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Resumo

Genes associados a doenças (GAD) tendem em agrupar-se em redes celulares definindo módulos na rede.
As observações indicam que estes módulos têm grande interação de proteína-proteína e partilham camin-
hos comuns. É importante identificar estes módulos de doenças, uma vez que poderá ajudar a desvendar
os mecanismos moleculares que fazem parte da doença, mas também descobrir novos genes alvos para
fármacos. Contudo, achar estes módulos não é fácil, uma vez que o conhecimento atual está em constante
progressão, o que leva a redes de doenças incompletas.
Medidas da teoria dos grafos podem caracterizar quantitativamente e comparar redes, os seus vértices
ou grupos de vértices. Utilizando estas medidas, alguns métodos foram desenvolvidos de modo a mel-
hor identificar os módulos de doenças nas redes. Um desses métodos é o Double Specific-Betweenness
(S2B), que prevê GADs partilhados com base nos genes que são achados frequentemente, e, especifica-
mente, nos caminhos mais curtos entre os módulos das duas doenças relacionadas. O S2B prevê genes
comuns entre doenças na sobreposição de ambos os módulos de doenças numa rede não dirigida usando
GAD conhecidos. Com isto, o método prevê que vértices presentes na rede têm mais probabilidade de
fazer parte de ambos os módulos. Este método difere de outros já existentes, porque prevê vértices que
estão associados simultaneamente a duas doenças, enquanto os outros métodos focam-se apenas em pri-
orização de proteínas, apenas para uma doença. A utilização de duas doenças simultaneamente é uma
vantagem, uma vez que é possível inferir mecanismos subjacentes a comorbidades em doenças ou iden-
tificar vértices, e/ou caminhos que não estavam previamente associados a comorbidade, dando assim a
possibilidade de tratar a doença ou sintoma em ambas em vez de atuar numa só.
Neste trabalho desenvolvemos variantes mais flexíveis do S2B para redes não dirigidas e dirigidas. Estas
variantes foram comparadas em três tipos de redes distintas e foram avaliados em termos de robustez e
estabilidade. Os resultados obtidos mostram que o S2B, em conjunto com as variantes que usam passeios
aleatórios (SRWR e SLB) são os métodos com melhor performance. Estes métodos têm uma melhor
performance na rede de sinalização não dirigida. Os resultados também demonstram que os métodos são
robustos a mudanças iniciais nas sementes (variação aleatória de sementes ou no número de sementes
usadas). O rácio do módulo de doença completo para o numero de sementes de input está correlacionado
com a performance do método. Resumindo, este trabalho providencia um guia compreensivo para a
aplicação de métodos de previsão da sobreposição com a máxima performance.

Palavras Chave: Biologia de Redes; Priotização de Genes de Doenças; Interações Proteína-Proteína;
Redes de sinalização
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Abstract

Disease associate genes (DGs) tend to cluster in cellular networks defining network modules. It has been
observed that these modules have many protein-protein interactions and share common pathways. It is
important to identify these disease modules, since it can help to unveil the molecular mechanisms that
contribute to disease, as well as discovering new candidate drug target genes. However, finding these
modules is not an easy task, and, as the current knowledge is still expanding, most known disease network
modules are incomplete.
Graph theory measures can quantitatively characterize and compare networks, their nodes or group of
nodes. Using these measures, some methods were developed to better identify network disease modules.
One method is the Double Specific-Betweenness (S2B), that predicts shared DGs based on the genes
that are found frequently and specifically in shortest paths between two related disease modules. S2B
predicts cross-disease genes in the overlap of both disease modules in an undirected graph using known
DGs. With this, the method predicts the nodes present in the graph that are most likely to be part of both
disease modules. This method differs from previously existing methods because it predicts nodes that
are simultaneously associated with two diseases, while other existing methods focus in protein prioriti-
zation only for one disease. Using two diseases at the same time is an advantage, since we can infer new
mechanisms underlying comorbid diseases or identify nodes and/or pathways that were not assigned to
a comorbidity before, giving the possibility to treat the disease or symptom for both of them instead of a
single one.
In this work we developed more more flexible S2B variants for undirected and directed networks. These
variants were compared in three distinct network types and were evaluated regarding robustness and sta-
bility. The obtained results show that S2B, together with variants using random walks (SRWR and SLB)
are the best performing methods. These methods perform better with an undirected signalling network.
Also, the results show that the methods are robust to changes in initial seeds (random variation of the
seeds or the number of seeds used), and to module connectivity. The ratio of complete module size to the
number of input seeds is correlated with method performance. In summary, this work provides a com-
prehensive guide for the application of module overlap prediction methods with maximal performance.

Keywords: Network Biology; Disease Genes Prioritization; Protein-Protein Interaction; Signalling
Network

V





Resumo Alargado

O aumento de estudos de associação genómica (GWAS), o desenvolvimento de novas tecnologias ómi-
cas e de um grande número de métodos de diagnóstico molecular, fazem com que, nos últimos anos,
a descoberta de novos genes associados a doenças esteja a aumentar. Toda a nova informação gerada
é importante para uma melhor compreensão das doenças humanas e também para o desenvolvimento
de novas terapias. Os genes associados a doenças (GAD) tendem a agrupar-se em redes biomolecu-
lares definindo módulos na rede. Os módulos conhecidos partilham um grande número de interações de
proteína-proteína e processos celulares associados. É importante identificar estes módulos de doenças
uma vez que poderão ajudar a desvendar os mecanismos moleculares que originam a doença, mas tam-
bém descobrir novos genes candidatos a alvos terapêuticos. Contudo, encontrar estes módulos a partir
de evidências experimentais é um processo demorado e dispendioso. O desenvolvimento de métodos
computacionais de previsão de GAD pode optimizar o processo de descoberta dos módulos de doença e
reduzir os custos associados. As redes biomoleculares são uma ferramenta útil para o estudo de doenças,
uma vez que conseguem representar as interações conhecidas, sendo os intervenientes (genes, RNAs,
proteínas, metabolitos) representados por vértices e as interações por arestas. A topologia da rede, ou
seja, como os vértices e as arestas estão organizadas na rede, podem ter padrões que se traduzem em
tipos de comportamentos no sistema que estamos a representar. Por isso, várias propriedades topológicas
são utilizadas para caracterizar os vértices na rede. Uma das propriedades topológicas mais utilizadas é
o grau de um vértice. Esta propriedade dá informação sobre quantas ligações tem o vértice. Um vértice
com um elevado grau tem influência em vários outros vértices. Outros tipos de medidas topológicas
também bastante utilizadas são os caminhos mais curtos que representam a sequência mais pequena de
arestas conectadas entre dois vértices, sendo um indicador de relação entre vértices.
A previsão de vértices associados a doenças neste tipo de sistema é bastante importante uma vez que
permite não só uma melhor compreensão das doenças, mas também a identificação de possíveis bio
marcadores e alvos para tratamento. É neste contexto que surge a medicina de redes, que integra o con-
hecimento acumulado sobre redes biomoleculares com os GAD conhecidos de modo a construir novos
modelos de redes, focando-se nos vértices mais importantes das doenças e nas suas interações. Há medi-
das que usam a topologia da rede para caracterizar quantitativamente ou comparar redes, os seus vértices
ou grupos de vértices. Utilizando estas medidas, alguns métodos foram desenvolvidos de modo a mel-
hor identificar os módulos de doenças em redes celulares. No entanto, a maioria destes métodos apenas
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utiliza uma doença de cada vez, ou utilizam dados independentes externos, tal como dados fenotípicos e
usam redes não dirigidas que não têm em conta a direção da propagação da interação.
Um método inovador que apenas utiliza a informação da rede e duas doenças que tenham semelhanças
fenotípicas é o Double Specific-Betweenness (S2B). O S2B prevê GAD associados às duas doenças que
são especificamente e frequentemente encontrados nos caminhos mais curtos entre as doenças. Ao prever
vértices associados a duas doenças, este método permite identificar novos caminhos na rede, ou vértices,
que não estavam diretamente ligados a ambas as patologias, possibilitando assim uma via de tratamento
que tenha efeito em ambas as doenças. Embora o S2B seja um método inovador, continua a não ter em
conta as redes dirigidas, usando apenas redes não dirigidas. Versões do S2B para redes dirigidas foram
elaboradas, no entanto, não foi explorado de um modo detalhado o seu desempenho. Tendo em conta as
limitações do S2B, estas serviram como motivação para esta dissertação. Um dos objetivos desta disser-
tação passa pela criação de variações do S2B, variações que usem outros tipos de medidas topológicas
para a previsão de vértices, tanto em redes dirigidas, como em não dirigidas e a comparação entre elas.
Para esta tarefa utilizou-se a base de dados DisGeNET para obtenção dos pares de doenças. Estes pares
de doenças foram categorizados de acordo com o número de vértices na rede, dando origem às categorias
A para pares com 200 a 400 vértices, B com 400 a 600 vértices, C de 600 a 800 vértices, D para 800 a
1000 vértices e E para mais de 1000 vértices. Para cada par foram identificados os vértices presentes na
sua intersecção. Os vértices identificados nesta fase correspondem aos verdadeiros positivos da análise.
A rede utilizada para ambas as formas de teste (dirigido e não dirigido) foi uma rede de sinalização com-
binada das bases de dados OmniPath e DoRohEA. Cinco variações do S2B foram desenvolvidas, Specific
Neighbors (SN), Specific Closeness (SC), Specific Random Walk Closeness (SRWC), Specific Random
Walk with Restart (SRWR) e Specific Lenght weighted Betweenness (SLB). Cada um destes métodos foi
aplicado aos vários pares de doenças e o seu desempenho foi avaliado tendo em conta a precisão e sensi-
bilidade. Os três melhores métodos da rede não dirigida foram adaptados em três versões distintas para
a versão dirigida. Uma versão que procura caminhos sem direção entre os módulos (V1), uma segunda
versão que procura caminhos bidirecionais que convergem na intersecção dos módulos (V2), e uma úl-
tima versão que procura caminhos bidirecionais que divergem da intersecção (V3). Os melhores métodos
na versão não dirigida foram S2B, SLB e SRWR conseguindo uma precisão mediana de mais de 80%
na classe E. Os resultados na rede dirigida foram bastante abaixo dos obtidos com a rede não dirigida,
conseguindo o método S2B_V1 uma mediana de 76% na classe E. Estes resultados indicam que este tipo
de métodos tem um melhor desempenho em redes não dirigidas.
Também foi avaliada a estabilidade e robustez dos métodos. Para isto, testou-se a variação do número
de vértices de input inicial, a selecção aleatória dos inputs iniciais, diferentes tamanhos dos módulos de
doenças e conectividade do módulo. Uma vez que foram obtidos melhores resultados com a rede não
dirigida, esta foi utilizada para estes testes. Foi criada uma classe assimétrica AE com um dos pares da
doença com 200 a 400 vértices na rede e outro par com mais de 1000. Os resultados de precisão nesta
nova classe foram intermédios às classes A e E. Foram também utilizados diferentes tamanhos de inputs
como 50, 100 e 150. Ao variar aleatoriamente as proteínas dos módulos usadas como input, o desvio
padrão da precisão alcançada foi entre 2% e 4% dos valores medianos, indicando que a variabilidade no
desempenho não é muito afetada pela selecção aleatória dos nós de input. Verificou-se se a conectividade
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inicial dos módulos de doença tinha correlação com a precisão do método. Este teste mostrou que estes
métodos não são significativamente afectados pela proximidade na rede entre os nós do mesmo módulo.
Por último, foi avaliado o desempenho dos métodos em três tipos de rede, rede de interação proteína –
proteína (APID), rede de sinalização (OmD) e uma rede composta (PCNET) que reúne vários tipos de
interacção. Os métodos S2B e SLB tiveram um bom desempenho entre todas as redes, no entanto a rede
com os melhores resultados foi a OmD. Isto sugere que a rede de sinalização seja mais informativa em
termos de mecanismos partilhados entre doenças.
Pela primeira vez o S2B e variantes foram testados com módulos de doença reais. Os resultados desta
dissertação mostram que estes métodos têm um melhor desempenho em redes não dirigidas, atingindo o
melhor desempenho na rede de sinalização testada e em doenças commais vértices na rede. Demonstrou-
se também a robustez dos métodos em relação ao diferente número de inputs, tamanhos de classes e
vértices adicionados. Estes resultados combinados demonstram que tanto o S2B como algumas das suas
variantes podem ser utilizadas para prever GAD conseguindo assim obter precisões médias a elevadas
em alguns cenários.
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Chapter 1

Introduction

This chapter serves as an introductory chapter summarizing the theory fundamentals of network theory,
while also presenting state of the art and objectives of this dissertation.

1.1 Theory Fundamentals

Systems biology tries to understand the behavior of diverse biological systems as whole entities, preserv-
ing the role of the interactions between system components [Ingalls, 2013].

The behavior of the system can be studied using different methodologies and approaches, one of them
is through the use of networks. Networks provide an insightful representation of interactions between
different components of biological systems [Newman, 2010; Liu et al., 2019, 2020]. These networks
reveal patterns and the structure of the networks gives us hints of what might influence the system or
how perturbations spread through the system [Newman, 2010]. The components of the networks are
represented by nodes (also referred as vertices) and their interactions represented by edges [Newman,
2010]. The edges can be directed , i.e. , having specific direction from one node to the other (A-B
different from B-A), or undirected (A-B equal to B-A) [Newman, 2010]. Edges and nodes can also
be characterized by quantitative weights, which may reflect the abundance of each node in the system
or the strength of each interaction. A network (referred as graph in the mathematical notation) can be
mathematically represented using an adjacency matrix. In a simple undirected network (Fig. 1.1a) (does
not have self-edges) the interaction between the vertices i and j is described in the matrix element Aij
by a binary that is 1 when there is interaction and by 0 when there is not (Fig.1.1b) [Newman, 2010].
Also in these types of networks the diagonal elements are zero and the matrix is symmetric (Aij = Aji)
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Chapter 1 Introduction

[Newman, 2010]. For simple directed networks the representation is still binary but it goes from j to i

and the resulting matrix is asymmetrical (Fig. 1.1c, 1.1d) [Newman, 2010].

A B

C D

Figure 1.1: Example of networks and adjacency matrices from [Newman, 2010] (A) Undirected network. (B)
Adjacency matrix of network A. (C) Directed network. (D) Adjacency matrix of network B.

An important topological proprieties of the nodes in the network is the degree, which describes the
number of edges connected to a node [Newman, 2010; Liu et al., 2020]. In undirected networks it is
obtained by the sum of rows or columns of the adjacency matrix (eq. 1.1).

ki =
n∑

j=1

Aij (1.1)

For directed networks there are two types of degree. Out-degree corresponds to the edges that diverge
from the node while the in-degree counts the edges that converge into the node. In the adjacency matrix
the out-degree is the sum of the row (eq. 1.2) and the in-degree the sum of the column (eq. 1.3) [Newman,
2010].

kjout =
n∑

i=1

Aij (1.2)

kiin =

n∑
j=1

Aij (1.3)

These proprieties are very important since it is themost direct measure to infer the importance or influence
of a node in the network, as nodes with high degree have the ability to influence more nodes [Newman,
2010]. Network metrics that try to capture the relative importance of each node are called centrality
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Chapter 1 Introduction

measures. As such, the degree is often referred as degree centrality. On directed networks, degree
centrality creates two types of important nodes, nodes with many neighbor nodes that flow into them
(nodes with an high in-degree, authorities) and nodes with an high out-degree (hubs) [Newman, 2010].

Nodes in a network communicate through paths, a sequence of connected vertices [Newman, 2010].
For directed networks, paths must follow edges with coherent directions: considering two nodes i and j,
the direction of the path is very important since the path from i to j might not be he same from j to i. A
Shortest path between two nodes is a path with the smallest possible number of edges that connects the
two nodes. The shortest path length is the number of edges that are part of the shortest path. It defines the
distance between two nodes in the network and is a basic measure of similarity or relatedness between
nodes. The complete network structure may be characterized by the average path length(< d >) that
represents the average of the shortest paths lengths between all pairs of nodes [Newman, 2010].

One special type of path is a random walk, which is basically a path generated by repeated steps (t),
initiating from a starting node and going from one node to the next by a process of random selection, where
each neighbor of the current node can be visited according to a certain probability (p) (kj) [Newman,
2010]. A general random walk in a undirected network can be described by (eq. 1.4).

pi(t) =
∑
j

Aij

kj
pj(t− 1) (1.4)

Building upon these basic concepts, a variety of measures and metrics have been developed that use infor-
mation from the network structure and try to quantify relevant aspects of the network topology. Network
topology represents how the nodes and edges are arranged [Liu et al., 2019, 2020]. Among these, close-
ness centrality and betweenness centrality are also very used [Newman, 2010].
Closeness centrality, specifies the mean distance from one node to all the other nodes in the network.
Nodes that present a low closeness centrality receive quickly the information from other nodes or effi-
ciently exert influence on them [Newman, 2010; Cáceres and Paccanaro, 2019; Liu et al., 2020].
On the other hand, betweenness centrality measures the frequency with which a node is part of shortest
paths between other nodes. An high betweenness indicates that the node might control the information
flow across the network. Removal of these nodes can cause a significant disruption of the communication
between other nodes [Newman, 2010; Liu et al., 2019].

1.2 Network Medicine

With the recent emergence of genome wide association studies, omic technologies and high throughput
molecular screening methods, the discovery of new genes related with diseases has increased [Dozmorov,
2018]. This information is important for the understanding of human diseases and for the development
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of new therapies [Dozmorov, 2018].

Disease associate genes (DGs) tend to cluster in cellular networks defining network modules [Goh
et al., 2007]. Known DGs of the same disease (a disease module) tend to have shared genomic variants, to
have protein-protein interactions and be involved in common pathways [Dozmorov, 2018]. It is important
to identify these disease modules, since it would help to unveil molecular mechanisms that lead to the
disease, as well as discovering new candidate genes. However, finding these modules is not easy, since
the current knowledge is still expanding, leading to incomplete disease network modules [Menche et al.,
2015].
In this context, NetworkMedicine has developed as a new scientific discipline that explores biomolecular
networks to understand disease etiology, identification of biomarkers and discovery of new drug targets
and therapeutic approaches [Sonawane et al., 2019]. Network medicine deeply relies on large data sets
to accurately build network models and subsequently perform new predictions [Sonawane et al., 2019].
The core of network medicine starts by the identification of the most important disease nodes and their
respective interactions [Sonawane et al., 2019].
A standard approach in this field is understanding human diseases from the perspective of the interactome.
This involves trying to figure out the origin of the perturbation in the network that leads to disease, search
for new drug repurposing candidates or propose new drug targets, all this using the network topology to
infer the relationship between disease genes [Sonawane et al., 2019].
For this purpose, some methodologies to unveil critic nodes associated with diseases were developed.

1.3 Gene Prioritization Algorithms

Using the measures referred on section 1.1, some algorithms were developed to better identify net-
work disease modules. Most of the known algorithms use only one disease at the time to predict new
genes/proteins associated with it. The DIseAse MOdule Detection (DIAMOnD) algorithm [Ghiassian
et al., 2015] identifies a full disease module associate from an input set of known disease proteins. DI-
AMOnD works by using the hypergeometric distribution with base on initial seed proteins (s0). Having
two proteins with the same degree (k), the one that has a highest number of links to the s0 (ks) will
retrieve the lowest p-value. The inverse is also true. In each interaction k and ks are assessed. After the
candidate proteins are ranked according to the k and then the ones with an highest ks are selected and
hypergeometric p-values are calculated. The candidate with the lowest p-value is merged with the seed
group. In this way the module grows up one protein element at each interaction, beginning from s0.

A different algorithm is theGLobal Approach forDIseaseAssociaTedmOdule Reconstruction (GLAD-
IATOR) [Silberberg et al., 2017]. This method tries to infer disease modules for multiple diseases simul-
taneously taking into account a gold-standard of phenotypic similarity between diseases. Similarly to
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DIAMOnD, this method also relies on initial seed proteins. It uses a simulated annealing approach to
find the set of connected disease modules with an overlap that best matches the known phenotypic simi-
larities.

Amore recent algorithm is the ChARting DIsease Gene AssociatioNs (Cardigan) [Cáceres and Pacca-
naro, 2019] that uses semi-supervised learning. Cardigan initiates by calculating the phenotypic similarity
between the query disease and other diseases. On the next step it gives a weight to each gene according
to which diseases it is associated. Maximum score is obtained if the gene is associated with the query
disease, but associations with other diseases also contribute with a score that is higher if the disease is
phenotipically similar with the query disease. The resulting scores are propagated over the network using
a semi-supervised method, leading to a final vector with the probability of being associated with the query
disease for every gene in the network.

DIAMOnD follows the most common approach that tries to predict new disease genes using a gene/
protein network and genes previously known to be associated with the query disease. GLADIATOR and
Cardigan attempt to improve performance through the borrowing of information from phenotypically
similar diseases. Thesemethods have to use additional independent data sources to compute the similarity
between diseases.

An unique method that approaches two diseases at the same time and relies only on the network
information is the Double Specific-Betweenness (S2B), that predicts shared DGs based on the genes
that are found frequently and specifically in shortest paths between DGs of two related diseases [Garcia-
Vaquero et al., 2018]. S2B predicts cross-disease genes in the overlap of both disease modules in an
undirected graph using genes known to be associated to either of the two diseases (or seeds). With this,
the method predicts nodes present in the graph that are most likely part of both disease modules [Garcia-
Vaquero et al., 2018].
This method differs from previously existing methods because it predicts nodes that are simultaneously
associated with two diseases [Garcia-Vaquero et al., 2018]. Using two diseases at the same time is an
advantage, since we can infer new mechanisms underlying co-morbid diseases or identify nodes and/or
pathways that were not assigned to a co-morbidity before, giving the possibility to treat the disease or
symptom for both of them instead of a single one.

S2B is computed from network shortest paths, which may neglect other short (but not shortest) paths
connecting two disease modules. This method is calculated according to equation 1.5. Where G is the
undirected graph, a and b are the seeds of disease A and B respectively, sp(k, i, j, G) is an indicator
function that equals 1 if the length of the shortest path between i and j includes k and t(i, j, G) is an
indicator function that equals to 1 if the length of the shortest path between i and j is equal or lower than
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the average shortest path length of G.

S2B(k,G, a, b) =

∑i∈a,i̸=j
i

∑j∈b,j ̸=k
j sp(k, i, j, G)× t(i, j, G)∑i∈a,i ̸=j

i

∑j∈b,j ̸=k
j t(i, j, G)

(1.5)

Additionally, an S2B version adapted to directed networks has been developed [Ramos et al., 2019]. Here,
the motivation was to better extract the knowledge encoded in signaling and transcriptional regulatory
networks through the correct use of interaction directions. However, its predictive performance has not
been completely evaluated. Particularly a comparison between undirected and directed S2B methods
using exactly the same network has not been performed. Both versions of S2B have been evaluated
through the use of simulated disease modules. Although this has the advantage of defining objectively all
predictions as true or false, there is a need to evaluate thesemethods using a validation with known disease
genes, as simulated modules may not accurately represent true disease modules. These S2B limitations
have been addressed in the present thesis, where we have developed variants of the S2B method, both
for undirected and directed networks, and evaluated their predictive performance with validation tests for
multiple disease pairs with known overlapping sets of disease genes.

1.4 Objectives

The goals of this dissertation are to:

• Develop more flexible S2B variants, both for directed and undirected networks;

• Compare directed and undirected methods applied with the same network;

• Evaluate the robustness and stability of the developed methods to variations in input seeds, module
size, module connectivity and network type.
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General Methods

This chapter presents the methodology used on the later chapters on this thesis.

2.1 Method Inputs: Networks And Gene-Disease Associations

The methods developed and evaluated in this work use networks as one of its inputs. Different biological
networks constitute different perspectives of a biological system. In particular, we were interested in
evaluating the impact of using directed networks on the performance of the methods. Therefore, we used
several sources of molecular interactions: (1) OmniPath: literature curated mammalian signaling path-
ways [Türei et al., 2016], (2) Discriminant Regulon Expression Analysis (DoRoThEA) [Garcia-Alonso
et al., 2018], (3) Agile Protein Interactomes DataServer (APID) [Alonso-Lopez et al., 2016; Alonso-
López et al., 2019], and (4) Parsimonious Composite Network (PCNet) [Huang et al., 2018]. OmniPath
is a collection of literature curated human and rodent signalling pathways. DoRothEA is a manually
curated database of human regulons, including estimates of single transcription factor (TF) activities in-
ferred from gene expression data, consensus TF-target DNA binding sites and ChIP-seq data. Not all
TF-target gene interactions are supported by the same amount and type of evidences. To express the
degree of quality of the supporting evidence, DoRothEA interactions have a confidence score that ranges
from A to E (A- most confident, E- less confident). In this work, it was chosen to use interactions with
scores from A (curated / high confidence) to C (medium confidence). Additionally, OmniPath (only
human interactions) was merged with DoRothEA as a unique network and will be referred as OmD. In-
teractions retrieved from both OmniPath and DoRothEA are directed. OmD was used both as a directed
and as an undirected network.
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APID is a compilation of protein interactomes based in the integration of known experimentally val-
idated protein-protein physical interactions. Protein-protein physical interactions are undirected. APID
also provides different quality levels according to the amount of evidence supporting each interaction. In
this work, the interactome used was of Quality Level 1, composed of interactions supported by at least 2
independent experimental assays for the Homo sapiens organism.

PCNET is a parsimonious composite network that is a result of the integration of twenty one distinct
networks. Each PCNET interaction needs to be present at least on two of the twenty one supporting
networks. Although some of the supporting networks are directed, PCNET is an undirected network.

The studied methods also use two lists of genes as inputs. Each list should contain genes associ-
ated associated with a disease. In this work, these lists were retrieved from DisGeNET [Pinero et al.,
2015; Piñero et al., 2016]. The DisGeNET database is a collection of information obtained from various
repositories of human gene-disease associations (GDAs) and variant-disease associations from various
repositories. All GDAs present in DisGeNet were used, independently of the types of evidences support-
ing each association. This maximized the size of the disease modules mapped on the different networks
used.

2.2 Selection of Disease Pairs for Method Validation

To evaluate the performance of the methods in an extensive way, we selected a large number of disease
pairs with overlapping network modules. In the selection process we controlled the module size of both
diseases and the relative size of the overlap. The selection workflow described bellow was repeated
for all the different networks used. First, the proteins from genes associated to diseases obtained from
DisGeNET were mapped to the network nodes to define disease modules. Only diseases that correspond
to the disease type ”Disease” were used (excluding the types ”Group” and ”Phenotype”). For diseases
that did not had a connected module, the minimum Steinner tree algorithm was used to create connected
disease modules. This algorithm finds the connected subnetwork with the minimum number of nodes
that contains all input nodes. To achieve this, it computes a minimum spanning tree [Prim, 1957] of an
auxiliary fully connected network with the input nodes, where each edge is weighted by the shortest path
length between the two nodes in the original network. Modules that had more than 30% of nodes added
by this process were excluded.

Next, modules were divided into size classes according to the number of nodes: class A, 200 to 400
nodes, class B, 400 to 600 nodes, class C, 600 to 800 nodes, class D, 800 to 1000 and class E more than
1000 nodes.
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Within each class, all disease pairs were screened to identify their overlap. Besides nodes in the
intersection between the two modules, nodes of one disease module that were direct neighbors of nodes
from the other disease module have been considered part of the overlap. Pairs of disease modules that
share up to 50% of nodes (relatively to the smaller module) were selected. Pairs of diseases where one
disease is from class A and other is from class E were similarly selected.

Finally, for each selected pair of diseasemodules, random samples of 50, 100 and 150 nodes from each
disease were generated. To evaluate the possible influence of the sampling stochasticity, five independent
random samples of size 100 were also generated for all disease pairs. The random sampling excluded
nodes that were part of the overlap or that were added by the Steiner tree algorithm. The random samples
of each pair of diseases were used as inputs to the methods under evaluation. The presence of the known
overlapping nodes in the top ranking nodes of each method was used to evaluate their performance (see
Performance Evaluation section 2.5).

2.3 S2B Variants

To the best of our knowledge, S2B [Garcia-Vaquero et al., 2018] is the only published method that ranks
network nodes by their likelihood of belonging simultaneously to two disease modules, using as inputs a
graph G and two sets of seed nodes (a and b). These sets should be part of two overlapping connected sub-
graphs A and B, respectively, which correspond to the network modules of two related diseases. Disease
modules are partially known, and the seed nodes are the presently known module members.

S2B is based on betweenness centrality, which depends on shortest paths. To study if these dependen-
cies could be limiting the performance of the method, we developed a set of alternative methods, using
the same inputs and producing a similar output. These S2B variants intend to cover different approaches
used in network based single-disease gene prioritisation methods, adapting them to the disease module
overlap problem. Each of the alternative methods is described in the following subsections.

2.3.1 SN - Specific Neighbors

SN follows an approach analogous to the DIAMoND method [Ghiassian et al., 2015]. It considers that
the best candidates to be part of the disease module are nodes which have a set of neighbors specifically
enriched in previously known module members. To evaluate this enrichment, it performs an hypergeo-
metric test, selecting the node with the lowest p-value as the best candidate. To adapt this approach to
the module overlap prediction, we perform two hypergeometric tests with the set of neighbors of each
candidate node, one for each of the two input seed sets (phyper_a and phyper_b). We then rank all the
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candidate nodes by the maximum of the two p-values. The nodes with the lower maximum p-value are
the best candidates, as they have low p-values for both input seed sets.

2.3.2 SC - Specific Closeness

SC is based on closeness centrality. General closeness centrality is the inverse of the average distance
of the node to all other nodes in the network, where distance is defined as the length of the shortest path
between two nodes. Instead of computing closeness for the whole network, we compute the inverse of the
average distance from the candidate node to each set of seed inputs separately. SC is the product of both
inverse average distances. High scoring nodes will have small distances to both input disease modules
simultaneously. This method is calculated according to equation 2.1 where a is the set of input seeds a
(associated with disease A), b is the set of input seeds b (associated with disease B) and dist(i, j) is the
length of the shortest path between nodes i and j.

SC(i) =
∥a∥∑

j∈a
dist(i, j)

× ∥b∥∑
j∈b

dist(i, j)
(2.1)

2.3.3 SRWC - Specific RandomWalk Closeness

SRWC is similar to SC, but the definition of distance between two nodes is based on short random walks
(instead of shortest path lengths). SRWC starts by calculating the probabilities with which each node is
reached by random walks starting in each input seed set with lengths from 1 to 5. These probabilities are
used to compute a weighted average of the length of random walks that reach the node starting from an
input seed set. Lower weighted averages will be obtained for nodes with higher probabilities for shorter
random walks. Multiplying the inverse of the average random walk lengths of both input sets produces
the SRWC score. The equation for this method is 2.2 where pRW (x, i, l) is the probability that a random
walk of length l, starting from a node of set x, reaches node i.

SRWC(i) =
1

5∑
l=1

l × pRW (a, i, l)×
5∑

l=1

l × pRW (b, i, l)

(2.2)
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2.3.4 SRWR - Specific RandomWalk with Restart

RandomWalk with Restart (RWR) is a successful algorithm applied to single disease gene prioritisation.
Given a set of initial nodes, it computes the stationary probability of a node being visited by a random-
walker. At each time step of the random walk, the walker may return to one of the initial nodes with a
probability defined by a parameter p. A high RWR stationary probability implies that the node is easily
reachable from the initial nodes by short paths. This also can be interpreted as a strong relationship
between that node and the initial node set, which is the rationale to select good candidates for disease
association (if the initial nodes are previously known disease associated genes). In the module overlap
prediction problem, we aim to identify nodes that have high RWR probabilities for the two sets of input
seeds (RWR_a andRWR_b). To quantify this aim, SRWR is the average of the two RWR probabilities
divided by the absolute value of their difference. The calculation of this method is performed by equation
2.3 where pRWR(x, i, p) is the probability that node i is visited by a random walk with restart, starting
from a node of set x and with restart probability p.

SRWR(i) =
pRWR(a, i, p) + pRWR(b, i, p)

2× |pRWR(a, i, p)− pRWR(b, i, p)|
(2.3)

2.3.5 SLB - Specific Length weighted Betweenness

SLB evaluates for each candidate node, the probability that it is part of a random-walk of length l that
connects a seed from set a to a seed from set b. This probability is evaluated for L values from 2 to 5. The
SLB score is a weighted sum of these probabilities, where higher L probabilities have smaller weights.
SLB is an attempt to generalize S2B, using short random walks instead of shortest paths. This method
is represented by equation 2.4 where pRWB(a, b, i, l) is the probability that a random walk of length l,
starting from a node of set a and ending in a node of set b, passes through node i.

SLB(i) =
5∑

l=1

pRWB(a, b, i, l)

l
(2.4)

2.4 Directed Network Variants

S2B has been previously adapted to directed networks [Ramos et al., 2019]. Paths in directed networks
have to be composed of edges with concordant directions, and consequently, a path from node i to node
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j cannot be a path that goes from node j to node i. The most straightforward version of directed S2B
(S2B_V1) computes specific betweenness by considering shortest paths that go from a seed in a to a seed
in b, but also shortest paths going form a seed in b to a seed in a. However, it is also interesting to find
nodes that are influenced simultaneously by both seed sets, or that influence both seed sets simultaneously.
These types of nodes are the aim of S2B_V2 and S2B_V3, respectively. S2B_V2 prioritizes nodes that
frequently connect both seed sets through converging short paths, while S2B_V3 favours nodes that
frequently connect both seed sets through divergent paths (Fig. 2.1). In this work we have developed
analogous adaptations of SRWR and SLB to directed networks. Only these two methods were adapted to
directed networks because they presented better predictive performances (together with S2B) when using
undirected networks.

A B C

Figure 2.1: Directed S2B versions from [Ramos, 2018]. (A) Version 1. (B) Version 2. (C) Version 3.

The equations to calculate the adaptations for SRWR are represented on equation 2.5 for version 1
where pRWR(x→ i+ i→ x, p) is the probability of node i being visited by a random walk with restart
starting from a node from set x plus the probability of a random walk with restart starting from node i
visits a node from set x and with a probability p.

SRWRv1(i) =
pRWR(a→ i+ i→ a, p) + pRWR(b→ i+ i→ b, p)

2× |pRWR(a→ i+ i→ a, p)− pRWR(b→ i+ i→ b, p)|
(2.5)

For version 2, the equation that calculates SRWR is 2.6 where pRWR(x → i, p) represents the
probability of node i being visited by a random walk with restart that started in node from set x with a
restart probability of p.

SRWRv2(i) =
pRWR(a→ i, p) + pRWR(b→ i, p)

2× |pRWR(a→ i, p)− pRWR(b→ i, p)|
(2.6)

Regarding version 3 the equation for SRWR is presented on equation 2.7 where pRWR(i→ x, p) is
the probability of a random walk to visit a node from set x starting in node i.
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SRWRv3(i) =
pRWR(i→ a, p) + pRWR(i→ b, p)

2× |pRWR(i→ a, p)− pRWR(i→ b, p)|
(2.7)

In adapted SLB version 1, equation 2.8 calculates this method where pRWB(a→ i→ b+ b→ i→
a, l) is probability that a random walk of length l starts in a node from set a passes by i to reach a node
of set b and also starts at a node from set b to a node from set a passing by i.

SLBv1(i) =
5∑

l=1

pRWB(a→ i→ b+ b→ i→ a, l)

l
(2.8)

Version 2 of SLB is described by equation 2.9 where pRWB(a → i ← b, l) is the probability of a
random walk of length l starting from a node from set a and another from set b, if it reaches node i.

SLBv2(i) =
5∑

l=1

pRWB(a→ i← b, l)

l
(2.9)

For the third version of SLB, in equation 2.10, pRWB(a← i→ b, l) describes the probability of a
random walk that starts in node i reach a node from bot sets of a and b.

SLBv3(i) =
5∑

l=1

pRWB(a← i→ b, l)

l
(2.10)

2.5 Performance Evaluation

All the evaluated methods produce a ranked list of nodes as an output. The higher the score (lower rank),
the higher is the likelihood that the node is part of the overlap between the two disease modules. The
sets of top 50, 100, 200, 300, 400 and 500 candidates (nodes with higher scores) were evaluated through

precision and recall metrics. These measures take into account the confusion matrix

[
Tp Fp

Fn Tn

]
.

In which Tp corresponds to true positives (nodes known to be part of the overlap and present in the set
of top candidates), Fp to false positives (nodes known to be out of the overlap and present in the set of
top candidates), Fn to false negatives (nodes known to be part of the overlap and absent in the set of top
candidates) and Tn to true negatives (nodes known to be out of the overlap and absent in the set of top
candidates).

Precision (P , eq. 2.11) indicates the fraction of relevant elements from all the retrieved by themethod.
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P =
Tp

Tp+ Fp
(2.11)

While recall (R, eq. 2.12) is the true positive rate, that is, the fraction of all relevant elements that are
retrieved by the method.

R =
Tp

Tp+ Fn
(2.12)

Figure 2.2 resumes the workflow presented in the analysis performed in this thesis.

Figure 2.2: Overhall worflow.
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Undirected versus Directed Network
Comparison

This chapter presents a performance comparison of S2B and variant methods in the undirected and di-
rected versions of a Human signaling/transcriptional regulatory network.

3.1 Introduction

Biological systems can be represented by networks. The information available to build these networks is
continuously expanding with the growing number of published studies using both low and high through-
put methods to discover molecular interactions. Besides the presence or absence of interactions between
two molecules, networks can encode more information through the use of weights (in the edges or in the
nodes) or through the definition of a direction for the edges. The specific directions of the interaction can
have a substantial impact on the network since it provides functional information [Newman, 2010; Pi-
raveenan et al., 2012]. Some biological networks do not have interaction direction (undirected networks)
such as physical protein-protein interaction, while others naturally have it (directed networks) such as
signaling and transcriptional regulatory networks [Newman, 2010; Piraveenan et al., 2012; Wang et al.,
2014].

One of the main focus of network medicine is the identification of relevant nodes associated with
diseases, with various methods being developed to retrieve this information (see [Liu et al., 2019] for
a review about different computational methods). Although directed networks are potentially more in-
formative, the majority of algorithms to predict new proteins or genes associated with diseases were
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developed for undirected networks [Vanunu et al., 2010; Ghiassian et al., 2015; Silberberg et al., 2017;
Cáceres and Paccanaro, 2019; Liu et al., 2019]. Directed networks can still be applied, as transforming
a directed network into an undirected is simply done by ignoring the directions of edges. However, this
approach might introduce some inconsistencies on the network structure [Newman, 2010].

Trying to adaptmethods for directed networks is a hard task, due to the high variability of the strategies
of existing algorithms. For example, they can be based on centrality measures, connectivity patterns
[Ghiassian et al., 2015] or random walks [Köhler et al., 2008]. If the method uses the degree centrality,
we have to consider two types of degrees, the in-degree, which is the number of edges pointing to the
node, and the out-degree, which is the number of edges exiting from the node [Newman, 2010]. The
distinction between these types of degrees are important according to the context. An high out-degree
value might be an indicator of a node that is an important regulator on the network [Piraveenan et al.,
2012]. For calculations depending on paths and their lengths in directed versions, the path from node A
to node B might not be the same path from node B to A. It is even possible that one of the inverse paths
might not exist at all [Newman, 2010], adding a layer of complexity that is not present on undirected
methods.

Despite these difficulties, exploring the extra information of edge directions can pay off. Wang and
collaborators [Wang et al., 2014] proposed a newmethod to predict important nodes on directed networks
using motifs and developed a complementary index score to infer node importance. This method per-
formed better than degree and other topological methods.
Exploratory analysis using S2B directed versions was done by Ramos and collaborators [Ramos, 2018;
Ramos et al., 2019], where three directed versions of this method were developed, one that search for
undirectional paths across disease modules, another searching for intermediate nodes receiving conver-
gent paths from both disease modules and a last one that searches for intermediate nodes with divergent
paths reaching both disease modules.

In this chapter we will test S2B and other variants, both with undirected and directed versions, using
the OmD directed network (signalling and transcriptional regulatory interactions retrieved from Om-
niPath and Dorothea). The aim is to find the best performing variants and to test if they achieve and
increased performance through the use of the directed version of OmD.

3.2 Workflow

In this section the procedures specifically used for this chapter are presented. Procedures not presented
here were performed as described in chapter 2. Information about the used network and formation of
disease classes pairs is present on subsection 3.2.1. Themethodology used for directed variants is referred
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on subsection 3.2.2. Finally, the used statistical test is reported on subsection 3.2.3.

3.2.1 Network

For this chapter we used the OmD network since it is a directed network. To avoid large computational
times, only 500 disease pairs were used to evaluate method performance using diseases from class A and
B. This number is sufficient to give a representative sampling of the methods performance with these
disease classes. The 500 disease pairs were randomly sampled form all possible pairs in each class. For
classes C, D and E sampling was not necessary due to the small number of possible disease pairs. The
number of disease pairs used for method evaluation from each class are presented on Table 3.1.

Table 3.1: Pairs of diseases per class used to perform the evaluations.

Network Class A Class B Class C Class D Class E
OmD 500 500 308 15 122

3.2.2 Directed S2B Variants

S2B and all the undirected variants presented in section 2.4 were evaluated using the undirected version
of the OmD network. The best performing methods were then adapted to directed networks. Similarly to
the directed versions of S2B, already developed by Ramos and collaborators [Ramos et al., 2019], each
of the remaining best performing methods originated three directed versions. Version 1 that searches
for shortest paths without defined direction between both diseases (S2B_V1, SLB_V1 and SRWR_V1),
version 2 that searches for convergent bi-directed paths starting from both disease modules (S2B_V2,
SLB_V2 and SRWR_V2) and version 3 that searches for divergent paths from the overlap (S2B_V3,
SLB_V3 and SRWR_V3).

See section 2.3 for implementation details.

3.2.3 Wilcoxon test

Wilcoxon signed-rank test is a non-parametric statistical test. Considering two paired samples of repeated
measurement, it tests if the null hypothesis of the samples arise from the same distribution [Wilcoxon,
1945]. The alternative hypothesis used was two-sided. In this case in each repeated measurement we
evaluate the performance of a different method (S2B or variant). A small p-value indicates that the
methods have statistically different performances.
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3.3 Results

3.3.1 Undirected versus Directed network

Since OmD is a signalling network, therefore, naturally a directed network, it was used for a method
validation test using the same pairs of diseases in the same network, but in two alternative scenarios:
considering or not considering the direction of the edges. Random samples of 100 representative nodes
of both disease modules were used has as input, while the known overlap of the complete modules was
used to evaluate the method’s predictions. Performance was assessed with precision and recall measure-
ments for different cutoffs including the top 50, 100, 200, 300, 400 and 500 candidate nodes retrieved by
eachmethod, for each disease pair and across all disease classes. As a control, the same performancemea-
surements were obtained for a random classifier (which generates a ranking of all nodes in the network
through a random permutation).

Using the undirected version of OmD, S2B, SLB and SRWR presented the predictions with best
precision performance in all classes and cutoffs (Fig. 3.1).
In Class A top 50, the methods S2B, SLB and SRWR had a median precision of 0.54, 0.6 and 0.58
respectively. The SC method had an average performance with 0.34. The remaining methods, SWRC
and SN had amedian of 0.1 and 0.14. The data emulating a random classifier used as control had a median
of 0 and a mean of 0.009. The best precision results were obtained in Class E top 50 where S2B had a
median of 0.82, SLB of 0.88 and SRWR had 0.86. In this class the random data had a median of 0.06
and a mean of 0.05. For the remaining classes, with exception of SN, the performance improves with
greater module sizes. In class A, all methods perform better than the random classifier, while in class E,
SN performs worse than the random control. As expected, precision decreases with less stringent cutoffs
for all methods, except for the random classifier. This tendency confirms that the proposed methods tend
to concentrate nodes that are part of the disease modules overlap in the top of their rankings.

To check if the methods are retrieving a significant fraction of all known overlap nodes we used the
recall metric. The higher values were obtained in class A top 500 with a median of 0.54 for S2B, 0.62
for SLB and 0.58 for SRWR (Fig. 3.2). Again, all methods perform better than the random classifier,
except for SN with the E class. Contrary to precision, recall increases with less stringent cutoffs, as a
larger number of candidates favours higher recall, even for the random classifier. All boxplots regarding
undirected precision and recall data are available on the supplementary data (Figures S1 and S2).

The best three methods in the undirected version were selected to be adapted to directed versions.
Compared with the undirected version the directed results regarding precision had a significant decrease
in performance. The best methods for this version were S2B_V1, SLB_V1 and SLB_V3 with a median
of 0.42, 0.34 and 0.42 for class A top 50 and a median of 0.76, 0.52 and 0.6 for class E top 50, respectively
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(Fig. 3.1).
Similarly with the methods behaviour from undirected tests, the methods had better performance with the
module size increment, except for all SRWR versions that start to decrease on class C and further (see
figures in appendix S2).

In terms of recall, the methods adapted to directed networks also show a lower performance when
compared with the respective undirected versions (Fig. 3.2).

A non-parametric Wilcoxon test was used to infer the differences among all three top methods on top
50 Class A and Class E precision and recall, for undirected and best directed version of each methods.
According to tables 3.2 and S1, which resumes all the statistical tests, the best methods of undirected
version (S2B, SLB and SRWR)when comparedwith each others present a significant p <0.001, indicating
that the methods are statistically different. The same methods when paired with their analogous best
directed version also lead to p <0.001 (except for S2B compared with S2B_V1 on Class E for precision,
where p is 0.041) indicating that the methods performances are statistically different. This statistical
results showed that S2B, SLB and SRWR are different from each other, and each one them is better that
their corresponding directed versions.

Table 3.2: Wilconxon test based on precision resume between pairs of methods.

Top 50 Class A Top 50 Class E
Method A Method B Median A Median B p-value Median A Median B p-value

S2B SLB 0.54 0.6 <0.001 0.82 0.88 <0.001
S2B SRWR 0.54 0.58 <0.001 0.82 0.86 <0.001
SLB SRWR 0.6 0.58 <0.001 0.88 0.86 0.041
S2B S2B_V1 0.54 0.42 <0.001 0.82 0.76 <0.001
SLB SLB_V3 0.6 0.42 <0.001 0.88 0.6 <0.001
SRWR SRWR_V1 0.58 0.12 <0.001 0.86 0.08 <0.001
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A B

C D

Figure 3.1: Methods precision distribution per tops on all versions. (A) Class A undirected version. (B) Class E
undirected version. (C) Class A directed version. (D) Class E directed version
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A B

C D

Figure 3.2: Methods recall distribution per tops on all versions. (A) Class A undirected version. (B) Class E
undirected version. (C) Class A directed version. (D) Class E directed version
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3.4 Discussion

The hypothesis explored on this chapter was that the use of directed networks, by encoding more in-
formation about the system, might lead to better predictive performance. Surprisingly, our results show
an opposite effect. In the comparison of undirected versus directed network methods, we obtain better
precision scores with the undirected versions. Since the methods compared (S2B, SLB and SRWR) are
based on shortest paths and random walks, when applied with directed networks, they depend on paths
with coherent directions. This requirement reduces the number of available paths to be explored by the
methods when comparing with the undirected network scenario. This might be the reason for the lower
performance in directed versions.

Although, the directed versions were not an improvement over the undirected ones, the three best
methods are still able to provide useful information about candidate overlap nodes . The best methods
on the directed version were S2B_V1, SLB_V1 and SLB_V3, being the first two, methods that search
for unidirectional paths connecting both disease modules (but the paths can go either from A to B or
from B to A). The last one searches for divergent paths from the overlap that reach both disease modules.
Ramos and collaborators [Ramos, 2018; Ramos et al., 2019] used artificial modules to test the directed
S2B’s versions and verified that these methods had the potential to prioritize nodes with specific roles
in the disease module, such as modifiers or causal nodes, since they capture the direction of cause-effect
relationships between nodes. SLB_V3 being one of the top methods can generate predictions enriched in
modifier genes. The fact that it performs bettermay suggest that thesemodifier genes are over-represented
in disease module overlaps.

An parallel result from this work is the comparison of S2B and its variant methods. Regarding the
undirected versions, the best methods were S2B, SLB and SRWR. These methods are robust since they
kept their superior performance across different cutoffs and module size classes, reaching a median pre-
cision greater than 80% on Class E. Among the three methods, SLB and SRWR are slightly better, both
in terms of precision and recall. The remaining methods had a poor performance compared with the
previous ones, although some, such as the SN approach, have been successfully applied to single disease
gene prioritization [Ghiassian et al., 2015].

Across all methods, there is a general trend of decrease in precision and increase in recall as the
module sizes increase. This trend maybe caused by the fact that we use a constant size for the input
seed sets for each disease, while the known disease module size is varying. The known overlaps of
bigger disease modules are also bigger. The greater abundance of positive nodes to classify favours
higher precisions and lower recalls. The application of the methods to disease pairs of class E is possibly
analogous to a situation were the present knowledge of both disease modules is only a small fraction
of the real disease modules. In this scenario, we expect that our best methods will have high precision
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but lower recall. On the other hand, our tests with class A pairs resembles the situation where the two
diseases under study are very well known, and the input seed sets cover a large fraction of the real disease
modules. In this scenario, we expect that our methods will have lower precision but higher recall.

Since S2B was the first method developed to predict nodes in the overlap between two disease mod-
ules, there are no available benchmark tests to directly compare our performance results. But for single
disease gene prioritizations, there are several reports available. In a recent benchmark study carried by
Picart-Armada and colleagues [Picart-Armada et al., 2019], evaluating various methods for disease target
prioritization, the method with better performance retrieved between 11.58 and 11.98 hits in the top 20,
corresponding to a precision between 0.579 and 0.599. Comparing this results with our methods using the
undirected version and diseases pairs from class A (which has lower precision), the best three methods,
for a top 20 candidate cutoff, have precision scores of 0.9 for S2B and 0.95 for SLB and SRWR. This
raises the possibility of using our overlap prediction methods to prioritize new single disease genes.

In conclusion, the best performing methods for the prediction of disease module overlap genes are
SLB and SRWR, closely followed by S2B, all of them applied to undirected networks.
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Chapter 4

Evaluation of method robustness

In chapter it is presented the evaluation of the robustness of performance of the methods.

4.1 Introduction

To completely evaluate a prediction method performance, besides the determination of precision and
recall measures, it is also necessary to evaluate how those measures are robust against variations in the
used inputs. These variations can be due to different data sources or random errors in data collection. To
use the developed methods with confidence it is important to ensure that the observed performance is not
only valid for a particular dataset or conditions.

To evaluate S2B and variant methods, random samples of known disease modules are used as input.
Some methods may be differently affected by changing the particular random sample that is used, or by
using a different number of seeds as inputs. The performance of these methods can also be influenced
by the characteristics of the disease modules being considered. In chapter 3 it was already observed that
methods performance increased when larger disease modules where tested. As referred in the discussion
section of chapter 3 (section 3.4), using larger modules with a constant seed set size is analogous to apply
themethods to a situation where only a small fraction of the complete disease module is known. However,
method performance was not evaluated when the two diseases used as inputs have significantly different
sizes. An additional module property that may influence the quality of predictions is the connectivity
among its members. This property can be quantified in diverse ways. Here, we consider that a module is
has a high connectivity if the relative number of nodes that one has to add to known disease associated
genes in order to get a connected subgraph is small. The evaluated methods assume that disease modules
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are composed of closely interacting disease associated genes, therefore it may be expected to reach higher
performances with disease modules of higher connectivity.

In this chapter we evaluate the robustness of the performance of S2B and variant methods to variations
in the referred input properties.

4.2 Workflow

The methodology used in this chapter is described below. Procedures not presented here were performed
as described in chapter 2. The methodology for the creation of heterogeneous class is explained in sub-
section 4.2.1. For the replicate runs the used procedures are described in subsection 4.2.2. Lastly in this
section, the connected disease modules are reported on subsection 4.2.3.

4.2.1 Variation of complete module sizes

The heterogeneous Class AE, was created by overlapping diseases with 200 to 400 nodes in the network
with diseases with more than 1000 nodes on the networks. So, for each disease pair one of the disease
modules is between 200 to 400 and the other disease has to have more than 1000. This new class has a
total of 666 disease pairs.

4.2.2 Variation of input seed sets

Besides the pairs of diseases with heterogeneous sizes, this chapter also used the same disease pairs used
in subsection 3.2.1. To evaluate the robustness of method performance to random changes in input seed
sets, five independent replicate samplings of 50, 100 or 150 seeds from each disease were used as inputs
for the evaluation of the different methods.

4.2.3 Variation of Disease Module connectivity

All the disease modules used in this work resulted from a minimal expansion of the original disease
associated gene sets through the minimum Steiner tree algorithm (see section section 2.2 of General
Methods chapter). The connectivity of a disease module was quantified as the number of nodes added by
the minimum Steiner tree expansion divided by the original number of disease associated genes.
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4.3 Results

Since in the previous chapter, the best results were obtained with undirected versions, in this chapter we
focus only on these versions, testing the robustness of their performance when several input properties
are varied.

4.3.1 Variation of complete module sizes

To understand if pairs with significantly different module sizes would influence performance, a new het-
erogeneous Class AE was created. This class uses pairs with a disease from Class A and other from Class
E. The resulting scores appear to be between the values of both original classes, with a precision of 0.62
for S2B, 0.72 for SLB and 0.68 for SRWR (top 50 candidates). As for the recall values S2B has 0.42,
SLB 0.5 and SRWR 0.46 (for top 500 candidates) (Fig. 4.1) The comparison with the use of disease
pairs of homogeneous size is presented in the representative 4.2, showing the precision values of the S2B
method for the different classes of input disease pairs. As previously discussed, as the number of input
seeds is kept constant, complete module size correlates with the lack of knowledge about a particular dis-
ease module. Therefore, these intermediate performances suggest that searching for the overlap between
diseases with different degrees of knowledge completion does not compromise the quality of the results
more than expected due to the use of a more deeply studied disease.

A B

Figure 4.1: Class AE metrics boxplots across the different methods and tops on the undirected version. (A) Preci-
sion. (B) Recall.
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Figure 4.2: S2B Precision values for the top candidates across size classes.

4.3.2 Variation of input seed sets

To further validate if the methods are robust relatively to random changes in the input seed sets, five
replicates for groups of 50, 100 and 150 initial seeds were performed.

The results show that the standard deviation of replicate precision values is relatively small across all
methods, tending to decrease with the number of initial seeds (Fig. 4.3). Considering a larger number
of top candidates as positives (predicted to be part of the overlap between the two disease modules) also
stabilizes the method performances. Among the best performing methods, SRWR is the more robust to
random changes in input seeds, followed by SLB and S2B.

4.3.3 Variation of disease module connectivity

To infer if the connectivity of the disease modules could influence the precision, a distribution of the aver-
age percentage of nodes added by the minimum Steiner tree was correlated with the respective precision
of method predictions for each disease pair.

The average percentage of added nodes ranged from 10 to 26 on Class A, 8 to 15 in Class B, 6 to 12 in
Class C, 6 to 7.5 in class D and finally 4 to 8 in Class E. These analysis were performed in the three best
methods S2B, SLB and SRWR of the undirected version. All plots are presented in the supplementary
materials (Figures S3, S4 and S5).

No strong correlation was observed. The average trend, evaluated through a linear regression adjusted
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A B

C

Figure 4.3: Standard variation of precision values obtained with independent random sampling of input seed sets
for disease pairs of class A.

to each scatter plot, generally presented low slope values, changing sign across different disease classes.
This suggests that, overall, there is no correlation between the disease module connectivity’s and the
resulting method precisions. This analysis may also assure us that the nodes introduced by the minimum
Steiner tree expansion are not significantly affecting the methods precision.

4.4 Discussion

In this chapter, S2B and variant methods were applied under varying scenarios. First, it was possible
to observe that applying these methods to disease modules of heterogeneous sizes does not introduce a
perturbation greater than expected by changing the module size of both diseases in the pair. The obtained
performances are between the ones expected for homogeneous pairs of both sizes. Considering that the
ratio between the complete module size and the number of seeds used as input is a measure of the degree
of knowledge about the disease, the evaluated methods can be applied to disease pairs with levels of
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knowledge (one that is very well studied with other that is not well characterized). The expected perfor-
mance should be higher than if two well studied diseases are used, but lower than if two understudied
diseases were being analysed.

Second, the variability in performance scores due to random variation in the input seeds was very low.
For the best methods (S2B, SLB, SRWR), the precision standard deviations were between 2% and 4% of
its values (evaluated with 50 top candidates, which have the higher standard deviations, and with class A
diseases, which have the lower precision scores). As expected, evaluating precision for a larger number
of top candidates or using a larger number of seeds as inputs decreased the variability of the estimates.

Finally, the connectivity of the disease modules had a negligible effect on the precision of the best
performing methods. These results show that by including new nodes in the disease modules with the
minimum Steiner tree method does not seem to include a bias in the analysis. In fact, a previous work
that tries to complete disease modules, uses a similar approach [Wang and Loscalzo, 2018]. They use
the Seed Connector Algorithm which tries to find modules using seed proteins by adding the minimum
possible extra nodes that are linked to a maximum number of nodes already in the module. They validated
this method with 70 diseases and were able to demonstrate that the added nodes had biological relevance
regarding their function when compared with their seed proteins.

In conclusion, S2B and variant methods have a robust performance, easily coping with noise in the
input seeds or with diverse disease module properties.
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Chapter 5

Comparison of methods performance
across different undirected networks

This chapter presents the comparison of the methods performance on three undirected networks: protein-
protein physical interaction network, on a signalling network and on a parsimonious composite network

5.1 Introduction

The origin and type of data used to build a network have a considerable impact on how informative that
network is. The input data might have bias on the type interactions or nodes, not covering all existing
and functional interactions that occur in biological systems.

In chapter 3, S2B and variant methods for the prediction of nodes in the overlap between two network
disease modules were evaluated. It was possible to observe that these methods have better performances
with an undirected version of a signalling network, which is originally directed. But there are multiple
undirected biological networks that can be used instead. Each different network may focus in a differ-
ent type of molecular interaction (physical interactions, co-expression, among others). Therefore, it is
relevant to ask if the performance of these methods is similar across distinct networks. Network size
and topology play a critical role for the efficiency of certain methods that predict genes associated with
diseases [Huang et al., 2018; Hwang et al., 2019]. Therefore, it is important to select a network that
represents biological systems as completely and accurately as possible, but that it is also adequate for the
methods being used.
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Huang and collaborators [Huang et al., 2018] developed a benchmark for the selection of molecular
networks for human disease research. In their work they tested twenty-one networks and they noticed that
larger networks achieve the best performance. They also developed an efficient parsimonious composite
network (PCNET) that requires that each interaction is present at least in two of the networks. HumanNet
v2 [Hwang et al., 2019] is another network developed to improve the predictive power of disease genes.
This network integrates interactions from four distinct types such as co-citation, interolog, functional
and protein-protein physical interactions. Both these networks were reported to have an equal or better
performance than Search Tool for Retrieval of Interacting Genes/Proteins (STRING), which is reported
as the best in recovering disease genes from the literature [Huang et al., 2018; Hwang et al., 2019].
STRING [Szklarczyk et al., 2019] is a well-known database that provides protein - protein interaction
information combining curated experimental evidence as well as predicted interactions, computing for
each interaction a confidence score according to the type of information supporting the interactions.
The methods studied in this thesis are also susceptible to be affected by the type of network used. To
assess to what degree their performance is affected, S2B and S2B variant methods where tested using a
signalling networks, protein-protein physical interaction and a composite network.

5.2 Workflow

This section covers the methodology used in this chapter. Subsection subsection 5.2.1 describes the used
networks and respective characteristics, while subsection 5.2.2 the process of disease mapping, class
creation and evaluation metrics.

5.2.1 Networks

The APID, OmD and PCNET networks were used to compare the performance of S2B and variant meth-
ods. These networks represent protein-protein physical interactions (PPI), signalling and a composite
networks respectively. PCNET is the biggest network with 2693109 interactions, followed by APID
with 135834 interactions and lastly OmD with less interactions of all covering 32442 interactions. Their
characteristics regarding number of nodes and edges are summarized on Table 5.1. Detailed information
about these networks is available on section 2.1.

5.2.2 Computational Workflow

Theworkflow performed in this chapter is defined in section 2.2. To directly compare the results obtained,
exactly the same disease pairs were used as inputs for the three networks. This has limited the number of
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Table 5.1: Network characteristics.

Network Nodes Edges Type
APID 15706 135834 Protein - Protein physical interaction
OmD 9228 32442 Signalling
PCNET 18820 2693109 Parsimonious Composite

disease pairs available, since each disease pair should comply with themodule and overlap size conditions
simultaneously in the three networks. Classes A, B and E had disease pairs common to the three networks.
But for the remaining classes C and D there were not common disease pairs in the three networks. For
these classes, disease pairs were created with all diseases mapped on that class size for each network
independently. The final numbers of disease pairs per class on each network used for this chapter are
shown on Table 5.2.
The outputs were subject to the performance evaluation metrics as described in section 2.5.

Table 5.2: Pairs of diseases per class used to perform the evaluations.

Network Class A Class B Class C Class D Class E
APID 213 116 207 185 112
OmD 213 116 308 15 122
PCNET 213 116 298 206 122

5.3 Results

To understand if the type of network has an impact on performance, S2B and variant methods were tested
using a protein-protein physical interaction (APID), signalling (OmD) and composite (PCNET) networks.
The predictions where evaluated in terms of precision (Fig.5.1) and recall (Fig.5.2). For both parameters,
the OmD network allowed the methods to achieve better performances. APID and PCNET produced
similarly lower performances, although PCNET showed more variable precisions (across disease pairs)
and higher recall values for disease pairs from class A.
Consistently for all networks, number of top candidates considered and module size classes, S2B and
SLB where among the best performing methods. SRWR showed also good performances for the APID
and OmD networks, but the quality of predictions decayed for PCNET, particularly for disease pairs of
class A. SC was close to the best performing methods for the APID and PCNET networks, but got worse
results with the OmD network. On the opposite end of the performance scale, SRWC has a poor perform-
ing method for all networks. SN was also a poor performing method, except for the PCNET network,
specially with diseases from class A. All networks shared the common trend of increasing precision and
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decreasing recall from class A to class E. All the remaining result for precision and recall for all classes
in the three networks are available on the supplementary results (Figure S6, S7 and S8)
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A B

C D

E F

Figure 5.1: Precision scores for class A and E in all networks. (A) APID class A. (B) APID class E. (C) OmD class
A. (D) OMD class E. (E) PCNET class A. (F) PCNET class E.
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A B

C D

E F

Figure 5.2: Recall scores for class A and E in all networks. (A) APID class A. (B) APID class E. (C) OmD class
A. (D) OMD class E. (E) PCNET class A. (F) PCNET class E.
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5.4 Discussion

Networks built from heterogeneous data sources are expected to offer a better basis for disease gene pre-
diction than a network built with a single data type. This effect has been observed in a large benchmark
comparing the capacity of different networks to recover disease associated genes through a network prop-
agation algorithm [Huang et al., 2018]. However, our results do not agree with these findings, as we have
observed better results with a signalling network than with a composite network integrating interactions
from several heterogeneous sources. This discrepancy may be explained by the difference between meth-
ods that try to expand the list of disease associated genes for a single disease and methods that search for
nodes in the overlap between two disease modules. In contrast with single disease methods, signalling
pathways may be significantly more informative for overlap prediction methods

The good performance of S2B and SLB across networks indicates that, even with different network
topologies, betweeness centrality is a powerful measure for gene prediction and can deliver medium to
medium-high precision scores, being a more generally applicable method, although with lower perfor-
mance on APID and PCNET. Although SLB does not consider shortest paths exclusively, it attributes
greater weight to shorter random walk paths connecting both disease modules, using a strategy that is
conceptually similar to betweenness. SLB is more flexible than S2B, by giving some score to nodes that
are not part of shortest paths, but nevertheless are part of short bridges between the two input disease
modules. This flexible strategy leads to slight but consistent performance improvements while using the
APID and OmD networks, but introduces misleading noise when PCNET is used. Through the inclusion
of different interaction types within the same network, pathways in the PCNET may not always reflect
functionally coherent pathways. The SC was also one of the best methods for APID and PCNET net-
works. Since this method is based on closeness it indicates that in these networks the target nodes present
on the overlap are well discriminated by lower network distances to both disease modules.

In PCNET one of the best methods was SN. Thismethod has performed poorly on the others networks.
Additionally, PCNET was the only network where the best three methods were not the same for the two
module size classes, being SN replaced with SLB in CLass E. This may suggest that when looking at
disease modules that are well covered by present knowledge, overlap nodes are enriched in interactions
with both disease modules simultaneously. This enrichment is not as evident for diseases with less well
studied disease modules. The inclusion of a broader set of interaction types in PCNET may also favour
the statistical detection of these interaction enrichments.

In summary, the developed methods seem to predict overlap disease genes more effectively with
the signaling network rather than with protein-protein interaction or with the composite network. This
suggests that signaling networks are more informative about the commonmechanisms shared by different
diseases.
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Chapter 6

General Discussion

Network medicine is a growing research field that can make important contributions to the develop-
ment of precision medicine and personalized drug treatments. With the increasing availability of high
throughput technologies and the resulting information rich datasets, it is necessary to developed tools
capable to efficiently extract useful knowledge from the accumulated observations. With this in mind,
new methods to predict disease related knowledge from biological networks were conceived in this dis-
sertation.

The S2B method was previously developed by the host research group. It aims to predict proteins in
the overlap between two disease network modules. Its performance was originally evaluated with artifi-
cial disease modules. The S2B method was also previously adapted to be applied with directed networks.
The work presented in this dissertation advances the referred previous work in several perspectives. First,
it develops novel methods to predict proteins in the overlap of disease modules, using strategies that are
similar to S2B but trying to score nodes in a more flexible manner (SLB and SRWR), or strategies that
have been applied in single disease gene prioritisation methods (SC, SRWC, SN). Second, it evaluates
the predictive performance of all these methods using real network disease modules instead of artificial
modules. Fractions of the known disease associated genes are used as inputs and the known overlap be-
tween the disease modules is used to evaluate and validate predictions. Third, directed and undirected
versions of the methods are evaluated using the same signalling network. This comparison allows the
objective assessment of the impact of using edge direction information, and the capacity of the directed
versions of the methods to capture that extra information layer. Fourth, the different methods are tested
in three distinct networks containing different types of interactions between genes and proteins. Finally,
the robustness of the prediction performance was evaluated relatively to input factors such as the size
of the complete modules, their original connectivity, random variation of selected input nodes and the
number of input nodes used.
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In chapter 3 we compared how the methods behave using the same network but using the edge di-
rections or using an undirected version of the network. The undirected version obtained the best results
achieving a median precision of 0.86 on Class E top 50 for the SRWR method. The results in this chap-
ter suggest that, although directed network are more informative, the requirement of direction coherent
paths linking both disease modules reduces the total number of paths used to score candidates. This lower
number may compromise the methods performance.

Both in chapter 4 and in chapter 3 it was clear that the factor with a greater impact on the methods
performance was the size of the modules. As the number of input seeds was constant, the effect of the
module size is related with how completely the disease module is known. Better results are obtained
when the ratio of input seeds to complete module is lower. On the other hand, chapter 4 shows that
prediction performances are quite stable to changes in module connectivity, number of input seeds or
random variations of the input seeds.

For the last chapter, chapter 5, three distinct undirected networks were tested to see in which one the
methods would perform better, one representing protein-protein physical interaction, other signalling and
the last one a parsimonious composite of various networks. The methods performed better on the OmD
network (signalling). It was also observed that some methods were better on some types of networks and
not in others (SC, SN and SRWR), while S2B and SLB achieve a good performance on all networks.

Overall it was demonstrated that S2B and some variants have a good performance on real disease
modules, particularly using an undirected version of a signalling network and studying diseases with
network modules that are not well covered by present knowledge.
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Future Prospects
The work presented in this dissertation achieved its main aims, developing new S2B variant methods
and evaluating their performance in multiple conditions. Nonetheless, some enhancements and supple-
mentary approaches might be pursued to improve our ability to predict proteins involved in two diseases
simultaneously.

One approachmay be usingmore informative networks. One example is the STRING network, which
is reported in some studies to achieve better performance in retrieving disease associated genes [Huang
et al., 2018; Hwang et al., 2019]. Alternatively, it is possible to adapt the methods to multiplex networks
with several layers. Each layer contains one type of interaction for the same genes or proteins and the
layers complement each other giving a more complete representation of the biological systems, which
may allow improved performance for our methods.

Confidence in the predictions would also increase if candidate nodes are validated in terms of func-
tional annotations, that should be coherent with the known molecular pathological mechanisms of dis-
eases under study. Further validation could be achieved by comparing predictions with independent
databases of gene disease associations, such as Open Targets [Carvalho-Silva et al., 2018], or applying
the methods with input seeds that were characterized up to a defined date, and evaluating the predictions
by comparing with genes associated with disease after such date.

Finally, after defining which are the best methods with the respective best networks, novel predictions
should be analyzed to expand our knowledge of diseasemolecular mechanisms, helping to explain disease
comorbidities or to find new opportunities for drug repurposing.
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Supplementary Results

To complete the results presented on 3.1 and 3.2 on chapter 3, figure S1 represents the remaining classes
used were the methods were used with the respective precision and recall for the undirected version and
figure S2 for the directed version. Table S1 shows the Wilcoxon results regarding the recall scores.
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Figure S1: Methods precision and recall distribution per tops on undirected version. (A) Class B. (B) Class C. (C)
Class D.
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Figure S2: Methods precision and recall distribution per tops on directed version. (A) Class B. (B) Class C. (C)
Class D.
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Table S1: Wilcoxon test on recall resume between pairs of methods.

Top 50 Class A Top 50 Class E
Method A Method B Median A Median B p-value Median A Median B p-value

S2B SLB 0.34 0.38 <0.001 0.08 0.08 <0.001
S2B SRWR 0.34 0.375 <0.001 0.078 0.08 <0.001
SLB SRWR 0.37 0.375 <0.001 0.08 0.08 0.031
S2B S2B_V1 0.34 0.25 <0.001 0.07 0.07 <0.001
SLB SLB_V3 0.38 0.27 <0.001 0.08 0.06 <0.001
SRWR SRWR_V1 0.375 0.08 <0.001 0.08 0.008 <0.001
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The following scatter plots represent the the average percentage of nodes added with respective pre-
cision of each disease pair in the three best methods, S2B (S3), SLB (S4) and SRWR (S5) as described
in subsection 4.3.3.
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Figure S3: Precision score per percentage of added nodes on all pairs of diseases in S2B top 50 . (A) Class A. (B)
Class B . (C) Class C. (D) Class D. (E) Class E.
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Figure S4: Precision score per percentage of added nodes on all pairs of diseases in SLB top 50. (A) Class A. (B)
Class B. (C) Class C. (D) Class D. (E) Class E.
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Figure S5: Precision score per percentage of added nodes on all pairs of diseases in SRWR top 50. (A) Class A.
(B) Class B. (C) Class C. (D) Class D. (E) Class E.
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This results shown the remaing precision and recall for the remaining classes for APID (S6), OmD
(S7) and PCNET (S8) as refered on the results of chapter 5.
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Figure S6: Methods precision and recall distribution per tops on APID. (A) Class B. (B) Class C. (C) Class D.
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Figure S7: Methods precision and recall distribution per tops on OmD. (A) Class B. (B) Class C. (C) Class D.
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Figure S8: Methods precision and recall distribution per tops on PCNET. (A) Class B. (B) Class C. (C) Class D.
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