unobserved errors. The time series is then regressed by
ordinary least squares on previous observed values and lagged residuals (from the model adjusted in first
place) for multiple combinations of p and q. It follows that the model to be selected is the one with the lower
value of BIC [29, 31].

3.4.2 Parameter estimation

Once an ARIMA model has been specified for the time series, parameter estimation follows. Since the time
series is stationary after taking its d-th difference, the estimation of an ARIMA(p,d,q) process resumes to the
estimation of a stationary ARMA(p,q) for the differenced time series. The same applies to seasonal models,
an extension of ARIMA models [31]. The most common approaches will be addressed, but others can be
applied, such as Bayes’ theorem and bootstrapping [29, 31].

Method of moments

This is a simple method for parameter estimation, that consists in equating sample moments to their respective
theoretical moments and solve the equation to obtain estimates for unknown parameters [31]. For an AR(p)
process, estimates for 𝜙1, 𝜙2, … , 𝜙𝑝 can be obtained by solving the Yule-Walker equations (Equation 3.23)
where the theoretical autocorrelations, 𝜌𝑘, are replaced by their estimates, 𝑟𝑘. For the error variance, estimates
may be obtained from Equation 3.24, as 𝜎2

𝑤 = 𝛾0(1 − 𝜙1𝜌1 − 𝜙2𝜌2 − ⋯ − 𝜙𝑝𝜌𝑝), where the variance of
the process 𝛾0 is replaced by its estimate. The same procedure can be followed for a MA(q) process, based
on Equation 3.30, whereas Equation 3.32 could be used to obtain estimates for 𝜃1, 𝜃2, … , 𝜃𝑞. By replacing
𝜌𝑘 by 𝑟𝑘 for 𝑘 = 1, 2, … , 𝑞, q nonlinear equations are obtained, each with multiple solutions, but only one is
invertible. Thus, for models including a moving average term the method of moments is neither convenient
nor efficient, producing poor estimates [29].

Maximum likelihood

The method of maximum likelihood has the use of all the information in the data as its most important feature.
However, it requires working with the process joint probability density function [31].

For independent and identically distributed data, the joint probability density function, determined by the
product of the marginal density function for each outcome observed, defines the probability of obtaining the
observed data 𝐲, given a specific set of parameters 𝝃, fixed [29, 40]:
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𝑓(𝐲; 𝝃) = 𝑓(𝑦1, … , 𝑦𝑁 ; 𝝃) =
𝑁

∏
𝑡=1

𝑓(𝑦𝑡; 𝝃).

Once the data were available, the question becomes what value of 𝝃 could have originated the observations
𝐲 actually obtained. The likelihood function addresses this question by taking the same form as 𝑓(𝐲; 𝝃), but
assuming, instead, that 𝐲 is fixed and 𝝃 variable [29]. For an ARIMAmodel, it would be defined as a function
of the 𝑞 + 𝑝 + 1 unknown parameters, 𝝃 = (𝝓, 𝜽, 𝜎2

𝑤), given the observed data, 𝐲:

𝐿(𝝃|𝐲) = 𝐿(𝝃|𝑦1, … , 𝑦𝑁) =
𝑁

∏
𝑡=1

𝑓(𝑦𝑡; 𝝃).

Equivalently, the log-likelihood function, more convenient and often preferred in face of its additive propri-
eties, takes the form

ln𝐿(𝝃|𝐲) =
𝑁

∑
𝑡=1

ln 𝑓(𝑦𝑡; 𝝃).

The values of the parameters that most likely have originated the observations actually taken, that is, the
values that maximize the likelihood and, consequently, the log-likelihood functions, are called maximum
likelihood estimates (MLE) [29]. The properties of MLE can be extended to stationary processes, allowing
the application of maximum likelihood to time series data, whose random variables 𝑦𝑡 are not iid. Thus, the
series 𝐳 of length 𝑛 = 𝑁 − 𝑑 is used for estimation purposes. As previously noted, an ARIMA(p,d,q) model
based on the original data 𝑦𝑡 is equivalent to a stationary ARMA(p,q) model fitted to the differenced time
series 𝑧𝑡 = ∇𝑑𝑦𝑡 [29].

Conditional likelihood

Given 𝑧1, … , 𝑧𝑛 observations from an ARMA(p,q), the log-likelihood for the parameters (𝝓, 𝜽, 𝜎2
𝑤), condi-

tional on the choice of the starting p values of 𝑦𝑡 (𝐲∗) and q values of 𝑤𝑡 (𝐰∗), prior to 𝑡 = 1, would be
defined as

ℓ∗(𝝓, 𝜽, 𝜎2
𝑤) = −𝑛

2 ln(𝜎2
𝑤) − 𝑆∗(𝝓, 𝜽)

2𝜎2𝑤
, (3.51)

where

𝑆∗(𝝓, 𝜽) =
𝑛

∑
𝑡=1

𝑤2
𝑡 (𝝓, 𝜽|𝐳∗, 𝐰∗, 𝐳) (3.52)

is the conditional sum-of-squares function, with 𝑤𝑡 = 𝑧𝑡 − 𝜙1𝑧𝑡−1 − ⋯ − 𝜙𝑝𝑧𝑡−𝑝 + 𝜃1𝑤𝑡−1 + ⋯ + 𝜃𝑞𝑤𝑡−𝑞.
If the assumption 𝜇 = 0, usually valid when 𝑑 > 0, does not seem appropriate, 𝑧𝑡 must be replaced by
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̃𝑧𝑡 = 𝑧𝑡 − 𝜇. In that case, 𝜇 may be estimated from the series mean, ̄𝑧 = ∑𝑛
𝑡=1 𝑧𝑡/𝑛, or, alternatively,

specially for small sample sizes, included in 𝝃 as a parameter to be estimated [29].

Given a fixed value of 𝜎2
𝑤, ℓ∗ is linear in𝑆∗(𝝓, 𝜽). Thus, maximizing the log-likelihood function very closely

depends on minimizing the conditional sum-of-squares function, with the values of 𝝓 and 𝜽 obtained being
denominated conditional least-squares estimates [29].

Unconditional likelihood

For an ARMA model, the exact or unconditional log-likelihood function is defined as

ℓ(𝝓, 𝜽, 𝜎2
𝑤) = 𝑓(𝝓, 𝜽) − 𝑛

2 ln(𝜎2
𝑤) − 𝑆(𝝓, 𝜽)

2𝜎2𝑤
, (3.53)

where the unconditional sum-of-squares function,

𝑆(𝝓, 𝜽) =
𝑛

∑
𝑡=−∞

[𝑤𝑡|𝐳, 𝝓, 𝜽]2, (3.54)

is based on the expectation of 𝑤𝑡 conditional on the values of 𝐳, 𝝓, 𝜽. As 𝑆(𝝓, 𝜽), 𝑓(𝝓, 𝜽) is independent
of 𝜎2

𝑤, but their contribution to ℓ(𝝓, 𝜽, 𝜎2
𝑤) differs depending on the sample size. For series with small

n, the log-likelihood is mostly determined by 𝑓(𝝓, 𝜽). With increasing n, contours of the (log-)likelihood
function are mainly defined by the unconditional sum-of-squares function, in such a way that MLE approxi-
mate to the estimates for (𝝓, 𝜽) obtained by minimizing the unconditional sum-of-squares function, denoted
as unconditional (or exact) least-squares estimates [29]. For large series, maximum likelihood and (condi-
tional or unconditional) least squares estimators are identical and both approximately unbiased and normally
distributed [31].

3.4.3 Model diagnostic

Once model identification and parameter estimation have been completed, the following step is to assess
the adequacy of the fitted model to represent the time series under study. Usual approaches for diagnostic
checking purposes include residual analysis and overfitting.

Residual analysis

Considering an ARMA model 𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑤𝑡 fitted to some time series, with parameters estimated by
maximum likelihood ( ̂𝝓, ̂𝜽), the estimates for the error,
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𝑤̂𝑡 = ̂𝜃−1(𝐵) ̂𝜙(𝐵)𝑧𝑡,

are known as residuals. If the fitted model is adequate to the data, it can be proved that

𝑤̂𝑡 = 𝑤𝑡 + 𝑂 ( 1√𝑛) ,

that is, the largest the sample, the closest 𝑤̂𝑡 becomes to white noise, 𝑤𝑡 [29]. Thus, by taking white noise
as model, it can be assessed through residuals whether the selected model is a good fit for the time series. If
the residuals do not satisfy this assumption, a more appropriate model should be fitted, by returning to the
stage of model identification. Thus, one should begin the model diagnostic check by visually inspecting the
plot of residuals to investigate possible departures from randomness, as the pattern of the residuals over time
can provide further insights about the (in)adequacy of the model. If the model fits the data, one will expect
to see a random scatter around zero, with no trends or patterns. Yet, failure to identify patterns or trends in
the plot of residuals is not alone indicative of a good fit of the model. In Figure 3.7 there are represented the
standardized residuals of models AR(1) and MA(1) fitted to the same AR(1) process, simulated in Figure 3.2,
and, as one could see, there are no obvious departures from randomness when the wrong model, MA(1), is
applied to the series.
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Figure 3.7: Standardized residuals of AR(1) and MA(1) models applied to an AR(1) process.
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In complement, the quantile–quantile (Q–Q) plot applied to the residuals can point out the presence of outliers
and provide insights about the adequacy of a normal approximation [29].

Autocorrelation function

To assess model adequacy, the autocorrelation function of the residuals is a useful tool, as it can point out
apparent discrepancies from white noise [29].

Given a model perfectly identified, with known parameters, 𝑤𝑡’s would be white noise with autocorrelations
𝑟𝑘(𝑤) uncorrelated and approximately normal, with zero mean and variance 𝑛−1. In practice, one can only
obtain 𝑤̂𝑡, which, despite its valuable input about the nature of model inadequacy, has slightly different
properties than 𝑤𝑡. Box and Pierce (1970) have shown that, at low lags, the 𝑟𝑘(𝑤̂)’s can be extremely
correlated, with variance considerably smaller than 𝑛−1, but such effect dissipates for larger lags. Thus,
infer on departures of 𝑟𝑘(𝑤̂) from their theoretical value of zero based on a standard error of 𝑛−1/2 can be
misleading for low lags, although its employment is reasonable for moderate to high lags [29]. If the residuals
indicate some lack of fit, the model should be modified as suggested by the autocorrelations (e.g., extend an
AR(1) to an AR(2) model) [31].

Portmanteau test

As a complement to the analysis of 𝑟𝑘(𝑤̂)′𝑠 individually, it is useful to know whether the first 𝐾 autocorre-
lations of the residuals, as a whole, suggest lack of fit. Then, given a sufficiently large number of autocorre-
lations (so that the weights of 𝜓𝑗 become negligible for 𝑗 > 𝐾), 𝑟𝑘(𝑤̂), 𝑘 = 1, 2, … , 𝐾, from an adequate
ARIMA(𝑝, 𝑑, 𝑞), the statistic

𝑄 = 𝑛
𝐾

∑
𝑘=1

𝑟2
𝑘(𝑤̂),

where𝑛 = 𝑁 −𝑑, approximates to a𝜒2 distribution with𝐾−𝑝−𝑞 degrees of freedom. Fitting an inadequate
model will inflate the value of 𝑄. Therefore, a general ‘portmanteau’ test would reject the null hypothesis of
model adequacy [29].

Ljung and Box (1978) later shown that, under the null hypothesis, this is not a satisfactory approximation for
typical sample sizes, even for 𝑛 = 100 [31]. A modified statistic was then proposed by the authors,

𝑄̃ = 𝑛(𝑛 + 2)
𝐾

∑
𝑘=1

(𝑛 − 𝑘)−1𝑟2
𝑘(𝑤̂),

including a more accurate value for the variance of 𝑟𝑘(𝑤) [29]. Compared to 𝑄, the Ljung-Box statistic is
closer to the 𝜒2 distribution [31].
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Cumulative Periodogram

When fitting some time series, mainly seasonal data, one must assure that specific characteristics, as nonran-
dom periodic oscillations, are taken into account. Such patterns can be detected in the periodogram of the
residuals, defined as

𝐼(𝑓𝑖) = 2
𝑛

⎡⎢
⎣

(
𝑛

∑
𝑡=1

𝑤𝑡 cos(2𝜋𝑓𝑖𝑡))
2

+ (
𝑛

∑
𝑡=1

𝑤𝑡 sin(2𝜋𝑓𝑖𝑡))
2
⎤⎥
⎦

,

with frequency 𝑓𝑖 = 𝑖/𝑛. A large value of 𝐼(𝑓𝑖) occurs when, for a given frequency, a pattern in the residuals
correlates with a cosine or sine wave. Thus, for effective checking of periodic nonrandomness, the normalized
cumulative periodogram

𝐶(𝑓𝑗) = ∑𝑗
𝑖=1 𝐼(𝑓𝑖)
𝑛𝑠2 ,

where 𝑠2 is an estimate of 𝜎2
𝑤, can be analysed. If the fitted model is adequate, then the series of 𝑤𝑡 is white

noise and the plot of 𝐶(𝑓𝑗) against 𝑓𝑗 would display points along a straight line from the origin to (0.5, 1).
As opposed, nonrandom residuals obtained from not so well adjusted models would originate cumulative
periodograms with recurrent deviations from such line [29].

Overfitting

Typically a problem, to be avoided when adjusting any model, overfitting reveals to be useful as a diagnostic
tool in time series analysis. This technique consists of fitting a more elaborate model than the one previously
identified, and believed as adequate. This new model contains additional parameters, to be estimated and,
thus, check if they are really necessary. If a parameter estimate reveals not to be significantly different from
zero, it does not prove that the identified model is the correct one, but it would support the choice of the
simplified model. A smaller value of 𝜎̂2 for this model would emphasize such conclusion, as one is led to
believe that it is a better fit for the data [29].

In ARMA models, orders p and q could both be increased, but not simultaneously, that is, similar terms
should not be added at the same time to both sides of the model in order to prevent parameter redundancy.
The model (1−𝑐𝐵)𝜙(𝐵)𝑧𝑡 = (1−𝑐𝐵)𝜃(𝐵)𝑤𝑡 would be as correct as 𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑤𝑡 for any arbitrary
constant c, but lacks uniqueness and cancellation would be needed. Ideally, residual autocorrelations should
be considered when deciding the direction to take [31].
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3.5 Forecasting

When building a time series model, one of the main goals is surely to predict values of the process at future
moments in time. In healthcare, as in business or finance, reliable forecasting provides valuable insights on
what to expect, supporting decision making on assuring the best possible care to individuals.

Box-Jenkins ARIMA models, previously presented, may be used to forecast future values of some observed
time series, taking as assumption that the model is correctly specified, that is, it is known exactly. Although
it is not possible in practice to ensure this assumption, errors in the estimated parameters will not notably
affect the forecasts for moderate to large time series [29].

3.5.1 Minimum mean square error forecasts

Given the values of a historical series up to time 𝑡, one would like to estimate the future observation

𝑦𝑡+𝑙 = 𝜑1𝑦𝑡+𝑙−1 + ⋯ + 𝜑𝑝+𝑑𝑦𝑡+𝑙−𝑝−𝑑 + 𝑤𝑡+𝑙 − 𝜃1𝑤𝑡+𝑙−1 − ⋯ − 𝜃𝑞𝑤𝑡+𝑙−𝑞. (3.55)

The forecast of this value, ̂𝑦𝑡(𝑙), is said to be made at time origin 𝑡 for lead time 𝑙 (𝑙 > 0). It could be
defined as a linear function of actual and previous shocks 𝑤𝑡, 𝑤𝑡−1, …, so that the best possible forecast is,
supposedly,

̂𝑦𝑡(𝑙) = 𝜓∗
𝑙 𝑤𝑡 + 𝜓∗

𝑙+1𝑤𝑡−1 + 𝜓∗
𝑙+2𝑤𝑡−2 + ⋯ ,

for which the weights 𝜓∗
𝑙 , 𝜓∗

𝑙+1, … need to be determined [29]. Then, given the expression of the future
observation 𝑦𝑡+𝑙 as an infinite weighted sum of shocks,

𝑦𝑡+𝑙 =
∞

∑
𝑗=0

𝜓𝑗𝑤𝑡+𝑙−𝑗, (3.56)

the mean square error of such forecast is

𝐸[𝑦𝑡+𝑙 − ̂𝑦𝑡(𝑙)]2 = 𝜎2
𝑤 [(1 + 𝜓2

1 + ⋯ + 𝜓2
𝑙−1) +

∞
∑
𝑗=0

(𝜓𝑙+𝑗 − 𝜓∗
𝑙+𝑗)2] , (3.57)

minimized when 𝜓𝑙+𝑗 = 𝜓∗
𝑙+𝑗. It follows that

𝑦𝑡+𝑙 = (𝑤𝑡+𝑙 + 𝜓1𝑤𝑡+𝑙−1 + ⋯ + 𝜓𝑙−1𝑤𝑡+1) + (𝜓𝑙𝑤𝑡 + 𝜓𝑙+1𝑤𝑡−1 + ⋯)
= 𝑒𝑡(𝑙) + ̂𝑦𝑡(𝑙),

(3.58)
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where

𝑒𝑡(𝑙) = 𝑦𝑡+𝑙 − ̂𝑦𝑡(𝑙)
= 𝑤𝑡+𝑙 + 𝜓1𝑤𝑡+𝑙−1 + ⋯ + 𝜓𝑙−1𝑤𝑡+1

(3.59)

is the 𝑙-steps-ahead forecast error, that is, the error of the forecast ̂𝑦𝑡(𝑙) at lead time 𝑙, also called forecast
horizon [29, 41].

From this point, it can be realized that the shocks 𝑤𝑡, so far presented as random independent variables, are,
in fact, the one-step-ahead forecast errors:

𝑒𝑡(1) = 𝑦𝑡+1 − ̂𝑦𝑡(1)
= 𝑤𝑡+1,

(3.60)

which must be uncorrelated for a minimum mean square error forecast. Otherwise, each forecast could be
predicted by previously ones and such dependence on the history of the process could be exploited in order
to improve the forecast (in that case, ̂𝑦𝑡(𝑙) would not be the best prediction for 𝑦𝑡+𝑙) [29, 31]. This does not
necessarily apply at longer lead times, with forecast errors made at the same lead time 𝑙 from different time
origins 𝑡 being generally correlated. Also, forecast errors made at different lead times for the same origin
are highly correlated. By fixing 𝑡, ̂𝑦𝑡(𝑙) becomes a function of 𝑙 — forecast function for origin 𝑡 —with the
existing correlation between forecast errors made at different lead times thus justifying the tendency for it to
often lie either wholly above or below the values of the series [29].

As the relation established in Equation 3.60 implies, the variance of the forecast error at 𝑙 = 1 is

𝑉 (𝑒𝑡(1)) = 𝜎2
𝑤. (3.61)

For the general forecast error, 𝑒𝑡(𝑙), it is to note that 𝐸𝑡[𝑒𝑡(𝑙)] = 0, and so the forecast is unbiased. Further-
more, from Equation 3.59 results the variance of the forecast error,

𝑉 (𝑙) = Var[𝑒𝑡(𝑙)] = 𝜎2
𝑤 (1 +

𝑙−1
∑
𝑗=1

𝜓2
𝑗 ) , (3.62)

which can be interpreted as the expected value of 𝑒2
𝑡 (𝑙), 𝐸[𝑦𝑡+𝑙 − ̂𝑦𝑡(𝑙)]2. Thus, turns out clear that the

variance of the error increases as so increases the lead time 𝑙 [29, 31].

An important fact can be further stated, by keeping the assumption that 𝑤𝑡 are a sequence of independent
random variables. As 𝐸[𝑤𝑡+𝑗|𝑦𝑡,𝑦𝑡−1,…

] = 0, 𝑗 > 0, it follows from Equation 3.56 that
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̂𝑦𝑡(𝑙) = 𝜓𝑙𝑤𝑡 + 𝜓𝑙+1𝑤𝑡−1 + ⋯
= 𝐸𝑡[𝑦𝑡+𝑙],

(3.63)

where 𝐸𝑡[𝑦𝑡+𝑙] denotes the conditional expectation of 𝑦𝑡+𝑙 given the values of the process up to time 𝑡,
𝐸𝑡[𝑦𝑡+𝑙|𝑦𝑡, 𝑦𝑡−1,…], to which equals the minimummean square error forecast at origin 𝑡, for lead time 𝑙. This
relation extends to any linear function of the forecasts, ∑𝐿

𝑙=1 𝑔𝑡 ̂𝑦𝑡(𝑙), as it is also a minimum mean square
error forecast of identical linear function of future observations, ∑𝐿

𝑙=1 𝑔𝑡𝑦𝑡+𝑙 [29].

3.5.2 Forecasts and probability limits calculation

Given the relation established in Equation 3.63, the forecasts can be expressed in terms of difference equation
as

[𝑦𝑡+𝑙] = ̂𝑦𝑡(𝑙) = 𝜑1[𝑦𝑡+𝑙−1] + ⋯ + 𝜑𝑝+𝑑[𝑦𝑡+𝑙−𝑝−𝑑] − 𝜃1[𝑤𝑡+𝑙−1] − ⋯ − 𝜃𝑞[𝑤𝑡+𝑙−𝑞] + [𝑤𝑡+𝑙], (3.64)

where, by convention, the square brackets indicate that conditional expectations, at time 𝑡, must be taken, so
that, [𝑤𝑡+𝑙] = 𝐸𝑡[𝑤𝑡+𝑙] and [𝑦𝑡+𝑙] = 𝐸𝑡[𝑦𝑡+𝑙] [29]. To calculate them, the following is to note:

[𝑦𝑡+𝑗] =
⎧{
⎨{⎩

𝑦𝑡+𝑗, 𝑗 ⩽ 0
̂𝑦𝑦(𝑗), 𝑗 > 0

and [𝑤𝑡+𝑗] =
⎧{
⎨{⎩

𝑤𝑡−𝑗 = 𝑦𝑡−𝑗 − ̂𝑦𝑡−𝑗−1(1), 𝑗 ⩽ 0
0, 𝑗 > 0.

So, 𝑦𝑡−𝑗 and 𝑤𝑡−𝑗, which already occurred and are available at time 𝑡, are used directly in the equation
to obtain the forecasts, while 𝑦𝑡+𝑗 are replaced by their forecasts ̂𝑦𝑡(𝑗), and 𝑤𝑡+𝑗 by zeros, as they have
not yet occurred. Using Equation 3.64, the forecasts ̂𝑦𝑡(𝑙) can then be calculated recursively in the order

̂𝑦𝑡(1), ̂𝑦𝑡(2), … as

̂𝑦𝑡(𝑙) =
𝑝+𝑑
∑
𝑗=1

𝜑𝑗 ̂𝑦𝑡(𝑙 − 𝑗) −
𝑞

∑
𝑗=𝑙

𝜃𝑗𝑤𝑡+𝑙−𝑗,

where ̂𝑦𝑡(−𝑗) = [𝑦𝑡−𝑗] is the observed value 𝑦𝑡−𝑗 for 𝑗 ⩾ 0 [29].

Based on the assumption that the variables 𝑤𝑡 are normally distributed, then the probability distribution of
𝑦𝑡+1, conditional on the information available up to time 𝑡, 𝑝(𝑦𝑡+1|𝑦𝑡, 𝑦𝑡−1,…), will also be normal with mean

̂𝑦𝑡(𝑙) and standard deviation

𝜎(𝑙) = 𝜎𝑤 (1 +
𝑙−1
∑
𝑗=1

𝜓2
𝑗 )

1/2

. (3.65)
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It follows that (𝑦𝑡+𝑙 − ̂𝑦𝑡(𝑙)) / 𝜎(𝑙) will have a standard normal distribution. Thus, the probability limits
for the forecast errors will be defined by ̂𝑦𝑡(𝑙) ± 𝑧1−𝛼/2 ⋅ 𝜎(𝑙), where 𝛼 is the level of significance adopted
and 𝑧1−𝛼/2 is the quantile of probability 1 − 𝛼/2 of the standard normal distribution [29]. Hence, given the
information available until 𝑡, there is a probability of 1 − 𝛼 that the observed value of the process at time
𝑡 + 𝑙 will be within these limits, that is

𝑃( ̂𝑦𝑡(𝑙) − 𝑧1−𝛼/2 ⋅ 𝜎(𝑙) < 𝑦𝑡+𝑙 < ̂𝑦𝑡(𝑙) + 𝑧1−𝛼/2 ⋅ 𝜎(𝑙)).

In practice, 𝜎𝑤 is replaced by an estimate of the standard deviation of the process 𝑤𝑡, 𝑠𝑤, in Equation 3.65
to obtain 𝜎(𝑙). In order to compute these limits, it will be further needed to calculate the weights 𝜓1, 𝜓2, ….
Knowing the values of 𝜑 and 𝜃, one can then resort on the relation 𝜑(𝐵)𝜓(𝐵) = 𝜃(𝐵), that is,

(1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝+𝑑𝐵𝑝+𝑑)(1 + 𝜓1𝐵 + 𝜓2𝐵2 + ⋯) = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞),

to recursively obtain the values of 𝜓 as

⎧{{{
⎨{{{⎩

𝜓1 = 𝜑1 − 𝜃1

𝜓2 = 𝜑1𝜓1 + 𝜑2 − 𝜃2

⋮
𝜓𝑗 = 𝜑𝑗𝜓𝑗−1 + ⋯ + 𝜑𝑝+𝑑𝜓𝑗−𝑝−𝑑 − 𝜃𝑗,

(3.66)

with 𝜓0 = 1, 𝜓𝑗 = 0 for 𝑗 < 0, and 𝜃𝑗 = 0 for 𝑗 > 𝑞 [29].

These same weights can be used to update the forecasts, once a new value becomes available. Considering
the forecasts of 𝑦𝑡+𝑙+1 made for lead times 𝑙 + 1 and 𝑙 at time origins 𝑡 and 𝑡 + 1, respectively,

̂𝑦𝑡(𝑙 + 1) = 𝜑𝑙+1𝑤𝑡 + 𝜑𝑙+2𝑤𝑡−1 + ⋯
̂𝑦𝑡+1(𝑙) = 𝜑𝑙𝑤𝑡+1 + 𝜑𝑙+1𝑤𝑡 + 𝜑𝑙+2𝑤𝑡−1 + ⋯ ,

it follows

̂𝑦𝑡+1(𝑙) = ̂𝑦𝑡(𝑙 + 1) + 𝜑𝑙𝑤𝑡+1, (3.67)

meaning that the forecast at origin 𝑡 can be updated by adding a multiple of the one-step-ahead forecast error,
𝑤𝑡+1 ≡ 𝑦𝑡+1 − ̂𝑦𝑡(𝑙), and so become the forecast at origin 𝑡 + 1 for the same value of the process. Hence,
once the new value 𝑦𝑡+1 is known, the forecasts for lead times 1, 2, … , 𝐿 at origin 𝑡 can be updated through
Equation 3.67 to obtain forecasts for 1, 2, … , 𝐿 − 1 at 𝑡 + 1. At this time origin, the L-step-ahead forecast,

̂𝑦𝑡+1(𝐿), could be easily obtained using Equation 3.64 [29].
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The conceptualizations presented above could be extended to seasonal models. Thus, taking as example the
process SARIMA(0, 1, 1) × (0, 1, 1)12 simulated in subsection 3.3.2, ∇∇12𝑦𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑤𝑡,
the future observation 𝑦𝑡+𝑙 could be expressed as

𝑦𝑡+𝑙 = 𝑦𝑡+𝑙−1 + 𝑦𝑡+𝑙−12 − 𝑦𝑡+𝑙−13 + 𝑤𝑡+𝑙 − 𝜃𝑤𝑡+𝑙−1 − Θ𝑤𝑡+𝑙−12 − 𝜃Θ𝑤𝑡+𝑙−13,

with the minimum square error forecast at lead time 𝑙 for origin time 𝑡, ̂𝑦𝑡(𝑙), being given by

̂𝑦𝑡(𝑙) = [𝑦𝑡+𝑙−1 + 𝑦𝑡+𝑙−12 − 𝑦𝑡+𝑙−13 + 𝑤𝑡+𝑙 − 𝜃𝑤𝑡+𝑙−1 − Θ𝑤𝑡+𝑙−12 − 𝜃Θ𝑤𝑡+𝑙−13], (3.68)

where, as one should recall,

[𝑦𝑡+𝑙] = 𝐸[𝑦𝑡+𝑙|𝑦𝑡, 𝑦𝑡−𝑙, ⋯ ; 𝜃, Θ]

is the expectation of 𝑦𝑡+𝑙 at origin time 𝑡, conditional on the information available up to that moment and
assuming that the parameters are known. As stated before, this assumption of exact parameters, although
not true in practice, is acceptable given that small changes in the parameters due to estimation errors do not
produce relevant changes in the forecasts [29].

For computational purposes, the calculation of the forecasts from the difference equation form of the model
is as elegant as it is simple. Nonetheless, other points of view reveal more useful for the comprehension of
their nature.

For the seasonal model referred above, it can be show that the forecasts satisfy the difference equation

(1 − 𝐵)(1 − 𝐵12) ̂𝑦𝑡(𝑙) = 0 𝑙 > 13, (3.69)

with B here operating on lead time 𝑙. By writing 𝑙 in the form (𝑟, 𝑚) = 12𝑟 + 𝑚, 𝑟 ⩾ 0 and 𝑚 > 0, to
represent a lead time of r years and m months (e.g., 𝑙 = 18 = (1, 6)), the solution of Equation 3.69 is given
by

̂𝑦𝑡(𝑙) = 𝑏(𝑡)
0,𝑚 + 𝑟𝑏(𝑡)

1 𝑙 > 0, (3.70)

where the coefficients 𝑏(𝑡) are constants applied to all lead times for a given origin, but that are continuously
changing with time 𝑡, allowing them to adapt to the specific part of the process under analysis. That being
said, 𝑏(𝑡)

0,1, 𝑏(𝑡)
0,2, … , 𝑏(𝑡)

0,12, 𝑏(𝑡)
1 , determined from the 13 initial forecasts, represent 12 monthly and 1 yearly

contributions [29].

Alternatively, ̂𝑦𝑡(𝑙) can be represented as

43



̂𝑦𝑡(𝑙) =
6

∑
𝑗=1

[𝑏(𝑡)
1𝑗 cos(2𝜋𝑗𝑙

12 ) + 𝑏(𝑡)
2𝑗 sin(2𝜋𝑗𝑙

12 )] + 𝑏(𝑡)
16(−1)𝑙 + 𝑏(𝑡)

0 + 𝑏∗(𝑡)
1 𝑙,

providing a better understanding on the general pattern of the forecasts, perceived as a mixture of sinusoids
at seasonal frequencies, along with a linear trend of slope 𝑏∗(𝑡)

1 , the monthly rate of change in the forecasts.
As for the annual rate of change, it is represented by 𝑏(𝑡)

1 = 12𝑏∗(𝑡)
1 [29, 31].

Considering now the expression of the forecasts in Equation 3.70, the general updating formula takes two
possible formulations, depending on the value of m.

So, if 𝑚 ≠ 𝑠 = 12,

𝑏(𝑡+1)
0,𝑚 + 𝑟𝑏(𝑡+1)

1 = 𝑏(𝑡)
0,𝑚+1 + 𝑟𝑏(𝑡)

1 + 𝑤𝑡+1(𝜆 + 𝑟𝜆Λ),

where 𝜆 = 1 − 𝜃 and Λ = 1 − Θ, results in the following updating formulas:

𝑏(𝑡+1)
0,𝑚 = 𝑏(𝑡)

0,𝑚+1 + 𝜆𝑤𝑡+1

𝑏(𝑡+1)
1 = 𝑏(𝑡)

1 + 𝜆Λ𝑤𝑡+1.
(3.71)

If, instead, 𝑚 = 𝑠 = 12,

𝑏(𝑡+1)
0,12 + 𝑟𝑏(𝑡+1)

1 = 𝑏(𝑡)
0,1 + (𝑟 + 1)𝑏(𝑡)

1 + 𝑤𝑡+1(𝜆 + Λ + 𝑟𝜆Λ),

the equations to update the forecasts are

𝑏(𝑡+1)
0,12 = 𝑏(𝑡)

0,1 + 𝑏(𝑡)
1 + 𝑤𝑡+1(𝜆 + Λ)

𝑏(𝑡+1)
1 = 𝑏(𝑡)

1 + 𝜆Λ𝑤𝑡+1.
(3.72)

In this case, as for ARIMA models, the forecast 𝑏(𝑡+1)
0,𝑚 is the updated version of 𝑏(𝑡)

0,𝑚+1. Thus, if one defines
January as the origin 𝑡, 𝑏(𝑡)

0,2 would be the estimate to March of the same year. Once in February, the update
of this estimate will then be 𝑏(𝑡+1)

0,1 [29].

3.5.3 Forecasting accuracy

With important decisions being made based on forecasts, it becomes crucial to evaluate the performance of
the selected model. More, measures of accuracy and reliability can help to decide between parameter sets
or different models applied to the same time series. Being said that, the evaluation of the accuracy of the
forecasts should follow the aforesaid steps in time series modelling [42].
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Accuracy assessment should preferentially make use of out-of-sample tests instead of tests of goodness of
fit on the past data, known as in-sample tests. Model identification and estimation are intended to adjust
the forecasting method to the historical series. Though, overfitting may accentuate discrepancies between in
and out of sample results as subtleties of the series in the past may not persist into the future, in the same
way as peculiarities of future values may not have revealed themselves in the past, making them unlikely to
anticipate through previous observations. It follows that, as one would expect, the forecast errors obtained
out of sample generally exceed in-sample errors, also called forecasting residuals (difference between each
observed value of the series and its fitted value), even for relatively short forecast horizons. More, the models
that perform better in in-sample tests may not be the ones with the best out-of-sample forecasts [41].

The most obvious way to assess how accurate the obtained forecasts are would be to wait and compare them
with actual values of the series as they occur in real time, but this has practical limitations as a long wait
would be to expect before a reliable forecasting picture could be taken. In light of the above, out-of-sample
evaluation has been widely applied. The first step is to divide the historical time series into a training set and
a test set. The former is used exclusively to identify and estimate the model, whereas the test (held-out) data
are reserved to evaluate the forecasting accuracy of the model [41].

As disadvantage there is the fact that not all the data available are used, although they would be useful as part
of the trained data, specially if the data set is small, in order to achieve better results. By leaving apart some
of the data when training the model, diversity is not as much as it could be and the errors obtained might
represent features of the test set in particular, not observed in the remaining data [42].

In out-of-sample evaluation, either a single forecast origin — time point from which the forecast is made —
or multiple forecasts origins can be used [41].

Fixed-origin evaluation

In fixed-origin evaluation, forecasts for lead times 𝑙 = 1, 2, … , 𝐿 are generated from a unique origin 𝑡
which, in this context, would be the last value of the training set (Figure 3.8.A). So, as only one forecast
(and so, one forecast error) per lead time can be computed, errors can not be averaged for a single time
series (averaging errors across lead times would be possible but would not make sense given their theoretical
behaviour). Besides, by fixing the origin, the forecasts obtained are conditioned by particular characteristics
of the series at this time point. Hence, the behaviour of the series at the forecast origin highly affects the
results of the evaluation [42].

Rolling-origin evaluation

In the rolling-origin evaluation, also known as n-step-ahead evaluation, the forecast origin is updated and a
new observation is added to the training data (Figure 3.8.B). Each update implies a revision of the forecasting
equation, which can resume simply to the addition of a new observation to the training set — Rolling-origin-
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update evaluation—, ormay arise from the update of the imputed data plus recalibration (re-estimation) of the
model — rolling-origin-recalibration evaluation. This last procedure desensitizes error measures to specific
aspects of the original training set. Thus, although more computationally expensive, from a theoretical point
of view it is preferable than simply updating [41]. Either way, one can assess the accuracy of the forecasts
of a unique time series at each lead time by averaging the forecast errors [41, 42]. Compared to the fixed-
origin evaluation, from which result N forecasts and respective errors, the rolling-origin procedure yields
𝑁(𝑁 + 1) / 2 forecasts, where N represents the length of the test set [41].

Implicitly, the data set used to obtain a forecast for a given horizon 𝑙 becomes larger as the values of the
test set are sequentially moved to the training set. Nonetheless, it is possible to maintain the training set of
constant length by trimming the oldest value of the series at each update, in a procedure known as fixed-size,
rolling window (Figure 3.8.C). By doing so, one can remove old data influence when re-estimating the model.
Furthermore, this scheme allows a ‘fair’ comparison of forecasting accuracy between multiple periods of test,
non-confounded by the use of different data sets to train the model [41].

When deciding the number of time points N to hold out from the series, one should have in mind what is the
longest lead time required, L. Thus, the minimum N would be as large as L, with multiple forecasts computed
for every horizon but the longest. If the series is not excessively small, the length of the test set could be
increased so a minimum number of forecastsM can be obtained at lead time L. In that case, the length of the
test set should equal 𝐿 + 𝑀 − 1. For short time series, it would be preferable to benefit from the rolling-
origin and evaluate, at the worst scenario, one-step-ahead forecasts than truncate the data and leave too few
observations to estimate the model [41].

Accuracy measures

Different accuracy measures can be computed and used to compare the forecasting performance (in practice,
the magnitude of forecast errors) of different models. As detailed by Hyndman and Koehler [43], such
measures can being classified in four major groups, namely:

Scale-dependent measures

Measures whose scale depends on the data are useful, and of proper use, only when comparingmodels applied
to the same data set. From these measures, the most commonly used are based on absolute or squared forecast
errors, 𝑒𝑡(𝑙) = 𝑦𝑡+𝑙 − ̂𝑦𝑡(𝑙).

The Mean Square Error (MSE),

MSE = 1
𝑛

𝑛
∑
𝑡=1

𝑒𝑡(𝑙)2,
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is widely used as accuracy measure, mainly because of its relevance from a theoretical point of view, but its
application has been recommended against due to its sensibility to outliers [43].

Training data Forecast Time

Training data Forecast Time

Training data Forecast Time

Training data Forecast Time

Training data Forecast Time

Training data Forecast Time

Training data Time

Training data Forecast Time

Training data TimeForecast

Forecast

A

B

C

Figure 3.8: Schematic representation of (A) fixed-origin evaluation, (B) rolling-origin evaluation with fixed window and (C) rolling-
origin evaluation with rolling window. Adapted from Becerra et al. [44].
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The above also applies to the Root Mean Square Error (RMSE),

RMSE = √ 1
𝑛

𝑛
∑
𝑡=1

𝑒𝑡(𝑙)2,

with the difference that this measure is on the same scale of the data, reason why it tends to be preferred to
the MSE. Nevertheless, both measures are more sensitive to outliers than the Mean Absolute Error (MAE),

MAE = 1
𝑛

𝑛
∑
𝑡=1

|𝑒𝑡(𝑙)|.

Measures based on percentage errors

Accuracymeasures that do not depend on the scale of the data aremostly used to compare forecasting accuracy
across different sets of data, but they can also be applied to series in the same scale.

This class of measures is mainly represented by the Mean Absolute Percentage Error (MAPE),

MAPE = 100
𝑛

𝑛
∑
𝑡=1

∣𝑒𝑡(𝑙)
𝑦𝑡+𝑙

∣,

although othermeasures, similar to the scale-dependent ones aforementioned, can be computed. One example
would be the Root Mean Square Percentage Error (RMSPE),

RMSPE =
√√√
⎷

1
𝑛

𝑛
∑
𝑡=1

(100 𝑒𝑡(𝑙)
𝑦𝑡+𝑙

)
2
.

Regardless of their formulation, measures based on percentage assume a natural zero, so it would make no
sense to use them in evaluation of errors in data like temperature time series. Moreover, if the series does
take the value of zero at some 𝑡, the MAPE turns infinite or undefined (if ̂𝑦𝑡(𝑙) = 𝑦𝑡+𝑙 = 0) [43]. Even if the
probability of exact zeros occurring is very low, small values of the series (in the denominator) are associated
with high percentage errors, so that the MAPE shows a highly skewed distribution whenever 𝑦𝑡 approximates
zero [42].

Measures based on relative errors

Relative errors provide a different perspective on the quality of the forecasts obtained, as their errors, 𝑒𝑡(𝑙),
are compared to the ones obtained with a benchmark method, 𝑒𝑡(𝑙)∗, when applied to the same set of data.
Therefore, let 𝑟𝑡(𝑙) = 𝑒𝑡(𝑙) / 𝑒𝑡(𝑙)∗ denote the relative error, from which one can define accuracy measures,
such as the Mean Relative Absolute Error (MRAE),
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MRAE = 1
𝑛

𝑛
∑
𝑡=1

|𝑟𝑡(𝑙)|.

As forecasting benchmark methods, the naïve method, with the forecasts being equal the last observed value
in the series, as well as the average method, where ̂𝑦𝑡(𝑙) is equal to the mean of the historical series, have
been frequently used. For seasonal data, an extension of the naïve method, which gives forecasts equal to
last value of the series adjusted for seasonality, has been considered [43]. Though, problems regarding zero
values remain [42].

Relative measures

As an alternative to relative errors, relative measures can be calculated. For instance, given the MAE for the
benchmark method, MAE*, the relative MAE (RelMAE) can be defined as

RelMAE = MAE
MAE*

,

and measures the improvement from the chosen forecast method in relation to the benchmark: when
RelMAE < 1 the proposed method is said to perform better than the benchmark method; implicitly,
RelMAE > 1 means that the chosen method is worse than the benchmark forecast method. By analogy,
other relative measures can be obtained using either scale-dependent or percentage errors [43]. When the
naïve method is used as benchmark, the relative RMSE is also known as Theil’s U statistic [42].

Aside from their interpretability, relative measures can sidestep the problems with zeros presented by other
measures. Yet, these measures has the shortcoming of depending on multiple forecasts per series and/or
horizon [42, 43].

49



50



Chapter 4

Analysis of hospitalizations due to diabetes

From 2010 until 2018, there were 208,882 hospital admissions due to diabetes in Portugal, including hospi-
talizations, the object of study in this thesis. An exploratory analysis of these data is made in Section 4.1,
followed by the application of the theoretical methodology on time series modelling and forecasting presented
in the previous chapter to the series of monthly hospitalizations due to diabetes in Sections 4.2 and 4.3, re-
spectively. Data analysis was conducted using the software R, version 3.6.3 [45], with a significance level
of 0.05.

4.1 Exploratory analysis

Between January 2010 andDecember 2018, inclusive, 73,050 hospitalizations due to diabetes were accounted
in Portugal (average of 676 cases per month or 8,117 cases per year), representing 35% of all admissions with
diabetes as the main cause in the same period. From those, 72,698 (99.5%) are associated with a fictitious
identification number, which makes it possible to determine how many episodes correspond to a particular
person, that is, how many times each patient was hospitalized due to diabetes during the study period. Ac-
cordingly, a total of 48,308 people (51% men) were hospitalized just once, whereas 9,599 (55% men) were
hospitalized at least two times (71% hospitalized twice), to which correspond 24,390 hospitalizations (2.5
episodes per person on average). The highest number of hospitalizations due to diabetes by a single person
was 34. In total, 57,907 individuals (not accounting for those who would be associated with the 352 episodes
without patient fictitious number) were hospitalized due to diabetes between 2010 and 2018, in Portugal.

Focusing on the series of hospitalizations, sex distribution is almost even, with men accounting for 52.5%
of the cases, in a total of 38,375 hospitalizations, about 3,700 more than women (n = 34,674). The age
of the patients ranges from 0 to 107 years, with people aged 60 or above representing almost two thirds
of the total number of hospitalizations in the period under study (64.4%). Among men, the distribution of
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cases is slightly different, as individuals between 40 and 79 years old are the most represented ones (68.4%).
With regard to patients’ region of residence at the moment of admission, Norte (15% of total cases in the
district of Porto) and Área Metropolitana de Lisboa (24% of total cases in the district of Lisbon) are the most
represented NUTS 2, being associated with 30.4% and 28.6% of the cases, respectively (Table 4.1). At this
level, considering the number of hospitalizations per 100,000 inhabitants per year, different trends can be
observed across locations. Autonomous regions of Açores and Madeira, with a very low number of cases
for a large period, show an increase in the number of hospitalizations per 100,000 inhabitants in recent years,
whereas in mainland Portugal a decreasing trend is observed (Appendix A, Figure A.1).

Table 4.1: Sociodemographic characteristics of patients hospitalized due to diabetes, at the moment of admission.

Men
(n = 38,375)

Women
(n = 34,674)

Total
(N = 73,050)

Age, % (n)
0−19 8.2% (3,147) 8.9% (3,095) 8.5% (6,242)
20−39 7.7% (2,944) 8.3% (2,872) 8.0% (5,816)
40−59 22.5% (8,646) 15.2% (5,265) 19.0% (13,911)
60−79 45.9% (17,595) 40.1% (13,909) 43.1% (31,504)
⩾ 80 15.7% (6,043) 27.5% (9,533) 21.3% (15,577)

Region, % (n)
Norte 29.6% (11,151) 31.2% (10,617) 30.4% (21,768)
Centro 24.4% (9,195) 25.1% (8,524) 24.7% (17,719)
Área Metropolitana de Lisboa 29.4% (11,076) 27.6% (9,396) 28.6% (20,473)
Alentejo 11.0% (4,137) 11.3% (3,857) 11.2% (7,994)
Algarve 4.2% (1,563) 3.7% (1,273) 4.0% (2,836)
Região Autónoma da Madeira 0.9% (325) 0.5% (170) 0.7% (495)
Região Autónoma dos Açores 0.5% (191) 0.5% (182) 0.5% (373)

Episodes with missing information regarding patient’s sex not shown (n = 1; Age: ⩾ 80 years; Region: Área Metropolitana de Lisboa).

Regarding the mode of admission, 79.5% (58,048 records) of the hospitalizations due to diabetes were classi-
fied as an emergency, while the remaining were planned admissions (n = 15,002). Generally speaking, men
tend to be hospitalized for longer periods than women, also differing in the main causes of admission. For
the former, the most common diagnosis is diabetes with circulatory complications (28.0%), whereas women
are hospitalized mainly due to diabetes with other complications (than the ones detailed in other diagnosis) or
diabetes without complications (18.4% and 18.2%, respectively). In turn, destination after discharge is simi-
lar between these groups, with patients returning home in more than 90% of the times. For the rest, about 4%
of the patients died and 2.5% were discharged to another institution. Other destinations were also recorded,
together representing 2.5% of the cases (Table 4.2).

When the analysis is made by year, a decreasing trend is observed, with the number of hospitalizations drop-
ping by 45% from 2010 to 2018 (10,011 and 5,530 cases, respectively). The distribution of patients by age
has remained relatively stable over the years, resulting in a global median of 67 years (interquartile range,
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IQR: 52−78). Comparing men to women, the higher number of hospitalizations by the former is transversal
to all years in the analysed period. The same is observed for the number of emergent admissions, with an
accentuated difference, in percentage points, between emergencies and scheduled admissions from 2010 to
2018 (Table 4.3).

Table 4.2: Clinical characteristics of patients hospitalized due to diabetes, at the moment of admission.

Men
(n = 38,375)

Women
(n = 34,674)

Total
(N = 73,050)

Admission mode, % (n)
Planned 22.1% (8,475) 18.8% (6,527) 20.5% (15,002)
Emergency 77.9% (29,900) 81.2% (28,147) 79.5% (58,048)

Diagnosis, % (n)
Diabetes without complications 13.7% (5,246) 18.2% (6,321) 15.8% (11,567)
Diabetes with hyperosmolarity 3.8% (1,466) 7.2% (2,508) 5.4% (3,974)
Diabetes with ketoacidosis 14.1% (5,395) 17.8% (6,188) 15.9% (11,583)
Diabetes with other coma 1.1% (428) 1.6% (542) 1.3% (970)
Diabetes with kidney complications 10.7% (4,100) 11.1% (3,855) 10.9% (7,956)
Diabetes with ophthalmic complications 7.6% (2,929) 7.5% (2,603) 7.6% (5,532)
Diabetes with neurological complications 2.9% (1,096) 2.0% (705) 2.5% (1,801)
Diabetes with circulatory complications 28.0% (10,742) 14.9% (5,173) 21.8% (15,915)
Diabetes with other specified complications 17.3% (6,636) 18.4% (6,396) 17.8% (13,032)
Diabetes with unspecified complications 0.9% (337) 1.1% (383) 1.0% (720)

Days of hospitalization
Range 1−545 1−437 1−545
Mean (SD) 12 (18) 10 (15) 11 (17)
Median (IQR) 7 (3−14) 6 (3−12) 7 (3−13)

Discharge destination, % (n)
Discharge home 90.5% (34,722) 91.2% (31,606) 90.8% (66,328)
Another institution (with hospitalization) 2.9% (1,107) 2.1% (734) 2.5% (1,841)
Home care 0.4% (151) 0.5% (165) 0.4% (316)
Discharge against medical advice 0.9% (354) 0.7% (227) 0.8% (581)
Specialized aftercare (tertiary) 0.8% (316) 0.8% (270) 0.8% (586)
Palliative care at medical center 0.0% (15) 0.0% (16) 0.0% (31)
Post-hospital care 0.3% (122) 0.3% (110) 0.3% (232)
Long-term hospital care 0.1% (34) 0.1% (40) 0.1% (74)
Deceased 4.0% (1,554) 4.3% (1,506) 4.2% (3,061)

SD, Standard Deviation; IQR, Interquartile Range. Episodes with missing information regarding patient’s sex not shown (n = 1; Mode of admission:
emergency; Diagnosis: diabetes with kidney complications; Days of hospitalization: 19; Discharge destination: deceased).

Considering the number of hospitalizations by month, the main research series of this thesis, one can verify
that hospitalizations due to diabetes dropped from 973 cases in January 2010 (alike March from the same
year) to 400 in December 2018, with the minimum number of cases recorded in September 2018 (n = 365;
Table 4.4).
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Table 4.3: Descriptive statistics of hospitalizations due to diabetes by year.

2010
(n = 10,011)

2011
(n = 9,311)

2012
(n = 9,324)

2013
(n = 9,134)

2014
(n = 8,129)

2015
(n = 7,272)

2016
(n = 7,503)

2017
(n = 6,836)

2018
(n = 5,530)

Monthly cases
Range 705−973 664−888 670−912 670−878 599−803 520−755 550−690 505−670 365−609
Mean (SD) 834.2 (89.1) 775.9 (66.1) 777.0 (77.6) 761.2 (62.8) 677.4 (60.3) 606.0 (85.2) 625.2 (46.5) 569.7 (56.9) 460.8 (70.7)
Median (IQR) 815.5

(777.0−896.0)
771.0
(739.0−816.3)

759.0
(718.0−837.0)

758.0
(722.3−794.8)

664.0
(633.0−715.5)

577.0
(536.5−655.3)

631.5
(604.8−649.5)

551.0
(532.8−582.5)

445.5
(414.5−497.3)

Sex, n (%)
Male 50.8% (5,081) 50.9% (4,740) 52.2% (4,864) 53.6% (4,894) 52.8% (4,293) 53.1% (3,864) 53.9% (4,046) 53.1% (3,630) 53.6% (2,963)
Female 49.2% (4,929) 49.1% (4,571) 47.8% (4,460) 46.4% (4,240) 47.2% (3,836) 46.9% (3,408) 46.1% (3,457) 46.9% (3,206) 46.4% (2,567)

Age
Range 0−102 0−102 0−101 0−103 0−102 0−103 0−101 0−102 1−107
Mean (SD) 62 (21) 62 (21) 62 (22) 63 (22) 62 (22) 61 (23) 61 (23) 61 (23) 61 (23)
Median (IQR) 68 (53−78) 68 (53−78) 68 (52−78) 68 (54−78) 67 (52−78) 67 (50−78) 66 (50−78) 67 (50−78) 67 (49−78)

Admission mode, n (%)
Planned 22.6% (2,267) 22.0% (2,051) 21.9% (2,041) 20.3% (1,850) 22.2% (1,805) 20.2% (1,467) 18.6% (1,399) 18.0% (1,232) 16.1% (890)
Emergency 77.4% (7,744) 78.0% (7,260) 78.1% (7,283) 79.7% (7,284) 77.8% (6,324) 79.8% (5,805) 81.4% (6,104) 82.0% (5,604) 83.9% (4,640)

SD, Standard Deviation; IQR, Interquartile Range.



Table 4.4: Monthly hospitalizations due to diabetes in Portugal from 2010 to 2018.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010 973 887 973 923 851 705 808 729 765 781 793 823
2011 852 816 888 817 813 664 770 689 712 748 772 770
2012 912 856 831 722 855 737 695 670 706 829 781 730
2013 878 749 847 809 770 689 767 670 699 730 736 790
2014 803 726 747 685 712 630 655 610 599 670 658 634
2015 755 698 729 641 637 609 539 520 544 529 545 526
2016 666 644 688 634 690 617 629 613 552 550 640 580
2017 670 525 668 539 638 563 564 529 534 505 537 564
2018 609 522 555 489 452 446 413 419 365 445 415 400

Besides trend, some seasonality can be observed in the series, with differences being found between the
number of hospitalizations due to diabetes per season (𝜒2 = 422.65, 𝑝 < 0.001). A lower number of
cases typically occurs in summer months, namely July, August, and September, accounting for 23% of all
hospitalizations due to diabetes. As opposed, winter — January, February, and March — was the period
of the year when the greatest number of hospitalizations occurred (28%). Annual peak occurs mainly in
January, but also in March and May, while troughs are apparent between June and October. The average
peak-to-trough amplitude (i.e., relative difference between the lowest and the highest observation at each
year) was 27%, with a maximum of 40% in 2018 (Table 4.3 and Figure 4.1).
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Figure 4.1: Monthly hospitalizations due to diabetes from 2010 to 2018. Vertical lines demonstrate seasonality, with peaks mainly
in January and March (dark grey lines), and troughs between June and October (light grey lines). In 2010, January and March had
the same number of hospitalizations, the highest of the year.
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4.2 Model building and selection

When modelling the series of monthly hospitalizations due to diabetes, the last portion of the available data
was reserved to further assess the performance of the selected model. Therefore, data from the first seven
years, from January 2010 to December 2016, in a total of 84 months (60,684 hospitalizations), were used to
build the model, leaving the data from the two remaining years (January 2017 to December 2018) for model
evaluation (Figure 4.2).
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Figure 4.2: Monthly hospitalizations due to diabetes separated in training and test sets. Models were built using data from the first
84 months (training set, displayed at the left of the dashed vertical line), and evaluated against the remaining 24 months (test set, to
the right of the dashed vertical line).

As stated for the entire series, the training data show a decreasing trend over the interval January 2010 –
December 2018. By simply splitting this set in two, each with 42 observations, one can verify that the mean
of the series decreases from the first half (January 2010 to June 2013: 𝐸 [𝑦𝑡] = 794.95; 𝜎𝑦 = 78.43) to
the second half of the data (July 2013 to December 2016: 𝐸 [𝑦𝑡] = 649.90; 𝜎𝑦 = 75.38). Apart from this
change in the level, the series does not show considerable variations in the dispersion of the observations over
time. Nevertheless, Box-Cox approach (Equation 3.44) was followed to verify if some power transformation
is suitable to these data (Figure 4.3).

The maximum likelihood estimate for 𝜆 is 0.4. Being close to 0.5, such value suggests that a square root
of 𝑦𝑡 is the adequate transformation to this series. However, the confidence interval (CI) for this parameter
includes the value of 1, which itself suggests that no transformation is needed. For that reason, the original
training series will be considered in further analysis.

By looking at the distribution of cases by month, as displayed in Figure 4.4, one can note some seasonal
fluctuations over years, suggesting that a seasonal model should be investigated.
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Figure 4.3: Box-Cox transformation applied to the series of monthly hospitalizations due to diabetes from 2010 to 2016. Reference
lines denote the maximum likelihood estimate (dotted line) and the 95% CI for 𝜆 (dashed lines).
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Figure 4.4: Distribution of hospitalizations by month from 2010 to 2016. (A) Evolution of monthly hospitalizations per year, and
(B) distribution of monthly hospitalizations.
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In view of the above, that is, the presence of trend and seasonality, as suggested by visual inspection of the
data, first differences were taken, in an attempt to stabilize the mean (Figure 4.5).
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Figure 4.5: Series of monthly hospitalizations due to diabetes from 2010 to 2016. Original (𝑦𝑡), monthly differenced (∇𝑦𝑡), and
monthly and yearly differenced (∇∇12𝑦𝑡) series are displayed.

The first plot represents the original (training) series of hospitalizations due to diabetes, 𝑦𝑡. As stated before,
the mean does not seem to be constant. Differencing this series, ∇𝑦𝑡, makes the data apparently stationary
(second plot). Finally, considering both seasonal and regular differences, ∇∇12𝑦𝑡, the resulting series also
appears to be stationary. Further analysis of the data can help to decide if the series 𝑦𝑡 is, indeed, nonstationary
and some (non-seasonal and/or seasonal) differencing is needed.

Model identification

Firstly, to identify the appropriate model for the series of monthly hospitalizations due to diabetes, that is, to
explore possible orders of the ARIMA model, the correlogram for the ACF and the PACF of the three series
(𝑦𝑡, ∇𝑦𝑡, and ∇∇12𝑦𝑡) were analysed. Given the hypothesis of seasonality, the first 30 lags were examined,
thus allowing the analysis of two periods of 12 months (Figure 4.6).
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Figure 4.6: Correlogram for the ACF and the PACF for the (A) original, (B) monthly differenced and (C) monthly and yearly
differenced series. The dashed blue lines represent the approximate 95% CI. ACF, Autocorrelation Function; PACF, Partial Auto-
correlation Function.

Based on seasonal and non-seasonal components of both functions (Figure 4.6), the following interpretations
can be made:

A. Original series, undifferenced (𝑦𝑡): the ACF tails off, whereas the PACF seems to cut off at lag
2, even though there are significant autocorrelation values at higher lags in both functions. Still,
the fact that the autocorrelations die out slowly and that the series itself shows a trend indicate that
differencing is needed to make the process stationary. To verify this hypothesis, a formal unit root
test was conducted. At first, an autoregressive approximation with order equal to 13 was identified
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based on the AIC criterion. ADF tests for the model with a constant, and for the model with a trend
plus a constant had non-significant results (𝑝 = 0.876 and 𝑝 = 0.750, respectively). As such, the
null hypothesis of a unit root (nonstationarity) was not rejected, supporting the need for differencing.

B. Series differenced with respect to months only (∇𝑦𝑡): both the ACF and the PACF seem to cut off at
lag 1, though significant values are observed at higher lags. These occur around lag 12, suggesting
the presence of a seasonal unit root.

C. Series differenced with respect to months and years (∇∇12𝑦𝑡): autocorrelation values are highly
reduced, cutting off after lag 2, whereas the partial autocorrelations tail off. An alternative would be
to consider that the PACF cuts off at one of the first lags. Considering the seasonal component of
the series, autocorrelation values cut off at lag 12, with no significant partial autocorrelations to be
noted.

Given the above-mentioned aspects, nine candidate models were identified, of which one applies to the orig-
inal series, two apply to the series differenced with respect to months (∇𝑦𝑡), and the other six apply to the
series differenced by month and year (∇∇12𝑦𝑡). Such models, and respective equations, are listed in Ta-
ble 4.5.

Parameter estimation

All of these models, identified through graphical analysis of autocorrelation and partial autocorrelation func-
tions, get to be estimated bymaximum likelihood. Table 4.6 summarizes the results of this process, presenting
estimates for all parameters, as well as the value and significance of the test, and information criteria (AIC,
AICc, and BIC) for each model. In-sample MAPE are also presented.

When comparing these models, selection criteria were considered, though the (minimum) value of AIC pre-
vailed for the decision on the model to choose. Thus, the preferred model was the (1, 1, 2) × (0, 1, 1)12.
The decision on this model was supported by AICc, but not BIC. If the latter criterion was used, the model
(0, 1, 1)×(0, 1, 1)12 would be chosen instead. Based on the relative error, one would conclude that the most
complex model, (4, 1, 2) × (0, 1, 1)12, is the one that best adjusts to the training data.

No outliers were detected in the series during the estimation of the selected model,

∇∇12𝑦𝑡 = −0.537 ∇∇12𝑦𝑡−1+𝑤𝑡+0.080 𝑤𝑡−1−0.554 𝑤𝑡−2−0.667 𝑤𝑡−12−0.053 𝑤𝑡−13+0.370 𝑤𝑡−14,

which must further comply with tests and visual inspection of residuals. Therefore, residual analysis were
performed to verify if the chosen model is indeed suitable to the series of monthly hospitalizations due to
diabetes.
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Table 4.5: Equations of candidate models for the series of monthly hospitalizations due to diabetes.

(2,0,0)
(1 − 𝜙1𝐵 − 𝜙2𝐵2) ̃𝑦𝑡 = 𝑤𝑡

̃𝑦𝑡 = 𝜙1 ̃𝑦𝑡−1 + 𝜙2 ̃𝑦𝑡−2 + 𝑤𝑡

(0,1,1)×××(1,0,1)12
(1 − Φ𝐵12)∇𝑦𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑤𝑡

∇𝑦𝑡 = Φ∇𝑦𝑡−12 + 𝑤𝑡 − 𝜃𝑤𝑡−1 − Θ𝑤𝑡−12 + 𝜃Θ𝑤𝑡−13

(1,1,1)×××(1,0,1)12
(1 − 𝜙𝐵)(1 − Φ𝐵12)∇𝑦𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑤𝑡

∇𝑦𝑡 = 𝜙∇𝑦𝑡−1 + Φ∇𝑦𝑡−12 + 𝜙Φ∇𝑦𝑡−13 + 𝑤𝑡 − 𝜃𝑤𝑡−1 − Θ𝑤𝑡−12 + 𝜃Θ𝑤𝑡−13

(0,1,1)×××(0,1,1)12
∇∇12𝑦𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑤𝑡

∇∇12𝑦𝑡 = 𝑤𝑡 − 𝜃𝑤𝑡−1 − Θ𝑤𝑡−12 + 𝜃Θ𝑤𝑡−13

(0,1,2)×××(0,1,1)12
∇∇12𝑦𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)(1 − Θ𝐵12)𝑤𝑡

∇∇12𝑦𝑡 = 𝑤𝑡 − 𝜃1𝑤𝑡−1 − 𝜃2𝑤𝑡−2 − Θ𝑤𝑡−12 + 𝜃1Θ𝑤𝑡−13 + 𝜃2Θ𝑤𝑡−14

(1,1,1)×××(0,1,1)12
(1 − 𝜙𝐵)∇∇12𝑦𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑤𝑡

∇∇12𝑦𝑡 = 𝜙∇∇12𝑦𝑡−1 + 𝑤𝑡 − 𝜃𝑤𝑡−1 − Θ𝑤𝑡−12 + 𝜃Θ𝑤𝑡−13

(1,1,2)×××(0,1,1)12
(1 − 𝜙𝐵)∇∇12𝑦𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)(1 − Θ𝐵12)𝑤𝑡

∇∇12𝑦𝑡 = 𝜙∇∇12𝑦𝑡−1 + 𝑤𝑡 − 𝜃1𝑤𝑡−1 − 𝜃2𝑤𝑡−2 − Θ𝑤𝑡−12 + 𝜃1Θ𝑤𝑡−13 + 𝜃2Θ𝑤𝑡−14

(2,1,2)×××(0,1,1)12
(1 − 𝜙1𝐵 − 𝜙2𝐵2)∇∇12𝑦𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)(1 − Θ𝐵12)𝑤𝑡

∇∇12𝑦𝑡 = 𝜙1∇∇12𝑦𝑡−1 + 𝜙2∇∇12𝑦𝑡−2 + 𝑤𝑡 − 𝜃1𝑤𝑡−1 − 𝜃2𝑤𝑡−2 − Θ𝑤𝑡−12 + 𝜃1Θ𝑤𝑡−13 + 𝜃2Θ𝑤𝑡−14

(4,1,2)×××(0,1,1)12
(1 − 𝜙1𝐵 − 𝜙2𝐵2 − 𝜙3𝐵3 − 𝜙4𝐵4)∇∇12𝑦𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)(1 − Θ𝐵12)𝑤𝑡

∇∇12𝑦𝑡 = 𝜙1∇∇12𝑦𝑡−1 + 𝜙2∇∇12𝑦𝑡−2 + 𝜙3∇∇12𝑦𝑡−3 + 𝜙4∇∇12𝑦𝑡−4 + 𝑤𝑡 − 𝜃1𝑤𝑡−1 − 𝜃2𝑤𝑡−2

−Θ𝑤𝑡−12 + 𝜃1Θ𝑤𝑡−13 + 𝜃2Θ𝑤𝑡−14



Table 4.6: Summary of candidate models for the series of monthly hospitalizations due to diabetes, including coefficient estimates,
information criteria and in-sample error.

Model Parameter Estimate SE t-value p-value 𝜎2 AIC AICc BIC MAPE

(2,0,0) 3,662 11.157 11.160 12.273 6.831
Mean (𝜇) 733.668 56.474 12.991 < 0.001
AR 1 (Φ1) 0.486 0.101 4.830 < 0.001
AR 2 (Θ1) 0.411 0.102 4.014 < 0.001

(0,1,1)×××(1,0,1)12 1,973 10.701 10.707 10.818 4.971
MA 1 (𝜃1) 0.583 0.108 5.400 < 0.001
SAR 1 (Φ1) 0.973 0.038 25.945 < 0.001
SMA 1 (Θ1) 0.728 0.181 4.018 < 0.001

(1,1,1)×××(1,0,1)12 1,939 10.712 10.721 10.858 4.909
AR 1 (𝜙1) 0.244 0.220 1.110 0.271
MA 1 (𝜃1) 0.773 0.169 4.588 < 0.001
SAR 1 (Φ1) 0.975 0.037 26.286 < 0.001
SMA 1 (Θ1) 0.739 0.186 3.983 < 0.001

(0,1,1)×××(0,1,1)12 2,014 10.660 10.665 10.756 4.458
MA 1 (𝜃1) 0.631 0.100 6.277 < 0.001
SMA 1 (Θ1) 0.722 0.167 4.325 < 0.001

(0,1,2)×××(0,1,1)12 1,976 10.669 10.677 10.796 4.465
MA 1 (𝜃1) 0.498 0.147 3.381 0.001
MA 2 (𝜃2) 0.196 0.168 1.166 0.248
SMA 1 (Θ1) 0.718 0.164 4.390 < 0.001

(1,1,1)×××(0,1,1)12 1,984 10.678 10.687 10.806 4.435
AR 1 (𝜙1) 0.161 0.193 0.833 0.408
MA 1 (𝜃1) 0.729 0.143 5.110 < 0.001
SMA 1 (Θ1) 0.731 0.171 4.288 < 0.001

(1,1,2)×××(0,1,1)12 1,918 10.647 10.660 10.807 4.463
AR 1 (𝜙1) -0.537 0.188 -2.861 0.006
MA 1 (𝜃1) -0.080 0.167 -0.476 0.635
MA 2 (𝜃2) 0.554 0.103 5.389 < 0.001
SMA 1 (Θ1) 0.667 0.152 4.404 < 0.001

(2,1,2)×××(0,1,1)12 1,909 10.660 10.678 10.851 4.452
AR 1 (𝜙1) -0.623 0.209 -2.974 0.004
AR 2 (𝜙2) -0.216 0.188 -1.146 0.256
MA 1 (𝜃1) -0.136 0.199 -0.682 0.498
MA 2 (𝜃2) 0.401 0.181 2.215 0.030
SMA 1 (Θ1) 0.639 0.147 4.361 < 0.001

(4,1,2)×××(0,1,1)12 1,766 10.685 10.718 10.940 4.014
AR 1 (𝜙1) -0.250 0.120 -2.085 0.041
AR 2 (𝜙2) -1.274 0.107 -11.909 < 0.001
AR 3 (𝜙3) -0.416 0.101 -4.116 < 0.001
AR 4 (𝜙4) -0.459 0.118 -3.887 < 0.001
MA 1 (𝜃1) 0.269 0.069 3.891 < 0.001
MA 2 (𝜃2) -1.000 0.158 -6.311 < 0.001
SMA 1 (Θ1) 0.617 0.147 4.209 < 0.001

SE, Standard Error; AIC, Akaike´s Information Criterion; AICc, Akaike´s Information Criterion corrected; BIC, Bayesian Information Criterion;
MAPE, Mean Absolute Percentage Error; MA, Moving Average; SAR, Seasonal Autoregressive; SMA, Seasonal Moving Average, AR, Autore-
gressive.
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Model diagnostic

In Figure 4.7, the time plot of standardized residuals does not reveal any abnormal patterns. Similarly, the
normalized cumulative periodogram of the residuals does not show departures from linearity (the 0.05 prob-
ability limits were not crossed) which would be a sign of periodic nonrandomness. Considering either the
histogram (of residuals) or the normal Q-Q plot (of standardized residuals), the normality of the residuals
seems acceptable, without apparent outliers. By inspecting the ACF plot one can check that none of the au-
tocorrelations are significant, suggesting the independence of the residuals. Finally, the Ljung-Box statistic
was used to test the hypothesis of model adequacy. Up to the first 40 autocorrelations, the tests are all out
the 0.05 level, thus reinforcing the evidence that the selected model is a good fit for the data.

As a whole, the results presented above support the model (1, 1, 2) × (0, 1, 1)12 as the most appropriated
forecasting model for the series of monthly hospitalizations due to diabetes.
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Figure 4.7: Graphical check of the residuals for the model (1,1,2)×(0,1,1)12. In the Q-Q plot (blue box), the ACF and the peri-
odogram (blue dashed lines) there are represented 95% CI. In the plot of p-values for the Ljung-Box statistic, the blue dashed line
represents the 0.05 level. Q-Q, Quantile-Quantile; ACF, Autocorrelation Function.
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4.3 Forecasting

The ultimate test to model adequacy would be its ability to forecast, so the performance of the selected model
was evaluated in terms of out-of-sample errors, by using the 24 months from the test set. This evaluation was
made by lead time (1, 3, 6 and 12-months), but also by calendar year, across different lead times, considering
either the recalibration of the model or just its update as soon as new observations become available and
integrate the set of training data.

Table 4.7 presents accuracy measures, namely MAE, RMSE and MAPE, obtained using the SARIMAmodel
(1, 1, 2)×(0, 1, 1)12 to predict hospitalizations due to diabetes for the selected forecast horizons. New obser-
vations, starting in January 2017, were included in the training set, one month at a time, and used along with
previous ones in the prediction of the number of future hospitalizations. For the rolling-origin-update evalu-
ation, the minimum error was obtained for three-month-ahead forecasts, with a MAE of 40.4, corresponding
to a MAPE of 8.3%. The relative error remained under 10% until a 6-month forecast horizon, having reached
a maximum of 16% at 12 months. When a rolling-origin-recalibration evaluation was conducted, the low-
est MAPE was obtained with one-month-ahead forecasts, regardless of whether a fixed or a rolling window
(84 months) is used to re-estimate the model (8.2% and 7.8%, respectively). In both cases, as the forecast
timespan increased, up to 3, 6 and 12-months, the predictive accuracy of the model worsened. Forecasts
obtained by using a rolling window were more accurate when made up to five months in advance, but not for
a lead time of six or more months. For the latter, fixed window forecasts resulted in lower errors. Overall,
the model (1, 1, 2) × (0, 1, 1)12 performed well, with a MAPE lower than 10% when forecasting up to six
months, regardless of the model to be updated or recalibrated (detailed results, for a forecast horizon of 1 to
12 months, can be seen in Appendix B, Table B.1).

Table 4.7: Forecasting accuracy of the model (1,1,2)×(0,1,1)12 for different lead times, based on rolling-origin-update and rolling-
origin-recalibration evaluation.

Rolling-origin-update Rolling-origin-recalibration

Fixed window Fixed window Rolling window

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

𝑙 = 1 44.9 54.8 9.1 41.1 48.7 8.2 39.5 47.4 7.8
𝑙 = 3 40.4 49.1 8.3 41.3 48.4 8.4 40.8 47.8 8.3
𝑙 = 6 45.0 56.8 9.8 44.0 55.9 9.5 44.9 56.4 9.7
𝑙 = 12 69.1 81.4 16.0 68.2 79.8 15.8 70.0 81.5 16.2

l, lead time; MAE, Mean Absolute Error; RMSE, Root Mean Square Error; MAPE, Mean Absolute Percentage Error.

While these forecasts were obtained following one month increments, in practice observations may not be
available with such frequency. It may also be true that such a frequent update of the training data set adds
only a small improvement in terms of forecast accuracy. So, Table 4.8 presents the MAPE for the years 2017
and 2018 considering the re-estimation of the model every 1, 3, 6 and 12-months, that is, 12, 4, 2 and 1 times
per year, respectively. At the same time, the performance of a seasonal random walk was investigated for
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𝑙 = 12, with forecasts equal to the last value from the same season, that is, to the observed value in the
same month from the previous year. This model was defined as benchmark method and compared against
the selected SARIMA model.

Table 4.8: MAPE for the years 2017 and 2018 for SARIMA and Benchmark models. The model SARIMA(1,1,2)×(0,1,1)12 was
re-estimated every 1, 3, 6 and 12-months, that is, 12, 4, 2 and 1-time per year, given a rolling window of 84 months. The benchmark
model (Seasonal Random Walk) was updated once each year, with forecasts being obtained for the next 12 months.

SARIMA Benchmark

1 month 3 months 6 months 12 months 12 months

2017 7.5 7.2 6.1 5.7 10.3
2018 8.1 8.3 11.0 19.1 25.1
Average 7.8 7.7 8.6 12.4 17.7

SARIMA, Seasonal Autoregressive Integrated Moving Average.

When the SARIMA model with rolling window was used as forecasting method, the average MAPE for
2017 and 2018 ranged from 7.7% to 12.4%, for the forecasts obtained every 3 and 12 months, respectively.
Different results were found for each year independently. In 2017, it is to note the decreasing error from the
smallest (l = 1) to the largest (l = 12) forecast horizon, whereas in 2018 the values of MAPE increase as the
lead time goes from 1 to 12 months. In short, regardless of how often the model is re-estimated, the errors
obtained in 2017 were all lower than those in 2018. The same applies to the benchmark model, from which
resulted an average MAPE of 17.7%, for l = 12. At this forecast horizon, the comparison between the two
models shows that the SARIMA performed better, with a reduction of 30% in the MAPE in relation to the
benchmark.

In Figure 4.9 are represented the forecasts and respective 95% limits from the SARIMA and the benchmark
models. For the former, the projections are mostly above the series, especially in 2018, as one can see in
Figure 4.8, where negative values of the error, 𝑒𝑡(𝑙) = 𝑦𝑡+𝑙 − ̂𝑦𝑡(𝑙), indicate an overestimation of the series.
The number of forecasts higher than the observed values increased with the forecast horizon, in such a way
that when forecasts are made for the next 12 months all estimated values for 2018 are higher than those
observed. Despite, all the observed values, except those for February 2017 and May 2018, are in the 95%
prediction interval for the forecasts. For the benchmark model, wider limits were observed. Still, there are
four forecasts outside the prediction interval, all in 2018 (May, July, September, December). In this case, all
the predictions, with the exception of January 2017, are higher than the observations, reflecting the decreasing
trend of the series.
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Figure 4.8: Forecast errors of the model (1,1,2)×(0,1,1)12 in the test set when the model was re-estimated at every 1, 3, 6 or 12-
months. The error takes negative values when the forecast overestimates the observed series and positive values when the opposite
occurs.

In addition, the selectedmodel has proved able to predict turning points as, for more than half of the evaluation
period, upward and downward changes in forecasted values are in agreement with changes in observed values
of the series. In this respect, model recalibration at every month is the method with the lower number of
variations coincident with the series (14 out of 24). On the other hand, 3 and 6-month forecasts reveal as
the most accurate (17 out of 24). Regardless of the forecast horizon, discrepancies in turning points between
predicted and observed values are more pronounced in the second half of each year.
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Figure 4.9: Forecasts of monthly hospitalizations due to diabetes for 2017 and 2018. Observed values (black line) and forecasts
(blue line; blue box = 95% prediction interval) for SARIMA(1,1,2)×(0,1,1)12 and Benchmark (Seasonal Random Walk) models.
Vertical lines indicate time points at which the model was updated (Benchmark) or re-estimated (SARIMA). 𝑙, lead time.
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Chapter 5

Discussion

As one of the major types of non-communicable diseases, along with CVD, cancer and chronic respiratory
diseases, diabetes represents a tremendous challenge for health systems [46]. In Portugal, the National Pro-
gramme for the Prevention and Control of Diabetes from the Ministry of Health, presented in 2008, aimed
to reduce diabetes prevalence, morbidity and mortality, by reducing the incidence of complications, or de-
laying their onset. It intended, among others, to reduce the number of episodes of hospitalization due to
diabetes complications, and, more specifically, hospitalizations due to ketoacidosis, severe hypoglycaemia
and hyperosmolarity [47].

The present work focus precisely on the consequences of diabetes, aiming to describe and model the temporal
evolution of hospitalizations due to diabetes in Portugal, in a total of 73,050 episodes from 2010 to 2018. Over
this period, the series of monthly hospitalizations exhibits a decreasing trend, with apparent seasonality. A
higher number of hospitalizations was recorded in winter, with the annual peak occurring most frequently in
January, whereas summer months accounted for the fewest number of hospitalizations due to diabetes during
the study period. The same was observed by Gomes, Fonseca, and Freitas [48], while studying the seasonal
variation of hospitalizations with primary diagnosis of T2D with hyperosmolarity, in mainland Portugal. The
study of the factors explaining the seasonal variability observed in the data is out of the scope of this thesis,
but it is worthmentioning that this pattern is in line with seasonal fluctuation in the levels of blood glucose [49,
50] and HbA1c [50–52], with the peak observed in the first months of the year reflecting, quite possibly, the
excesses committed duringChristmas festivities and consequent weight gain [53, 54], alongwith a diminished
practice of physical activity [55].

Box-Jenkins approach was further applied to the data in order to identify the SARIMA model that best fitted
the series of monthly hospitalizations due to diabetes. Nine candidate models were trained using data from
January 2010 to December 2016 (84 months), of which the one with the lowest AIC, (1, 1, 2) × (0, 1, 1)12,
was selected and used to forecast hospitalizations up to 12 months ahead over a period of 24 months, corre-
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spondent to the years 2017 and 2018. This model was firstly subjected to rolling-origin-update and rolling-
origin-recalibration evaluations by successively incrementing the training set by one month. By doing that,
one aimed to verify if it would be worthwhile to re-estimate the model instead of just updating it, while the
accuracy of the model was assessed by averaging forecast errors for each lead time.

Following the recalibration procedure, fixed and rolling windows were further used to investigate if there
was any benefit in keeping the oldest observations or, on the contrary, more accurate predictions would be
obtained if these were dropped when new ones become available. The obtained results suggest that, for
longer horizons, the model takes advantage on the use of more data, given a fixed window, to produce more
accurate forecasts. Still, regardless of whether a fixed or a rolling window was used, the predictive accuracy
of the model worsened as the forecast timespan increased, with the minimum MAPE being obtained for
one-month-ahead forecasts (8.2% and 7.8%, respectively). This was expected in all forecasting scenarios
given the propagation of errors, that the model cannot account for, across the time window. Nonetheless, for
the method of rolling-origin-update, one-month forecasts did not present the lowest error. This can possibly
be justified by the constant imputation of new data, considerably different from previous, that the model
was unable to properly accommodate as it was not re-estimated, thus reflecting in poorer forecasts. Overall,
rolling-origin-recalibration performed better, but for both methods the SARIMA model was able to forecast
hospitalizations due to diabetes with good accuracy up to six months in advance, that is, with a relative error
lower than 10%. Similar results were obtained byVillani et al. [56]. The authors verify that a SARIMAmodel
can accurately forecast monthly prehospital caseload of acute diabetic emergencies, namely hypoglycaemia
and hyperglycaemia.

The performance of the model was also evaluated across lead times, while forecasting the number of hospi-
talizations due to diabetes for 2017 and 2018. Different schemes, in which new values were available every
month, or only at every 3, 6 or 12 months, were considered. After forecasting for the first horizon, new data
were included in the training set and used to re-estimate the model before the next horizon get to be predicted,
simulating real forecasting scenario, where data are imputed to the model as soon as they become available.

For the year 2017, MAPE was lower than 10% in all cases, with the particularity of decreasing from the
shortest to the longest forecast horizon. It would be expected that the recalibration of the model with the
greatest frequency improved its accuracy, but a pernicious effect was observed instead. For instance, the
series behaviour at the beginning of 2017 was quite different from the pattern observed in 2016. As an
example, the number of hospitalizations in February 2017, month from a season typically associated with
higher values, was lower than the lowest number of monthly hospitalization in 2016, observed in October.
So, at each recalibration time point, the model was imputed with data that did not agreed with previous data
from which the model was identified. Such disagreement was reflected in the forecasts computed, being
more notorious with the greater frequency of re-estimation. Facing this results, it could be questioned if the
length of the training set had influenced forecasting accuracy. As referred by Schweigler et al. [57], if it
is too short, parameter estimates can be imprecise. In the other hand, if too long, the model could not be
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able to adapt to recent behaviour and new patterns. In the present work, the two years of the validation set
correspond to 22% of the available data, allowing to test the model over two periods of 12 months and so
evaluate how it captures the seasonality of the series. Without a formal rule about the dimension of the test
set, the percentage of data retained approximated to the value of 20% can be regarded as acceptable [44].

As for 2018, in turn, model’s accuracy improved when it got to be re-estimated more often, as expected.
Notwithstanding, the magnitude of the error largely increased when forecasts for 12 months were obtained.
Happens, possibly, that the use of information from an unusual year, combined with the behaviour, sharply
decreasing, of the series in the year to be forecast resulted in poor predictions. In average, a MAPE of 12.4%
was obtained for that horizon, representing an improvement (30% reduction, even more if the model was
re-estimated more than once a year) in relation to the benchmark method, a seasonal random walk. In this
case, the model needs to be updated just once a year, since each forecast value equals the observed value
for the same month in the previous year [58]. The fact that it is a simple method that requires no parameter
estimation, and so can be easily implemented in health services by non-statistician, justifies its choice as
benchmark model. The graphical representation of the forecasts shows that this method overestimates the
series, in a more notorious way than the SARIMA. For the latter, this was specially evident in the first
months of either 2017, when the series took extreme low values— that would be to expect in warmer months
according to the past —, and 2018, as the model did not foresee the abrupt decline of the series. Despite,
this model was able to capture the seasonality of the series, predicting a higher number of hospitalizations in
coldest months, while ensuring a good forecasting accuracy when re-estimated at least twice a year. Hence,
if monthly update is not viable in clinical practice, quarterly or semi-annual recalibration would stand as a
good alternative.

These findings support the use of SARIMA models to forecast hospitalizations due to diabetes at
short/medium term, allowing management decisions to be taken timely. Being alerted for high demand
periods, health managers can plan according to patient flow, thus improving quality of care, while making a
more efficient use of the budget, as the allocation of resources becomes closer to real needs [44, 59, 60].

As a general class of linear models, Box-Jenkins (S)ARIMA models are capable of modelling most time
series and have been widely used in health forecasting, in the prediction of admissions to the Emergency
Department [44, 57, 60–66], new admission / discharged inpatients [67, 68], hospital daily outpatient visits
[69], patient volume in Hospital Medicine [70], patient volume at a primary health care clinic [71], surgical
case volume [72], length of stay, discharge and readmission rate [73], prehospital acute diabetic emergencies
[56], demand for red blood cell transfusion [74], incidence and mortality rate for prostate cancer [75]. This
family of models is often compared against other forecasting methods, including the exponential smoothing,
equally popular [44, 56, 60, 64, 69, 70, 73, 74, 76–78], and neural networks [64, 68, 74, 79].

Time series models, despite being less informative than regression models, can provide greater forecast ac-
curacy. Nonetheless, it is not guaranteed that time series models produce the best results in all contexts, as
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evidenced by Ordu, Demir, and Tofallis [76]. The authors developed, in collaboration with finance, strategy
and planning directors, a forecasting modelling framework for all acute services of a hospital in England, in-
cluding all the specialities in outpatient, inpatient and emergency and accident departments, having conclude
that the best predictions arise from different methods and horizons (daily, weekly and monthly forecasts).
Their findings support the importance of exploring several options when selecting a forecasting model.

The present work did not seek to make a formal comparison between forecasting methods, but rather an
exploratory analysis of different forecasting procedures, applied over data on hospitalizations due to diabetes.
Soyiri and Reidpath [59] refer that such condition-specific forecasts can better prepare health care providers
compared to aggregated forecasts, as would be predictions for overall hospitalizations in this particular case.
Gershon et al. [66] and Becerra et al. [44], for example, based their work on respiratory diseases. Olsavszky et
al. [80] also focused on specific conditions, having predicted hospitalizations for each one of the top 10 causes
of death, including diabetes and respiratory diseases, while testing different modelling approaches through
automated time series machine learning. In common there is the application of forecasting techniques over
regional data. Other authors, like Jones et al. [64] and Schweigler et al. [57], used data from different health
facilities, independently. Such a strategy would be welcomed by health managers, given clear differences
between hospitals in their organizational structure, as well as in the social, environmental and climatic context
that they make part of [70]. Of note, in this regard, that a greater forecast error would be to expect at this
level since, as denoted by Jenkins [81], the higher the level of disaggregation, the higher the randomness and,
therefore, the unpredictability of the series. So, it is possible that hospitals in regions with more pronounced
seasonal effects, as, for example, more extreme winters, would benefit the most from the use of forecasting
models.

While the awareness for seasonal patterns is in itself advantageous when facing periods of higher demand
of medical services, it could also be useful to separate elective from non-elective cases when building the
forecasting model. According to Zinouri, Taaffe, and Neyens [72], this could be a way to balance workload
by scheduling non-emergent cases in periods (days or months) associated to a lower patient flow. This was, in
fact, made byOrdu, Demir, and Tofallis [76], whichmodelled separately elective and non‐elective admissions,
but also first referrals and follow‐ups. In the present work, the number of emergencies far exceeded that of
planned admissions such that one can question whether planning and coordination strategies from health care
providers could benefit, to some degree, from this distinction in data used to predict hospitalizations due to
diabetes.

There are acknowledged limitations in the work conducted, concerning both the nature of the data and the
statistical methods applied. Firstly, only main diagnoses of diabetes and the most common types of the
disease were included, thus underestimating its impact, as well as the demand for diabetes-specific health
care. Moreover, the use of aggregated data at national level makes unviable the use of the obtained forecasts
in real clinical practice. Concerning the modelling process, the use of AIC to decide on the forecasting
model to choose, while reflecting a compromise between goodness of fit and complexity, may have led to
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a misinterpretation of the quality of the models since different data sets (differenced/undifferenced data)
were used to train them. Another approach, while computationally more expensive, would be to select all
formulated models, as done by Villani et al. [56], or at least some of them with lower AIC, and choose the
one with the greatest predictive ability based on MAPE. Other authors, like Earnest et al. [75], based their
decision on in-sample fit. Yet, the model with the lowest error in the training data is not guaranteed to have
the best forecasting accuracy. Finally, it should be noted that model evaluation was based on provisional data.
Still, and although it can not be assured that the forecast errors would be as diminutive if definitive data were
used, this work shows that SARIMA models are capable to predict diabetes-related conditions with good
accuracy.

Future work on this field of research includes a spatiotemporal analysis of hospitalizations due to diabetes in
Portugal, following a Bayesian hierarchical disease mapping approach. In this process, population socioeco-
nomic characteristics and access to health care at regional level will be taken into account, thus supporting
the implementation of community-based interventions intended to reduce diabetes complications and the
consequent need for medical care at the hospital.
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Chapter 6

Conclusion

Diabetes is a chronic, complex disease, posing a considerable burden on individuals, health systems, and
society in general. Facing the increasing prevalence of this disease and its consequences, this work aimed
to describe and model the temporal evolution of hospitalizations due to diabetes in Portugal from 2010 to
2018. On the first point, it was shown that, despite the increasing trend in the admissions for diabetes over
these years, the number of episodes requiring hospitalization revealed a decreasing pattern, which can be in-
terpreted optimistically as a result of national policies on diabetes prevention and control, intended to reduce
disease morbidity and mortality. Seasonal fluctuations were also observed in the series of monthly hospi-
talizations for diabetes-related complications, highlighting a greater number of cases in the winter months.
Although the recognition of these patterns can be helpful in high demand periods, reliable and accurate fore-
casts could better guide planning and organization by health care providers, thus addressing patient needs in
a more effective way. In this regard, the validity and accuracy of SARIMA models in forecasting monthly
hospitalizations due to diabetes were assessed following Box-Jenkins approach and out-of-sample evaluation.
In summary, the results of this study reveal that SARIMA models, central in the field of time series analysis,
perform well in this context, suggesting that they can be used to predict hospitalizations far enough to allow
for an adequate allocation of medical resources with good accuracy. Whether these forecasts would be useful
in clinical settings, supporting decision-making, should be further investigated.
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A Diabetes hospitalizations by region
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Figure A.1: Evolution of hospitalizations due to diabetes per 100,000 inhabitants by region in Portugal. The blue line represents
the hospitalizations due to diabetes per 100,000 inhabitants in Portugal, for all population, over the years.
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B Forecasting accuracy by lead time

Table B.1: Forecasting accuracy of the model (1,1,2)×(0,1,1)12 for 1 to 12-months-ahead, based on rolling-origin-update and
rolling-origin-recalibration evaluation.

Rolling-origin-update Rolling-origin-recalibration

Fixed window Fixed window Rolling window

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

𝑙 = 1 44.9 54.8 9.1 41.1 48.7 8.2 39.5 47.4 7.8
𝑙 = 2 39.3 48.1 8.0 38.4 46.9 7.7 38.3 46.9 7.6
𝑙 = 3 40.4 49.1 8.3 41.3 48.4 8.4 40.8 47.8 8.3
𝑙 = 4 42.9 51.1 8.9 42.8 50.9 8.8 42.5 50.9 8.7
𝑙 = 5 43.7 54.6 9.4 43.9 54.3 9.4 43.9 54.6 9.3
𝑙 = 6 45.0 56.8 9.8 44.0 55.9 9.5 44.9 56.4 9.7
𝑙 = 7 50.0 62.2 11.1 50.3 62.2 11.1 51.9 63.5 11.3
𝑙 = 8 55.5 68.2 12.4 54.6 67.1 12.2 56.2 68.2 12.5
𝑙 = 9 58.2 71.0 13.3 58.3 70.8 13.3 59.4 71.8 13.5
𝑙 = 10 67.9 77.4 15.3 67.7 76.5 15.3 69.7 77.6 15.7
𝑙 = 11 66.1 76.9 15.3 65.4 76.6 15.1 66.8 77.9 15.4
𝑙 = 12 69.1 81.4 16.0 68.2 79.8 15.8 70.0 81.5 16.2

l, lead time; MAE, Mean Absolute Error; RMSE, Root Mean Square Error; MAPE, Mean Absolute Percentage Error.
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