
 Coventry University

MASTER OF PHILOSOPHY

The procedural generation of Vitruvian architecture

Noghani, Jeremy

Award date:
2015

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. May. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/the-procedural-generation-of-vitruvian-architecture(7a1e1a86-c5c2-465c-9567-0905ea75d211).html

The Procedural Generation of

Vitruvian Architecture

By

Jeremy Noghani

April 2015

A thesis submitted in partial fulfilment of the University’s

requirements for the Degree of Master of Philosophy in the

subject of Serious Games.

2

3

ABSTRACT

Can a single, cohesive framework be designed for the purpose of converting any set

of historical, architectural descriptions into a digitally modelled format?

To address and exemplify this question, this study provides a set of novel and

technical methods capable of converting a set of architectural writings – namely,

Vitruvius’ De Architectura – into an understandable set of procedural and

grammatical rules that could then be incorporated into an application, providing a

navigable digital model of a prototypical Roman city.

Different approaches were taken for the various elements of the generated city. A

weighted formula was designed for the purpose of citing a city location upon a

heightmap, incorporating factors like the distance to the nearest body of water and

the gradient of the land. Three methods of situating generic structures within a city

were proposed, including a probability distribution method that assigned buildings

to districted allotments with a flexible degree of randomness.

For the generation of the building architecture, a novel formal grammar syntax was

devised, capable of describing shapes in a deterministic and technical fashion. The

grammar made use of superscripts preceding symbols for the purpose of notating

conditional rules, and superscripts and subscripts following symbols for the purpose

of adding attributes to said symbols. In this way, architecture was described using

grammar rules in a way that would be impractical or outright impossible through

the use of traditional grammar syntax.

The results produced by the application were deemed to be reasonably accurate.

Slight discrepancies could be found between the architecture produced by the

application and the architecture described by Vitruvius, but this was attributed more

to the inaccuracies that arise from the transcription process than to errors caused by

the grammars themselves.

The formal grammar syntax devised for the purpose of describing architecture was

deemed to be effective for its purpose. Some cases of ambiguity and inconsistency

were acknowledged, and suggestions were made for future improvement, but the

syntax was largely considered to be suitable for its intended purpose of describing

historical architecture in a technical and legible manner.

4

ACKNOWLEDGEMENTS

I would like to thank my partner and my family for providing continued emotional

support and assistance throughout my entire academic journey at Coventry

University.

I would also like to thank my work colleague, Dr Eike Anderson, for providing

valuable input on the subject of historical accuracy, and for contributing his

knowledge to the VAST 2012 journal paper.

Finally, I would like to thank my supervisor, Dr Fotis Liarokapis, for providing

academic contributions towards the project at every stage, for offering constant

encouragement, and for demonstrating unwavering patience and understanding.

5

TABLE OF CONTENTS

Abstract .. 3

Acknowledgements .. 4

Table of Contents .. 5

List of Figures .. 7

List of Grammar Definitions ... 8

List of Tables ... 8

Glossary ... 8

1 Introduction ... 10

1.1 Introduction ... 10

1.2 Aims and Objectives .. 11

1.3 Assumptions and Limitations ... 12

1.4 Breakdown of the Thesis ... 13

2 Literature Review ... 16

2.1 Introduction ... 16

2.2 History of Procedural Generation .. 17

2.2.1 Fractals ... 17

2.2.2 L-Systems ... 19

2.2.3 Perlin Noise ... 20

2.2.4 Tile-based Systems ... 21

2.2.5 Voxels ... 21

2.3 Procedural Generation of Urban Environments .. 23

2.3.1 Photogrammetry ... 23

2.3.2 L-Systems ... 24

2.3.3 Geometric Primitives.. 25

2.3.4 Shape and split grammars ... 26

2.4 Comparison of Techniques ... 28

2.4.1 Realism ... 28

2.4.2 Efficiency .. 29

2.4.3 Limitations ... 29

6

2.4.4 Our Work ... 32

3 Implementation ... 34

3.1 Language and Graphics Library Decisions ... 34

3.2 Generation Engine .. 35

3.2.1 Siting Settlements ... 35

3.2.2 Outer Walls .. 41

3.2.3 Roads .. 43

3.2.4 Building Locations .. 44

3.2.5 Building Generation ... 48

3.3 Rendering Engine ... 67

3.3.1 Creating the DirectX City File ... 67

3.3.2 Lights, Camera, Skybox ... 71

4 Results .. 72

4.1 City Position .. 72

4.2 City Layout .. 76

4.3 Building Generation ... 79

4.4 Application Efficiency and Limitations ... 89

5 Conclusion and Evaluation ... 91

5.1 Conclusions ... 91

5.1.1 City Position .. 91

5.1.2 City Layout .. 92

5.1.3 Building Generation ... 94

5.1.4 Application Efficiency and Limitations ... 97

5.2 Discussion .. 97

5.2.1 First Objective ... 97

5.2.2 Second Objective ... 98

5.2.3 Third and Fourth Objectives ... 99

5.3 Project Limitations .. 100

5.4 Project Contributions ... 101

5.5 Future Work .. 102

6 Bibliography .. 103

7

7 Appendix ... 108

7.1 CityMain.cpp ... 109

7.2 BuildCity.cpp .. 123

7.3 XFilePart1.txt ... 144

7.4 XFilePart2.txt ... 147

LIST OF FIGURES

Figure 1: Progression of an iteratively-drawn Koch snowflake 17

Figure 2: Example of a fractal representation of the Mandelbrot set 18

Figure 3: Three trees that have been produced using L-systems 19

Figure 4: Examples of tile sets 21

Figure 5: An example of LiDAR data and an accompanying digital model 24

Figure 6: A screenshot of the CityEngine software 25

Figure 7: A rendering of the virtual Pompeii model 27

Figure 8: Vitruvian positioning rules applied to a city grid 45

Figure 9: Examples of three proposed methods of assigning building locations 48

Figure 10: Visual representation of Grammar Definition 1 49

Figure 11: A visual depiction of Grammar Definition 3 52

Figure 12: A visual depiction of each stage of the production rules 53

Figure 13: The relative proportions of a temple cella podium 56

Figure 14: The temple stairway and altar 57

Figure 15: The relative proportions of a temple cella doorway 58

Figure 16: Four potential levels of detail for a column 60

Figure 17: The three heightmaps 72

Figure 18: The four city siting methods upon the three heightmaps. 74

Figure 19: Three special renderings of a generated city 77

Figure 20: A top-down rendering of the city 78

Figure 21: An overhead, regular rendering of the city 78

Figure 22: Renderings of the Vitruvian temple 82

Figure 23: Renderings of an amphitheatre, a villa, and a governmental building 83

Figure 24: A compilation of Warren’s various technical diagrams 84

Figure 25: Photograph of Maison Carrée 85

Figure 26: Architectural illustration of Maison Carrée 85

Figure 27: Photograph of the Temple of Portunus 86

Figure 28: Architectural illustration of the Temple of Portunus 86

Figure 29: Overlay comparison of Warren’s drawings with the rendered output 88

file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271428
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271429
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271430
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271431
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271432
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271433
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271434
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271435
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271436
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271437
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271438
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271439
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271440
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271441
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271442
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271443
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271444
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271445
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271446
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271447
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271448
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271449
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271450
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271451
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271452
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271453
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271454
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271455
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271456

8

LIST OF GRAMMAR DEFINITIONS

Grammar Definition 1: Simple building 49

Grammar Definition 2: Simple building with conditions and attributes 50

Grammar Definition 3: Simple building with expanded attributes 51

Grammar Definition 4: Simple building with polygonal symbol 53

Grammar Definition 5: Roman Temple 61

Grammar Definition 6: Roman Forum 62

Grammar Definition 7: Theatre 63

Grammar Definition 8: Amphitheatre 64

Grammar Definition 9: Governmental Building 65

Grammar Definition 10: Villa 66

LIST OF TABLES

Table 1: The relative advantages of various city generation techniques 31

Table 2: Using a single mesh or multiple meshes within a DirectX application 69

Table 3: The coordinates of the centremost city points upon the three heightmaps 74

Table 4: The calculated level of dispersion for each heightmap 75

Table 5: The features and measurements of the various Vitruvian temples 87

Table 6: The measured building count, polygon count, and framerate 89

GLOSSARY

2D – Two Dimensional

3D – Three Dimensional

Araeostylos – A style of intercolumniation where columns are more than three

diameters apart.

Basilica – A Roman public court building, usually positioned adjacent to the forum.

Cella – The enclosed inner chamber of a temple.

file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272031
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272032
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272033
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272034
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272035
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272036

9

Centuriation – The Roman method of surveying the land and dividing it into a

regular grid.

Cloister – An open space, surrounded by covered galleries.

Colonia – A designation for a Roman city of particular importance.

Colonnade – A row of columns.

Corinthian order – One of the classical orders of Roman columns. Notable for its

ornate, leaf-adorned capital.

CR – City Radius.

De Architectura – “On Architecture” or “Ten Books on Architecture”. This is the

architectural manual written by Vitruvius.

DFC – Distance From city Centre. This is a measurement from a building’s

centrepoint to the designated city centrepoint.

Diastylos – A style of intercolumniation where columns are three diameters apart.

Doric order – One of the classical orders of Roman columns. Notable for its plain

capital, and its relatively thick diameter.

Eustylos – A style of intercolumniation where columns are two-and-a-quarter

diameters apart.

Forum – An open gathering space at the centre of a Roman city.

Insula – An apartment building or block.

Ionic order – One of the classical orders of Roman columns. Notable for the use of a

capital that features a volute, a spiral pattern.

Orchestra – The low floor of a theatre or amphitheatre, usually containing seats for

the senators and nobles.

Portico – The front porch of a building, usually featuring a colonnade.

Pycnostylos– A style of intercolumniation where columns are one-and-a-half

diameters apart.

Systylos– A style of intercolumniation where columns are two diameters apart.

Triclinium – The formal dining room of a Roman house.

10

1 INTRODUCTION

1.1 INTRODUCTION

Procedural generation, the algorithmic generation of digital content, is a subject of

increasing importance in the field of computer graphics. When a digital asset cannot

be reasonably created manually, either due to the asset’s complexity or due to a

limiting time factor, then procedural techniques are employed.

Urban environments are one type of content where this is often the case. When a

large number of varied building models are needed to fill a digital space, then shape

grammars, split grammars, or Lindenmayer Systems may be employed to instantly

fill the area with procedural content.

In the field of historical preservation, procedural techniques are often employed for

the purpose of digitally recreating artefacts and architecture. Incomplete information

retrieved from Photogrammetry and LiDAR data may require extrapolation via

procedural techniques to form a complete digital model. Additionally, if there are

not enough physical remains for a photogrammetric analysis, then models may be

created based upon the writings of modern archaeologists, or historians of the era.

There is therefore a need for a defined formal grammar that can be utilised for the

purpose of converting the guidelines and measurements laid out by historians into a

standardised, mathematical notation, which can then be readily modelled and

rendered procedurally by a program. There have been previous attempts in the field

of procedural generation to convert recorded historical data into shape grammars,

most notably by Mueller et al. (Mueller, et al., 2006) and by Yong et al. (Yong, et al.,

2012). However, the focus has typically remained on the underlying procedural

techniques themselves, rather than the formation and implementation of the shape

grammars.

Therefore, the purpose of this thesis is to document the process of converting

historical writing into descriptive formal grammars, and to then document the

process of rendering the grammars as digital models within a computer application.

The writings of Roman scholar Vitruvius are used to both test the system, and to

illustrate its results. In particular, the architectural manual known as De

Architectura, or Ten Books on Architecture, is the predominant focus of the study.

Throughout the thesis, we collectively refer to this assortment of grammars and

methodologies as a framework. We aim to design the framework with De

11

Architectura specifically in mind, but also pay consideration to the broader

possibilities of what may be required by a future user or developer of such a

framework.

With this context in mind, we attempt to address an overarching question: can a

single, cohesive framework be designed for the purpose of converting any set of

historical, architectural descriptions into a digitally modelled format?

1.2 AIMS AND OBJECTIVES

The primary aim of this research is to provide a novel method of adapting technical

descriptions of architecture into sets of grammatical rules and procedural techniques

for the purpose of procedurally generating digital models. The methods by which

these rule-sets can be implemented into a computer application, collectively labelled

as our framework, are to be explained in detail.

The secondary aim of the study is to create a historically accurate digital

representation of Vitruvian Greco-Roman architecture using the aforementioned

grammar framework. The completed digital model can then be rendered, navigated,

and measured in order to provide a testable analysis of the grammar rules’ technical

accuracy.

In order for these aims to be successfully fulfilled, a set of specific objectives must

first be described.

The first objective is to provide a set of procedural methods, functions, or techniques

that are capable of describing various details of an urban environment. These details

include the location and size of a city, the road structure, and the location of various

buildings within the city limits.

The second objective is to provide a method of defining the building architecture

itself, in the form of a formal, context-free grammar. There are several criteria that

the grammar must meet in order for the grammar to be considered suitable.

1. The grammar must be specific and precise.

2. The grammar must be flexible enough to encompass a wide variety of

architecture.

3. The grammar must be free of ambiguity in order to make certain that the

output results are deterministic.

4. The grammar ought to be comprehensible on a human level. This not only

ensures that architectural rules can be properly written in the first place, but

12

also ensures that the rules can be read, understood, and adapted by others if

needed.

The third objective is to use the constructed grammar framework to interpret the

various architectural instructions written by Vitruvius, or other Roman historians

and scholars where appropriate. Numerous pieces of Roman architecture must be

converted into grammar rule-sets in order to create an abstract mapping of a

prototypical Roman city.

The fourth objective is to describe the process of converting the procedural rules and

grammar framework into a digitally modelled city. This creates two desired pieces of

output: a digital city model file, and an encapsulating application that demonstrates

the modelled city in a navigable and intuitive fashion.

The success of the system is tested by comparing the modelled, rendered results with

technical drawings of Vitruvius’ rules, and with real-world examples of the applied

architecture. If the dimensions of the procedurally generated models and the

historical examples can be said to be reasonably similar, then the implemented

formal grammar can be described as historically accurate. If there are notable

differences between the rendered results and the selected examples, then an analysis

can be made of what caused the discrepancy.

Similarly, the chosen methods of siting a city and distributing the buildings can be

tested by drawing comparisons between the output results and comparable historical

measurements. In the instance of an inconsistency, a descriptive analysis can be

made to assess exactly what caused the model to deviate from the historical record.

To gauge whether the overarching research question has successfully been answered,

we must make an honest assessment of the extent to which the above aims and

objectives have been fulfilled. If the aims have been met, as evidenced by a complete

and cohesive framework, and by a functional model of a Vitruvian city, then it

would be reasonable to suggest that the underlying framework has been successfully

designed and implemented.

1.3 ASSUMPTIONS AND LIMITATIONS

It ought to be noted that the framework, the application, and the grammars

described within this thesis are not intended to be all-encompassing solutions to the

problems currently being faced in the field of procedural generation. To clarify this,

and to properly contextualize the thesis, we have created a list of assumptions and

limitations, detailing what lies inside and outside of the project’s scope.

13

1. The subject matter of this thesis is architecture and elements of digital city

models that directly pertain to architecture. Consequently, little attention is

paid to the procedural generation of natural features, grass textures, and

other superfluous elements of the landscape. Nonetheless, the procedural

generation of these features is referenced under section 2.2, History of

Procedural Generation, for the purpose of comprehensiveness.

2. We do not address the possibility of using intelligent agents to populate the

digital city model. Although interesting in its own right, such an inclusion

would not contribute to our outlined aims and objectives.

3. We examine previous contributions to the field of procedurally generated

architecture in section 2.3, and provide a further critical analysis in section

2.4, culminating with a direct comparison in Table 1. We made the effort to be

as thorough as possible, but we must acknowledge the possibility that a few

notable contributors to the field have been unintentionally excluded.

4. Particular sections of Vitruvius’ De Architectura are given limited attention,

or are not addressed at all within the context of this thesis. These instances

are denoted in their relevant sections throughout the thesis, but a further

elaboration of the missed content can be found under section 5.3, Project

Limitations.

5. The Implementation section of this thesis serves to document the process by

which Vitruvius’ rules are adapted into a digitally modelled format. Due to

the nature of the research question, many subsections under this header can

be read as both a methodology of our attempts to adapt a set of rules, and as

a demonstration of the results. This is particularly the case with section 3.2.5,

where defining the shape grammars of various structures functions as a

demonstration of the shape grammar’s success whilst still being just one stage

of the architecture digitization process.

1.4 BREAKDOWN OF THE THESIS

Chapter 2 illustrates the background, which has been split into several sub-sections.

The first section, History of Procedural Generation, covers the broad scope of

procedural techniques, from the early roots of Leibniz’s fractal-like shapes, to the

more modern applications. This paints a background of the context behind digital

city generation, and gives an overview of some of the procedural techniques that are

referenced throughout the project.

Section 2.3, Procedural Generation of Urban Environments, is a more in-depth

examination of some of the techniques that have been used for the creation of digital

14

cities. Particular attention has been given to attempts to procedurally recreate

historical architecture.

Section 2.4, the final part of the Literature Review, is a comparison of the techniques

covered under the aforementioned Procedural Generation of Urban Environments

subsection. The realism, efficiency, and limitations of each technique are discussed,

and current gaps in the field are highlighted and evaluated.

Chapter 3, the Implementation section, is a detailed and technical explanation of how

the procedural rules were devised, and how the proposed application was created.

Due to the broadness of the application, it has been split into multiple subsections.

Section 3.1, Language and Graphics Library Decisions, explains the technical

considerations that had to be made prior to the development of the application.

Reasons are given for the choice of programming language and graphical library.

Section 3.2, Generation Engine, explains the methods used to adapt the writings of

Vitruvius into procedural rules. Sections 3.2.1 through 3.2.4 systematically explain

the procedural methods employed to adapt the various aspects of a Vitruvian city

into digital form. Section 3.2.5 contains an account of the thought process behind the

development of our proposed novel shape grammar syntax for the procedural

generation of the historical architecture itself, followed by descriptions of our

attempts to convert several archetypical Vitruvian structures into this syntax.

Section 3.3, Rendering Engine, describes the process of developing the application

that encapsulated the procedural rules outlined in section 3.2. The steps taken to

produce a DirectX model file from raw vertex data are described, and a brief

explanation is given of the aesthetic and navigation development choices for the

application itself.

Chapter 4, Results, demonstrates the output of the application. Sets of specialised

renderings have been made in order to illustrate the various aspects of the project,

and where possible technical comparisons are made to architectural drawings or

real-life photographs.

Chapter 5, Conclusion and Evaluation, provides an overview of the observations,

conclusions, and analyses that can be drawn from the data and rendered images in

the Results section. We also offer a discussion of what has and has not been achieved

within the confines of the project, and the potential for future work is discussed.

The final chapter, the Appendix, provides several pieces of code that we consider to

be integral to the application. Section 7.1 contains CityMain.cpp, the “main” C++

code file that handled various aspects of the generation and rendering process.

Section 7.2 contains BuildCity.cpp, the implemented form of the building shape

15

grammars described in section 3.2.5. Sections XFilePart1.txt7.3 and 7.4 are two key

pieces of .X format code that are used in the creation of digital model files, as

explained in section 3.3.1.

16

2 LITERATURE REVIEW

2.1 INTRODUCTION

As technology has evolved over the past century, there has been an increasing desire

to push the boundaries of computer graphics, resulting in the production of

increasingly complex digital models and renderings. The expansion of the special

effects, film, videogame, and computer-aided design industries has contributed to a

rising demand for a high level of realism in the field of computer graphics, especially

with regard to three-dimensional (3D) digital models.

Traditionally, these digital models would be created manually, often programmed or

sculpted on a polygon-by-polygon basis. However, as the complexity of models has

increased, the scale of production grew proportionally. Consequently, the creation of

high-quality digital assets now requires the skills of a team of modelling artists,

texture artists, and animators. This is both costly and time-intensive, and as such

there is a high barrier of entry for new companies attempting to break into any

market that requires digital model assets.

Virtual buildings and cities are no exception to this problem. The creation of

modelled cities has been an important and challenging aspect of creative industries.

However, manual generation of large urban environments is time-consuming and

tedious work, due to the repetitive yet varied nature of buildings and street layouts

(Groenewegen, et al., 2009). As such, manually crafting a detailed replica of a city

may require hundreds of man-hours of work.

One solution to this artistic and economic barrier is the use of procedural modelling

techniques. In the past, procedural generation has been used for the purpose of

automating the production of textures (Rhoades, et al., 1992), for the creation of trees

and other self-similar structures (Oppenheimer, 1986), and for the creation of

heightmaps that can be rendered as landscapes. More recently, combinations of

procedural modelling techniques have been used for the purposes of creating

populated, dynamic digital worlds. For these reasons, procedural techniques are

often employed that make use of programmed rules to design aspects of cities

automatically. The purpose of a procedurally generated environment is vital to how

it is designed, and as a result the scope, detail, and interactivity of cities vary

between projects.

17

2.2 HISTORY OF PROCEDURAL GENERATION

2.2.1 FRACTALS

In the 17th century, mathematician Gottfried Leibniz documented his thoughts on

self-similar and recursive shapes, which he labelled “fractional exponents” (Trochet,

2009) (Mandelbrot, 1982) . Two centuries later, other scholars like Karl Weierstrass

and Georg Cantor extended Leibniz’s work by producing branching and self-similar

data sets that closely resemble what would later be classified as fractals (Trochet,

2009).

In 1904, dissatisfied with the abstract and “purely analytic” representations of

fractals produced by his predecessors, Swedish mathematician Helge von Koch

geometrically constructed a von Koch curve, and consequently the Koch snowflake

(Koch, 1904) (Addison, 1997). The Koch curve was significant for demonstrating that

non-tangential functions could be rendered using “elementary geometry”, which

helped bring together the geometric and analytic areas of mathematics that were

traditionally kept separate (Trochet, 2009).

In 1918, German mathematician Felix Hausdorff devised a key concept that extended

the previous definition of dimensions in the context of topology and set theory, His

work consequently led to the concept of fractal sets that exist in non-integer

dimensions (Hausdorff, 1972)

At the same time Haudorff came up with his concept, two French mathematicians,

Gaston Julia and Pierre Fatou, independently arrived at very similar results. They

both studied the mapping of complex numbers and iterative functions, which led to

the idea of attractors and repellors – points that attract and repel other points within

a dynamical system (Lesmoir-Gordon, et al., 2000). Due to the limitations in

technology, both Fatou and Julia could only produce what they could draw by hand.

In 1967, Benoit Mandelbrot wrote an essay, “How Long Is the Coast of Britain?

Statistical Self-Similarity and Fractional Dimension” (Mandelbrot, 1967). In this

Figure 1: Progression of an iteratively-drawn Koch snowflake

18

paper he linked the ideas proposed by previous mathematicians with the

measurements of coastlines, and proposed that the abstract concept of self-similar

shapes and more observable natural phenomenon like coastline lengths were not so

different.

However, it was not until later in the 20th century where the term ‘fractal’ was

coined by Mandelbrot. Using computer simulations, Mandelbrot managed to render

self-similar patterns in ways that were impossible for Fatou and Julia (Mandelbrot,

1982). By making use of the advances in graphics rendering technology, Mandelbrot

was able to produce visual representations of sets, which helped form his

Mandelbrot set and its accompanying fractal image. The fractal shape is created by

parsing a complex number through a formula, and changing the rendering output if

the result remains bounded .

The Mandelbrot set is self-similar when magnified up to a certain point. Tan Lie

proved it was “asymptotically similar to Julia sets near any point on its boundary”

(Lesmoir-Gordon, et al., 2000).

Today, nearly all fractal studies are all computer-based due to the complex nature of

the shapes involved (Pickover, 2009). The groundwork laid by fractal

mathematicians has proved to be of utmost importance in the field of computer

graphics and procedural generation.

Figure 2: Example of a fractal representation of the Mandelbrot set. (Wikimedia Commons)

19

2.2.2 L-SYSTEMS

In 1968, Biologist A. Lindenmayer devised the formal grammar known as L-systems

for the purpose of documenting the growth and interaction of cellular organisms,

such as bacteria and algae (Lindenmayer, 1968). The system functions by taking an

initial object, known as an axiom (ω), and recursively rewriting variable elements (V)

through the use of a set of rules, known as productions (P). This results in an

increasingly complex hierarchical structure.

If certain elements or symbols of an L-system are represented with graphical

substitutes, such as lines or polygons, then self-similar diagrams or models can be

created. Due to this capability, L-systems have found frequent use in the field of

computer graphics, where they are often employed for the purpose of generating

self-similar natural features, such as trees, rivers, or terrain (Prusinkiewicz &

LindenMayer, 1990). The hierarchal nature of L-systems makes them well suited to

organic features, which appear to grow increasingly complex as the level of detail is

increased (Lluch, et al., 2003).

L-systems have also been used for the creation of virtual roads (Parish & Muller,

2001). The self-similar, branching, interconnected nature of roads makes them

comparable to plants (Lynch, 1960), and consequently a lot of the same production

rules can be applied to both. However, aside from this exception, L-systems have

found limited application in the creation of man-made structures (Mueller, et al.,

2006).

Figure 3: Three trees that have been produced using L-systems. A modified dragon curve has been

used to define the spread of the branches. (Wikimedia Commons)

20

2.2.3 PERLIN NOISE

In 1982, Ken Perlin developed an algorithm capable of efficiently rendering semi-

random textures with a seemingly natural appearance. The algorithm, which has

since been named Perlin noise, was designed for the purpose of creating digital

assets for the film Tron, but has since found use in a variety of graphics and

modelling applications.

The algorithm works by generating a set of data points with randomly-assigned

values based upon a seeded number. New data points are then created between the

existing ones, and assigned interpolated values in order to create a smooth gradient.

When these values are plotted upon a two-dimensional plane, a blotched noise effect

is created. By repeating the algorithm at different levels of detail and merging the

results, a fractal-like pattern emerges. By utilising different kinds of interpolation,

and by placing weighted emphasis on different levels of detail, a range of effects can

be created (Perlin, 1985).

Perlin noise has found practical applications in the field of procedural generation for

the purpose of creating textures for clouds, landscapes, rocks and minerals, and

other self-similar natural features. It is also often used in order to generate

heightmaps for three-dimensional landscapes (Schpok, et al., 2003), and for the

creation of disturbed water surfaces.

Comparable techniques have been employed for the generation of similar natural

features. For example, midpoint displacement is an algorithm which alters the height

of a point on a line in a hierarchal fashion, creating mountain-like silhouettes

(Fournier, et al., 1982). When this is applied in two dimensions, such as through a

diamond-square algorithm (Miller, 1986), an image or model is produced that is

comparable to real-life terrain.

21

2.2.4 TILE-BASED SYSTEMS

In the commercial videogames industry, one of the most common methods of

designing, storing, and rendering digital environments is through the use of tiles. A

set of two-dimensional bitmap images is created by an artist. These images are then

duplicated and positioned on a larger two-dimensional plane, and the position of

each tile is recorded. In this way, a seemingly large bitmap can be generated from a

handful of small images and a two-dimensional array of data.

Massively multiplayer online roleplaying games (MMORPGs) frequently make use

of tile systems in conjunction with heightmap data and procedural techniques in

order to efficiently produce varied large-scale environments for players to explore.

By making use of probability distribution maps, the environments can be designed to

ensure that the terrain is realistic, and that the maps are playable.

2.2.5 VOXELS

Voxel structures are comparable to tile systems, in so much that they represent a

digital environment by reducing a complex scene down to a repeatable, uniform

grid. However where tile systems are traditionally represented as two-dimensional

(2D) bitmaps, voxels are represented on a 3D, volumetric grid. Voxels are distinct

from traditional 3D polygons in that the coordinates of each voxel node are not

recorded individually, but are instead determined from the node’s relative

placement in the voxel data set.

Figure 4: On the left is an example of a set of tiles designed for a two-dimensional game. On

the right is an example of a scene produced with the tiles. Note that the same tile can be used

repeatedly in order to minimise memory usage. (Opengameart.org)

aa0682
Typewritten Text
This image has been removed

22

Recently, voxels have been used for the purpose of rendering natural geography. The

primary advantage of voxels over traditional 2D height maps is that voxels are

capable of representing caves, overhanging structures, and other natural features

that would otherwise be difficult to represent (Cui, et al., 2011).

In conjunction with image data, voxels have been used for the purpose of creating

photorealistic reconstructions of scenery (Seitz & Dyer, 1997). By utilizing silhouette

and stereoscopic data from multiple cameras, voxels can also be used for the purpose

of recording and displaying human movements, as a form of motion-capture

(Cheung, et al., 2000).

Voxels are actively used in the field of medicine for the purpose of quickly rendering

three-dimensional sets of data. This includes the displaying of MRI data (Bullmore,

et al., 1999)

Recently, voxels have been of increased interest in the field of commercial

videogames, thanks in part to the success of the game Minecraft. The game made use

of voxels in conjunction with procedural techniques to create large, navigable

landscapes, often featuring natural geographical features and small urban structures.

23

2.3 PROCEDURAL GENERATION OF URBAN ENVIRONMENTS

2.3.1 PHOTOGRAMMETRY

To gather information on the local architecture and street layout, various methods

have been used in the past. LiDAR (Light Detection and Ranging) data is collected

by using devices capable of sending and receiving laser pulses, to receive an

approximate layout of an area in 3D. Laycock and Day, (Laycock & Day, 2003)

outlined a method of using LiDAR data to quickly map a set of buildings. The

authors also noted the flaws associated with this method, such as the inability to map

the structure of a building’s roof, but methods were proposed to automatically fill in

the missing areas.

Photogrammetry, the method of retrieving geometric data from an image, is also

used extensively. By utilising photographs taken at different angles, a textured

virtual model can be drawn without the need for a traditional 3D artist (Kim, et al.,

2000). This method has been explored and refined extensively, to the point that some

researchers can successfully map a series of photographs of buildings to virtual

models without the need for pre-planning (Pollefeys, et al., 2003).

R. G. Laycock et al. (Laycock, et al., 2008) later took these two methods a step further

by focusing on reconstructing historical sites. The authors detail how they made use

of LiDAR data and scanned town plans in order to automatically create digital

footprints of building positions and shapes, which then had high-detail

photographed textures applied. Where the data was missing, such as for roofs and

damaged buildings, the areas could be filled in either through the use of procedural

methods or through manual modelling. By repeating this process for both ancient

and modern architecture in the same locale, researchers managed to create a 4D

interactive program; the user could advance through time to watch how the

architecture within a city had progressed.

The latest work in the field of historical recreation attempts to make the results as

realistic as possible in order to make the user experience immersive. As a result,

much of the latest research is in the department of accurate light scattering

(Goncalves, et al., 2009) (Gutierrez, et al., 2008), and detail (Remondino, et al., 2009).

24

2.3.2 L-SYSTEMS

Muller and Parish (Parish & Muller, 2001) proposed a city generation program that

made use of self-sensitive L-systems to automatically lay out a set of streets and

generate virtual architecture. The encompassing application, CityEngine, was

notable for making use of a procedural method that was typically reserved for

natural phenomena, and successfully applying it to large-scale urban environments.

The application would start by taking a 2D height map, along with accompanying

data on the desired city’s vegetation, water boundaries, population density, road

design, and so on. Road generation was then accomplished by creating branching

paths that conformed to both “global goals” and “local constraints”. Global goals

would include steering the road system towards populous areas or away from

undesirable terrain. Local constraints involved the checking of nearby roads and

allotments to ensure that every new road section would be suitable within the

confines of the application; roads could be snapped together to form junctions, if two

road sections were to otherwise intersect or converge.

Buildings were generated by taking the allotments created during the road

generation stage, and forming 3D architecture based on the underlying “footprint”.

L-systems could be recursively applied to the building geometry, causing the model

to scale, translate, and subdivide, creating increasingly complex structures.

Figure 5: An urban area of Kyoto, Japan that has been mapped from airborne LiDAR data into a

digital model. (Susaki, 2013)

aa0682
Typewritten Text
This image has been removed

25

To add detail to building facades, each building face was split into a smaller grid, so

that textures could be layered and applied according to what would be appropriate

within each grid cell. The final system, CityEngine, was notable for being able to

design large urban areas from scratch whilst still allowing for a high level of user

customisation, including importing custom models and textures, or the writing of

user-designed L-systems.

2.3.3 GEOMETRIC PRIMITIVES

Greuter et al. described a set of methods that allowed for the procedural generation

of a ‘pseudo-infinite’ digital environment. The completed application, titled

Undiscovered City, was capable of generating architecture on-the-fly, and of being

navigated in real-time (Greuter, et al., 2003).

The application functioned by first laying out a uniform grid of roads, designed to be

representative of dense, planned urban cities like New York. The square blocks

between roads could then be allocated a hashed building seed, based upon the

block’s coordinates within the grid. The use of a hash function (i.e. taking the input

of the grid coordinates and assigning a separate, fixed-length output) ensured that

the assigned seeds would be random from the view of the user, but deterministic as

long as the hash value is known.

Figure 6: A screenshot of the CityEngine software. (Wikipedia.org)

aa0682
Typewritten Text
This image has been removed

26

With a building seed allocated, the geometry for each lot would then be generated.

The application determined the height, width, and style of the building from the

assigned seed. A floor plan would then be created by combining geometric

primitives. By extruding this combined shape upwards, a three dimensional building

section would be formed. A full building would then be generated by combining

multiple building sections, with the higher levels being composed of fewer

primitives than the lower levels.

To ensure that the application could be run in real-time, a specialised method of

geometry culling was implemented. The technique, referred to as View Frustum

Filling, functioned by only generating and rendering the buildings within the current

cone of view. Memory was only allocated as needed, and consequently the

application could efficiently and selectively render only what was needed of the

large urban area. Additionally, a caching system was implemented to allow

previously-generated geometry to be reallocated quickly, reducing the rendering

times significantly under particular circumstances.

2.3.4 SHAPE AND SPLIT GRAMMARS

Alexander et al. (Alexander, et al., 1977) proposed a set of patterns that accurately

described many types of structures, including buildings and road layouts. However,

due to the non-formalised nature of these patterns, the language has proven difficult

to transcribe directly into virtual environments.

George Stiny and James Gips devised a similar concept that they labelled as shape

grammars (Stiny, 1975) (Stiny, 1980). That is, a set of formal production rules that

specify how geometric shapes are created and transformed. The grammar is

comparable to L-systems, in that the system iteratively replaces elements in order to

form more complex and intricate patterns. However, whereas L-systems are

expressed in a language of symbols or letters, shape grammars involve the direct

manipulation of geometric primitives.

Shape grammars were successfully used in the analysis of modern and historical

architecture (Flemming, 1987) (Downing & Flemming, 1981), and were later used to

help define basic rules of how buildings could be generated in computer graphics.

Later, Wonka et al. (Wonka, et al., 2003) devised a variation on shape grammars for

use in the construction of building facades, which they named split grammars. They

proposed that, rather than assigning grammars on a per-object basis, a database of

grammar rules ought to be used. This would result in an increase in the variety of

27

possible facades that can be created and a reduction in the amount of memory

required, as well as allowing for the creation of large numbers of buildings in a

relatively short time.

The split grammars themselves function by starting with an initial element, and then

swapping shapes iteratively until a set of terminal shapes are displayed. The

resulting set of shapes is then repeated horizontally and vertically within a set of

parameters, creating an entire building façade. Contextual clues and control

grammars are utilised in order to create variation in a logical, architecturally-sound

manner, as well as to facilitate features like doorways.

More recently, shape grammars have been extended through the use of context-

sensitive shape rules (Mueller, et al., 2006). Building on Wonka’s previous work,

Mueller et al. devised a system whereby 3D primitives are scaled and rotated semi-

stochastically, and then assembled within a set bounded area. Occlusion query

testing and “snap lines” are used in order to test for the intersection of the shapes,

ensuring that building primitives fit together in a way that properly facilitates

repeating façade textures.

Mueller et al. demonstrated the success of split grammars and context-sensitive

shape rules with a procedurally-generated recreation of Pompeii (Muller, et al.,

2005).

Figure 7: A rendering of the virtual Pompeii model created through the use of split grammars

(Muller, et al., 2005).

aa0682
Typewritten Text
This image has been removed

28

2.4 COMPARISON OF TECHNIQUES

It ought to be noted that the procedural methods employed for the purpose of city

recreation and the methods employed for creating unique virtual cities from scratch

should not be directly compared, but judged individually according to their purpose.

City recreations are often created with historical accuracy as the explicit primary

purpose, even if this requires time-consuming manual alterations or a lack of

optimisation. By contrast, virtual architecture that is based on formal rules but not on

any particular existing structure may be generated with aesthetics or user experience

given precedence over architectural accuracy. Consequently, the criticisms and

observations made in this section of the literature review are not intended to

demonstrate one method’s superiority or deprecation, but to highlight the relative

differences between the demonstrated techniques.

2.4.1 REALISM

Laycock and Day, (Laycock & Day, 2003) noted that traditional methods of

constructing 3D urban models from aerial and street-level photographs produced

results that were fairly realistic, if impractical on large-scale projects. When 3D

models created from LiDAR data are combined with textures gathered from

accompanying photographs, the results are often considered to be close to

photorealistic.

Muller and Parish’s CityEngine makes effective use of L-Systems to generate a

variety of street layouts and buildings within a set of constraints (Parish & Muller,

2001). The application has been effectively used to recreate a variety of real-life

structures and urban environments, and in that respect the underlying techniques

can be considered a realistic method of procedural city generation.

The grid network employed by Greuter et al. (Greuter, et al., 2003) for use in the

Undiscovered City application cannot reasonably be considered realistic; the road

structure has been described as artificial and overly homogenous (Kelly & McCabe,

2006). Additionally, the pseudo-infinite nature of the cities, although impressive

from a technical standpoint, is not rooted in any real-world practicality. Nonetheless,

the buildings generated by the application are both varied and aesthetically

appealing.

Instant Architecture, the split grammar procedural city engine designed by Wonka et

al. (Wonka, et al., 2003), appears to be capable of producing buildings of a fairly

29

realistic and varied nature. Some building facades appear to be unnaturally uniform,

but more recent work with split grammars has attempted to address this issue.

2.4.2 EFFICIENCY

Traditional photogrammetric techniques cannot be considered efficient under any

capacity. Due to the specialised equipment and skills involved, the process of

digitally capturing architecture is often restricted to those in the relevant academic

fields. Additionally, the high level of detail associated with LiDAR scans often

results in models being unsuitable for real-time applications until optimisations have

been made.

Aside from the initial delay during the generation of a virtual city, Muller and

Parish’s CityEngine can be considered to be efficient. The application appears

capable of generating cities on a large scale without difficulty, and appropriate level-

of-detail checks are performed to ensure that the application remains useable even

when a large number of assets are required to be displayed simultaneously.

The Undiscovered City application is notably efficient. Through the implementation

of a culling technique known as View Frustum Filling, the authors have been able to

ensure that the virtual environment is capable of being generated and navigated with

relative speed on a range of delivery platforms (Greuter, et al., 2003).

Instant Architecture is reasonably efficient, and tests have shown that the application

is capable of creating dozens of buildings that conform to the split grammar

algorithms in seconds (Kelly & McCabe, 2006).

2.4.3 LIMITATIONS

Traditional methods of capturing model and texture data from LiDAR and

photograph imagery is typically regarded as an arduous process that is difficult to

apply to large-scale settings, such as for entire cities. Although recent efforts have

been made to make aerial and street-level imagery more readily-available, such as

through Google’s satellite and Street View images, errors can be made when

attempts are made to automatically map the data to a 3D model. The skill and time of

an artist is therefore often required in order to ensure that the final model is accurate.

30

Both CityEngine and Instant Architecture suffer from the issue of repeating textures

and models. Since the variety within the applications is dependent upon the

underlying algorithms – L-systems and split grammars for CityEngine and Instant

Architecture respectively – the generated cities are limited by the number and

complexity of the input algorithms and source files. If a particularly varied city is

required, then the work of an artist or seasoned program user is a necessity.

Similarly, the geometric primitive system underlying Undiscovered City is restricted

by the number of textures and the complexity of the implemented shape-combining

heuristic. Unlike CityEngine, Undiscovered City provides no immediately accessible

method of adjusting the building heuristic, and so the application is limited in its

versatility.

31

Generation technique Advantages Disadvantages

Photogrammetry When effectively setup and

applied, photogrammetry is

perhaps one of the most

accurate methods of mapping

real-life architecture into a

digital format.

Photogrammetric techniques

alone are often not enough for

generating cities when data is

missing; other procedural

techniques have to be

employed. If no physical data

is available at all, then the

potential for photogrammetry

is severely limited.

L-Systems L-Systems are effective at

producing dynamic, organic

road structures and building

layouts. The CityEngine

application is a versatile tool

with strong customisation

capabilities.

Since each building type

requires its own set of

production rules, a varied

CityEngine city can be time-

consuming to create. L-

Systems alone are of

questionable use for the

purpose of historical

recreation.

Geometric Primitives Buildings produced through

the use of combined

geometric primitives are

visually interesting and

varied. The Undiscovered

City application is notably

efficient, and is capable of

producing cities of a

particularly large size.

The buildings and roads that

can be produced through this

method are of questionable

realism. The customisation

options are restricted, and

consequently the application

has limited versatility.

Shape and split

grammars

Modern split grammar

techniques are capable of

producing architecture that is

realistic and varied. The

techniques have been

effectively used for the

purpose of digitally recreating

historic cities.

The realism and variety of

buildings produced with

shape and split grammars are

dependent upon the

complexity of the underlying

production rules. Split

grammar applications like

Instant Architecture require a

high level of expertise to be

effectively used.

Table 1: A simplified comparison of the relative advantages and disadvantages of various city generation

techniques.

32

2.4.4 OUR WORK

It would be simplistic to suggest that a single obvious gap remains unfilled in the

field of urban procedural generation. Over recent years, numerous projects have

been created to fulfil a variety of purposes, and many applications are malleable

enough to suit needs outside of their original intended purpose.

Nonetheless, there is a particular niche that we believe to be underrepresented in the

field: the adaptation of theoretical or written descriptions of historical architecture

into digital model format. Vitruvius’ De Architectura is one of the earliest and most

notable examples of architecture in this written, descriptive format.

Photogrammetric techniques, perhaps the most widely used methods of adapting

historical sites into digital geometry, remain unsuitable for the purpose of capturing

written descriptions of architecture. Photogrammetry and LiDAR can only be

effectively applied where some visual depiction of the architecture already exists. For

a work like De Architectura, photogrammetry could only be used to capture

comparative real-life examples of the described architecture. As demonstrated in

Table 1, capturing the digital models of the descriptions themselves would be

impossible through such methods.

The methods of combining geometric primitives, as exemplified in Greuter et al.’s

Undiscovered City application, are also unsuitable for use in the adaption of

architectural descriptions. These methods are well designed for the purpose of

producing a large number of buildings with architectural variations, but they lack

the precision and deterministic reliability necessary for the production of historical

structures.

Techniques that create geometry from rules and grammars, such as Muller and

Parish’s CityEngine and Wonka et al.’s Instant Architecture, have been proven to be

capable of describing historic architecture with some degree of success. It can be

argued that the L-Systems and split grammars that underlie the respective

applications are flexible enough to encompass a variety of scenarios, including the

purpose of adapting written descriptions of architecture.

However, procedural rules and grammars typically remain confined to the context

under which the original applications were made. If a particularly specific or

customised scenario is desired, then a large amount of time would have to be spent

deconstructing the application and repurposing it to suit the user’s needs. It may be

possible to construct a Vitruvian city using an application like CityEngine or Instant

Architecture, but whether such an act would be practical or feasible with the tools

presented by the authors is disputable.

33

We believe this to be an issue of specialisation. CityEngine has been designed to

replicate sprawling, semi-stochastic, modern cityscapes, and the focus of Instant

Architecture lies with producing variations from pre-established facades and

architectural shapes. Neither was designed with the digital transcription of

descriptive rules in mind.

Therefore, a relatively unexplored research gap exists: there is a lack of a framework

that facilitates the simple adaption of historic writings into viewable, navigable

digital models. Such a framework would be of particular use in the field of historic

recreation for the purpose of creating digital replicas of historic structures that do not

exist in any physical format. A Vitruvian city would be one such example of this;

although Vitruvian-inspired cities exist in the real world, there are none that

unwaveringly conform to every rule laid out by Vitruvius himself.

We do not propose to fill this research gap with an all-encompassing application, but

we do aim to describe the implementation process for such a framework, to

document and analyse the results produced by the project, and to note any issues

encountered in the development process.

34

3 IMPLEMENTATION

3.1 LANGUAGE AND GRAPHICS LIBRARY DECISIONS

It was quickly decided in the planning process to use a low-level graphics library,

such as OpenGL or Direct3D, rather than a higher level game engine, such as Unreal

or Unity. This decision was based on the fact that the proposed application would

require a large number of primitive shapes to be drawn, and so access to low-level

drawing calls was deemed a necessity. Although a fully featured game engine lends

itself well to rapid prototyping in many respects, the inclusion of extraneous features

such as AI, animation, and audio support would only serve to bloat the application

and hinder development.

A decision therefore had to be between the two most notable graphics libraries,

OpenGL and Direct3D. Although other low-level graphics libraries exist, such as

AMD’s Mantle and 3dfx’s Glide, OpenGL and Direct3D are considered to be the

industry standard for use in games development and graphics rendering.

Consequently, the libraries are very well documented, frequently updated, and

highly capable.

OpenGL 2.1 was initially chosen for use in this project due to its cross-platform

capabilities and the open nature of its license. However, problems were encountered

during the programming of the application, and the switch was made to DirectX 9.0.

DirectX does not contain any features that make it better suited to procedural

generation, but in our scenario it did allow for a swifter development time, simply

due to the nature of the documentation and the design of the rendering workflow.

C++ was chosen as the programming language to be used in the development of the

engine. There were several reasons for this.

1. C++ is immediately compatible with both DirectX 9 and OpenGL; no time

would be wasted on searching for and implementing wrapping libraries.

2. C++ is considered to be the industry standard for many comparable games

and simulation applications. This ensures that the final application will be

portable and sharable.

3. C++ is a versatile and powerful language that is well-suited to tasks like

procedural generation and graphics rendering. Direct access to memory

management ensures that RAM and CPU usage can be closely monitored.

35

3.2 GENERATION ENGINE

3.2.1 SITING SETTLEMENTS

The first asset to be generated in the project was the terrain that the urban structures

could rest upon. The process of generating the terrain was straightforward, and

comparable to the methods employed to generate terrain by Musgrave et al.

(Musgrave, et al., 1989) or Ken Perlin himself (Perlin, 1985).

A 256 by 256 pixel Perlin noise image was generated in image editing software

GIMP. The image was then used as a heightmap; rendered geometry was created by

systematically drawing polygons for each pixel on the noise image, at heights

corresponding to the darkness of the current pixel. A simple grass texture was

assigned for the purpose of aesthetics and clarity, and an arbitrary waterline was

assigned to create unbuildable and unnavigable areas of the heightmap.

The scale of the heightmap must be considered at this stage. For the purpose of our

framework, we decided upon a scale of one pixel representing one hundred squared

meters of tangible land. A single landscape would therefore measure 2560 meters on

all four sides, and have a total area of 6.5536 square kilometres. Despite this, we still

made calculations on a per-pixel basis. A single heightmap would have 65536 pixel-

sized “points”, each immediately adjacent to four “neighbouring points”, that could

be directly measured.

With these considerations made, a point must be chosen upon which to place the

virtual settlement. A starting point could be decided by randomly selecting points

until a free place is found, but this could result in cities positioned somewhat

unrealistically, crudely, and possibly unbelievably in relation to the surrounding

landscape. Instead, a more systematic approach must be taken. Three methods were

proposed.

3.2.1.1 Method 1: Centremost Point Selection

The simplest solution would be to select the centremost point of the map. This would

allow for a large potential city size, without fear of reaching the map’s border. If the

centremost point is unusable (i.e. the gradient of the terrain is too steep, or it is in a

body of water), then a neighbouring point ought to be chosen. If this too is

unavailable, then the check can be performed in an outwards spiral, until an

36

available point is found. There are many ways of performing this check, but a quick

and crude method can be created through the use of two incrementing variables.

Check whether point (X midpoint, Y midpoint) is available

Else, until an available point is found:

{

Increase Degrees by 1.

Increase Distance by 1.

Check whether point [Distance*sin(Degrees) ,

Distance*cos(Degrees)] is available.

}

Although simple to implement, a clear issue with this method is that it is unrealistic.

Assuming that the heightmap is randomly generated to some extent, it is unlikely

that a potential Roman settler would choose the centremost point to start

construction, as there is no geographical reason for choosing this location. This may

be particularly noticeable if a city is generated far from a river, coast, or hilltop, as

these are features that both Vitruvius and Roman settlers considered to be of great

importance (Vitruvius I, 4)

3.2.1.2 Method 2: Factor Formula

An alternative proposed solution is a formula that can be called upon for each point

of the map at the start of a program in order to determine where the “ideal point” for

a city centre would be. Determining where an “ideal” position would be is somewhat

Figure 8: A mock-up example of the centremost point selection. The algorithm spirals outward

until an available building point is found.

37

subjective, but by selecting key factors that are used in the decision-making process

of siting an urban area in real life, we are able to make a fairly accurate assessment

within the program.

There are a vast number of factors that are taken into account when choosing a site

for an urban area, both in historical and modern contexts. However, it would be

inefficient to incorporate factors that lie outside the scope of the generated

heightmap. For example, Vitruvius recommended that a city should not be built

downwind of a stagnant marsh (Vitruvius I, 4, 6), but no data on marshlands or wind

direction exists in the heightmap. We did not consider the addition of such factors to

be a practical use of time within the parameters of the project, and so these minor

elements had to be excluded so that the more important factors could be

implemented.

A key factor, both in modern and historical contexts, is the height of the land.

Building at the lowest point of a valley is commonly seen as poor practise by urban

planners, due to the increased vulnerability to natural disasters. Additionally,

historical towns are frequently sited upon hills, as the height provides a natural

advantage over potential invaders. The height of the current point being calculated

(H) must therefore be incorporated into the formula.

As an extension of this, the gradient of the slope the point rests on (G) must be

considered. If a point is particularly high, but rests on a steep slope (i.e. the point is

on the tip of a mountain), then it is safe to assume that the land would be somewhat

difficult to build on. For the sake of calculations, the gradient ought to be calculated

as a scalar field, where 0 would denote a flat surface, and 1 would denote a 45 degree

slope.

The distance to the nearest body of water (either a river, lake, or sea) is also a key

factor (Vitruvius I, 7). In historical cities, having immediate access to fresh water

from rivers would often be seen as a necessity, and having access to the coast would

provide potential for trade. Access to fresh water is seen as less of a necessity in

modern cities due to technological advances in water filtering and transport, but

access to the coast is still seen as beneficial when possible, again due to the increased

potential for foreign trade. Therefore, the distance to the nearest body of water (Wd)

must also be incorporated into the formula.

Another vital factor is the distance to the nearest road. In both historical and modern

contexts, it is unusual for a city to be created in an isolated spot, with no form of road

access to nearby urban areas. It is far more likely for a new settlement to be

positioned upon an existing road, as this provides easier access for construction and

trade. Therefore, the distance to the nearest road (Rd) must also be considered. If no

road exists on the map, then this value must default at 0.

38

The distance from the centre of the map (Cd) must also be considered. Unlike the

other factors that were included for the sake of historical accuracy, this factor was

added for purpose of keeping the sited location practical and sensible within the

context of the application. A city sited on the edge of the heightmap may be

aesthetically unpleasing, limited in its utility, or in a worst case scenario, unusable

due to graphical glitches. By favouring central map locations, application-specific

problems can be avoided.

One final factor that must be considered is the maximum height of the map (MH).

The sole purpose of this factor is to give the point height (H) relativity. If a map is

generated between 1000 and 1020 meters above sea level, for example, then the other

factors would immediately become irrelevant due to the large numbers being used.

However, by incorporating a relative measurement, the height factor can be scaled

down to a practical level.

Using all these factors, a simple formula can be derived where the Point Value (PV)

for every integer coordinate on the heightmap can be calculated. The point on the

heightmap with the lowest Point Value can be viewed as an “ideal” place to site a

settlement, and is flagged by the program.

PV = Cd + Wd + Rd + [G*(MH-H)]

Although potentially effective, a notable problem with this solution is that all of the

factors are considered in equal measurements. This may cause issues in scenarios

where a particular factor needs to be disregarded or given a disproportionate

amount of precedence.

Figure 9: A mock-up example of the factor formula method. The red point denotes the point on

the map with the lowest PV value. A cyan-blue point, denoting an arbitrary point, has also

been included for the purpose of comparison.

39

3.2.1.3 Method 3: Weighted Factors

To solve the problem of particular factors possessing too much or too little influence,

a weighting system can be used. The simplest way of accomplishing this is to

incorporate a set of “weight” variables that can be defined by the user, and that

directly affect their corresponding factor.

For every point on the heightmap, a Point Value ought to be calculated, where

distance from the centre (Cd), distance from the nearest body of water (Wd), distance

from the nearest road (Rd), the gradient of the slope (G), height (H), and maximum

height (MH) are calculated according to the heightmap, and where centre weight

(Cw), water weight (Ww), road weight (Rw), gradient weight (Gw), and height

weight (Hw) are defined by the user. As with Method 2, the PV with the lowest value

would be the starting centre point of the city.

The final formula would therefore be:

PV = (Cd*Cw) + (Wd*Ww) + (Rd*Rw) + {[Gw*G]*[Hw*(MH-H)]}

The unit of measurement for the formula is irrelevant; as long as the same unit is

used for Cd, Wd, Rd, Mh, and H, then it does not matter whether the chosen unit is

meters, pixels, or an arbitrary unit used solely for the purpose of the program.

Similarly, the weighting limit does not matter, as long as it is consistent within the

formula. The reason for this is that the point with the lowest PV would be the same,

Figure 10: A mock-up example of the weighted factors method with a particular set of

weightings applied. The red point denotes the point on the map with the lowest PV value. A

cyan-blue point, denoting an arbitrary point, has also been included for the purpose of

comparison.

40

regardless of what units are used. If values wish to be compared across multiple

applications, however, then unit consistency would be a requirement, but this is not

necessary for our current needs.

On the off-chance that multiple points on the heightmap share the lowest PV, a

simple test can be performed to see which point ought to be given priority. For the

purposes of this application, in the case of a tied PV, the point with the lowest Cd

value is selected as the starting point of the settlement. It should be noted that the

chances of this occurring are particularly small, especially if the values are stored as

floating points (as opposed to integers), and so this was not considered to be a major

concern.

A major advantage of incorporating this weighting system is versatility. If the user

wishes to build as close to the centremost point as possible (as in Method 1), then this

can be calculated within the formula by placing a weighting value of 0 on every

factor but Cw. This would result in the following result.

PV = (Cd*1) + (Wd*0) + (Rd*0) + {[0*G]*[0*(MH-H)]}

PV = Cd

Similarly, if the user desires a “realistic” application where the distance to the

centremost point is ignored, then Cw can simply be set to 0, and the other weight

values to 1.

PV = (Cd*0) + (Wd*1) + (Rd*1) + {[1*G]*[1*(MH-H)]}

PV = Wd + Rd + [G*(MH-H)]

As stated in section 3.2.1.2, certain elements that are not discernible from a

heightmap alone have had to be ignored. Factors like vegetation, minerals, wind

direction, and soil quality have not been taken into account, and this could

potentially reduce the accuracy of the program if a truly realistic solution is desired.

However, the ability to weight a set of factors ought to allow cities to be sited within

a perceivable degree of realism, once the parameters have been adjusted to suit the

scenario.

A final note ought to be made here with regards to the possibility of inadequate

results being produced by unusual heightmaps or weighted values. For example, a

heightmap with exceptionally high mountains towards the outer edge may result in

a city being located at the very edge of the map, potentially causing structures within

41

the city walls to not be rendered. The limitations of our proposed formula are

examined in greater detail and expanded upon in sections 4.1 and 5.1.1.

3.2.2 OUTER WALLS

Once the city centre has been decided, the next logical step is to mark the city limits

and the buildable area that it encompasses. For a Roman city, this would frequently

take the form of a city wall.

When taken literally, Vitruvius proposes that cities ought to be octagonal in shape

(De Architectura I, 5-7). However, this was considered to be unsuitable for the

application as “Vitruvius’ scheme for an eight-sided town with a radiating plan was

utopian and had no tangible impact on town planning practice in the Roman

Empire” (Hebbert & Jankovic, 2009). Additionally, the use of an octagonal perimeter

is not considered to be “central to Vitruvius’ architectural theory” (Paden, 2001).

Therefore, for the purposes of practicality, and in accordance to the historical record

of many Roman cities, a 5-sided outer wall was chosen as the default shape of the

surrounding perimeter.

Vitruvius did not specify the ideal size of a Roman city. However, from the

archaeological record we can observe that the circumference of a newly founded city

typically lay between two and four kilometres. From this, we can infer that the

perimeter of the pentagonal wall ought to be between approximately 1.869 and 3.744

kilometres.

Vitruvius specified that the distance between the towers along a city’s wall ought to

be a maximum of one bowshot’s length. In order to convert this measurement to a

modern and implementable equivalent, the Roman military manual Epitoma Rei

militaris was consulted. Author Vegetius stated that archers ought to train to fire

their bows at 600 feet (Vegetius, ~390), or approximately 182 meters. However, this

again deviates from the archaeological record, in which the towers on a city’s wall

were rarely placed more than 60 meters apart. It is possible that Vitruvius was not

being entirely literal with his specified distance, or that he was taking the possibility

of untrained bowmen into account when devising the measurement. Nonetheless,

we chose to implement Vitruvius’ measure for the purposes of consistency and

aesthetic beauty.

Other specifications are also given. Vitruvius specified that the “thickness of the wall

should … be such that armed men meeting on top of it may pass one another

42

without interference”, and that “the towers themselves must be either round or

polygonal” in shape (De Architectura I, 5).

With this information together, we are able mark out a precise pentagonal shape that

encompasses the buildable interior of the city. The tower locations can then be

flagged, and the structure is ready to be rendered when appropriate.

43

3.2.3 ROADS

With the city boundaries marked, the city interior can be generated. However, before

the building structures can be designated and created, the city must be effectively

divided into allotments or insulae through the creation of a cellular road system. We

considered the possibility of generating the insulae first and designating roads in the

surrounding regions, but this was considered inappropriate due to the lack of control

that this order of generation offers over road parameters. Therefore, a road

generation system had to be set up that first laid out the road structure, and then

designated allotments to appropriate places on the roadside. Several existing

methods were examined.

One method of generating roads that produces consistently natural-looking results is

the use of L-systems, as initially described by Lindenmayer (Lindenmayer, 1968),

and later effectively implemented into procedural city application CityEngine by

Parish and Muller (Parish & Muller, 2001). L-systems are capable of creating

branching, context-sensitive, and semi-stochastic lines (Stava, et al., 2010), which

make them well-suited to the generation of roads with a rural or organic structural

appearance.

An alternative type of road generation is the use of a grid structure, such as the one

described in the Undiscovered City application (Greuter, et al., 2003). Although less

flexible and less complex, this method of procedurally generating roads consistently

produces straight, orthogonal pathways, effectively producing a gridded pattern.

The Roman method of dividing a city into grid-structured, square allotments – a

process known as centuriation – is a distinctive and influential feature of Roman

cities (Romano, 2003). Due to the similarities between the method adopted by

Greuter et al. and the pattern of centuriation found in the archeological record, a

road system similar to the one described by Greuter et al. was adopted for the

purposes of this project.

Much like the method used to determine the dimensions of the city walls (3.2.2 Outer

Walls), Vitruvius’ De architectura was used for the purpose of calculating the

dimensions of the roads within the application. In the instances where there were

inconsistencies or gaps in Vitruvius’ description, the archaeological record was

consulted.

Vitruvius did not specify the width of Roman streets. However, Roman law dating

back to 100 B.C. specified that “Roman street width was fixed at a minimum of 4.5

meters [with] elevated sidewalks on both sides” (Mateo-Babiano & Ieda, 2005). From

the archaeological record, we can determine that the width of significant

44

thoroughfares, including sidewalks, typically measured between 5 and 7 meters

(Muller, et al., 2005). Vitruvius did not specify how large a city block or insula ought

to be, but again the historical record can be consulted to gain a figure of

approximately 73 meters squared.

Put together, this information allows for a detailed and historically accurate grid of

Roman roads to be created, within the confines of the city walls. Sidewalks can be

generated alongside each of the calculated roads, and the neighbouring empty

allotments are ready to be assigned building structures.

3.2.4 BUILDING LOCATIONS

The next stage is to flag the location of important structures, starting with one of the

centremost and most significant Roman structures: the forum. In towns located close

to water with a harbour, Vitruvius suggests that the forum should be situated closer

to that side of town, whereas otherwise the forum should be at the absolute centre of

town (De Architectura I, 7). The settlement’s communal areas with public buildings,

including civic, religious and recreational buildings are located in close proximity to

the forum (De Architectura I, 7; De Architectura V). In Roman cities the forum

played a central role in the location of communal facilities, i.e. they were usually

located at the forum itself as this created the focus for the settlement, or along the

major axes of the town.

To apply this to the application, the grid square closest to the centre point is marked

as the forum. The grid squares surrounding this are marked as the basilica, and local

government. The grid square furthest from the centre point, but still within the

bounds of the pentagon is marked as the theatre or amphitheatre.

The main sacred site of a city with temples for the highest deities and the protectors

of the settlement should be at its highest point of elevation (De Architectura III and

IV), easily reachable from the forum or the main roadways. In most settlements, the

location of this temple district will be adjacent to the forum (in case the settlement is

a colonia, this is referred to as capitol).

Vitruvius makes suggestions as to where the temples dedicated to different deities

should be located. A temple to Mercury, god of trade and travel, should be in or

alongside the forum of the settlement. A temple to Apollo, god of light and healing,

should be adjacent to the theatre of the settlement if one exists. Temples to Venus,

goddess of love, Ceres, goddess of agriculture, Vulcan, god of fire, and Mars, god of

war, should be located outside of the city walls.

45

From this, we can infer that a temple ought to be situated immediately adjacent to

the forum in our application. Additionally, temples may be flagged to appear on the

outskirts, or completely outside the city walls, or on the highest heightmap point.

The remaining squares on the grid can be considered to be generic or non-specialised

structures. We have chosen to classify the generic structures into three groups, in a

similar manner to the classification system outlined by Lechner et al. (Lechner, et al.,

2004). The three building types are as follows.

1. Residential buildings. This would consist of one and two-story houses,

terraces, and villas.

2. Governmental buildings. This would encompass those of a bureaucratic

purpose, such as the basilica, as well as those designed to serve the public,

such as the prison.

3. Religious and commercial structures. This includes smaller temples, shrines,

shops, bathhouses, and other structures designed for the purposes of

entertainment.

With the building types defined, a method must be devised for assigning these three

types of structures to the appropriate grid square. Three methods were proposed and

implemented.

Figure 11: An example of the above Vitruvian rules applied to a city grid. In this instance, the red

square denotes the forum at the centre of the city. The blue squares represent temples. In this

case, there is one temple adjacent to the forum, and one outside the city walls. The green squares

represent notable governmental buildings, such as the basilica. The yellow square on the city

limits represents the theatre or amphitheatre.

46

3.2.4.1 Method 1: Random Selection

The simplest method of assignment would be to generate a random number for each

remaining grid square, and to select a building type according to the number chosen.

In this way, a fairly even distribution of the three building types will appear across

the entire city area.

The method of generating random numbers ought to be addressed at this stage. For

our application, a pseudo-random number derived from a linear congruential

generator was used, with a seed value linked to time. By rights, this method should

only produce pseudo-random numbers, not “true” random numbers, but in the

context of our application we believe that this distinction to be irrelevant. Pseudo-

randomness proved to be more than sufficient.

A basic pseudocode implementation of the first building assignment method can be

seen below.

For each remaining free square:

 Generate random number R between 1 and 3

 If R == 1: Assign Residential

 If R == 2: Assign Religious

 If R == 3: Assign Governmental

The immediate problem that becomes apparent with this method is a lack of order,

and consequently a lack of realism. Although it is possible for residential, religious,

and governmental buildings to be built alongside each other, as is often the case with

naturally developed settlements, such a layout would be unlikely in a pre-planned

Vitruvian city.

3.2.4.2 Method 2: Sectioned Districts

An alternative method would be to section the city into districts. Dividing the total

number of free squares by three results in a value indicative of the number of

residential and religious structures needed to be built, denoted in the pseudocode

below by the “NResidential” and “NReligious” variable counters. These counters are

iteratively decremented and checked during the building designation section. The

remaining space can then be attributed to commercial structures, resulting in three

equally sized and homogenous districts.

NResidential = Total free squares / 3

NReligious = Total free squares / 3

47

Choose a random free square:

 Assign Residential

 NResidential = NResidential – 1

 Spiral outward and repeat until NResidential == 0

Choose a random free square:

 Assign Religious

 NReligious = NReligious – 1

Spiral outward and repeat until NReligious == 0

For each remaining free square:

 Assign Governmental

Although more realistic than the purely random method 1, method 2 suffers from

being overly rigid. Without the use of ‘fuzzing’ – the use of randomness to create

deviations in a pattern – the produced results may appear unnatural.

3.2.4.3 Method 3: Probability Distribution

A third method makes use of probability distribution in order to group together

buildings in a semi-stochastic manner. One psuedocode implementation can be seen

below, although it ought to be noted that there are other ways that this could have

been implemented, such as through the use of Perlin noise. Variable “DFC” is used

to refer to the distance of a building from the city centre. Variable “CityRadius”

refers to the radius of a city at its widest point. As such, DFC divided by CityRadius

would equal one at the outmost edge of the city, and would approach zero as we

progress towards the center. Variables “ResP” and “GovP” are used to measure the

probability of a residential or governmental building appearing on a particular grid

square.

For each remaining free square:

 ResP = (DFC/CityRadius)^2

 GovP = ((CityRadius-DFC)/CityRadius-GovernmentalN

 Generate random number R between 0 and 1

 If R < GovP: Assign Governmental

 Else, if R > ResP: Assign Residential

 Else, Assign Religious

48

3.2.5 BUILDING GENERATION

3.2.5.1 Defining our Shape Grammar

At this stage, the application has a list of what building must be created for a series

of grid squares upon a heightmap. However, no definitions have been made for how

each building ought to be constructed. It would be trivial to design archetypal

examples of such buildings in modelling software, and to simply import the objects

into the application, but such an approach would not be procedural; since the explicit

purpose of this application was to create a variety of structures on-the-fly, an

alternative approach had to be taken.

It was quickly decided that a formal grammar ought to be used to define the overall

architecture of each type of building, not unlike the shape and split grammars

employed by Mueller, Pascal, Wonka, and other researchers in the field (Mueller, et

al., 2006). When properly designed and implemented, formal grammars allow for

clear, precise, and deterministic definitions of procedurally created shapes (Table 1).

In the language of a context-free formal grammar, a simple, multi-storied building

with a roof could be described in the following manner:

Figure 12: Examples of the three proposed methods of assigning building locations. Methods 1, 2,

and 3 are on the left, centre, and right respectively. The red square marks the centremost point of

the city (i.e. the forum), and the yellow squares indicate a special buildings, such as the coliseum

or temple. The light, medium, and dark grey squares represent residential structures, religious

structures, and governmental structures respectively.

49

Where B represents the entire building object, F represents a single floor of the

building, W represents the four walls of a particular floor, and R represents the roof.

To break down the production rules in detail: our starting symbol, the building

object B, is rewritten into the non-terminal floor object F, and the terminal roof R.

The floor object is then rewritten into a set of walls and another floor, or into another

set of walls with no additional floor. The final result would therefore be a building

with at least one floor, each containing four walls, and a roof.

However, there are several problems that immediately become apparent with a

grammar this simple. The most immediate is that this is a non-deterministic

representation of the building. By having two unclarified definitions of the

production rule for symbol F, we are unable to say how many floors a completed

building will contain; the production rule “𝐹 → 𝑊, 𝐹” can run zero, one, two, or

more times.

This problem can be addressed by adopting a deterministic context-free grammar. If,

for example, it is known that the production rules were run in a strictly linear

fashion, then we would be able to say with certainty that “𝐹 → 𝑊, 𝐹” would run

Non − Terminals = {𝐵, 𝐹}

Terminals = {𝑊, 𝑅}

Start Symbol = 𝐵

𝐵 → 𝐹, 𝑅

𝐹 → 𝑊, 𝐹

𝐹 → 𝑊

Grammar Definition 1: Simple building

Figure 13: An exploded visual representation of Grammar Definition 1 (left), and a completed

visual representation with an example façade (right).

50

exactly once, and “𝐹 → 𝑊” would run immediately afterwards. The building

would therefore have two floors, and there would be no room for ambiguity.

However, simply adding a running order to the grammar would be a cumbersome

way of defining more complex structures; the grammatical definition of a single

building could potentially become hundreds of lines long.

An alternative solution would be to add comparisons to the production rules. A

simple method of doing this has been outlined in Grammar Definition 2. The method

of adding superscripts and subscripts to split grammars as described by Stephen

Mann (Huang, et al., 2009) served as a foundation for our adopted syntax.

A superscript before the symbol denotes a condition that must be fulfilled for the

production rule to take effect. A superscript after the symbol denotes an inheritable

attribute that is assigned to that particular symbol.

In this case, a Building B with the attribute of flo number of floors is used as the

starting symbol. As per the first production rule, the symbol is rewritten into a Floor

F with the same value for attribute flo, and a terminal roof R.

Unlike in Grammar Definition 1, the second production rule now has a condition

that determines whether the rule is run; symbol F’s attribute flo must be higher than

one. If the condition is fulfilled, then a set of walls W is created, as well as another

floor F with an attribute flo that is equal to the preceding symbol F’s flo, minus one.

If the second production rule’s condition was not fulfilled, then the third production

rule is run. Symbol F is rewritten into a set of walls W, and the grammar comes to an

end.

This adapted grammar would allow for a deterministic amount of floors, based

entirely on what value is attributed to starting symbol B’s flo attribute. If, for

example, a value of 3 was used for B’s flo, then the production rules from Grammar

Definition 1 would run in the following order:

Non − Terminals = {𝐵, 𝐹}

Terminals = {𝑊, 𝑅}

Start Symbol = 𝐵

 𝐁
𝑓𝑙𝑜 → 𝐅

𝑓𝑙𝑜, 𝐑

 𝐅
𝑓𝑙𝑜 → 𝐖, 𝐅

𝑓𝑙𝑜−1
 𝑓𝑙𝑜 > 1

𝐅
𝑓𝑙𝑜 → 𝐖

Grammar Definition 2: Simple building with conditions and attributes

51

 𝐁
3 → 𝐅

3, 𝐑

 𝐅
3 → 𝐖, 𝐅

3−1
3 > 1

 𝐅
2 → 𝐖, 𝐅

2−1
2 > 1

𝐅
1 → 𝐖

In this instance it can be seen that the second production rule would run twice, with

the attributed flo value decrementing by one each time. On the third run, the

condition for the second production rule would not be fulfilled, and so the program

would instead run the third production rule. In this way, if the grammar were run

with B’s initial flo value at 3, a total of three floors would be created.

It ought to be noted that, despite the use of an unorthodox notation, this style of

grammar would still be considered context-free, as well as syntaxically and

semantically correct. A more standardised form of notation could be created by

expanding the condition for every possibility (in this case, an expansion of flo if the

attribute is equal to one, two, three etc.), but if the boundaries of a condition are not

known, then the list of production rules might tend towards infinity. The use of a

condition therefore keeps the grammar concise and readable.

This solution effectively addresses the issue of ambiguity within standardised formal

grammars. However, another problem is still present: it would be difficult to

describe architecture with any degree of accuracy or specificity without further

context of what the symbols geometrically represent.

To continue with our example, we could state that wall object W represents four

adjoining rectangular polygons, and that roof R represents a single plane that rests

on top. This might be enough information for a human to understand the intended

meaning of the grammar, but it is insufficient for an application because key

information is missing: the size of each object, and each object’s location in space. To

fulfil this criterion, additional attributes have to be created.

Grammar Definition 3: Simple building with expanded attributes

Non − Terminals = {𝐵, 𝐹}

Terminals = {𝑊, 𝑅}

Start Symbol = 𝐵

 𝐁 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐅 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧
𝑤,ℎ,𝑑

 𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑

 𝑦+1 < ℎ

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

52

There are now six attributes for every symbol. Attributes w and d represent the

relative width and depth of the corresponding object. Attribute h is similar, but for

the purpose of concise notation it remains static; the h attribute represents the total

number of floors on the building, similar to the no longer used attribute flo.

Attributes x, y, and z represent the relative position of the corresponding object

within three-dimensional Euclidian space. The second production rule has also been

altered slightly to better accommodate the new geometric approach; whereas

attribute flo decremented towards zero, attribute y increments towards the value of h.

We can now manually assign the position and the dimensions of the building. In this

example, we will specify an x, y, and z value of zero, indicating that the building is

being created on the point of origin. We will assign w and d a value of 5, indicating

that the building is 5 units wide and long, and we will assign h a value of 3,

indicating that there will be 3 floors.

 𝐁 0,0,0
5,3,5 → 𝐅 0,0,0

5,3,5, 𝐑 0,0+3,0
5,3,5

 𝐅 0,0,0
5,3,5 → 𝐖 0,0,0

5,3,5, 𝐅 0,0+1,0
5,3,5

 0+1 < 3

 𝐅 0,1,0
5,3,5 → 𝐖 0,1,0

5,3,5, 𝐅 0,1+1,0
5,3,5

 1+1 < 3

𝐅 0,2,0
5,3,5 → 𝐖 0,2,0

5,3,5

Figure 14: A visual depiction of building B as defined by Grammar Definition 3, with new

attributes x, y, z, w, d, and h added.

53

With these attributes assigned, a building is produced on point (0,0,0), and within the

boundaries of (5,3,5).

Despite the additional clarity, the new attributes and production rules still do not

offer enough information for a programmed implementation. For example, although

we know that 𝐖 0,0,0
5,3,5 represents a set of four walls with a width and depth of 5

units, we do not know how each wall ought to be represented in terms of triangular

or quadrilateral polygons. Therefore, for a truly specific grammar, another layer of

production rules could be implemented.

Grammar Definition 4: Simple building with polygonal symbol

Non − Terminals = {𝐵, 𝐹, 𝑊, 𝑅}

Terminals = {𝑃}

Start Symbol = 𝐵

 𝐁 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐅 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧
𝑤,ℎ,𝑑

 𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑

 𝑦+1 < ℎ

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐏 𝑥+𝑤,𝑦+1,𝑧,𝑥,𝑦+1,𝑧

𝑥,𝑦,𝑧,𝑥+𝑤,𝑦,𝑧

→ 𝐏 𝑥+𝑤,𝑦+1,𝑧+𝑑,𝑥,𝑦+1,𝑧+𝑑
𝑥,𝑦,𝑧+𝑑,𝑥+𝑤,𝑦,𝑧+𝑑

→ 𝐏 𝑥,𝑦+1,𝑧+𝑑,𝑥,𝑦+1,𝑧
𝑥,𝑦,𝑧,𝑥,𝑦,𝑧+𝑑

→ 𝐏 𝑥+𝑤,𝑦+1,𝑧+𝑑,𝑥+𝑤,𝑦+1,𝑧
𝑥+𝑤,𝑦,𝑧,𝑥+𝑤,𝑦,𝑧+𝑑

𝐑 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐏 𝑥+𝑤,𝑦,𝑧+𝑑,𝑥,𝑦,𝑧+𝑑

𝑥,𝑦,𝑧,𝑥+𝑤,𝑦,𝑧

Figure 15: A visual depiction of each stage of the production rules. Roof R is produced first, and

then the floors are called recursively, filling in the building B from y=0 through to y=2.

54

In this definition, a new terminal symbol P has been added, representing a

quadrilateral polygon within Euclidian space. It has 12 attributes, representing the x,

y, and z coordinates for each of the polygon’s four vertices (i.e. 𝐏 𝑥3,𝑦3,𝑧3,𝑥4,𝑦4,𝑧4
𝑥1,𝑦1,𝑧1,𝑥2,𝑦2,𝑧2

).

To accommodate for this change, terminal symbols W and R have been changed into

non-terminals. The two symbols have received their own production rules that create

sets of terminal P symbols, generating polygonal representations of the building

elements.

Despite the additional clarity, it was decided upon to not use the polygonal level of

detail for the remainder of the grammar definitions within this thesis. This decision

was made for the purpose of legibility. As the complexity of modelled buildings

increases, the complexity and length of the notation must also increase. An especially

detailed structure may require several pages of rules, which would make the

grammar fairly incomprehensible. We must aim to strike a balance between technical

detail and user legibility.

Therefore, our grammar definitions will take the form laid out by Grammar

Definition 3. Conditional statements for a production rule are notated as a

superscript on the left-hand side. Attributes of a symbol are notated as subscripts

and superscripts to the right of the defined symbol. The attributes of a non-terminal

symbol are inherited by any called production symbols, which allows for a hierarchy

of geometric shapes to be constructed.

With these rules laid out, we can proceed to start defining Vitruvian architecture.

3.2.5.2 Temple

The first building to be defined using the novel shape grammar syntax, and the

building to be described in the greatest depth, was the Roman temple. This structure

was chosen first due to its immediate recognisability, its prevalence across a large

number of Roman settlements, and its integral significance in everyday Roman life.

Additionally, the structure features certain elements, such as columns and a typical

slanted roof, which can be reused across multiple other types of buildings.

Vitruvius covered the architectural design of Roman temples in extensive detail. Two

books are devoted to the construction process (De Architectura III and IV), with the

majority of the text focussing on the different orders of columns, the proportions of

the various architectural elements, and the considerations that must be made for the

different styles of temple building.

55

Several features are prevalent across the majority of temples described by Vitruvius.

The structures frequently feature a central building with an encompassing wall,

called a cella. A colonnade would usually be found at the front portico of the

building, four or six columns across, and one to four columns deep. The temple

would often be oriented such that the main door of the cella faces eastwards or

towards the forum, or if that is not feasible, facing the passing road.

However, a large number of variations are possible in temple construction. Vitruvius

acknowledges that the dimensions of the architectural elements can differ

significantly, depending on the local style, the deity the temple is dedicated to, and

the personal preferences of the architect. For example, temples can be built with or

without a podium; they can feature steps on all four sides or just the front; and they

can feature prominently-displayed altars or no altars at all. Vitruvius even describes

peculiarities like circular temples, which often contained no internal cella (De

Architectura IV, 8).

When we came across cases of possible variation, we attempted to conform to

Vitruvius’ recommended standard. If no such recommendation existed or if key

information was missing, then we attempted to make an educated guess based upon

the context of the surrounding information.

Ironically, many of the temples that Vitruvius cites for the purpose of illustrative

example, such as his comparisons to the three temples of Fortuna (De Architectura

III, 2, 3), no longer exist. When a key measurement is not provided in De

Architectura, we therefore had to draw estimates based on archaeological record, or

on existing temples that appear to conform to the Vitruvian ideal.

Podium

The raised supporting foundation of the temple, known as the base or podium,

consists of a simple platform that acts as a floor for the cella and colonnades, and two

additional platform structures that function as bannisters to the stairs. Temple

podiums frequently feature top surfaces that extrude outward from the base, but

Vitruvius make no mention of the ideal level of protrusion for these details.

Nonetheless, we can estimate the dimensions of the protruding sections from

examples in the archaeological record.

Geometrically, we can consider the podium to consist of three cuboids, with three

flatter and wider cuboids resting on top. Vitruvius explicitly stated that “the length

of a temple must be twice its width” (De Architectura IV, 4), and since the temple’s

podium runs across the entirety of the temple’s dimensions, this rule also applies

56

here (Figure 13). We are not told of the ratio between the length of the bannisters and

the rest of the podium, but this can be estimated from the given dimensions of the

cella and stairway.

Stairway

The stairway that lies at the front of the temple simply consists of a series of steps.

Vitruvius noted that the step depth ought to be between 1.5 and 2 feet, that the step

height ought to be between 0.75 and 0.83 feet, and that the steps ought to be

consistent in size (De Architectura III, 4). From these measurements, we can infer a

step depth to height ratio of approximately 2 to 1, and so this was the ratio adopted

for use in the application. By placing two rectangular polygons together in this ratio,

a single step can be created that, when replicated and translated, create the entire

stairway (Figure 14).

Interestingly, Vitruvius noted that the number of steps in front of a temple ought to

be odd, since that would ensure that “the right foot, which begins the ascent, will be

that which first alights on the landing of the temple” (De Architectura III, 4). This is

simple to account for in the application by adjusting the height of every step until the

requirement has been reached.

One additional note is that some temples featured altars at the base of the stairway.

Although the size, shape, and detail of the altar varied between temples, the overall

structure could be geometrically represented as one smaller cuboid resting upon a

larger one. Due to the level of variety among altars and the lack of information on

their measurements in Vitruvius’ writings, the stairway altar was not adapted into

the application.

Figure 16: The relative proportions of a temple cella podium, without and with the top layer.

57

Cella

The cella is the inner room of a temple, often housing a statue of a deity or a plinth

for the purpose of votive offerings. They varied in size and shape – Vitruvius

acknowledged and described variations where there may be multiple cella rooms or

no surrounding walls at all (De Architectura IV, 8) – but they typically consisted of a

single rectangular room with a single entranceway.

Vitruvius described the outer cella wall as being “in length, one fourth more than the

breadth” (De Architectura IV, 4). He did not specify the ideal thickness of the cella

wall, but acknowledged that the thickness “must depend on the magnitude of the

work”. To adapt this description, we created a “wall width” variable that adjusted in

accordance to the temple’s length. As such, the wall thickness, and the perceived

structural integrity, increases relative to the temple size.

Vitruvius specified the dimensions of the front doorway through relative

comparisons. He wrote that, if we assume the height of the cella to be 3.5 units, then

the height of the doorway ought to be 2.5 units. Additionally, if we assume the

doorway height to be 12 units, we can define the doorway width as being 5.5 units

(De Architectura IV, 6). Put together, we can therefore state that the ratio of the door

width to door height to cella height is approximately 2.29:5:7 (Figure 15). This ratio

can then be used to calculate the in-application dimensions of the doorway, as long

one dimension is already known.

Breaking this information down into geometric primitives, we can consider the cella

to consist of three cuboids that encompass the rear and sides of the structure, and an

additional three cuboids that fit the aforementioned dimensions to form the front. An

additional specially-textured cuboid can be used to represent the door itself, if

desired.

Figure 17: The temple stairway and altar.

58

Columns

Although columns were a notable feature of all Roman temples, the layout and form

of the structures varied between buildings. Factors like the size and dimensions of

the temple, the purpose of the temple, the time period, and the local style, all dictated

how the columns would be laid out and shaped.

Vitruvius did not voice a preference on the recommended number of columns upon

a temple’s floor plan, but instead defined a set of possibilities for how columns could

be arranged relative to the cella, and listed a set of examples (De Architectura III, 2).

He made note of how the columns upon the portico could be tetrastyle, hexastyle, or

octastyle, depending on whether there were four, six, or eight columns across the

temple’s front. He also noted that the columns that flanked the cella could be single

or double placed, and that the columns at the rear could either mirror the front of the

temple or be a simple single-line colonnade.

Vitruvius also outlined a set of classifications for defining the distance between

columns, relative to the column width. He specified that intercolumniation could be

pycnostylos (that is, the columns are placed one-and-a-half base diameters apart),

systylos (two diameters apart), eustylos (two-and-a-quarter diameters apart),

diastylos (three diameters apart), or araeostylos (more than three diameters apart).

Vitruvius lamented that the tighter styles of intercolumniation, despite being

common at the time, were flawed as they did not allow matrons to “pass the

intercolumniations arm in arm”. He proposed that the eustylos standard was

preferable, due to its “respect of convenience … beauty, and strength” (De

Architectura III, 3). Consequently, this was the style chosen for the intercolumniation

Figure 18: The relative proportions of a temple cella doorway.

59

of the generated temple colonnades; the columns in the application are positioned

two-and-a-quarter diameters apart.

With these considerations in mind, and using the measurements imposed by the

boundaries of the insula and the other temple elements, we decided that a double-

ranked tetrastyle colonnade would be most appropriate for the front portico of the

temple.

With the column positions sited, the column geometry is ready to be defined.

Vitruvius wrote at length of the proportions of Roman columns, and made

particularly explicit note of the relative dimensions of the Ionic order. He stated that

the diameter at the base of an Ionic column is equal to one seventh of the column

height, and the diameter at the top of the column is equal to three quarters of the

diameter at the bottom. Additionally, the column base height is equal to half the

diameter at the bottom of the column, and the whole column height should equal

one third of the temple width (De Architectura III, 5). The specificity of these rules

makes them convenient for our implementation; as long as one element is known – in

this case, the temple width – the other measurements can be calculated.

An important consideration at this stage was the amount of detail to contain in the

procedurally generated column geometry. If a particularly accurate representation of

Roman column geometry were desired, then a large number of polygons would be

needed to achieve the necessary level of detail. This would result in a complex and

potentially more lifelike model, but it could reduce the functionality of the

application if a large number of columns are to be displayed on-screen

simultaneously. Conversely, a column object with a low number of polygons would

help to ensure that the application can run in real-time, but it may not be complex

enough to reflect the defined Vitruvian measurements.

A compromise must therefore be reached. After experimenting with various setups,

we settled on a geometrically simple structure, featuring a shaft of 8 rectangular

polygons (or 16 triangular polygons), and a total polygon count of 76. The grooves in

the shaft can simply be represented through the use of a texture.

60

Figure 19: Four potential levels of detail for a column of the Doric or Corinthian order. The

second column image was the one implemented into our application.

61

Grammar Definition 5: Roman Temple

Non − Terminals = {
𝑆 − 𝑆𝑖𝑑𝑒, 𝑆𝑡 − 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦, 𝑃 − 𝑃𝑜𝑑𝑖𝑢𝑚,

𝐴 − 𝐴𝑙𝑡𝑎𝑟, 𝐶𝑒 − 𝐶𝑒𝑙𝑙𝑎, 𝐶𝑛 − 𝐶𝑜𝑙𝑜𝑛𝑛𝑎𝑑𝑒, 𝑇 − 𝑇𝑒𝑚𝑝𝑙𝑒
}

Terminals = {
𝐺 − 𝐺𝑟𝑜𝑢𝑛𝑑, 𝐶𝑜 − 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑅 − 𝑅𝑜𝑜𝑓,

𝑆 − 𝑆𝑡𝑒𝑝, 𝐵 − 𝐵𝑙𝑜𝑐𝑘, 𝐷 − 𝐷𝑜𝑜𝑟
}

Start Symbol = 𝑇 − 𝑇𝑒𝑚𝑝𝑙𝑒

𝐓 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐏 𝑥,𝑦−2,𝑧

𝑤,2,𝑑 , 𝐑 𝑥+1,𝑦,𝑧+2
𝑤−2,ℎ,𝑑 , 𝐒𝐭 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐞 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐆 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

 𝐒𝐭
 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 → 𝐒 𝑥,𝑦,𝑧+𝑑
𝑤,0.2,0.4 … 𝐒 𝑥,𝑦+ℎ,𝑧

𝑤,0.2,0.4 , (𝐀 𝑥+4,𝑦,𝑧+0.5
𝑤,ℎ,𝑑)

𝐏 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐁 𝑥,𝑦,𝑧

1,2,3 , 𝐁 𝑤−1,𝑦,𝑧
1,2,3 , 𝐁 𝑥,𝑦,3

𝑤,2,𝑑−3

𝐀 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐁 𝑥,𝑦,𝑧

2,1,1 , 𝐁 𝑥+0.25,𝑦+1,𝑧+0.25
1.5,1,0.5

𝐂𝐞 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐁 𝑥,𝑦,𝑧

1,ℎ,𝑑 , 𝐁 𝑤−1,𝑦,𝑧
1,ℎ,𝑑 , 𝐁 𝑥,𝑦,𝑑−1

𝑤,ℎ,1 , 𝐁 𝑥,𝑦,𝑧
4,ℎ,1 , 𝐁 𝑥+6,𝑦,𝑧

4,ℎ,1 ,

→ (𝐃 𝑥+4,𝑦,𝑧+0.5
𝑤,ℎ,𝑑), 𝐂𝐧 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐧 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂𝐧 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑

 𝐂𝐧
 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 → 𝐂𝐨 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 … 𝐂𝐨 𝑥+𝑤,𝑦,𝑧

𝑤,ℎ,𝑑

Having completed the architecture of the temple, we can now implement grammars

for the remaining structures. By making use of a hierarchy of elements for one

structure, we are now able to reuse desired elements for the remaining buildings. For

example, the columns of the temple require little adjustment to be applied to a

forum; only the grammar implementation needs to be altered.

3.2.5.3 Forum

Roman forums, the central squares that functioned as open-air gathering places,

were an integral feature of Roman settlements. Although they were not buildings in

the traditional sense, forums were still composed of a set of typical building

elements, and so they could be defined through the same set of grammatical rules as

the other architectural structures in this project.

Vitruvius noted that Greek forums were typically close-set, double-width colonnades

encompassing square platforms, but he asserted that this was an inappropriate

setting for Roman cities where the forum was occasionally used for public displays

like gladiator shows (De Architectura V, 1). He instead proposed that Roman forums

ought to have a width that is two thirds of its length, and that the surrounding

colonnade ought to be widely spaced and two floors tall.

62

The geometry involved in the procedural rendering of a forum is simple, as the most

important feature tends to be the communal space itself. Nonetheless, a problem

became apparent when attempting to define the forum’s dimensions within the

allotted insula: the entrance of the neighbouring temple encroached on the forum’s

space. Vitruvius made no mention of the influence that a neighbouring temple can

have on the dimensions of a forum, but did specify that a neighbouring basilica or

market hall ought to take up one third of a forum’s floor space; the colonnade can

occupy the remaining oblong area (De Architectura V, 1). By treating the temple as a

basilica, the dimensions could be adjusted to ensure that the forum colonnade and

the temple entranceway could cohabit without causing overlapped geometry.

Grammar Definition 6: Roman Forum

Non − Terminals = {𝐶𝑑 − 𝐶𝑜𝑙𝑜𝑛𝑛𝑎𝑑𝑒}

Terminals = {𝐺 − 𝐺𝑟𝑜𝑢𝑛𝑑, 𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛}

Start Symbol = 𝐹 − 𝐹𝑜𝑟𝑢𝑚

𝐅 𝑥,𝑦,𝑧
𝑤,2,𝑑 → 𝐂𝐝 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥+𝑤,𝑦,𝑧+𝑑
𝑤,ℎ,𝑑 , 𝐆 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

 𝐂𝐝 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →

 𝑦+1 < ℎ 𝐂 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 … 𝐂 𝑥+𝑤,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑

3.2.5.4 Theatre

Early Roman theatres were timber structures; it was only during the time of

Vitruvius that permanent structures became increasingly popular, with architecture

based upon earlier Greek examples. The traditional Roman theatre consisted of a

stage area, which was often a covered building, and an inner seating area that

formed a semi-circle. The outside would often consist of tall, rounded archways,

with columns adjacent to or embedded in the outer wall.

Vitruvius defined the angle formed by the semi-circular section of the theatre by

noting that four equilateral triangles, each with points on the centre of the orchestra

and perimeter of the theatre, could fit within the theatre’s arc (De Architectura V, 6).

Taken literally, this would imply that the semi-circular section of Roman theatres

ought to form a 240 degree arc. Vitruvius contrasted this with Greek theatres, where

he compared the angle to that of three squares, or 270 degrees. This appears

consistent with the archaeological record. Although the specific angle varies, many

63

Roman theatres, such as the theatre at Bosra, Syria, appear to have an orchestra angle

of close to 240 degrees, whereas Greek theatres such as the one in Epidaurus, Greece,

are notably more arced (De Malsche, et al., 1983).

Vitruvius also offered measurements for the staging area. For example, he specified

that, “the length of the scene must be double the diameter of the orchestra,” and that,

“the height of the podium, or pedestal … is a twelfth part of the diameter of the

orchestra” (De Architectura V, 6). Vitruvius acknowledged that it would be inevitable

that each theatre would be built with slightly different dimensions due to restrictions

of circumstance, but he repeatedly stressed the importance of symmetry for the

purposes of aesthetic beauty and good acoustics.

Many of the elements for the theatre, such as the columns and seating area, can be

borrowed from the architectural elements used in the construction of the temple. One

element that is new to our shape grammars is the archway, which must be

repeatedly called at various angles and at two to three heights in order to form the

outer wall of the theatre structure.

Grammar Definition 7: Theatre

Non − Terminals = {𝑆𝑡 − 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦, 𝑆 − 𝑆𝑖𝑑𝑒, 𝑇 − 𝑇ℎ𝑒𝑎𝑡𝑟𝑒}

Terminals = {𝐴 − 𝐴𝑟𝑐ℎ𝑤𝑎𝑦, 𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑆𝑒 − 𝑆𝑡𝑒𝑝, 𝑆𝑎 − 𝑆𝑡𝑎𝑔𝑒}

Start Symbol = 𝑇 − 𝑇ℎ𝑒𝑎𝑡𝑟𝑒

 𝐓 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒
 ,

 𝐒𝐚 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑

 𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒

→ 𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒+30

, 𝐀𝐫 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑
 𝑎𝑛𝑔𝑙𝑒 < 240 , 𝐒𝐭 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

→ 𝐀𝐫 𝑥,𝑦+ℎ,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦+ℎ,𝑧

𝑤,ℎ,𝑑

 𝐒𝐭
 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 → 𝐒𝐞 𝑥,𝑦,𝑧+𝑑
𝑤,0.2,0.4 … 𝐒𝐞 𝑥,𝑦+ℎ,𝑧

𝑤,0.2,0.4

3.2.5.5 Amphitheatre

At the time of Vitruvius’ writing, amphitheatres were considered to be something of

a novelty, not a prevalent piece or architecture (De Architectura I, 7). However,

enough details have been left through public record and archaeological remains for

us to gather accurate proportions of a typical structure. Amphitheatres vary in shape

and size, but always took the form of a fully-enclosed seating and stairway area.

Some were designed to rest upon hillsides, where others stood as monumental,

vaulted structures. For the purposes of this project, only the latter type was chosen to

64

be implemented. Vitruvius states that the outer length to width ratio of the

amphitheatre ought to be 1.2:1, but that the inner ratio ought to be 1.5:1, creating a

notable oval shape. Aside from the difference in structure shape and the lack of a

separate staging area, the physical differences between theatres and amphitheatres

are minor. This allows for many of the same production rules to be borrowed from

the theatre grammar.

Grammar Definition 8: Amphitheatre

Non − Terminals = {
𝑆𝑡 − 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦, 𝑆 − 𝑆𝑖𝑑𝑒,

 𝐴 − 𝐴𝑚𝑝ℎ𝑖𝑡ℎ𝑒𝑎𝑡𝑟𝑒
}

Terminals = {𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑆𝑒 − 𝑆𝑡𝑒𝑝, 𝐴𝑟 − 𝐴𝑟𝑐ℎ𝑤𝑎𝑦}

Start Symbol = 𝐴 − 𝐴𝑚𝑝ℎ𝑖𝑡ℎ𝑒𝑎𝑡𝑟𝑒

 𝐀 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒

 𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒

→ 𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒+30

, 𝐀𝐫 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑
 𝑎𝑛𝑔𝑙𝑒 < 360 , 𝐒𝐭 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

→ 𝐀𝐫 𝑥,𝑦+ℎ,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦+ℎ,𝑧

𝑤,ℎ,𝑑

 𝐒𝐭
 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 → 𝐒𝐞 𝑥,𝑦,𝑧+𝑑
𝑤,0.2,0.4 … 𝐒𝐞 𝑥,𝑦+ℎ,𝑧

𝑤,0.2,0.4

3.2.5.6 Governmental Building

A governmental building grammar was designed, both to fulfil the requirements for

a basilica, the extravagant Roman public court building, and to serve the generation

of the numerous “generic” governmental buildings that a town is likely to contain.

Vitruvius explicitly described the measurements of a basilica. Most notably, he

commented that, “The columns of basilica are to be of a height equal to the breadth

of the portico, and the width of the portico one-third of the space in the middle”, and

that “The portico … is twenty feet wide … The height of the columns, including the

capitals, is fifty feet” (De Architectura V, 1). Put together, this provides enough

information to form our shape grammar, borrowing elements from the previously

defined temple where necessary.

To create the simpler, generic governmental building structure from the basilica, the

only changes to be made were to reduce the structure’s dimensions, and to remove

the more superfluous elements of the basilica, such as the double-height columns

65

and the portico. This can be performed semi-randomly, producing a range of

structures that still resemble a public building.

Grammar Definition 9: Governmental Building

Non − Terminals = {𝑊 − 𝑊𝑎𝑙𝑙𝑠, 𝑆 − 𝑆𝑖𝑑𝑒, 𝐹 − 𝐹𝑙𝑜𝑜𝑟, 𝐺 − 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑎𝑙}

Terminals = {𝐷 − 𝐷𝑜𝑜𝑟𝑤𝑎𝑦, 𝑊𝑖 − 𝑊𝑖𝑛𝑑𝑜𝑤, 𝑅 − 𝑅𝑜𝑜𝑓, 𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛𝑠}

Start Symbol = 𝐺 − 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑎𝑙

 𝐆 𝑥+𝑟𝑎𝑛𝑑(0,3),𝑦,𝑧+𝑟𝑎𝑛𝑑(0,3)
𝑤+𝑟𝑎𝑛𝑑(0,3),𝑟𝑎𝑛𝑑(1,3),𝑑+𝑟𝑎𝑛𝑑(0,3)

→ 𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧

𝑤,ℎ,𝑑

 𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑

 𝑦+1 < ℎ

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐒 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧+𝑑
𝑤,ℎ,𝑑

 𝐒
 𝑟𝑎𝑛𝑑(0,10)==1 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 → 𝐃 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑

𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖𝐢 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , (𝐂 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑)

3.2.5.7 Villa

Both the Roman villas owned by nobles and the town-houses of the lower classes are

formed of previously-defined architectural elements; we only need to know the

dimensions and the layout of the needed elements.

Vitruvius documented the size and style considerations for the interior of villas

extensively, and made note of the differences between villa rustica, country houses,

and villa urbana, suburban residences (De Architectura VI, 1-8). He noted that the

atrium, the villa’s internal courtyard, can lie between thirty and eighty feet in length,

and that the atrium’s width and the size of the neighbouring rooms must be adjusted

to accommodate this large potential length deviation. He also offered measurements

for various rooms, such as, “the cloister is transversely one third part longer than

across”, and “the length of a triclinium is to be double its breadth”. Vitruvius stops

short of explicitly defining the size of the villa’s perimeter, but we can draw

estimates based on the given information.

In the same way that generic governmental buildings can be formed by resizing and

simplifying the architecture of the basilica, we are able to create humbler residential

structures by removing the villa’s atrium and adjusting the building size with some

degree of randomness.

66

Grammar Definition 10: Villa

Non − Terminals = {𝑊 − 𝑊𝑎𝑙𝑙𝑠, 𝑆 − 𝑆𝑖𝑑𝑒, 𝐹 − 𝐹𝑙𝑜𝑜𝑟, 𝑉 − 𝑉𝑖𝑙𝑙𝑎}

Terminals = {𝐷 − 𝐷𝑜𝑜𝑟𝑤𝑎𝑦, 𝑊𝑖 − 𝑊𝑖𝑛𝑑𝑜𝑤, 𝑅 − 𝑅𝑜𝑜𝑓, 𝐴 − 𝐴𝑡𝑟𝑖𝑢𝑚}

Start Symbol = 𝑉 − 𝑉𝑖𝑙𝑙𝑎

 𝐕 𝑥+𝑟𝑎𝑛𝑑(0,3),𝑦,𝑧+𝑟𝑎𝑛𝑑(0,3)
𝑤+𝑟𝑎𝑛𝑑(0,3),𝑟𝑎𝑛𝑑(1,2),𝑑+𝑟𝑎𝑛𝑑(0,3)

→ 𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧

𝑤,ℎ,𝑑 , (𝐀 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑)

 𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑

 𝑦+1 < ℎ

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐒 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧+𝑑
𝑤,ℎ,𝑑

 𝐒
 𝑟𝑎𝑛𝑑(0,10)==1 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 → 𝐃 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑

𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖𝐢 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑

𝐀 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐖 𝑥,𝑦,𝑧

1,ℎ,𝑑 , 𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,1 , 𝐖 𝑥,𝑦,𝑧+𝑑

1,ℎ,𝑑 , 𝐖 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,1

67

3.3 RENDERING ENGINE

3.3.1 CREATING THE DIRECTX CITY FILE

Converting the formal shape grammars defined in section 3.2.5 into C++ code

requires a simple, but methodical process. Each unique symbol in each of the formal

grammars is assigned a function. Accompanying symbol attributes – the superscripts

and subscripts following each symbol – are latched to the corresponding function

through appropriately typed function parameters. Conditions – the superscripts

preceding a symbol – are implemented through conditional “if” statements

contained within the function bodies, or an appropriate loop or switch-case

statement where necessary. As such, just as the non-terminal symbols called other

symbols in the defined grammars, the architectural functions call other functions in

the programming code. A hierarchy has been created.

However, the functions representing terminal symbols must make note of the

geometry that they represent. This involves taking the function parameters, and

parsing the values to a set of arrays that represent vertex points, polygon points, and

texture references.

It would be entirely possible to use the data created in the generation process to

render polygons directly to the screen, as the data is essentially stored in a set of

vertex, polygon, and texture arrays. However, the decision was made to write the

data to a DirectX (.x) file, which could then be read and output to the screen. The

reason for this is twofold.

First, the implemented method of storing and retrieving data from a custom vertex

array is likely to be less efficient than Microsoft's implemented method. Rather than

spending time experimenting to find an optimal way of reading a vertex array, it

would be more prudent to rely on a tried and tested method.

Second, storing the data in a widely-accepted model file format allows for the

possibility of exporting or sharing the model. If the user desires the model file for a

game, animation, or their own simulation, then passing on the .x file along with the

necessary textures is a simple process.

DirectX files were chosen over other model file types (such as .3DS, .MAX, or .C4D),

primarily due to the unencrypted, text encoded nature of the file format. The Object

file type (.obj) is another commonly-used file type that uses unencrypted, text

encoded data, and so it was considered for this application. The difference between

the two file types is marginal, in terms of both implementation and efficiency. The

68

decision to use the DirectX file type over the Object file type was therefore made out

of convenience, as the DirectX 9 framework more readily supports the

implementation of .x meshes over .obj meshes.

An important choice at this stage of the application was whether it would be more

beneficial to write to a single mesh containing the entire city, or write to multiple

meshes that contain each building. Multiple meshes can either be written to within a

single DirectX file (in the form of multiple frames), or spread across multiple files.

Table 2 demonstrates the comparative advantages of the use of single or multiple

meshes in this scenario, with respect to application efficiency, the generated model

file size, and the potential for culled geometry.

69

At a glance, it appears that writing to multiple meshes is the logical choice as this

would be an easier to implement. Additionally, the ability to transform each building

on its own matrix at any point in the rendering stage, not just the city generation

stage, could allow for a lot more possibilities. However, efficiency is an important

factor, especially when we consider that this application could potentially reach

100,000+ polygons in size, and must be able to run in real-time. If multiple meshes

 Single Mesh Multiple Meshes

Efficiency Even with a large number of

textures, reading a single mesh file

is an efficient process. The only

issue is the possibility of a stack

overflow when writing large

quantities of data, but taking care

when allocating and deallocating

memory would prevent this.

Generally, multiple meshes

require multiple parses of the

same texture, and may use

multiple swaps of the z-buffer. At

its extreme (such as in a city with

over one thousand buildings), this

could cause efficiency issues.

File Size A single file or mesh is more

portable than multiple meshes.

However, the model file is likely to

be larger in size.

If similar buildings are repeated, it

may be possible to reuse the same

model mesh or model frame for

multiple buildings. This may or

may not decrease the RAM usage,

but it would significantly decrease

the size of the model files used.

Culling Since every building is a part of a

single object, cities must be culled

on a per-polygon basis. This is not

necessarily less efficient, but it

does require more forethought to

implement effectively.

Since each building has its own

frame or object, buildings can be

culled on a per-building basis.

Further culling parameters may be

necessary, but this would be a

simple process.

Table 2: A comparison of the relative advantages and disadvantages of using a single mesh or multiple

meshes within a DirectX application.

70

would require multiple checks or multiple swaps on the Z-buffer, where a single

mesh would only require one, then this could become an important, difficult-to-fix

issue in the later stages of programming.

Having established that we would be writing to a single mesh contained in a single

DirectX file, a method had to be established of exporting the virtual city data. For the

sake of speed, ease of use, and readability, two text files were created that contained

sets of information that would be persistent across multiple runs of the application.

The first (named "XFilePart1.txt" in this application) contains a list of headers,

structures, and templates, and a standard frame transformation matrix. The purpose

of this file is to reduce the amount of redundant code; these elements are likely to be

identical between the different .x files created for different cities, and hard-coding the

lines into the application itself would

The second file (named "XFilePart2.txt") contains a list of the textures used in the

application, along with a set of normal that are frequently referenced by the mesh

geometry. The purpose of this file is to allow for quick alterations of the currently

used texture, without having to recompile the code. For example, changing the name

of “brick.jpg” to “redbrick.png” would successfully alter the texture used for the

walls, assuming that the relevant file is present in the correct directory.

A chronological list of the model-writing process follows.

1. Create and name a new .x file - in this case, we named it "CityModel.x".

2. Parse the contents of XFilePart1.txt, line by line, to CityModel.x via a simple

loop.

3. Parse every vertex point that was generated to CityModel.x, again via a

simple loop.

4. Parse every polygon that was generated to CityModel.x. A loop very similar

to the loop in step 3 is used.

5. Parse the contents of XFilePart2.txt to CityModel.x.

6. Parse the normal direction of every vertex to CityModel.x.

7. Parse the mesh coordinates of every polygon to CityModel.x (in this case,

(0,0) to (1,1) was parsed, unless specifically stated otherwise).

8. Save and close the file.

The result of this is a fairly large unencoded file (20,614 KB for a 200 building city)

containing a single model file of all the entire generated architecture, including the

necessary texture and normal map data. The vertex, polygon, and texture arrays that

we used for the city generation can then be dropped; their purpose has been fulfilled,

and now the arrays only take up memory space with no reason. The newly-created

DirectX model file can then be loaded into the program, and rendered through

drawing calls native to the DirectX graphics library.

71

3.3.2 LIGHTS, CAMERA, SKYBOX

A simple two light set-up was created, consisting of a neutral-toned ambient light,

and a brighter, diffuse and specular-enabled directional light. A conventional skybox

was also created for the purpose of encouraging an immersive experience.

In order to allow the user to navigate the city, a moveable camera was set up. The

mouse was linked to the camera’s rotation, and the A, S, D, and W keys were linked

to the camera’s relative position. Together, this provides a first-person navigation

experience that many people who play videogames would find familiar.

In addition, two navigational modes were set up to allow for the viewing of the city

from two perspectives: an eye-level mode, and a free-roaming mode. When in eye-

level mode, the camera’s Y-axis is linked to the terrain’s Y-axis at the camera’s

current position. In this way, the camera can navigate up and down hills, and is

restricted from floating away from the floor; the user is given the experience of a

civilian. When in free-roaming mode, the camera is not bound to the floor, and the

user can fly into the sky by using the A, S, D, and W keys. This allows the user to see

the city from a bird’s eye view, if desired.

The M and the N keys were dedicated to the purpose of switching between the two

modes.

72

4 RESULTS

4.1 CITY POSITION

To test the effectiveness of the implemented city positioning algorithm, the three

discussed positioning methods of section 3.3.1 were applied to a selection of

heightmaps. The heightmaps were created by generating Perlin noise in image

editing software GIMP, and then making manual adjustments to achieve the desired

output.

The three heightmaps were designed for the explicit purpose of demonstrating each

city positioning method’s advantages and disadvantages, as well as showing

situations where the methods produce near-identical results.

The first heightmap is a relatively flat surface. There is no land below the water line,

and therefore no out of bounds areas. There are hills – the highest point lies towards

the top-right of the map – but the gradients across the map can be considered to be

reasonably shallow.

The second heightmap tested features a lake at the centre, caused by a set of vertices

that dip below the water line. Consequently, the centremost points of the map are

considered to be out of bounds. The rest of the map is fairly flat.

The third heightmap features two corners that dip below the waterline, and two

corners that are quite raised, creating a slope. Consequently, the majority of the map

is on a steep gradient, and large parts might be considered unusable.

In order to demonstrate the various results that could be produced by the weighed

factor formula (section 3.2.1.3), two variations of the method were used: one where

there is an emphasis on the centremost point of the map, and one where there is an

Figure 20: The three heightmaps that were used in the testing of the city position algorithm. The

darkest areas on the second and third image lie underwater.

73

emphasis on the highest point of the map. The weighted factor formula was also

used for the purpose of notating the four tested city placement algorithms,

demonstrated as follows.

Method 1: Centremost point selection

PV = (Cd*1) + (Wd*0) + (Rd*0) + {[0*G]*[0*(MH-H)]}

PV = Cd

Method 2: Factor formula (unweighted)

PV = (Cd*1) + (Wd*1) + (Rd*1) + {[1*G]*[1*(MH-H)]}

PV = Cd + Wd + Rd + [G * (MH – H)]

Method 3: Weighted factor formula (center)

PV = (Cd*2) + (Wd*1) + (Rd*1) + {[1*G]*[1*(MH-H)]}

PV = Cd*2 + Wd + Rd + [G * (MH – H)]

Method 4: Weighted factor formula (height)

PV = (Cd*1) + (Wd*1) + (Rd*1) + {[1*G]*[2*(MH-H)]}

PV = Cd + Wd + Rd + {G * [2*(MH-H)]}

Where PV represents the Point Value that is measured on every integer coordinate

upon a heightmap, Cd represents the distance to the centre of the map, Wd

represents the distance to the nearest body of water, Rd represents the distance to the

nearest road, G represents the gradient of the land at the current point, MH

represents the maximum height upon the heightmap, and H represents the height at

the current coordinate.

When implemented into the heightmaps shown in Figure 17, the formulae produced

cities upon a range of locations. The sited locations can be seen visually upon the

relevant heightmaps in Figure 18, or in tabulated coordinate form in Table 3.

74

In order to retrieve an accurate reading of the measure of dispersion between

coordinates, a method of calculating the variance had to be devised. Various

measures were considered, such as the Standard Distance Deviation or the

Mahalonobis Distance, but due to the low number of sampled points involved these

methods were not considered appropriate. We therefore decided to simply measure

the Euclidian distance from each coordinate to the mean point upon each heightmap,

and calculate a dispersion value by finding the average of these distances.

Figure 21: The four city citing methods upon the three heightmaps.

 Heightmap 1 Heightmap 2 Heightmap 3

Method 1: Centremost

point selection

128, 128 81, 128 128, 128

Method 2: Factor

formula

141, 121 81, 139 140, 65

Method 3: Weighted

factors (centre)

132, 124 80, 136 137, 100

Method 4: Weighted

factors (height)

163, 111 42, 146 201, 40

Mean coordinates 141, 121 73, 137.25 151.5, 83.25

Table 3: The coordinates of the centremost city points upon the three heightmaps.

75

Put mathematically, we would say that the level of dispersion can be written as:

1

𝑛
∑‖𝒛𝑖 − 𝒄‖

𝑛

𝑖=1

Where 𝒛𝑖 is defined as every measured coordinate (i.e. 𝒛𝑖 = {𝒙𝑖, 𝒚𝑖}), and 𝒄 is defined

as the central or mean point. Calculating the distance from each point to the central

point is a simple matter of gathering the Euclidian distance through use of the

Pythagorean Theorem.

‖𝒛𝑖 − 𝒄‖ = √(𝑥𝑖 − 𝑐1)2 + (𝑦𝑖 − 𝑐2)2

The results of these measurements can be seen in Table 4.

 Heightmap 1 Heightmap 2 Heightmap 3

Method 1: Centremost

point selection

14.76 13.62 50.55

Method 2: Factor

formula

0 10.15 21.57

Method 3: Weighted

factors (centre)

9.49 9.09 22.15

Method 4: Weighted

factors (height)

24.17 30.29 65.73

Mean distance (level of

dispersion)

12.11 15.79 40

Table 4: The distance from each sited location to the mean point upon each heightmap, and the

calculated level of dispersion.

76

4.2 CITY LAYOUT

It was decided that, in order to receive an accurate picture of the generated city’s

layout, renderings had to be made that clearly demonstrate the distribution of

residential, governmental, and religious buildings. Traditional screenshots were

deemed unsuitable for this analysis, as discerning the various types of buildings

from an overhead view was considered to be difficult. Therefore, specialised

renderings had to be created.

The rendering process was as follows. First, all extraneous models were removed.

This involved the removal of the skybox, ground, water, road, and trees from the

rendering pipeline. The buildings were stripped of their textures, and instead were

assigned a coloured material according to their designated building type. The

colours red, blue, and green were used to designate residential, governmental, and

religious buildings respectively, and black was assigned to any remaining structures.

Directional lighting was turned off, and the camera was adjusted to a top-down,

orthographic perspective, allowing for a clear bird’s eye view of the scene.

For consistency, a set of constants were put in place. The same flat terrain was used

for each rendering. The city size was kept consistent (a CitySize value of 200,

indicating a city circumference of approximately 3770 meters). The same set of key

structures – namely, the forum, central temple, and amphitheatre – was used in all

the renderings. Where randomness was required, we generated time-seeded pseudo-

random numbers, as explained in section 3.2.4.1.

With these parameters in place, three renderings were produced, utilising the three

proposed methods described section 3.2.4, Building Locations. That is, the first

rendering demonstrates the use of a simple random number generator to

stochastically assign the three types of generic building types to allotments. The

second rendering demonstrates the use of sectioned districts to create “groups” of

similarly structured buildings. The third rendering demonstrates the use of

probability distribution in order to create an organic, semi-random set of districts.

The three renderings were combined into a single image and labelled in Figure 19.

77

-

Figure 22: The three special renderings that demonstrate the building layout of a generated city.

78

Figure 23: A top-down rendering of a similarly sized city, without any of the special rendering

effects applied.

Figure 24: An overhead, regular rendering of the city.

79

4.3 BUILDING GENERATION

In order to gauge the historical accuracy of the procedurally generated architecture

in a meaningful manner, we produced rendered images of the models which could

then be compared to illustrators’ interpretations of Vitruvius’ writings, and to

architectural drawings and photographs of comparable real-life structures. This

would allow for an assessment of the degree to which the generated architecture

adhered to Vitruvius’ measurements whilst also allowing us to assess the degree to

which the digital models deviate from real life.

Out of all the buildings described in section 3.2.5, Building Generation, the temple

was selected to be the primary focus of our comparison. There were a number of

reasons that facilitated this decision.

The first was that Vitruvius paid a disproportionately large amount of attention to

temples, dedicating two whole books to the dimensions of the structures. This level

of attention was reflected in our implementation by way of a particularly detailed

analysis of the structures (section 3.2.5.2), and it was decided that this standard

ought to be maintained through the results stage for the purpose of consistency.

The second reason was that, as a result of modern preservation and reconstruction

efforts, many Roman temples remain relatively unchanged, at least superficially so,

from their architectural state at the time of construction. This made our attempts to

obtain adequate photographs of the structures fairly straight-forward. By contrast,

the number of other Roman buildings that have been preserved in a near-pristine

state is relatively small, and as such we assessed that attempting to procure

measurable photographs of these structures could prove to be an issue.

An additional consideration was that we believed Roman temples to be a more

consistent representation of Vitruvian ideals than other architectural structures. A

residential building may be subject to stylistic deviations at the hands of architects

and builders, for example, and therefore may risk not conforming to the Vitruvian

ideal. However, this is a speculative notion that deserves further study.

Renderings were made of the modelled temple from various angles in both an

orthographic viewpoint, and in a more natural perspective (Figure 22). We also

produced renderings of the other buildings described through our shape grammars

(Figure 23).

For technical illustrations of the temple architecture described in De Architectura,

various translations and editions were consulted. A version illustrated under the

direction of Herbert Langford Warren (Vitruvius & Morgan, 1914) was selected to be

80

the primary source of comparison images, due to the book’s comprehensive

collection of clean, well-annotated technical diagrams (Figure 24). For the purpose of

a close and meaningful comparison, we selected images from the book that conform

to our choice of temple structure (i.e. single front-facing portico, tetrastyle layout,

Doric order) wherever possible.

When selecting real-life examples of Vitruvian architecture for the purpose of

comparison, we deliberately sought out temples that were in a relatively complete

and undamaged condition

The first temple selected was the Maison Carrée in Nîmes, France, a structure notable

for being a particularly well-preserved example of Vitruvian architecture (Jones,

2000). Originally built in 16 BC, the structure has been reconstructed and restored

several times. It features six Corinthian columns across its portico, and twenty

columns embedded in the cella walls. The temple measures 26.42 meters by 13.54

meters

The second temple to be selected was the Temple of Portunus, also known as the

Temple of Fortuna Virilis, in Rome, Italy. It is notably smaller than the Maison

Carrée, with a podium only measuring 19 meters by 10.5 meters. It features four

Ionic columns across its portico.

Other Vitruvian temples were considered for the purpose of comparison, such as the

harbour temple at Ulpia Traiana or the temple of Jupiter Stator at Rome, but the

structures were deemed inappropriate for comparison due to their state of decay or

ruin.

For both the Maison Carrée and the Temple of Portunus, photographs were drawn

from the Wikimedia Commons depository (Figure 25, Figure 27), and architectural

illustrations were drawn from Fletcher’s A History of Architecture on the

Comparative Method (Figure 26, Figure 28). These image sources were selected due

to their visual clarity and technical accuracy.

With the image sources selected for both our rendered temple and for the

comparison examples, we were able to make a set of measurements. First, the most

immediately observable features of the assessed temple structures were documented:

the style of the portico colonnade and the order of the columns. Next, by drawing

from direct measurements of the necessary diagrams, sets of comparative ratios were

measured with regards to the dimensions of the podium, columns, and cella for each

temple.

Consistency was ensured by maintaining the same standards and restrictions for all

measures. For example, we measured the podium dimensions from and to the very

81

ends of the architectural elements, bannisters included, and we measured the cella

dimensions along the outer perimeter of the cella wall. The full list of observed

measurements can be found in Table 5.

82

Figure 25: Four orthographic and two perspective renderings of the Vitruvian temple.

83

Figure 26: Renderings of an amphitheatre, a villa, and a governmental building.

84

Figure 27: A compilation of Warren’s various technical diagrams (Vitruvius & Morgan, 1914).

aa0682
Typewritten Text
These images have been removed

85

Figure 28: Photograph of Maison Carrée from Wikimedia Commons.

Figure 29: Architectural illustration of Maison Carrée (Fletcher, 1921).

aa0682
Typewritten Text
This image has been removed

86

Figure 30: Photograph of the Temple of Portunus from Wikipedia Commons.

Figure 31: Architectural illustration of the Temple of Portunus (Fletcher, 1921).

aa0682
Typewritten Text
This image has been removed

87

 Rendered

temple

Warren’s

Vitruvian

illustrations

Maison Carrée Temple of

Portunus

Portico

colonnade

style

Tetrastyle Tetrastyle/

Hexastyle

Hexastyle Tetrastyle

Column style Doric Doric/Ionic Corinthian Ionic

Podium width

to length ratio

1:2.02 1:2.00 1:1.95 1:1.81

Temple height

to podium

width ratio

(roof

excluded)

1:1.03 1:1.21 1:1.11 1:1.06

Cella length to

podium length

ratio

1:1.99 1:1.61 1:1.99 1:1.98

Cella doorway

height to cella

height ratio

1:1.36 1:1.29 1:1.26 1:1.26

Column shaft

height to full

height ratio

1:1.12 1:1.07 1:1.25 1:1.13

Column

diameter to

shaft height

ratio

1:6.33 1:6.30 1:7.38 1:7.65

Table 5: Comparison of the features and measurements of the various Vitruvian temples.

88

Figure 32: Overlay comparison of Warren’s drawings with the rendered output.

89

4.4 APPLICATION EFFICIENCY AND LIMITATIONS

For the purpose of ensuring that the application is usable in real-time across a range

of scenarios, the number of buildings, the number of polygons, and the average

framerate of the application were measured across a range of city sizes.

To ensure consistent and meaningful results, a number of constants were put in

place. The same terrain was used throughout. To minimize frame rate fluctuations,

the frame rate was measured over a period of five seconds, and the mean result was

calculated. To avoid discrepancies caused by a moving viewpoint, the camera was

placed in the same fixed position overlooking the city across all test runs.

Despite these measures, it ought to be noted that there is still a degree of variation in

the performance results due to the stochastic nature of the building generation

process. We considered limiting the application to the production of a single type of

building during the generation of the city, but such a measure would not accurately

reflect the nature of the application.

“CitySize” was an arbitrary value that was used within the application for the

purpose of calculating the city’s radius. An approximate measure of 1 CitySize unit

to 3 meters can be drawn, based upon the previously calculated measurements of

road and insula dimensions (section 3.2.3).

The test was performed on a Toshiba laptop with a 2.3GHz processor, 6 GB of RAM,

and a GeForce graphics card.

CitySize

City
Radius

(Meters)

Number
of

Buildings

Number of
Polygons

(triangles)
FPS (Frames
Per Second)

100 300 99 87970 208

125 375 104 93610 201

150 450 110 101952 192

175 525 144 138146 185

200 600 197 173660 176

225 675 248 217226 164

250 750 293 257074 150

Table 6: The measured building count, polygon count, and framerate measurement at regularly

positioned CitySize intervals.

90

The largest city that could be generated by the application had a CitySize value of

350, representing a city radius of 1050 meters and generating around 440 buildings.

At larger values, the application stalled and crashed. We believe that this crash

originates from a stack overflow in one of the arrays used for the purpose of storing

building vertex data.

The smallest possible city that could be generated had a CitySize value of 1, although

this resulted in clear object overlapping and graphical errors. The smallest realistic

city that could be generated without causing graphical errors had a CitySize value of

approximately 50, representing a city with a radius of 150 meters.

From archaeological record, we know that newly-founded Roman cities had a

circumference of approximately 2 to 4 kilometres. This equates to a radius of 318 to

637 meters, or a CitySize value of approximately 106 to 212.3 units, well within the

application boundary limits of 50 to 350.

91

5 CONCLUSION AND EVALUATION

5.1 CONCLUSIONS

The underlying purpose of this project was to provide a set of novel methods capable

of converting architectural elements into sets of formal rules, which could then be

adapted into a procedurally generated digital city model. Vitruvius’ De Architectura

was chosen as the exemplary test case. Section 0, Implementation, detailed the

methodology used to formulate the various rules and grammars. A particular focus

was placed on the use of a unique formal grammar for the purpose of describing the

architectural shapes themselves.

In section 4, Results, the output of the application was recorded and measured

within four subsections. For the purposes of clarity and consistency, the same

subsections have been adopted in the following conclusion section; the output data is

broken down section by section and analysed, and appropriate conclusions are

drawn.

5.1.1 CITY POSITION

In section 3.2.1, various methods of positioning a city upon a basic landscape were

discussed, and an adjustable formula was devised. In section 4.1, four variations of

the formula were implemented across three heightmaps, providing a set of

coordinates that demonstrated how the Vitruvian city could be positioned in a range

of scenarios. A visual rendering of the siting methods upon each of the heightmaps

can be seen in Figure 18.

With the sited points measured, the variance for each map was calculated by

measuring the average Euclidian distance from the mean point to each of the sited

city location’s coordinates (Table 4).

We can draw observations about each siting method from the visual data in Figure

18, and from the coordinate data in Table 3.

Method 1, the centremost point selection method, sited cities in the very centre of the

256 by 256 map for two out of the three heightmaps. The exception, heightmap 2,

featured an inaccessible centre area, and consequently the method chose a point

adjacent to this area.

92

Method 2, the unweighted factor formula, and method 3, the factor formula

weighted to the map’s centre, produced fairly similar results. The two methods

deviated most on heightmap 3, where the high point towards the northeast of the

map caused method 2’s sited location to weigh further in that direction.

Method 4, the factor formula weighted to height, appeared to produce sited locations

near to the maps’ highest points, with comparative disregard of the maps’

centremost points. This is most apparent on heightmap 3, where method 4’s siting

location lies quite close to the map’s northeast border.

We can also draw several conclusions from the data presented on Table 4. The most

immediately observable facts are that heightmap 3, the landscape that consisted of a

large slope, featured the greatest level of dispersion (an average distance from centre

of 40 units), and that heightmap 1, the relatively flat surface, featured the smallest

level of dispersion (an average distance from centre of 12.11 units). These results

were likely brought about due to the discrepancy in the weighting of the height

variable. Methods 2 and 4 in particular tended to have sited locations that skewed

towards height, causing large levels of divergence on the third heightmap.

The implication of these results is that, under the chosen method of implementation,

a flatter landscape produces more consistent results, regardless of which siting

method is adopted. If we were to use a landscape that were entirely flat, all four of

the city siting methods tested would have sited locations at the very centre of the

map, providing an average dispersion level of zero. Conversely, terrain that is

inconsistently mountainous is likely to yield a greater range of results, and so the

design of the citing formula becomes of greater importance.

From these results, there appears to be no doubt that the weighted factor formula is

the “best” of the three proposed city positioning formulae. The optional weighting

allows for a large amount of variety, to the point where all reasonable user needs can

be accounted for. Due to the scope of this project, we are unable to perform an

assessment of what weighting would produce results closest to the historical record,

but this is certainly something that could be explored through further studies.

5.1.2 CITY LAYOUT

Section 3.2.4, Building Locations, describes the methodology used for assigning the

key structures of a Vitruvian city, and then outlines three potential methods for

designating the remaining ‘generic’ structures. Section 4.2 demonstrates the results of

this methodology by providing a set of three specialised renderings.

93

From the rendered images in Figure 19 and Figure 20, we can immediately draw an

observation: regardless of the building location method used, certain structures

remain consistently placed. The forum and its adjacent buildings – indicated on the

specialised renderings by the five central black buildings – are consistently assigned

to the same grid squares towards the centre of the city. The amphitheatre – the black

ring – consistently lies towards the outside of the city, but within the confines of the

walls. These results are in keeping with the methods used to assign the key

structures, as described in the introductory paragraphs of section 3.2.4. This is also in

keeping with the locations suggested by Vitruvius (De Architectura I, 7; De

Architectura V).

We can also observe the differences in the building dispersion between the three

rendered methods of Figure 19. The first rendering, depicting the random method

described in section 3.2.4.1, is visibly lacking in order; any apparent patterns of

grouping can be attributed to the nature of randomness. The second rendering,

depicting the sectioned districts of section 3.2.4.2, shows the three types of building

types allocated to three equally-sized districts. The third rendering, depicting the

probability distribution method described in section 3.2.4.3, follows the predicted

pattern of having mostly governmental buildings towards the centre, and mostly

residential buildings towards the outer edge. Exceptions can be noted, such as the

two outlying governmental buildings towards the top-right of the image, but again,

this can be attributed to the nature of randomness.

It would be simplistic to say that the probability distribution method produces the

“best” results, as there are likely to be cases in which the other two proposed

methods produce results more befitting of a user’s needs. However, for the purposes

of our Vitruvian city scenario, the probability distribution method appeared to

produce results closest to what we may expect a Roman city to look like. By that

measure, the probability distribution method of building placement can be

considered the most apt for our framework.

Also of note are the dimensions of the city wall. In section 3.2.2, we asserted that the

pentagonal wall surrounding a Roman city ought to have a perimeter between

approximately 1869 and 3744 metres. We also asserted that the spacing between the

towers upon a city wall ought to be by approximately 182 meters by Vitruvius’

measurements, but closer to 60 meters when going by historical record.

Using the conversion rate calculated in section 4.4, we can assert that the city in the

rendered example has a circumference of approximately 3770 metres. From this, we

can infer that the rendered pentagonal wall has a perimeter of 3527 metres, within

the typical measurements gathered from historical record. Since we can count 20

towers upon the city wall in the rendered examples, each positioned regularly apart,

94

we can calculate the distance from any tower centre point to an adjacent tower centre

point to be approximately 176 meters.

We believe this measurement to be as close to the Vitruvian ideal as possible within

the given outer wall dimensions. If an additional tower were positioned on each side

of the pentagonal wall, totalling 25 towers, then there would be a gap of

approximately 141 meters between towers. If there were one fewer towers on each

side, totalling 15 towers, then the gap would be approximately 235 meters.

Consequently, although there is a small deviation between the current measurement

and Vitruvius’ recommendation, this is the smallest possible deviation attainable

without altering the dimensions of the outer wall. As such, the implemented method

of situating the outer wall’s towers functions exactly as intended.

Despite this, a possible limitation can be observed when the city is viewed from

overhead, as with Figure 20. It is immediately apparent that the city blocks, as

defined in section 3.2.3, are homogenous squares, each only consisting of a small

number of architectural structures. Without further studies, it is difficult to assess

whether this peculiarity is a result of an error in the implementation, or whether it

derives from a misinterpretation of Vitruvius’ rules, or whether the application is

functioning exactly as intended and this is how Vitruvius intended for an ideal city

to be designed.

5.1.3 BUILDING GENERATION

Section 4.3 contains large amounts of rendered output, demonstrating the

architecture produced by the grammars outlined in section 3.2.5. A large number of

rendered images of the generated Vitruvian temple are included, along with several

images of other notable pieces of generated architecture. Additionally, the rendered

images of the temple are compared to diagrams of the Temple of Portunus, Maison

Carrée, and an illustrator’s interpretation of Vitruvius’ rules, allowing us to make an

analysis of the success of the rendered architecture itself.

Table 5 consists of a set of measurements, detailing the relative ratios of various

architectural elements on each of the four tested temples. We will address the

gathered data on a row-by-row basis.

First, we made note of the column style and portico layout for each temple. Our

temple, as described in section 3.2.5.2, can be described as tetrastyle and Doric. This

contrasts with Maison Carrée and the Temple of Portunus, which can be described as

hexastyle and Corinthian, and tetrastyle and Ionic respectively. Since Warren’s

95

illustrations are based on the descriptions in De Architectura, the illustrations cover a

variety of temple and column styles, so this was noted accordingly.

Next, the podium width to length ratio was measured. Vitruvius recommended that

a temple ought to have a length twice its width (De Architectura IV, 4), and Warren’s

illustrations proved to be perfect in this regard. The other measured temples,

including the rendered temple, also delivered values very close to the one-to-two

ratio.

The temple height to podium width ratio provides a measure for how ‘squashed’ a

temple appears, when viewed from the front. The rendered temple provided the

smallest ratio, indicating that it was the ‘thinnest’ of the measured temples, albeit

only a little more so than the Temple of Portunus. Warren’s illustrated temples

proved to be the widest, although it ought to be noted that we received varying

ratios depending on which of Warren’s illustrations was used; the illustrator

appeared to draw podiums of varying heights and thicknesses, depending on the

context of the drawing.

The cella length to podium length ratio provides a measure of exactly how much of

the podium is covered up by the cella chamber. The rendered temple, Maison Carrée,

and the Temple of Portunus provided nearly identical results in this measure, all

indicating that they had a podium nearly twice the length of the cella. Warren’s

illustrations deviated significantly. We believe this to be because Warren tended to

exclude or shorten the illustrated stairway and bannisters when unnecessary,

creating illustrated temples that could appear too short when measured out of

context.

The cella doorway height to cella height demonstrates the relative height of the cella

entranceway. The two real-life temples provided identical ratios for this measure,

and the value gathered from Warren’s illustrations was also quite similar. However,

the rendered temples’ ratio does not match the others. We believe that the source of

this discrepancy stems from an erroneous interpretation of Vitruvius’ writings. In the

cella subsection of section 3.2.5.2, we asserted that the ratio of the cella doorway

height to the entire cella height ought to be approximately 2.5 parts to 3.5 parts,

giving a cella doorway height to cella height ratio of 1:1.4. This value was derived

from a misunderstanding of which architectural parts were included in Vitruvius’

measurements. With the proper elements included, we can expect to reach a value

much closer to the 1:1.26 ratio produced by the real-life temples. Amusingly, we are

not the first readers of Vitruvius to make this mistake; one scholar made note of

having difficulty deciphering exactly what was included in Vitruvius’ 2.5 to 3.5 ratio

(Brenders, 2014).

96

The column shaft height to full column height ratio indicates how much of the

column is taken up by the base and capital. The temples all offered fairly different

values for this measure, but this was to be expected since three types of column

orders were involved. However, there is a small discrepancy between the rendered

temple and Warren’s illustrations, which should not be the case since the two are of

the same Doric order. We attribute this discrepancy to our inclusion of the square

column base, which was described as optional by Vitruvius. If it is excluded, we

would expect the discrepancy in the ratio between the two to become negligible.

The column diameter to shaft height ratio gives an approximate value of a column’s

relative thickness. Again, the measured ratios differ due to the different types of

columns measured. As one would expect, the Ionic and Corinthian columns of the

Temple of Portunus and Maison Carrée had larger ratios, indicating skinnier shafts

than the stockier Doric columns of the rendered temple and Warren’s illustrations.

The two Doric temples gave very similar measurements, indicating that the rendered

temple’s Doric columns are at least accurate in this regard.

Put together, a picture is formed of the overall accuracy of the rendered temple, and

by extension the accuracy of our proposed shape grammar syntax. Discrepancies

exist between the measurements derived from our renderings and the measurements

drawn from Warren’s drawings, but many of these discrepancies are small enough to

be dismissed as negligible mistakes made during the measuring process, or

differences stemming from subtle ornate details in the measured images.

The overlayed comparison of one Warren’s illustrations over the rendered output

provides evidence of this (Figure 29); even though the silhouettes of the two images

differ, there is a striking similarity between the two, and the significant architectural

elements, such as the column dimensions and intercolumniation space, align

perfectly. In this regard, the shape grammar must be considered to be successful.

97

5.1.4 APPLICATION EFFICIENCY AND LIMITATIONS

In section 4.4, measurements were provided of the number of buildings generated by

the application across a set of city sizes, along with accompanying polygon counts

and framerate readings. The application was demonstrated to be capable of

producing cities within the measurements typically found in the historical record; a

city radius between 150 and 1050 meters could be generated by the application,

effectively encompassing the radius of a newly-founded Roman city which typically

measured between 318 to 637 meters.

Also of note is the fact that the application proved capable of maintaining a high

framerate, even when large numbers of polygons were on-screen. With 293 buildings

totalling 257074 polygons in a single environment, the application maintained a

framerate of 150 frames per second (Table 6). A high framerate is not considered to

be the sole indicator that a simulation is capable of running in real-time, but given

how the running application proved responsive to navigational commands under the

most strenuous of tests, we assert that this application meets the criteria for a real-

time simulation.

5.2 DISCUSSION

In the Aims and Objectives section, we outlined a set of criteria for the purpose of

ensuring that the designed formal grammar would be usable and appropriate. With

the context of the implemented models and statistical results, we can make an

assessment on the degree to which the criteria were met, and consequently we can

judge the success of our overarching framework.

5.2.1 FIRST OBJECTIVE

The first objective was to provide a set of procedural methods, functions, or

techniques for the purpose of describing the various elements of the urban

environment.

This was accomplished to a high level of detail. A large portion of our

implementation section described the process behind the choice of various formulae

and techniques. Particular attention was paid to the positioning of the city upon a

given heightmap, and the allocation of building allotments within the city

98

boundaries. The results of this, and the surrounding discussion of what methods

were the most successful, were documented under the City Position and City Layout

subsections.

5.2.2 SECOND OBJECTIVE

The second objective laid out a set of criteria that we aimed to adhere to in order to

produce a usable and deterministic shape grammar syntax.

We proposed that the grammar must be specific and precise. This target has been

met, as demonstrated through the results of Table 5. The images of our rendered

temple and the illustrator’s interpretation of Vitruvian architecture are remarkably

similar. We identified discrepancies between the two, but these are likely to have

stemmed from mistakes in the measuring process, not errors stemming from the

shape grammar itself. For all practical intents and purposes, we discovered that the

production rules written for the Vitruvian temple created rendered results that

matched the prototypical structures with a desirable level of precision.

We proposed that the grammar must be flexible enough to encompass a wide variety

of architecture. This criterion was effectively demonstrated through the range of

architectural elements that were produced with the grammar rules. For example, the

grammar proved capable of defining the curved surfaces of columns, the repeating

nature of windows, and the semi-stochastic nature of building dimensions without

difficulty. The grammar was not used to define certain details, such as the leaves

upon a Corinthian capital, but we do not consider this to be a limitation of the

grammar as much as a limitation on our time to implement such details. We did not

observe any significant restrictions of the grammar’s capabilities within the scope of

this project.

We proposed that the grammar must be free of ambiguity in order to ensure that the

output results are deterministic. This criterion was sufficiently met, as demonstrated

by the fact that, where desired, implemented grammars were capable of returning

the same model data on multiple runs of the application. Some may argue that the

implementation of randomness in some of the architecture implies that some of the

grammars are non-deterministic by definition, but this is not wholly accurate. There

is a clear distinction between a formal grammar that is non-deterministic due to

ambiguity arising from multiple unclarified derivations, and a formal grammar that

is non-deterministic due to derivations being selected through a randomly generated

number. We observed no ambiguities that arose from the grammar syntax itself, and

consequently we consider our proposed grammar to be effectively deterministic.

99

We proposed that the grammar ought to be comprehensible on a human level. This

criterion is open to some degree of subjectivity. Although we believe the system of

superscript and subscript attachments to symbols to be legible once explained, it is

undeniable that the grammar rules become harder to read and interpret as they grow

in size. User tests would be one effective way of measuring whether or not the

grammar syntax is comprehensible, both from the perspective of an industry

professional, and from the perspective of a layperson.

With these criteria in mind, we believe the shape grammar syntax proposed and

defined in section 3.2.5 to be novel, functional, and purposeful. Additionally, we

believe the other procedural methods defined in this thesis to be integral to the

success of the application, even if not wholly novel or noteworthy in their own right.

Consequently, we consider the application to be a cohesive collection of successfully

implemented grammars, capable of procedurally generating a digital Vitruvian city

with a strong degree of accuracy and detail.

5.2.3 THIRD AND FOURTH OBJECTIVES

The third objective required the demonstrated use of our grammar framework to

interpret the various architectural instructions written by Vitruvius. The fourth

objective was to describe the process of converting the procedural rules and

grammar framework into a digitally modelled city.

These objectives can perhaps both be considered fulfilled through the documented

implementation itself. Section 3.2.5 extensively details the process by which

descriptive rules were adapted into formal grammar rulesets. Section 7.2,

BuildCity.cpp, stands as a demonstration of the way in which these rules were

adapted into programmed code.

We began this thesis by asking whether a framework could be designed for the

purpose of converting a set of historical, architectural descriptions into a digital,

modelled format. It would be presumptuous to consider this thesis a unified take on

the question, especially considering the vastness and diversity of architectural

writings available. However, we believe that the subject has been explored to a

degree that we feel comfortable asserting that we have developed such a framework

successfully.

100

5.3 PROJECT LIMITATIONS

Although many of the sections on architecture were covered in depth, some areas of

Vitruvius’ De Architectura were not touched upon within the scope of the project.

In some cases, the material was deemed irrelevant because it had little to do with

architecture. For example, book IX of De Architectura covers a variety of subjects,

from wrestling, to Pythagorean mathematics, to astronomy. Although the book is of

academic significance, it only has a tenuous link to the construction of Roman cities,

and as such the material had no place in the scope of this project.

Other sections of De Architectura were relevant to the subject of architecture, but

ignored due to their specificity or detail. These sections would require a significant

degree of attention and time to be thoroughly and accurately implemented. For

example, in book VI Vitruvius details the considerations that must be made for the

choice of building materials in the construction of a house, with regards to the local

climate and culture. This is entirely related to the subject of architecture, and the

material described could theoretically be incorporated into a virtual building by way

of selectively applied custom textures. However, designing and implementing

functions for the purpose of generating or selecting textures would be a time-

consuming task that could detract from the attention given to the architecture itself.

Section 4.4, Application Efficiency and Limitations, listed the limitations that were

reached with the developed application itself. Most notably, the application was

incapable of generating cities with a city radius above 1050 meters or below 150

meters. Although this was acceptable for the purpose of the application, it can

certainly be considered a limitation of the program.

Some of the procedural methods implemented in this project were entirely

appropriate within the context of Vitruvian cities, but would be of limited use if

applied to other scenarios. For example, in section 3.2.3 a method of defining the

gridded road system was described. This was a simple solution that was befitting of

the specifications laid out by Vitruvius, and allowed for a certain degree of historical

accuracy. However, the solution would be unsuitable if, for example, a user wished

to recreate a city with a radial road system. This does not demonstrate a failure of the

application, but it does indicate that some of the described methods have not been

designed with flexibility or universal purpose in mind. In this regard, the system can

be considered limited.

One other limitation of the project that we encountered is that of user fallibility. In

section 5.1.3, we explained one situation in which a grammar production rule

worked as intended, but the produced results were inconsistent with what was

101

desired. This was attributed to a misinterpretation of the writings on which the

grammar rule was based. This does not demonstrate a limitation of the grammar

system, but it can be viewed as a limitation of our chosen implementation pipeline; if

a more automated or systematic method of inputting grammar rules were adopted, it

is possible that the chance of an error arising would be minimised.

5.4 PROJECT CONTRIBUTIONS

Having established what aims have been fulfilled within the context of this thesis, we

can directly address what we believe to have been contributed to the academic body

of knowledge.

The largest contribution from this thesis is the overarching framework. This takes the

form of a set of techniques and methodologies that were utilized in the process of

adapting historical descriptions into digital models.

Perhaps the most significant part of this framework is the novel shape grammar. The

grammar format, as described in section 3.2.5, is designed to be human-readable and

writeable. As such, the rules pertaining to the various Roman structures can be

appropriated, modified, and implemented into a separate modelling or rendering

application with relative ease.

Additionally, the rules of the shape grammar have been clarified to the point where

we believe that, with little effort, a person could describe all manner of architecture

by following the methodology presented in this thesis. This may prove to be of

particular use to historians wishing to document the shape of a structure in a

deterministic fashion, or for architects wishing to describe a structure in a format that

can be understood by a programmer versed in procedural generation.

Finally, we have contributed a digital model of a Vitruvian city. Although it would

probably be inaccurate to say that this is the first digital model of a Vitruvian city, we

feel confident asserting that this is the first to have been created wholly through

procedural methods. The city model is in a format capable of being easily converted

and read by a variety of applications and, as demonstrated through our application,

it can be navigated on a pedestrian level. The model itself may be of academic

significance to historians, architects, and other scholars wishing to see or utilise a 3D

representation of Vitruvian architecture.

102

5.5 FUTURE WORK

The project has the potential to be expanded upon in several regards.

First, the study into the adaptation of Vitruvius’ writing into procedural grammars

could be furthered. Vitruvian structures that were not considered to be in the scope

of this project, such as aqueducts and harbours, have the potential to be written with

the designed shape grammar syntax, and then generated as digital models. Some

areas, such as Vitruvius’ description of columns, are detailed and complex enough to

warrant entire further studies in themselves. With enough detail, an entire

procedural map of Vitruvius’ work could be created, which could prove to be of

great historical and academic significance.

Second, the comparison of the rendered output to the underlying grammars and

rules, as described in section 4, could be furthered. Out of all the generated

architecture, only the Vitruvian temple was thoroughly analysed and compared. By

providing thorough comparisons of the other pieces of architecture, a greater

measurement of the application’s overall accuracy could be drawn, and consequently

the success of the project could be more thoroughly evaluated.

Finally, the formal grammar syntax described in section 3.2.5 has the potential to be

refined and expanded upon, to the point where it could be considered a viable

method of describing a variety of architectural structures within the fields of historic

recreation, architectural design, and urban planning. Feedback from user testing

would be fundamental in the identification of areas where the grammar syntax needs

adjustment. Improvements could then be made to create a full grammar system that

is robust and flexible enough to accommodate for every potential use case.

With enough improvements, the grammar syntax may even be versatile enough to

describe all manner of two and three dimensional geometric shapes in a clear and

unambiguous way, not just architectural forms. Such a shape grammar would not be

the first of its kind, but we believe it would be novel in its design, format, and

underlying purpose. The grammar’s unique attributes would ensure that it fulfils a

necessary and currently unfilled niche in the field of procedural generation.

103

6 BIBLIOGRAPHY

Addison, P. S., 1997. Fractals and Chaos - An Illustrated Course. s.l.:Institute of Physics

Publishing.

Alexander, C. et al., 1977. A Pattern Language. Oxford University Press, New York.

Brenders, F., 2014. Vitruvius: De architectura Libri X. [Online]

Available at: http://www.vitruvius.be/boek4h6.htm

[Accessed July 2014].

Bullmore, E. T. et al., 1999. Global, voxel, and cluster tests, by theory and

permutation, for a difference between two groups of structural MR images of the

brain. Medical Imaging, 18(1), pp. 32-42.

Cheung, G., Kanade, T., Bouguet, J.-Y. & Holler, M., 2000. A real time system for

robust 3D voxel reconstruction of human motions. Computer Vision and Pattern

Recognition, Volume 2, pp. 714-720.

Cui, J., Chow, Y. W. & Zhang, M., 2011. A Voxel-based Octree Construction

Approach for Procedural Cave Generation. IJCSNS International Journal of Computer

Science and Network Security, 11(6), pp. 160-168.

De Malsche, K., De Boodt, J., Joos, E. & Ongena, O., 1983. Mathematical Properties in

Ancient Theatres and Amphitheatres. [Online]

Available at: http://mathsforeurope.digibel.be/amphi.htm

[Accessed 2 March 2014].

Downing, F. & Flemming, U., 1981. The Bungalows of Buffalo. Environment and

Planning B.

Flemming, U., 1987. More than the Sum of its Parts: the Grammar of Queen Anne

Houses. Environment and Planning.

Fletcher, B., 1921. A History of Architecture on the Comparative Method. Sixth edition ed.

New York: Charles Scribner's Sons.

Fournier, A., Fussell, D. & Carpenter, L., 1982. Computer Rendering of Stochastic

Models. ACM Siggraph.

Goncalves, A., Magalhaes, L., Moura, J. & Chalmers, A., 2009. High Dynamic Range -

A Gateway for Predictive Ancient Lighting. Journal on Computing and Cultural

Heritage, 2(1).

104

Greuter, S., Parker, J., Stewart, N. & Leach, G., 2003. Real-time Procedural Generation

of 'Pseudo Infinite' Cities. Graphite, pp. 87-95.

Greuter, S., Stewart, N., Parker, J. & Leach, G., 2003. Undiscovered Worlds – Towards

a Framework for Real-Time Procedural World Generation. MelbourneDAC.

Groenewegen, S., Smelik, R. M., Kraker, K. J. d. & Bidarra, R., 2009. Procedural City

Layout Generation Based on Urban Land Use Models. Proceedings of Eurographics.

Gutierrez, D., Sundstedt, V., Gomez, F. & Chalmers, A., 2008. Modeling Light

Scattering for Virtual Heritage. Journal on Computing and Cultural Heritage, 1(2).

Hausdorff, F., 1972. Dictionary of Scientific Biography.

Hebbert, M. & Jankovic, V., 2009 . Street Canyons and Canyon Streets: the strangely

separate histories of urban climatology and urban design. Climate Science in Urban

Design.

Huang, J. et al., 2009. An Evaluation of Shape/Split Grammars for Architecture, s.l.:

University of Waterloo.

Jones, M. W., 2000. Principles of Roman Architecture. s.l.:Yale University Press.

Kelly, G. & McCabe, H., 2006. A Survey of Procedural Techniques for City

Generation. ITB Journal, Volume 14, pp. 87-130.

Kim, Z., Huertas, A. & Nevatia, R., 2000. Automatic Description of Complex

Buildings with Multiple Images. 5th IEEE Workshop on Applications of Computer Vision.

Koch, H. V., 1904. Sur une courbe continue sans tangente obtenue par une

construction géométrique élémentaire.

Laycock, R. G. & Day, A. M., 2003. Automatically Generating Large Urban

Environments Based on the Footprint Data of Buildings. Proceedings of the ACM

Symposium on Solid and Physical Modeling.

Laycock, R. G., Drinkwater, D. & Day, A. M., 2008. Exploring Cultural Heritage Sites

Through Space and Time. ACM Journal on Computing and Cultural Heritage, 1(2).

Lechner, T. et al., 2004. Procedural Modeling of Land Use in Cities, Illinois:

Northwestern University.

Lesmoir-Gordon, N., Rood, W. & Edney, R., 2000. Introducing Fractal Geometry.

s.l.:Cambridge.

Lindenmayer, A., 1968. Mathematical models for Cellular Interaction in

Development.

105

Lluch, J., Camahort, E. & Vivo, R., 2003. Procedural Multiresolution for Plant and

Tree Rendering. AFRIGRAPH.

Lynch, K., 1960. The Image of the City. Camebridge: MIT Press.

Mandelbrot, B., 1967. How Long is the Coast of Britain? Statistical Self-Similarity and

Fractional Dimension. Science.

Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. s.l.:W.H. Freeman & Co..

Mateo-Babiano, I. & Ieda, H., 2005. Street Space Renaissance: A Spatio-Historical

Survey of two Asian Cities. Journal of the Eastern Asia Society for Transportation Studies,

Volume 6.

Miller, G. S. P., 1986. The Definition and Rendering of Terrain Maps. ACM Siggraph.

Mueller, P. et al., 2006. Procedural Modeling of Buildings. ACM Transactions on

Graphics.

Muller, P., Vereenooghe, T., Ulmer, A. & Van Gool, L., 2005. Automatic

reconstruction of roman housing architecture. Recording, Modeling and Visualization of

Cultural Heritage.

Musgrave, F. K., Kolb, C. E. & Mace, R. S., 1989. The synthesis and rendering of

eroded fractal terrains.. ACM SIGGRAPH Computer Graphics, 23(3), pp. 41-50.

Oppenheimer, P. E., 1986. Real time design and animation of fractal plants and trees.

SIGGRAPH '86 Proceedings of the 13th annual conference on Computer graphics and

interactive techniques , 20(4), pp. 55-64.

Paden, R., 2001. Values and Planning: The Argument from Renaissance Utopianism.

Ethics, Place & Environment: A Journal of Philosophy & Geography, 4(1).

Parish, Y. I. H. & Muller, P., 2001. Procedural Modeling of Cities. ACM Siggraph.

Perlin, K., 1985. An Image Synthesizer. ACM Siggraph Computer Graphics, 19(3), pp.

287-296.

Pickover, C. A., 2009. The Math Book: From Pythagoras to the 57th Dimension, 250

Milestones in the History of Mathematics. s.l.:Sterling Publishing Company Inc.

Pollefeys, M. et al., 2003. Visual Modeling with a Hand-Held Camera. International

Journal on Computer Vision, 54(3).

Prusinkiewicz, P. & LindenMayer, A., 1990. The Algorithmic Beauty of Plants.

Springer-Verlag.

106

Remondino, F., Girardi, S., Rizzi, A. & Gonzo, L., 2009. 3D Modeling of Complex and

Detailed Cultural Heritage Using Multi-Resolution Data. Journal on Computing and

Cultural Heritage, 2(1).

Rhoades, J. et al., 1992. Real-Time Procedural Textures. I3D Proceedings of the 1992

symposium on Interactive 3D graphics.

Romano, D. G., 2003. City Planning, Centuriation, and Land Division in Roman Corinth:

Colonia Laus Iulia Corinthiensis & Colonia Iulia Flavia Augusta Corinthiensis., s.l.:

American School of Classical Studies at Athens.

Schpok, J., Simons, J., Ebert, D. S. & Hansen, C., 2003. A real-time cloud modeling,

rendering, and animation system. ACM Siggraph/Eurographics, pp. 160-166.

Seitz, S. & Dyer, C., 1997. Photorealistic scene reconstruction by voxel coloring.

Computer Vision and Pattern Recognition, pp. 1067-1073.

Stava, O. et al., 2010. Inverse Procedural Modeling by Automatic Generation of L-

Systems. Eurographics, 29(2).

Stiny, G., 1975. Pictorial and Formal Apects of Shapes and Shape Grammars.

Birkhauser, Basel, Switzerland.

Stiny, G., 1980. Introduction to shape and shape grammars. Environment and Planning

B, Volume 7.

Susaki, J., 2013. Knowledge-Based Modeling of Buildings in Dense Urban Areas by

Combining Airborne LiDAR Data and Aerial Images. Remote Sensing, 5(11), pp. 5944-

5968.

Trochet, H., 2009. A History of Fractal Geometry. [Online]

Available at: http://www-history.mcs.st-and.ac.uk/HistTopics/fractals.html

[Accessed 21 08 2012].

Vanegas, C. A. et al., 2009. Modeling the Appearance and Behaviour of Urban

Spaces. Proceedings of Eurographics.

Vegetius, ~390. Epitoma Rei Militaris. s.l.:s.n.

Vitruvius & Morgan, T. b. M. H., 1914. The Ten Books on Architecture. s.l.:Harvard

University Press.

Vitruvius, n.d. De Architectura. s.l.:s.n.

Wonka, P., Wimmer, M., Sillion, F. & Ribarsky, W., 2003. Instant Architecture.

Siggraph.

107

Yong, L., Mingmin, Z., Yunliang, J. & Haiying, Z., 2012. Improving Procedural

Modeling with Semantics in Digital Architectural Heritage. Computer and Graphics,

36(3), pp. 178-184.

108

7 APPENDIX

Sections 7.1 and 7.2 are copies of the two most significant code files used in the

development of the application: CityMain.cpp, the “main” file that handled the

building allocation, road generation, and rendering process; and BuildCity.cpp,

which contained the implemented shape grammars.

Sections 7.3 and 7.4 are copies of XFilePart1.txt and XFilePart2.txt, the two files that

were used in process of exporting the virtual city data to a .x model file.

For a comprehensive copy of the code files used, along with the accompanying

textures, assets, and a compiled version of the application, please see

www.sketchylogic.com/romancity.

For a video of the application running, please see

https://www.youtube.com/watch?v=OmZBYUujDyY

109

7.1 CITYMAIN.CPP

//Necessary includes

#include "d3dApp.h"

#include "DirectInput.h"

#include "BuildCity.h"

#include <crtdbg.h>

#include "GfxStats.h"

#include <list>

#include <ctime>

#include "Terrain.h"

#include "Camera.h"

#include "Water.h"

#include "Sky.h"

#include "Vertex.h"

using namespace std;

//Set up a prototype object structure that contains a mesh and the

necessary textures.

struct Object3D

{

 Object3D()

 {

 mesh = 0;

 }

 ~Object3D()

 {

 ReleaseCOM(mesh);

 for(UINT i = 0; i < textures.size(); ++i)

 ReleaseCOM(textures[i]);

 }

 ID3DXMesh* mesh;

 std::vector<Mtrl> mtrls;

 std::vector<IDirect3DTexture9*> textures;

 AABB box;

};

//Set up the necessary build functions and D3D-specific rendering

objects.

class RomanCity : public D3DApp

{

public:

 RomanCity(HINSTANCE hInstance, std::string winCaption,

D3DDEVTYPE devType, DWORD requestedVP);

 ~RomanCity();

 bool checkDeviceCaps();

 void onLostDevice();

 void onResetDevice();

 void updateScene(float dt);

 void drawScene();

 void drawObject(Object3D& obj, const D3DXMATRIX& toWorld);

 void buildTrees();

 void MakeAnXFile();

 void buildRoads();

 void buildCity();

110

 void buildFX();

private:

 GfxStats* mGfxStats;

 Terrain* mTerrain;

 Water* mWater;

 float mTime;

 Sky* mSky;

 ID3DXMesh* mSceneMesh;

 D3DXMATRIX mSceneWorld;

 D3DXMATRIX mSceneWorldInv;

 Object3D mRome;

 D3DXMATRIX mRomeWorld;

 Object3D mTrees[4];

 static const int NUM_TREES = 30;

 D3DXMATRIX mTreeWorlds[NUM_TREES];

 Object3D mBuildings[4];

 static const int NUM_BUILDS = 30;

 D3DXMATRIX mBuildWorlds[NUM_BUILDS];

 std::vector<Mtrl> mSceneMtrls;

 std::vector<IDirect3DTexture9*> mSceneTextures;

 IDirect3DTexture9* mSceneNormalMaps[7];

 IDirect3DTexture9* mWhiteTex;

 ID3DXEffect* mFX;

 D3DXHANDLE mhTech;

 D3DXHANDLE mhWVP;

 D3DXHANDLE mhWorldInv;

 D3DXHANDLE mhEyePosW;

 D3DXHANDLE mhWorld;

 D3DXHANDLE mhTex;

 D3DXHANDLE mhMtrl;

 D3DXHANDLE mhLight;

 D3DXHANDLE mhNormalMap;

 DirLight mLight;

 bool mFreeCamera;

};

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance,

 PSTR cmdLine, int showCmd)

{

 #if defined(DEBUG) | defined(_DEBUG)

 _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF |

_CRTDBG_LEAK_CHECK_DF);

 #endif

 srand(time(0));

 // Set up camera and viewpoint

 Camera camera;

 gCamera = &camera;

 RomanCity app(hInstance, "Roman City", D3DDEVTYPE_HAL,

D3DCREATE_HARDWARE_VERTEXPROCESSING);

111

 gd3dApp = &app;

 DirectInput di(DISCL_NONEXCLUSIVE|DISCL_FOREGROUND,

DISCL_NONEXCLUSIVE|DISCL_FOREGROUND);

 gDInput = &di;

 return gd3dApp->run();

}

RomanCity::RomanCity(HINSTANCE hInstance, std::string winCaption,

D3DDEVTYPE devType, DWORD requestedVP)

: D3DApp(hInstance, winCaption, devType, requestedVP)

{

 InitAllVertexDeclarations();

 mGfxStats = new GfxStats();

 SetCurrentDirectory("Art/");

 mFreeCamera = 0;

 //Set up skybox

 mSky = new Sky("newsky.dds", 10000.0f);

 //Set up terrain, with appropriate textures

 mTerrain = new Terrain(513, 513, 4.0f, 4.0f,

 "coastMountain5132.raw", "newgrass.jpg", "dirt.dds",

 "cobble3.jpg", "blendnew.png", 0.65f, 0.0f);

 //Set up and move the water as appropriate

 D3DXMATRIX waterWorld;

 D3DXMatrixTranslation(&waterWorld, 0.0f, 50.0f, 0.0f);

 //Set up lighting

 mLight.dirW = D3DXVECTOR3(0.0f, -2.0f, -1.0f);

 D3DXVec3Normalize(&mLight.dirW, &mLight.dirW);

 mLight.ambient = D3DXCOLOR(0.4f, 0.4f, 0.4f, 1.0f);

 mLight.diffuse = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f);

 mLight.spec = D3DXCOLOR(0.6f, 0.6f, 0.6f, 1.0f);

 Mtrl waterMtrl;

 waterMtrl.ambient = D3DXCOLOR(0.26f, 0.23f, 0.3f, 0.90f);

 waterMtrl.diffuse = D3DXCOLOR(0.26f, 0.23f, 0.3f, 0.90f);

 waterMtrl.spec = 1.0f*WHITE;

 waterMtrl.specPower = 64.0f;

 Water::InitInfo waterInitInfo;

 waterInitInfo.dirLight = mLight;

 waterInitInfo.mtrl = waterMtrl;

 waterInitInfo.vertRows = 128;

 waterInitInfo.vertCols = 128;

 waterInitInfo.dx = 10.0f;

 waterInitInfo.dz = 10.0f;

 waterInitInfo.waveMapFilename0 = "wave0.dds";

 waterInitInfo.waveMapFilename1 = "wave1.dds";

 waterInitInfo.waveMapVelocity0 = D3DXVECTOR2(0.05f, 0.08f);

 waterInitInfo.waveMapVelocity1 = D3DXVECTOR2(-0.02f, 0.1f);

 waterInitInfo.texScale = 32.0f;

112

 waterInitInfo.toWorld = waterWorld;

 mWater = new Water(waterInitInfo);

 mWater->setEnvMap(mSky->getEnvMap());

 //Call the functions to generate the appropriate tree, road,

and building models

 buildTrees();

 //buildRoads();

 buildCity();

 // Initialize camera.

 gCamera->pos().y = 3.0f;

 gCamera->pos().z = -10.0f;

 gCamera->setSpeed(10.0f);

 mGfxStats->addVertices(mSceneMesh->GetNumVertices());

 mGfxStats->addTriangles(mSceneMesh->GetNumFaces());

 mGfxStats->addVertices(mSky->getNumVertices());

 mGfxStats->addTriangles(mSky->getNumTriangles());

 buildFX();

 onResetDevice();

}

RomanCity::~RomanCity()

{

 delete mGfxStats;

 delete mSky;

 ReleaseCOM(mFX);

 ReleaseCOM(mSceneMesh);

 for(UINT i = 0; i < mSceneTextures.size(); ++i)

 ReleaseCOM(mSceneTextures[i]);

 ReleaseCOM(mWhiteTex);

 ReleaseCOM(mSceneNormalMaps[0]);

 ReleaseCOM(mSceneNormalMaps[1]);

 delete mTerrain;

 delete mWater;

 DestroyAllVertexDeclarations();

}

//Function that checks for proper shader support

bool RomanCity::checkDeviceCaps()

{

 D3DCAPS9 caps;

 HR(gd3dDevice->GetDeviceCaps(&caps));

 if(caps.VertexShaderVersion < D3DVS_VERSION(2, 0))

 return false;

 if(caps.PixelShaderVersion < D3DPS_VERSION(2, 0))

 return false;

 return true;

}

113

void RomanCity::onLostDevice()

{

 mGfxStats->onLostDevice();

 mTerrain->onLostDevice();

 mWater->onLostDevice();

 mSky->onLostDevice();

 HR(mFX->OnLostDevice());

}

void RomanCity::onResetDevice()

{

 mGfxStats->onResetDevice();

 mSky->onResetDevice();

 mTerrain->onResetDevice();

 mWater->onResetDevice();

 HR(mFX->OnResetDevice());

 float w = (float)md3dPP.BackBufferWidth;

 float h = (float)md3dPP.BackBufferHeight;

 gCamera->setLens(D3DX_PI * 0.25f, w/h, 1.0f, 5000.0f);

}

//Update loop - this is called every tick

void RomanCity::updateScene(float dt)

{

 //Update stats as necessary. This is used for calculating

framerates, poly counts etc.

 mTime += dt;

 mGfxStats->update(dt);

 gDInput->poll();

 //Check key inputs and change camera mode if necessary

 if(gDInput->keyDown(DIK_N))

 mFreeCamera = false;

 if(gDInput->keyDown(DIK_M))

 mFreeCamera = true;

 if(mFreeCamera)

 {

 gCamera->update(dt, 0, 0);

 }

 else

 {

 gCamera->update(dt, mTerrain, 2.3f);

 }

 static float time = 0.0f;

 time += dt;

 mLight.dirW.x = 2.0f;

 mLight.dirW.z = 3.0f;

 mLight.dirW.y = -1.0f;

 mWater->update(dt);

 D3DXVec3Normalize(&mLight.dirW, &mLight.dirW);

}

void RomanCity::drawScene()

{

 HR(gd3dDevice->BeginScene());

114

 mSky->draw();

 HR(mFX->SetValue(mhLight, &mLight, sizeof(DirLight)));

 HR(mFX->SetMatrix(mhWVP, &(mSceneWorld*gCamera->viewProj())));

 HR(mFX->SetValue(mhEyePosW, &gCamera->pos(),

sizeof(D3DXVECTOR3)));

 UINT numPasses = 0;

 HR(mFX->Begin(&numPasses, 0));

 HR(mFX->BeginPass(0));

 for(UINT j = 0; j < mSceneMtrls.size(); ++j)

 {

 HR(mFX->SetValue(mhMtrl, &mSceneMtrls[j], sizeof(Mtrl)));

 // Apply textures when available. Otherwise, use plain

white.

 if(mSceneTextures[j] != 0)

 {

 HR(mFX->SetTexture(mhTex, mSceneTextures[j]));

 }

 else

 {

 HR(mFX->SetTexture(mhTex, mWhiteTex));

 }

 HR(mFX->SetTexture(mhNormalMap, mSceneNormalMaps[j]));

 HR(mFX->CommitChanges());

 HR(mSceneMesh->DrawSubset(j));

 }

 //Use alpha mask for trees

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHATESTENABLE, true));

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHAFUNC,

D3DCMP_GREATEREQUAL));

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHAREF, 200));

 // Draw the trees: NUM_TREES/4 of each of the four types.

 for(int i = 0; i < NUM_TREES; ++i)

 {

 if(i < NUM_TREES/4)

 drawObject(mTrees[0], mTreeWorlds[i]);

 else if(i < 2*NUM_TREES/4)

 drawObject(mTrees[1], mTreeWorlds[i]);

 else if(i < 3*NUM_TREES/4)

 drawObject(mTrees[2], mTreeWorlds[i]);

 else

 drawObject(mTrees[3], mTreeWorlds[i]);

 }

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHATESTENABLE, false));

 mTerrain->draw();

 //Draw water last due to alpha blending

 mWater->draw();

 HR(mFX->EndPass());

 HR(mFX->End());

115

 mGfxStats->display();

 HR(gd3dDevice->EndScene());

 HR(gd3dDevice->Present(0, 0, 0, 0));

}

void RomanCity::buildFX()

{

//Get the FX from the appropriate .fx file.

 ID3DXBuffer* errors = 0;

 HR(D3DXCreateEffectFromFile(gd3dDevice, "NormalMap.fx",

 0, 0, D3DXSHADER_DEBUG, 0, &mFX, &errors));

 if(errors)

 MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0);

 mhTech = mFX->GetTechniqueByName("NormalMapTech");

 mhWVP = mFX->GetParameterByName(0, "gWVP");

 mhWorldInv = mFX->GetParameterByName(0, "gWorldInv");

 mhMtrl = mFX->GetParameterByName(0, "gMtrl");

 mhLight = mFX->GetParameterByName(0, "gLight");

 mhEyePosW = mFX->GetParameterByName(0, "gEyePosW");

 mhWorld = mFX->GetParameterByName(0, "gWorld");

 mhTex = mFX->GetParameterByName(0, "gTex");

 mhNormalMap = mFX->GetParameterByName(0, "gNormalMap");

 HR(mFX->SetMatrix(mhWorldInv, &mSceneWorldInv));

 HR(mFX->SetTechnique(mhTech));

}

void RomanCity::drawObject(Object3D& obj, const D3DXMATRIX& toWorld)

{

 //Use AABB to transform the object, and draw if visible

 AABB box;

 obj.box.xform(toWorld, box);

 if(gCamera->isVisible(box))

 {

 HR(mFX->SetMatrix(mhWVP, &(toWorld*gCamera-

>viewProj())));

 D3DXMATRIX worldInvTrans;

 D3DXMatrixInverse(&worldInvTrans, 0, &toWorld);

 D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans);

 HR(mFX->SetMatrix(mhWorldInv, &worldInvTrans));

 HR(mFX->SetMatrix(mhWorld, &toWorld));

 for(UINT j = 0; j < obj.mtrls.size(); ++j)

 {

 HR(mFX->SetValue(mhMtrl, &obj.mtrls[j],

sizeof(Mtrl)));

 if(obj.textures[j] != 0)

 {

 HR(mFX->SetTexture(mhTex, obj.textures[j]));

 }

 else

 {

116

 HR(mFX->SetTexture(mhTex, mWhiteTex));

 }

 HR(mFX->CommitChanges());

 HR(obj.mesh->DrawSubset(j));

 }

 }

 HR(mFX->SetMatrix(mhWorldInv, &mSceneWorldInv));

}

//City generation function

void RomanCity::MakeAnXFile()

{

 //VARIABLE DEFINITION

 BuildCity NewCity;

 int numcount;

 double squaret;

 numcount = 0;

 float td = 5; //city road detail

 float rl = 0.2; //road height

 int citysize = 200; //This is the variable used for adjusting

the entire city circumference.

 //Add the most significant central structures

 NewCity.AddTemple(2,4,1.7+(mTerrain->getHeight(5, 5)));

 NewCity.AddForum(0,-20,2.2+(mTerrain->getHeight(0, -20)));

 NewCity.AddWall(citysize+20,mTerrain->getHeight(0, 0));

 NewCity.AddAmphitheater(100,-104,(mTerrain-

>getHeight(55,64)),14);

 //Add Paving

 for (int i = -citysize; i < citysize; i = i+td){

 for (int j = -citysize; j < citysize; j= j+td){

 squaret = (i+5)*(i+5)+(j+5)*(j+5);

 if (sqrt(squaret) < citysize)

 {

 //AddPoly(i+td,rl+(mTerrain->getHeight(i+td,

-j)),j,i,rl+(mTerrain->getHeight(i, -j)),j,i+td,rl+(mTerrain-

>getHeight(i+td, -j-td)),j+td,i,rl+(mTerrain->getHeight(i, -j-

td)),j+td,0,1,0);

 }

 }

 }

 D3DXMATRIX S, T;

 int v;

 v=0;

 float treeScale = GetRandomFloat(0.15f, 0.25f);

 //Add buildings

 for (int i = -citysize; i < citysize; i= i+20){

 for (int j = -citysize; j < citysize; j= j+20){

 if ((i == 0 && j == 0)||(i == 0 && j == -20)||(i >

60 && j < -80)){

 //Unavailable land well outside the city

walls. Do nothing

 } else {

 squaret = (i+5)*(i+5)+(j+5)*(j+5);

 if (sqrt(squaret) < (citysize*0.8))

117

 {

 //Generate the appropriate building

type for each grid square.

 int buildtype = rand()%7;

 int tempwi = rand()%4;

 tempwi = 3;

 int tempzi = rand()%4;

 tempzi = 3;

 float heighest = mTerrain-

>getHeight(i,-j);

 if (mTerrain->getHeight(i+tempwi+4,-j-

tempzi-4) > heighest) { heighest = mTerrain->getHeight(i+tempwi+4,-j-

tempzi-4);}

 if (mTerrain->getHeight(i+tempwi+4,-j)

> heighest) { heighest = mTerrain->getHeight(i+tempwi+4,-j);}

 if (mTerrain->getHeight(i,-j-tempzi-4)

> heighest) { heighest = mTerrain->getHeight(i,-j-tempzi-4);}

 switch(buildtype)

 {

 case 0:

 NewCity.AddBuilding(i,j,tempwi +

4,tempzi + 4,rand()%2 + 1, 1.7+heighest,rand()%2);

 break;

 case 1:

 NewCity.AddBuilding(i,j,tempwi +

4,tempzi + 4,rand()%2 + 1, 1.7+heighest,rand()%2);

 break;

 case 2:

 NewCity.AddCourtyard(i,j,5,5,1.7+heighest);

 treeScale = GetRandomFloat(0.1f,

0.15f);

 D3DXMatrixTranslation(&T, (i+5),

(mTerrain->getHeight(i+5,-j-5)), (-j-5));

 D3DXMatrixScaling(&S, treeScale,

treeScale, treeScale);

 mTreeWorlds[v] = S*T;

 v++;

 NewCity.AddBuilding(i+10,j,2,7,1,1.7+heighest+0.02,0);

 break;

 case 3:

 NewCity.AddBuilding(i,j,4,7,2,

1.7+heighest,0);

 NewCity.AddBuilding(i+8,j+4,2,3,1, 1.7+heighest,1);

 break;

 case 4:

 NewCity.AddBuilding(i+2,j+4,5,2,1, 1.7+heighest,1);

 NewCity.AddBuilding(i+4,j,3,6,1,

1.7+heighest+0.01,0);

 break;

 case 5:

 NewCity.AddBuilding(i+2,j+2,2,4,1, 1.7+heighest,1);

 NewCity.AddBuilding(i+6,j+4,2,5,2, 1.7+heighest+0.01,0);

 break;

 case 6:

118

 NewCity.AddCourtyard(i+4,j,5,4,1.7+heighest);

 NewCity.AddBuilding(i,j+8,5,2,1,

1.7+heighest+0.01,1);

 break;

 }

 }

 }

 }

 }

 NewCity.MakeAnX("build2.x");

}

//Road set-up

void RomanCity::buildRoads()

{

 const int widearea = 1000;

 int ** RoadPointArray;

 RoadPointArray = new int*[widearea];

 for(int i = 0; i < widearea; i++)

 {

 RoadPointArray[i] = new int[widearea];

 }

 for(int i = 0; i < widearea; i++)

 {

 for(int j = 0; j < widearea; j++)

 {

 RoadPointArray[i][j] = 0;

 }

 }

 const int totalroads = 10;

 int secwidth = 10; //REALLY IMPORTANT VARIABLE

 const float roadheight = 3;

 const float roadwidth = 0.2;

 int currroad = 0;

 //int RoadPointArray[widearea][widearea];

 int RoadJoinArray[totalroads][4];

 BuildCity NewCity;

 int Areacheck = 2;

 double degra = 0.0174532925199433;

 const int MinRoadDist = 2;

 const int MaxRoadDist = 22;

 const int Roadvar = 2;

 int inpx1,inpx2,inpz1,inpz2;

 inpx1 = 0;

 inpz1 = 0;

 inpx2 = 0;

 inpz2 = 0;

 //For every road

 for (int r = 0; r < totalroads; r++){

119

 //Assign the start and end points

 if (r==0) {

 inpx1 = 500;

 inpz1 = 500;

 } else {

 do{

 int temppoint = rand()%r;

 inpx1 = RoadJoinArray[temppoint][2];

 inpz1 = RoadJoinArray[temppoint][3];

 } while (RoadPointArray[inpx1][inpz1] > 3);

 }

 int ranang = (rand()%360);

 //OR

 ranang = 90*(rand()%4);

 int ranndist = MinRoadDist+(rand()%Roadvar);

 inpx2 = floor(inpx1+ranndist*sin(degra*ranang));

 inpz2 = floor(inpz1+ranndist*cos(degra*ranang));

 //If the end node is free

 if (RoadPointArray[inpx2][inpz2] < 4){

 //Check all nearby nodes

 for (int i = 0; i < Areacheck; i++){

 for (int j = 0; j < Areacheck; j++){

 if (RoadPointArray[inpx2-

(Areacheck/2)+i][inpz2-(Areacheck/2)+j] > 0){

 if (RoadPointArray[inpx2-

(Areacheck/2)+i][inpz2-(Areacheck/2)+j] > 3){

 //Abort! Too many

roads at this node.

 r = r-1;

 } else {

 //Change end node to

match cross roads

 inpx2 = (inpx2-

(Areacheck/2)+i);

 inpz2 = (inpz2-

(Areacheck/2)+j);

 }

 }

 }

 }

 //Add to the road arrays

 RoadPointArray[inpx1][inpz1] += 1;

 RoadPointArray[inpx2][inpz2] += 1;

 RoadJoinArray[r][0] = inpx1;

 RoadJoinArray[r][1] = inpz1;

 RoadJoinArray[r][2] = inpx2;

 RoadJoinArray[r][3] = inpz2;

 //Now we do the actual point calculation.

 //Move to centre. A little crude.

 inpx1 -=500;

 inpz1-=500;

 inpz2-=500;

 inpx2-=500;

 //Use trigonometry to adjust road position

 if ((inpx2-inpx1) == 0){inpx1-=1;}

 if ((inpz2-inpz1) == 0){inpz1-=1;}

 float gradz = (inpx2-inpx1)/(inpz2-inpz1);

 float gradx = (inpz2-inpz1)/(inpx2-inpx1);

120

 float newang = atan(double ((inpx2-

inpx1)/(inpz2-inpz1)));

 float tempx1 = inpx1-

(((roadwidth)*cos(newang))-((roadwidth)*sin(newang)));

 float tempz1 = inpz1-

(((roadwidth)*sin(newang))+((roadwidth)*cos(newang)));

 float tempx2 =

inpx1+(((roadwidth)*cos(newang))-((roadwidth)*sin(newang)));

 float tempz2 =

inpz1+(((roadwidth)*sin(newang))+((roadwidth)*cos(newang)));

 float tempx3 = inpx2-

(((roadwidth)*cos(newang))-((roadwidth)*sin(newang)));

 float tempz3 = inpz2-

(((roadwidth)*sin(newang))+((roadwidth)*cos(newang)));

 float tempx4 =

inpx2+(((roadwidth)*cos(newang))-((roadwidth)*sin(newang)));

 float tempz4 =

inpz2+(((roadwidth)*sin(newang))+((roadwidth)*cos(newang)));

 NewCity.AddPoly(secwidth*tempx1,roadheight+(mTerrain-

>getHeight(-secwidth*tempx1,

secwidth*tempz1)),secwidth*tempz1,secwidth*tempx3,roadheight+(mTerrai

n->getHeight(-

secwidth*tempx3,secwidth*tempz3)),secwidth*tempz3,secwidth*tempx2,roa

dheight+(mTerrain->getHeight(-secwidth*tempx2,

secwidth*tempz2)),secwidth*tempz2,secwidth*tempx4,roadheight+(mTerrai

n->getHeight(-secwidth*tempx4,

secwidth*tempz4)),secwidth*tempz4,0,1,0);

 NewCity.AddPoly(secwidth*tempx1,roadheight+(mTerrain-

>getHeight(-secwidth*tempx1,

secwidth*tempz1)),secwidth*tempz1,secwidth*tempx2,roadheight+(mTerrai

n->getHeight(-

secwidth*tempx2,secwidth*tempz2)),secwidth*tempz2,secwidth*tempx3,roa

dheight+(mTerrain->getHeight(-secwidth*tempx3,

secwidth*tempz3)),secwidth*tempz3,secwidth*tempx4,roadheight+(mTerrai

n->getHeight(-secwidth*tempx4,

secwidth*tempz4)),secwidth*tempz4,0,1,0);

 } else {

 // r = r-1;

 }

 //}

 }

 NewCity.MakeAnX("build2.x");

}

void RomanCity::buildCity()

{

 //Write an XFile for the whole city. Remove this if the file

has already been created, or if procedural generation is unwanted.

 MakeAnXFile();

 D3DXMATRIX T, Ry;

 ID3DXMesh* tempMesh = 0;

 //We apply the city mesh to a temporary area to calculate the

normals.

121

 LoadXFile("build1.x", &mBuildings[0].mesh, mBuildings[0].mtrls,

mBuildings[0].textures);

 LoadXFile("build2.x",&tempMesh, mSceneMtrls, mSceneTextures);

 D3DXMatrixRotationY(&Ry, D3DX_PI);

 D3DXMatrixTranslation(&T, 0.0f, 0.0f, 0.0f);

 mBuildWorlds[0] = Ry*T;

 mBuildWorlds[1] = Ry*T;

 D3DXMatrixRotationY(&Ry, D3DX_PI);

 D3DXMatrixTranslation(&T, 0.0f, 0.0f, 0.0f);

 mRomeWorld = Ry*T;

 //Get vertex decleration adn set up mesh in appropriate format.

 //Clone mesh, apply vertex elements, set to output mesh, then

release.

 D3DVERTEXELEMENT9 elems[MAX_FVF_DECL_SIZE];

 UINT numElems = 0;

 HR(NMapVertex::Decl->GetDeclaration(elems, &numElems));

 ID3DXMesh* clonedTempMesh = 0;

 HR(tempMesh->CloneMesh(D3DXMESH_32BIT | D3DXMESH_MANAGED,

elems, gd3dDevice, &clonedTempMesh));

 HR(D3DXComputeTangentFrameEx(

 clonedTempMesh,

 D3DDECLUSAGE_TEXCOORD, 0,

 D3DDECLUSAGE_BINORMAL, 0,

 D3DDECLUSAGE_TANGENT, 0,

 D3DDECLUSAGE_NORMAL, 0,

 0,

 0,

 0.01f, 0.25f, 0.01f,

 &mSceneMesh,

 0));

 ReleaseCOM(tempMesh);

 ReleaseCOM(clonedTempMesh);

 D3DXMatrixIdentity(&mSceneWorld);

 D3DXMatrixIdentity(&mSceneWorldInv);

 HR(D3DXCreateTextureFromFile(gd3dDevice, "scratches.bmp",

&mSceneNormalMaps[0]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "newbrick.bmp",

&mSceneNormalMaps[1]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "col3.bmp",

&mSceneNormalMaps[2]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "scratches.bmp",

&mSceneNormalMaps[3]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "whitetex.dds",

&mSceneNormalMaps[4]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "scratches.bmp",

&mSceneNormalMaps[5]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "cobblenorm3.jpg",

&mSceneNormalMaps[6]));

 HR(D3DXCreateTextureFromFile(gd3dDevice, "whitetex.dds",

&mWhiteTex));

}

void RomanCity::buildTrees()

122

{

 //Loading 4 tree meshes.

 LoadXFile("tree0.x", &mTrees[0].mesh, mTrees[0].mtrls,

mTrees[0].textures);

 LoadXFile("tree1.x", &mTrees[1].mesh, mTrees[1].mtrls,

mTrees[1].textures);

 LoadXFile("tree2.x", &mTrees[2].mesh, mTrees[2].mtrls,

mTrees[2].textures);

 LoadXFile("tree3.x", &mTrees[3].mesh, mTrees[3].mtrls,

mTrees[3].textures);

 for(int i = 0; i < 4; ++i)

 {

 VertexPNT* v = 0;

 HR(mTrees[i].mesh->LockVertexBuffer(0, (void**)&v));

 HR(D3DXComputeBoundingBox(&v->pos, mTrees[i].mesh-

>GetNumVertices(),

 mTrees[i].mesh->GetNumBytesPerVertex(),

 &mTrees[i].box.minPt, &mTrees[i].box.maxPt));

 HR(mTrees[i].mesh->UnlockVertexBuffer());

 }

 //Tree set-up. Transform, scale, and randomized as needed.

 int w = (int)(mTerrain->getWidth() * 0.8f);

 int d = (int)(mTerrain->getDepth() * 0.8f);

 D3DXMATRIX S, T;

 for(int i = 0; i < NUM_TREES; ++i)

 {

 float x = (float)((rand() % w) - (w*0.5f));

 float z = (float)((rand() % d) - (d*0.5f));

 float y = mTerrain->getHeight(x, z) - 0.5f;

 float treeScale = GetRandomFloat(0.15f, 0.25f);

 D3DXMatrixTranslation(&T, x, y, z);

 D3DXMatrixScaling(&S, treeScale, treeScale, treeScale);

 mTreeWorlds[i] = S*T;

 D3DXMatrixTranslation(&T, 0, 40, 0);

 D3DXMatrixScaling(&S, 2, 2, 2);

 //Generate trees within an appropriate height range.

 if(x > -120.0f && x < 120.0f && z > -120.0f && z <

120.0f)

 {

 --i;

 }

 }

}

123

7.2 BUILDCITY.CPP

#include "BuildCity.h"

#include "math.h"

#include <stdio.h>

#include <stdlib.h>

#include <ctime>

#include <iostream>

#include <fstream>

using namespace std;

BuildCity::BuildCity(void)

{

 const int rows = 4000000;

 const int cols = 3;

 //Declaration, allocation, and initialization of arrays

 CurrentMat = new int[rows];

 NormDir = new int[rows];

 PointArray = new double*[rows];

 PolyArray = new int*[rows];

 for(int i = 0; i < rows; i++)

 {

 PointArray[i] = new double[cols];

 PolyArray[i] = new int[cols];

 }

 for(int i = 0; i < rows; i++)

 {

 CurrentMat[i] = 0;

 NormDir[i] = 0;

 for(int j = 0; j < cols; j++)

 {

 PointArray[i][j] = 0;

 PolyArray[i][j] = 0;

 }

 }

 //Default values for variables used in generation process

 degra = 0.0174532925199433;

 Secwidth = 2;

 winheight = 1.3;

 winwidth = 0.6;

 floorheight = 4;

 numcount = 0;

 srand(time(0));

 Pointcount = 0;

 Polycount = 0;

 CurrTex = 0;

 numcount = 0;

}

void BuildCity::DeallocateAll(void)

{

 for(int i=0; i<4000000; i++)

 delete [] PointArray[i];

 delete[] PointArray;

 for(int i=0; i<4000000; i++)

124

 delete [] PolyArray[i];

 delete[] PolyArray;

 delete [] CurrentMat;

 delete [] NormDir;

}

BuildCity::~BuildCity(void)

{

}

//Function used for the purpose of rotating a set of points around an

axis a certain number of degrees.

void BuildCity::RotatePoints(double& x1, double& z1, double centerx,

double centerz, double ang){

 float z2,x2;

 x2 = ((x1-centerx)*cos(degra*ang))-((z1-

centerz)*sin(degra*ang))+centerx;

 z2 = ((x1-centerx)*sin(degra*ang))+((z1-

centerz)*cos(degra*ang))+centerz;

 x1 = x2;

 z1 = z2;

}

//Add a polygon to the mesh. This is the lowest level in the "tree"

of generation.

void BuildCity::AddPoly(double x1, double y1, double z1, double x2,

double y2, double z2, double x3, double y3, double z3, double x4,

double y4, double z4, double normx, double normy, double normz){

 PointArray[Pointcount][0] = x2;

 PointArray[Pointcount][2] = y2;

 PointArray[Pointcount][1] = z2;

 Pointcount++;

 PointArray[Pointcount][0] = x1;

 PointArray[Pointcount][2] = y1;

 PointArray[Pointcount][1] = z1;

 Pointcount++;

 PointArray[Pointcount][0] = x3;

 PointArray[Pointcount][2] = y3;

 PointArray[Pointcount][1] = z3;

 Pointcount++;

 PointArray[Pointcount][0] = x4;

 PointArray[Pointcount][2] = y4;

 PointArray[Pointcount][1] = z4;

 Pointcount++;

 if (normx == 1){

 NormDir[Polycount] = 0;

 }

 if (normx == -1){

 NormDir[Polycount] = 1;

 }

 if (normy == 1){

 NormDir[Polycount] = 2;

 }

 if (normy == -1){

 NormDir[Polycount] = 3;

 }

 if (normz == 1){

 NormDir[Polycount] = 4;

 }

 if (normz == -1){

 NormDir[Polycount] = 5;

125

 }

 if (normy == 0.5){

 if (normz == 0.5){

 NormDir[Polycount] = 6;

 } else {

 NormDir[Polycount] = 7;

 }

 }

 if (normx == 0.5){

 if (normz == 0.5){

 NormDir[Polycount] = 8;

 } else {

 NormDir[Polycount] = 9;

 }

 }

 if (normx == -0.5){

 if (normz == 0.5){

 NormDir[Polycount] = 10;

 } else {

 NormDir[Polycount] = 11;

 }

 }

 CurrentMat[Polycount] = CurrTex;

 Polycount++;

}

//Define a basic 4-sided object

void BuildCity::AddBox(double x1, double y1, double z1, double x2,

double y2, double z2){

 CurrTex = 1;

 AddPoly(x1,y2,z1, x2,y2,z1, x1,y1,z1, x2,y1,z1, 0,0,-1);

 AddPoly(x1,y1,z2, x2,y1,z2, x1,y2,z2, x2,y2,z2, 0,0,1);

 AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0);

 AddPoly(x2,y2,z1, x2,y2,z2, x2,y1,z1, x2,y1,z2, 1,0,0);

}

//Defining a rotated 4-sided object

void BuildCity::AddRotatedCube(double x1, double y1, double z1,

double x2, double y2, double z2, double ang){

 RotatePoints(x1,z1,x1,z1,ang);

 RotatePoints(x2,z2,x1,z1,ang);

 AddPoly(x1,y2,z1, x2,y2,z1, x1,y1,z1, x2,y1,z1, 0,0,-1);

 AddPoly(x1,y1,z2, x2,y1,z2, x1,y2,z2, x2,y2,z2, 0,0,1);

 AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0);

 AddPoly(x2,y2,z1, x2,y2,z2, x2,y1,z1, x2,y1,z2, 1,0,0);

 AddPoly(x1,y1,z1, x2,y1,z1, x1,y1,z2, x2,y1,z2, 0,-1,0);

 AddPoly(x1,y2,z2, x2,y2,z2, x1,y2,z1, x2,y2,z1, 0,1,0);

}

//Similar to above, but without defaulted textures.

void BuildCity::AddBlankCube(double x1, double y1, double z1, double

x2, double y2, double z2){

 AddPoly(x1,y2,z1, x2,y2,z1, x1,y1,z1, x2,y1,z1, 0,0,-1);

 AddPoly(x1,y1,z2, x2,y1,z2, x1,y2,z2, x2,y2,z2, 0,0,1);

 AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0);

 AddPoly(x2,y2,z1, x2,y2,z2, x2,y1,z1, x2,y1,z2, 1,0,0);

 AddPoly(x1,y1,z1, x2,y1,z1, x1,y1,z2, x2,y1,z2, 0,-1,0);

 AddPoly(x1,y2,z2, x2,y2,z2, x1,y2,z1, x2,y2,z1, 0,1,0);

}

126

//As above, but with a top and bottom - a full cuboid shape.

void BuildCity::AddCube(double x1, double y1, double z1, double x2,

double y2, double z2){

 CurrTex = 4;

 AddBox(x1,y1,z1, x2,y2,z2);

 AddPoly(x1,y1,z1, x2,y1,z1, x1,y1,z2, x2,y1,z2, 0,-1,0);

 AddPoly(x1,y2,z2, x2,y2,z2, x1,y2,z1, x2,y2,z1, 0,1,0);

}

//Arch object

void BuildCity::AddArch(double x1, double height, double z1, double

height2, double ang){

 double

x2,z2,x3,z3,x4,z4,x5,z5,x6,z6,x7,z7,x8,z8,x9,z9,x10,z10,x11,z11,x12,z

12,x13,z13,x14,z14,x15,z15,x16,z16;

 float ww;

 float nx,nz;

 if (ang == 90){nx = 0,nz = 1;} else {if (ang == 0) {nx = -1,nz

= 0;} else {if (ang == 0) {nx = 1,nz = 0;} else {nx = 0,nz = -1;}}}

 ww = 1;

 x2 = x1+(Secwidth)/6; x8 = x1; x9 = x1+(Secwidth)/6;

 x3 = x1+(Secwidth)*2/6; x10 = x1+(Secwidth)*2/6;

 x4 = x1+(Secwidth)*3/6; x11 = x1+(Secwidth)*3/6;

 x5 = x1+(Secwidth)*4/6; x14 = x1+(Secwidth)*4/6;

 x6 = x1+(Secwidth)*5/6; x15 = x1+(Secwidth)*5/6;

 x7 = x1+Secwidth; x16 = x1+Secwidth;

 z1 = z1;z2 = z1;z3 = z1;z4 = z1;z5 = z1;z6 = z1;z7 = z1;

 z8 = z1-ww;z9 = z1-ww;z10 = z1-ww;z12 = z1-ww;z13 = z1-ww;z14 =

z1-ww;z15 = z1-ww;z16 = z1-ww;z11 = z1-ww;

 RotatePoints(x1,z1,x1,z1,ang); RotatePoints(x8,z8,x1,z1,ang);

 RotatePoints(x2,z2,x1,z1,ang); RotatePoints(x9,z9,x1,z1,ang);

 RotatePoints(x3,z3,x1,z1,ang); RotatePoints(x10,z10,x1,z1,ang);

 RotatePoints(x4,z4,x1,z1,ang); RotatePoints(x11,z11,x1,z1,ang);

 RotatePoints(x5,z5,x1,z1,ang); RotatePoints(x12,z12,x1,z1,ang);

 RotatePoints(x6,z6,x1,z1,ang); RotatePoints(x13,z13,x1,z1,ang);

 RotatePoints(x7,z7,x1,z1,ang); RotatePoints(x14,z14,x1,z1,ang);

 RotatePoints(x15,z15,x1,z1,ang);

RotatePoints(x16,z16,x1,z1,ang);

 AddPoly(x1,height,z1,x2,height,z2,x1,height2,z1,

x2,height2,z2, nx,0,nz);

 AddPoly(x6,height,z6,x7,height,z7,

x6,height2,z6,x7,height2,z7,nx,0,nz);

 AddPoly(x9,height,z9, x8,height,z8,

x9,height2,z9,x8,height2,z8, -nx,0,-nz);

 AddPoly(x16,height,z16,x15,height,z15, x16,height2,z16,

x15,height2,z15, -nx,0,-nz);

 CurrTex = 5;

 //Arch

 AddPoly(x2,height2,z2, x2,height+(height2-height)*4/6,z2,

x3,height2,z3, x3,height+(height2-height)*5/6,z3, nx,0,nz);

 AddPoly(x3,height2,z3, x3,height+(height2-height)*5/6,z3,

x4,height2,z4, x4,height+(height2-height)*7/8,z4, nx,0,nz);

 AddPoly(x4,height2,z4, x4,height+(height2-height)*7/8,z4,

x5,height2,z5, x5,height+(height2-height)*5/6,z5, nx,0,nz);

 AddPoly(x5,height2,z5, x5,height+(height2-height)*5/6,z5,

x6,height2,z6, x6,height+(height2-height)*4/6,z6, nx,0,nz);

 //Opposite arch

127

 AddPoly(x9,height+(height2-height)*4/6,z9,x9,height2,z9,

x10,height+(height2-height)*5/6,z10, x10,height2,z10, -nx,0,-nz);

 AddPoly(x10,height+(height2-height)*5/6,z10,x10,height2,z10,

x11,height+(height2-height)*7/8,z11, x11,height2,z11, -nx,0,-nz);

 AddPoly(x11,height+(height2-height)*7/8,z11,

x11,height2,z11,x14,height+(height2-height)*5/6,z14,x14,height2,z14,

-nx,0,-nz);

 AddPoly(x14,height+(height2-height)*5/6,z14, x14,height2,z14,

x15,height+(height2-height)*4/6,z15,x15,height2,z15, -nx,0,-nz);

 //Inner arch

 AddPoly(x2,height+(height2-

height)*4/6,z2,x2,height,z2,x9,height+(height2-

height)*4/6,z9,x9,height,z9,0,-1,0);

 AddPoly(x3,height+(height2-height)*5/6,z3,x2,height+(height2-

height)*4/6,z2,x10,height+(height2-

height)*5/6,z10,x9,height+(height2-height)*4/6,z9,0,-1,0);

 AddPoly(x4,height+(height2-height)*7/8,z4,x3,height+(height2-

height)*5/6,z3,x11,height+(height2-

height)*7/8,z11,x10,height+(height2-height)*5/6,z10,0,-1,0);

 AddPoly(x5,height+(height2-height)*5/6,z5,x4,height+(height2-

height)*7/8,z4,x14,height+(height2-

height)*5/6,z14,x11,height+(height2-height)*7/8,z11,0,-1,0);

 AddPoly(x6,height+(height2-height)*4/6,z6,x5,height+(height2-

height)*5/6,z5,x15,height+(height2-

height)*4/6,z15,x14,height+(height2-height)*5/6,z14,0,-1,0);

 AddPoly(x6,height,z6,x6,height+(height2-

height)*4/6,z6,x15,height,z15,x15,height+(height2-height)*4/6,z15,0,-

1,0);

}

//Roof objects

void BuildCity::AddRoof(double x1, double y1, double z1, double x2,

double y2, double z2) {

 y2+=0.5;

 AddCube(x1-0.4,y1-0.2,z1-0.4,x2+0.4,y1+0.1,z2+0.4);

 AddPoly(x1,y1,z1,(x1+(x2-x1)/2),y2,z1,(x1+(x2-

x1)/2),y1,z1,x2,y1,z1,0,0,-1);

 AddPoly((x1+(x2-x1)/2),y2,z2,x1,y1,z2,x2,y1,z2,(x1+(x2-

x1)/2),y1,z2,0,0,1);

 CurrTex = 1;

 AddPoly((x1+(x2-x1)/2),y2-0.6,z1,x1+0.8,y1,z1,(x1+(x2-

x1)/2),y2,z1-0.2,x1,y1,z1-0.2,0,0,-1);

 AddPoly(x2,y1,z1-0.2,x2-0.8,y1,z1,(x1+(x2-x1)/2),y2,z1-

0.2,(x1+(x2-x1)/2),y2-0.6,z1,0,0,-1);

 AddPoly(x1+0.8,y1,z2,(x1+(x2-x1)/2),y2-

0.6,z2,x1,y1,z2+0.2,(x1+(x2-x1)/2),y2,z2+0.2,0,0,1);

 AddPoly(x2-0.8,y1,z2,x2,y1,z2+0.2,(x1+(x2-x1)/2),y2-

0.6,z2,(x1+(x2-x1)/2),y2,z2+0.2,0,0,1);

 CurrTex = 3;

 AddPoly(x1,y1,z2+0.2, (x1+(x2-x1)/2),y2,z2+0.2, x1,y1,z1-0.2,

(x1+(x2-x1)/2),y2,z1-0.2, -1,0,0);

 AddPoly((x1+(x2-x1)/2),y2,z2+0.2, x2,y1,z2+0.2, (x1+(x2-

x1)/2),y2,z1-0.2, x2,y1,z1-0.2, 0,0.5,-0.5);

}

void BuildCity::AddRoof2(double x1, double y1, double z1, double x2,

double y2, double z2) {

 y2+=0.5;

 AddCube(x1-0.4,y1-0.2,z1-0.4,x2+0.4,y1+0.1,z2+0.4);

128

 AddPoly(x1,y2,(z1+(z2-z1)/2),x1,y1,z1,x1,y1,z2,x1,y1,(z1+(z2-

z1)/2),-1,0,0);

 AddPoly(x2,y1,z1,x2,y2,(z1+(z2-z1)/2),x2,y1,(z1+(z2-

z1)/2),x2,y1,z2,1,0,0);

 CurrTex = 1;

 AddPoly(x1,y1,z1+0.8,x1,y2-0.6,(z1+(z2-z1)/2),x1-0.2,y1,z1,x1-

0.2,y2,(z1+(z2-z1)/2),-1,0,0);

 AddPoly(x1,y1,z2-0.8,x1-0.2,y1,z2,x1,y2-0.6,(z1+(z2-z1)/2),x1-

0.2,y2,(z1+(z2-z1)/2),-1,0,0);

 AddPoly(x2,y2-0.6,(z1+(z2-

z1)/2),x2,y1,z1+0.8,x2+0.2,y2,(z1+(z2-z1)/2),x2+0.2,y1,z1,1,0,0);

 AddPoly(x2+0.2,y1,z2,x2,y1,z2-0.8,x2+0.2,y2,(z1+(z2-

z1)/2),x2,y2-0.6,(z1+(z2-z1)/2),1,0,0);

 CurrTex = 3;

 AddPoly(x2+0.2,y2,(z1+(z2-z1)/2),x2+0.2,y1,z1, x1-

0.2,y2,(z1+(z2-z1)/2),x1-0.2,y1,z1, 0,0.5,-0.5);

 AddPoly(x2+0.2,y1,z2, x2+0.2,y2,(z1+(z2-z1)/2),x1-0.2,y1,z2,

x1-0.2,y2,(z1+(z2-z1)/2), -1,0,0);

}

//Basic a hollow cylinder, used for columns

void BuildCity::AddCylinder(double x1, double y1, double z1, double

radius, double radius2, double y2)

{

 AddPoly(x1-radius2,y2,z1+radius2/2, x1-radius2,y2,z1-radius2/2,

x1-radius,y1,z1+radius/2, x1-radius,y1,z1-radius/2, -1,0,0);

 AddPoly(x1+radius2,y2,z1-radius2/2, x1+radius2,y2,z1+radius2/2,

x1+radius,y1,z1-radius/2, x1+radius,y1,z1+radius/2, 1,0,0);

 AddPoly(x1-radius2/2,y2,z1-radius2, x1+radius2/2,y2,z1-radius2,

x1-radius/2,y1,z1-radius, x1+radius/2,y1,z1-radius, 0,0,-1);

 AddPoly(x1+radius2/2,y2,z1+radius2,x1-radius2/2,y2,z1+radius2,

x1+radius/2,y1,z1+radius,x1-radius/2,y1,z1+radius, 0,0,1);

 AddPoly(x1-radius2/2,y2,z1+radius2, x1-radius2,y2,z1+radius2/2,

x1-radius/2,y1,z1+radius, x1-radius,y1,z1+radius/2, -0.5,0,0.5);

 AddPoly(x1+radius2,y2,z1+radius2/2,

x1+radius2/2,y2,z1+radius2,x1+radius,y1,z1+radius/2,x1+radius/2,y1,z1

+radius, 0.5,0,0.5);

 AddPoly(x1-radius2,y2,z1-radius2/2,x1-radius2/2,y2,z1-

radius2,x1-radius,y1,z1-radius/2,x1-radius/2,y1,z1-radius, -0.5,0,-

0.5);

 AddPoly(x1+radius2/2,y2,z1-radius2, x1+radius2,y2,z1-radius2/2,

x1+radius/2,y1,z1-radius, x1+radius,y1,z1-radius/2, 0.5,0,-0.5);

}

//Basic column

void BuildCity::AddColumn(double x1, double y1, double z1, double

radius, double y2)

{

 radius = 0.3;

 radius = radius+0.2;

 CurrTex = 5;

 AddBlankCube(x1-radius-0.2,y1,z1-radius-

0.2,x1+radius+0.2,y1+0.2,z1+radius+0.2);

 AddBlankCube(x1-radius-0.2,y2-0.2,z1-radius-

0.2,x1+radius+0.2,y2-0,z1+radius+0.2);

 CurrTex = 2;

 AddCylinder(x1,y1,z1,radius,radius-0.15,y2-0.2);

 CurrTex = 5;

 AddCylinder(x1,y1+0.2,z1,radius+0.1,radius+0.2,y1+0.3);

129

 AddCylinder(x1,y1+0.3,z1,radius+0.2,radius,y1+0.4);

 AddCylinder(x1,y2-0.4,z1,radius,radius,y2-0.2);

 AddCylinder(x1,y2-0.6,z1,radius-0.2,radius,y2-0.4);

}

//Window objects

void BuildCity::AddWindowx(double x1, double y1, double z1, double

y2){

 CurrTex = 1;

 AddPoly(x1,y1+winheight,z1, x1+Secwidth,y1+winheight,z1,

x1,y1,z1, x1+Secwidth,y1,z1,0,0,-1);

 AddPoly(x1,y2,z1, x1+Secwidth,y2,z1, x1,y2-winheight,z1,

x1+Secwidth,y2-winheight,z1,0,0,-1);

 AddPoly(x1,y2-winheight,z1, x1+winwidth,y2-winheight,z1,

x1,y1+winheight,z1, x1+winwidth,y1+winheight,z1,0,0,-1);

 AddPoly(x1+Secwidth-winwidth,y2-winheight,z1, x1+Secwidth,y2-

winheight,z1, x1+Secwidth-winwidth,y1+winheight,z1,

x1+Secwidth,y1+winheight,z1,0,0,-1);

 CurrTex = 4;

 AddPoly(x1+winwidth,y2-winheight,z1+(winwidth/2),x1+Secwidth-

winwidth,y2-winheight,z1+(winwidth/2),

x1+winwidth,y1+winheight,z1+(winwidth/2), x1+Secwidth-

winwidth,y1+winheight,z1+(winwidth/2), 0,0,-1);

 CurrTex = 1;

 AddPoly(x1+Secwidth-winwidth,y2-winheight,z1+(winwidth/2),

x1+Secwidth-winwidth,y2-winheight,z1, x1+Secwidth-

winwidth,y1+winheight,z1+(winwidth/2),x1+Secwidth-

winwidth,y1+winheight,z1,-1,0,0);

 AddPoly(x1+winwidth,y1+winheight,z1, x1+winwidth,y2-

winheight,z1,

x1+winwidth,y1+winheight,z1+(winwidth/2),x1+winwidth,y2-

winheight,z1+(winwidth/2),1,0,0);

}

void BuildCity::AddWindowz(double x1, double y1, double z1, double

y2){

 CurrTex = 1;

 AddPoly(x1,y1+winheight,z1, x1,y1+winheight,z1+Secwidth,

x1,y1,z1, x1,y1,z1+Secwidth,1,0,0);

 AddPoly(x1,y2,z1, x1,y2,z1+Secwidth, x1,y2-winheight,z1,

x1,y2-winheight,z1+Secwidth,1,0,0);

 AddPoly(x1,y2-winheight,z1, x1,y2-winheight,z1+winwidth,

x1,y1+winheight,z1, x1,y1+winheight,z1+winwidth,1,0,0);

 AddPoly(x1,y2-winheight,z1+Secwidth-winwidth, x1,y2-

winheight,z1+Secwidth, x1,y1+winheight,z1+Secwidth-winwidth,

x1,y1+winheight,z1+Secwidth,1,0,0);

 CurrTex = 4;

 AddPoly(x1-(winwidth/2),y2-winheight,z1+winwidth,x1-

(winwidth/2),y2-winheight,z1+Secwidth-winwidth, x1-

(winwidth/2),y1+winheight,z1+winwidth, x1-

(winwidth/2),y1+winheight,z1+Secwidth-winwidth, 1,0,0);

 CurrTex = 1;

 AddPoly(x1-(winwidth/2),y2-winheight,z1+Secwidth-winwidth,

x1,y2-winheight,z1+Secwidth-winwidth, x1-

(winwidth/2),y1+winheight,z1+Secwidth-

winwidth,x1,y1+winheight,z1+Secwidth-winwidth,1,0,0);

130

 AddPoly(x1,y1+winheight,z1+winwidth, x1,y2-

winheight,z1+winwidth, x1-(winwidth/2),y1+winheight,z1+winwidth,x1-

(winwidth/2),y2-winheight,z1+winwidth,-1,0,0);

}

void BuildCity::AddWindowz2(double x1, double y1, double z1, double

y2){

 //AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0);

 CurrTex = 1;

 AddPoly(x1,y1+winheight,z1+Secwidth,

x1,y1+winheight,z1,x1,y1,z1+Secwidth, x1,y1,z1,-1,0,0);

 AddPoly(x1,y2,z1+Secwidth, x1,y2,z1,x1,y2-

winheight,z1+Secwidth, x1,y2-winheight,z1, -1,0,0);

 AddPoly(x1,y1+winheight,z1, x1,y1+winheight,z1+winwidth,x1,y2-

winheight,z1, x1,y2-winheight,z1+winwidth, -1,0,0);

 AddPoly(x1,y1+winheight,z1+Secwidth-winwidth,

x1,y1+winheight,z1+Secwidth,x1,y2-winheight,z1+Secwidth-winwidth,

x1,y2-winheight,z1+Secwidth, -1,0,0);

 CurrTex = 4;

 AddPoly(x1+(winwidth/2),y1+winheight,z1+winwidth,

x1+(winwidth/2),y1+winheight,z1+Secwidth-winwidth,x1+(winwidth/2),y2-

winheight,z1+winwidth,x1+(winwidth/2),y2-winheight,z1+Secwidth-

winwidth, -1,0,0);

 CurrTex = 1;

 AddPoly(x1+(winwidth/2),y2-winheight,z1+winwidth, x1,y2-

winheight,z1+winwidth,

x1+(winwidth/2),y1+winheight,z1+winwidth,x1,y1+winheight,z1+winwidth,

-1,0,0);

 AddPoly(x1,y2-winheight,z1+Secwidth-winwidth,

x1+(winwidth/2),y2-winheight,z1+Secwidth-

winwidth,x1,y1+winheight,z1+Secwidth-

winwidth,x1+(winwidth/2),y1+winheight,z1+Secwidth-winwidth,1,0,0);

 //AddPoly(x1+winwidth,y1+winheight,z1, x1+winwidth,y2-

winheight,z1,

x1+winwidth,y1+winheight,z1+(winwidth/2),x1+winwidth,y2-

winheight,z1+(winwidth/2),-1,0,0);

}

void BuildCity::AddWindowx2(double x1, double y1, double z1, double

y2){

 CurrTex = 1;

 AddPoly(x1,y1,z1, x1+Secwidth,y1,z1,x1,y1+winheight,z1,

x1+Secwidth,y1+winheight,z1, 0,0,1);

 AddPoly(x1,y2-winheight,z1, x1+Secwidth,y2-

winheight,z1,x1,y2,z1, x1+Secwidth,y2,z1, 0,0,1);

 AddPoly(x1,y1+winheight,z1, x1+winwidth,y1+winheight,z1,x1,y2-

winheight,z1, x1+winwidth,y2-winheight,z1, 0,0,1);

 AddPoly(x1+Secwidth-winwidth,y1+winheight,z1,

x1+Secwidth,y1+winheight,z1,x1+Secwidth-winwidth,y2-winheight,z1,

x1+Secwidth,y2-winheight,z1, 0,0,1);

 CurrTex = 4;

 AddPoly(x1+winwidth,y1+winheight,z1-(winwidth/2), x1+Secwidth-

winwidth,y1+winheight,z1-(winwidth/2), x1+winwidth,y2-winheight,z1-

(winwidth/2),x1+Secwidth-winwidth,y2-winheight,z1-(winwidth/2),

0,0,1);

 CurrTex = 1;

131

 AddPoly(x1+winwidth,y2-winheight,z1-(winwidth/2),

x1+winwidth,y2-winheight,z1, x1+winwidth,y1+winheight,z1-

(winwidth/2),x1+winwidth,y1+winheight,z1,1,0,0);

 AddPoly(x1+Secwidth-winwidth,y1+winheight,z1,x1+Secwidth-

winwidth,y2-winheight,z1, x1+Secwidth-winwidth,y1+winheight,z1-

(winwidth/2),x1+Secwidth-winwidth,y2-winheight,z1-(winwidth/2),-

1,0,0);

}

//Forum object

void BuildCity::AddForum(double xvalue, double zvalue, float Yheight)

{

 AddCube(xvalue-0.4,Yheight-5,zvalue-0.4,xvalue+14+0.4,Yheight-

1.5,zvalue+14+0.4);

 AddColumn(xvalue,Yheight-1.5,zvalue,0.5,Yheight+5.5);

 AddColumn(xvalue+4,Yheight-1.5,zvalue,0.5,Yheight+5.5);

 AddColumn(xvalue+10,Yheight-1.5,zvalue,0.5,Yheight+5.5);

 AddColumn(xvalue+14,Yheight-1.5,zvalue,0.5,Yheight+5.5);

 AddColumn(xvalue,Yheight-1.5,zvalue+14,0.5,Yheight+5.5);

 AddColumn(xvalue+4,Yheight-1.5,zvalue+14,0.5,Yheight+5.5);

 AddColumn(xvalue+10,Yheight-1.5,zvalue+14,0.5,Yheight+5.5);

 AddColumn(xvalue+14,Yheight-1.5,zvalue+14,0.5,Yheight+5.5);

 AddColumn(xvalue,Yheight-1.5,zvalue+4,0.5,Yheight+5.5);

 AddColumn(xvalue,Yheight-1.5,zvalue+10,0.5,Yheight+5.5);

 AddColumn(xvalue+14,Yheight-1.5,zvalue+4,0.5,Yheight+5.5);

 AddColumn(xvalue+14,Yheight-1.5,zvalue+10,0.5,Yheight+5.5);

}

//Temple object

void BuildCity::AddTemple(float cx, float cz, float Yheight)

{

 Yheight = Yheight+1;

 //Cella

 CurrTex = 1;

 AddBox(cx+0,Yheight,cz+3.33,cx+1,Yheight+7,cz+13.33);

 AddBox(cx+9,Yheight,cz+3.33,cx+10,Yheight+7,cz+13.33);

 AddBox(cx+1,Yheight,cz+12.33,cx+9,Yheight+7,cz+13.33);

 AddBox(cx+1,Yheight,cz+3.33,cx+4,Yheight+7,cz+4.33);

 AddBox(cx+6,Yheight,cz+3.33,cx+9,Yheight+7,cz+4.33);

 AddBox(cx+4,Yheight+5,cz+3.33,cx+6,Yheight+7,cz+4.33);

 AddCube(cx-0.2,Yheight+6.9,cz-4,cx+10.2,Yheight+8.6,cz+13.33);

 AddColumn(cx+0,Yheight,cz-3.33,0.5,Yheight+7);

 AddColumn(cx+3.33,Yheight,cz+3.33,0.5,Yheight+7);

 AddColumn(cx+10,Yheight,cz-3.33,0.5,Yheight+7);

 AddColumn(cx+6.66,Yheight,cz+3.33,0.5,Yheight+7);

 AddColumn(cx+0,Yheight,cz,0.5,Yheight+7);

 AddColumn(cx+10,Yheight,cz,0.5,Yheight+7);

 AddColumn(cx+0,Yheight,cz+3.33,0.5,Yheight+7);

 AddColumn(cx+0,Yheight,cz+6.66,0.5,Yheight+7);

 AddColumn(cx+0,Yheight,cz+10.0,0.5,Yheight+7);

 AddColumn(cx+0,Yheight,cz+13.33,0.5,Yheight+7);

 AddColumn(cx+3.33,Yheight,cz-3.33,0.5,Yheight+7);

 AddColumn(cx+6.66,Yheight,cz-3.33,0.5,Yheight+7);

 AddColumn(cx+3.33,Yheight,cz+13.33,0.5,Yheight+7);

 AddColumn(cx+6.66,Yheight,cz+13.33,0.5,Yheight+7);

132

 AddColumn(cx+10,Yheight,cz+3.33,0.5,Yheight+7);

 AddColumn(cx+10,Yheight,cz+6.66,0.5,Yheight+7);

 AddColumn(cx+10,Yheight,cz+10.0,0.5,Yheight+7);

 AddColumn(cx+10,Yheight,cz+13.33,0.5,Yheight+7);

 //Podium

 CurrTex = 5;

 AddBlankCube(cx-0.4,Yheight-2.5,cz-4,cx+10.4,Yheight-

0.5,cz+14.4);

 AddBlankCube(cx-0.6,Yheight-0.5,cz-4,cx+10.6,Yheight,cz+14.6);

 AddBlankCube(cx-0.4,Yheight-2.5,cz-8,cx+2,Yheight-0.5,cz-4);

 AddBlankCube(cx+8,Yheight-2.5,cz-8,cx+10.4,Yheight-0.5,cz-4);

 AddBlankCube(cx-0.6,Yheight-0.5,cz-8.4,cx+2.2,Yheight,cz-4);

 AddBlankCube(cx+7.8,Yheight-0.5,cz-8.4,cx+10.6,Yheight,cz-4);

 //Stairs

 for (int ii = 0; ii < 9; ii++){

 CurrTex = 5;

 AddBlankCube(cx+2,Yheight-(0.8+(ii*0.2)),cz-

(4.5+(ii*0.4)),cx+8,Yheight-(0.4+(ii*0.2)),cz-(3.5+(ii*0.4)));

 }

 AddRoof(cx-0.3,Yheight+8.6,cz-4,cx+10.3,Yheight+11,cz+13.3);

}

//City wall tower object

void BuildCity::AddTower(double x1, double y1, double z1, double

radius, double y2)

{

 y2 = y2-0.4;

 double radius2 = radius-2.0;

 AddPoly(x1-radius2/2,y2,z1-radius2,x1-radius2,y2,z1-

radius2/2,x1,y2,z1,x1-radius2,y2,z1+radius2/2,0,1,0);

 AddPoly(x1+radius2,y2,z1-radius2/2,x1+radius2/2,y2,z1-

radius2,x1,y2,z1,x1-radius2/2,y2,z1-radius2,0,1,0);

 AddPoly(x1-radius2,y2,z1+radius2/2,x1-

radius2/2,y2,z1+radius2,x1,y2,z1,x1+radius2/2,y2,z1+radius2,0,1,0);

 AddPoly(x1+radius2/2,y2,z1+radius2,x1+radius2,y2,z1+radius2/2,x

1,y2,z1,x1+radius2,y2,z1-radius2/2,0,1,0);

 AddPoly(x1-radius2,y2,z1+radius2/2, x1-radius2,y2,z1-radius2/2,

x1-radius,y1,z1+radius/2, x1-radius,y1,z1-radius/2, -1,0,0);

 AddPoly(x1+radius2,y2,z1-radius2/2, x1+radius2,y2,z1+radius2/2,

x1+radius,y1,z1-radius/2, x1+radius,y1,z1+radius/2, 1,0,0);

 AddPoly(x1-radius2/2,y2,z1-radius2, x1+radius2/2,y2,z1-radius2,

x1-radius/2,y1,z1-radius, x1+radius/2,y1,z1-radius, 0,0,-1);

 AddPoly(x1+radius2/2,y2,z1+radius2,x1-radius2/2,y2,z1+radius2,

x1+radius/2,y1,z1+radius,x1-radius/2,y1,z1+radius, 0,0,1);

 AddPoly(x1-radius2/2,y2,z1+radius2, x1-radius2,y2,z1+radius2/2,

x1-radius/2,y1,z1+radius, x1-radius,y1,z1+radius/2, -0.5,0,0.5);

 AddPoly(x1+radius2,y2,z1+radius2/2,

x1+radius2/2,y2,z1+radius2,x1+radius,y1,z1+radius/2,x1+radius/2,y1,z1

+radius, 0.5,0,0.5);

 AddPoly(x1-radius2,y2,z1-radius2/2,x1-radius2/2,y2,z1-

radius2,x1-radius,y1,z1-radius/2,x1-radius/2,y1,z1-radius, -0.5,0,-

0.5);

 AddPoly(x1+radius2/2,y2,z1-radius2, x1+radius2,y2,z1-radius2/2,

x1+radius/2,y1,z1-radius, x1+radius,y1,z1-radius/2, 0.5,0,-0.5);

}

//City wall object

133

void BuildCity::AddWall(double radius, double height)

{

 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5;

 double v = 0;

 float ww = 3;

 double heighttemp, heighttemp2;

 for (int i=0; i<5; i++){

 v = 72*i;

 x1 = radius*sin(degra*v);

 z1 = radius*cos(degra*v);

 v+=72;

 x2 = radius*sin(degra*v);

 z2 = radius*cos(degra*v);

 v = 72*i;

 x3 = (radius+ww)*sin(degra*v);

 z3 = (radius+ww)*cos(degra*v);

 v+=72;

 x4 = (radius+ww)*sin(degra*v);

 z4 = (radius+ww)*cos(degra*v);

 heighttemp = height;

 heighttemp2 = height;

 if (i == 2) {

 heighttemp2 = height-5;

 }

 if (i == 3) {

 heighttemp = height-5;

 heighttemp2 = height-30;

 }

 if (i == 4) {

 heighttemp = height-30;

 heighttemp2 = height-20;

 }

 if (i == 0) {

 heighttemp = height-20;

 }

 CurrTex = 1;

 AddTower(x1,heighttemp,z1,8,heighttemp+25);

 CurrTex = 0;

 AddPoly(x1,heighttemp-10,z1,x1,heighttemp+20,z1,

x2,heighttemp2-10,z2, x2,heighttemp2+20,z2, -1,0,0);

 AddPoly(x1,heighttemp+20,z1,x3,heighttemp+20,z3,

x2,heighttemp2+20,z2, x4,heighttemp2+20,z4, 0,-1,0);

 AddPoly(x3,heighttemp+20,z3,x3,heighttemp-10,z3,

x4,heighttemp2+20,z4, x4,heighttemp2-10,z4, -1,0,0);

 }

}

//Amphitheater object

void BuildCity::AddAmphitheater(double centerx, double centerz,

double height, double radius)

{

 double height2 = height+5;

 int sides = 30;

 float ang = 360/sides;

 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5;

 double v = 0;

 float ww = 3;

 //Calculate x and z positions for current side

 for (int i=0; i<sides; i++){

 v = ang*i;

134

 x1 = radius*sin(degra*v);

 z1 = radius*cos(degra*v);

 v+=ang;

 x2 = radius*sin(degra*v);

 z2 = radius*cos(degra*v);

 v = ang*i;

 x3 = (radius+ww)*sin(degra*v);

 z3 = (radius+ww)*cos(degra*v);

 v+=ang;

 x4 = (radius+ww)*sin(degra*v);

 z4 = (radius+ww)*cos(degra*v);

 AddColumn(centerx+x3, height,

centerz+z3,0.4,height2+0.2);

 AddColumn(centerx+x3, height2,

centerz+z3,0.4,height2+(height2-height)-0.2);

 CurrTex = 5;

 //Top!

 AddPoly(centerx+x1,height2+(height2-

height),centerz+z1,centerx+x3,height2+(height2-height),centerz+z3,

centerx+x2,height2+(height2-height),centerz+z2,

centerx+x4,height2+(height2-height),centerz+z4, 0,-1,0);

 //Repeat for two floors - we do arches here

 for (int j=0; j<2;j++){

 float diff = (height2-height);

 //Change the height based on the floor. This is

messy, but it works.

 if (j==1){

 height = height2;

 height2 = height2+diff;

 }

 //Facing up

 AddPoly(centerx+x1,height+0.4,centerz+z1,centerx+x3,height+0.4,

centerz+z3, centerx+x2,height+0.4,centerz+z2,

centerx+x4,height+0.4,centerz+z4, 0,1,0);

 //Outer

 AddPoly(centerx+(x3+(x4-

x3)/6),height+0.4,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)*5/6),height+0.4,centerz+(z3+(z4-z3)*5/6), centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6), -1,0,0);

 //AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,cente

rz+z3, centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4,

1,0,0);

 AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,centerz

+z3, centerx+(x3+(x4-x3)/6),height2,centerz+(z3+(z4-z3)/6),

centerx+(x3+(x4-x3)/6),height,centerz+(z3+(z4-z3)/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),

centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4, -

1,0,0);

 //Arch

 AddPoly(centerx+(x3+(x4-

x3)/6),height2,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-z3)/6),

centerx+(x3+(x4-x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6),

135

centerx+(x3+(x4-x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6), centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*2/6),

centerx+(x3+(x4-x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6),

centerx+(x3+(x4-x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6), centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-z3)*3/6),

centerx+(x3+(x4-x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6),

centerx+(x3+(x4-x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6), centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*4/6),

centerx+(x3+(x4-x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6),

centerx+(x3+(x4-x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6), -1,0,0);

 //Inner arch

 AddPoly(centerx+(x3+(x4-x3)/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-

z1)/6),centerx+(x1+(x2-x1)/6),height,centerz+(z1+(z2-z1)/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*2/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*2/6),centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)/6),centerx+(x1+(x2-x1)*2/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*2/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-z1)/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*3/6),height+(height2-

height)*8/9,centerz+(z3+(z4-z3)*3/6),centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6),centerx+(x1+(x2-x1)*3/6),height+(height2-

height)*8/9,centerz+(z1+(z2-z1)*3/6),centerx+(x1+(x2-

x1)*2/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*2/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*4/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*4/6),centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6),centerx+(x1+(x2-x1)*4/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*4/6),centerx+(x1+(x2-

x1)*3/6),height+(height2-height)*8/9,centerz+(z1+(z2-z1)*3/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*5/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),centerx+(x1+(x2-

x1)*4/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*4/6),1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6),centerx+(x1+(x2-x1)*5/6),height,centerz+(z1+(z2-

z1)*5/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),1,0,0);

 if (j==1){

 height2 = height2-diff;

 height = height2-diff;

 }

136

 }

 float stairwidth = 0.8;

 float stairheight = 0.3;

 int repeats = 10;

 float stairtop = 5;

 float height3 = height2 + (height2-height);

 //Inner - use for stairs!

 CurrTex = 1;

 AddPoly(centerx+x1,height3-(stairheight)-

stairtop,centerz+z1,centerx+x1,height3,centerz+z1,

centerx+x2,height3-(stairheight)-stairtop,centerz+z2,

centerx+x2,height3,centerz+z2, -1,0,0);

 CurrTex = 5;

 for (int j=0; j<repeats;j++){

 v = ang*i;

 x1 = (radius-(stairwidth*j))*sin(degra*v);

 z1 = (radius-(stairwidth*j))*cos(degra*v);

 v+=ang;

 x2 = (radius-(stairwidth*j))*sin(degra*v);

 z2 = (radius-(stairwidth*j))*cos(degra*v);

 v = ang*i;

 x3 = (radius-(stairwidth*(j+1)))*sin(degra*v);

 z3 = (radius-(stairwidth*(j+1)))*cos(degra*v);

 v+=ang;

 x4 = (radius-(stairwidth*(j+1)))*sin(degra*v);

 z4 = (radius-(stairwidth*(j+1)))*cos(degra*v);

 AddPoly(centerx+x3,height3-(stairheight*(j+1))-

stairtop,centerz+z3,centerx+x1,height3-(stairheight*(j+1))-

stairtop,centerz+z1, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4, centerx+x2,height3-(stairheight*(j+1))-

stairtop,centerz+z2, 0,-1,0);

 if (j !=0){

 AddPoly(centerx+x1,height3-

(stairheight*(j+1))-stairtop,centerz+z1,centerx+x1,height3-

(stairheight*j)-stairtop,centerz+z1, centerx+x2,height3-

(stairheight*(j+1))-stairtop,centerz+z2, centerx+x2,height3-

(stairheight*j)-stairtop,centerz+z2, -1,0,0);

 }

 if (j ==(repeats-1)){

 AddPoly(centerx+x3,height,centerz+z3,centerx+x3,height3-

(stairheight*(j+1))-stairtop,centerz+z3,

centerx+x4,height,centerz+z4, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4, -1,0,0);

 }

 }

 }

}

//Theater object

void BuildCity::AddTheater(double centerx, double centerz, double

height, double radius)

{

 double height2 = height+5;

 int sides = 30;

 float ang = 360/sides;

 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5;

 double v = 0;

 float ww = 3;

 //Calculate x and z positions for current side

 for (int i=0; i<sides/2; i++){

137

 v = ang*i;

 x1 = radius*sin(degra*v);

 z1 = radius*cos(degra*v);

 v+=ang;

 x2 = radius*sin(degra*v);

 z2 = radius*cos(degra*v);

 v = ang*i;

 x3 = (radius+ww)*sin(degra*v);

 z3 = (radius+ww)*cos(degra*v);

 v+=ang;

 x4 = (radius+ww)*sin(degra*v);

 z4 = (radius+ww)*cos(degra*v);

 AddColumn(centerx+x3, height,

centerz+z3,0.4,height2+0.2);

 AddColumn(centerx+x3, height2,

centerz+z3,0.4,height2+(height2-height)-0.2);

 CurrTex = 5;

 //Top!

 AddPoly(centerx+x1,height2+(height2-

height),centerz+z1,centerx+x3,height2+(height2-height),centerz+z3,

centerx+x2,height2+(height2-height),centerz+z2,

centerx+x4,height2+(height2-height),centerz+z4, 0,-1,0);

 //Repeat for two floors - we do arches here

 for (int j=0; j<2;j++){

 float diff = (height2-height);

 //Change the height based on the floor. This is

messy, but it works.

 if (j==1){

 height = height2;

 height2 = height2+diff;

 }

 //Facing up

 AddPoly(centerx+x1,height+0.4,centerz+z1,centerx+x3,height+0.4,

centerz+z3, centerx+x2,height+0.4,centerz+z2,

centerx+x4,height+0.4,centerz+z4, 0,1,0);

 //Outer

 AddPoly(centerx+(x3+(x4-

x3)/6),height+0.4,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)*5/6),height+0.4,centerz+(z3+(z4-z3)*5/6), centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6), -1,0,0);

 //AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,cente

rz+z3, centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4,

1,0,0);

 AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,centerz

+z3, centerx+(x3+(x4-x3)/6),height2,centerz+(z3+(z4-z3)/6),

centerx+(x3+(x4-x3)/6),height,centerz+(z3+(z4-z3)/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),

centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4, -

1,0,0);

 //Arch

 AddPoly(centerx+(x3+(x4-

x3)/6),height2,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-z3)/6),

138

centerx+(x3+(x4-x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6),

centerx+(x3+(x4-x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6), centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*2/6),

centerx+(x3+(x4-x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6),

centerx+(x3+(x4-x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6), centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-z3)*3/6),

centerx+(x3+(x4-x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6),

centerx+(x3+(x4-x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6), -1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6), centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*4/6),

centerx+(x3+(x4-x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6),

centerx+(x3+(x4-x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6), -1,0,0);

 //Inner arch

 AddPoly(centerx+(x3+(x4-x3)/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-

z1)/6),centerx+(x1+(x2-x1)/6),height,centerz+(z1+(z2-z1)/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*2/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*2/6),centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)/6),centerx+(x1+(x2-x1)*2/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*2/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-z1)/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*3/6),height+(height2-

height)*8/9,centerz+(z3+(z4-z3)*3/6),centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6),centerx+(x1+(x2-x1)*3/6),height+(height2-

height)*8/9,centerz+(z1+(z2-z1)*3/6),centerx+(x1+(x2-

x1)*2/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*2/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*4/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*4/6),centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6),centerx+(x1+(x2-x1)*4/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*4/6),centerx+(x1+(x2-

x1)*3/6),height+(height2-height)*8/9,centerz+(z1+(z2-z1)*3/6),1,0,0);

 AddPoly(centerx+(x3+(x4-x3)*5/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),centerx+(x1+(x2-

x1)*4/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*4/6),1,0,0);

 AddPoly(centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6),centerx+(x1+(x2-x1)*5/6),height,centerz+(z1+(z2-

z1)*5/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),1,0,0);

 if (j==1){

 height2 = height2-diff;

 height = height2-diff;

139

 }

 }

 float stairwidth = 0.8;

 float stairheight = 0.3;

 int repeats = 10;

 float stairtop = 5;

 float height3 = height2 + (height2-height);

 //Inner - use for stairs!

 CurrTex = 1;

 AddPoly(centerx+x1,height3-(stairheight)-

stairtop,centerz+z1,centerx+x1,height3,centerz+z1,

centerx+x2,height3-(stairheight)-stairtop,centerz+z2,

centerx+x2,height3,centerz+z2, -1,0,0);

 CurrTex = 5;

 for (int j=0; j<repeats;j++){

 v = ang*i;

 x1 = (radius-(stairwidth*j))*sin(degra*v);

 z1 = (radius-(stairwidth*j))*cos(degra*v);

 v+=ang;

 x2 = (radius-(stairwidth*j))*sin(degra*v);

 z2 = (radius-(stairwidth*j))*cos(degra*v);

 v = ang*i;

 x3 = (radius-(stairwidth*(j+1)))*sin(degra*v);

 z3 = (radius-(stairwidth*(j+1)))*cos(degra*v);

 v+=ang;

 x4 = (radius-(stairwidth*(j+1)))*sin(degra*v);

 z4 = (radius-(stairwidth*(j+1)))*cos(degra*v);

 AddPoly(centerx+x3,height3-(stairheight*(j+1))-

stairtop,centerz+z3,centerx+x1,height3-(stairheight*(j+1))-

stairtop,centerz+z1, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4, centerx+x2,height3-(stairheight*(j+1))-

stairtop,centerz+z2, 0,-1,0);

 if (j !=0){

 AddPoly(centerx+x1,height3-

(stairheight*(j+1))-stairtop,centerz+z1,centerx+x1,height3-

(stairheight*j)-stairtop,centerz+z1, centerx+x2,height3-

(stairheight*(j+1))-stairtop,centerz+z2, centerx+x2,height3-

(stairheight*j)-stairtop,centerz+z2, -1,0,0);

 }

 if (j ==(repeats-1)){

 AddPoly(centerx+x3,height,centerz+z3,centerx+x3,height3-

(stairheight*(j+1))-stairtop,centerz+z3,

centerx+x4,height,centerz+z4, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4, -1,0,0);

 }

 }

 }

}

//Courtyard, for use in villa objects

void BuildCity::AddCourtyard(double centerx, double centerz, int

xrows, int zrows, float landy)

{

 CurrTex = 1;

 AddBlankCube(centerx-0.2,-8+landy,centerz-

0.2,centerx+(xrows*Secwidth)+0.2,-

1+landy,centerz+(zrows*Secwidth)+0.2);

 AddRoof2(centerx,-

1.5+landy+floorheight,centerz,centerx+(Secwidth*xrows),landy+floorhei

ght-1,centerz+(Secwidth));

140

 AddRoof2(centerx,-

1.5+landy+floorheight,centerz+(Secwidth*zrows)-

Secwidth,centerx+(Secwidth*xrows),landy+floorheight-

1,centerz+(Secwidth*zrows));

 AddRoof(centerx+0.01,-

1.5+landy+floorheight+0.01,centerz+Secwidth,centerx+Secwidth+0.01,lan

dy+floorheight-1,centerz+(Secwidth*zrows)-Secwidth);

 AddRoof(centerx+(Secwidth*xrows)-Secwidth+0.01,-

1.5+landy+floorheight+0.01,centerz+Secwidth,centerx+(Secwidth*xrows)+

0.01,landy+floorheight-1,centerz+(Secwidth*zrows)-Secwidth);

 CurrTex = 5;

 for (int i = 1; i < xrows+1; i++){

 AddArch(centerx+(Secwidth*i),-1.5+landy,centerz,-

1.5+landy+floorheight,180);

 }

 for (int i = 0; i < xrows; i++){

 AddArch(centerx+(Secwidth*i),-

1.5+landy,centerz+(Secwidth*zrows),-1.5+landy+floorheight,0);

 }

 for (int i = 0; i < zrows; i++){

 AddArch(centerx,-1.5+landy,centerz+(Secwidth*i),-

1.5+landy+floorheight,90);

 }

 for (int i = 1; i < zrows+1; i++){

 AddArch(centerx+(Secwidth*xrows),-

1.5+landy,centerz+(Secwidth*i),-1.5+landy+floorheight,270);

 }

}

//Generic, governmental insula

void BuildCity::AddBuilding(double centerx, double centerz, int

xrows, int zrows, int hrows, float landy, int rooftype)

{

 CurrTex = 5;

 AddBlankCube(centerx-0.2,-8+landy,centerz-

0.2,centerx+(xrows*Secwidth)+0.2,-

1+landy,centerz+(zrows*Secwidth)+0.2);

 for (int i = 0; i < xrows; i++){

 for (int j = 0; j < hrows; j++){

 if (j==0){

 int rano = rand()%6;

 //CurrTex = 1;

 if (rano == 0) {

 CurrTex = 2;

 AddArch(centerx+(xrows*Secwidth)-

(Secwidth*i)-Secwidth,floorheight*j-

1.5+landy,centerz+(zrows*Secwidth),floorheight*j+floorheight-

1.5+landy,0);

 CurrTex = 1;

 AddBlankCube(centerx+(xrows*Secwidth)-

(Secwidth*i)-Secwidth,floorheight*j-

4.0+landy,centerz+(zrows*Secwidth)-Secwidth,centerx+(xrows*Secwidth)-

(Secwidth*i),floorheight*j-

1.5+landy,centerz+(zrows*Secwidth)+(Secwidth*0.3));

 AddBlankCube(centerx+(xrows*Secwidth)+0.01-(Secwidth*i)-

Secwidth,floorheight*j-4.0+landy,centerz+0.01+(zrows*Secwidth)-

Secwidth,centerx+(xrows*Secwidth)+0.01-(Secwidth*i),floorheight*j-

1.9+landy,centerz+0.01+(zrows*Secwidth)+(Secwidth*0.6));

 AddBlankCube(centerx+(xrows*Secwidth)-

0.01-(Secwidth*i)-Secwidth,floorheight*j-4.0+landy,centerz-

141

0.01+(zrows*Secwidth)-Secwidth,centerx+(xrows*Secwidth)-0.01-

(Secwidth*i),floorheight*j-2.3+landy,centerz-

0.01+(zrows*Secwidth)+(Secwidth*0.9));

 AddBlankCube(centerx+(xrows*Secwidth)-

0.02-(Secwidth*i)-Secwidth,floorheight*j-4.0+landy,centerz-

0.02+(zrows*Secwidth)-Secwidth,centerx+(xrows*Secwidth)-0.02-

(Secwidth*i),floorheight*j-2.7+landy,centerz-

0.02+(zrows*Secwidth)+(Secwidth*1.2));

 AddWindowx(centerx+(Secwidth*i),floorheight*j-

1.5+landy,centerz,floorheight*j+floorheight-1.5+landy);

 } else {

 AddWindowx(centerx+(Secwidth*i),floorheight*j-

1.5+landy,centerz,floorheight*j+floorheight-1.5+landy);

 AddWindowx2(centerx+(xrows*Secwidth)-

(Secwidth*i)-Secwidth,floorheight*j-

1.5+landy,centerz+(zrows*Secwidth),floorheight*j+floorheight-

1.5+landy);

 }

 } else {

 AddWindowx(centerx+(Secwidth*i),floorheight*j-

1.5+landy,centerz,floorheight*j+floorheight-1.5+landy);

 AddWindowx2(centerx+(xrows*Secwidth)-(Secwidth*i)-

Secwidth,floorheight*j-

1.5+landy,centerz+(zrows*Secwidth),floorheight*j+floorheight-

1.5+landy);

 }

 }

 }

 for (int i = 0; i < zrows; i++){

 for (int j = 0; j < hrows; j++){

 AddWindowz(centerx+(xrows*Secwidth),floorheight*j-

1.5+landy,centerz+(Secwidth*i),floorheight*j+floorheight-1.5+landy);

 AddWindowz2(centerx,floorheight*j-

1.5+landy,centerz+(Secwidth*i),floorheight*j+floorheight-1.5+landy);

 }

 }

 if (rooftype == 1){

 AddRoof2(centerx,floorheight*hrows-

1.5+landy,centerz,centerx+(xrows*Secwidth),floorheight*hrows+0.5+land

y,centerz+(zrows*Secwidth));

 } else {

 AddRoof(centerx,floorheight*hrows-

1.5+landy,centerz,centerx+(xrows*Secwidth),floorheight*hrows+0.5+land

y,centerz+(zrows*Secwidth));

 }

}

double BuildCity::ReturnPoint(int p1, int p2)

{

 return PointArray[p1][p2];

}

int BuildCity::ReturnPoly(int p1, int p2)

{

 return PolyArray[p1][p2];

}

int BuildCity::ReturnCurrMat(int p1)

{

 return CurrentMat[p1];

142

}

int BuildCity::ReturnNorm(int p1)

{

 return NormDir[p1];

}

int BuildCity::ReturnPointCount(void)

{

 return Pointcount;

}

int BuildCity::ReturnPolyCount(void)

{

 return Polycount;

}

//Once the city has been generated and stored in the arrays, stream

the data into a .x file

void BuildCity::MakeAnX(string filename)

{

 //Set up input/output files

 //SetCurrentDirectory("Art/");

 string line;

 ofstream myfile;

 myfile.open (filename);

 ifstream opfile ("XFilePart1.txt");

 //Output the contents of example.txt

 if (opfile.is_open())

 {

 while (opfile.good())

 {

 getline (opfile,line);

 myfile << line << endl;

 }

 opfile.close();

 }

 //Output Pointcount

 myfile << Pointcount << ";" << endl;

 for (int i = 0; i<Pointcount;i++)

 {

 myfile << fixed << PointArray[i][0] << ";" <<

PointArray[i][1] << ";" << PointArray[i][2] << ";";

 myfile << endl;

 }

 myfile << Polycount << ";"<< endl;

 for (int i = 0; i < Polycount; i++)

 {

 myfile << "4;" << numcount << ",";

 numcount++;

 myfile << numcount << ",";

 numcount++;

 myfile << numcount << ",";

 numcount++;

 myfile << numcount << ";," << endl;

 numcount++;

 }

 myfile << "MeshMaterialList {" << endl;

 myfile << "7;" << endl; //NUMBER OF MATERIALS

 myfile << Polycount << ";" << endl;

143

 for (int i = 0; i < Polycount; i++)

 {

 myfile << CurrentMat[i];

 if (i == Polycount-1) {

 myfile << ";;" << endl;

 } else {

 myfile << "," << endl;

 }

 }

 ifstream opfile2 ("XFilePart2.txt");

 if (opfile2.is_open())

 {

 while (opfile2.good())

 {

 getline (opfile2,line);

 myfile << line << endl;

 }

 opfile2.close();

 }

 myfile << Polycount << ";" << endl;

 for (int i = 0; i < Polycount; i++)

 {

 myfile << "4;" << NormDir[i] << "," << NormDir[i] << ","

<< NormDir[i] << "," << NormDir[i] << ";";

 if (i == Polycount-1){

 myfile << ";" << endl;

 } else {

 myfile << "," << endl;

 }

 numcount++;

 }

 myfile << "}" << endl;

 myfile << "MeshTextureCoords {" << endl;

 myfile << Pointcount << ";" << endl;

 for (int i= 0; i< Pointcount; i=i+4){

 myfile << "0.0000;0.0000;" << endl;

 myfile << "0.0000;1.0000;" << endl;

 myfile << "1.0000;1.0000;" << endl;

 myfile << "1.0000;0.0000;";

 if (i == Pointcount-1){

 myfile << ";" << endl;

 } else {

 myfile << endl;

 }

 }

 myfile << "}" << endl << "}" << endl << "}";

 myfile.close();

 DeallocateAll();

}

144

7.3 XFILEPART1.TXT

xof 0302txt 0032

Header {

 1;

 0;

 1;

}

template Header {

 <3D82AB43-62DA-11cf-AB39-0020AF71E433>

 WORD major;

 WORD minor;

 DWORD flags;

}

template Vector {

 <3D82AB5E-62DA-11cf-AB39-0020AF71E433>

 FLOAT x;

 FLOAT y;

 FLOAT z;

}

template Coords2d {

 <F6F23F44-7686-11cf-8F52-0040333594A3>

 FLOAT u;

 FLOAT v;

}

template Matrix4x4 {

 <F6F23F45-7686-11cf-8F52-0040333594A3>

 array FLOAT matrix[16];

}

template ColorRGBA {

 <35FF44E0-6C7C-11cf-8F52-0040333594A3>

 FLOAT red;

 FLOAT green;

 FLOAT blue;

 FLOAT alpha;

}

template ColorRGB {

 <D3E16E81-7835-11cf-8F52-0040333594A3>

 FLOAT red;

 FLOAT green;

 FLOAT blue;

}

template TextureFilename {

 <A42790E1-7810-11cf-8F52-0040333594A3>

 STRING filename;

}

template Material {

 <3D82AB4D-62DA-11cf-AB39-0020AF71E433>

 ColorRGBA faceColor;

 FLOAT power;

 ColorRGB specularColor;

 ColorRGB emissiveColor;

145

 [...]

}

template MeshFace {

 <3D82AB5F-62DA-11cf-AB39-0020AF71E433>

 DWORD nFaceVertexIndices;

 array DWORD faceVertexIndices[nFaceVertexIndices];

}

template MeshTextureCoords {

 <F6F23F40-7686-11cf-8F52-0040333594A3>

 DWORD nTextureCoords;

 array Coords2d textureCoords[nTextureCoords];

}

template MeshMaterialList {

 <F6F23F42-7686-11cf-8F52-0040333594A3>

 DWORD nMaterials;

 DWORD nFaceIndexes;

 array DWORD faceIndexes[nFaceIndexes];

 [Material]

}

template MeshNormals {

 <F6F23F43-7686-11cf-8F52-0040333594A3>

 DWORD nNormals;

 array Vector normals[nNormals];

 DWORD nFaceNormals;

 array MeshFace faceNormals[nFaceNormals];

}

template Mesh {

 <3D82AB44-62DA-11cf-AB39-0020AF71E433>

 DWORD nVertices;

 array Vector vertices[nVertices];

 DWORD nFaces;

 array MeshFace faces[nFaces];

 [...]

}

template FrameTransformMatrix {

 <F6F23F41-7686-11cf-8F52-0040333594A3>

 Matrix4x4 frameMatrix;

}

template Frame {

 <3D82AB46-62DA-11cf-AB39-0020AF71E433>

 [...]

}

template FloatKeys {

 <10DD46A9-775B-11cf-8F52-0040333594A3>

 DWORD nValues;

 array FLOAT values[nValues];

}

template TimedFloatKeys {

 <F406B180-7B3B-11cf-8F52-0040333594A3>

 DWORD time;

 FloatKeys tfkeys;

}

146

template AnimationKey {

 <10DD46A8-775B-11cf-8F52-0040333594A3>

 DWORD keyType;

 DWORD nKeys;

 array TimedFloatKeys keys[nKeys];

}

template AnimationOptions {

 <E2BF56C0-840F-11cf-8F52-0040333594A3>

 DWORD openclosed;

 DWORD positionquality;

}

template Animation {

 <3D82AB4F-62DA-11cf-AB39-0020AF71E433>

 [...]

}

template AnimationSet {

 <3D82AB50-62DA-11cf-AB39-0020AF71E433>

 [Animation]

}

template XSkinMeshHeader {

 <3cf169ce-ff7c-44ab-93c0-f78f62d172e2>

 WORD nMaxSkinWeightsPerVertex;

 WORD nMaxSkinWeightsPerFace;

 WORD nBones;

}

template VertexDuplicationIndices {

 <b8d65549-d7c9-4995-89cf-53a9a8b031e3>

 DWORD nIndices;

 DWORD nOriginalVertices;

 array DWORD indices[nIndices];

}

template SkinWeights {

 <6f0d123b-bad2-4167-a0d0-80224f25fabb>

 STRING transformNodeName;

 DWORD nWeights;

 array DWORD vertexIndices[nWeights];

 array FLOAT weights[nWeights];

 Matrix4x4 matrixOffset;

}

Frame polySurface12 {

 FrameTransformMatrix {

1.000000,0.000000,0.000000,0.000000,

0.000000,-0.000000,-1.000000,0.000000,

0.000000,1.000000,-0.000000,0.000000,

0.000000,0.000000,0.000000,1.000000;;

 }

Mesh polySurface121 {

147

7.4 XFILEPART2.TXT

//City Wall

Material {

 1.000000;1.000000;1.000000;1.000000;;

25.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

"newwall.png";

}

 }

 //Bricks

Material {

 1.000000;1.000000;1.000000;1.000000;;

25.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

"stone.dds";

}

 }

 //Columns

Material {

 1.000000;1.000000;1.000000;1.000000;;

25.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

"stone.dds";

}

 }

 //Roof

Material {

 1.000000;1.000000;1.000000;1.000000;;

25.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

"roof2.jpg";

}

 }

 //Window

Material {

 1.000000;1.000000;1.000000;0.500000;;

20.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

"window1.bmp";

}

 }

 //Granite

Material {

 1.000000;1.000000;1.000000;1.000000;;

2.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

148

"stone.dds";

}

 }

 //Floor

Material {

 1.000000;1.000000;1.000000;1.000000;;

2.000000;

 1.000000;1.000000;1.000000;;

 0.200000;0.200000;0.200000;;

TextureFilename {

"stone.dds";

}

 }

}

 MeshNormals {

 12;

1.00000;0.000000;0.000000;,

-1.000000;0.000000;0.000000;,

0.000000;0.000000;1.000000;,

0.000000;0.000000;-1.000000;,

0.000000;1.000000;0.000000;,

0.000000;-1.000000;0.000000;,

0.000000;0.500000;0.500000;,

0.000000;-0.500000;0.500000;,

0.500000;0.500000;0.000000;,

0.500000;-0.500000;0.000000;,

-0.500000;0.500000;0.000000;,

-0.500000;-0.500000;0.000000;;

	noghanicover
	noghani

