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Summary 
 

 A remarkable feature of the human brain is its sexual dimorphism. While it is well-documented 

that the sexual dimorphism in brain structure and function exists, there is a sex bias in neuroscience 

research. Either single-sex male studies are favoured, or the works do not provide a sex-based analysis 

when both sexes are included. Experimental results obtained from research using only one sex are some-

times extrapolated to both sexes without thorough justification, which might cause conceptual errors 

and unintended biased practices. 

It has been suggested that the hippocampus is sexually dimorphic, although not at the macro-

scopic anatomical level, as sex difference was eliminated in meta-analyses of studies that correct for 

overall brain volume. Instead, at the cellular level, differences between male and female rats have been 

detected with respect to the number of dentate granule cells and branching patterns of dentate granule 

and hippocampal pyramidal cell dendrites. However, most studies focus on CA3 and dentate gyrus neu-

ronal morphology, and few have studied sex-dependent differences in CA1 neurons. 

We explored sex-dependent differences in the dendritic morphology, functional capabilities and 

optimality of CA1 pyramidal neurons using digitally reconstructed neurons from the Neuromorpho.Org 

database. We analysed a total of 66 basal dendritic trees (33 of each sex) from control mice. Using 

cluster analysis, we identified two clusters, separated by size: neurons with larger (cluster 1) and smaller 

(cluster 2) average size. 

To assess sex differences in the morphology we chose 9 metrics describing the main features of 

a neuron. In cluster 1, male neurons present significantly larger total length, maximum path length, tree 

radius, volume and number of branch points. Sholl analysis also revealed increased complexity in male 

cluster 1 neurons. Instead, no sex-dependent differences in morphology nor Sholl analysis were identi-

fied in cluster 2. Fractal analysis assessed how much the dendrites filled their space, and there were no 

differences between sexes in either clusters. The same was true for centripetal bias, but it revealed that 

neurons favour faster conduction time over a smaller cable length. 

To assess neuronal optimality, we took two different approaches. We first applied known power 

laws and compared the exponents to their optimal value, but they proved to be unreliable to determine 

optimality. The second approach was a multi-objective optimization. We calculated 3 measures of func-

tional capabilities which depend on neuromorphological properties: connectivity repertoire, signal inte-

gration efficiency and cable cost. An optimal neuron will maximize the first two, while minimizing the 

cost. Male neurons of cluster 1 had significantly higher connectivity repertoire and signal integration 

efficiency, but at a higher cost than females. After normalizing by cost, signal integration was signifi-

cantly more efficient in female neurons of cluster 1. In cluster 2, no significant differences were found. 

To determine optimality, we defined a Pareto front using synthetic neurons and calculated the euclidean 

distance between this surface and each of the neurons from the dataset. In both clusters there were no 

significant differences, but neurons of cluster 2 were significantly more optimal than those of cluster 1. 

In conclusion, we found novel sex-dependent differences in the morphology of CA1 basal py-

ramidal neurons. Results on optimality varied according to the chosen Pareto front, and so no clear 

conclusions can be drawn. Nevertheless, our multi-objective approach is a first step in understanding 

sex differences. 

 

 

 

Key words: sex-dependent differences, neuromorphology, functional capabilities, neuronal optimality. 
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Resumo 
 

O cérebro é um órgão diferenciado sexualmente desde o período perinatal, caracterizado pelo 

seu dimorfismo sexual. Apesar de existir uma extensa documentação deste dimorfismo tanto a nível 

estrutural como a nível funcional, existe um certo enviesamento em investigação na área da neurociên-

cia. Estudos com apenas o sexo masculino são favorecidos, sendo que os resultados são depois extrapo-

lados sem grande justificação, quando estes podem não se verificar para o sexo feminino. Esta prática é 

cada vez menos comum, sendo que a percentagem de estudos que incluem ambos os sexos subiu de 29% 

em 2009 para 63% em 2019. No entanto, apenas 20% destes realizaram uma análise com o sexo em 

consideração, e portanto diferenças sexuais são negligenciadas. Isto pode causar erros conceptuais e 

enviesamento não intencional em prática clínica. 

O hipocampo é uma área do cérebro considerada como sexualmente dimórfica, e está associado 

à consolidação de memórias de longo e curto prazo, e memória espacial. Tanto em humanos como em 

modelos animais, o sexo masculino supera o feminino no que toca à navegação espacial, enquanto que 

o contrário acontece com informação semântica. No entanto, a nível macroscópico, não se encontram 

diferenças sexuais na sua anatomia, visto que estas são eliminadas quando corrigidas pelo volume cere-

bral. Já a nível celular, foram encontradas diferenças entre ratos machos e fêmeas no que toca ao número 

de células na circunvolução dentada, assim como nos padrões de ramificação das dendrites, tanto das 

células da circunvolução dentada como das células piramidais. Porém, a maior parte dos estudos são 

focados na morfologia neuronal das células do CA3 e da circunvolução dentada, enquanto que poucos 

estudaram diferenças sexuais nos neurónios do CA1. 

Na primeira parte desta dissertação explorámos diferenças sexuais na morfologia dos neurónios 

piramidais do CA1. Para tal, utilizámos reconstruções neuronais disponíveis na base de dados Neuro-

Morpho.Org, analisando um total de 66 dendrites basais (33 de cada sexo) de ratos C57BL/6J (controlo). 

Realizámos uma análise de aglomeração de dados (clustering), onde encontrámos dois clusters, que 

separavam os neurónios de acordo com a sua dimensão. O cluster 1 contém os neurónios de maiores 

dimensões, enquanto que o cluster 2 contém os de menores. Para averiguar a existência de diferenças 

na morfologia escolhemos 9 variáveis que descrevem as propriedades principais de um neurónio: com-

primento total das dendrites, comprimento máximo das dendrites, comprimento médio dos ramos den-

dríticos, raio do soma, raio da arborização dendrítica, volume da arborização dendrítica, número de 

pontos de ramificação dendrítica (bifurcação), ordem média dos ramos dendríticos, e retidão das den-

drites. Os neurónios do sexo masculino do cluster 1 tinham significativamente maior comprimento total 

e comprimento máximo, maior volume e raio da arborização, e mais bifurcações que os neurónios do 

sexo feminino. Já no cluster 2, não foram encontradas diferenças significativas entre sexos. 

Já na segunda parte desta dissertação, quisemos fazer a ponte entre as diferenças neuromorfo-

lógicas que identificámos, e possíveis diferenças sexuais nas capacidades funcionais dos neurónios e na 

sua otimalidade. Desde a década de 1970 que existe o consenso de que as propriedades morfológicas do 

neurónio determinam a sua função, assim como influenciam a forma como este integra os sinais que 

recebe. Pequenas alterações são suficientes para perturbar os circuitos neuronais, como é o caso nas 

doenças neurológicas. No entanto, ainda não se sabe como a morfologia de cada célula afeta a rede 

neuronal. No fim do século XIX, Ramón y Cajal fez a primeira proposta sobre otimalidade neuronal, 

dizendo que as dendrites vão otimizar a sua conectividade ao minimizar o tempo de condução num 

compromisso com o custo material associado ao seu comprimento. Atualmente este conceito evoluiu, 

sendo proposto que a arborização dendrítica cresce de forma a preencher um espaço alvo, enquanto 

minimiza o tempo de condução e o custo. É portanto possível classificar um neurónio como ótimo ou 

subótimo, em que o ótimo é aquele que consegue chegar a todos os axónios que passam pelo seu espaço 
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alvo, com o mínimo comprimento total. Utilizando este conceito de otimalidade, é possível fazer o salto 

entre morfologia e implicações na rede neuronal. 

Para aferir a otimalidade neuronal, utilizámos duas abordagens diferentes. Primeiramente, cal-

culei duas leis de potência que relacionam propriedades morfológicas, e cujo expoente tem um valor 

otimal. Se um neurónio seguir a lei de potência, então é considerado como ótimo, caso contrário é subó-

timo. No entanto, com estas leis obtivemos resultados contraditórios, e elas mostraram-se como um 

método não confiável de aferir a otimalidade dos neurónios. A outra abordagem passou por definirmos 

uma otimização com múltiplos objetivos. Para tal calculámos três medidas de capacidades funcionais 

de um neurónio: o repertório de possíveis conexões, a eficiência na integração dos sinais, e o custo 

material. Estas três medidas comportam-se como uma configuração de Pareto, ou seja, é necessário 

atingir um balanço entre as três. Um neurónio ótimo é aquele que maximiza as primeiras duas medidas, 

enquanto minimiza o custo (multiobjetivos). Começámos por comparar cada uma destas capacidades 

funcionais individualmente, e no cluster 1 encontrámos diferenças significativas entre os sexos: os neu-

rónios do sexo masculino tinham maior eficiência e repertório de conexões, mas também tinham um 

maior custo. Devido a terem um custo superior ao dos neurónios femininos, não é possível dizer direta-

mente que estes são mais ótimos ou não. Também comparámos o repertório e a eficiência após norma-

lizá-los pelo custo, sendo que os neurónios do sexo feminino passaram a ser significativamente mais 

eficientes que os do masculino. Isto indica que os neurónios femininos são na verdade mais ótimos que 

os masculinos. Já nos neurónios do cluster 2, não encontrámos quaisquer diferenças significativas. Para 

poder determinar efetivamente a otimalidade de cada neurónio com esta abordagem, é preciso ter em 

consideração o balanço entre as três capacidades funcionais. Para tal, é necessário resolver este problema 

de otimização com múltiplos objetivos, e assim obter a fronteira de Pareto. A distância euclidiana entre 

cada neurónio e esta fronteira determina o quão próximo eles estão de ser ótimos. Uma vez que a efici-

ência na integração dos sinais foi obtida através modelos computacionais, foi necessário encontrar uma 

alternativa para obter a fronteira de Pareto. Neste caso, não obtivemos a verdadeira fronteira, mas sim 

escolhemos uma superfície que se adaptava aos dados. De acordo com a superfície que escolhemos 

como fronteira de Pareto, em ambos os clusters não encontrámos diferenças significativas entre os se-

xos. Comparando cada cluster, os neurónios do cluster 2 são significativamente mais ótimos que os do 

cluster 1. É de referir que se escolhêssemos outra superfície, os resultados seriam diferentes ao comparar 

os sexos no cluster 1, com os neurónios do sexo feminino significativamente mais ótimos, como era de 

esperar pelos resultados anteriores. Portanto, os resultados de otimalidade com esta abordagem também 

não são confiáveis, sendo que é necessário obter a verdadeira fronteira de Pareto. 

Para além destas análises, também realizámos análise de Sholl e calculámos a dimensão fractal 

e o enviesamento centrípeto. A análise de Sholl revelou uma maior complexidade nos neurónios do sexo 

masculino do cluster 1, mas não no cluster 2. A dimensão fractal, que é uma medida de quanto as den-

drites ocupam o espaço, não revelou diferenças em nenhum dos clusters. O mesmo sucedeu para o en-

viesamento centrípeto, no entanto este revelou que existe um certo enviesamento. Isto significa que os 

neurónios favorecem uma diminuição no tempo de condução sobre um menor comprimento total. 

Em conclusão, encontrámos diferenças sexuais na neuromorfologia das dendrites basais do hi-

pocampo CA1 de ratos C57BL/6J. Estas diferenças só se verificam nos neurónios de maiores dimensões, 

e influenciam as capacidades funcionais dos mesmos. Já os resultados sobre a otimalidade não eram 

confiáveis em nenhuma das abordagens, e portanto ainda não é possível fazer conclusões sobre a influ-

ência do sexo. No entanto, a nossa proposta de otimização de multiobjetivos é um primeiro passo na 

direção correta, e pode ainda ser melhorada. 

 

 

 

Palavras-chave: diferenças sexuais, neuromorfologia, capacidades funcionais, otimalidade neuronal. 



viii 

Contents 
 

Dedicatória e Agradecimentos ............................................................................................................ ii 

Summary ............................................................................................................................................ iv 

Resumo ............................................................................................................................................... vi 

List of figures ....................................................................................................................................... x 

List of tables ..................................................................................................................................... xiv 

List of abbreviations ......................................................................................................................... xvi 

 

General introduction ............................................................................................................................. 1 

Hypothesis and objectives .................................................................................................................... 1 

 

Chapter 1 : Exploring sexual dimorphism in the morphology of CA1 basal trees from mice ........... 3 

1.1. Introduction ............................................................................................................................... 3 

1.2. Methods ..................................................................................................................................... 5 

1.2.1. Dataset and morphological metrics .................................................................................... 5 

1.2.2. Cluster analysis ................................................................................................................... 8 

1.2.3. Statistical Analysis ............................................................................................................. 8 

1.3. Results ..................................................................................................................................... 12 

1.3.1. Dataset and morphological metrics .................................................................................. 12 

1.3.2. Cluster analysis ................................................................................................................. 14 

1.3.3. Statistical analysis ............................................................................................................ 18 

1.4. Discussion and Conclusions .................................................................................................... 22 

 

Chapter 2 : Bridging the gap between neuronal morphology, functional capability and neuronal 

optimality ........................................................................................................................................... 25 

2.1. Introduction ............................................................................................................................. 25 

2.2. Methods ................................................................................................................................... 27 

2.2.1. Power law relations .......................................................................................................... 27 

2.2.2. Multi-objective optimality ................................................................................................ 28 

2.2.3. Measures of dendritic complexity .................................................................................... 32 

2.3. Results ..................................................................................................................................... 37 

2.3.1. Power law relations .......................................................................................................... 37 

2.3.2. Multi-objective optimality ................................................................................................ 39 

2.3.3. Measures of dendritic complexity .................................................................................... 44 

2.4. Discussion and conclusions ..................................................................................................... 48 



ix 

General conclusions ........................................................................................................................... 53 

References .......................................................................................................................................... 55 

 

Supplementary Information ................................................................................................................ 61 

I. Dataset selection criteria ............................................................................................................. 61 

II. Analysis on whole data .............................................................................................................. 63 

III. Silhouette Coefficient ............................................................................................................... 70 

IV. Principal Component Analysis ................................................................................................. 74 

V. Multi-objective optimality ......................................................................................................... 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

List of figures 
 

Figure 1.1 - Camera lucida drawing of a layer V neuron from the rat. ............................................... 4 

Figure 1.2 - Schematic representation of the neuromorphological metrics of a pyramidal neuron..... 6 

Figure 1.3 - Examples of the bias in dendritic arbor radius (R) calculation. ....................................... 7 

Figure 1.4 - Decision tree for what distribution should fit best a continuous data. ............................. 9 

Figure 1.5 - Example of a Cullen and Frey graph. ............................................................................ 10 

Figure 1.6 - Example of a Q-Q plot. .................................................................................................. 10 

Figure 1.7 - 2D projections of the neuronal trees. ............................................................................. 13 

Figure 1.8 - Dendrograms and heatmap of the divisive hierarchical cluster analysis on the whole 

dataset. ................................................................................................................................................ 15 

Figure 1.9 - Dendrograms and heatmap of the divisive hierarchical cluster analysis on the male 

neurons. .............................................................................................................................................. 16 

Figure 1.10 - Dendrograms and heatmap of the divisive hierarchical cluster analysis on the female 

neurons. .............................................................................................................................................. 17 

Figure 1.11 - 2D projections of the neuronal trees, coloured by sex and cluster. ............................. 18 

Figure 1.12 - Sex-dependent neuromorphological differences for Cluster 1. ................................... 20 

Figure 1.13 - Sex-dependent neuromorphological differences for Cluster 2. ................................... 21 

Figure 2.1 - Schematic representation of four dendritic arbor conformations and respective spine-

reach zones. ........................................................................................................................................ 25 

Figure 2.2 - Example of a Sholl analysis. .......................................................................................... 32 

Figure 2.3 - Example of when the fractal dimension can distinguish the branching complexity of two 

neurons, but Sholl analysis fails to. .................................................................................................... 34 

Figure 2.4 - How L-measure calculates the fractal dimension D. ..................................................... 35 

Figure 2.5 - Example of how the root angle is obtained and consequences of centripetal bias. ....... 36 

Figure 2.6 - Estimation of Cuntz’s power law when considering the 2 clusters. .............................. 37 

Figure 2.7 - Estimation of Wen’s power law when considering the 2 clusters. ................................ 38 

Figure 2.8 - Variance of the 3 Pareto measures in both clusters. ...................................................... 40 

Figure 2.9 - Removing the dependency on total length of both connectivity repertoire and signal 

integration efficiency. ......................................................................................................................... 41 

Figure 2.10 - Euclidean distance of each neuron to the Pareto front in the 3D space. ...................... 42 



xi 

Figure 2.11 - Euclidean distance to the Pareto front shows no sex-dependent differences. .............. 43 

Figure 2.12 - Sholl interception profile of Cluster 1 for each sex. .................................................... 44 

Figure 2.13 - Sholl interception profile of Cluster 2 for each sex. .................................................... 45 

Figure 2.14 - Fractal dimension D shows no significant sex differences for both clusters. .............. 46 

Figure 2.15 - Centripetal bias k shows no significant sex differences in both clusters. .................... 47 

 

Figure SII.1 - Variation of the data by sex and statistical difference for each neuromorphological 

metric. ................................................................................................................................................. 64 

Figure SII.2 - Estimation of Cuntz’s power law for each sex. .......................................................... 65 

Figure SII.3 - Estimation of Wen’s power law for each sex. ............................................................ 66 

Figure SII.4 - Statistical analysis of the 3 Pareto measures in the whole data. ................................. 67 

Figure SII.5 - Statistical analysis of the Pareto measures normalized by total length in the whole data.

 ............................................................................................................................................................ 67 

Figure SII.6 - Sholl interception profile of the whole data for each sex. .......................................... 68 

Figure SII.7 - Fractal dimension D and centripetal bias k show no significant differences between 

sexes in the whole data. ...................................................................................................................... 69 

Figure SIII.1 - Silhouette plot of the hierarchical clustering analysis on the whole dataset. ............ 70 

Figure SIII.2 - Silhouette plot of the hierarchical clustering analysis on the male trees. ................. 71 

Figure SIII.3 - Silhouette plot of the hierarchical clustering analysis on the female trees. .............. 71 

Figure SIII.4 - New silhouette plot of the hierarchical cluster applied to the female trees, after 

changing the 3 neurons from cluster 2 to cluster 1. ............................................................................ 72 

Figure SIII.5 - Silhouette plot of the hierarchical clustering analysis on the male trees, considering 

only the volume of the neurons. ......................................................................................................... 73 

Figure SIII.6 - Silhouette plot of the hierarchical clustering analysis on the female trees, considering 

only the total length of the neurons. ................................................................................................... 73 

Figure SIV.1 - Scaled PCA on the whole dataset. ............................................................................. 75 

Figure SIV.2 - Scaled PCA of the metrics coloured by animal ID. .................................................. 76 

Figure SIV.3 - Scaled PCA of the metrics for Cluster 1. .................................................................. 77 

Figure SIV.4 - Scaled PCA of the variables for Cluster 2. ............................................................... 78 

Figure SV.1 - Interspine distance in function of the distance to the soma, with polynomial fits of 

different degrees. ................................................................................................................................ 80 



xii 

Figure SV.2 - Evidence of log-like relationship between total length and signal integration efficiency 

in both clones and original dataset. .................................................................................................... 82 

Figure SV.3 - Normalized signal integration efficiency has no relationship with the percentage of 

received inputs. ................................................................................................................................... 83 

Figure SV.4 - Signal integration efficiency has no relationship with the number of branch points. . 84 

Figure SV.5 - Euclidean distance of each neuron to a different Pareto front in the 3D space. ......... 85 

Figure SV.6 - Euclidean distances to a different Pareto front uncover sex-dependent differences in 

Cluster 1. ............................................................................................................................................ 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

  



xiv 

 

List of tables 
 

Table 1.1 - Description of the selected neuromorphological metrics. ................................................. 6 

Table 1.2 - Summary of the study sample. ........................................................................................ 12 

Table 1.3 - Coefficient of variation (CV) of each metric shows data variability. ............................. 13 

Table 1.4 - Statistical comparisons between sexes of each cluster. ................................................... 19 

Table 2.1 - Description of the variables used in the calculation of connectivity repertoire, Eq. 2.4. 

 ............................................................................................................................................................ 30 

Table 2.2 - Statistical comparisons of the Pareto measures between sexes of each cluster. .............. 39 

Table 2.3 - Statistical comparisons of the euclidean distance to the Pareto front, between sexes for 

both clusters and between clusters for both sexes. ............................................................................. 43 

Table 2.4 - Statistical comparisons of fractal dimension D and centripetal bias k between sexes for 

both clusters. ....................................................................................................................................... 46 

 

Table SI.1 - Summary of the 4 considered comparisons from NeuroMorpho.Org, and reasons for 

discarding. .......................................................................................................................................... 62 

Table SII.1 - Statistical comparisons between sexes. ........................................................................ 63 

Table SII.2 - Statistical comparisons of the Pareto measures between sexes.................................... 66 

Table SII.3 - Statistical comparisons of fractal dimension D and centripetal bias k between sexes. 

 ............................................................................................................................................................ 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 



xvi 

List of abbreviations 
 

AIC – Akaike information criteria. 

ANOVA – Analysis of variance. 

AUC – Area under the curve. 

C-I – Class I. 

C-IV – Class IV. 

CAN – Cornu Ammonis N. 

CV – Coefficient of variation. 

GLMM – Generalized Linear Mixed Model. 

LMM – Linear Mixed Model. 

MST – Minimum spanning tree. 

NS – Non-significant. 

PC – Principal Component. 

PCA – Principal Component Analysis. 

PN – Postnatal day N. 

Q-Q – Quantile-quantile. 

R2 – Coefficient of determination. 

RMSE – Root mean square error. 

SC – Silhouette coefficient. 

SIP – Sholl intersection profile. 

WT – Wild-type. 

 

 

 

 

 

  



xvii 

  



1 

General introduction 
 

It is known that the brain is sexually differentiated during a perinatally sensitive period (Lenz 

et al., 2012; Phoenix et al., 1959). In 2009 Beery and Zucker did a literature search and found that 

single-sex studies in the field of neuroscience would favour male animals over females at a ratio of 

5.5:1 (Beery & Zucker, 2011). In 2019, they reported that 63% of neuroscience studies included both 

sexes, versus 29% in 2009. However, less than 20% of them have conducted sex-based analysis 

(Woitowich et al., 2020). 

There is a consensus that the morphological properties of a neuron will determine its function 

and impact how the signals are integrated. Therefore, differences in hippocampal function between 

males and females in spatial tasks, working memory and semantic information (Wang et al., 2018; 

Yagi & Galea, 2019) could be associated with differences in morphology. However, few studies have 

assessed sex-dependent differences in CA1 pyramidal neurons (Keil et al., 2017; Koss & Frick, 2017), 

and there is a gap between single-cell architecture and the implications in the network they form. 

Studies assessing differences in wiring optimality between sexes are also lacking. It is clear that a sex 

bias still exists, and needs to be addressed. 

 

 

 

Hypothesis and objectives 
 

We hypothesize that differences between males and females in dendritic morphology of CA1 

pyramidal neurons may affect their computational capabilities and wiring optimality. 

 

To investigate this hypothesis, we have divided this dissertation into two objectives: 

1. Investigate the existence of sex-dependent differences in different neuromorphological met-

rics. 

2. Assess if any found differences in morphology imply significant differences in computational 

capabilities and wiring optimality. 

 

This dissertation is divided in two chapters, one for each objective: Chapter 1 explores the 

first, while Chapter 2 explores the second. They are followed by the General conclusions of the 

dissertation, as well as some Supplementary Information. 
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Chapter 1: Exploring sexual dimorphism in the morphology 

of CA1 basal trees from mice 
 

1.1. Introduction 

During normal neurodevelopment, gonadal hormones influence the brain and sex-specific 

behaviour. Shortly, according to the Organizational/Activational hypothesis, the hormones act on a 

perinatally sensitive period to organize a male or female phenotype, leading to brain sexual differen-

tiation; across the lifespan, these hormones also act on the brain to activate sex-specific behaviour 

(Lenz et al., 2012; Phoenix et al., 1959). Areas of the brain associated with sexual behaviour such as 

the preoptic area are more affected by these hormones (Lenz et al., 2012), but others such as the cortex 

and hippocampus are also influenced (Keil et al., 2017). 

The hippocampus is an important area of the brain, associated with short- and long-term 

memory, as well as spatial memory. Studies have shown a sexual difference in learning strategies 

during spatial tasks, both in humans and rodents. Males outperform females in spatial navigation and 

working memory (Yagi & Galea, 2019), whereas the reverse happens for semantic information (Wang 

et al., 2018). Furthermore, the hippocampus contains sex hormones receptors, and their density varies 

in a region-specific way according to sex (Yagi & Galea, 2019). These hormones have been impli-

cated in single cell differences, for example interacting with histone modifying enzymes, and histone 

modifications were associated with neural sexual differentiation in the mouse hippocampus (Tsai et 

al., 2009). There have been a number of studies demonstrating differential effects of gonadal steroids 

on the various subfields of the hippocampus (Duarte-Guterman et al., 2015; Hajszan et al., 2007; 

Woolley, 2007), and numerous sex differences in hippocampus have been described (Duarte-

Guterman et al., 2015; McEwen, 2010; McLaughlin et al., 2009). 

Neurons are the main components of the nervous tissue and typically consist of a soma (cell 

body), dendrites (afferent) and an axon (efferent) (Figure 1.1). The last two represent the communi-

cation interfaces of a neuron, receiving and transmitting information, respectively. The dendrites usu-

ally have many subdivisions (branches), which form a dense arborization surrounding the soma, called 

dendritic tree. These branches have membrane protrusions called dendritic spines which are respon-

sible for receiving information in the form of an electrochemical impulse from other cells through 

synapses. This information is then conducted to the soma, where it will be integrated, and the resulting 

action potential sent through the axon. This cable-like structure is thinner than a dendrite and connects 

the soma in one end to the terminal bulbs in the other. Once the electrochemical impulse reaches the 

terminal bulbs, it will be synapsed onto the next cell. 

It has been shown that neurons with different morphological or anatomical features exhibit 

differences in stimulus-specific temporal encoding and firing reliability. These findings support the 

idea that in addition to biophysical membrane properties, the dendritic morphology and the synaptic 

topology of a neuron can play a significant role in neuronal information processing and may directly 

contribute to various brain functions. Even though the importance of single cell analysis is revealing 

as highly relevant, there is a lack of studies assessing if hippocampal dendritic morphology varies 

with sex, especially in the CA1 layer (Keil et al., 2017). 
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Figure 1.1 - Camera lucida drawing of a layer V neuron from the rat. The three main compartments of the cell are 

highlighted. Adapted from Franceschetti et al 1998. 

 

In the field of neuroscience, single-sex studies favour male animals over females at a ratio of 

5.5:1 in 2009, and even when both sexes were included, the results would not always be analysed by 

sex (Beery & Zucker, 2011). Ten years later these values have improved, with 63% of neuroscience 

studies reporting the inclusion of both sexes, versus 29% in 2009. However, less than 20% of them 

have conducted sex-based analysis (Woitowich et al., 2020), showing how sex differences are still 

overlooked. In relation to this work, only few studies have assessed sex-dependent differences in CA1 

pyramidal neurons in animal models (Keil et al., 2017; Koss & Frick, 2017). Studies can be found 

comparing the total number of cells and number per unit of volume, which were significantly larger 

in male rats (Madeira et al., 1992), and some simple morphological properties such as cell body area, 

branch points and length of longest dendrite, which have no significant sex differences in rats (Gould 

et al., 1990). Dendritic complexity was also studied by Sholl analysis, where male mice had signifi-

cantly more intersections, indicating a higher dendritic complexity (Keil et al., 2017). It is clear that 

an in-depth comparison of neuronal morphology between sexes is missing. 

 

 

 

 



5 

1.2. Methods 

1.2.1. Dataset and morphological metrics 

In this dissertation we used data from NeuroMorpho.Org (Ascoli, 2006; Ascoli et al., 2007). 

This is an online repository of curated digitally reconstructed neurons associated with peer-reviewed 

publications. Alongside each neuron is the respective published article and available metadata. A 

summary of the process and criteria used to select the dataset to work with can be found in Supple-

mentary Information I. 

We selected a dataset in which all neurons were from the same study, and hence no technical 

constraints. This allowed us to compare sex-dependent differences in pyramidal cells. The selected 

sample was composed of 66 neurons, 33 of each sex (variable of interest) reconstructed from the CA1 

hippocampal region of 10 C57BL/6J mice. The neurons come only from 5 male and 5 female mice, 

meaning we have multiple neurons from the same animal (Wilson et al., 2017). 

NeuroMorpho.Org provides the digital reconstructions of the neurons in *.swc files. This 

format represents a neuron by nodes, containing 7 fields of information: indexed number of the node, 

type of neuronal compartment (basal/apical dendrites, axon, soma, etc.), x, y and z coordinates, radius 

and indexed number of the parent node. We can export these files to MATLAB using the TREES 

Toolbox (version 1.15), which will use the different fields to generate the neuronal tree. This toolbox 

is a software with a myriad of functions for editing, visualizing and analysing neurons, and many 

other applications (Cuntz et al., 2010). All functions used in the subsequent analysis of this section, 

unless stated otherwise, are from the TREES Toolbox. 

After exporting the files, the neurons were pre-processed, removing any existing multifurca-

tions, which are not biologically possible (function elimt_tree). We also added a structure representing 

the soma of the tree (functions quaddiameter_tree and soma_tree), which made it easier to find pos-

sible correlations between the size of the soma and, for example, the size of the tree. The *.swc files 

contained the soma as the first node, and so in this case the radius field of the first node is the radius 

of the soma. After exporting the data to the toolbox, the software saves the diameter of the soma in 

tree.D(1). 

The function stats_tree was used to calculate total length, maximum path length, mean branch 

length, number of branch points, mean branch order and straightness (Figure 1.2 and Table 1.1). We 

also calculated 3 other metrics: soma radius, dendritic tree radius and volume. We chose these 9 met-

rics since they describe the main morphological properties of neuronal trees relevant for their func-

tional impact on network connectivity. 

The value for the soma radius, as explained previously, is in the *.swc file provided in the 

NeuroMorpho.Org datasets. The volume was obtained with the boundary function from MATLAB 

(version 2016a) with a shrink factor of 0.7. It determines the span of the tree and the respective vol-

ume. 
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Figure 1.2 - Schematic representation of the neuromorphological metrics of a pyramidal neuron. 

 

Table 1.1 - Description of the selected neuromorphological metrics. Each metric has one value for the whole tree. 

Name Description 

Total length [µm] Sum of the length of all the segments of the dendritic tree 

Maximum path length [µm] Distance along the dendritic tree (path) from the soma to the tip of the 

longest dendrite 

Mean branch length [µm] Mean of the length of all the branches in a tree, calculated between 

every consecutive branching points (bifurcation) or terminal point to 

its respective branching point 

Soma radius [µm] Radius of the soma of the neuron 

Tree radius [µm] Radius of the spanning volume of a dendritic tree, as defined by Wen 

et al 2009 

Volume [µm3] Spanning volume of a dendritic tree 

Number of branch points Number of bifurcations in a tree 

Mean branch order The branch order is defined for every branch. It is 0 at the soma and 

with each branching point, the order increases by 1 

Straightness Mean of the ratios between the euclidean distance and the respective 

path length. The ratio is obtained for every branch point and tip of the 

tree 
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To calculate the radius of a neuronal tree, the maximum euclidean distance from a tip to the 

soma is normally used. This would result in a sphere enclosing the whole tree, centered at the soma, 

whose radius would be assumed as the radius of the neuron (Figure 1.3). However, this approach is 

only valid when the neuron has a regular distribution of dendrites in a circle (Figure 1.3A). Since the 

dendritic trees of our dataset do not spread circularly, but are mostly spread in one direction, we 

cannot use this approach (Figure 1.3B). For this reason, to calculate their radius, we implemented on 

MATLAB the definition given by Wen, where the tree radius R is defined as the root mean square 

distance between any 2 dendritic segments (Wen et al., 2009): 

 

𝑅2 =
1

𝐿2
∑ ∑ 𝛿𝑙𝑖𝛿𝑙𝑗(𝑟𝑖 − 𝑟𝑗)

2
𝑘

𝑗=1,𝑗≠𝑖

𝑘

𝑖=1

(𝟏. 𝟏) 

 

Being L the total length, k the total number of segments, 𝛿𝑙𝑖 the length of the segment i and 𝑟𝑖 the 

position vector of the segment i. 

 

 

         A              B 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 - Examples of the bias in dendritic arbor radius (R) calculation. A: Taking the maximum euclidean distance 

from a tip to the soma is the same as having a circle centered at the soma to the furthest tip, and extracting its radius. This 

approach is used for circular trees. B: Example of when using a centered circle does not make sense. The neuron in this case 

has the dendrites all to one side, so this value would be incorrect. 

 

After obtaining the 9 metrics of interest, we calculated their coefficient of variation (CV), a 

dimensionless number that accounts for the data variability. It is defined as the ratio between the 

standard deviation and the sample mean, so the larger the CV, the more dispersed the data is. Besides 

calculating the global CV of each metric and of each sex separately, we also calculated the CV for 

each animal individually, to make sure it did not influence data dispersion. The metrics were exported 

to R (version 3.5.0) to perform cluster and statistical analysis. 
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1.2.2. Cluster analysis 

To identify if there is an underlying structure to our data, we performed a hierarchical cluster 

analysis (Kaufman & Rousseeuw, 1990) in R (version 3.5.0). To this aim we used function heatmap.2 

(cluster, version 2.0.9). The cluster analysis was applied to (a) the whole dataset and (b) separately to 

the data from each sex. In (b), we obtained 2 clusters for each sex, making a total of 4 clusters. We 

took 1 cluster from each sex with similar metrics and merged them together, resulting in 2 subsets of 

the data (2 clusters). 

The type of hierarchical cluster analysis performed was divisive, which means it consecu-

tively divided the data into the two most distinct clusters. The separation between data points was 

measured by the euclidean distance, and given that each point had very different ranges of values, the 

metrics needed to be scaled because euclidean distance does not make sense without scaling. 

One of the possible ways to visualize the result of a hierarchical cluster analysis is by com-

bining heatmaps and dendrograms. Heatmaps represent the scaled data with intensity colours, aiding 

in visualizing the generated clusters; dendrograms show the hierarchy of cluster separation. Consid-

ering we have a total of 66 neurons and 9 metrics, the dendrogram could either interpret the metrics 

as being characterized by the neurons (meaning we had 66 measurements of each metric) or vice-

versa (9 measurements for each neuron). When the dendrogram was applied to the neurons, it com-

pared the 9 values of the neurons with each other, showing the underlying structure of the data. If the 

dendrogram was applied to the metrics, it compared the 66 values of the metrics with each other, 

obtaining relationships between them. 

To classify the obtained clusters, we computed the silhouette coefficient (SC) for k=2, with 

k the number of clusters (Rousseeuw, 1987). The SC calculated the ratio between the intra and inter 

cluster distances. The first is how close the point is to its cluster, and the second how distant it is to 

its neighbour cluster. If the SC was between 0 and 0.25, the clustering was not necessarily due to 

some structure of the data; between 0.25 and 0.5 there was some structure; between 0.5 and 1 it was 

a good cluster. The results and graphical representations of the SC are provided in Supplementary 

Information III. 

 

1.2.3. Statistical Analysis 

As mentioned before (Section 1.2.1), in our dataset we have 5 mice per sex, with 5 to 8 

neurons from each animal. It was previously shown that having multiple neurons from the same ani-

mal introduces some variability in the data that needs to be accounted for (Wilson et al., 2017). We 

categorized this as a random effect, for which we applied Generalized Linear Mixed Models 

(GLMMs) with the glmer function (lme4, version 1.1.19). With GLMMs besides defining the random 

effect, the response variable does not need to be normally distributed. This is why the model is called 

generalized linear, where one of the inputs is the distribution. 

The first step was to check for the normality of each metric, for which we applied Shapiro-

Wilk tests (Shapiro & Wilk, 1965). If p-value≤0.05 (alpha value), we rejected the null hypothesis and 

concluded the metric was not normally distributed; if p-value>0.05 we could not discard that the 

metric could follow a normal distribution. However, not being able to discard this possibility does not 

mean that a normal distribution is the best fit for the metric. For this reason, when the p-value was 

above the alpha value but still quite small (0.05>p-value<0.15), we also checked the skewness of the 

metric. If the skewness is below 0.5, then we can approximate the metric to a normal distribution; 

otherwise, we cannot assume the metric is normal (Webster & Oliver, 2007, Chapter 2). 
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For variables which are not normally distributed, we visually inspected the histograms to 

assess which distributions could fit (Figure 1.4) (Damodaran, 2008, Chapter 6). The descdist func-

tion (fitdistrplus, version 1.0.14) plots a Cullen and Frey graph, which shows how close the metric’s 

behaviour (“observation”) is to different theoretical distributions (Figure 1.5). With this information, 

we fitted only the closest distributions with the fitdist function (also from fitdistrplus package), which 

estimates parameters and provides goodness-of-fit graphs for a given distribution. For selecting the 

best-fit model, we compared graphical criteria by using quantile-quantile (Q-Q) plots (Figure 1.6) 

(Gibbons & Chakraborti, 2003, Chapter 4), and numerical criteria with the Akaike information cri-

terion (AIC) (Akaike, 1974; Bozdogan, 1987). The distribution with a better fit in the Q-Q plot and/or 

with the smallest AIC would be selected. 

 

 

 

Figure 1.4 - Decision tree for what distribution should fit best a continuous data. Adapted from Damodaran 2008. 

 

 

In the case of the number of branch points, since it is a discrete variable, we did not check for 

normality. Given it is a count metric, it usually takes either a poisson or a negative binomial distribu-

tion. We fitted both and completed the same Q-Q plots and AIC analysis to choose the best one. 

It is also important to note that for variables with very high values, it is not possible to fit 

gamma distributions, as it gives an error. This was the case of volume, so in order to do the fit, the 

metric was scaled by dividing it by 100. For comparison purposes, we also used this scaling for the 

other distribution fits of volume. 
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Figure 1.5 - Example of a Cullen and Frey graph. It locates the observed metric in a kurtosis-skewness space, where 

common distributions (continuous or discrete) are also represented. This visually aids in choosing which distributions to fit 

the data. In this case, the observed metric (blue point) could fit either a lognormal or a gamma distribution. Generated in R 

with the descdist function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 - Example of a Q-Q plot. The line is the relationship we should see between the quantiles, and the points 

represent how the data actually behaves. Generated in R with the fitdist function. 
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One constraint to GLMMs is the lack of available distributions. When all the available distri-

butions in the glmer function did not describe a metric, we performed a permutation test, using the 

aovp function (lmPerm, version 2.1.0). This is a non-parametric test where there is no need to define 

the distribution, so we were still able to assess if there was a difference due to sex while accounting 

for random effects. After defining the distribution of the metric, we fitted the GLMM model 𝑚𝑖 as: 

 

𝑚𝑖 = 𝑔𝑙𝑚𝑒𝑟(𝑦𝑖 ∼ 𝑠𝑒𝑥 + (1|𝑎𝑛𝑖𝑚𝑎𝑙 𝐼𝐷), 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) (𝟐. 𝟐) 

 

Being 𝑦𝑖 the variable of interest and animal ID the random effect. 

There is no straightforward way to extract the p-values of the models, since the developers of 

the lme4 R package deliberately did not include it. Their choice was due to the many issues revolving 

around the calculation of p-values with Linear Mixed Models (LMM) and GLMMs. These have been 

described in length elsewhere (Bolker & others). The scientific community in general cannot come to 

a consensus on what approach to use, and so we decided to use a contrast matrix. To do so, we built 

a design matrix with the values of sex and transformed it into a contrast matrix (limma, version 

3.36.5). Given all the coefficients of a model fit, this matrix specifies which comparisons should be 

extracted. Using function glht (multcomp, version 1.4.10), it applies a general linear hypothesis com-

paring the contrast matrix with the model. As a result, we are provided the p-value of the difference 

between sexes. 

The model 𝑚𝑖 was applied for the whole dataset (see Supplementary Information II), and 

for each of the obtained clusters. We show the results for each metric by a combination of three 

graphical outputs: (a) violin plots, to have the probability density (Hintze & Nelson, 1998); (b) box-

plots, to see the quartiles and outliers; (c) data points, to see the data distribution. It also contains the 

significance of the model: NS is non-significant, * is p-value<0.05, ** is p-value<0.005 and *** is p-

value<0.001. The metrics are identified by a label that contains its name, units, and chosen distribu-

tion. When the distribution was determined as log-normal, we represent the variable with its log val-

ues. The same applies when the distribution fits were done with the metric scaled, as was the case of 

volume, which is represented divided by 100. 
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1.3. Results 

1.3.1. Dataset and morphological metrics 

We explored the neuromorphological differences between sexes in basal dendrites from the 

CA1 layer of the hippocampus of young male and female mice (Table 1.2). The selected 3D neurons 

are depicted in Figure 1.7 as 2D projections, separated by sex. It is visually clear they are extremely 

variable, as both males and females have neurons with smaller and larger dimensions. We wondered 

if this variability was because we had multiple neurons from the same animal (Table 1.2). For this 

reason we calculated the CV of each of the 9 selected metrics, not only the global CV and for each 

sex separately, but also the CV for each animal (Table 1.3). The global CV confirms the existence of 

data dispersion, especially regarding volume and total length (0.73 and 0.42, respectively). Straight-

ness is an exception, with a CV of only 0.06, which might be due to the metric’s values being ex-

tremely specific for a given type of neuron, especially given we are focused on basal dendrites. As 

for the CV of each sex, the values are close to the global CV, as expected. Mean branch order is the 

only metric where females have a higher CV than males. Total length (females 0.32, males 0.47) and 

volume (females 0.65, males 0.77) are the ones with the strongest sex-difference, while the other 

metrics have more similar CV. When considering the CV of each animal, the values fluctuate around 

their global CV, usually implying data variability. Once again straightness is an exception, as well as 

soma radius, which has some mice with low CV. Another interesting thing to note is how the CV of 

the volume of two male mice is above 1 (male-147 and male-183, with a CV of  1.00 and 1.02, 

respectively), which means the variation of volume between all selected neurons is greater than the 

mean of the animals (Table 1.3). 

 

Table 1.2 - Summary of the study sample. 

Category Data specification 

Species (strain) Mouse (C57BL/6J) 

Age 28 days 

Brain region Hippocampus CA1 

Cell type Pyramidal cell (only basal dendrites) 

Number of subjects 5 per sex 

Number of neurons 5 to 8 from each subject 

Total sample size 66: 33 females and 33 males 
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Figure 1.7 - 2D projections of the neuronal trees. They are arranged from the largest to the smallest total length, and 

aligned along the x-axis. Females are represented in red and males in black. 

 

Table 1.3 - Coefficient of variation (CV) of each metric shows data variability. When considering the global CV, 

straightness is the most uniform metric, while the others have more variability, especially volume and total length. Overall 

males have higher CV than females, except for mean branch order. As for the CV of each animal, no animal seems to 

introduce bias in the data, as generally all CV point towards the existence of data dispersion, except for straightness. 

  Total 

Length 

Max. 

Path 

Length 

Mean 

Branch 

Length 

Number 

of Branch 

Points 

Mean 

Branch 

Order 

Vol-

ume 

Straight-

ness 

Tree 

Radius 

Soma 

Radius 

Global CV 0.42 0.30 0.23 0.30 0.18 0.73 0.06 0.24 0.16 

CV Females 0.32 0.28 0.20 0.26 0.19 0.65 0.05 0.21 0.15 

CV Males 0.47 0.30 0.26 0.32 0.16 0.77 0.06 0.25 0.16 

Fem-122 0.27 0.32 0.27 0.29 0.21 0.57 0.04 0.23 0.18 

Fem-146 0.18 0.09 0.12 0.19 0.12 0.63 0.07 0.16 0.07 

Fem-152 0.45 0.34 0.20 0.28 0.19 0.76 0.04 0.26 0.15 

Fem-181 0.39 0.26 0.23 0.31 0.26 0.65 0.04 0.23 0.14 

Fem-96 0.22 0.27 0.11 0.21 0.17 0.39 0.07 0.14 0.07 

Male-105 0.37 0.28 0.26 0.30 0.18 0.49 0.04 0.20 0.18 

Male-124 0.31 0.19 0.17 0.36 0.13 0.40 0.07 0.13 0.11 

Male-147 0.46 0.31 0.22 0.26 0.21 1.00 0.04 0.26 0.09 

Male-153 0.48 0.24 0.22 0.30 0.16 0.72 0.06 0.23 0.07 

Male-183 0.32 0.33 0.30 0.16 0.15 1.02 0.05 0.27 0.17 
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1.3.2. Cluster analysis 

To determine if the neurons of our dataset could be classified into a number of different 

groups on the basis of a set of measured variables, we performed a divisive hierarchical cluster anal-

ysis. 

When clustering the whole dataset, we found a clear separation of the neurons in two clusters 

that did not separate the data by sex. One of the clusters contained many more trees (40 of 66) than 

the other (remaining 26), the latter having a proportion of 10 females to 16 males. This separation 

mostly depends on metrics related to the size of the trees. Overall, the cluster with only 26 trees has 

a larger radius, maximum path length, volume and total length (Figure 1.8). 

Looking at the dendrograms of the metrics, which shows possible relations between them, we 

found three different clusters. As expected, metrics relating to the dimension of the tree clustered 

together (total length, tree radius, mean branch length, volume and maximum path length). The same 

happens to the ones associated with branching (mean branch order and number of branch points, with 

soma radius). However, straightness is separated from the others. This means it is not directly related 

to the remaining variables (Figure 1.8). 

To assess the quality of the clusters we obtained the SC of each data point, cluster and total 

analysis. The average SC of the analysis with just 2 clusters is 0.29. This indicates the data has some 

structure (Figure SIII.1). 

Because clustering on the whole dataset did not find a sex-related clustering, we decided to 

apply the clustering algorithm to males and females separately (Figure 1.9 and Figure 1.10, respec-

tively). This time the aim was to find clusters in each sex that could be explained by the same metrics. 

In both sexes two clusters were obtained that depend mainly on the metrics related to the size of the 

neuronal trees (total length, volume, maximum path length and radius). This is especially clear in the 

males (Figure 1.9), which shows a clear separation of the high and low intensity values of each clus-

ter. Since both the male and female clusters are classified by the same metrics, it makes sense to 

combine their results, to represent the whole dataset as two subgroups. 

Looking at the dendrograms of the metrics, in the females we found three relations: metrics 

associated to the dimension of the tree clustered together, and so did the metrics related to branching; 

straightness is a cluster on its own, meaning it is not related to the remaining metrics (Figure 1.10). 

This is as we have previously seen when we clustered on the whole dataset (Figure 1.8). Looking at 

the dendrograms of the metrics in the males, besides these 3 relations, soma radius is also a cluster on 

its own (Figure 1.9). 

For the males the average SC is 0.37, with all values over the threshold of 0.25 (Figure 

SIII.2). For the females the average SC is 0.22, not passing the threshold of 0.25 due to the misclas-

sification of 3 neurons (Figure SIII.3). After reclassifying these 3 neurons from cluster 1 to cluster 

2, the final average SC is 0.28 (Figure SIII.4). 

Given that the classification of the 2 clusters of each sex was mainly driven by metrics of size 

(Figure 1.9 and Figure 1.10), we can combine the results to have two subsets of the data: of large- 

and of small-sized neurons (Figure 1.11). The clusters of neurons of larger size from each sex make 

up cluster 1, containing 29 neurons. Cluster 2, with the remaining 37 trees, has the neurons of the 

clusters of smaller size from each sex.  
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Figure 1.8 - Dendrograms and heatmap of the divisive hierarchical cluster analysis on the whole dataset. Each column 

of the heatmap is one of the metrics, labelled at the bottom and with its dendrogram on the top. Each row is a neuron, labelled 

on the right as sex-animal ID-number (coloured by sex), with the dendrogram on the left. The heatmap uses the scaled values 

of the observations and attributes a colour according to it. It ranges from blue, through white (zero), to red, as it is shown on 

the upper left corner. The black line in each column (metric) aids in understanding the value of the intensity, as it shifts from 

left (blue) to right (red) with a height according to the magnitude of the scaled value. The black horizontal dashed line was 

added manually where the algorithm separated the data between two clusters, to help the visualization. The top cluster 

contains 26 neurons (10 females and 16 males), whereas the bottom one contains the remaining 40 (23 females and 17 

males). This separation is due to metrics related to the size of the trees: radius, maximum path length, volume and total 

length. The clustering of the variables (top dendrogram) shows metrics of size cluster together and so do the ones related to 

branches; straightness is a cluster by itself, meaning it is not very related to the other metrics. 
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Figure 1.9 - Dendrograms and heatmap of the divisive hierarchical cluster analysis on the male neurons. The top 

cluster contains 13 neurons and the bottom one contains the remaining 20. This is due to metrics related to the size of the 

trees: radius, maximum path length, volume and total length, as well as from number of branch points and mean branch 

length. Clustering of the variables shows both straightness and soma radius cluster by themselves, metrics of size cluster 

together and so do the ones related to branches. Labels are explained in Figure 1.8. 
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Figure 1.10 - Dendrograms and heatmap of the divisive hierarchical cluster analysis on the female neurons. The top 

cluster contains 13 neurons and the bottom one contains the remaining 20. This is due to metrics related to the size of the 

trees: radius, maximum path length, volume and total length. Clustering of the variables revealed straightness forms a cluster, 

metrics of size cluster together and so do the ones related to branches. Labels are explained in Figure 1.8. 
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Figure 1.11 - 2D projections of the neuronal trees, coloured by sex and cluster. Neurons of cluster 1 are on the left: 

females are represented in red and males in dark blue. Neurons of cluster 2 are on the right: females are represented in orange 

and males in light blue. Each group is arranged from largest to smallest total length, and aligned along the x-axis. 

 

1.3.3. Statistical analysis 

When assessing the normality of the metrics in the clusters, Shapiro-Wilk tests revealed only 

one metric was not normal in each subset (Table 1.4). In cluster 1 it was maximum path length (p-

value 0.007), assuming a log-normal distribution. In cluster 2 it was straightness (p-value 0.034), 

where the distribution that could fit the shape of the metric would be a minimum extreme. This is not 

available in the glmer function, so we performed a permutation test instead of applying a GLMM. 

Soma radius and volume passed the Shapiro-Wilk test in both subsamples with very small p-values 

(soma radius: 0.081 and 0.115; volume: 0.069 and 0.068, respectively for each cluster). For this rea-

son, we calculated the skewness of both cases. For the volume we used volume/100 to be able to fit a 

Gamma distribution, which turned out to be the best fit for both clusters. As for the soma radius, in 

the cluster 1 it is considered as normally distributed (-0.405), but not in cluster 2 (0.772), fitting a log-

normal. Other metrics for which we calculated the skewness were total length in cluster 1 (p-value 

0.071, skewness 0.83) and mean branch order in cluster 2 (p-value 0.109, skewness 0.42). The latter 

could be approximated as normal, as opposed to total length, which fits a log-normal distribution 

(Table 1.4). 
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Table 1.4 - Statistical comparisons between sexes of each cluster. Overview of the mean and standard deviation for each 

sex (F for females and M for males) of each cluster and summary of the results obtained in each step of the GLMM. If there 

is a dash, it means the test was not performed. P-values in bold are statistically significant. 

 Cluster Mean Standard 

deviation 

Shapiro-Wilk 

(p-value) 

Skewness Assumed distri-

bution 

GLMM 

p-value 

Total length 

[µm] 

1 F: 962.91 

M: 1346.19 

F: 150.48 

M: 265.18 

0.071 0.83 Log-normal  1.2×10-6 

2 F: 568.44 

M: 618.55 

F: 137.03 

M: 189.13 

0.169 - Normal 0.414 

Maximum 

path length 

[µm] 

1 F: 146.83 

M: 177.56 

F: 23.90 

M: 30.76 

0.007 - Log-normal 0.0011 

2 F: 98.31 

M: 111.95 

F: 24.87 

M: 23.58 

0.178 - Normal 0.208 

Mean 

branch 

length [µm] 

1 F: 30.42 

M: 33.06 

F: 5.67 

M: 4.24 

0.823 - Normal 0.163 

2 F: 24.93 

M: 22.73 

F: 4.22 

M: 4.98 

0.436 - Normal 0.211 

Soma 

radius [µm] 

1 F: 9.98 

M: 9.37 

F: 1.55 

M: 1.69 

0.081 -0.40 Normal 0.472 

2 F: 9.07 

M: 9.05 

F: 1.27 

M: 1.29 

0.115 0.77 Log-normal 0.960 

Tree radius 

[µm] 

1 F: 58.54 

M: 69.09 

F: 6.54 

M: 7.35 

0.618 - Normal 4.4×10-5 

2 F: 43.87 

M: 46.65 

F: 8.73 

M: 9.21 

0.709 - Normal 0.505 

Volume 

[µm3] 

1 F: 174436.4 

M: 256670.4 

F: 66568.4 

M: 69044.2 

0.069 0.58 Gamma (Vol-

ume/100) 

2.7×10-5 

2 F: 63541.4 

M: 67609.9 

F: 34813.5 

M: 46122.9 

0.068 0.80 Gamma (Vol-

ume/100) 

0.861 

Number of 

branch 

points 

1 F: 19.25 

M: 23.38 

F: 3.89 

M: 5.94 

- - Poisson 0.016 

2 F: 14.06 

M: 16.00 

F: 3.23 

M: 4.00 

- - Poisson 0.130 

Mean 

branch or-

der 

1 F: 6.12 

M: 6.52 

F: 0.96 

M: 0.75 

0.260 - Normal 0.215 

2 F: 5.09 

M: 5.42 

F: 0.97 

M: 0.80 

0.109 0.42 Normal 0.254 

Straight-

ness 

1 F: 0.85 

M: 0.83 

F: 0.05 

M: 0.03 

0.579 - Normal 0.240 

2 F: 0.87 

M: 0.86 

F: 0.04 

M: 0.05 

0.034 - Permutation test 0.646 
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After defining the distribution of each metric, we applied the GLMMs. Looking at the results 

from cluster 1, more than half of the metrics reach significance. Total length is the metric with the 

smaller p-value (1.2×10-6). All metrics that depend or are related to total length are also significantly 

different, which was expected. This is what we see for maximum path length, tree radius and volume 

(p-values 0.0011, 4.4×10-5, 2.7×10-5, respectively). One would also expect to see this trend with mean 

branch length, as it is related to total length. However, since we are dealing with the mean values, this 

influences the result, making the metric non-significant (p-value 0.163). Number of branch points 

also reaches significance, but less as compared to the other metrics (p-value 0.016). All these signif-

icant differences are with males having higher values than females, both in means and in the maximum 

value (Table 1.4 and Figure 1.12). 

 

 

Figure 1.12 - Sex-dependent neuromorphological differences for Cluster 1. Each panel has violin, boxplot and data 

points of each variable, the latter representing each neuron of the dataset. The label of the panels has the name, unit and 

distribution used in the GLMM of the corresponding metric. The significance level of the test is shown on top of each panel: 

NS is not significant, * is p-value<0.05, ** is p-value<0.05 and *** is p-value<0.001. If it passes the threshold of signifi-

cance, the p-value is also shown. Females are represented in pink and males in blue. Total length, maximum path length, 

radius, volume and number of branch points reach significance. 
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In cluster 2, we see similar results as obtained with the whole dataset (Figure SII.1), where 

none of the metrics reach significance (Table 1.4 and Figure 1.13). The variable closest to reach 

significance was the number of branch points with a p-value of 0.130. The remaining metrics all have 

p-values>0.20. The fact that we do not see any significant differences in this cluster makes us wonder 

if it has a specific category of neurons, such as pruned or still developing neurons. 

 

 

Figure 1.13 - Sex-dependent neuromorphological differences for Cluster 2. Labels are explained in Figure 1.12. There 

are no significant metrics in the small-sized neurons. 
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1.4. Discussion and Conclusions 

In this chapter we explored morphological differences in CA1 pyramidal neurons of female 

and male mice. Our dataset comes from only 5 mice of each sex, meaning we have multiple neurons 

from each animal. It is assumed that using multiple neurons per animal does not introduce as much 

new information as using a neuron from a new animal (Wilson et al., 2017). This is not the case of 

our data, as one animal can have one of the largest and also one of the smallest neurons. This varia-

bility is shown through the calculated CV for each animal, but is even more obvious when we assess 

the Principal Component Analysis (PCA), where each mouse is spread out in the PCA space (Figure 

SIV.2). One limitation in our study is that we cannot account for the exact location of the neurons in 

the CA1 layer. In the study where the dataset was obtained, one of the inclusion criteria was that the 

cell body was located in the middle third of the thickness of the 100 µm sections (Lein et al., 2007). 

However, this is not very specific, as it was previously shown that the properties of CA1 pyramidal 

neurons vary across the three different spatial axes of the hippocampus (proximal-distal, dorsal-ven-

tral and superficial-deep) (Cembrowski & Spruston, 2019). These include differences in function, 

electrophysiological properties, morphology and other characteristics (Cembrowski & Spruston, 

2019; Danielson et al., 2016; Mizuseki et al., 2011). The inhomogeneity of the CA1 pyramidal layer 

(Cembrowski & Spruston, 2019) could explain the variability we have seen in morphology, especially 

between neurons of the same animal. 

Even though we had high data variability, using a cluster analysis we could identify two clus-

ters, separating overall smaller-sized neurons from larger ones. This clustering was always driven by 

the metrics associated with the size of the neurons, and the average SCs also cemented the validity of 

this approach. We speculate that either the neurons were selected from different sublayers of CA1, or 

they reflect differences in pruning. The former, as it was already mentioned, is a possibility we cannot 

account for, since the exact location of the neurons within the sublayers of CA1 was not provided by 

the authors (Wilson et al., 2017). The latter is a process of removal of synapses or dendritic material 

(Koss et al., 2014). Thus, our cluster algorithm could be separating cells that are at different develop-

mental stages, as the mice used in the sample are 28 days old (Flurkey, Currer, & Harrison, 2007, 

Chapter 20). In fact, a recent study has shown the postnatal day 21 (P21) as the peak of synaptic 

pruning in CA1 neurons of wild-type (WT) C57BL/6J mice, with P28 closely following (Jawaid et 

al., 2018). This finding supports the speculation that the identified clusters would be capturing neu-

rons at different developmental stages. 

 

When considering the whole dataset, without separating the clusters, we did not find sex-

dependent differences (Figure SII.1). However, when repeating the same analysis separating the two 

clusters, in cluster 1 we found significant sex-dependent differences in 5 of the 9 metrics analysed. 

Metrics related to size of the trees, total length, maximum path length, tree radius and volume, are all 

significantly larger (p-values<0.002) in male CA1 neurons. The other metric to be significantly dif-

ferent in the first cluster is the number of branch points. This metric is related to the dimension of the 

tree, as usually if there are more branch points, the neuron tends to be larger (Brown et al., 2008). 

Considering that our clusters separated the smaller-sized from the larger-sized neurons, our 

results show that the larger female dendritic trees are significantly smaller than their male counter-

parts. This difference does not apply to the smaller ones, which are possibly in earlier developmental 

stages, suggesting that probably non-cell autonomous factors drive the differences in final size. 

Given the underlying differences in brain morphology, i.e., sexual dimorphism in hippocam-

pal volume, we could also interpret those differences as a reflection of mechanical constraints. Alt-

hough many studies have been made to compare hippocampal volumetric differences, the results are 

contradictory. One can easily find mice studies where there are no significant differences (Koshibu et 
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al., 2004, 2005), or where males have significantly larger hippocampus volume (Meyer et al., 2017; 

Qiu et al., 2018). When separately comparing the volumes of anterior and posterior hippocampus, the 

former is found to be significantly larger in females, whereas the latter is significantly larger in males 

(Meyer et al., 2017; Spring et al., 2007). When looking at human studies, the results have also been 

contradictory. We have found a study where the total male hippocampal volume was larger (Egloff et 

al., 2018), and another where the posterior hippocampus was larger in females, while the anterior and 

the total volume showed no significant differences (Persson et al., 2014). When separating by right 

and left side, both sides were larger in females, and more specifically there were no differences in the 

CA1 layer (Sussman et al., 2016). A recent meta-analysis study showed how after correcting the vol-

ume by total brain volume or intracranial volume there would be no significant differences, whereas 

previously both total, left and right hippocampal volume were larger in males (Tan et al., 2016). 

Therefore, we cannot make conclusions regarding the possibility of a relationship between the size of 

the neurons and the size of the hippocampus, and so it is left as an interesting research question. One 

can also consider a recent study by Qiu et al, where they longitudinally imaged male and female 

C57BL/6J mice in different postnatal days. Comparing the scans from consequent time points, they 

were able to assess not only the sexually dimorphic areas, but also when the dimorphism occurred. 

They found that areas that are relatively larger in males develop earlier in life (pre-pubertal), whereas 

those larger in females only occur later in life (post-pubertal) (Qiu et al., 2018). One wonders if, as 

the areas develop at different rates, so could the neurons. This would imply that male neurons devel-

oped faster than females. Just as the case of comparison of size with the volume of the hippocampus, 

it is left as an interesting research question. 

As for the statistical analysis of the second cluster, it revealed no significant sex-related dif-

ferences. It is important to note that female and male trees of this cluster are of the same size. As we 

speculated above, neurons of cluster 2 could have undergone pruning. If this would be the case, then 

the lack of difference in male and female neuronal size in cluster 2 would reflect a more important 

loss of dendritic material in the male neurons. Another possibility is a difference in onset of dendritic 

pruning between males and females (Keil et al., 2017; Koss et al., 2014). If it occurs later for females, 

then perhaps what we see in our dataset is two different stages of pruning: males have started sooner 

and females still did not reach this point, and thus have not lost the same amount of dendritic material 

yet. In fact, there is evidence of different rates of dendritic pruning in rats, where female neurons of 

the medial prefrontal cortex are pruned from P35 to P90, but not males (Koss et al., 2014). Thus, 

dendritic pruning occurring at different times for each sex is a possibility that one should consider, 

and an interesting question to further investigate. 

 

Dendritic morphology and their sex-dependent differences have been better studied in the 

adult brain, but a detailed analysis in younger mouse models is missing (Keil et al., 2017). This is 

particularly true for the hippocampus layer CA1, as to our knowledge, few studies analysing the mor-

phology of neurons have been done. Madeira et al analysed both P30 and P180 rats and found that 

the total number of cells was significantly larger in male of both ages, and the number of cells per 

unit of volume was also significantly larger in P30 males. As for the number of cells per unit of surface 

area and the mean nuclear volume, they showed no sexual dimorphism in both ages, nor did the num-

ber of cells per unit of volume for P180 rats (Madeira et al., 1992). When studying P60 rats, Gould 

et al found no significant sex differences in cell body area, dendritic branch points or length of the 

longest dendrite for pyramidal cells of CA1 (Gould et al., 1990). Keil et al looked at in vivo P28 and 

in vitro P0 mice. As the authors mentioned, in vitro and in vivo results are not directly comparable, 

and so we will not mention the P0 results (Keil et al., 2017). The P28 neurons overlap with the neurons 

used in our analysis, as they refer to the same data from Wilson et al, but with different sample sizes 

for each sex (Wilson et al., 2017). They found an increased number of intersections for males when 
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performing Sholl analysis, indicating a higher dendritic complexity, but no significant differences 

regarding the number of primary dendrites or area of the soma (Keil et al., 2017). They do not report 

other morphological metrics, and so our study, which considers 9 different metrics obtained through 

computational methods, is a more in-depth and, to our knowledge, novel comparison for CA1 pyram-

idal neurons. 

 

Even though our study has limitations regarding the unspecified location in the CA1 layer of 

the neurons, our results are still a step forward in understanding sex differences in neurotypical den-

dritic morphology. We raised interesting research questions concerning neuronal development and 

synaptic pruning, and the possibility of sexual dimorphism regarding their rates. These speculations 

were mainly motivated by the significant differences we found in total length, as well maximum path 

length, tree radius, volume and number of branch points, as they all relate to the dimensions of the 

neuronal trees. These findings are particularly important for studies of neurodevelopmental disorders, 

since their prevalence, manifestation and severity are sex-dependent (Yagi & Galea, 2019): males 

tend to have diseases with early onset such as autism spectrum disorder and attention deficit disorders, 

while females have more prevalence of anxiety and depression, which occur later in life (Qiu et al., 

2018). Thus, these novel findings need to be taken into account in further analysis, both in control 

cases and disease models. 
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Chapter 2: Bridging the gap between neuronal morphology, 

functional capability and neuronal optimality 
 

2.1. Introduction 

Since the 1970s, there is a growing consensus among neuroscientists that the morphological 

properties of a neuron will determine its function and impact how the signals are integrated. Some 

examples are how the radius of a dendritic branch influences the temporal response of an action po-

tential (Ramón et al., 1976; Sasaki et al., 2012), and how specific architectural alterations regarding 

the spines disrupts neuronal circuits, leading to brain disorders (Kulkarni & Firestein, 2012). These 

changes affect the synaptic connections, constraining the neuronal circuit, but it is still unknown how 

single-cell morphology can have an impact on the network level. 

 The first proposition regarding neuronal optimality was made by Ramón y Cajal at the end of 

the 19th century, saying that dendrites will optimize their connectivity by minimizing conduction time 

in a trade off with total cable length cost. This idea has evolved in the last decades, and it has been 

proposed that dendritic trees grow to fill optimally a target space while minimizing conduction time 

and cost. With this in mind, we can define two possible classifications for the wiring of a neuron: 

optimal and suboptimal (Wen & Chklovskii, 2008). An optimally wired neuron is one that reaches all 

axons passing through its area, while minimizing its material cost, the total dendrite length (Figure 

2.1 (1)). Moreover, a balance between total length (sum of the length of all dendrites) and path length 

(distance along a dendrite, from the soma to the tip) is necessary, as conduction time directly depends 

on the latter. Therefore, a neuron that reaches the same number of axons with the same total length, 

but a larger path length, is suboptimal (Figure 2.1 (2)). The same happens for a neuron that makes 

more than one potential synapse with each axon, which will have an unnecessarily longer total length 

(Figure 2.1 (4)). A neuron is also suboptimal if the dendrites are sparse, meaning the spine-reach area 

is not enough to connect the neuron to all the passing axons (Figure 2.1 (3)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - Schematic representation of four dendritic arbor conformations and respective spine-reach zones. The 

only optimal neuron is case 1, where all axons are connected, and total length and path length are balanced. In case 2 the 

conduction time is higher because of the longer path length, making it suboptimal even though all axons are reached. In case 

3 some axons make no connections with the tree, and in case 4 there is an overabundance of connections and higher material 

cost. From Schröter et al. 2017. 
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Using the concept of optimality, one can try to bridge the gap between single-cell architecture 

and the implications in the network they form. However, studies on wiring optimality usually do not 

take into account fine morphological details and how they might impact it, and so this gap remains to 

be understood (London & Häusser, 2005; Orlandi et al., 2013; Voges et al., 2010). Two neuromor-

phological laws that imply optimal wiring have been derived from a functional reasoning of connec-

tivity and integration efficiency maximization (Cuntz et al., 2012; Wen et al., 2009). This allows one 

to generalize from morphology properties towards impaired function. Nevertheless, the variables 

which account for connectivity and integration efficiency are not explicitly considered in the proposed 

power laws. Hence, the ability to assess their relative contributions to dendritic architecture is con-

strained. This means that even when single-cell architecture is considered when assessing optimality, 

the association to functional capabilities is missing. Recently, Manubens-Gil defined a neuron’s com-

putational capabilities by taking into account specific neuromorphological properties, and determined 

its wiring optimality as the maximization and minimization of these functional aspects (Manubens-

Gil, 2018). By doing so, he was able to explicitly connect single-cell architecture, wiring optimality 

and functional capabilities. Building on this work, we applied a similar approach to our study. 

In this chapter we set out to determine if the sex-dependent morphological differences we 

found in Chapter 1 have implications on their computational capabilities and wiring optimality. To 

this end, we assessed optimality with previously derived power laws (Cuntz et al., 2012; Wen et al., 

2009), and calculated some measures of dendritic complexity. We also proposed a multi-objective 

approach to optimality, which is assessed by the balance of three measures of a neuron’s functional 

capabilities. These measures are defined directly or indirectly in function of neuromorphological 

properties. We hypothesize that the sex-dependent morphological differences in neurons of cluster 1 

may impact their functional capabilities and optimality. We also hypothesize such differences will 

not be found in neurons of cluster 2, since they also showed no significant sex-dependent differences 

in morphological properties (Section 1.3.3). 
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2.2. Methods 

2.2.1. Power law relations 

Studies have shown that some dendritic tree morphology features are related by power laws 

(Cuntz et al., 2012; Wen et al., 2009). Both power laws take into consideration total length, with 

Cuntz’s power law relating it to the number of branch points, and Wen’s to the arbor radius (see 

below). It has been proposed that these laws are associated with wiring optimality: a neuron that 

follows the power law is considered optimal, whereas a neuron that does not follow it is considered 

suboptimal. In order to explore putative functional consequences of sex dimorphism in our dataset, 

we assessed both Cuntz’s (Cuntz et al., 2012) and Wen’s (Wen et al., 2009) laws with the use of R 

(version 3.5.0). 

To obtain the power laws, we used a nonlinear model to estimate the parameters. Using func-

tion nls (stats, version 3.5.0), we defined the models as: 

 

𝑦 ∼ 𝑎 × 𝑥𝑏 (𝟐. 𝟏) 

 

With x and y the related neuromorphological metrics, b the estimated power and a the multiplication 

factor. 

To see if there were significant differences due to sex in the estimated parameters, we com-

pared two models through analysis of variance (ANOVA): the one separating by sex and one consid-

ering the data as a whole. If p-value≤0.05, the null-hypothesis that the models are equal is rejected. 

Therefore, one can say there are sex-related differences between the power laws (Ritz & Streibig, 

2008, Chapter 8).  

 

Cuntz’s power law 

This power law was based on Cajal’s law for conservation of cytoplasm and conduction time 

(Ramón y Cajal, 1995). When considering a minimum spanning tree (MST), Cuntz found a relation-

ship between total length and the number of branch points of a tree. An MST algorithm connects 

randomly distributed points in a volume in an optimal way by minimizing the path length. This means 

a tree that optimizes wiring will tend to connect points to their nearest neighbours. In the case of 3D 

trees, the relationship found was of a ⅔ power: 

 

𝐿 ∼ 𝑏𝑝
2

3⁄ (𝟐. 𝟐) 

 

With 𝐿 the total length and 𝑏𝑝 the number of branch points. 

 Cuntz also tested this power law in real neuronal morphologies, by analysing the available 

reconstructed neurons in NeuroMorpho.Org (Ascoli, 2006; Ascoli et al., 2007). This made up a total 

of 74 datasets of different neuronal types, each with at least 10 reconstructions. Considering all da-

tasets together, he obtained a power law of 0.72±0.10, thus asserting the general applicability of the 

law (Cuntz et al., 2012). 

To fit our data to this power law, we scaled the previously calculated total length and number 

of branch points by the spanning volume of the tree (Section 1.3.1). We extracted the observed values 

of power for each sex, and compared them to the expected value of  ⅔. The results are shown in a 

log-log scale, as in Cuntz’s work (Cuntz et al., 2012). 
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Wen’s power law 

Wen derived this power law from experimental measurements of pyramidal cells.  They are 

from different cortical areas, with 2,161 2D neurons from primate neocortex and 10 3D neurons from 

cat visual cortex. Considering only the basal dendrites, a relationship of 0.44 power was found be-

tween the arbor radius and the total length of the tree: 

 

𝑅 ∼ 𝐿0.44 (𝟐. 𝟑) 

 

Being R the arbor radius, defined as the root mean square between any two dendritic segments, and L 

the total length. 

We fitted our data to this power law and extracted the observed values of power for each sex, 

comparing them with the expected value of 0.44 (Wen et al., 2009). 

 

2.2.2. Multi-objective optimality 

Assessing wiring optimality by comparing power law fits obtained with small sample sizes 

might be misleading. Furthermore, in these power laws there is an association of neuromorphological 

features with the concept of optimality, however a bridge between morphology and the neuron’s func-

tional capabilities is missing. Hence, to extend the existing work and try to overcome the issues we 

have faced, we defined 3 variables that accounted for computational capabilities of a neuron: the 

material cost of wiring a tree, the ability to identify different combinations of axons that could synapse 

on the tree (connectivity repertoire), and the efficiency in the signal integration towards the soma (see 

below). This section builds on previous work done in the lab (Manubens-Gil, 2018). 

The dendritic tree wiring optimality is hence given by the maximization of connectivity rep-

ertoire and signal integration efficiency, while preserving the material cost. This means we have a 

multi-objective optimality, where all 3 variables need to be balanced to achieve optimality. First in-

troduced by Vilfredo Pareto in the area of economic sciences, he defined a Pareto-optimal configura-

tion of a system as one where no change can be made to improve any aspect without deteriorating 

another (Pareto, 1963). This means that in an optimal neuron, one cannot, for example, reduce the 

material cost without that change worsening one or both the other variables. In this case we are in the 

Pareto front, which is a boundary that implies multi-objective optimality. Subsequently, a suboptimal 

neuron can undergo Pareto improvement while maintaining the other Pareto measures. 

The 3 Pareto measures were defined either directly (cost and connectivity repertoire) or indi-

rectly through multi-compartmental models (signal integration efficiency) in function of 3D single-

neuron architectural properties. They were computed with MATLAB, as described below, and after-

wards we performed statistical analysis with GLMMs in R. To minimize any existing effect of total 

length, we also looked at connectivity repertoire and signal integration efficiency after normalizing 

by this metric. Finally, we defined a Pareto front based on an exploration of synthetic dendritic trees 

generated in silico and computed the proximity between the neurons of the dataset and this front (see 

below). 
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Cost 

The material cost of wiring a dendritic tree is the same as its total length. To be optimal, a 

neuron will try to minimize its cost, since the longer the information has to travel, the more energy 

the neuron spends. 

 

Connectivity repertoire 

The concept of connectivity repertoire was introduced by Wen as a measure of arbor func-

tionality (described in detail in Wen et al., 2009). Briefly, it is defined as the natural logarithm of the 

total number of different combinations of axons that could synapse on a dendritic arbor of given 

dimensions. Maximizing the arbor functionality, in turn, means maximizing the connectivity reper-

toire. To compute this measure, they took into account two contributions: 1) counting all possible 

shapes a dendritic arbor of given dimensions could present; 2) for a given shape, the number of com-

binations available from defining which synapses to make, out of the existing potential connections. 

The supplementary information of Wen et al. 2009 describes deeply how these two contributions were 

calculated and which assumptions were made, and from equation S32 we were able to derive the 

following equation for connectivity repertoire, S: 

 

𝑆 ≃ 𝑀𝐻(𝑊) +
𝐿

𝑎
(1 + 𝑙𝑜𝑔 (1 −

𝑅

𝑙
)) −

𝑙2

𝐿𝑎
− 𝑠𝑙𝑠𝑑

𝐿2

𝑅2
(𝟐. 𝟒) 

 

The second and third terms of Eq. 2.4 are, respectively, R- and l-dependent corrections to the 

first contribution to S. Maximizing the number of different arbor shapes favours tortuous branches 

(R-dependent correction), as well as branchy dendrites (l-dependent correction) (Wen et al., 2009). 

The last term of Eq. 2.4 is an R-dependent correction of the second contribution to S. Axons could 

establish multiple potential synapses in different locations of the dendritic arbor, and so when select-

ing actual synapses out of potential ones there is an overcounting of redundant connections that must 

be subtracted (Wen et al., 2009). Lastly, the first term of Eq. 2.4 is the independent one, which ac-

counts for both contributions to S. Table 2.1 has the definition of each variable of Eq. 2.4, and in the 

supplementary information is in detail how we obtained it (Supplementary Information V). 
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Table 2.1 - Description of the variables used in the calculation of connectivity repertoire, Eq. 2.4. 

Variable [units] Meaning 

L [µm] Total length of the tree, as defined in Table 1.1 

R [µm] Tree radius, as defined in Table 1.1 

l [µm] Average distance along the path from the soma to the tip of a branch (path 

length) 

 𝑠𝑑 [spines/µm] Spine density, given by the total number of spines s (Supplementary Infor-

mation V) divided by the total length L 

 𝑠𝑙 = 2 µm Spine reach length, which is the maximum distance between spines and acces-

sible axons passing through the dendrite (Wen et al., 2009). Value from Wen 

et al., 2009 

 𝑎 = 4 µm Persistence length, which is the length below a dendrite cannot bend. Value 

from Wen et al., 2009 

𝜌𝑎 = 8.15 µm/µm3 The axon length per unit of volume, which is the total length of axons enclosed 

in a given volume, divided by the volume (Wen et al., 2009). Value from Calí 

et al., 2018, figure 4D 

M A simplification of 𝑠𝑙𝐿𝜌𝑎, to more easily apply to the binary entropy function 

H(W) 

H(W) Binary entropy function: 𝑊𝑙𝑜𝑔 (
1

𝑊
) + (1 − 𝑊)𝑙𝑜𝑔 (

1

1−𝑊
), with 𝑊 =

𝑠𝑑𝐿

𝑀
  be-

ing a simplification to more easily apply the function 

 

Signal integration efficiency 

 Signal integration efficiency is a measure of how efficiently a neuron will integrate a received 

input, i.e., how long it takes to generate an action potential after receiving an input. To this time 

interval we call time response, and the signal integration efficiency is defined as the inverse of the 

time response. We assume that an optimal neuron will then tend to be as efficient as possible. 

 To obtain this efficiency, we modelled the behaviour of the neurons using T2N (Beining et 

al., 2017) and the NEURON simulation environment (https://neuron.yale.edu/neuron/). T2N is an 

extension of the TREES toolbox that makes the bridge between MATLAB and NEURON, exporting 

a multi-compartmental model in NEURON format, where it is possible to simulate neuron dynamics 

upon injection of synaptic currents. These currents are injected at random nodes of the tree, which 

have a probability function of the inverse of the interspine distance. This uses the equation we derived 

which calculates interspine distance in function of the distance to the soma (Eq. SV.1), which can be 

found in Supplementary Information V. Shortly, we did a polynomial fit to the measured values of 

interspine distance in function of the path distance to the soma (Konur et al., 2003). This produced an 

equation that gives the interspine distance of each compartment i of a tree (Eq. SV.1). By taking the 

inverse and normalizing the values to [0, 1], we obtain the probability function for each neuron. As a 

result, distance intervals with higher spine density are more likely to receive an input, which is closer 

to reality than all having the same probability. The percentage of activated spines, i.e., the amount of 

https://neuron.yale.edu/neuron/
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inputs each neuron receives, is also dependent on this function, as one can use it to calculate the 

number of spines of a neuronal tree (Eq. SV.1). The percentage was defined as the lowest necessary 

to generate an action potential in the smallest neuron of the dataset, which was 8% for an input fre-

quency of 30 Hz. This means that all neurons had 8% of their number of spines being activated. To 

note that for a neuronal tree with nodes at each µm, the number of spines will always be larger than 

the number of nodes; therefore, the percentage of chosen nodes will be larger than 8%. Having the 

model parameters defined, NEURON simulates these dynamics for each dendritic tree individually 

and outputs its time response, from which we calculate the signal integration efficiency. 

 A more in-depth study of signal integration efficiency can be found in Supplementary In-

formation V. 

 

Pareto front 

Defining the Pareto front is an optimization problem with three objectives: maximizing con-

nectivity repertoire and signal integration efficiency, and minimizing the cost. Signal integration ef-

ficiency is determined through computational models, and so we do not have a function that deter-

mines it. Hence, we cannot simply maximize and minimize the functions of each Pareto measure to 

solve the optimization problem. A way around this is to determine a Pareto front from a set of points. 

For this, we generated synthetic dendritic trees with different conformations and calculated their Pa-

reto measures. 

The synthetic trees were obtained using the TREES Toolbox’s function clone_tree, which 

connects points distributed randomly in the spanning fields of the input trees by using an MST algo-

rithm (Cuntz et al., 2011). We varied 3 parameters so we could explore the impact of neuron archi-

tecture in the Pareto measures: balancing factor, branch and terminal scaling factor, and tree radius. 

The balancing factor impacts how the MST algorithm will connect the points. It accounts for the 

trade-off between material cost and conduction time, and so the straightness of dendritic branches 

varies (Cuntz et al., 2010). The branch and terminal scaling factor impacts the branch density, since 

it scales the amount of points used to generate the cloned trees (Manubens-Gil, 2018). Lastly, the tree 

radius was used to scale the size of the input trees with the TREES Toolbox’s function scale_tree. To 

be able to create a set of clones as uniform as possible for this analysis, we first generated 10 clones 

of each sex from our dataset without changing any of the parameters. From this initial set of clones, 

the clones for the exploration itself were generated. As a result, the data variability we previously saw 

in Chapter 1 was minimized, and the results of the exploration were more reliable. For each set of 

parameters, 3 clones of each sex were generated, making a total of 300 trees (150 of each sex), and 

their signal integration efficiency, connectivity repertoire and cost were calculated. Because we were 

only interested in comparing how close each neuron was to the Pareto front, we normalized the Pareto 

measures to [0.1, 1.1]. Since they were all normalized, they are adimensional. 

To identify the Pareto front from a set of points, we adapted MATLAB’s File Exchange func-

tion find_pareto_frontier (Ma, 2014), which identifies the points of the Pareto front with both x and 

y minimized. Our function find_3dpareto_frontier takes a set of (x,y,z) points, and identifies the 

points with x and z maximized, and y minimized. These identified points are the ones that make up 

the Pareto front. After determining them, one can then fit a surface using MATLAB’s Curve Fitting 

App, where different types of curves can be fitted interactively to the data. After obtaining the surface 

that best described the Pareto front, we measured the minimum euclidean distance from the neurons 

of our dataset to the Pareto front surface. This euclidean distance is a measure of how close a neuron 

is to being considered optimal. To see which sex was overall closer to optimality, we performed a 

statistical analysis in R using GLMMs to their euclidean distances. The GLMMs were also applied to 

each sex, to understand which cluster was overall closer to being optimal. 
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2.2.3. Measures of dendritic complexity 

Sholl analysis, fractal dimension and centripetal bias can also provide some information on 

morphology and dendritic complexity as one-dimensional values. Even though they do not directly 

infer optimality, one can draw parallels between them and neuronal capabilities we took into consid-

eration in our Pareto measures. We calculated them to gain some more insight about the neurons of 

our dataset. 

 

Sholl analysis 

Introduced in 1953, Sholl Analysis is a widely used measure of dendritic complexity (Sholl, 

1953). It allows one to study how the number of branches, branch geometry and overall branching 

patterns vary with the distance to the soma. It is also useful to determine the location and size of the 

connective zone, i.e., the region where synapses are possible. It is thus related to connectivity reper-

toire, since it assesses the arbor shape, which is the first contribution of the Pareto measure. It is also 

indirectly related with its second contribution, since the branching patterns influence the sites of po-

tential synapses (Section 2.2.2). 

This method counts the number of times that a dendrite intersects a sphere centered at the 

soma with a given radius r (Figure 2.2). This is repeated for increasing radius, giving us a Sholl 

intersection profile (SIP). The 3D complexity of the dendrites is thus reduced into a one-dimension 

metric. This makes it possible to compare neurons of different groups, such as control cases with 

diseased subjects or with neurons after undergoing treatments, which nowadays are the main applica-

tions of Sholl analysis. Because the SIP depends on the distance to the soma, it is also related with 

cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 - Example of a Sholl analysis. Concentric circles are centered at the soma to estimate the number of intersec-

tions. From Sholl 1953. 
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We used the TREES Toolbox (function sholl_tree) to compare the SIPs produced for each 

sex as well as in each cluster. In it, concentric equispaced spheres with an r step of 5 µm were used. 

This means any branches smaller than 5 µm are not counted. The function interprets the soma (dis-

tance of 0 µm) as one intersection. 

The results are graphs with the median number of intersections of each group in function of 

the distance to the soma. Since total length is highly variable in our dataset, from a certain distance 

there are few neurons with longer dendrites, which makes the median zero. It does not make sense to 

compare between sexes when the median of one of the sexes is zero. For this reason, the graphs 

contain the number of intersections of each sex up until the first distance of median zero. The remain-

ing values are discarded. 

To check for statistical differences at each r, the data was exported to R. Since the number of 

intersections is count data, we fitted either a poisson or a negative binomial distribution. This was 

done for each r, only considering the neurons of median different to zero. We then applied GLMMs 

and extracted the p-values, similarly to Chapter 1. When there is a significant difference, the graph 

has one or more asterisks, depending on the level of significance: * is p-value≤0.05, ** is p-

value≤0.01 and *** is p-value≤0.001. 

We calculated the area under the curve (AUC), to be able to better compare each group as a 

total, instead of only at each r. For this we obtained two types of AUC: a single value for each sex, 

calculated from the median of all SIPs (our graphical output) and a value from the SIP of each neu-

ronal tree. The first is shown in the graphical output to aid in visualizing the difference between the 

median SIP of each sex, and the second was used to determine if this difference was significant 

through GLMMs. We also performed a correlation test between the AUC and both connectivity rep-

ertoire and cost, with R’s function cor (stats, version 3.5.0). This is because we propose the Sholl 

analysis is related to these two Pareto measures, and the correlation test could validate our hypothesis. 

 

Fractal dimension 

Fractal analysis can be applied to many fields, which leads to different conclusions drawn 

from the results. In neuroscience, the fractal dimension D of a neuron represents a measure of the 

dendritic complexity, quantifying how well a neuronal tree fills its dendritic field. It takes into account 

the straightness of individual dendrites, and so it is able to uncover differences in complexity patterns 

that Sholl analysis cannot (Figure 2.3) (Jelinek et al., 2006). This is why we decided to assess the 

fractal dimension D. 
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Figure 2.3 - Example of when the fractal dimension can distinguish the branching complexity of two neurons, but 

Sholl analysis fails to. From Jelinek et al., 2006. 

 

To calculate D, we used L-measure (Scorcioni et al., 2008), a tool that extracts quantitative 

morphological measurements from neuronal reconstructions. D is estimated for each branch, and the 

D of a neuron is the mean of all branches. First, the path length and the euclidean distance to the soma 

must be calculated at each branch point (Figure 2.4). These value pairs are plotted as log-log, and the 

D of the branch is the slope of the regression line that fits the points (Figure 2.4). When D=1, the 

branches are straight and when D=2, they fill the space as random walks. Using this method, a dendrite 

branch usually has a D around 1.05 (Marks & Burke, 2007). 

After obtaining the fractal dimensions, we checked for the normality of the measure and ap-

plied a GLMM, as completed in Chapter 1. 
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Figure 2.4 - How L-measure calculates the fractal dimension D. Calculation of each value pair of path length and eu-

clidean distance plotted as log-log to estimate the fractal dimension D of each branch. From 

http://cng.gmu.edu:8080/Lm/help/index.htm. 

 

Centripetal bias 

Centripetal bias happens when a neuron has most of its dendritic branches pointing towards 

the soma. This is due to the balance between minimizing the cable cost and the delays in conduction 

time, which is related to the balancing factor (Cuntz et al., 2010). Introduced by Bird and Cuntz, the 

root angle arises from optimal wiring and is the first direct measure of centripetal bias (Bird & Cuntz, 

2019). It is defined as the angle between a dendritic segment and its euclidean distance to the soma: 

the smaller the root angle, the larger is the centripetal bias (Figure 2.5A). When the centripetal bias 

k is zero, the root angles are distributed uniformly. This means if we want to connect a new point to 

the neuronal tree, it will connect in any direction with the same probability (Figure 2.5B). The larger 

k is, the more the neuron will favour the conduction of the synaptic currents over minimizing the cable 

cost. This means a new point will tend to connect to the neuron as close to the soma as possible 

(Figure 2.5B). With 𝑘 → ∞, all the dendritic segments will be pointing to the soma. Hence, centrip-

etal bias is a branching statistic that estimates the need for conduction speed, depending only on the 

shape of the dendrite span and properties of the branches. 

 

 

http://cng.gmu.edu:8080/Lm/help/index.htm
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Figure 2.5 - Example of how the root angle is obtained and consequences of centripetal bias. A: The longer arrow is 

the euclidean distance from the soma to the dendritic segment, and the shorter arrow is the orientation of the segment. The 

smaller the angle between them, the larger is the centripetal bias. B: In a uniform root angle distribution new points (black) 

will tend to connect equally in all directions (purple shaded area). When there is centripetal bias, the same points tend to 

connect towards the soma. In green is a Sholl radius, to aid in visualizing the direction of the soma. From Bird & Cuntz, 

2019. 

 

We used the TREES Toolbox (function vonMises_tree) to estimate the centripetal bias, which 

is calculated from the root angle distribution (Bird & Cuntz, 2019). After obtaining the values for my 

neurons, we applied a GLMM to see if there were any significant differences between sexes, just as 

was done previously for other metrics. 
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2.3. Results 

2.3.1. Power law relations 

To estimate Cuntz’s power law, we plotted together the number of branch points and the total 

length of the neurons, both normalized by the volume, for each cluster and sex. We do not see a clear 

separation between sex in each cluster (Figure 2.6). The estimated power laws have no significant 

differences in either cluster, since the ANOVA between the models with and without accounting for 

sex did not reach significance (p-value 0.403 and 0.112 for cluster 1 and 2, respectively). This implies 

that in terms of optimality, there are no sex-related differences. 

We estimated the exponent of the observed power laws for each sex. Considering it should 

be around 0.67, the estimated values are what we expected in cluster 1: females are optimal 

(0.68±0.05) and males can still be considered as such (0.64±0.10). In cluster 2 the female trees only 

deviate slightly (0.77±0.08), with the males deviating strongly with an estimated power of 0.97±0.06 

(Figure 2.6). 

 

 

Figure 2.6 - Estimation of Cuntz’s power law when considering the 2 clusters. Both the number of branch points and 

total length are normalized by the volume of the neuronal tree, and represented in logarithm scale. Each cross is a neuron, 

with the lines being the power law fit for each sex in the respective cluster. In cluster 1 both sexes follow Cuntz’s law 

(female neurons with 0.68±0.05 and males with 0.64±0.10). In cluster 2 females deviate slightly (0.77±0.08) and males 

are far from the optimal value of 0.67 (0.97±0.06). 
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We followed the same procedure to estimate Wen’s power law, this time plotting together the 

total length with the tree radius. Considering the optimal value for the power law is of 0.43, the results 

were very unexpected. Given we see a clear separation between sex in cluster 1, one would expect to 

see significant differences. However, the ANOVA between the models with and without accounting 

for sex revealed there are no differences in either cluster (p-value 0.054 and 0.877 for cluster 1 and 2, 

respectively). This is probably due to the data dispersion, as the observations deviate more from the 

estimated power law, with standard errors larger than 0.15 in cluster 1. 

In the first cluster, which we assumed was optimal, the estimated values were far from it: 

males have the largest deviation, with a value of -0.01±0.15, which shows there is barely any change 

in tree radius with the variation in total length; the females also have a large deviation, but not as 

much as the males (0.24±0.19). In the second cluster both the female (0.44±0.17) and the male neu-

rons (0.43±0.12) are actually optimal (Figure 2.7). 

 

 

Figure 2.7 - Estimation of Wen’s power law when considering the 2 clusters. Labels are explained in Figure 2.6. In 

cluster 1 both sexes deviate strongly from Wen’s law: female neurons with 0.24±0.19  and males with an unexpected value 

of -0.01±0.15. In cluster 2 females (0.44±0.17) and males (0.43±0.12) are actually optimal. 

 

Comparing both power laws, with Cuntz’s we only see optimal values for cluster 1 (Figure 

2.6). However with Wen’s it is the reverse, with optimal values for the trees of cluster 2, and the 

neurons of cluster 1 not appearing to be optimal, especially the males (Figure 2.7). Both power laws 

should classify the neurons equally in terms of optimality, but that is not what we see. The discrepancy 

in these results, which should follow the same direction, point towards the fact that these laws are not 

the best measures of optimality. 
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2.3.2. Multi-objective optimality 

 With our multi-objective approach to optimality, not only we assess if each of the Pareto 

measures is minimized or maximized, but also take into consideration the balance between the three, 

as a Pareto configuration. When assessing their normality, Shapiro-Wilk tests revealed only connec-

tivity repertoire was not normal in cluster 2 (p-value 0.041), which assumes a log-normal distribution 

(Table 2.2). Both cost and connectivity repertoire in cluster 1 passed the Shapiro-Wilk test, but with 

very low p-values (0.071 and 0.061, respectively). For this reason we calculated their skewness, which 

showed they should not be approximated to a normal distribution (cost 0.83 and connectivity reper-

toire 0.60), both fitting a log-normal distribution (Table 2.2). 

 

 

Table 2.2 - Statistical comparisons of the Pareto measures between sexes of each cluster. Overview of the mean and 

standard deviation for each sex (F for females and M for males) of each cluster and summary of the results obtained in each 

step of the GLMM. If there is a dash, it means the test was not performed. p-values in bold are statistically significant. 

 Cluster Mean Standard de-

viation 

Shapiro-Wilk 

(p-value) 

Skew-

ness 

Assumed 

distribution 

GLMM 

p-value 

Connectivity 

repertoire 

1 F: 4446.08 

M: 6675.37 

F: 682.43 

M: 1261.32 

0.061 0.60 Log-normal 1.09×10-9 

2 F: 2690.73 

M: 2822.28 

F: 816.34 

M: 1083.39 

0.041 - Log-normal 0.334 

Signal integra-

tion efficiency 

[ms-1] 

1 F: 0.520 

M: 0.600 

F: 0.071 

M: 0.080 

0.884 - Normal 0.004 

2 F: 0.441 

M: 0.438 

F: 0.109 

M: 0.139 

0.290 - Normal 0.317 

Cost [µm] 1 F: 962.91 

M: 1346.19 

F: 150.48 

M: 265.18 

0.071 0.83 Log-normal 1.2×10-6 

2 F: 575.66 

M: 632.20 

F: 148.66 

M: 197.45 

0.69 - Normal 0.414 

Normalized 

connectivity 

repertoire [per 

µm] 

1 F: 4.646 

M: 4.970 

F: 0.489 

M: 0.375 

0.733 - Normal 0.067 

2 F: 4.640 

M: 4.418 

F: 0.487 

M: 0.505 

0.471 - Normal 0.215 

Normalized 

signal integra-

tion efficiency 

[ms-1 per µm] 

1 F: 5.53×10-4 

M: 4.55×10-4 

F: 1.17×10-4 

M: 7.04×10-5 

0.153 - Normal 0.028 

2 F: 7.86×10-4 

M: 7.13×10-4 

F: 1.66×10-4 

M: 2.02×10-4 

0.807 - Normal 0.620 
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 After defining the distributions of the Pareto measures, we applied the GLMMs. As expected, 

we see significant differences for cluster 1, but not for cluster 2. Overall, males have a higher connec-

tivity repertoire (p-value 1.09×10-9) and signal integration efficiency (p-value 0.004) than females, 

which would point towards the males being more optimal. However, this maximization comes at a 

higher cost (p-value 1.2×10-6). Therefore we cannot directly say which sex is more optimal than the 

other (Table 2.2 and Figure 2.8). 

As for cluster 2 we see no significant differences, which follows in line with the results from 

Chapter 1, since we saw no significant differences in any of the neuromorphological metrics as well 

(Figure 1.13). This does not necessarily mean the neurons of this cluster are not optimal, but that sex 

does not play a role in the Pareto measures (Table 2.2 and Figure 2.8). 

 

 

Figure 2.8 - Variance of the 3 Pareto measures in both clusters. Panels contain the boxplot and data points of each 

variable, the latter representing each neuron of the dataset. The label of the panels has the name, unit and distribution used 

in the GLMM of the corresponding Pareto measure. The significance level of the test is shown on top of each panel: NS is 

not significant, * is p-value<0.05, ** is p-value<0.05 and *** is p-value<0.001. If it passes the threshold of significance, 

the p-value is also shown. We only see significant differences in the first cluster for all three Pareto measures, where the 

males have higher values. In terms of optimality, males of cluster 1 are more optimal due to connectivity repertoire and 

signal integration efficiency, but less optimal than females due to cost. 
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 Because in cluster 1 we had a very significant statistical difference in total length (Table 1.4 

and Figure 1.12) we wondered if connectivity repertoire and signal integration efficiency did not have 

high dependencies on this metric. If so, that could be the reason why we had the significant differences 

in these 2 Pareto measures, with males showing higher values (Table 2.2 and Figure 2.8). For this 

reason, we normalized them by total length to see if it would influence the results. Since cost is defined 

as the total length, it would not make sense to normalize it as well. 

 Both Pareto measures passed the Shapiro-Wilk tests in the 2 subsets of the data, which means 

they are normally distributed (Table 2.2). After applying the GLMMs, the results of cluster 2 re-

mained non-significant, as was expected. However, in cluster 1 we see that connectivity repertoire is 

no longer significant (p-value 0.067). This means that after removing the dependency of cost, both 

males and females have the same connectivity repertoire (Table 2.2 and Figure 2.9). What is inter-

esting to see, is how signal integration efficiency remains to be significantly different, and this time 

with the females having higher values (p-value 0.028). So if we remove the influence of cost, the 

female neurons are actually the more efficient, and not the other way around as we observed before 

normalizing (Figure 2.8). This result indicates that the female neurons of cluster 1 could be more 

optimal than their male counterparts (Table 2.2 and Figure 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 - Removing the dependency on total length of both connectivity repertoire and signal integration efficiency. 

Only signal integration efficiency of cluster 1 remains significant, with female neurons now displaying higher values than 

males. This is the reverse of what we saw before normalizing. Connectivity repertoire is no longer significant, not even in 

cluster 1. Labels are explained in Figure 2.8. 
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 To be able to understand which neurons are more optimal, we defined the Pareto front. From 

the 300 synthetic trees, we discarded 17 of them, since their Pareto measures were outliers. By using 

the remaining 283, we were able to determine which dendrites maximized the connectivity repertoire 

and signal integration efficiency, while minimizing the cost. We obtained a Pareto front composed of 

72 neurons, to which we fitted a surface using the Curve Fitting App. We applied polynomials of 

different degrees to obtain the function, f(x,y), that best defined this surface. A polynomial of degree 

3 for x and degree 1 for y was the best fitted surface (Figure 2.10). Neurons from the dataset that are 

on the surface are classified as optimal, and the ones under or over the surface are considered subop-

timal. After extracting f(x,y), we computed the minimum euclidean distance between each neuron 

from our dataset and f(x,y), which is also represented in Figure 2.10.  

 

Figure 2.10 - Euclidean distance of each neuron to the Pareto front in the 3D space. The surface is determined by a 

polynomial function f(x,y) of degree 3 for x and degree 1 for y, obtained with the Curve Fitting App. Each black point is a 

clone that makes up the Pareto front. Each coloured point represents a neuron, with the respective colour classifying it by 

sex and cluster. The lines represent the minimum euclidean distance between them and the surface. Connectivity repertoire, 

cost and signal integration efficiency were normalized to [0.1, 1.1], and so are adimensional. Neurons that are under and 

over the surface are suboptimal, and the ones that are on the surface are optimal. 

 

To know which neurons are closer to the surface of the Pareto front, we performed a statistical 

analysis between sexes in each cluster separately. We also compared between clusters in each sex 

separately, i.e., compared female neurons of cluster 1 versus female neurons of cluster 2, and repeated 

for males. Shapiro-Wilk tests revealed the euclidean distance was not normally distributed when con-

sidering all the male neurons (p-value 0.021), and it follows a gamma distribution; the remaining three 

comparisons are normally distributed (Table 2.3). When comparing male and female neurons of each 

cluster, there were no significant differences in the euclidean distance (Table 2.3 and Figure 2.11). 

This means that female and male neurons of both clusters are equally close to the Pareto front, and 

thus have no significant sex-dependent differences in terms of optimality. We can also see the differ-

ence between neurons of different clusters of the same sex. Interestingly, neurons of cluster 2 are 

significantly closer to the Pareto front than neurons of cluster 1 for both sexes (Table 2.3 and Figure 

2.11). This was an unexpected result, since we expected the neurons of cluster 2 to be less optimal 

than neurons of cluster 1. 
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Table 2.3 - Statistical comparisons of the euclidean distance to the Pareto front, between sexes for both clusters and 

between clusters for both sexes. Overview of the mean and standard deviation for each sex (F for females and M for males) 

and summary of the results obtained in each step of the statistical analysis. Mean and standard deviations are not presented 

for the last two rows, as the values are the same. There are sex-dependent differences in both clusters. In both sexes, neurons 

from cluster 2 are significantly more optimal than those from cluster 1. p-values in bold are statistically significant. 

  Mean Standard 

deviation 

Shapiro-Wilk Distribution GLMM 

p-value 

Comparing between 

sexes 

Cluster 1 F: 0.227 µm 

M: 0.163 µm 

F: 0.082 µm 

M: 0.097 µm 

0.292 Normal 0.060 

Cluster 2 F: 0.097 µm 

M: 0.098 µm 

F: 0.048 µm 

M: 0.061 µm 

0.344 Normal 0.965 

Comparing between 

clusters 

Females - - 0.138 Normal 1.35×10-8 

Males - - 0.021 Gamma 0.024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 - Euclidean distance to the Pareto front shows no sex-dependent differences. The panels contain the boxplot 

and data points of each variable, the latter representing each neuron of the dataset. The title of each panel has the data and 

distribution used in the GLMM of each comparison. The significance level of the test is shown on top of each panel: NS is 

not significant, * is p-value<0.05, ** is p-value<0.05 and *** is p-value<0.001. If it passes the threshold of significance, 

the p-value is also shown. Both female and male neurons of cluster 2 are closer to optimality than neurons of cluster 1. 
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2.3.3. Measures of dendritic complexity 

 Sholl analysis revealed significant differences between sexes from radius r=55 µm to 105 µm 

when analysing the first cluster. Most of these differences have a p-value<0.005, except for r of 55 

µm and 105 µm (p-value of 0.013 and 0.011, respectively) and the separation between the male and 

female SIPs is clear at first glance. This difference in complexity shows that from a distance to the 

soma of 55 µm, the male neurons have more dendrites (Figure 2.12). These results are in line with 

the results presented in Section 2.2.2, where males had a significantly higher connectivity repertoire 

and cost (Figure 2.8). 

The AUCs are also significantly different (p-value 2.93×10-5), the females with 692.5 µm2 

and the males with 1027.5 µm2. This is in line with the results of Chapter 1, as we saw significant 

statistical differences for the majority of the metrics (Figure 1.12). Of note, male neurons have longer 

quartiles than females, showing a larger variation in complexity estimation (Figure 2.12). 

 

 

 

Figure 2.12 - Sholl interception profile of Cluster 1 for each sex. The median number of intersections with concentric 

spheres of increasing r are represented in function of the distance to the soma. Error bars are the first and third quartile. The 

significance level of each r is shown on the top: * is p-value<0.05, ** is p-value<0.01 and *** is p-value<0.001. There is a 

clear difference in complexity of female and male neurons, the latter having more dendrites longer than 55 µm. The AUCs 

are also significantly different (p-value<<0.001). 
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 When considering solely the second cluster, Sholl analysis showed no significant differences 

at any r. The complexity of the neurons from this subset are the same regardless of sex, which also is 

observable in their AUCs (p-value 0.443): females with 382.5 µm2 and males with 420 µm2 (Figure 

2.13). This was expected, as for cluster 2 there were no significant differences in connectivity reper-

toire or cost (Figure 2.8). Contrary to the first cluster (Figure 2.12), females have a higher variation 

in complexity, since they have longer quartiles than males for larger r (Figure 2.13). 

 We also calculated the correlation between the AUC and both the connectivity repertoire and 

cost. We obtained a high correlation for both, confirming our idea. The correlation with connectivity 

repertoire was 0.972, and with cost was 0.988. 

 

 

Figure 2.13 - Sholl interception profile of Cluster 2 for each sex. Labels are explained in Figure 2.12. There are no 

significant differences in complexity between male and female neurons, as well as on their AUCs, which are very similar. 

 

 With the fractal dimension D, we wanted to see if we could uncover more differences in 

complexity than what we saw with the Sholl analysis (Jelinek et al., 2006). However, we were unable 

to distinguish between sexes, as there were no significant differences in either of the clusters (Table 

2.4 and Figure 2.14). This was unexpected for cluster 1, since we saw significant differences for the 

Sholl analysis (Figure 2.12). The mean D was approximately 1.03 for females and 1.02 for males for 

both subsets, which is approximately the value dendritic branches take (Marks & Burke, 2007). One 

of the female neurons from cluster 2 was an outlier, with D≃1.10, and so we removed it from this 

analysis. 
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Table 2.4 - Statistical comparisons of fractal dimension D and centripetal bias k between sexes for both clusters. 

Overview of the mean and standard deviation for each sex (F for females and M for males) and summary of the results 

obtained in each step of the statistical analysis. There are no significant p-values in the GLMM. An outlier with 𝐷 ≃ 1.10 

was removed from the analysis of cluster 2. 

 Cluster Mean Standard 

deviation 

Shapiro-Wilk 

(p-value) 

Assumed 

distribution 

GLMM p-value 

Fractal dimension D 1 F: 1.027 

M: 1.024 

F: 0.008 

M: 0.007 

0.0038 Log-normal 0.741 

2 F: 1.027 

M: 1.024 

F: 0.010 

M: 0.007 

0.255 Normal 0.161 

Centripetal bias k 1 F: 6.99 

M: 5.66 

F: 3.38 

M: 3.32 

0.0030 Log-normal 0.346 

2 F: 6.70 

M: 5.86 

F: 3.41 

M: 1.86 

0.0023 Log-normal 0.689 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 - Fractal dimension D shows no significant sex differences for both clusters. Overall D is the same in all 

subsets: 1.03 for females and 1.02 for males, with no differences between data of neither cluster. 

 

 Just as for fractal analysis (Figure 2.14), when analysing the centripetal bias k we once more 

saw no sex differences in both of the subsets (Table 2.4 and Figure 2.15). The mean k is of 6.99 and 

6.70 for females and 5.66 and 5.86 for males (for clusters 1 and 2, respectively), meaning the neurons 

have some centripetal bias. Thus, the neurons from our dataset favoured a faster conduction of the 

signals over a smaller dendritic length. To note that female trees have more bias than males (Table 

2.4). The larger the bias, the smaller is the path length, and so one would expect a lower cable cost in 

females, which is what we previously saw (Figure 2.8). This also has a relationship with Sholl anal-

ysis, since the dendritic branches would be overall smaller as well, which is why we have significant 

differences at radii r larger than 55 µm (Figure 2.12). The larger the bias, the faster the conduction as 

well, so one would expect to see a relationship with signal integration efficiency. However, signal 

integration efficiency is not higher in females of cluster 1 (Figure 2.8), being only significantly higher 

after normalizing (Figure 2.9). 
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Figure 2.15 - Centripetal bias k shows no significant sex differences in both clusters. These values indicate the existence 

of bias, and thus that the neurons favoured a faster conduction speed. 
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2.4. Discussion and conclusions 

In this chapter we set out to determine the relationship between neuronal morphology and 

function, and more particularly its implications in optimality. From the results of Chapter 1 we ex-

pected to see significant differences in optimality between males and females of cluster 1, but not 

cluster 2. 

 

Applying Cuntz’s and Wen’ power laws we could not identify sex-related differences in nei-

ther of the neuronal clusters identified in Chapter 1. This was unexpected given the significant dif-

ferences in total length, number of branch points and tree radius in cluster 1 (Figure 1.12). Results 

from Cuntz’s power law were more consistent, with neurons from cluster 1 being considered as opti-

mal, and neurons from cluster 2 only deviating slightly. It is interesting to highlight that, when Cuntz 

calculated the power law fits with datasets from NeuroMorpho.Org, it resulted in an estimated power 

of 0.72 only when considering all 74 datasets together. However, when fitting each dataset separately, 

a great number of them deviated from the optimal fit (Cuntz et al., 2012, fig. S5). So even though the 

authors claim the general applicability of the power law to every cell type, one wonders to what extent 

the results are reliable for their data. 

Results from Wen’s power law were more unexpected, especially in cluster 1, as the values 

of the fit (0.24 and -0.01 for females and males, respectively) are not significantly different. The lack 

of significance is probably due to the standard errors and small sample size. The fact that neurons of 

cluster 2 are actually found to be optimal (estimated power of 0.44 and 0.43 for females and males, 

respectively), when cluster 1 is so far from it, was also unexpected. One possible explanation expla-

nation would rely on the fact that this power law was derived from pyramidal cells of the neocortex, 

and not hippocampus. The morphology of pyramidal neurons varies across brain areas, and differ-

ences have also been shown in electrophysiological properties (Spruston, 2008). Therefore, the same 

power law may not apply to hippocampal pyramidal neurons. Moreover, Wen’s power law was de-

rived using more than 2,000 2D trees, but only 10 3D. Even though they mention that the 3D neurons 

also follow the power law, the sample size was very small. Hence, it is possible this power law is not 

suited for 3D data, only being valid for 2D dendritic trees. 

Our lab has previously worked with these power laws, and the variability in the estimated 

powers was assumed to be due to using a small dataset (6 neurons for each group). The results for 

Wen’s power law were also unexpected, even though the dendritic trees used in this study were 2D. 

In it, a model of Down syndrome was the closest to optimality, as opposed to its control, with an 

estimated power of 0.33 and -0.02, respectively (Manubens-Gil, 2018). The unreliability of the power 

laws was once more demonstrated with the present dataset. Furthermore, few information can be 

withdrawn from the power laws. One is able to classify the neurons as optimal or suboptimal, but it 

does not help in understanding the direct functional implications. Hence the use of the power laws 

needs to be complemented with other metrics of dendritic complexity and functionality, so a bridge 

between neuronal morphology, functional capability and optimality can be made. 

Even though both of these power laws are extensively cited, we only found 2 studies that 

actually estimated Cuntz’s power law, but no study that estimated Wen’s. Interestingly, in these 2 

studies the results deviated from the ⅔ power obtained by Cuntz. Iyer et al. compared dendritic ar-

borization sensory neurons of Drosophila, assessing the power law for class I and class IV neurons 

(C-I and C-IV, respectively). C-IV neurons followed the law, only deviating slightly, with an esti-

mated power of 0.73, but C-I neurons did not follow any relationship between total length and number 

of branch points (Iyer et al., 2013). Zippo and Biella did not estimate the power law directly, but 

assessed the correlation between the two metrics. Using a random sample of 100 neurons from the 
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entire NeuroMorpho.Org, they only found a weak correlation between total length and number of 

branch points (Zippo & Biella, 2015). Both studies used large sample sizes, so the issue is not a small 

sample as in both the current study and in the previous study in the lab (Manubens-Gil, 2018). We 

thus advice caution when assessing optimality with the use of these power laws. 

  

Given the unreliability of the power laws, we also assessed wiring optimality through a multi-

objective approach, in which three measures need to be balanced out as a Pareto configuration. This 

means maximizing connectivity repertoire and signal integration efficiency while minimizing the ca-

ble cost. When comparing each Pareto measure, the results for each cluster were as expected, since 

for cluster 1 there are sex-dependent morphological differences, but not for cluster 2 (Section 1.3.3). 

Male neurons are significantly more efficient and have a higher connectivity repertoire than female 

neurons of cluster 1, but at a significantly higher cost. Hence, we cannot directly extrapolate which 

sex is closer to being optimal. Even though signal integration efficiency and connectivity repertoire 

are lower in female neurons, given that the cost is also lower, female neurons of cluster 1 may actually 

be more optimal than male neurons. When normalizing both signal integration efficiency and connec-

tivity repertoire by the cost, connectivity repertoire showed no significant differences between sex, 

and thus the differences found in normalized signal integration efficiency are highly important. Not 

only there are still significant sex-dependent differences in cluster 1, but female neurons are more 

efficient. Thus, when removing the influence of total length, it is shown that female neurons of cluster 

1 generate action potentials faster than male neurons. This could indicate that the females are closer 

to being optimal than males. 

However, even though we were able to unambiguously classify each individual neuron in 

terms of optimality through its euclidean distance to the Pareto front, the statistical analysis revealed 

no significant sex-dependent differences in optimality for either cluster. These results indicate that we 

cannot extract conclusions from comparing each Pareto measure individually, stressing out the need 

to obtain the Pareto front and calculate the euclidean distances. 

What turned out to be more interesting was to compare the neurons from each cluster. Both 

male and female neurons of cluster 2 had significantly smaller euclidean distances, indicating they 

are more optimal than neurons of cluster 1. We had previously speculated that neurons from cluster 2 

are evidence of dendritic pruning, which means their synaptic connections had been refined (Chapter 

1). In terms of optimality, this would mean that only the necessary and strongest connections re-

mained, and so the neuron would be as optimal as possible. This could explain why neurons of cluster 

2 are significantly more optimal than those of cluster 1. 

An issue of our Pareto front is how it was derived from the values of synthetic dendritic trees. 

The ideal method would be to maximize and minimize the functions of each Pareto measure, as there 

would be no dependencies on experimental data. Because signal integration efficiency is generated 

through computational models, this method was not possible. Estimating the Pareto front from exper-

imental points is a good workaround, but it also forces one to fit a surface to the points identified as 

being on this boundary. These points do not necessarily provide the full picture of the real Pareto 

front, and thus, the obtained surface could deviate from it. Furthermore, this method requires visually 

choosing the surface fit, and one’s definition of “best fit” might be different. Here, we wanted a sur-

face that fitted the points and was easy to understand and visualize. The surface we chose had a coef-

ficient of determination (R2) of 0.879 and root mean square error (RMSE) of 0.069, which shows it 

fits the points well. However, other surfaces also fit the data such as a polynomial of degree 3 for both 

x and y (Figure SV.5). This other surface has a R2=0.874 and RMSE=0.067, so it also fits the points 

as well as the surface we chose. It is more orthogonal to the XY plane, and consequently, the calcu-

lated euclidean distances are different. In fact, in cluster 1 female neurons would be significantly more 

optimal than males (Figure SV.6), as we expected. Comparing the results of these two very distinct 
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surfaces shows the unreliability of the method, and the importance of determining the real Pareto front 

to accurately obtain the euclidean distances. Thus, it would be interesting to determine a function that 

obtains signal integration efficiency, so one can accurately classify the neurons in terms of optimality. 

 

Because we had some unexpected results regarding neuron optimality, we expected to see it 

in the results of centripetal bias, since it is a more direct measure of optimality, as the existence of 

bias implies that the neuron favours a faster conduction time over a smaller cable cost. Sholl analysis 

and fractal dimension are, instead, direct measures of branch geometry and density, and not of func-

tional capabilities. 

Our results for the Sholl analysis are in line with previous results, where males are signifi-

cantly more complex than females (Keil et al., 2017). Females of cluster 1 reach the peak of number 

of intersections earlier than males, at a distance to the soma of 40 µm, as opposed to a distance of 55 

µm. After reaching the peak, both sexes start to decrease the number of intersections at a similar rate. 

This means the overall sex-dependent difference in complexity is only at the distal part of the dendritic 

trees, and is a consequence of the earlier decrease in females. Thus, male neurons of cluster 1 either 

have more bifurcations at the distal part, or male dendrites originated in the proximal part are longer. 

This significant difference in cluster 1 was expected, as we saw sex-dependent differences for both 

total length and number of branch points in Chapter 1. However, it is important to stress that the 

difference in complexity is not solely because male trees are significantly larger than female ones; in 

fact, if we only analysed dendritic trees of approximately the same size, male neurons of cluster 1 

would still be significantly more complex than females (not shown). As for the Sholl analysis in clus-

ter 2, it revealed no significant differences, as expected. Both sexes reach the peak of number of 

intersections at the same distance of 30 µm, which is closer to the soma than neurons from cluster 1. 

Interestingly, in both clusters there is a local maxima in the SIP at a distance of 5 µm to the soma, 

meaning some of the branches that originate very close to the soma are smaller than 10 µm. Because 

Keil et al. performed Sholl analysis using a radius step of 10 µm, this variation is not visible in their 

results. Other than that, our results confirm the same significant differences they found (Keil et al., 

2017). 

As we noted previously, Sholl analysis and fractal dimension are related, with the latter usu-

ally uncovering differences in complexity patterns that the former cannot (Jelinek et al., 2006). Be-

cause we saw significant sex-dependent differences in the Sholl analysis of cluster 1, we also expected 

to see significant differences with fractal dimension. However, this was not the case, which means 

that even though the dendritic patterns are significantly different, neurons of both sexes fill their den-

dritic space equally. Neurons of cluster 2 also did not show significant differences. One of the issues 

of calculating fractal dimension is that there are many different methods, which generate different 

results. The comparability between studies is not direct, as even different software using the same 

method can calculate different values for D. However, the results are always consistent, so that mak-

ing the same comparison with different methods should yield the same differences (Fernández & 

Jelinek, 2001; Jelinek et al., 2006). In the case of the method we used, values for D are much lower 

than one would get with other methods such as box-counting. Marks and Burke said that with the 

method we used, D≈1.05 (Marks & Burke, 2007), but our results are around 1.02. We found another 

study where they also used L-measure to obtain D for pyramidal neurons (neocortical layer 5), and 

their results were also 1.02 (Blackman et al., 2014), which is in agreement with our values. We also 

looked for other studies which used the fractal dimension in neurons to compare between sexes, but 

were unable to find any. Nevertheless, we found sex comparison of fractal dimension in different 

applications. In terms of brain structure, Farahibozorg et al. compared global and hemispheric white 

matter fractal dimension, and found that males had significantly higher complexity than females, 

which reversed after adjusting for volume (Farahibozorg et al., 2015). Considering the brain waves, 
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Ahmadi et al. analysed scalp electroencephalogram (EEG) signals and found a higher complexity in 

females (Ahmadi et al., 2013). 

Given the lack of sex-dependent differences in optimality, we also expected to see no differ-

ences in centripetal bias. This was the case for both clusters, suggesting that both sexes have similar 

bias when connecting the dendrites, favouring a faster conduction time. The value we obtained of 

centripetal bias is close to that stated in the original paper. Using hippocampal CA1 basal pyramidal 

neurons from male rats, they calculated a bias of 7.39, with a 95% confidence interval of [5.89, 8.88] 

(Bird & Cuntz, 2019, table S1). Curiously, our obtained value for the female neurons is within the 

confidence interval, but not the value for the males (Table SII.3). This is most likely due to the dif-

ference in species between rats and mice. Because the introduction of the root angle is quite recent 

(Bird & Cuntz, 2019), there still lacks studies calculating the centripetal bias. It will be interesting to 

see if others will obtain similar results to us regarding the bias of basal pyramidal neurons, as well as 

if any sex-dependent differences will be reported. 

 

Even though our multi-objective approach to optimality has limitations, it is still more in-

formative than Cuntz’s and Wen’s power laws. Besides classifying the neurons in terms of optimality 

through the distance to the Pareto front, we also have insight into the neuron’s functional capabilities. 

We have shown that sex-dependent differences in the individual Pareto measures do not necessarily 

imply differences in optimality, and are not enough to determine it. Assessing the Pareto front is 

relevant to understand optimality, but to accurately determine it, our method falls short. Results from 

centripetal bias follow the lack of sex-dependent differences in optimality, and those from Sholl anal-

ysis validated the results from Chapter 1. Fractal dimension contradicted these results, but fractal 

analysis comparing sexes in single neuron morphology is lacking. We thus encourage more studies 

of this kind. 
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General conclusions 
 

 In this dissertation we explored sexual dimorphism in CA1 basal pyramidal neurons from 

C57BL/6J mice. Our results uncovered differences in dendritic morphology, that had implications in 

the neuron’s functional capabilities but not in their optimality. We conclude that: 

 

1. Neurons cluster in two well defined groups, being size the main factor. All sex-related differ-

ences were found in the larger-sized neurons, which we interpret as more developed neurons. 

This suggests cell-non-autonomous differences account for sexual dimorphism. 

2. This sexual dimorphism could be related to differences in hippocampal or total brain volume. 

Estimating them together with single-neuron morphology analysis would be of interest to 

uncover possible correlations. 

3. Male neurons of larger size are significantly more complex than female ones, but fractal anal-

ysis showed no sex-dependent differences so that both sexes fill their dendritic space equally, 

regardless of neuron size. All neurons are also centripetally biased, but not in a sex-dependent 

manner, meaning both sexes favour a faster conduction time over a smaller cable length. 

4. Cuntz’s and Wen’s power laws showed opposite results regarding optimality and our results 

suggest that they are unreliable and should be used with caution when determining optimality. 

5. The sex-related differences in the morphological metrics impact the neuron’s functional ca-

pabilities. Males have significantly higher signal integration efficiency and connectivity rep-

ertoire, but at a higher cable cost. After normalizing by total length, females have significantly 

higher signal integration efficiency. 

6. In our approach to optimality, using different Pareto fronts, we cannot conclude if the differ-

ences we found in the morphological metrics impact the neuron’s optimality. 

7. Our approach to optimality revealed that smaller-sized neurons are actually more optimal 

than larger ones, regardless of sex. 

 

 Our findings support our initial hypothesis that male and female CA1 pyramidal neurons dif-

fer significantly in dendritic morphology and functional capabilities, but only for larger neurons. 

However, we were unable to support nor dismiss our hypothesis that optimality would also differ 

between males and females. This is left as future work, where we will try to obtain a function that 

calculates signal integration efficiency. Thus, we will be able to estimate the euclidean distances to 

the real Pareto front and validate (or not) the hypothesis. 
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Supplementary Information 
 

 All code generated in this dissertation can be found in the online repository Bitbucket 

(https://bitbucket.org/NatsMrqs/master-thesis/src/master/), alongside a .txt file which explains how 

each file should be used. To access this repository, log in with the email fc45870@alunos.fc.ul.pt and 

password mthesis_NM45870. All analysis performed with R was with version 3.0.5; most of the anal-

ysis with MATLAB was with version 2016a, except for obtaining signal integration efficiency, which 

used version 2018a. 

I. Dataset selection criteria 

 

In this dissertation we used data from NeuroMorpho.Org (Ascoli, 2006; Ascoli et al., 2007). 

This is an online repository of curated digitally reconstructed neurons. Alongside each neuron is the 

respective published article and available metadata. This database contains different types of neurons 

(pyramidal, Purkinje, interneuron, etc.), species (human, mouse, rat, fly, etc.) and brain regions (hip-

pocampus, neocortex, optic nerve, etc.) from over 500 laboratories around the world, comprising more 

than one hundred thousand samples. 

To select the datasets to work with, we searched the metadata available in the database (option 

“search by metadata”). This allows to filter the inventory at the same time by multiple criteria, such 

as species, experimental condition, brain region and age. To have two comparable groups, all 

metadata needs to be the same, except for the variable of interest. We performed multiple searches 

with the following combination of specifications: availability of data from a control experiment; spe-

cies: mouse, rat or human; brain region: hippocampus, from CA1 or CA3 layer; cell type: pyramidal 

cell; gender: male or female. 

The first exclusion criterion was datasets with less than 5 neurons and not providing the age 

of the subjects. With these conditions, 22 sets of neurons were obtained (version 7.6). We visually 

explored sets with similar metadata (e.g. CA1 reconstruction of male rats of different ages), and se-

lected those with at least 15 neurons per group, avoiding very small datasets. This resulted in 12 

datasets that allowed 4 possible comparisons: sex, species, region or age (Table SI.1). We looked 

closely at them to select the one with the best quality. 

We first considered performing an age-dependent comparison of dendritic morphologies. For 

this comparison, data from 7 different rat studies were available. However, we discarded this possi-

bility because not all animals were of the same strain, which would affect our results. We also re-

garded the possibility of comparing different species. However, one important constraint was that 

animals of the same age from different species may be at different neurodevelopmental stages. This 

would introduce another source of variability in our study, so we also discarded this comparison. The 

other possible comparison was among different regions of the hippocampus (CA1 and CA3). How-

ever for one of the regions, the data pertained to 2 different studies, which used different reconstruc-

tion methods which may also lead to variations (Table SI.1). Finally, we selected a dataset in which 

all neurons were from the same study, and hence no technical constraints. This allowed us to compare 

sex-dependent differences in pyramidal cells. The selected sample was composed of 66 neurons, 33 

of each sex (variable of interest) reconstructed from the CA1 hippocampal region of 10 C57BL/6J 

mice. The neurons come only from 5 male and 5 female mice, meaning we have multiple neurons 

from the same animal (Wilson et al., 2017). 

 

 

https://bitbucket.org/NatsMrqs/master-thesis/src/master/
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Table SI.1 - Summary of the 4 considered comparisons from NeuroMorpho.Org, and reasons for discarding. The last 

comparison (sex) was the chosen one. 

Type of com-

parison 

Groups Number of 

neurons 

Strain Name of the 

dataset 

Reason for discard-

ing 

Age: CA1 

male rats 

11-19 days 10 Wistar Escaplez Different strains 

12 Wistar Groen 

21-28 days 20 Wistar Storm 

1-2 months 30 Sprague-Dawley Johnston 

2 months 10 Fischer 344 Turner 

2-3 months 19 Wistar Kole 

8-10 months 18 Sprague-Dawley Chen 

Species: CA1 

males (3-4 

months) 

Mouse 30 ICR Oguro-Ando Different develop-

mental stage 
Hamster 36 Siberian Hamster Ikeno 

Region: male 

rats (11-19 

days) 

CA1 10 Wistar Escaplez Group of CA1 neu-

rons has data from 2 

different studies 12 Wistar Groen 

CA3 24 Wistar Jonas 

Sex: CA1 

mice (33 

days) 

Female 33 C57BL/6J Lein Not discarded 

Male 33 C57BL/6J Lein 

 

 

 

 

 

 

  

http://neuromorpho.org/MetaDataResult.jsp?count=10&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22archive%22:%5B%22Esclapez%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=12&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22archive%22:%5B%22Groen%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=20&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22archive%22:%5B%22Storm%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=30&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22brain_region_2%22:%5B%22CA1%22%5D,%22experiment_condition%22:%5B%22Control%22%5D,%22archive%22:%5B%22Johnston%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=10&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22strain%22:%5B%22Fischer%20344%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22brain_region_2%22:%5B%22CA1%22%5D,%22experiment_condition%22:%5B%22Control%22%5D,%22archive%22:%5B%22Turner%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=19&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22experiment_condition%22:%5B%22Control%22%5D,%22archive%22:%5B%22Kole%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=18&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22experiment_condition%22:%5B%22Control%22%5D,%22archive%22:%5B%22Chen%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=30&summary=%7B%22neuron%22:%7B%22species%22:%5B%22mouse%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22brain_region_2%22:%5B%22CA1%22%5D,%22experiment_condition%22:%5B%22Control%22%5D,%22archive%22:%5B%22Oguro-Ando%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=36&summary=%7B%22neuron%22:%7B%22species%22:%5B%22Hamster%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22brain_region_2%22:%5B%22CA1%22%5D,%22experiment_condition%22:%5B%22Control%22%5D,%22archive%22:%5B%22Ikeno%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=10&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22archive%22:%5B%22Esclapez%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=12&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22archive%22:%5B%22Groen%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=24&summary=%7B%22neuron%22:%7B%22species%22:%5B%22rat%22%5D,%22gender%22:%5B%22Male%22%5D,%22archive%22:%5B%22Jonas%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=33&summary=%7B%22neuron%22:%7B%22species%22:%5B%22mouse%22%5D,%22gender%22:%5B%22Female%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22brain_region_2%22:%5B%22CA1%22%5D,%22cell_type_1%22:%5B%22principal%20cell%22%5D,%22archive%22:%5B%22Lein%22%5D,%22min_age%22:%5B%2228.0%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
http://neuromorpho.org/MetaDataResult.jsp?count=33&summary=%7B%22neuron%22:%7B%22species%22:%5B%22mouse%22%5D,%22gender%22:%5B%22Male%22%5D,%22brain_region_1%22:%5B%22hippocampus%22%5D,%22brain_region_2%22:%5B%22CA1%22%5D,%22cell_type_1%22:%5B%22principal%20cell%22%5D,%22archive%22:%5B%22Lein%22%5D,%22min_age%22:%5B%2228.0%22%5D%7D,%22ageWeightOperators%22:%7B%7D,%22ageWeightOperations%22:%7B%7D%7D
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II. Analysis on whole data 

 

The statistical analysis of Chapter 1 and all analysis of Chapter 2 were also applied to the 

whole data, i.e., without separating the neurons by cluster. Here we will only present the results, as 

the methods can be found in the main text, except if we have done something different. In that case, 

the methods will be clearly explained. 

 

When performing the statistical analysis on the neuronal metrics, Shapiro-Wilk tests revealed 

only 2 of the metrics were not normal, total length and volume (p-values of 0.002 and <0.001, respec-

tively). Total length assumes a log-normal distribution. As for the volume, we used volume/1000 to 

be able to fit the Gamma distribution, which turned out to be the best fit. Maximum path length and 

straightness passed the Shapiro-Wilk test but with very small p-values (0.070 and 0.071 respectively). 

For this reason, we calculated their skewness: straightness is considered normal (-0.29) but not max-

imum path length (0.55), which fits a gamma distribution (Table SII.1). 

 

Table SII.1 - Statistical comparisons between sexes. Overview of the mean and standard deviation for each sex (F for 

females and M for males) and summary of the results obtained in each step of the statistical analysis. If there is a dash, it 

means the test was not performed. There are no significant p-values in the GLMM. 

Name Mean Standard devi-

ation 

Shapiro-Wilk 

(p-value) 

Skewness Assumed distri-

bution 

GLMM p-

value 

Total length 

[µm] 

F: 759.70 

M: 905.19 

F: 245.12 

M: 421.86 

0.002 - Log-normal 0.373 

Max. path 

length [µm] 

F: 121.84 

M: 137.80 

F: 34.40 

M: 41.77 

0.070 0.55 Gamma 0.358 

Mean branch 

length [µm] 

F: 27.59 

M: 26.80 

F: 5.63 

M: 6.91 

0.307 - Normal 0.745 

Soma radius 

[µm] 

F: 9.51 

M: 9.18 

F: 1.46 

M: 1.44 

0.285 - Normal 0.510 

Tree radius 

[µm] 

F: 50.98 

M: 55.49 

F: 10.66 

M: 13.95 

0.593 - Normal 0.262 

Volume [µm3] F: 117308.7 

M: 142088.3 

F: 76490.4 

M: 108863.8 

<0.001 - Gamma 

(Volume/1000) 

0.531 

Number of 

branch points 

F: 16.58 

M: 18.91 

F: 4.39 

M: 6.01 

- - Negative binomial 0.087 

Mean branch 

order 

F: 5.59 

M: 5.86 

F: 1.08 

M: 0.94 

0.215 - Normal 0.285 

Straightness F: 0.86 

M: 0.85 

F: 0.05 

M: 0.05 

0.071 -0.29 Normal 0.453 
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After defining the distribution of each metric, we applied the GLMMs. We found no sex-

related differences in any of the studied metrics (Figure SII.1). The metric with the smallest p-value 

was the number of branch points, with a p-value of 0.087, with the remaining all having p-val-

ues>0.25. These results are in line with the means and standard deviations of the metrics, which over-

all are very similar for both sexes (Table SII.1). A closer look at the results shows the data points 

seem to be binomially distributed, which supports the need to perform the cluster analysis (Figure 

SII.1). The obtained results on the whole dataset are thus not significant because two subgroups are 

being considered. Because we saw no significant differences in all the metrics, we expected to see no 

differences in the remaining analysis. 

 

 

Figure SII.1 - Variation of the data by sex and statistical difference for each neuromorphological metric. Each panel 

has violin, boxplot and data points of each variable, the latter representing each neuron of the dataset. The label of the panels 

has the name, unit and distribution used in the GLMM of the corresponding metric. The significance level of the test is 

shown on top of each panel: NS is not significant, * is p-value<0.05, ** is p-value<0.05 and *** is p-value<0.001. If it 

passes the threshold of significance, the p-value is also shown. There are no significant metrics when we consider the whole 

dataset. 
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When assessing the power laws, once again results were different between Cuntz’s and Wen’s 

power laws. With Cuntz’s power law, female neurons come closer to optimality (0.76±0.05), with 

males having an estimated power of 0.90±0.04, much further from the expected value of 0.67 (Figure 

SII.2). Considering Wen’s power law, the estimated values for power follow the 0.43 optimal value 

(males 0.43±0.05 and females 0.48±0.08) (Figure SII.3). 

We performed an ANOVA between the models with and without accounting for sex, to see 

if the estimated power laws had significant sex-dependent differences. There are no significant dif-

ferences for Wen’s power law, but for Cuntz’s there are (p-value 0.787 and 0.047, respectively). Be-

cause we are estimating two parameters in the model, a and b (Eq. 2.1), we need to understand if both 

or just one of them is significantly different. We can assess this through ANOVA, by comparing the 

model where both parameters depend on sex with a model where one of the parameters is fixed. If p-

value≤0.05, the non-fixed parameter depends on sex (Ritz & Streibig, 2008, Chapter 8). In this case 

we are more interested in finding differences in parameter b, since it is the exponent of the power law 

and what determines optimality, while a is just a multiplying factor (Eq. 2.1). The ANOVA was 

significant for a but not for b (p-values 0.029 and 0.122, respectively). Thus, the significant difference 

with Cuntz’s power law is only in the multiplying factor, meaning there is no significant difference 

in optimality between sexes. 

As we mentioned in the discussion (Section 2.4), Cuntz obtained an estimated power of 0.72 

only when fitting 74 datasets together; when fitting each dataset separately, many deviated from the 

optimal fit (Cuntz et al., 2012, fig. S5). For this reason, we decided to assess if we could obtain an 

optimal fit when considering the data together, i.e., without separating by sex. This was not the case, 

as the estimated power law was of 0.85±0.03. This further shows how Cuntz’s power law is not 

reliable for our data. 

 

 

Figure SII.2 - Estimation of Cuntz’s power law for each sex. Both the number of branch points and total length are 

normalized by the volume of the neuronal tree, and represented in logarithm scale. Each cross is a neuron, with the lines 

being the power law fit for each sex. Female neurons have a power relationship of 0.76±0.05, the closest to Cuntz’s obtained 

value for optimality of 0.67. Males show a strong deviation, with an estimated power of 0.90±0.04. 
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Figure SII.3 - Estimation of Wen’s power law for each sex. Labels are explained in Figure SII.2. Male neurons are 

optimal (0.43±0.05), and the female trees only deviate slightly, still being considered optimal (0.48±0.08). 

 

When assessing the Pareto measures, Shapiro-Wilk revealed that connectivity repertoire and 

cost were not normal (p-value 0.002 for both). Both measures follow a log-normal distribution. The 

GLMM showed no significant sex-dependent differences (Table SII.2 and Figure SII.4), which was 

expected since we saw no neuromorphological differences either (Figure SII.1). This means that if 

we analyse all neurons together, we see no differences in optimality. We also compared the connec-

tivity repertoire and signal integration efficiency after normalizing by cost. The latter did not pass the 

Shapiro-Wilk test (p-value 0.030), fitting a gamma distribution. As expected, there were no significant 

differences in the GLMMs of both Pareto measures (Figure SII.2 and Figure SII.5). 

We did not compare the euclidean distances to the Pareto front because they would not pro-

vide new information. We already saw there were no differences in optimality between males and 

females (Figure SII.4 and Figure SII.5), hence we would have the same result with the euclidean 

distances. 
 

Table SII.2 - Statistical comparisons of the Pareto measures between sexes. Overview of the mean and standard devia-

tion for each sex (F for females and M for males) and summary of the results obtained in each step of the GLMM. There are 

no significant p-values in the GLMM. 

 Mean Standard devi-

ation 

Shapiro-Wilk 

(p-value) 

Assumed distri-

bution 

GLMM 

p-value 

Connectivity repertoire F: 3460.84 

M: 4393.23 

F: 1186.78 

M: 2173.18 

0.002 Log-normal 0.258 

Signal integration efficiency 

[ms-1] 

F: 0.466 

M: 0.516 

F: 0.105 

M: 0.128 

0.435 Normal 0.263 

Cost [µm] F: 759.70 

M: 905.19 

F: 245.12 

M: 421.86 

0.002 Log-normal 0.373 

Normalized connectivity 

repertoire [per µm] 

F: 4.540 

M: 4.786 

F: 0.471 

M: 0.491 

0.362 Normal 0.095 

Normalized signal integra-

tion efficiency [ms-1 per µm] 

F: 6.51×10-4 

M: 6.48×10-4 

F: 1.65×10-4 

M: 2.27×10-4 

0.030 Gamma 0.674 
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Figure SII.4 - Statistical analysis of the 3 Pareto measures in the whole data. There were no significant differences, 

which means males and females have no differences in optimality. Labels are explained in Figure SII.1. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure SII.5 - Statistical analysis of the Pareto measures normalized by total length in the whole data. There are no 

significant differences. Labels are explained in Figure SII.1. 

 

 

When performing Sholl analysis of the whole dataset, we expected to see some differences 

for longer distances to the soma. This is because the statistical analysis is performed at each r, and for 

cluster 2 (Figure 2.13) the maximum r analysed is smaller than that of cluster 1 (Figure 2.12). Thus, 

the differences we saw on cluster 1 for larger values of r should also be distinguishable here. We 

found significant differences between sexes only for distances to the soma of 80, 90 and 95 µm (p-

values 0.031, 0.022 and 0.047, respectively). Surprisingly, distance of 85 µm does not reach signifi-

cance, but is very close (p-value of 0.055). The last r compared in cluster 2 is r=80 µm (Figure 2.13), 

which is why they do not mask the significant differences here, as it happened in all the previous 

analysis (Figure SII.1, Figure SII.4 and Figure SII.5). It is clear the male neurons have longer den-

drites, as they only have a median of zero at r=115 µm (Figure SII.6). 

The AUCs are not significantly different (p-value 0.333): the females have an AUC of 557.5 

µm2 and the males of 582.5 µm2. This makes sense as we see significant differences for only a few r 

(Figure SII.6). 
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Figure SII.6 - Sholl interception profile of the whole data for each sex. The median number of intersections with con-

centric spheres of increasing r are represented in function of the distance to the soma. Error bars are the first and third 

quartile. The significance level of each r is shown on the top: * is p-value<0.05, ** is p-value<0.01 and *** is p-value<0.001. 

There are few r with significant differences, mainly because female trees have shorter dendrites. The AUC is not significantly 

different. 

 

 Since there were no significant differences for fractal dimension D or centripetal bias in both 

clusters (Table 2.4, Figure 2.14 and Figure 2.15), we were expecting similar results for the whole 

data. Both metrics did not pass the Shapiro-Wilk test, with p-values<0.001, and followed a log-normal 

distribution. As expected, we saw no significant sex-dependent differences (Table SII.3 and Figure 

SII.7). 

 

 

Table SII.3 - Statistical comparisons of fractal dimension D and centripetal bias k between sexes. Overview of the 

mean and standard deviation for each sex (F for females and M for males) and summary of the results obtained in each step 

of the statistical analysis. There are no significant p-values in the GLMM. We removed one neuron from the analysis of 

fractal dimension, since it was an outlier with D≃1.10. 

 Mean Standard deviation Shapiro-Wilk 

(p-value) 

Assumed distribu-

tion 

GLMM p-

value 

Fractal dimension D F: 1.027 

M: 1.024 

F: 0.009 

M: 0.007 

0.026 Log-normal 0.267 

Centripetal bias k F: 6.84 

M: 5.78 

F: 3.35 

M: 2.49 

<0.001 Log-normal 0.323 
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Figure SII.7 - Fractal dimension D and centripetal bias k show no significant differences between sexes in the whole 

data. D has the typical values for dendritic branches, and k implies the existence of bias, which means the neurons favour a 

faster conduction speed. 

 

 By looking at all results together, we can conclude that sex-dependent differences cannot be 

uncovered unless the neurons are separated by their size. Sholl analysis was the only exception, and 

just because the statistical analysis of the SIP is performed at each r (Figure SII.6). This stresses the 

need of carefully selecting a dataset to work with, and providing all necessary information about 

sample selection and respective metadata. 
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III. Silhouette Coefficient 

 

To classify the obtained clusters, we can compute the silhouette coefficient (SC) for k=2, 

with k the number of clusters (Rousseeuw, 1987). The SC calculates the ratio between the intra and 

inter cluster distances. The first is how close the point is to its cluster, and the second how distant it 

is to its neighbour cluster. If the SC is between 0 and 0.25, the clustering is not necessarily due to 

some structure to the data; between 0.25 and 0.5 there is some structure; between 0.5 and 1 it is a 

good cluster. We can also calculate SC values for each data point, determining if they were classified 

in the correct cluster. A negative SC means a misclassified neuron and a positive SC a correctly clas-

sified. When the SC is close to zero, then the neuron lies between clusters. Considering this last type 

of SC, in the analysis (b) (Section 1.2.2) when the SC to any data point was negative, we manually 

changed it to the other cluster to improve the overall classification. 

When clustering the whole data, the average SC of the analysis with just 2 clusters is of 0.29, 

indicating there is some structure to the data. As for the SC of each neuron, four are considered mis-

classified. Neuron #42 (male, SC=-0.135) is in cluster 1 but should be in cluster 2, and neurons #7, 

#27 and #33 are the opposite (all females, SCs of -0.051, -0.070 and -0.081, respectively). Lastly, the 

SC of each cluster is 0.25 for cluster 1 (26 neurons) and 0.31 for cluster 2 (40 neurons), both over the 

threshold of 0.25 (Figure SIII.1). 

 

Figure SIII.1 - Silhouette plot of the hierarchical clustering analysis on the whole dataset. Each bar is a neuron and 

respective SC, coloured by which cluster they are in. Cluster 1 has 26 trees and a SC of 0.25, with one neuron being mis-

classified (#32, SC=-0.135). Cluster 2 has the remaining 40 trees with a SC of 0.31, with four misclassified neuron (#7, #27 

and #33, SCs of -0.051, -0.070 and -0.081, respectively). The average SC is of 0.29 (red horizontal dashed line), indicating 

there is some structure to the data. 
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When clustering each sex separately, the results differ between them. For the males the aver-

age SC is 0.37, and of each cluster is 0.35 for the first (13 neurons) and 0.38 for the second (20 

neurons). All values are over the threshold of 0.25, and there are no neurons considered as misclassi-

fied (Figure SIII.2). As for the females, the initial average SC is 0.22, and of each cluster is 0.24 for 

the first (13 neurons) and 0.21 for the second (20 neurons). Neither of the clusters pass the threshold 

of 0.25, which might happen due to the misclassification of 3 neurons. They are neurons #6 (SC=-

0.029), #27 (SC=-0.143) and #7 (SC=-0.171) (Figure SIII.3). 
 

Figure SIII.2 - Silhouette plot of the hierarchical clustering analysis on the male trees. Cluster 1 has 13 trees and a SC 

of 0.35 and cluster 2 has the remaining 20 trees with a SC of 0.38. There are no misclassified neurons. Average SC is of 

0.37, indicating there is some structure to the data. 

 

Figure SIII.3 - Silhouette plot of the hierarchical clustering analysis on the female trees. Cluster 1 has 13 trees and a 

SC of 0.24, and cluster 2 has the remaining 20 trees with a SC of 0.21, with three neurons being misclassified (#6, #27 and 

#7, with SCs of -0.029, -0.143 and -0.171, respectively). Average SC is of 0.22, which is below the threshold of 0.25. 
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It is possible to manually change neurons from one cluster to the other. Doing this for mis-

classified neurons not only improves the clustering itself, but also the SCs. For this reason, neurons 

#6, #7 and #27 of the female analysis were reclassified from cluster 2 to cluster 1. After recalculating 

the SCs, this final cluster now has an average SC of 0.28. The first cluster has 16 neurons and a SC 

of 0.23, while the second has 17 neurons and a SC of 0.32 (Figure SIII.4). Neuron #13 is now con-

sidered as misclassified. This could be why the SC of cluster 1 is just below the 0.25 threshold. We 

decided not to move this neuron to the second cluster, as it would be a biased improvement. 

 

Figure SIII.4 - New silhouette plot of the hierarchical cluster applied to the female trees, after changing the 3 neurons 

from cluster 2 to cluster 1. These neurons had negative SC (neurons #6, #7 and #27). With these changes, cluster 1 now 

has 16 trees and a SC of 0.23 and cluster 2 has the remaining 17 trees with a SC of 0.32. Average SC is of 0.28, which now 

passes the threshold of 0.25, indicating there is indeed some structure to the data. 

 

 Given that an average SC between 0.26 and 0.50 is still very low, we also calculated the SC 

with the metric of highest separation between clusters. This meant using the intra and inter cluster 

distances of only one metric, instead of the combination of all 9. The metric that best separated the 

two clusters of the male trees was volume. The average SC is 0.63, of the first cluster is 0.56 and of 

the second one is 0.68. All values are over 0.50, and only neuron #32 is misclassified in the second 

cluster (Figure SIII.5). In the case of the females, the metric used was total length, with an average 

SC is of 0.52. The SC of each cluster is 0.49 for the first and 0.54 for the second, with neurons #13 

and #9 misclassified in the cluster 1 and 2 respectively (Figure SIII.6). 
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Figure SIII.5 - Silhouette plot of the hierarchical clustering analysis on the male trees, considering only the volume 

of the neurons. Cluster 1 has a SC of 0.56 and cluster 2 has a SC of 0.68, with neuron #32 misclassified. Average SC is of 

0.63, which is above 0.50. 

 

Figure SIII.6 - Silhouette plot of the hierarchical clustering analysis on the female trees, considering only the total 

length of the neurons. Cluster 1 has a SC of 0.49, with neuron #13 misclassified, and cluster 2 has a SC of 0.54, with 

neuron #9 misclassified. Average SC is of 0.52, which is above 0.50. 
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IV. Principal Component Analysis 

 

We performed a scaled Principal Component Analysis (PCA) (Wold et al., 1987) using R’s 

function prcomp, to see if we could identify which metrics best separated the male from the female 

trees. By plotting the results with the use of ggbiplot package (version 0.55), not only one can identify 

the neuromorphological metrics that explain most of the variance in the data, but also to what degree 

the Principal Components (PC) explain the possible differences between the groups. This was per-

formed for the whole dataset, as well as per cluster. 

 

By applying a scaled PCA in the whole data we were hoping to see some separation due to 

sex that we were unable to find when performing the statistical analysis (Table SII.1 and Figure 

SII.1). This separation would be along the lines of PC1 and PC2, since those are the ones who explain 

a total of 71.1% of the variance in the data, but this was not the case (Figure SIV.1). PC1 explains 

54.4% of the variance and is mainly contributed by metrics related to the size of the trees: total length, 

volume, tree radius, and maximum path length. PC2 has an explained variance of 16.7% and is mainly 

contributed by metrics related to the branches: mean branch order, mean branch length and number 

of branch points. As one can note, the larger contributions of one PC are usually the smallest of an-

other, which is why just PC1 and PC2 already explain more than 70% of the variance in the data. 

Straightness and soma radius are the only metrics which never contribute more than 11%, meaning 

they do not reflect the data’s variance. 
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Figure SIV.1 - Scaled PCA on the whole dataset. Top: PCA of the variables. Each arrow represents the direction of that 

variable in the PCA space, as well as its contribution - the longer the arrow, the more it is well represented by PC1 and PC2. 

Each dot is one of the neurons, coloured by sex, and for each group we have in solid lines the normal data ellipses of 68% 

confidence. Bottom: Bar plots showing the contribution, in percentage, of each metric to the PC in question. The red dashed 

lines are the expected average contributions of the metrics, assuming they would contribute equally - 100/(number of met-

rics), which in our case is 100/9≃11%. PC1 is a composite of metrics related mostly to the size of the tree, while PC2 is a 

composite of metrics related to the branches. 
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We wondered if the reason why there was no separation in the PCA visualization between 

the sexes could be due to the neurons from specific animals being outliers among the rest, leading to 

a “shift” in the group’s ellipse in the direction to an overlap of the groups. To test this, we plotted 

once again the PCA space, but instead of colouring by sex, we coloured according to the animal ID 

(Figure SIV.2). This time we only plotted the ellipses, because otherwise the results would be diffi-

cult to read and interpret. Male mice are coloured in shades of blue and green, while the females vary 

from yellow through red and purple. By the size and location of the ellipses it is possible to understand 

how the data from each subject is well spread across the PCA space, meaning this effect does not 

happen. These results make sense with what we saw for the CV (Table 1.3). 

 

 

Figure SIV.2 - Scaled PCA of the metrics coloured by animal ID. This id has no meaning of categorization. To aid the 

underlying visualization of sex comparison, the female mice take the colours yellow, orange/brown, red, pink and purple, 

and the males have shades of blue and green (light and dark) and grey. Remaining plot specifications are explained in Figure 

SIV.1. 
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Having defined our 2 different clusters, we proceeded to apply PCAs to each of them. As 

expected, the PCA for cluster 1 shows a separation of the sexes defined by PC1, which explains 35.1% 

of the variation in the data and is mainly contributed by metrics of size: volume, tree radius, maximum 

path length, mean branch length and total length (Figure SIV.3). PC2 explains 24.2% of the variance, 

and is contributed mostly by number of branch points, as well as mean branch order and total length. 

PC1 and PC2 somehow resemble its counterparts of the PCA on the whole data, since the contribu-

tions are of the same categories and straightness and soma radius once again explain less than 11% of 

both PCs (Figure SIV.4). These results confirm the significant differences found in the statistical 

analysis of cluster 1 (Table 1.4 and Figure 1.12). 

 

 

Figure SIV.3 - Scaled PCA of the metrics for cluster 1. Top: PCA space for cluster 1. Bottom: Contributions, in percent-

age, of each metric to the PC in question. PC1 is a composite of metrics related mostly to the size of the tree, while PC2 is 

a composite of metrics related to the branches. Females and males are separated due to PC1. Remaining plot specifications 

are explained in Figure SIV.1. 
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As for the PCA of the second cluster, once again we see no separation due to sex along the 

lines of PC1 and PC2 (Figure SIV.4), just as it happened for the whole data (Figure SIV.1). PC1 and 

PC2 still follow the “rule” about the contributions: the first, explaining 43.5% of the variance, is 

mostly defined by metrics of size (total length, volume, maximum path length and tree radius), and 

the second, with an explained variance of 24.9%, is contributed by metrics regarding the branches 

(mean branch length and order, number of branch points and tree radius). These results confirm the 

lack of significant differences in the statistical analysis of cluster 2 (Table 1.4 and Figure 1.13). 

 

 

 

Figure SIV.4 - Scaled PCA of the variables for cluster 2. Top: PCA space of cluster 2. Bottom: Contributions, in per-

centage, of each metric to the PC in question. PC1 is a composite of metrics related mostly to the size of the tree, while PC2 

is a composite of metrics related to the branches. Remaining plot specifications are in Figure SIV.1. 
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V. Multi-objective optimality 

Number of spines 

 

Instead of using a constant number for the spine density, which is usually taken as 2 

spines/µm, we wanted to have the number of spines in function of the dendritic distance to the soma. 

For this reason, we searched for studies where they measured the spine density or related measures at 

different distances. We looked preferably for studies in mice CA1 neurons since this is the same as 

our data. We came across Konur et al., 2003, which matches all these requirements. Using intervals 

of 50 or 40 µm, they found some variability in the interspine distance in apical and basal dendrites, 

respectively. Given that the trees from our dataset only have basal dendrites, only those values were 

used. They provide both the mean and standard deviation for each interval, to which we fitted poly-

nomial functions of different degrees. 

The registered mean values of interspine distance for each interval of path distance to the 

soma were: (0.84±0.82) µm for [0, 40] µm, (0.63±0.61) µm for [40, 80] µm, (0.65±0.61) µm for 

[80, 120] µm, (0.87±0.64) µm for [120, 160] µm (Konur et al., 2003). To be able to plot a graph of 

interspine distance for each path length, we set each observed mean values to their upper bound of 

the interval it corresponds to (e.g. (0.84±0.82) µm at 40 µm). To apply the polynomial fit we assumed 

that at path distance 0 µm the interspine distance would be 0 µm, to force the function to pass through 

the origin. The value for path distance 20 µm was also extrapolated as (0.42±0.41) µm, which is half 

of the value at 40 µm, so the polynomial fits would respect this linear relationship between observa-

tions. 

Having a total of 6 observations, we proceeded to use MATLAB’s polyfit function with in-

creasing polynomial degree, from 2 to 5 (the maximum possible, given the small number of observa-

tions). We plotted both the fit, means and standard deviations, to see if the estimated fit would behave 

similarly and stay between the standard deviation (Figure SV.1). We explored all plots with the pol-

ynomial degrees to choose the best one, while at the same time avoiding overfitting. This led to the 

conclusion of using a degree of 4 to map the behaviour of the interspine distance in function of the 

path distance to the soma (Figure SV.1). After extracting the coefficients, the function for interspine 

distance 𝑠𝑑𝑖𝑠𝑡 was: 

 

𝑠𝑑𝑖𝑠𝑡(𝑖) = −1.3 × 10−9𝑙(𝑖)4 + 9.6 × 10−7𝑙(𝑖)3 − 2.3 × 10−4𝑙(𝑖)2 + 0.0204𝑙(𝑖) + 0.0085 (𝐒𝐕. 𝟏) 

 

The distance is calculated for each compartment i of the tree, and so we have a value at each 

path length l(i). Given that the standard deviation of the measured 𝑠𝑑𝑖𝑠𝑡 is very close to it, we need to 

take it into account (Konur et al., 2003). For this reason, after calculating 𝑠𝑑𝑖𝑠𝑡(𝑖) we added a ran-

domized number for each compartment i which was in the range of the standard deviation. Unless this 

addition resulted in a negative value, then it substituted the previously calculated 𝑠𝑑𝑖𝑠𝑡(𝑖) for said 

compartment. It is important to note that Eq. SV.1 is valid until a distance l(i) of 160 µm; when the 

tree had a compartment i with 𝑙(𝑖)>160 µm, then we assumed the 𝑠𝑑𝑖𝑠𝑡(𝑖) was 0.87, the same as the 

last value of the study (Konur et al., 2003). 

Having the value of the interspine distance for each compartment i of the tree, we obtained 

its number of spines 𝑠(𝑖). By summing the number of spines of each compartment i, one can determine 

the number of spines for the whole tree: 

 

𝑠 = ∑ 𝑠(𝑖)

𝑖

= ∑
𝑙(𝑖)

𝑠𝑑𝑖𝑠𝑡(𝑖)
𝑖

(𝐒𝐕. 𝟐) 
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Figure SV.1 - Interspine distance in function of the distance to the soma, with polynomial fits of different degrees. 

The polynomial of degree 2 does not represent the variation correctly. With degree 5 even though all observations are 

perfectly met, the polynomial has more variability between points than desired. Polynomials of degree 3 and 4 have a neg-

ative value when the distance to the soma is zero, but they still represent better the observations and behaviour we have. 

Comparing both, the polynomial with degree 4 is the best suited. 

 

Connectivity repertoire 

 

 To obtain an equation for the connectivity repertoire S that we could implement in MATLAB, 

we started from equation S32 from the supplementary information of Wen et al., 2009: 

 

𝑆 ≃ log (
𝑠𝑙𝐿𝜌𝑎

𝑁
) −

𝑠𝑙𝐿

𝑅2
𝑁 +

𝐿

𝑎
(1 + log (1 −

𝑅

𝑙
)) −

𝑙2

𝐿𝑎
(𝐒𝐕. 𝟑) 

 

With each variable representing the following: 𝑠𝑙 the spine reach length, in µm; L the total length, in 

µm; 𝜌𝑎 the axon length per unit of volume, in µm/µm3; N the number of connections per dendritic 

arbor; R the tree radius, in µm; a the persistence length, in µm; l the average path length from the 

soma to the branch tip, in µm. 

The value of the persistence length a is already provided as being approximately 4 µm, and 

of the spine reach length 𝑠𝑙 as 2 µm; N is shown to be approximate to L (Wen et al., 2009). To account 

for the spine density 𝑠𝑑, which we calculate from the total number of spines (Eq. SV.2), we introduced 

it by approximating 𝑁 ∼ 𝑠𝑑𝐿 (Gutin et al., 1993). The axon length per unit of volume 𝜌𝑎 is the only 

variable not provided, so we searched and came across the measured value of 8.15±0.19 µm of axons 

per µm3 for 4 months old mice (Calí et al., 2018). The only thing left to simplify was the first term of 

Eq. SV.3, the logarithm of a combinatorial. We used Stirling’s approximation to the logarithm of a 

factorial function: 

 

log 𝑛! ≃ 𝑛 log 𝑛 − 𝑛 + 𝒪 log 𝑛 (𝐒𝐕. 𝟒) 
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The last term of Eq. SV.4 can be removed, assuming it is negligible by the other terms. We 

can apply this relationship to the logarithm of a combinatorial (Mackay, 2003): 

 

log (
𝑀

𝑟
) = log

𝑀!

𝑟! (𝑀 − 𝑟)!
= log 𝑀! − log(𝑟! (𝑀 − 𝑟)!) ≃ 

≃ 𝑀 log 𝑀 − 𝑀 − 𝑟 log 𝑟 + 𝑟 − (𝑀 − 𝑟) log(𝑀 − 𝑟) + (𝑀 − 𝑟) = 

= 𝑀 log 𝑀 − 𝑟 log 𝑟 − (𝑀 − 𝑟) log(𝑀 − 𝑟) (𝐒𝐕. 𝟓) 

    

If we consider the binary entropy function: 

 

ℋ(𝑥) = 𝑥 log
1

𝑥
+ (1 − 𝑥) log

1

1 − 𝑥
(𝐒𝐕. 𝟔) 

 

By introducing the terms 𝑟 log 𝑀 − 𝑟 log 𝑀 to Eq. SV.5, we can restructure the equation and 

lastly simplify with Eq. SV.6: 

 

𝑀 log 𝑀 − 𝑟 log 𝑟 − (𝑀 − 𝑟) log(𝑀 − 𝑟) + 𝑟 log 𝑀 − 𝑟 log 𝑀 = 

 

= 𝑟 log 𝑀 − 𝑟 log 𝑟 + (𝑀 − 𝑟) log 𝑀 − (𝑀 − 𝑟) log(𝑀 − 𝑟) = 

 

= 𝑟 log
𝑀

𝑟
+ (𝑀 − 𝑟) log

𝑀

𝑀 − 𝑟
= 

 

= 𝑀 [
𝑟

𝑀
log

1
𝑟
𝑀

+ (1 −
𝑟

𝑀
) log

1

1 −
𝑟
𝑀

] = 

 

= 𝑀ℋ (
𝑟

𝑀
) (𝐒𝐕. 𝟕) 

 

By applying the relationship in Eq. SV.7 to Eq. SV.3, comes that 𝑀 = 𝑠𝑙𝐿𝜌𝑎 and 𝑟 = 𝑁 ≃

𝑠𝑑𝐿. Simplifying to 
𝑟

𝑀
= 𝑊, our final equation for connectivity repertoire S is given by: 

 

𝑆 = 𝑀ℋ(𝑊) +
𝐿

𝑎
(1 + log (1 −

𝑅

𝑙
)) −

𝑙2

𝐿𝑎
− 𝑠𝑙𝑠𝑑

𝐿2

𝑅2
(𝐒𝐕. 𝟖) 
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Signal integration efficiency 

 

Since we generated the signal integration efficiency through multi-compartmental models, 

we wanted to understand more about its behaviour in relation to other neuromorphological metrics. 

We were specifically interested to see if there was any relationship with total length, given we have a 

high dependency on our dataset, and it was the metric with the most significance sex difference 

(Section 1.3.3). To this end, we generated synthetic dendritic trees and explored the impact of neuron 

architecture in signal integration efficiency. These synthetic trees were obtained using the TREES 

Toolbox’s function clone_tree, as we previously explained in Section 2.2.2. . For each set of param-

eters, 3 clones of each sex were generated, making a total of 750 clones for analysis (375 males and 

375 females), which we then modelled to obtain the signal integration efficiency. 

To look for a relationship between signal integration efficiency and total length, we put to-

gether not only the data from the clones, but also from the original dataset, to make sure they were in 

accordance. There is a clear log-like relationship, where with a longer total length, the more efficient 

is the neuron, until reaching a plateau; after this, there is no improvement in efficiency with an in-

crease in length. Male and female neurons used in the study are also in agreement with this relation-

ship (Figure SV.2). 

 

 

 

Figure SV.2 - Evidence of log-like relationship between total length and signal integration efficiency in both clones 

and original dataset. Each dot is a neuron and the lines represent the log fit of each group, with respective equations on the 

right. Shaded areas represent the 95% confidence level interval for the fits. 

 

 

 

 



83 

We wondered if this log-like profile was because more inputs were given with the increase in 

length. This is because, as mentioned before (Section 2.2.2), all neurons had 8% of their spines being 

activated. With a longer total length comes a higher density of spines, and so 8% translates into more 

spines being activated than in a smaller neuron. Hence, longer neurons are receiving more input sig-

nals, which could explain why they generated an action potential faster, and thus were more efficient. 

It also makes sense to have a plateau, since neurons are known to reach a point of saturation where, 

no matter how many more inputs are given, the cell response will be the same. 

To determine if this was the case, we assessed the total number of spines of each dendritic 

tree (see above) and took 8% of that value, which is the number of inputs to the cell. Dividing it by 

the number of nodes of the tree and multiplying by 100, one gets the percentage of received inputs 

for said tree. Both the percentage of received inputs and signal integration efficiency are related to 

total length. Thus, to be able to assess if the increase in efficiency is due to an increase in percentage, 

signal integration efficiency needs to be normalized by total length. Hence, the dependency is re-

moved, and any conclusion found is not due to the influence of total length. No relationship whatso-

ever was found between the percentage of activated spines and signal integration efficiency normal-

ized by total length (Figure SV.3). Therefore, it is clear this link between total length and signal 

integration efficiency is present, and the log-like relationship is not due to more spines being activated. 

 

 

Figure SV.3 - Normalized signal integration efficiency has no relationship with the percentage of received inputs. 

This denies the possibility that the log-like relationship between total length and signal integration efficiency was because 

of the percentage of received inputs. Each dot represents a neuron, coloured by sex and dataset. 
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 We also assessed if there was any relationship between signal integration efficiency and the 

number of branch points. This is because this metric was also significantly different between sexes 

(Section 1.3.3), and is not directly related to dendritic size. Contrary to total length, we found no 

relationship between number of branch points and efficiency (Figure SV.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure SV.4 - Signal integration efficiency has no relationship with the number of branch points. Each dot represents 

a neuron, coloured by sex and dataset. 

 

Pareto front 

 

 When assessing the Pareto front from the values of synthetic trees, we used MATLAB’s 

Curve Fitting App. One of the issues with this method is how different surfaces can fit the points well, 

even if they have completely different behaviours. Our data points are one example of this issue, as a 

surface with f(x,y) with degree 3 for both x and y fits them as well as the surface we chose to work 

with. These two surfaces are almost opposites, as the latter behaves orthogonally to the z-axis (Figure 

2.10), whereas the former behaves orthogonally to the XY plane (Figure SV.5). Consequently, the 

euclidean distances estimated with each of them are also different. With this other surface, distances 

are much smaller (all below 0.10) and, in fact, they are significantly different in cluster 1 (Figure 

SV.6). Females of cluster 1 are significantly more optimal than males, a result we expected from 

analysing signal integration efficiency normalized by cost (Figure 2.9). However, this significant dif-

ference was not present in our considered surface (Table 2.3 and Figure 2.11). This discrepancy in 

results showcases the unreliability of the method, and stresses the importance of obtaining the Pareto 

front by minimizing and maximizing functions, and not by fitting surfaces. 
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Figure SV.5 - Euclidean distance of each neuron to a different Pareto front in the 3D space. The surface is determined 

by a polynomial function f(x,y) of degree 3 for both variables, obtained with the Curve Fitting App. Each coloured point 

represents a neuron, with the respective colour classifying it by sex and cluster. The lines represent the minimum euclidean 

distance between them and the surface. Connectivity repertoire, cost and signal integration efficiency were normalized to 

[0.1, 1.1], and so are adimensional. Neurons that are to the right and left of the surface are suboptimal, and the ones that are 

on the surface are optimal. Inlet: Close-up of the local peak of the surface, from a different angle (rotated in the direction 

of the arrow), to ease in visualization and 3D perception of the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure SV.6 - Euclidean distances to a different Pareto front uncover sex-dependent differences in cluster 1. Females 

of cluster 1 are significantly more optimal than males. Both female and male neurons of cluster 2 are also closer to optimality 

than neurons of cluster 1. Panels contain the boxplot and data points of each data subset. The title of the panels have the 

name of the subset and distribution used in the GLMM. The significance level of the test is shown on top of each panel: NS 

is not significant, * is p-value<0.05, ** is p-value<0.05 and *** is p-value<0.001. If it passes the threshold of significance, 

the p-value is also shown. 
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