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Abstract

Recent years have shown a growing concern over increasing traffic volume worldwide.

The insufficient road capacity and the resulting congestions have become major

problems in many urban areas. Congestions negatively impact the economy, the

environment and the health of the population as well as the drivers satisfaction.

Current solutions to this topical and timely problem rely on the exploitation of

Intelligent Transportation Systems (ITS) technologies.

ITS urban traffic management involves the collection and processing of a large

amount of geographically distributed information to control distributed infrastructure

and individual vehicles.

The distributed nature of the problem prompted the development of a novel,

scalable ITS-Cloud platform. The ITS-Cloud organises the processing and manages

distributed data sources to provide traffic management methods with more accurate

information about the state of the traffic. A new approach to service allocation,

derived from the existing cloud and grid computing approaches, was created to

address the unique needs of ITS traffic management. The ITS-Cloud hosts the

collection of software services that form the Cloud based Traffic Management System

(CTMS). CTMS combines intersection control algorithms with intersection approach

advices to the vehicles and dynamic routing.

The CTMS contains a novel Two-Step traffic management method that relies

on the ITS-Cloud to deliver a detailed traffic simulation image and integrates an

adaptive intersection control algorithm with a microscopic prediction mechanism.

It is the first method able to perform simultaneous adaptive intersection control

and intersection approach optimization. The Two-Step method builds on a novel

pressure based adaptive intersection control algorithm as well as two new traffic

prediction schemes.

The developed traffic management system was evaluated using a new microscopic

traffic simulation tool tightly integrated with the ITS-Cloud. The novel traffic

management approaches were shown to outperform benchmark methods for a realistic

range of traffic conditions and road network configurations. Unique to the work was

the investigation of interactions between ITS components.
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Chapter 1

Introduction

This chapter provides an introduction to the research carried out in this project.

The main aim is identified leading to the definition of the objectives. Novelties

and deliverables are then presented. The chapter finishes with an outline of the

subsequent chapters.

1.1 Introduction and research motivation

According to the DVLA [1] the amount of vehicles in the UK has increased on

average by 2.4% per year between 1996 and 2007 before slowing down to 0.5% in

the 2008-2009 period due to the financial crisis. The following years have seen some

recovery, with the amount of vehicles growing by 0.9% every year between 2010

and 2012. The growth rate is even greater in developing countries, where a rapid

growth of the amount of vehicles is often accompanied by an underdeveloped road

infrastructure [2]. The congestion caused by the insufficient road throughput was

estimated to cost the UK economy over 4 billion pounds per year [3], mainly due to

lost revenue and wasted fuel [4].

Dealing with traffic congestion has been made a high priority and deemed necessary
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Chapter 1. Introduction

for further social and economic development of any country [5]. Congestion can be

reduced by increasing road capacity, which in turn requires significant investments in

new road infrastructure. Such investments are usually very costly, time consuming

and not always feasible owing to a lack of necessary space.

Intelligent Transportation Systems (ITSs) aim to improve existing road networks

capacity, reduce travel times, fuel consumption, increase safety of all traffic participants

and deliver traffic relevant information to the drivers [6]. Many ITS technologies rely

on cooperation between vehicles and the infrastructure that is enabled by wireless

communication.

An ITS aims to achieve those goals using a variety of technologies ranging

from intelligent adaptive intersection control to advising the vehicles on optimal

behaviour. Currently ITS research favours infrastructure based adaptive traffic

control strategies in urban environments [7, 8, 9]. Besides adaptive traffic light

control the infrastructure based ITS includes systems such as intersection approach

optimisation [10, 11], that knowing the future state of the traffic lights can advise

the vehicles on how should they approach, or dynamic vehicle routing [12, 13] that

can suggest alternative routes to vehicles.

Self organising ad-hoc wireless networks are an enabling technology for infrastructure-less

traffic management on motorways and the suburban environment [14, 15, 16]. Cooperative

platooning are also referred to as cooperative adaptive cruise control (CACC) aims

to improve road throughout and increase safety by adjusting the speed of the vehicles

in a cooperative manner.

Adaptive traffic control strategies manage traffic flow in reaction to current traffic

conditions, therefore use of various sensing techniques is required to provide such

information. Increasing scale and coverage of ITS, especially in urban areas, requires

collection and analysis of large amounts of geographically distributed data [17]. Such

information may also be required by other ITS applications, different than traffic
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control, therefore a way of managing large amount of geographically distributed data

and sharing it with multiple ITS applications is required.

This research project recognised both the necessity of managing such a large

amount of distributed data and the need to improve the way urban traffic is managed.

To aid with large scale data and processing management, a distributed processing

platform called ITS-Cloud, was designed using Cloud computing principles and

implemented as part of this project. Furthermore several ITS traffic management

applications were developed using the ITS-Cloud platform. Those applications were

designed to control various aspects of traffic flow and by cooperating with each

other improve road utilisation, reduce journey times and energy consumption. Such

a collection of cooperative distributed applications has been placed under a collective

name of the Cloud based Traffic Management System (CTMS).

1.2 The aim and objectives

1.2.1 The aim of the project

The aim of this research was to simultaneously improve traffic flow and driver

satisfaction in urban and suburban areas by reducing average journey times, energy

consumption and carbon emissions as well as reducing the amount of stops required

to be made by the driver when traversing an urban road network. To achieve this

aim a number of objectives, identified in the following section, were realised leading

to the development of a robust, distributed and scalable platform for hosting ITS

applications onto which was deployed new traffic simulation and management tools.
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1.2.2 Objectives

The key objectives, crucial to achieving the aim of the project, were identified as

follows:

• Identify the criteria used to evaluate traffic management schemes.

• Investigate existing traffic management schemes and determine the most effective

or most promising approaches. Examine their advantages and disadvantages

and determine how they can be improved.

• Design an improved traffic management scheme to address the identified weaknesses

of existing methods.

• Design and develop the ITS-Cloud, a robust, distributed and scalable execution

platform on which the traffic management applications can be deployed.

• Design and develop a simulation tool that is integrated with the ITS-Cloud

and is capable of performing accurate traffic simulations and cooperate with

the developed traffic management applications.

• Design and develop all the system components and applications of the Cloud

based Traffic Management System (CTMS).

• Validate the new traffic management methods using the traffic simulator.

1.3 Methodology

The realisation of this research project has been divided into three phases:

• Review of the current state of art and refinement of the project goals and

deliverables.

• Design and implementation of intersection algorithms, ITS-Cloud platform,

the Cloud based Traffic Management system and the traffic simulator.

• Analysis phase focused on performing simulation studies using the developed

tools and techniques. Results were analysed and reported in this document.

4



1.3. Methodology

Figure 1.1: PhD project Gantt diagram

Figure 1.1 shows the Gantt chart representation of the tasks and processes

involved in this project. The design processes are coloured white, implementation

tasks are shown in grey and the tasks dealing with result collection, analysis and

reporting are black. The design processes and implementation tasks overlap each

other as it was often necessary to make design changes owing to encountered implementation

issues. Additionally the development processed of the simulation tool and the

ITS-Cloud was carried out simultaneously for most of the time. It is worth noticing

that the literature review process was active through the most of the project in order

to keep track of the constantly evolving state of art.

The software components were designed using an object oriented programming

approach. The design diagrams were created using the Unified Modelling Language

(UML). The resulting UML diagrams were then reviewed before being implemented

using the Java-SE platform. Unit testing was carried out using the Jtest, a Java

unit testing tool kit. The vehicle components were initially developed and validated

using the MATLAB/Simulink environment before being implemented in the Java

based traffic simulator.
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1.4 Deliverables and original contributions

This research project introduced several novelties and proposed novel applications

for existing technologies. The novelties are as follows:

• Joint traffic light and vehicle speed optimisation

A novel traffic management method referred to as ‘Two-Step traffic optimisation’

within this work. It combines adaptive traffic light control with the capability

to instruct the appropriately equipped vehicles on how to approach the intersection

with aim to reduce journey times and conserve energy. This has been identified

in the literature as an important capability that is currently missing and as

such limits the application of promising traffic management techniques such as

intersection approach optimisation. It is therefore the most important novelty

of this work.

• Application of distributed processing principles in the traffic man-

agement field

In order to achieve scalability and robustness of the newly developed traffic

management system as well as organise data processing, cloud computing

principles were used to design a distributed processing platform, referred to

as ITS-Cloud in this work, which hosts all traffic management services and

applications.

• Micro-scale traffic prediction component

The micro scale traffic prediction is a novel component that allows the traffic

management system to perform short term, highly detailed predictions of state

of traffic in an intersection area. It is achieved using a purpose-designed

microscopic simulation engine wrapped in a cloud service.

• Meso-scale traffic prediction component

The meso-scale traffic prediction component is able to predict occurrence of

vehicle waves or platoons before they enter the sensing range of an intersection.
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Using such a service the intersection controller can usually adjust the signalling

stages such that the vehicle group is allowed to pass without stopping resulting

in significant reduction of energy expenditure.

• Multi-dynamic service allocation

The specific requirements of traffic management applications have led to modification

of a typical service allocation by allowing multiple users to connect to dynamically

allocated service instances. The new allocation method is referred to as

multi-dynamic service allocation and services created using such a method

are referred to as multi-dynamic services in this work.

• Cloud-integrated microscopic traffic simulator

A new microscopic traffic simulation tool has been developed throughout this

project. While microscopic traffic simulation is not new, the novelty lies

in integration of the simulated traffic network components with the cloud

platform. Such an integration provides the ITS-Cloud services with common

access methods to sensor data and presents traffic system components such

as lane sensors or traffic lights as ITS-cloud services. This is based on a

premise that when the developed traffic management system is deployed in

the real world, lane sensors, intersection controllers and other infrastructure

components will be equipped with software wrappers that would present their

functionality to the cloud system in a uniform manner.

There were several research papers published by the author throughout the

duration of this research project. The concept of using cloud computing to host

a traffic management system and other ITS services was introduced in:

• ”Cloud Computing Concept for Intelligent Transportation Systems”, In the

proceedings of the 14th International IEEE Conference on Intelligent Trans-

portation Systems (IEEE ITSC 2011), 05 Oct - 07 Oct 2011, Washington, DC,

USA, Pawe l Jaworski, Tim Edwards, Jonathan Moore, Keith Burnham (see
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Appendix C).

The paper dealing with the traffic management system itself, including all the

contained traffic control algorithms, was published as:

• ”Distributed Traffic Flow Optimisation and Control for Intelligent Transportation

Systems”, In the proceedings of the International Conference on Systems En-

gineering (ICSE 2012), 11 Sep - 13 Sep 2012, Coventry, UK, Pawe l Jaworski,

Tim Edwards, Keith Burnham, Olivier Haas (see Appendix D).

The details of the microscopic traffic simulation tool have been published in:

• ”Microscopic Traffic Simulation Tool for Intelligent Transportation Systems”,

In the proceedings of the 15th International IEEE Conference on Intelligent

Transportation Systems (IEEE ITSC 2012), 16 Sep - 19 Sep 2012, Anchorage,

Alaska, USA, Pawe l Jaworski, Tim Edwards, Keith Burnham, Olivier Haas

(see Appendix E).

Additionally the author implemented a data base system and a fuzzy logic longitudinal

controller for the Network Assisted Vehicle (NAV). NAV is semi-autonomous vehicle

developed at MIRA Ltd. Its primary purpose is to automate ITS and advanced

driver assistance systems (ADAS) testing. Measurements obtained from the NAV

were used to obtain the parameters of the vehicle model, see Section 6.3 of Chapter

6.

It was planned to use NAV in future real world evaluations of the traffic management

solutions presented in this thesis.

• ”A Network Assisted Vehicle for ADAS and ITS testing”, In the proceed-

ings of the 14th International IEEE Conference on Intelligent Transportation

Systems (IEEE ITSC 2011), 05 Oct - 07 Oct 2011, Washington, DC, USA,

Tim Edwards, Jonathan Moore, Maria Loukadaki and Pawe l Jaworski (see

Appendix F).
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• ”Autonomous longitudinal control for a Network Assisted Vehicle”, In the

proceedings of the 11th International Symposium on Advanced Vehicle Control

(AVEC ’12), September 2012, Seoul, Korea, Tim Edwards, Pawe l Jaworski

and Maria Loukadaki (see Appendix G).

1.5 Outline of approach

This document starts with a description of the overall project goals, followed

by identification of relevant research areas. The project background in Chapter

2 provides an overview of existing technologies and the current state of the art in

relevant research fields allowing for clear formulation and justification of the research

goals. Out of applicable publications the chapter focuses around a chosen few that

were deemed most important or provide a useful introduction and background to

the content of this work.

Chapter 3 introduces the traffic control algorithms used in this work. Their inner

working is described and sensor data requirements are defined. The benchmark

algorithms are defined first followed by the novel traffic management methods.

The ITS-Cloud platform is introduced in Chapter 4. It is explained how a

cloud computing system works and how it was modified and implemented for ITS

applications.

Chapter 5 introduces the Cloud computing Traffic Management System (CTMS)

which, using the cloud computing platform described previously, manages the traffic

flow throughout the traffic network. All the cloud services that form the system are

described and the two levels of traffic management are introduced.

Chapter 6 describes the traffic simulation tool developed for this PhD project. An

explanation is provided to why it was chosen to develop a new tool instead of using

one of the already existing simulators. Details of the implementation are provided
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and it is explained how individual components of the traffic network are simulated.

Chapter 7 evaluates the developed traffic management methods and other components

of the Cloud based Traffic Management System using the traffic simulation tool

described in Chapter 6.

Chapter 8 presents the conclusions of this work, recognises the limitations of the

developed apporaches, and outlines the possible future research directions.
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Chapter 2

Literature background

This chapter presents a review of the relevant underpinning research. It aims to

familiarise the reader with the components and technologies that were used to build

the ITS-Cloud platform, the Cloud based Traffic Management System (CTMS) and

the traffic simulation tool. There are two areas of research covered by this review:

traffic management and simulation covered in the Sections 2.1 to 2.5, and distributed

computing discussed in Section 2.6.

• The first section provides an overview of criteria and objectives used by traffic

management techniques.

• The second section reviews the state of the art in traffic management focusing

on traffic control techniques and algorithms that inform the new traffic management

scheme developed in Chapter 3.

• The next two sections provide essential background to the realisation of the

microscopic traffic simulation presented in Chapter 6.

• Section 2.3 reviews existing traffic flow models as well as selection of the most

relevant traffic simulation tools exploiting those models.

• Section 2.4 reviews methods of automatic vehicle control.

• The fifth section reviews the wireless communication technologies in vehicular
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environments.

• Section 2.6 reviews the cloud and grid distributed computing approaches that

are used to create the ITS-Cloud distributed computing platform in Chapter

4.

• Section 2.7 outlines the identified gap in knowledge.

• The final section concludes the chapter and outlines the identified gap in

knowledge.

2.1 Traffic management criteria, constraints and

objectives

Before investigating traffic management methods this section provides an overview

of optimisation objectives and criteria used in traffic management.

Criteria (optimisation objectives) used for traffic management have been identified

as follows:

• journey time (minimise) [18, 19, 20]

• wait times/delay (minimise) [21, 22, 23]

• energy consumption and emissions (minimise) [18, 24, 25, 26, 27]

• road utilisation, throughput (maximise) [21, 25, 26, 28]

• average speed increase [29]

In order to guarantee safety and fair treatment of all traffic flow directions [22]

the following constraints are imposed:

• inter-green periods (also referred to as set-up time)

• minimal green/red phase duration

• maximal red phase duration

The rules governing interaction between vehicles form an important part of traffic

management. The objectives for longitudinal vehicle control have been identified as
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follows:

• maximise speed [30, 31]

• minimise separation gap (to increase road throughput)

• minimise variation in separation gap

The constraints for longitudinal vehicle control are as follows:

• speed limit

• minimal safe separation

2.2 Traffic management and control

Traffic management is one of the fundamental functions of the ITS and the main

focus of this work. Arbitrary control over the flow of traffic is necessary to guarantee

safety in situations where multiple traffic flow directions intersect. A traffic control

system determines how to prioritize the flow of vehicles from different directions to

clear the conflict zone. The control algorithm should guarantee a fair management

and prevent unnecessary delays.

The most widely used approach involves use of traffic signals (lights) located in

critical areas of the traffic network such as intersections and signalled pedestrian

crossings. In the second approach, individual vehicles are influenced by a traffic

controller by means or wireless communication or by variable message signs (VMS)

and can react on a voluntary basis or autonomously. Such an approach is referred

to as vehicle actuated traffic control (VATC) in this work.

Traffic lights can control the vehicle flow by stopping the vehicles or enabling

them to pass. VATC allows finer control over the traffic enabling setting variable

speed limits, advising vehicles on an optimal route and even informing the vehicles

on the future state of traffic lights.
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2.2.1 Traffic light based traffic control

The simplest way of governing an intersection is to use traffic lights with a

pre-defined cycle plan. Such approach is often referred to as fixed timing or fixed

cycles (FC) control. FC activates each traffic flow for a pre-determined period of

time. The timings have be optimised off-line based on statistical data, which means

that such an algorithm is unable to cope with a sudden unexpected change in traffic

flow [19].

To enable a FC algorithm to react to the current traffic situation signalling

stages can be dynamically increased or decreased depending on traffic demand.

Such an adaptive extension to FC is utilised by the Split Cycle Offset Optimisation

Technique (SCOOT) [32]. SCOOT is one of the most developed urban traffic control

systems (UTC) in the world with several successful deployments in the UK and

worldwide [19]. The system works by optimising the length traffic cycle stages in all

intersections in a given region. Such an approach prevents the intersection controller

from reacting quickly to high magnitude changes in traffic flow, however the inherent

safety of an incremental system makes it robust to erroneously detected vehicles or

sudden but short traffic fluctuations.

One of the greatest advantages of FC is that information about the future state

of the traffic lights is available in advance at all times. Such knowledge can be

exploited to optimise a vehicle approach to the intersection [10, 33].

FC traffic control is simple but usually effective for routine situations but it

cannot respond appropriately to unforeseen changes in demand caused by incidents

or special events. FCs rely on appropriate commissioning and maintenance to update

the statistical models underpinning the timing plans. However it is typical for such

systems not to be regularly maintained, making them unable to adapt to changing

circumstances.

Adaptive traffic lights control (ATLC) can be used to adapt intersection control
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to the traffic conditions [23, 34]. ATLC adjusts the signalling stages in reaction to

the traffic conditions in order to optimise specific objectives e.g. minimise delay,

energy consumption, and CO2 emissions. It adjusts dynamically and autonomously

the lengths of traffic cycle stages as a response to changing road situations.

In [35] the ATLC adjusts the stage lengths of stages in predefined traffic cycles,

thereby being predictable and robust. Self-organising traffic control is capable of

greater adaptability and can create its own traffic cycles depending on the demand

[9, 25, 27, 34, 36, 37].

In [27] the authors propose a UTC system based on agents. Agents are autonomous

entities that can make their own decisions based on their desires (objective functions),

usually taking into account past behaviour of other agents as well. The global

solution is constructed as a result of cooperation between agents. An agent based

traffic management system proposed in [38] uses different types of agents. The traffic

light agents are responsible for reading traffic situation in lanes. Such information is

used by the junction agents to calculate which stage should be activated. For that

purpose the authors used a lane priority index Pl, calculated with respect to the

type of queued vehicle and the time the traffic light was red. It is defined as follows:

Pl = 10 · Car + 100 ·Bus+ 1000 · Emergency +
(RedDuration)2

100
(2.1)

Most traffic management systems work is based on the amount of queued vehicles,

without taking into account the gain from allowing the vehicles to pass without

stopping. A notable exception from this group is an algorithm proposed in [34]. The

algorithm is based on fluid dynamics and multi particle (microscopic) simulations

to control intersections. The most notable and unique feature of this approach is

that it achieves a cooperative behaviour between intersections without using any

types of communication between them. The system exhibits cooperative behaviour

because of how the algorithm itself is structured. It prioritises moving platoons of
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vehicles and anticipates their arrival to the controlled intersection, based on a valid

assumption that it is more optimal to keep already stopped vehicles stationary for

a longer period of time in order to let a platoon of moving vehicles through the

intersection without stopping them. A green wave effect is obtained because of the

fact that vehicles are released from an intersection in platoons, therefore there is a

good chance they will reach next intersection in this formation and the controller

on the next intersection will prioritise them because of their formation. It can be

noted that in that case the vehicles themselves and their configuration against each

other are carriers of cooperative information between the intersections.

It was aimed to achieve such green wave effect in this work in the ITSP intersection

management method (see Section 3.2 of Chapter 3) that was based on the adaptive

approach of [34] described above.

2.2.2 Vehicle actuated traffic control

Vehicle actuated traffic control (VATC) is a different approach to traffic management.

Instead of only relying on traffic light stages, each vehicle is given instructions,

in a cooperative manner, on the trajectory they should follow to approach the

intersection [39]. Additionally individual approach profiles can be created for each

vehicle to optimise waiting times and fuel consumption [33].

VATC opens great perspectives for future traffic management. However it relies

on a wide uptake and improved reliability and security of the necessary technology

on board vehicles as well as on the whole road network. The transition from the

current form of traffic management to a fully interconnected and cooperative system

should therefore be done gradually with the coming of age of relevant technology.

To date, vehicle actuation methods are reduced to support role for traffic light based

intersection control in urban environment.

For example approaches based on communicating vehicles following instructions
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received from an intersection controller were demonstrated in [40] and [33] and

resulted in significant reductions in fuel consumption and CO2 emissions. Such

techniques are known under many names. Authors in [33] refer to it as Eco Cooperative

Adaptive Cruise Control (ECACC) and a similar technique is called Green Light

Optimised Speed Advisory (GLOSA) in [10, 11]. According to [33], [11] and [10]

intersection approach optimisation conflicts with adaptive traffic light control as

future state of the intersection is not always determinable.

In cases where the vehicles cannot communicate with the infrastructure but

communicate with themselves, decentralised techniques such as Cooperative Adaptive

Cruise Control can be adopted. CACC has been shown to increase traffic throughput

and significantly reduce congestion thereby alleviating bottlenecks arising from lane

drop [41] or are caused by a join ramp [16].

Besides instructing the vehicles where they should stop and how fast to travel it

is possible for an ITS traffic management system to tell vehicles where to go. Active

traffic control might involve re-routing of traffic to keep the load on the road network

balanced. A balanced traffic network is less likely to exhibit situations where one

link becomes congested while others remain under-utilised. The problem is not new

and its solution usually can be obtained using a weighted graph search and traverse

algorithm [42], where the intersections are vertices and roads are the graph edges.

The edge weight is derived from a given road link capacity and a current load.

An interesting alternative to graph algorithms has been proposed in [13]. The

authors demonstrated the use of an ant colony optimisation based algorithm for

optimising the vehicle flow in an urban road network. Ant colony optimisation

(ACO) is a meta-heuristic method, usually applied to static routing problems like

shortest path finding [43]. The authors in [13] applied this technique to a dynamic

version of this problem, where the cost of traversing a graph edge is not constant

and it reflects travel time rather than physical distance.
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The dynamic vehicle routing mechanism implemented in this work does not find

a best path for individual vehicles but searches the entire road network for the

optimal routes between every pair of intersections in the managed area. The paths

are calculated using the depth-first search (DFS) algorithm in combination with

dynamic edge weight calculation (see Section 3.6 of Chapter 3).

2.2.3 Vehicle detection

To enable adaptive traffic control a reliable information on the current state of

traffic flow is required. Such information can be obtained using various vehicle

sensing techniques.

Vehicles can be detected either by sensors that are part of the infrastructure or

the positioning data can be obtained directly from the vehicles that can determine

their own position and communicate it to the traffic management infrastructure [7].

Induction loops [44] are usually buried in the road and are capable of detecting

the presence of a vehicle above them by sensing a change in magnetic flux caused by

presence of a large metallic body. Even though the basic sensor itself is only capable

of reporting the presence of a vehicle (or lack of thereof) above it, coupled with

analytic software it can provide valuable information about the traffic conditions

and even distinguish between distinct vehicle types e.g. car, bus, truck [22].

In [45, 46] the authors demonstrated methods of estimating the speed of passing

vehicles using induction loops. The method presented in [45] relied on matching

the inductive waveforms caused by the vehicles and contrary to other methods was

able to provide a speed estimation without the knowledge (or assumption) of vehicle

length. It was shown that the method exhibits average speed measurement error

of 6.7%. In this work it is assumed that the induction loops can only detect the

presence of a vehicle.

More advanced sensor types capable of classifying vehicle type, providing its
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position (in relation to the stop lane) and speed are referred to as ITS-sensors

within this work. ITS-sensors are usually based on passive cameras (operating in

visual spectrum or infrared) [47] or active radar/lidar systems coupled with image

recognition software [48].

ITS-Sensors are superior to induction loops in terms of greater amount of information

provided and lower installation costs, however they are less robust. The performance,

range and detection rates of image recognition based sensors may vary depending

on the time of day or the weather [47]

Both sensor types are available in the traffic simulator presented in Chapter 6

and are used by the Cloud based Traffic Management System described in Chapter

5.

2.3 Traffic modelling and simulation

This section examines the current state of art in traffic modelling and simulation

with a view to create a new traffic simulation tool (see Chapter 6) to validate the

developed traffic management schemes.

Traffic modelling is utilised by traffic management systems to predict future

situations [9, 27, 39] that are then used to control the traffic flow according to

a specific objective (see Sections 2.1 and 2.2). The modelling techniques are also

widely used to assess performance of a traffic management systems and strategies

[23, 29, 49, 50, 51].

There were four levels of refinement in traffic modelling identified. Traffic can

be modelled as a general flow, using equations derived from fluid dynamics, or

it can be very detailed and take each separate vehicle into account. Those two

approaches are called macroscopic and microscopic respectfully [52]. Mesoscopic

models are placed somewhere between macro and microscopic approaches. They
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usually use a macroscopic approach to model traffic flow in general, supplemented

with microscopic components to investigate areas of particular interest in detail

[53, 54]. Nanoscopic models takes the level of detail beyond microscopic. In terms of

traffic simulation it usually means simulating the vehicles down to their sub-components

such as the power-train or even its own sub-components such as the engine and the

gearbox [55].

The scope of the model is chosen such that it represents the investigated situation

in sufficient detail. Investigating vast motorway networks will require a macroscopic

model [56], analysing details of traffic flow will require a microscopic model [57].

A nanoscopic model is needed if access to internal vehicle functions and states is

required [55].

The following two subsections focus on macroscopic and microscopic models,

however readers should consult [58] for a comprehensive comparison of traffic modelling

techniques.

2.3.1 Macroscopic traffic models and simulators

The most prominent example of a macroscopic traffic model is called TRANSYT

[52] (TRAffic Network StudY Tool). TRANSYT was developed by the Transport

Research Laboratory (TRL) to be used in their SCOOT traffic control system (see

Subsection 2.2.1). Although it is popularly referred to as a model, it is in fact a tool

chain comprising a model and an optimisation algorithm coupled together and used

to adjust the signal cycle lengths in SCOOT.

MASTER [59] is a macroscopic model that uses gas-kinetic traffic equations to

model the traffic flow. The traffic flow is modelled as changes in spacial vehicle

density which corresponds to pressure changes in a gas medium.

The Multi-Commodity Discrete Kinematic Wave (MCDKW) model [60] categorises

the vehicles into multiple commodities. The commodities are differentiated by the
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paths the vehicle take (sets of origin-destination points). Kinematic wave theory is

then used to simulate the multi-commodity traffic.

Another approach to modelling traffic flow involves the use of coloured timed

Petri nets (CP-nets) [61, 62, 63]. A Petri net is a graph describing system states and

conditional transitions between them. Petri nets and timed Petri nets traditionally

use discrete events to model concurrent and real time software systems and their

properties. In [63] Petri nets are combined with a discrete-event modelling language

Standard ML to create Coloured Petri Nets (CPN). CPN can be used to simulate

systems where concurrency, communication and event synchronisation play a major

role. Other macroscopic traffic simulation models include METANET [56] and

NETCELL [64].

Each of these modelling approaches has its own advantages and disadvantages

and is suitable for particular applications, see [58] for more details.

A significant advantage of macroscopic traffic modelling over its microscopic

counterpart is that the computational cost does not increase with the amount of

vehicles simulated [60].

2.3.2 Microscopic traffic modelling and simulation

A traffic network can be modelled in micro scale using a cellular automaton

[65, 66]. In this approach the traffic network is divided into cells, which can be in

a predefined set of states. A cellular automaton based model is discrete in both

space and time. The cellular automata based traffic model family is based on a

model proposed by Nagel and Schreckenberg in [67]. From the authors surnames the

family are referred to as the NaSch models. Cellular automata based traffic models

are simple to implement but a fine grain representation of the traffic network requires

dividing the roads into many cells. The speeds of vehicle movement are quantified

and dependant on the cell granularity.
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INTEGRATION [52] is a microscopic model, which reflects the behaviour of

individual vehicles on their lanes using a vehicle following (platooning) approach. It

is also capable of modelling traffic lights with detailed signalisation plans [68].

The Traffic Software Integrated System - Corridor Simulation (TSIS-CORSIM)

[58] is a set of microscopic traffic simulation tools developed by the Federal Highway

Administration, USA. Its development started in 1970s making it the oldest reviewed

simulation software. Despite its age the project is still active and receiving updates.

CORSIM is a microscopic simulator designed to analyse freeway and urban traffic

[69]. It is achieved by combining two models: FRESIM which is used to simulate

traffic on motorways and NETSIM which simulates the urban environment.

Vissim is a proprietary well established and regularly updated traffic simulation

platform [69, 70, 71, 72, 73] initially released in 1994. It is capable of simulating

complete traffic environments including public transport vehicles, bicycles and pedestrians

[70] besides general vehicle traffic [69]. It has been used for simulating motorway

networks [73] as well as combined motorway and urban traffic conditions [71, 72].

One of the most interesting features of Vissim is its psycho-physical driver model

for inter-vehicle gap keeping [69]. It assumes that the driver of the following vehicle

cannot exactly determine the speed of the vehicle in front, which makes keeping

constant separation gap impossible and makes it oscillate.

Sumo (Simulation for Urban MObility) is a mature and robust open source set of

traffic simulation tools. Its development started in 2001 in the German Aerospace

Center (DLR) and the first open source version was made available in 2002 [74]. It

is capable of importing road network layout data in various formats, including the

very popular Open Street Map format. The Open Street Map is a community driven

project that relies on users contributing their maps, usually created by mapping a

route with a GPS. The Open Street Map project currently has most traffic networks

mapped around the world with a good level of detail [75]. Being a set of tools, not

22



2.4. Vehicle control methods

a monolithic simulator such as Vissim, Sumo is extensible thus supporting adding

new features such as modelling of emissions and noise, driver behaviour [74] and

intermodal transportation [76]. Sumo also found an application in the validation of

microscopic vehicle models [77].

One of most interesting features of Sumo is the capability to simulate communications

between the vehicles (V2V) and between vehicles and the infrastructure (V2I).

Network communication simulation is and established field of research with widely

available mature simulators. Sumo relies on Network Simulator 3 (ns-3) [12] to

simulate the network communication. External network simulation tools can only

represent a generic data channel, without taking specifics of vehicular environment

into account. Sumo uses the Traffic and Network Simulation Environment (TraNS)

to address that issue. TraNS extends the capabilities of ns-3 and allows simulations

of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications in

vehicular environment [78].

iTETRIS is an EU funded research project aiming to create an integrated open

source simulation and evaluation platform for ITS traffic management systems [12].

It is an extension to the Sumo-TraNS coupling. The iTETRIS platform features

cooperative traffic management schemes making it one of the few self-contained

traffic management evaluation platforms [79].

2.4 Vehicle control methods

The previous section investigated the ways of modelling traffic flow. The simulator

developed in this work (described in Chapter 6) was required to be able to simulate

vehicle interaction and behaviours such as cooperative platooning and optimised

intersection approaches. It was therefore required to use a microscopic scale traffic

simulation model, which implies simulating vehicles individually.
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This section investigates methods and algorithms used to perform automatic

vehicle control.

Modelling and controlling vehicle interactions involves algorithms to determine

the relative speed, acceleration and separation distance of vehicles following each

other as well as a vehicle changing direction, changing lane and overtaking. Algorithms

for both longitudinal (often based on adaptive cruise control) [80, 81, 82, 83, 84] and

lateral [85] vehicle control exist and fully autonomous vehicles are already being

tested in controlled environments [30, 86].

The development of wireless communication systems (see Section 2.5) has led

authors to assume their availability to improve the performance of cooperative

driving schemes.

2.4.1 Longitudinal control

Longitudinal control is a well-established field, with the publications in the field

appearing as early as 1989 [81], where one of the first cooperative control strategies

was proposed.

It is usually expressed in the form of the vehicle following problem, where the

controller aims to adjust the speed of vehicles in a platoon. The objectives are to

minimise the distance to the preceding vehicle (in order to maximise road utilisation)

and to keep the separation gap constant. Those two objectives contradict each other

as the small inter-vehicle gaps provoke large controller actions that reduce platoon

stability [87] and may potentially result in an unsafe situation or even a collision.

The concept of string stability is used to assess the stability of vehicles in a platoon

[88] . A platoon is considered string stable when the inter vehicle spacing errors are

guaranteed not to amplify as they propagate down the platoon [87, 89]. Longitudinal

control should therefore aim to provide string stability.

The time headway spacing policy is a widely used approach to the vehicle following
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problem [28, 90, 91, 92, 93]. It defines the desired separation between vehicles sdesiredp

as a product between the vehicle speed V and the time headway τ [94] as follows:

sdesiredp = s0 + V τ (2.2)

Some implementations include a fixed minimal separation s0 [90].

The time headway parameter can either be constant or vary in response to

the road conditions or the manoeuvres the platoon is undertaking. If a variable

time headway policy is adopted, choosing or formulating the variable time headway

parameter becomes the key issue of the control solution. In [90] the authors considered

such a strategy to control a platoon of automated heavy duty vehicles. The authors

demonstrated that the inter vehicle gap fluctuations are reduced when the time

headway τ(∆Vp) is adjusted as follows:

τ = τ0 − c1∆Vp (2.3)

Where τ0 is the base time headway, c1 is a tuning parameter and ∆Vp is the relative

speed of the vehicles. The authors compared the variable and constant τ = 0.7s

time headway approaches τ0 = 0.1s and c1 = 0.2m/s2 and noted that while their

choice of parameters did not guarantee string stability it made the inter vehicle gaps

more stable than the base approach.

A constant time headway policy is used in the Adaptive Cruise Control (ACC)

systems present in many modern vehicles [16, 94]. Like normal cruise control systems

the ACC aims to follow the set speed by the driver but ACC will slow the vehicle

down and engage in vehicle following if a slower moving vehicle is encountered.

Cooperative Adaptive Cruise Control (CACC) aims to improve the string stability

of a platoon hence allowing smaller time headways, which in turn lead to better road

utilisation and increased throughput. String instability is caused when a vehicle
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overreacts to an action of a preceding vehicle. Using inter vehicle communications

it is possible to gain information on the intention of the preceding vehicles therefore

avoid overreactions [95] or even coordinate the manoeuvre in the entire platoon

[85]. CACC is usually realised by including additional goals to the ACC objective

function. Instead of just keeping a desired separation gap the controller aims to

minimise the speed and acceleration differences between the vehicles in the platoon.

Some implementations incorporate such information from just the preceding vehicle

[41, 89, 95], others take into account just the platoon leader [33, 96], or take weighted

input from all the vehicles in the platoon [80, 93].

It was shown in [97] that the communication delays in the wireless network have

significant impact on string stability in CACC platoons. This means that while

a CACC can provide greater platoon stability than an ACC the vehicles are still

required to maintain appropriate spacing defined by the time headway policy.

An alternative to the time headway based algorithms has been presented in [15],

where the authors presented a fuzzy logic approach to inter vehicle gap keeping. Such

an approach enabled the authors to design an incremental controller that actuated

brake and accelerator pedals using multiple input variables. The controller aimed

to minimise differences in speed, acceleration and like a time headway policy aimed

to maintain an appropriate separation gap.

The simulation tool developed in Chapter 6 allows for simulation of vehicles using

both the constant time headway spacing policy and CACC platooning.

2.4.2 Lateral control

Lateral control deals with adjusting vehicle heading. Whilst longitudinal control

is one dimensional, lateral control deals with two physical dimensions, making it

more challenging to implement. Automatic vehicle control is achieved by applying

both longitudinal and lateral control. The most notable examples of such full vehicle
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control are the DARPA Grand Challenge related vehicle projects [30, 31, 86, 98, 99,

100]. The steering control algorithm used in [86] relied on a list of waypoints and

aimed to head the vehicle towards the next waypoint.

In microscopic simulation environments lateral vehicle behaviour is usually modelled

by a lane changing mechanism [101]. Lane changing is usually modelled as a multi

stage process where a vehicle has to first indicate the desire to change lanes. Such

desire is usually triggered by encountering an obstacle, such as a slower moving

vehicle, on the current lane. The vehicle completes the lane change manoeuvre after

it has been established that it is safe to do so [102].

A lane changing mechanism based on the above is implemented in the traffic

simulation tool created in this work (see Subsection 6.3.4 of Chapter 6).

2.5 Communication methods in the vehicular en-

vironment

Many of the techniques described in the previous sections require information

to be delivered between the vehicles or from the traffic infrastructure. Techniques

such as the CACC (see Subsection 2.4.1), collision avoidance [103], incident response

[104], and route guidance (see Subsection 2.2.2) rely on a wireless vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communication capabilities. This section

provides an overview of such wireless communication solutions in the vehicular

environment.

The vehicular environment is very challenging for wireless information exchange.

The network consists of both mobile (vehicles) and stationary (infrastructure) communication

nodes and its topology is in a state of constant change due to vehicle mobility.

The environment varies from open rural areas to densely populated urban centres

resulting in different signal propagation conditions. Network node density also varies
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in time and space, peaking in rush hours in urban environments and is low in sparsely

populated areas. Such unique, in the area of wireless communication, circumstances

have led to the development of several technologies to address the issues associated

with wireless communication in vehicular environment.

2.5.1 Networking in vehicular environment

The Vehicular Ad-Hoc Networks (VANETs) are a loose term defining requirements

for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications

and providing list of applications [105, 106, 107]. VANETs are a specific subclass of

Mobile Ad-Hoc Networks (MANETs) [108], which are meant to enable communication

in situations where infrastructure is unavailable or inoperable, such as disaster zones

or remote areas [109]. VANETs also consider additional services and applications

that, while not directly related to safety and traffic performance, also contribute

towards the driving satisfaction. Such applications are usually referred to as infotainment

(information and entertainment) [110] include parking space availability advice,

traffic congestion advice and weather forecasts [106].

The implementation of these networks relies on the physical communication layers

to carry wireless information. Non-time sensitive communications such as congestion

and route advice or parking space availability information are normally realised using

mobile broadband technologies due to a large amount of information potentially

transmitted [111].

Safety and traffic network performance communication are normally short but

frequently repeated messages such as CACC messages, collision warnings, and information

on the traffic light changes. The safety critical communication can neither rely on

the availability of the infrastructure nor tolerate unpredictable delays associated

with public data networks. The IEEE 802.11p standard, also referred to as Wireless

Access in Vehicular Environments (WAVE), defines the physical layer of communication
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in vehicular environment [112]. It operates on a frequency spectrum band called

Dedicated Short Range Communications (DSRC) allocated exclusively for V2V and

V2I messaging. The allocated spectrum is located in 5.9GHz frequency range and is

70Mhz wide [113] and is divided into seven 10MHz wide channels, which corresponds

to channels 172 to 184 using the IEEE 802.11 channel numbering scheme. There are

four service channels carrying the general V2x traffic, a control channel is reserved

for safety communication only. A high power public safety channel is usually used by

the roadside equipment to broadcast road state and safety information. A critical

’safety of life’ channel is meant to be used in emergencies only. The use of the

remaining channels remains to be defined.

2.6 Distributed processing and its applications

The previous sections discussed various traffic management and vehicle control

techniques with the aim to build a knowledge base to design a robust and effective

adaptive traffic management system (ATMS). Every ATMS is tasked with data

collection from geographically distributed sensors and controlling traffic lights at

different intersections. The concepts of advanced ATMS assume that wireless communication

nodes (V2I) are used to send commands to vehicles. Such nodes also have to be

geographically distributed in order to provide adequate coverage. Each sensor,

intersection controller and V2I node has to be equipped with some processing

capability to perform its function. This means that ATMSs are distributed processing

systems and distributed computing principles should apply to them. This section

aims to provide background on distributed processing systems and their applications.

The possibility of applying such techniques in the field of traffic management is

investigated.

A distributed processing systems evolved from parallel computing. Historically
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parallel computing was introduced to help solve complex mathematical problems

that otherwise would not be solvable on a single machine in an adequate amount of

time [114].

In such systems the computational resources were assembled into large groups of

statically linked processing nodes called clusters, which possessed a large amount

of processing power, but were not very scalable. As the processing power and the

amount of users of parallel computing grew a need for more scalability became

evident. A grid computing system was proposed in [115].

Grid computing aims to provide a scalable distributed computing environment

meant for solving large, computationally intensive problems. One of the most

prominent users of grid computing technology is the European Center for Nuclear

Research (CERN), which uses the extensive computation capabilities of a grid

system to process data gathered from various experiments [116].

Cloud computing, although very similar to grid computing in many aspects, aims

to provide a universal execution platform for various applications with the primary

focus being the scalability and transparency of the platform.

Both cloud and grid systems are service oriented architectures (SoA) [117]. The

grids follow the software as a service (SaaS) approach. The cloud makes it possible

to expose services at three different levels: SaaS, platform as a service (PaaS) and

infrastructure as a service (IaaS) [118]. SaaS provides users with access to purpose

built software components. PaaS provisions access to a high level platform that can

be used by the users to deploy their own services. IaaS provides users with access to

hardware platforms with managed (often priced) access to resources enabling them

to deploy wide variety of software.

Table 2.1 provides comparison of selected cloud and grid system features [119].

The cloud has been considered an extension or a superset of the grid [120] or its

user-friendly version [121]. The services, although usually being complex applications,
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Table 2.1: Comparison of cloud and grid systems

Feature Grid Cloud
Resource
sharing

Shared resources Assigned resources are not shared

Resource
heterogeneity

Aggregation of heterogeneous
resources

Aggregation of heterogeneous
resources

Virtualisation
technology

Data and computing resources
virtualised

Hardware and software platforms
virtualised

Security Through credentials delegation Through isolation
Architecture Service oriented (SoA) SaaS, PaaS or IaaS
Centralisation
degree

Decentralised control Centralised control

Usability Hard to manage User friendly
User access Transparent access for end user Transparent access for end user
Software
workflow

Pre-defined workflow required
Automatic workflow for most
applications

are considered basic components of the cloud or grid system and their invocation

is considered an atomic (undividable) operation. Both architectures differ in the

way services are used and allocated. In many grid systems, a service is usually a

direct access to computational power in the form of execution of a parallel client

application on each node [118], which is just one step ahead from using a standard

cluster computer. More advanced grid systems offer dedicated services that can be

combined to create grid applications similarly to the standard applications which

are composed of a collection of processor instructions.

Both cloud and grid computing approaches have been adopted in this work to

create the ITS-Cloud distributed processing platform. The ITS-Cloud, see Chapter

4, was designed to host the Cloud based Traffic Management System (CTMS) and

other ITS applications. Such purpose oriented design required adaptation of most

appropriate approaches from both cloud and grid computing models.

The ITS-Cloud adopts the general distributed processing concepts common to

both cloud and grid systems including flexible messaging system as well as service
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discovery, access and lifecycle management.

The grid computing specific features used within the ITS-Cloud include:

• Static services which can be shared between multiple users. In the ITS-Cloud

such serives represent prysical hardware components and are always present

in the system.

Features related to cloud computing include:

• Dynamic services which are allocated on demand for exclusive single user use.

• The novel multi-dynamic service allocation method providing the benefits of

dynamic allocation, duplication and portability as well as making the service

acessible to multiple users, see Chapter 4 for a detailed discussion.

• Service containers that magage the life cycle and connectivity of the dynamic

and multi-dynamic services.

2.7 Discussion

ATLC and VATC have been stated as incompatible with each other [10, 33].

Existing vehicle control schemes operate by applying the benefits of knowing the

changes of traffic cycle in advance to optimise behaviour of individual vehicles

as a response to the future signal phase change [24, 122]. ATLC endeavours to

optimise the traffic cycle durations, often offering green light extensions to when

more approaching vehicles is detected [8, 9, 34, 35, 57, 65]. Both those approaches

assume that the behaviour of the affected party is easily predictable. However,

increasing complexity of ATLC and VATC make their behaviour becomes more

difficult to predict. The challenge is for ATLC and VATC to cooperate. A behaviour

to avoid would be to have a smart vehicle approaching an intersection deciding to

decelerate owing to predicted end of the green light stage, whilst ATLC adapting

stages to grant the given vehicle green stage. This situation would result in a
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suboptimal solution resulting in unnecessary vehicle deceleration and hence increased

journey time and energy consumption. This identified issue caused by the ATLC

traffic stage switch decisions being implemented immediately [34] without considering

the adjustments made by the vehicle prior to the ATLC changing its behaviour,

thereby preventing the vehicles to optimise their behaviour in relation to traffic

signalling cycle [24].

The main goal of this research is to bridge this gap and enable simultaneous use

of ATLC and VATC.

2.8 Conclusion

This chapter provided an overview of background knowledge on various approaches,

methods and technologies required for understanding of ITS traffic management.

Means of exercising control over intersections and vehicles have been examined

identifying a wide range of different approaches. A compatibility issue between the

traffic light based control and vehicle actuated traffic control has been identified to

occur when an adaptive intersection control scheme is used. Solving that incompatibility

issue is the main goal of this work.

Methods of simulating traffic flow their scopes and applications were examined

leading to a choice of the microscopic modelling for development of a new traffic

simulation tool. Such choice prompted examination of vehicle simulation and control

methods.

Wide use of wireless communication techniques in most ITS applications led to a

survey of wireless communication techniques in vehicular environment being carried

out.

Finally the cloud and grid distributed computing approaches were described and

compared paving a way towards implementation of the ITS-Cloud platform.
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Traffic Management Methods

The previous chapter provided the background to this project. Existing methods

of improving traffic flow have been identified and discussed. A gap in knowledge,

which prohibits the simultaneous use of adaptive traffic light control and vehicles

intersection approach optimisation, has been identified.

This chapter addresses this gap and proposes the new Two-Step traffic optimisation

method as well as other improvements to existing algorithms. The chapter is

organised as follows:

• The first section describes the fixed cycles and induction loop based queue

minimisation techniques. Those traffic management methods form the benchmark

that is used to evaluate the novel traffic management method in Chapter 7.

• The second section introduces a modified pressure based intersection management

algorithm (ITSP) that is used as the stepping stone to the Two-Step traffic

optimisation method.

• The third section describes the main novelty of this work: the Two-Step traffic

management algorithm. The requirements and enabling components for such

a method are discussed.

• The fourth section describes the Intersection Approach Trajectory Optimisation
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(IATO), a vehicle based traffic control mechanism enabling advising vehicles

of what speed they should aim to travel at.

• The fifth section provides a short case study for the Two-Step and IATO

mechanisms.

• The sixth section describes the area management approach aiming to avoid

congestion by suggesting alternative routes to the vehicles.

• The last section concludes the chapter.

3.1 Benchmark algorithms

This section describes the benchmark intersection control algorithms (ICAs)

used in this work. Their purpose is to provide a reliable point of reference when

investigating the performance of the novel Two-Step traffic management method or

the combined traffic management methods in the CTMS.

3.1.1 Algorithm 1: Fixed cycles intersection control algo-

rithm

Each traffic cycle comprises several signalling stages and each stage is composed

of one or more non-conflicting traffic flow directions.

In the fixed cycle based control the cycle and its stages are of fixed and predefined

duration. Each cycle plan CP is composed of at least two signalling stages gi of

defined duration tg,i. The signalling cycle can be written as:

CP = {{g1, tg,1}, {g2, tg,2}, ..., {gn, tg,n}} (3.1)
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Where each stage consists of compatible flows:

si = {fi|1, fi|2, ...} (3.2)

The process of generating signalling stages is discussed in Section 6.5 of Chapter 6.

Each flow fi|j represents a single traffic flow direction governed by a single set of

traffic lights.

The intersection management component converts the absolute stage durations

tg,i into stage starting times Tg,i relative to the beginning of the cycle as follows:

Tg,1 = 0

Tg,i+1 = Tg,i + tg,i

(3.3)

The signalling cycle and its stages are illustrated in Figure 3.1.
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Figure 3.1: A repeating traffic light cycle divided into fixed length stages.

The total cycle length TCP is the sum of all stage durations:

TCP =
n∑
i=1

tg,i (3.4)

In order to determine which stage should be active at any time the current cycle

time is compared with relative stage starting times (see Algorithm 1).
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Procedure FC():

cycleTime = currentTime mod TCP

for i = 1 to n do

if cycleT ime ≥ Tg,i and cycleT ime < Tg,i+1 then
flag stage i as active

end

end

Algorithm 1: Fixed cycles intersection control algorithm
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Figure 3.2: An example of intersection configuration. A cycle comprising of four stages.

Figure 3.2 shows an example of an intersection configuration. This T-shaped

junction is has 6 possible flows f1, ..., f6 organised into four stages:

g1 = {{f1, t1}, {f2, t2}}

g2 = {{f2, t2}, {f3, t3}, {f4, t4}}

g3 = {{f3, t3}, {f4, t4}, {f5, t5}}

g4 = {{f2, t2}, {f4, t4}, {f6, t6}}

(3.5)
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3.1.2 Algorithm 2: ILC intersection control algorithm

The ’Induction Loop Counter’ (ILC) is an adaptive intersection management

algorithm. It requires each lane leading to the intersection to be equipped with

an induction loop, preferably in an appropriate distance from the stop line. It is

assumed that each induction loop is equipped with a counter that counts passing

vehicles. If the signal associated with the sensor shows a red light it is assumed that

all the vehicles that passed the induction loop became queued.

It was shown in [19, 123] that in congested traffic conditions the highest traffic

performance is achieved by reducing the amount of switch overs as much as possible.

Following this principle the algorithm uses a queue discharge model that anticipates

the time needed to clear it. The time to clear a vehicle queue on an inbound link is

denoted as TQj where the subscript j corresponds to the traffic stage number in the

given intersection.

The queue discharge model is a two dimensional lookup table that when indexed

by the queue length denoted qj and the speed limit denoted Vmax,j provides an

estimate of the queue discharge time and is denoted as M(qj, Vj). The lookup table

was populated experimentally using a traffic simulator by measuring the times it

takes on average to discharge vehicle queues of different lengths under different

speed limits. Therefore the queue clear time for induction loop j can be written as:

TQj = M(qj, Vj) (3.6)

The estimation of queue clear time is performed separately for each induction loop

sensor (therefore for each inflow lane) and the stage associated with the lane with

the longest queue, denoted TQmax, is activated for the amount of time it was predicted
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to be needed to clear it increased by the time it takes to switch stages Tswitch.

TQmax = maxj(T
Q
j ) + Tswitch (3.7)

Once the active stage expires TQ after its activation the algorithm is run again.

Depending on the current traffic situation it can either make a decision to prolong

the activity period of a current cycle or switch to a different one (see Algorithm 2).

Parameter n represents the amount of stages in the cycle plan CP and m is the

amount of individual queues (on traffic flows measured by the induction loops)

in each stage. After the procedure is finished the stage number indicated by the

stageNumber variable is activated.

Procedure ILC():
stageNumber = 0
maxQueueClearTime = 0
for i = 1 to n do

maxStageQueue = 0
for j = 1 to m do

if maxStageQueue < TQj then

maxStageQueue = TQj
end

end
if maxStageQueue > maxQueueClearT ime then

maxQueueClearT ime = maxStageQueue
stageNumber = i

end

end
Activate signalling stage stageNumber

Algorithm 2: ILC intersection control algorithm
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3.2 ITS Pressure intersection control algorithm

The idea of using pressure indexes to reflect the situation on roads was described

in [34]. The authors defined the pressure priority indexes πi for each signalling stage

i as follows:

πi =
n̂i

τ peni,σ + σi + ĝi
(3.8)

Where n̂i is the amount of vehicles expected to pass the intersection during the green

time period ĝi. Parameter τ peni,σ represents the penalty for terminating the currently

active signalling stage and σi is the switch-over time.

The ’ITS Pressure’ (ITSP) modifies this approach to incorporate the knowledge

of speeds and locations of the approaching vehicles. Once the necessary vehicle

data has been obtained from the ITS sensors (see Subsection 2.2.3 of Chapter 2)

the algorithm calculates the pressure index πi,j exercised on the stop line by each

vehicle i on inflow lane j.

πi,j =
dv,T

max(0, di,j − dv,T ) + dv,T
(1 + βV Vi,j) (3.9)

The pressure associated with a vehicle increases with its speed Vi,j and with the

decreasing distance to the stop line di,j. Parameter βV adjusts the weighting of the

speed (value of 0.1 was used in this work). The maximal distance related pressure

is achieved when the vehicle is within a critical distance dv,T from the intersection.

This is meant to emphasise the fact that once a vehicle passes a certain point it will

be forced to slow down due to the time it takes to switch signalling stages. The

critical distance is given as follows:

dv,T = TswitchVmax,j (3.10)

Where Vmax,j is the speed limit on lane j and Tswitch is the traffic light switching
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3.2. ITS Pressure intersection control algorithm

time.

The signalling stages are composed of inflow lanes as defined in Equation (3.2)

in Subsection 3.1.1. It is worth remembering that each lane can belong to multiple

signalling stages.

The total pressure index Πs for signalling stage s is given as:

Πs =
∑
j∈s

∑
i∈j

(πi,j) (3.11)

A new traffic stage Snew will be activated if its pressure is greater than the pressure

on the current stage Scurrent. A switching threshold Hπ
switch is used to account for

the cost of switching (see Algorithm 3).

During stage switch-over no vehicles can enter the intersection, which results in

wasted road capacity. The amount of wasted capacity depends on the speed limit,

the higher the speed limit the more vehicles could have passed the intersection. In

order to account for that, as well as to limit the amount of stage switch overs, a

minimal stage duration Ts,min is defined as follows:

Ts,min = αV,1Vmax,j + αV,0 (3.12)

The parameters αV,0 = −4000 and αV,1 = 600 were used in this work, which result in

minimal stage times of 5 seconds for the speed limit of 15m/s (smallest investigated

speed limit) to 14 seconds for speed limit of 30m/s (highest investigated speed limit).

The algorithm was designed to prioritise moving vehicles with aim to conserve

energy by allowing them to pass without stopping. This can however lead to

situations where already stopped vehicles will never be allowed to pass if there is

a constant stream of moving vehicles arriving from other directions. To avoid such

situations the intersection controllers are equipped with a supervisory mechanism

that ensures that each direction will be given green light with minimal defined
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frequency.

A green wave effect is usually obtained either by synchronizing gap timings

between adjacent intersections or by using a centralized controller governing several

intersections [23]. Even though there is no explicit green wave negotiation between

intersections governed by ITSP, the algorithm was designed to exhibit green wave

effect automatically. It is due to the fact the upstream intersections usually release

vehicles in platoons or in large groups. Such a group of moving vehicles is interpreted

as an area of high ITS-pressure by the algorithm and usually results in a traffic stage

switch in favour of the approaching vehicle group.

The most significant disadvantage of this algorithm is the fact that the traffic

Procedure ITSP():
for each stage s do

stagePressures[s] = 0
maxPressure = 0
maxPressureStage = 0
for each inflow lane j in stage s do

lanePressures[j] = 0
for each vehicle i on lane j do

πi,j =
dv,T

max(0,di,j−dv,T )+dv,T
(1 + βV Vi,j)

lanePressures[j] = lanePressures[j] + πi,j
end
stagePressures[s] = stagePressures[s] + lanePressures[j]
if stagePressures[s] > maxPressure then

maxPressure = stagePressures[s]
maxPressureStage = s

end

end
if maxPressureStage 6= currentStage then

if maxPressure > stagePressure[currentStage] +Hπ
switch then

switch signalling stage from currentStage to maxPressureStage
end

end

end
Algorithm 3: ITSP intersection control algorithm
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management decision it generates is optimal only at the moment it is made, therefore

it has to be implemented immediately, leaving no time to advise the vehicles on the

upcoming signal change. The Two-Step traffic optimisation technique described

below aims to address this issue.

3.3 The Two-Step Traffic Optimisation Method

In order to enable the intersection controller to advise incoming vehicles whilst at

the same time responding to varying traffic timely it is proposed to use a Two-Step

process as follows:

1. Generate intersection management decision:

• Perform a short term prediction of the traffic situation (Hp time units

ahead).

• Use the predicted situation image as an input to the ITSP intersection

management algorithm in order to obtain intersection management decision.

• Delay implementation of the obtained intersection management decision

by Hp.

2. Having established the future state of a traffic light at step 1 optimise the

approach trajectories of the vehicles.

The prediction horizon, denoted Hp, determines how far into the future should the

prediction be made. Longer prediction horizons lead to more time being available

for optimising the vehicle approach to the intersection, however the predictions

tend to loose accuracy with large prediction horizons which negatively affects traffic

performance.

In Two-Step ICA the prediction horizon is selected automatically based on the

intersection configuration and road conditions. It is obtained by choosing a minimum

from partial prediction horizons calculated for each lane leading to the given intersection
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as follows:

Hp = min

[
δH
ds
Vl

]
(3.13)

In order for the algorithm to provide timely reaction the prediction horizon cannot

be greater than the time between a vehicle entering the sensing range to it reaching

the stop line by travelling at the maximum allowed speed. This time is obtained

for each lane by dividing the sensing range ds by the speed limit Vl, see Equation

(3.13). The parameter δH was meant to adjust the prediction horizon depending on

traffic intensity. In the current version of CTMS it has been empirically set to 0.8

and the automatic selection of δH is considered in future work.

The second step of the Two-Step traffic optimisation process is to generate an

intersection management decision using the predicted situation image. This is

done using the ITSP ICA described in the previous section, however instead of

using the current situation image, the predicted image is used as the input to the

algorithm. The prediction is obtained using a CTMS component called the Micro

Scale Prediction Service (MiSPS, see Section 5.5 of Chapter 5).

The advice horizon Ha can therefore defined as the amount of time that is

available before the generated traffic management decision is due to be implemented.

The advice horizon is obtained subtracting the processing time Tp from the prediction

horizon Hp:

Ha = Hp − Tp (3.14)

The processing time Tp includes the communication time and is measured every

time the Two-Step algorithm is executed and can vary due to external factors such

as the load in ITS-Cloud and conditions in the base data exchange network.

Implementation of the calculated intersection management decision is delayed

by the advice horizon allowing the vehicles to receive advice of the intersection

controller’s intent so their approach to the intersection can be optimised, a process
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that is managed in CTMS by the Intersection Approach Trajectory Optimisation

(IATO). The Two-Step method is summarised in Algorithm 4.

Procedure Two-Step():
Note processing start time:

processingTimeStart = currentTime
Calculate prediction horizon:

Hp = min
[
δH

ds
Vl

]
Predict traffic situation in Hp:

{π̂1,1, ..., π̂i,j} = MiSPS(Hp, {π1,1, ..., πi,j})
Use ITSP to determine next signalling stage:

nextStage = ITSP({π̂1,1, ..., π̂i,j})
Measure processing time and determine advice horizon:

Tp = currentTime - processingTimeStart
Ha = Hp − Tp

Start IATO advice process:
IATO(nextStage, currentStage, Ha)

Delay implementation of stage change by Ha:
wait for Ha

switch signalling stage from currentStage to nextStage

Algorithm 4: Two-Step traffic management method

3.4 Intersection Approach Trajectory Optimisa-

tion

This section introduces the Intersection Approach Trajectory Optimisation (IATO),

which is a traffic management system component that aims to optimise how the

vehicles approach intersections.

Most adaptive traffic management systems optimise traffic flow by setting the

traffic lights in an appropriate manner. It has been noticed that additional traffic

optimisation can also be achieved by advising the vehicles on the road situation
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before they enter the affected area. Such information can either come from the

infrastructure or other vehicles that are already in the affected area or are participating

in the incident themselves [124]. The infrastructure can provide information on

current or future status of the road, such as the state of the road surface or variable

speed limit.

The Intersection Approach Trajectory Optimisation (IATO) is a CTMS component

that aims to provide vehicles with advance information about the intersection controller’s

intent. IATO relies on the Intersection Control Algorithm (ICA) to provide advance

traffic light timing information. Before introduction of the Two-Step method only

FC was able to provide such information.

In order to perform its function IATO requires to obtain the following information

form the intersection controller:

• Current traffic stage

• Next traffic stage

• Current stage remaining time

Using that information IATO is able to determine stages that are affected by

the switch and issue appropriate advices the vehicles on the affected roads or lanes.

Regardless of the amount of stages an intersection has, only two of them will be

involved in a switch and will receive detailed IATO instructions. Stages not involved

in a switch will not have their next cycle defined and will continue to follow their

default behaviour. On the stages involved in the switch-over the vehicles will be

advised on the intersection controller’s intent, as illustrated in Figure 3.3.

Owing to the fact that the optimal approach trajectory may be different for

different vehicle types the final decision on how to approach the intersection has

to be calculated on board of each vehicle. IATO provides the vehicles with the

time remaining before the switch, the direction of switch (green to red or red to

green) and the intersection’s location. It is assumed that ITS-equipped vehicles
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Coast down 

to stop at 

signal

Current traffic 

signal

START

Next stage 

defined?
Next stage 

defined?

RED

Vits > ds

YES

Continue 

at max 

speed

YES NO

NO NO

GREEN

Aim to arive 
at signal 

when light 

turns green

V= ds/ts

YES

Figure 3.3: A diagram describing the decision process of the IATO mechanism.

are able to determine their own position, therefore distance to the intersection (ds)

approximated by a straight line can be obtained. If the vehicle is advised that the

light is about to turn green, it’s objective is to conserve as much kinetic energy as

possible and arrive at the stop line the moment the light turns green.

In case where the light is about to turn red the vehicle has to estimate if it is

going to arrive at the stop line before the traffic light switching occurs. The vehicle

should continue at current or if possible at greater speed if the distance the vehicle

can travel before the signal changes is greater than the distance to the stop line:

V ts > ds (3.15)

V denotes the current vehicle’s speed, ts is the time before signal change and ds is

the distance to the signal (stop line).

If it is determined that the vehicle will not be able to cross the intersection before

the signal change it will have to stop at the stop line. Knowing where the vehicle

is supposed to stop allows to optimise its deceleration profile. Optimal deceleration

profiles differ between vehicle types.
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Standard vehicles are unable to recover kinetic energy through braking therefore

their optimal deceleration profile is dictated by the air drag. Such vehicles will coast

down towards the intersection and use their brakes to stop if necessary or crawl to

the intersection in case their speed is reduced to 3m
s

by the friction forces before

they arrive at the stop line.

In case of hybrid electric vehicles (HEV) it is more complicated. Deceleration

profiles for HEVs are affected not only by the dynamics of vehicle but also by state

of charge of the on board battery [125]. Therefore a HEV following its own optimal

deceleration profile can force its follower to follow a suboptimal deceleration profile.

A mechanism for obtaining a deceleration profile for an entire platoon is considered

for future extension of this work.

3.5 The Two-Step process illustration

This section illustrates the Two-Step traffic management approach using a simple

intersection with two signalling stages.

The pressure indexes, obtained using Equation (3.9), are denoted as π1 for stage

1 and π2 for stage 2 (see Figure 3.4). At time ta a prediction is made Hp time units

into the future and it is decided to switch from stage 1 to stage 2. The IATO is

used to advise the vehicles of the imminent stage change. The vehicles on stage 1

that will not manage to pass the intersection decelerate reducing the pressure. The

opposite occurs on the road belonging to stage 2. The observed pressure will be

higher due to the vehicles arriving at the stop line with greater speed, as dictated

by the IATO (see Section 3.4).

After a decision to switch stages is made the system is committed. Similarly to

ITSP the Two-Step method is subject to minimal stage lengths Ts,min as given by

Equation (3.12) in Section 3.2. The next prediction is made at time tb = ta +Hp +
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Figure 3.4: Two-Step traffic management diagram illustrated using hypothetical road situ-
ation. The first stage switch decision to switch stages, form stage 1 to stage 2, is made at
ta and implemented at ta +Hp. The decision to switch stages again made at time td and
the change occurs at td +Hp.

Ts,min − Hp = ta + Hp. In the example it is decided not to switch stages at this

point as π2 is still greater than π1. Due to the fact that at this moment of time the

minimal green time has already passed the controller is free to change stages at any

point. Therefore it will monitor the situation and changes stages when appropriate.

The controller decides to switch from stage 2 to stage 1 at td and the switch is

implemented at td + Hp. This example assumes that processing time is negligible

(see Section 3.3) therefore the advice horizon Ha is equal to Hp, see Equation (3.14).
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3.6 Dynamic routing

The previous section described the IATO, a mechanism used to advise vehicles

on how to optimise their approach to intersections.

This section introduces another vehicle actuation based traffic management technique.

The dynamic routing (DR) component monitors the state of the traffic in the road

network and is able to provide route advice to appropriately equipped vehicles.

The DR mechanism maintains a weighted directed graph representation of the

road network. Each road is represented by up to two edges, one in each direction.

Each intersection is represented by a sub-graph, where the vertexes represent links

to roads in and out of the intersection, and edges define the possible intersection

traversal ways. The vertices, where the internal intersection representation comes in

contact with the edges representing the links between intersections, are referred to

as node-road bindings (NRB) in this work. The NRB vertexes that are connected

to inflow roads are referred to as inflow-NRB (iNRB) and similarly those that are

linked with intersection outflow roads are referred to as outflow-NRB (oNRB). Such

representation accounts for the different intersection configurations e.g. not every

turn direction is present. A graph representation of the traffic network used by DR

is illustrated in Figure 3.5

The edges that define turns inside the intersection are not weighted (have zero

weight), and those between the intersections are weighted to represent the traversal

cost of such link. Those traversal costs have to be kept up to date to reflect the

current traffic conditions on each link and are calculated as follows:

Wj = LjΥL + (V C)j|tΥ(V C) + (V F )j|tΥ(V F ) (3.16)

Where Wj is the cost of traversing the link subscripted j, Lj is the length of the link

in meters, (V C)j|t is the mean vehicle count on the link calculated using last t time
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Figure 3.5: A graph representation of a road network with five intersections.

units of traffic data. (V F )j|t is the mean vehicle flow, given in vehicles per minute,

calculated over the same time period as vehicle count. Parameters ΥL, Υ(V C) and

Υ(V F ) are experimentally chosen weights used tune the DR mechanism.

Contrary to existing approaches [13, 126, 127] this DR mechanism does not

provide vehicles with a complete route plans. Instead the vehicles are advised which

turn to take as they approach each intersection. Such an approach allows adjusting

the routes as traffic conditions change and takes away the burden of path following

from the in-vehicle unit, however it is applicable only in urban environments where

every intersection is appropriately equipped to provide such a service.

In order to perform its function the DR system maintains a list of associations

between possible destinations and which oNRB should be used to reach them using

optimised route. Such a list is referred to as DR-List in this work. A separate

DR-List is created and maintained individually for each iNRB. DR-List objects are

generated using a depth-first graph search (DFS) algorithm modified to work with

such data representation. The ITS-DFS algorithm was implemented in a recursive
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manner, see Algorithm 5.

Procedure ITS-DFS(Current-node, Current-cost, Direction, DR-List):
for each edge from Current-node do

Current-cost = Current-cost + cost of traversing the edge
edge-destination = the node edge leads to
if mapping for edge-destination exists in DR-List then

if Current-cost is smaller than existing cost then
replace the existing mapping of edge-destination with:
edge-destination maps to Direction, Current-cost
Current-node = edge-destination
recursively call ITS-DFS(Current-node, Current-cost, Direction,
DR-List)

else
return

end

else
create new mapping for edge-destination:
edge-destination maps to Direction, Current-cost in DR-List
Current-node = edge-destination
recursively call ITS-DFS(Current-node, Current-cost, Direction,
DR-List)

end

end
Algorithm 5: Dynamic routing algorithm

Following the depth-first graph search principle the ITS-DFS traverses the graph

and finds the smallest cost of reaching each intersection. The procedure retains

information on the oNRB that was used at the start and is therefore able to associate

the lowest cost route with the direction that hast to be taken on the intersection

from which the search originated. Such a process is illustrated in Figure 3.6.

In this example the DR mechanism is examined from the point of view of vehicles

approaching is4 through r54 link. Assuming that all edges have equal non-zero

weighting the DR mechanism would advise the vehicle to take r42 link to reach

intersections is1 and is2 and use r43 link to reach is3 and is5. It is worth noting

that due to the fact internal representation of is4 does not allow U-turns (see Figure
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Figure 3.6: An example of Dynamic Routing graph search result.

3.5) the route to is5 leads through is3, is2 and is4.

3.7 Conclusions

This chapter introduced the traffic management methods used in this work.

Among them were four intersection control algorithms (ICA), a system optimising

how vehicles approach intersection and a dynamic vehicle routing method. First two

ICA formed a benchmark that is used to evaluate the Two-Step technique. The novel

Two-Step traffic management technique enables the intersection controller to react

to demand in an adaptive manner and advise vehicles on the intersection approach

trajectory. It is based on a pressure based intersection management algorithm that

takes advantage of the capabilities of ITS sensors.

It was realised that all the above mentioned techniques access to various data,

either about the current traffic situation or regarding the configuration of the road
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network. Intersection control algorithms need to be able to associate the lane sensors

with traffic stages numbers, the Two-Step method additionally needs to know the

geographical locations of the sensors to be able to calculate the prediction horizon.

The dynamic routing component needs to build the road network graph based on

information provided by the intersections.

The ITS-Cloud distributed processing platform described in next chapter was

created to perform such data management and provide an execution environment

for the ITS traffic management applications introduced in this chapter.
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The ITS-Cloud platform

This chapter describes the ITS-Cloud, a cloud computing based distributed processing

and data management platform which is able to support the traffic management

solutions developed in Chapter 3. The chapter has the following sections:

• The first section introduces the ITS-Cloud platform and points out its key

elements.

• The second section describes how grid and cloud service models have been

incorporated in the ITS-Cloud.

• The third section introduces the new multi-dynamic service concept built by

combining selected features of the service types described in the previous

section.

• The fourth section describes the Service Discovery System (SDS) for service

discovery and allocation within the ITS-Cloud.

• The fifth section describes the SDS mechanism exploitation within the ITS-Cloud

to increase reliability and fault tolerance.

• The sixth section describes the cloud interface, a set of functions that make

the mechanisms mentioned in the previous section transparent to the user and

allow user code to interact with the ITS-Cloud.

55



Chapter 4. The ITS-Cloud platform

• The seventh section discusses the communication issue of distributed computing

systems and describes the messaging system used by the ITS-Cloud.

• The conclusions are presented in the last section.

4.1 The ITS-Cloud platform

The ITS-Cloud is a distributed computing platform, based on cloud and grid

computing principles, designed and implemented as part of this work. Its main

purpose is to host all the ITS applications that form the Cloud based Traffic Management

System (CTMS) and manage communication between them.

The concept of using cloud computing principles to construct a traffic control and

management system has been described and published by the author and co-writers

in [128]. The ITS-Cloud platform is composed of:

• Services

Services are the basic building blocks of service oriented architecture (SoA)

systems such as the ITS-Cloud. Services are independent software components

designed to perform specific functions in the system. All the processing in

ITS-Cloud is conducted by means of coordinated interaction between software

services.

• Resources

In ITS-Cloud resources are service containers. Their task is to instantiate

other services and manage them throughout their life time.

• Service Discovery System

The Service Discovery System (SDS) keeps a record of all service instances that

exist in the system and are available to users. The SDS is also responsible for

allocating new services on appropriate resources when requested.
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4.2 Service types

There are three types of services available in the ITS-Cloud: static, dynamic and

multi-dynamic. The first two types are based on standard cloud and grid computing

approaches and the third was introduced in this work due to specific requirements

of ITS applications.

Services and resources available on the grid systems are usually considered as

static. This means that the services are shared between all users and exist in the

system regardless whether they are being used or not. It is the responsibility of the

service to distinguish between different users. It can be assumed that such static

services are available throughout the lifetime (execution time) of a user application

[118].

In cloud computing based infrastructures service instances are created (allocated)

on demand, usually to serve only one client exclusively. After the client disconnects,

the service instance is de-allocated (destroyed). Such an approach benefits from

increased security through user isolation and allows using simple single user services

[119]. The disadvantage is that a complex service management layer is necessary

to allocate and manage such services. The differences between the cloud and grid

service models are illustrated in Figure 4.1.

Figure 4.1: Comparison of cloud and grid service models.
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Based on the cloud and grid variants of software services, the two base service

types have been identified for use with the ITS-Cloud namely static and dynamic.

Static services are based on a grid computing service model. They can be shared

between multiple users and are always present in the system. Dynamic services

follow the cloud computing service model. They are allocated on demand for

exclusive use when a user requests them. In ITS-Cloud the resources are responsible

for allocating and managing dynamic services.

Figure 4.2 provides an overview of the ITS-Cloud system and its components.

The base system is composed of the SDS and several resources. The dynamic and

multi-dynamic services are allocated on the resources and static services can be

based anywhere as long as they are registered with the SDS.
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Figure 4.2: Components and services of the ITS-Cloud system. Dynamic and multi-
dynamic services are contained by the resources. Static services can be located anywhere
in the system. All services are registered with the SDS.
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4.3 Multi-dynamic service allocation

Previous section introduced static and dynamic service types, commonly used in

grid and cloud computing environments. This section introduces a new ITS specific

service type termed multi-dynamic service.

Throughout the design process of the CTMS and its applications it was determined

that a new type of service will need to be implemented in the ITS-Cloud. The new

service type was required to handle multiple users, like a static grid service, but

should still be allocated dynamically, similarly to dynamic cloud services.

When a client wishes to invoke a multi-dynamic service it sends a request to the

Service Discovery System (SDS), which then determines if such service exists in the

cloud. If the requested service is not present the SDS endeavours to create it, as

illustrated in Figure 4.3. A suitable resource for hosting the new service instance is

selected, out of the resources available in the system, and requested to allocate the

Figure 4.3: Multi-dynamic service allocation: 1 - Client requests a service from SDS. 2
- SDS knowing that such service does not exist in the system selects a best resource to
allocate it on. 3 - Resource creates service instance. 4 - Service registers with the SDS. 5
- User is provided with the service handle. 6 - The user establishes direct connection to
the service.
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Figure 4.4: Multi-dynamic service access: 1 - Client requests a service from SDS. 2 -
Knowing that such service already exists in the system SDS ensures its availability. 3 -
User is provided with the service handle. 4 - The user establishes direct connection to the
service.

desired service instance.

Once the service is allocated the resource provides the SDS with a service handle,

which is then forwarded to the user. The service handle contains all information

necessary for the user to connect to the service and communicate with it. In

ITS-Cloud the handle consists of the network IP address of the computer hosting

the service and TCP port number under which the service is available. The service

handle is stored in the SDS and is provided to other users requesting the same

service in future as demonstrated in Figure 4.4.

In cases where the service is not available in the system and needs to be allocated

the SDS is tasked with selecting the best resource to host the new service.

4.4 Service discovery and deployment

The Service Discovery System (SDS) handles service discovery and allocation

processes of dynamic and multi-dynamic services on the ITS-Cloud platform.
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4.4.1 Service discovery

The ITS-Cloud platform relies on a centralised SDS to provide service discovery

functions. Centralised service discovery systems are simple to implement but can

become a bottleneck that can affect the performance of the entire system.

Decentralised service discovery systems offer much greater flexibility. They are

often based on heuristic or genetic algorithms which might not always yield the

optimal result, but are much better suited for very large systems than a centralised

SDS [129].

The relatively small scale of the ITS-Cloud system warrants use of a centralised

service discovery system. It is realised as a service database maintained within the

SDS. The following information are stored by the SDS about each service in the

ITS-Cloud:

• Identifier

A unique numeric value being the primary key of the service record in the

database.

• Service name

A character string uniquely identifying the service instance in the system. The

SDS will prevent the creation of two services with the same name.

• Service class

The allocation class of the service. It can either be static, dynamic or multi-dynamic.

• Service type

The type of the service identifying its function in the ITS-Cloud, for example

resource, sensor service, intersection management service.

• Service handles

A service handle contains information that allows users connect to it. In

ITS-cloud a service handle consists of the IP address of the host and the TCP

port number the service it is using. There can be several handles stored in
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this field if the service has been duplicated (see Subsection 4.4.3).

• Service capabilities and information (SCI)

This field is a list of character string to character string mappings providing

a universal method of storing additional information about the service. The

first string is the key used to access the second string which contains the

information.

• Timestamp

The timestamp states the age of the service database entry. The services that

fail to regularly update their status will be removed from the service list.

The clients can query the SDS for services using any combination of name, service

class, service type and service information. There are two types of queries available:

• Simple query or allocation request

The simple query requires the user to specify a service characterised by name

and optionally by class and type. The query can either result in a single service

being found or allocated or in a query failure.

• Complex query

Complex queries can return a list of services matching the query criteria. Users

can search for services using any combination of service class, type or SCI. This

query type exploits relations between services and ITS concepts provided by

the SCI of each service. Examples of complex inquiries include: accessing all

sensors from a specific road or lane, obtaining a list of adjacent intersections

from a given intersection or determining the relationship between signalling

stage numbers and lane sensors.

A successful query will result with the user being provided with the service name,

class, type and a handle to allow direct connection.
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4.4.2 Service deployment

This subsection investigates the method used by the SDS to determine the most

suitable resource to deploy a new service upon.

In order to deploy a new service the SDS has to be aware of the location of

the resources and the capabilities of the computers they are hosted on. In the

ITS-Cloud resources use the same service model as any other service in the system,

therefore they can be found in the SDS service database. Resources provide, in

their SCI mappings, information about the host machine they are deployed on.

Such information includes a number of processing cores, available RAM memory

and the amount of services already allocated on the resource.

The service should be allocated taking into account user expectations and the

internal allocation goals of the cloud system. From the user point of view the service

should be allocated in such way that all the computational power and memory

requirements are fulfilled, latency is minimised and there is sufficient bandwidth

to the service. The cloud system aims to prevent overloading of resources and

saturating the network links.

Latency becomes an issue with very large scale distributed systems with users,

resources and services spread throughout the world. The ITS-Cloud system in

its current form was designed to operate in urban environment and using a good

quality network connection, therefore the issues of bandwidth and latency in service

allocation were dismissed in the current version of SDS.

The service deployment algorithm uses the resource suitability indexRs to determine

which resource should be used to deploy a new service. It is aimed to spread the

computational load evenly though the system. The index is calculated as follows:

Rs =
RCPU

Rcount

(4.1)
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Where Rcount is the amount of services deployed on the resource and RCPU is the

amount of available processing cores. The index is set to zero if the resource does

not fulfil all the requirements specified by the service.

The potential resource list is then sorted in descending order of the suitability

index and the SDS attempts to allocate the service on the most suitable resource. If

the selected resource fails to allocate the service it will be removed from the available

resources list. It will be therefore required to re-register with the SDS in order to

assure that the resource is still operational.

4.4.3 Service migration and duplication

The service migration mechanism relocates a service from one resource to another.

In many distributed processing systems services are relocated with the aim to

optimise performance of the system or when their current host is removed from

the processing pool. Such a migration process is transparent to the service user.

Services in the ITS-Cloud can be migrated when the resource hosting them is

shutting down. It is done as follows:

1. The resource that is about to shut down is removed from the SDS resource

list to prevent the allocation of new services.

2. The SDS is used to allocate a new service instance on a different resource.

3. The current service context (the internal state of the service) is copied to the

newly allocated service instance.

4. User handle is updated do point to the new service instance.

5. The old service is de-allocated.

6. Points 2 to 5 are repeated until all the services are migrated.

7. The resource is shut down.

Service duplication works using the same principles as service migration, however

the original service is not de-allocated. A record of a duplicated service in SDS holds
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handles for each duplicates of the service. The service duplication mechanism is used

in the ITS-Cloud to improve reliability of the traffic management system.

4.5 Reliability, fault tolerance and redundancy

The previous section described the ways service allocation, migration and duplication

are handled in the ITS-Cloud system. This section describes how such mechanisms

can be used to improve reliability of the services provided by the system.

Service migration can protect against resource failure only if the service can be

moved off the failing resource in time. Such necessity may arise when the computer

hosting a resource switches to battery power due to a power failure. In such case

the time to failure is determined by the battery life, to ensure that there is sufficient

time to safely migrate all the services and shut down the resource.

If a resource fails without prior warning all services it contained are lost. While

traffic management systems, including CTMS, are equipped with emergency procedures

for such occasions, such service loss will affect the user. When a traffic management

system is hosted on the platform such failure would lead to temporary degradation

in traffic management performance.

In order to prevent unexpected loss of resource from affecting the operations of the

system the ITS-Cloud always maintains two copies of the key services on different

resources. The system makes sure that all the duplicates are synchronised (kept

in the same state) so when one fails the other can immediately take over without

affecting the user.

If a non-duplicated service is lost or in an unlikely case of simultaneous loss

of all service duplicates the ITS-Cloud will re-create the lost services on different

resources, however their state will be lost. In such situations the user will be notified

and will have to handle the situation accordingly.
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In order to provide such functionality to the user in a transparent way it is

necessary to introduce an additional communication layer between the user code

and the services. Such a layer is referred to as the cloud interface and is discussed

in the following section.

4.6 The cloud interface and user interaction

This section describes the service duplication and reallocation mechanisms from

the user perspective as well as the user communication with the ITS-Cloud.

Some of the ITS-Cloud features, such as the service duplication, require some

engagement from the user application side. The cloud interface is a set of library

functions written in Java that handles all the communication between the user and
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Figure 4.5: Layer model of the ITS-Cloud platform.
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the ITS-Cloud system. Figure 4.5 illustrates the layer model of the ITS-Cloud. The

concept of middleware was developed alongside with the concept of grid computing

[115, 118]. The middleware is an additional (middle) layer between the software

and the hardware that organises access to hardware in grid systems. Following that

principle the cloud interface can be categorised as middleware that organises the

way users access the computational power of the ITS-Cloud system.

The cloud interface provides the user with an application programming interface

(API) which gives the user access to the following functions:

• Management of service connections

This function enables the user to instruct the cloud interface to connect to

or disconnect from a service. If a connection to a new service is requested,

the middleware will seek service handle(s) from the SDS and establish a

communication session with the desired service.

• Communication with the services

The cloud interface handles the communication between the user and the

service. It provides functions for both sending and receiving messages from

the service. When the service has duplicates it makes sure that all the user

input is delivered to all the duplicates in order to keep their state consistent.

The service responses are monitored to ensure that the reply from only one of

the duplicates is delivered to the client.

The following section describes the message exchange format required to support

the aforementioned functions.

4.7 Messaging

Previous section described the user-service interaction mechanism and described

the role of the cloud interface. This section discusses the communication aspect
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of distributed computing systems and describes the messaging format used in the

ITS-Cloud.

Operation of all cloud systems is based on the interaction between the users and

services. In most distributed systems the services and users are roles, therefore a

service can be also considered a user if it invokes another service.

Services interact with each other by exchanging messages. In generic clouds the

format used for messaging is usually an XML derivative such as SOAP [130]. XML

based messaging formats offer great flexibility as the message contains the payload

as well as tags describing it. The way any client should interact with services can be

defined using WSDL, another XML based language. Using WSDL the client gains

knowledge on the network location of the service and methods to formulate requests

in SOAP and learns of the service’s capabilities. The flexibility of SOAP is offset

by large processing and transmission overheads.� �
POST / InStock HTTP/1 .1

Host : www. maths . org

Content−Type : a p p l i c a t i o n / soap+xml ; cha r s e t=utf−8

Content−Length : nnn

<?xml v e r s i o n =”1.0”?>

<soap : Envelope

xmlns : soap=”http ://www. w3 . org /2001/12/ soap−enve lope ”

soap : encod ingSty l e=”http ://www. w3 . org /2001/12/ soap−encoding”>

<soap : Body xmlns :m=”http ://www. maths . org / m u l t i p l i c a t o r”>

<m: Multiply>

<m: Parameter1>5</m: Parameter1>

<m: Parameter2>3</m: Parameter2>

</m: Multiply>

</soap : Body>

</soap : Envelope>� �
Listing 4.1: SOAP Example
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Listing 4.1 shows an example of a basic SOAP request to a multiplicator service

hosted on www.maths.org server. The requests contain two parameters that form

the input to the service.

Assuming that the example SOAP message was encoded using ASCII character

set (1 byte per character) the above example would be at least 427 bytes long

(depending on the parameter length) and the response would be of a similar magnitude.

SOAP messages usually use UTF-8 character encoding which is a variable width

character encoding and would introduce even more overhead. A minimalistic interaction

scheme for this service would involve sending two parameters in plain binary. Using

IEEE 754 double precision floating point format such message would be 16 bytes

long.

The majority of communication in ITS-Cloud is based on high frequency exchange

of small amounts of data, therefore such overheads were deemed unacceptable. In

order to address that issue the messaging system used in ITS-Cloud deviates from the

generic SOAP/XML and uses a custom messaging format and the Java serialization

mechanism instead.

����������	�
����������

�������	�
������������

���������

������	�������������	�����

���������	
��

������	�������������������	���	����

�����������
��

��������������

�	������������	� ����

��!"���������	�#!"�

�	�"��������� �

����������

$

$

$

%

�"�!����#!"�������

�"�!����

��	�
��

�	���
�������

Figure 4.6: Class diagram of the message hierarchy in the ITS-Cloud.
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Serialization allows converting an object into a byte stream (serializing) that can

be sent over a network connection and converted back to an object representation

(de-serialized) on the other side [131]. This allows skipping the time consuming

parsing of a SOAP message and has much less transmission overheads.

Figure 4.6 illustrates a selection of messages used in the ITS-Cloud system. All

the messages used in the system are based on a generic CCmessage object and

inherit the sequence number parameter form it. The sequence number is used by

the ITS-Cloud services and the cloud interface on the user side to relate responses

to queries, to detect message losses and in the service duplication scheme to ensure

that the client receives only one response.

Each service type has its own range of messages that are used to interact with it.

Such messages have to be defined before any communication with the service can

occur.

4.8 Conclusions

This chapter introduced the ITS-Cloud, a service oriented distributed computing

platform designed to host ITS applications. A new multi-dynamic class of services

has been introduced that builds upon cloud and grid computing service models.

Owing to the fact the ITS-Cloud was designed with a purpose of hosting a

traffic management system in mind, the design and implementation of some of the

platform’s components diverge from their definition and implementation in other

cloud computing systems. Those deviations were made mainly due to performance

and reliability concerns, and to keep the ITS-Cloud platform relatively simple.

Drawbacks resulting from such specialisation of the developed platform include

mainly reduced messaging flexibility due to the messaging system used, and a

possible bottleneck due to a centralised SDS being used. The advantages include
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simplified deployment and cross-platform portability.

The next chapter introduces the Cloud based Traffic Management System (CTMS).

CTMS is a collection of services deployed on the ITS-Cloud.
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Chapter 5

The Cloud based Traffic

Management System (CTMS)

The previous chapter discussed the ITS-Cloud, a distributed processing platform

for ITS applications. This chapters introduces several traffic management applications

that are deployed on the ITS-Cloud as services and form the Cloud based Traffic

Management System (CTMS).

• The first section provides an overview of the CTMS, defines the aims of the

system and outlines its main tasks. It also provides a brief overview of the

system components.

• The second section outlines the approach to traffic management and identifies

the areas of traffic management handled by the CTMS.

• The third section describes how traffic situation images, necessary to perform

any kind of traffic management, are created.

• The fourth section describes how the intersection control algorithms introduced

in Chapter 3 are used in the CTMS.

• The fifth section describes the Meso Scale Prediction Service (MeSPS).

• The sixth section describes the cloud interface, a set of functions that make
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the mechanisms mentioned in the previous section transparent to the user and

allows user code to interact with the ITS-Cloud.

• The seventh section discusses the communication issues associated with distributed

computing systems and describes the messaging system used by the ITS-Cloud.

• The conclusions are presented in the last section.

5.1 CTMS overview

The CTMS aims to provide:

• Intelligent traffic flow management

The main goal of the CTMS is to manage the traffic flow with aim to improve

road utilisation, reduce average journey times and energy consumption.

• Scalability

The traffic management system should be fully scalable. It should be possible

to add or remove components such as sensors, VMS or even whole intersections

from the system without having to shut it down. The impact of such changes

on other system components should be minimised.

• Reliability

The system should be able to provide a reliable and uninterruptible service.

It should also endeavour to mitigate the consequences of component failure.

The CTMS follows the sample-compute-actuate approach to perform its function.

Such approach is illustrated in Figure 5.1 and is divided into three interrelated tasks:

• Traffic data gathering

In order to perform any kind of traffic control the traffic situation on roads has

to be constantly monitored. The CTMS is tasked with gathering traffic data

from the road network and maintaining an up to date traffic situation image.

The traffic data is gathered from various types of sensors and the appropriately
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equipped vehicles can also contribute to the creation of the situation image by

providing their location by means of wireless communication.

• Traffic control decisions generation

Having created the traffic situation image the system has to decide what to

do in order to achieve its optimisation goals. Such decisions are made using

the traffic management methods described in Chapter 3.

• Traffic actuation

The decisions made by the CTMS have to be enforced on the traffic network.

This is achieved by controlling the traffic lights and issuing appropriate advices

to the vehicles.

Figure 5.1: Information flow within the CTMS.
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The aforementioned tasks are split between the following system components:

• Sensor Service

The Sensor Services (SS) are static services in the ITS-Cloud providing access

to traffic data gathered by a sensor. They aims to abstract away the physical

implementation of the sensor to enable other CTMS services and ITS-Cloud

users with a uniform way of accessing sensor data.

• Sign Control Service

The Sign Control Service (SCS) is responsible for managing variable message

signs (VMSs). Such service enables its users to adjust the speed limit on the

link where the the VMS is located. VMS can also be used to relay dynamic

routing information. Similarly to SS this service is of a static type.

• Radio Communication Service

The Radio Communication Services (RCS) are static services designed to

manage an infrastructure node of the vehicle-to-infrastructure (V2I) communication

system. They can be used to relay important traffic information and issue

advices to V2I-capable vehicles. They can be also act as sensor services for

smart vehicles that broadcast their position through V2I.

• Intersection Control Service

Each intersection in CTMS is managed by an Intersection Control Service

(ICS). The ICS use SS to construct local traffic situation images and contain

intersection control algorithms (ICA) that are then used to control the traffic

lights.

• Intersection Approach Trajectory Optimisation

The Intersection Approach Trajectory optimisation (IATO) has been introduced

in Section 3.4 of Chapter 3. It is not a standalone service but a part of the

ICS that uses RCS to advise vehicles on the optimal intersection approach

trajectory.
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• Micro Scale Prediction Service

The Micro Scale Prediction Service (MiSPS) is a dynamic service invoked by

the ICS. It aims to provide a detailed short term prediction of the traffic

situation in the vicinity of the intersection. Such prediction is then used by

the novel Two-Step traffic management method described in Section 3.3 of

Chapter 3.

• Meso Scale Prediction Service

The Meso Scale Prediction Service (MeSPS) is a functionality of the CTMS

achieved as a result of cooperation between multiple ICS. The ICS are able to

predict the number of vehicles that will be sent towards the next intersection

and is able to advise the ICS governing that intersection on the size of the

predicted vehicle group and its estimated arrival time.

• Area Management Service

The Area Management Service (AMS) is responsible for monitoring the traffic

in the entire area managed by the CTMS and collection of statistical traffic

data. It uses the dynamic routing mechanism introduced in Section 3.6 of

Chapter 3 to advise the vehicles with the best route to their destination. Such

advices are delivered using RCS.

Having introduced the basic components of the CTMS it is possible to move

on to the traffic management process itself. The following sections provide more

details about the components mentioned above and describe their interactions.

The following subsection introduces the traffic management approach taken by the

CTMS.
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5.2 Approach to traffic management

The previous section introduced the components of the Cloud based Traffic

Management System (CTMS). This section provides an overview of how the CTMS

approaches the traffic management problem.

The traffic management process in CTMS is carried out on two management

planes: the micro scale traffic management occurs at the intersection level and the

macro scale traffic management aims to optimise the whole traffic network.

Figure 5.2 illustrates the organisation of the traffic management processes in

CTMS. The managed traffic network, either real or simulated, is observed using

various sensors. The sensor data is made available in the CTMS through the Sensor

Services (SS). The Intersection Control Services (ICS) use SS to access such data

and construct a situation image. Each ICS constructs an image relevant to the

intersection it is managing. Such an image is then used to perform intersection level
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Figure 5.2: Traffic management organisation in CTMS
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traffic control. The Area Management Service (AMS) collects statistical traffic data

from all the ICS in the managed area.

Local intersection control is referred to as micro scale control as it accounts for

individual vehicles and controls the traffic lights accordingly (see Sections 3.1, 3.2

and 3.3 of Chapter 3). The area level traffic control is referred to as the macro

scale traffic control. It aims to optimise the traffic flow in the entire network and

operates based on aggregated traffic flow data provided by the ICS (see Section 3.6

of Chapter 3).

5.3 Creation of a situation image

The previous section described two planes of traffic control exercised by the

CTMS. In order to perform any kind of traffic control up to date information about

the traffic situation is required. This section describes how such situation images

are constructed.

The creation of detailed situation image at the vicinity of an intersection is

necessary in order to employ the adaptive intersection management methods implemented

in this work. The situation image comprises static and dynamic components. The

static part describes the intersection and the roads that enter it. The dynamic part

consists of information on the current locations and speeds of the vehicles. The static

part is configured when the ICS initialises and remains invariant thereafter. The

dynamic part is constantly updated by obtaining current information from sensor

services.

The static road network information is received form the Intersection Control

Node (ICN, Section 5.6) upon initialisation of the ICS. It contains all the signalling

stages supported by the intersection and the descriptors of the lanes they serve.

Such lane descriptors are later associated with appropriate sensors. These sensors
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will provide the means to build the dynamic situation image.

The creation of the dynamic situation image differs with the available sensor

types. Induction loops provide the amount of vehicles accumulated on a given

approach (see Subsection 3.1.2 of Chapter 3) and the ILC traffic management

technique uses such information directly to perform its task, without the need for

creating a situation image.

Data obtained from the ITS sensors (see Subsection 2.2.3 of Chapter 2) contains

the vehicle class, location and speed enabling construction of a more detailed situation

image. The situation image Sj is created for each lane j entering the intersection

separately and is defined by a list of vehicle information:

Sj = {{V1,j, x1,j, C1,j}, {V2,j, x2,j, C2,j}, ..., {Vi,j, xi,j, Ci,j}} (5.1)

Where the Vi,j and xi,j represent the speed and the distance to the stop line of

vehicle i on road j, and Ci,j represents the vehicle class (e.g. car, bus, truck).

Such information originates from various sources in the CTMS. It is possible that

a single vehicle will be reported by multiple data sources. It is therefore necessary to

make sure it will not be placed in the situation image more than once. When a data

source attempts to add a vehicle to the situation image it has to check if there were

prior sightings of that vehicle. If the new measurement of the distance from the stop

line xi,j|b places the vehicle within a small distance d from the existing measurement

xi,j|a (|xi,j|a−xi,j|b| < d) it is assumed that those different data sources observed the

same vehicle. The information about such vehicle is therefore integrated as follows:

Vi =
Vi,j|a + Vi,j|b

2

xi =
xi,j|a + xi,j|b

2

(5.2)

Where subscripts a and b indicate the existing and the new measurements of the
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vehicle i on lane j. In this work d = 4m was used.

Vehicle class Ci,j is not a numerical value and cannot be integrated that way.

Therefore the original vehicle class reading remains unchanged, unless the new data

has been provided by the vehicle itself thorough V2I wireless communication, in

which case the old reading of the vehicle class is replaced.

Figure 5.3 illustrates the situation image creation process. Vehicles 1, 2 and 3 are

reported through ITS sensors. Vehicle 2 is reported by both sensors, therefore data

integration is necessary. The cooperative vehicle platoon marked as 4 announces

itself through the V2I communication. The Meso Scale Prediction Service (MeSPS)

can extend the situation image by providing an estimate of approaching vehicles

based on information from upstream ICS. Such information allow to include vehicles
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Figure 5.3: Construction of a situation image using data from various sources.
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in situation image that would be outside of the detection range otherwise (vehicle

labelled 5 in Figure 5.3).

5.4 Meso Scale Prediction Service

The previous section described how the CTMS creates traffic situation images

using different sources of information. This section describes the mechanism of

improving the created situation image using information form adjacent ICS.

Although the Meso Scale Prediction Service (MeSPS) is regarded as a service

in the CTMS it is not a dedicated cloud service in ITS-Cloud but a functionality

of the ICS that allows them to improve the quality of the constructed situation

images. MeSPS allows the ICS to provide advance vehicle flow information to their

counterparts down the traffic stream. When a signalling stage is activated, an

appropriate message is sent to every downstream ICS reachable from the given

stage. Activation of each stage can release a group of vehicles towards more than

one possible destinations. This means that at the moment a stage is activated the

ICS does not know how many of the queued or approaching vehicles will go in which

a direction. A good initial assumption is that a vehicle will choose one of the possible

directions from the lane it occupies with the same probability. Therefore probability

Pout|j of a vehicle choosing one of the outflow lanes can be expressed as:

Pout|j =
1

Dj

(5.3)

where Dj is the amount of possible destinations from lane j.

The total estimated amount of vehicles Nj that choose a given destination can be

written as:

Ñj =
∑
j

Ni

Ci
(5.4)
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Figure 5.4: MeSPS notifications sent from ICSx to ICSm and ICSn. A group of Nid,s

vehicles is released from stage s of ICSx. Initially it is assumed that the vehicles will
choose a destination with equal probability.

where Ni is the measured amount of vehicles on lane j. The estimated amount

of vehicles Ñj for each downstream link is sent to the ICS governing the next

intersection on each link. Additional information sent include the notifying intersection

ID and the associated stage number. An example of such process is illustrated in

Figure 5.4. A vehicle platoon is released by intersection governed by ICSx. The

vehicles have two possible destinations, they can either head for an intersection

governed by ICSn or ICSm. The distances between those intersections and the

source are denoted as Dn,x and Dm,x.

The amount of vehicles estimated by the method described above is just an

initial guess. The real amount of vehicles can vary depending on the overall traffic

network layout, time of day, traffic intensity and possibly other factors as well. Each

ICS maintains a weighting parameter θid,s for each possible combination of a source

(upstream) intersection identifier id and a stage number within that intersection s. It

is crucial to store the stage number in addition to the source ICS identifier because
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the flow characteristics for different stages may vary. Based on the information

obtained from the upstream ICS and θid,s it is possible to estimate the amount of

incoming vehicles N̄id,s as follows:

N̄id,s = Ñid,sθid,s (5.5)

In order to make use of such information and integrate the information on incoming

vehicles with the situation image (see Section 5.3), the ICS has to be able to estimate

where the lead vehicle is. The distance between the lead vehicle and the stop line is

calculated as follows;

xlead(tid,s) = Did − Vmaxηtid,s (5.6)

Where Did is the distance from the intersection managed by the ICS identified by

id, Vmax is the speed limit, η denotes the percentage of maximal speed achieved

on average by vehicles on given link and tid,s is the time passed since the platoon

was released by the up stream intersection. In this work η = 0.85 was used. Once

xlead(tid) is obtained the following N̄id|s vehicles are placed in the situation image

behind the leader in spacing di−1,i defined by the constant time headway policy (see

Subsection 6.3.5 of Chapter 6).

As the traffic conditions change it is necessary to keep θid|s tuned and up to date

at all times. The tuning process is of an iterative and incremental nature. The

ICS validates each prediction by comparing it with the measurements taken from

the inflow sensors once the predicted vehicle platoon enters the sensing range. The

amount of predicted vehicles N̄id|s is compared against the amount of measured

vehicles Nid|s.

In order to perform such validation it is necessary to extract the platoon in

question from the general traffic flow. Vehicles are counted as they enter the sensing

range of the ITS sensors or pass over an induction loop. It is necessary to start
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and finish the measurement in an appropriate moments of time. The measurement

is started at tstart before the lead vehicle estimated arrival time at the point of

measurement (denoted dsensor in Figures 5.4 and 5.5) and lasts for tm until after the

estimated platoon is deemed to have passed.

Figure 5.5 illustrates the set-up of such measurement, where a three vehicle

platoon (v1, v2 and v3) is released form upstream intersection and travels down

the Dm,x long road. The time tstart where the measurement should start is obtained

as follows:

tstart =
Did − dsensor

Vmaxη
− t0,start (5.7)

Where dsensor is the sensing range of the intersection with respect to the stop line (see

Figures 5.4 and 5.5), and t0,start is a fixed constant that ensures the measurement is

started before the lead vehicle arrives. Value of t0,start = 4s was used in this work.
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Figure 5.5: Validation measurement set-up. The measurements are carried out using a
lane sensor located dsensor from the stop line. The measurement is started at tstart and
lasts for tm.

84
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The time of measurement tm is calculated based on the estimated time it would

take the platoon to pass over the measurement point. It is calculated as follows:

tm = t0,start + N̄id|sτ + t0,end (5.8)

Where τ is the time headway, which represents the time gaps between the vehicles.

Similarly to t0,start the parameter t0,end defines how long the measurement should

continue after the last expected vehicle of the platoon passes the measurement point.

Value of t0,end = 4s was used in this work.

After the measurement is finished the amount of counted vehiclesNid|s is compared

with the amount of predicted vehicles N̄id|s. If the values are significantly different

the parameter θid|s is adjusted as follows:

θid|s = θid|s +



αlarge, V̄id|s − Vid|s ≥ βlarge

αsmall, βlarge > V̄id|s − Vid|s ≥ βsmall

0, |V̄id|s − Vid|s| < βsmall

−αsmall, V̄id|s − Vid|s < −βsmall

−αlarge, βlarge < V̄id|s − Vid|s ≤ −βlarge

(5.9)

The scale of adjustment is governed by parameters αlarge and αsmall and depends

how inaccurate the prediction was. Such inaccuracy is divided into two thresholds

βlarge and βsmall.

In this work values of αlarge = 0.05, αsmall = 0.02, βlarge = 8 and βsmall = 3 were

used.

Summarising, the MeSPS is a novel feature extending the situation awareness

on every ICS beyond the upstream intersections allowing the ICA to schedule the

traffic stages more effectively. Using a self tuning mechanism allows the predictor
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Chapter 5. The Cloud based Traffic Management System (CTMS)

to cope with varying traffic conditions.

5.5 Micro Scale Prediction Service

The previous section introduced a method which aimed to improve ICS traffic

situation awareness. This section describes the technique that predicts the evolution

of the traffic situation image in near future.

The Micro Scale Prediction Service (MiSPS) is tasked with performing short term

predictions of the situation image on intersection approaches, which are then used

in the Two-Step traffic optimisation scheme. The situation images is created for

each lane as described in Section 5.3. MiSPS predicts traffic situation on each each

approach road to the intersection. The initial road situation image is obtained by

combining appropriate lane situation images.

MiSPS uses a microscopic traffic simulation engine, from the Traffic Simulator

described in Chapter 6, enveloped in a dynamic ITS-Cloud service. Similar to

a model predictive controller, it performs a prediction based on a model of the

intersection and its surrounding area. This provides the CTMS with a detailed

short term predictions of road traffic situations.

Each ICS running the Two-Step intersection control method requests allocation

of a MiSPS instance for its exclusive use. The service has to be configured in a

similar manner the ICS is configured by ICN on initialisation (see Section 5.3).

Static components, such as the road and lane layout, remain invariant between

successive invocations of the MiSPS instance and their configuration is part of the

service initialisation process.

After the service has been configured it can be invoked by providing it with the

starting situation image and specifying the prediction horizon. The current situation

image maintained by the ICS is used to as the starting point. The prediction horizon
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5.6. Intersection Control

defines how far into the future should the prediction be made, and is calculated and

provided to the MiSPS by the Two-Step intersection management algorithm (see

Section 3.3 in Chapter 3).

It is safe to assume that the road and lane layout information is accurate, therefore

the accuracy of MiSPS prediction depends mainly on two factors: the quality of

model representation of individual vehicles in the simulated environment and the

accuracy of sensor reading of the initial situation image.

The vehicle model used in the simulation is of sufficient quality to simulate vehicle

dynamics necessary to perform traffic management (see Chapter 6), however it was

tuned to represent a particular vehicle make and model. In this work the CTMS

was evaluated using the Traffic Simulator, where all vehicles are slightly randomised

(see Section 6.3 of Chapter 6) variants of the base vehicle model, therefore the

inconsistencies between the vehicle models used in the traffic network and those

used in MiSPS are not significant.

The use of CTMS with real traffic would require the sensors to classify the

observed vehicles, in order to simulate its behaviour using the most appropriate

model. It is planned to create a vehicle model for each of the vehicle classes (car,

bus, truck etc.) to obtain a prediction of satisfying accuracy.

5.6 Intersection Control

This section describes how the situation image created in the ICS is used to

control the traffic.

Each signalled intersection is equipped with an intersection controller that realises

a traffic management plan. In CTMS the software of such controller is extended

with the ITS-cloud interface, described in Section 4.6 of the previous chapter, and

is referred to as the Intersection Control Node (ICN).
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Chapter 5. The Cloud based Traffic Management System (CTMS)

Figure 5.6 illustrates the relationship between the CTMS components that perform

intersection control. The ICN acts as an ITS-Cloud client (user) and requests

allocation of an Intersection Management Service (ICS) and delegates the stage

switching decision making process to it. Basic, fixed cycle based, intersection control

capability is retained by the ICN in case ICS is not available. The probability of

such failure is reduced by using the service duplication mechanism described in

Section 4.5 of the previous chapter. There are two duplicates of ICS maintained

in different locations in the cloud system and loosing one of them will not affect

the intersection management process. The ICS uses the query mechanism provided

by the ITS-Cloud (see Subsection 4.4.1 of Chapter 4) to request appropriate sensor
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Figure 5.6: Intersection control process in the CTMS. The intersection control node (ICN)
requests allocation of an ICS. The ITS-Cloud allocates two duplicates for security. The
cloud interface enables communication between the ICN and ICS (see Section 4.6 of Chap-
ter 4).
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5.6. Intersection Control

services that will provide information on traffic in relevant areas, see Figure 5.7.

Figure 5.8 illustrates the data processing and decision making in the Two-Step

traffic optimisation method. The situation image constructed based on the sensor

data is then used with one of the intersection control algorithms (ICA) to determine
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Figure 5.7: Using information provided by the Sensor Services (SS) the Intersection Con-
trol Service (ICS) creates a situation image of the traffic in the vicinity of the intersection
it manages (see Section 5.3). The Intersection Control Algorithm (ICA) is then used to
generate intersection management decision. The novel Two-Step method (see Section 3.3
of Chapter 3) additionally relies on an external Micro Scale Prediction Service (MiSPS)
for traffic state prediction. Traffic light switching decision is then provided to the ICN and
Intersection Approach Trajectory Optimisation (IATO) is used to control the vehicles.
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which signalling stage should be activated. The short term traffic prediction provided

by MiSPS is used in the Two-Step ICA.

The Two-Step and FC intersection control algorithms provide advance information

on traffic stage change and make it possible to use IATO.

The sensing range of each intersection is limited by the location of the sensors and

by the up stream intersections. The ICS instances governing adjacent intersection

communicate with each other with aims to increase their respective sensing ranges.

This process is governed by the Meso Scale Prediction Service.
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Figure 5.8: Intersection management process using the Two-Step method.
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5.7 Intersection Approach Trajectory Optimisa-

tion

Section 3.4 of Chapter 3 described how appropriately equipped vehicles can

optimise their approach to an intersection. Such process was termed the Intersection

Approach Trajectory Optimisation (IATO) in this work. This section describes how

the CTMS relays such advice to the relevant vehicles.

An ICA such as the Two-Step or FC are able to provide advance information

on future state of the traffic lights. Such information is available as a set of three

values: the current active stage number, the next active stage number and the

time left before the change occurs. The IATO advice is therefore needed on all

lanes belonging to those two stages. The vehicles on the lanes associated with the

currently active stage have to be advised that the lights will turn red and the vehicles

on lanes associated with the next stage need to know that the lights will be turning

green. Before any advice can be sent, IATO has to convert the stage numbers into

descriptors identifying each lane in CTMS. Such information is provided by the ICN

when the ICS is initialised, therefore IATO being part of ICS can access that easily.

The next step is to use the lane descriptors to identify which V2I communication

nodes should be used to deliver the advice.

Due to limited ranges of wireless communication in vehicular environment it is

very likely that several V2I communication nodes will have to be used in order to

cover the entire intended area. The CTMS relies on a form of geographical addressing

to determine which V2I nodes need to be used. Geographical addressing aims to

deliver information to all recipients in a geographic area. Figure 5.9 illustrates

an example where two communication nodes are used to provide coverage of a

geographical area.

Such mode of addressing is used for delivering IATO advices. The query mechanism
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5.7. Intersection Approach Trajectory Optimisation

of the ITS-Cloud is used to obtain all the RCS associated with the lane descriptors

required and the request to transmit the advice is sent to each of them. It is possible

that a RCS covers a wider area than the intended areas/lanes and therefore such

communication will be received by vehicles outside of the intended area. It is within

the responsibility of the mobile nodes (vehicles) to determine if any received message

was meant for them and decide if it should be acted upon. In the simulator described

in Chapter 6 it is done by checking if the message was intended to the occupied lane.

In the real world a vehicle has to ensure that its position is within the addressed

area of the message [132, 133].

Figure 5.9: Geographical addressing relies on the ITS-Cloud to identify which RCS need
to be used to provide the coverage of the desired area (see Subsection 4.4.1 of Chapter 4).
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5.8 Failure modes

The previous sections introduced the Cloud based Traffic Management System

(CTMS), explained its functions and described its components. This section provides

a discussion on possible failure modes of CTMS and its components, together with

methods of mitigation.

CTMS was designed with safety in mind. The system accounts for the possibility

of component failure and aims to deliver best possible traffic management despite

that.

Three major failure modes have been identified in Table 5.1. The first and the

worst failure mode assumes total unavailability of traffic management. The second

failure mode occurs when the ICN are unable to access ITS-Cloud or if CTMS fails

to allocate ICS. The third failure mode deals with single CTMS component failure.

ITS-Cloud resources can host multiple services, therefore even a single resource

failure cal result in loss of multiple services thus having a significant impact on the

system’s performance. The ways of mitigating the consequences of resource failure

are discussed in Section 4.5 of Chapter 4.

Loss of dynamic and multi-dynamic services such as the ICS, AMS and MiSPS

Table 5.1: System failure modes

Failure type Possible causes Handling

Total system
failure

Extended wide area power
loss (blackout)

Drivers rely on static
traffic signs to safely cross
intersections

ITS-Cloud
failure or
unavailability

Extensive damage to
the network, ITS-Cloud
registry failure, loss of all
resources

ICN fall back to FC
intersection control

CTMS
component
failure

Resource failure, static
service failure, partial
network failure

varies, see Table 5.2
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5.8. Failure modes

is always temporary. Provided the ITS-Cloud has at least one functional resource

those services will be automatically recreated. Static services such as the SS, SCS

and RCS are usually represent a piece of hardware and their failure results in the

hardware becoming unavailable in the system. The consequences of CTMS service

failure and the methods of mitigation are presented in Table 5.2.

Table 5.2: Service failure consequences

Service Duplicated Consequences of failure Mitigation

ICS Yes Loss of intersection control

Loss of one duplicate does
not affect the intersection.
Loss of both duplicates
causes ICN to follow a
fixed cycle plan until ICS is
re-initialised

AMS Yes
No area management, no
dynamic routing

No effect if one duplicate
lost. Loss of dynamic
routing capability until new
instance of AMS can be
initialised.

MiSPS No

ICS loses prediction
capability and is unable
to run the Two-Step
intersection control method.

Fall back to ITSP adaptive
intersection control.

SS No
Data from the sensor
becomes unavailable

Use MeSPS to approximate
the traffic situation or
revert to FC intersection
control.

SCS No
Inability to control the
VMS

Use RCS to relay
information to ITS vehicles,
no recovery option for
normal vehicles.

RCS No

Inability to communicate
with ITS (unavailability
of DR and IATO in the
affected area).

Use SCS if available.
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5.9 Conclusions

This chapter has presented the Cloud based Traffic Management System, a

complex urban traffic management solution aiming to optimise traffic flow by means

of coordinated cooperation between the vehicle and intersection control approaches.

The system was realised as a collection of cloud services deployed on the ITS-Cloud

platform. Such a design ensures scalability and reliability of the system, and provides

an abstraction layer between the traffic control algorithm and the sensing/actuating

equipment.

The following chapter describes the simulation environment created to provide

an evaluation platform for the CTMS.
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Chapter 6

The traffic simulator

The previous chapter described the traffic management processes within the

Cloud based Traffic Management System.

This chapter presents the microscopic traffic simulation tool intended to cooperate

with the CTMS and used to evaluate the traffic management strategies. The chapter

starts with a summary of the goals of the simulator followed by the outline of

the design in Section 6.2. Section 6.3 describes the vehicle simulation component

followed by the approach to simulating wireless communication. Simulation of

wireless V2V and V2I communication is discussed in Section 6.4. The traffic network

representation and simulation is described in Section 6.5. Sections 6.6 and 6.7

describe traffic simulations set-up and criteria calculated by the simulator to evaluate

specific scenarios. Section 6.8 describes the simulation software integration with the

ITS-Cloud platform. The chapter is concluded in Section 6.9.

6.1 Goals of the simulator

The main goal of the simulator is to provide a universal and extensible platform

for simulating complex traffic conditions on a microscopic scale. The simulator has
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Chapter 6. The traffic simulator

been designed as a tool to support research on traffic control and its impact on

general vehicle flow and individual vehicles behaviour.

The simulator covers most major traffic behaviour such as intersection control,

simulation of individual vehicles throttle, brake and dynamic friction. Having such

detailed vehicle modelling capabilities is required when trying to determine the

impact of traffic control strategies on measures such as road network throughput,

travel times, energy consumption and carbon emissions. The simulator should be

capable of introducing sufficient amount of randomness into the simulated environment

to make the results realistic. The basic assumption is that most vehicles are controlled

by a human driver. Therefore the driver behaviour such as reaction latency, limited

perception or even variable regard for the traffic rules should be included. Vehicles

participating in the simulation should differ with respect to vehicle type, size, mass,

engine power and many other metrics. Finally the simulator should possess tools to

gather data from the simulation, generate statistics and measure performance with

respect to selected performance criteria (see Section 2.1 of Chapter 2).

6.2 Simulator design

The simulator has been designed according to object oriented programming (OOP)

design principles [134]. It relies on inheritance and polymorphism to build up the

object hierarchy and some of the simulator’s functionality. Relationships between

object classes presented in this chapter are expressed in the Unified Modelling

Language (UML) [135].

The simulator keeps track of all the objects participating in the simulation by

using a centralised object registry. The base class for all objects that make the

simulated world is called SimObject. It allows for objects to be registered with

SimObjectRegistry and provides interface for destroying objects that are leaving
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6.2. Simulator design

the simulation. The SimEntity class is the superclass for all the objects actively

participating in the simulation. Active participation means that the object exhibits

dynamic behaviour, such as vehicle movement, or has to exhibit situation awareness

by interacting with other objects in the simulation.

Figure 6.1 shows the class hierarchy and relationships in the simulator code.

The complexity of the design and multitude of objects made it necessary to show

only the most representative objects in the figure. Examples of active SimEn-
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Figure 6.1: UML class diagram showing the relationship between the chosen components
of the traffic simulator. The links starting with filled diamond shapes describe composition
and can be read as ’is composed of’. Hollow diamond shapes represent aggregation, which
is a weaker form of composition and can be read as ’has’. For example road is composed of
lanes, one road can have many lanes but a lane can only belong to one road and a lane has
vehicles on it but a vehicle can only be on one lane. Arrow shaped links are generalisations
and can be read as ’is a type of’. For example an induction loop is a type of lane sensor.
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tity based objects include the vehicles, traffic lights, intersections, sensors, wireless

communication nodes. Roads and lanes are among passive components based on

the SimObject class. The simulator simulates entities sequentially using a single

processing thread.

In order to avoid situations where one entity wishes to interact with another but

the other entity has not been processed yet, resulting in use of outdated data, the

simulation cycle is split into two steps as shown in Figure 6.2. In the first step, the

entity dynamic behaviour is simulated. In the case of a vehicle its physic model

is used to simulate the response to current brake and throttle settings resulting

in values such as position, speed and acceleration being calculated for the current

simulation cycle. In the case of traffic lights, the phase of the signals has to be

established before vehicles start reading it in the second phase. Once the dynamics

Figure 6.2: The simulation cycle is divided into four steps. New entities are added to the
simulation in the first step. The entity dynamics are simulated in the second step. The
third step simulates situation awareness and unnecessary entities are removed from the
simulation in stem four.
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have been simulated for all entities it is safe to simulate the situation awareness. In

this phase vehicles observe their surroundings, sensors detect vehicles and intersection

control algorithms are run at previously determined sampling rates.

In order to ensure stability and determinability of the simulation the entity lists

in SimObjectRegistry are locked while the simulation cycle executes. This means

that entities cannot join or leave the simulation during a simulation cycle. However

some entities can create other entities, e.g. VehicleSpawner creates vehicles. Those

new entities are put on a waiting list and introduced to the simulation before the

next simulation cycle starts. Removing entities from the simulation is achieved by

flagging them as defunct during the simulation cycle. Such entities are then removed

from the lists after the simulation cycle has been completed (see Figure 6.2).

6.3 Vehicle simulation

Vehicle behaviour simulation is one of the fundamental tasks of the simulator.

Traffic flow is defined by the movement of vehicles and each vehicle in the simulation

is a semi-independent agent that can have its behaviour customised. All vehicles

share the same behaviour model but it can be parametrised to make each vehicle

distinct.

Vehicles equipped with wireless communications are referred to as ITS-vehicles in

this work. ITS-vehicles can communicate with the infrastructure using V2I enabling

them to receive IATO advices (see Section 5.7 in Chapter 5) and dynamic routing

information (see Section 3.6 in Chapter 3). They can also engage in cooperative

platooning (see Subsection 6.3.6). Vehicles not equipped with wireless communication

are referred to as normal or manual vehicles.
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6.3.1 Vehicle dynamics - longitudinal behaviour

The vehicle simulation is considered semi-nanoscopic as it uses longitudinal dynamics

models based on [136] together with simplified linear engine and brake models. This

research project focuses on traffic management, therefore fully modelling all vehicle

components, such as brakes, engine, powertrain and tyres was deemed unnecessary.

The model was however designed with extensibility in mind to make it possible to

introduce the aforementioned components in future.

Longitudinal vehicle dynamics are simulated in continuous linear space and discrete

time. The basic longitudinal vehicle dynamics model can be expressed with a set of

fundamental equations:

at =
E(α)− F (Vt−1)−B(β)

Mv

(6.1)

where α is the normalised (0%-100%) throttle setting and E(τ) is the modelled force

output of the vehicle’s powertrain. F (Vt−1) represents all friction associated with

vehicles movement, including drag and tyre friction at time t − 1. Braking force is

represented by B(β) with β being the normalised brake setting. In order to obtain

the vehicle acceleration the sum of those forces is divided by the vehicle’s mass

Mv. The model extensibility is assured by realising this equation in software using

polymorphic class hierarchy which will simplify adding different powertrain models

as shown in Figure 6.3.

The acceleration is then used to calculate the distance the vehicle travelled dt in

during one time sample ∆t such that:

dt = Vt−1∆t+
at(∆t)

2

2
(6.2)
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Figure 6.3: Class diagram of a simulated vehicle and its components.

where the vehicle speed Vt at time t is given by:

Vt =
dt
∆t

(6.3)

Once the vehicle behaviour has been simulated its position pt relative to the beginning

of the lane is updated as follows:

pt = pt−1 + dt (6.4)

Vehicle dynamics - longitudinal model components

In order to keep the vehicle model simple a linear relationship was assumed

between engine force E(α) and throttle setting α as well as between braking force

B(β) brake cylinder pressure β. Therefore E(α) from Equation 6.1 can be expressed
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as:

E(α) = αCE (6.5)

where CE is the engine force coefficient and α is the throttle setting. Similarly the

braking function has been approximated by:

B(β) = βCB (6.6)

where CB is the braking force coefficient and β is the brake setting ( pressure in the

brake cylinder).

The final component of the model aims to represent all the friction effects that

occur in a moving vehicle, such as air drag, roll friction and powertrain resistance.

It is modelled using a second order polynomial:

F (Vt) = CF2V
2
t + CF1Vt + CF0 (6.7)

where CF{0,1,2} are the tunable friction coefficients and V is the current vehicle speed.

The powertrain losses would have to be described using a parametric function,

depending on the gear configuration, however since the powertrain is not taken into

account in this model, powertrain related losses are assumed to be incorporated in

the friction modelling component.

The energy consumption model is based on a simplifying assumption that the

amount of consumed energy is proportional to the forward force generated by the

vehicle propulsion unit. It has been constructed based on the fuel consumption

modelling function in [137]. The engine is approximated using Equation 6.5 and

assumes that the forward force is proportional to the throttle setting. Therefore the

energy consumption et in time sample t can be approximated by:

et = τCE∆t (6.8)
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Where CE is the engine force coefficient and ∆t is the sample length.

In order to approximate real vehicle behaviour the model was tuned by selecting

appropriate values for the tuning parameters CE, CB and CF{0,1,2}.

6.3.2 Vehicle dynamics - longitudinal model tuning

The previous section described the longitudinal vehicle model used by the traffic

simulator. This section describes the tuning process of that model.

The model input consists of the throttle setting and the brake cylinder pressure.

The measured outputs consisted of the vehicle speed and acceleration (see Figure

6.4).

Measurement data used to tune and validate the model was obtained using the

Network Assisted Vehicle (Ford Mondeo) vehicle described in [138] (see Appendices

F and G). The measurements were carried out on a straight, flat road to minimise the

impacts of road gradient and dynamics changes resulting from the vehicle performing

lateral manoeuvres.

An iterative improvement process was used to tune the vehicle model. Such

an approach explored the parameter range with the aim to minimise the mean

square error (MSE) between the modelled and measured acceleration. The modelled

acceleration samples are given by vector Â and the measured acceleration values are
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Figure 6.4: The vehicle model used in the simulator. Throttle and brake settings form the
model input and speed and acceleration are the model outputs.
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represented by the vector A. The MSE is given as follows:

MSE(Â) =
1

n

n∑
i=1

(
Âi − Ai

)2
(6.9)

Using a good initial value of the tuning parameters the performance of the

iterative improvement algorithm can be increased. In order to take advantage of

that fact and to obtain as good parameters as possible the tuning process was carried

out in two phases. In the first phase the parameters of each subcomponent were

tuned semi-independently by minimising or eliminating the impact of the remaining

subcomponents. In the second phase the model was fine tuned using data obtained

by performing a comprehensive drive cycle with various amount of braking and

accelerations. The first phase consisted of:

1. Step 1 - Obtain friction component coefficients

Friction is present and affects the overall model, therefore the friction coefficients

CF{0,1,2} were obtained first based on measurements obtained from the vehicle

coasting down from 90km/h to 10km/h.

2. Step 2 - Tune the engine modelling component

The engine component coefficient CE is tuned using a data set obtained by

making the vehicle perform various accelerations. Using the initial approximation

of the friction component parameters the same process as in Step 1 is used with

a dataset comprising a number of repeating sequences of various magnitudes

of accelerations. Brakes are not used in this scenario and the vehicle is allowed

to coast down before the following acceleration is performed.

3. Step 3 - Tune the brake modelling component

The set-up in this case is similar to the previous case, however various amounts

of brake pressure are applied to slow the vehicle down instead of allowing it

to coast down.
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6.3. Vehicle simulation

Using the initial parameter estimates, the model was then fine tuned using a

data set containing a comprehensive set of longitudinal vehicle behaviours. Figures

6.5 and 6.6 illustrate the measured and modelled vehicle speeds and accelerations

in different drive cycles. It is visible that despite using a simplified model (see

Subsection 6.3.1) the acceleration is modelled with satisfying accuracy. The speed

errors are cumulative due to the model being simulated in open loop and result in

the speed mismatch observed in Figure 6.6.
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Figure 6.5: Modelled and measured vehicle speed and acceleration - tuning data set

Table 6.1: Model tuning results

Tuning data set Validation data set
MSE RMSE MSE RMSE
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MSE (see Equation 6.9) and root MSE (RMSE) were used to evaluate the accuracy

of the vehicle model, see Table 6.1. The vehicle model parameters obtained in the

tuning process are presented in Table 6.2.

Table 6.2: Mean Square Errors (MSE)

parameter value
CE 456.3031
CB 577.4780
CF0 1243.1
CF1 5.4983
CF2 1.3427

In order to create a realistic simulation environment with different vehicle types

the vehicle model parameters CE, CB, CF0, CF1 and CF2 are randomised ±10%

for each vehicle injected into the simulation. Figure 6.7 illustrates the reaction

of the vehicle model to the same input under different sets of tuning parameters.
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Figure 6.6: Modelled and measured vehicle speed and acceleration - validation data set
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Figure 6.7: The reaction of vehicle model to extreme ranges of parameters. High extreme,
low extreme and average is presented.

The default variant uses the parameter set presented in Table 6.2. The high extreme

variant represents a vehicle which compared to the default variant has proportionally

higher engine power to the resistance and braking forces. The high extreme variant

is obtained by setting the tuning parameters such that Chigh
E = 1.1CE, Chigh

B =

0.9CB, Chigh
F{0,1,2} = 0.9CF{0,1,2}. The low extreme vehicle model represents situation

opposite to what was described above and uses the following set of parameters C low
E

= 0.9CE, C low
B = 1.1CB, C low

F{0,1,2} = 1.1CF{0,1,2}.
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6.3.3 Vehicle speed control

In this simulator there are two controllers managing lateral vehicle behaviour.

The high level controller generates a speed demand based on the current situation

on the road. Its goal is to make the vehicle travel at the maximum allowed speed,

or to maintain an appropriate separation from the preceding vehicle. The low level

controller actuates the throttle and brakes of the vehicle (see Subsection 6.3.1) to

achieve the speed set by the high level controller.

The low level controller comprises a pair of PID controllers with appropriate

switching logic to prevent both throttle and brake usage at the same time. Switching

between throttle and brakes is not instantaneous. The brakes to throttle switching

time Tbrk,thr is 150 milliseconds whereas the change from throttle to brakes is faster

and set to Tthr,brk = 100 milliseconds Vales of Tthr,brk and Tbrk,thr were chosen based

on the switching times observed in a real vehicle (see Appendix G). A Simulink

equivalent to the low level vehicle controller can be seen in Figure 6.8.

Figure 6.8: The Simulink equivalent of the low level vehicle controller implemented in the
traffic simulator. It comprises two PID controllers governing the brake and throttle setting
(see Subsection 6.3.1 and Figure 6.4). Switching logic prevents simultaneous use of throttle
and brake usage.
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6.3.4 Lane changing - lateral behaviour

The previous sections described the creation, tuning and control of the longitudinal

vehicle model. This section describes the lateral component of vehicle modelling.

Lane changing is a common occurrence in any traffic conditions and has a great

impact on traffic flow [139, 140]. There are two main reasons for the vehicle to

change lanes. The change might be routing related, when a vehicle is approaching

an intersection and the lane it occupies does not lead to its desired destination. A

vehicle may also decide to change lane on its own, when it cannot go as fast as it

desires on the lane it currently occupies. This decision making process is inspired

by human reasoning in such situations. The vehicle will want to change lanes when

it is, according to a cost function (see Equation 6.11), worth doing [102, 141]. A

lane change usually occurs when approaching or following another vehicle which is

moving slower than the current vehicle wishes to go. A lane change desire will be

indicated only if it will improve the locally perceived situation of the vehicle. For

example if there are slowly moving vehicles on all lanes, a lane change will not be

beneficial and therefore will not be carried out.

The simulator handles lane changing as a three-step process as shown in Figure

6.9. The first step determines whether the vehicle is satisfied with the conditions on

the lane it is currently occupying (see Equation 6.10), the second step is to generate

the numerical value of lane change desire or requirement based on the conditions

on the current and prospective lanes (see Equation 6.11). The third and final step

is to check if it is safe to proceed. The first and second steps are applied only to

traffic situation induced lane changes. The process of performing a routing related

lane change starts at step three.

The perceived lane satisfaction level is deemed unsatisfying if the following inequality

is satisfied:
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Vp
Vdesired

< ιi (6.10)

If the preceding vehicle’s speed Vp relative to the current vehicle’s desired speed

Vdesired is below the current vehicle’s lane change threshold value ιi the vehicle

will attempt to change lanes. If there is no preceding vehicle present, the traffic

conditions induced lane change is not necessary.

The second step investigates the situation on other lanes and determines if

performing a lane change would be beneficial. This is modelled using cost function

based algorithm where the cost of changing lanes is calculated with respect to the

Stay on the 

current lane

Current lane 

satisfaction low?
START NO

YES

���������������	��
����



�������

������

������	

��


��	

��

���	

�



�������

�


��	



�������

��

������	�



�������

��

���	�

Safe to go left?
Safe to go 

right?

Change to 

right lane

���

Change to 

left lane

���

��

��

Figure 6.9: Lane change decision diagram. A vehicle will change lanes when it is dissat-
isfied with its current lane (see Equation 6.10), there is a better lane visible (see Equation
6.11) and it is safe to perform the manoeuvre (see Equations 6.12 and 6.14).
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potential preceding vehicle:

C(sp,∆Vp) =


αs

sp
+ αv∆Vp, sp < smax|p

0, sp ≥ smax|p

(6.11)

Where sp represents the distance between the current vehicle and the preceding

vehicle should the lane change occur. Similarly ∆Vp reflects vehicles’ relative speed,

αs , αv are tunable weights that are part of the driver behaviour modelling (see

Subsection 6.3.8) and smax|p represents the preceding vehicle detection range.

The cost function is calculated for the current lane and both immediate neighbouring

lanes, if they exist. The lane with the lowest cost is chosen and if it is different to

the currently occupied lane, the lane change desire is indicated.

Both desired and required (topological) lane changes are subject to safety checks

which determine if it safe to proceed. The checks are carried out with respect to the

separation gap and relative speed, between the current and the potential preceding

and following vehicles. The safe separation for lane changing is determined using

the same time headway policy that controls the separation between vehicles in a

platoon (see Subsection 2.4.1 of Chapter 2). It is assumed that the separation is

sufficient to change lanes provided the following inequalities are satisfied:

sp > s0|p + V βs|p

sf > s0|f + Ṽfβs|f

(6.12)

Where sp and sf denote the separation distances from the potential preceding (p)

and following (f) vehicles, the speed of the current vehicle is given by V and Ṽf

represents the speed of the potential following vehicle. Parameters s0|p, s0|f represent

the minimal constant separation and βs|p and βs|f correspond to the time headway

spacing policy. βs|p and βs|f can vary with the driver type (see Subsection 6.3.8) but
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their default values are given as:

s0|p = s0|f = d0

βs|p = βs|f = τ
(6.13)

where d0 and τ are the time headway policy parameters described in Subsection

6.3.5.

Assuring sufficient separation is a necessary condition but it is not sufficient to

ensure safe lane changing. The second set of checks investigates the speed differences

between the current vehicle and its potential follower and predecessor:

∆Ṽp < spβv|p

∆Ṽf > −sfβv|f
(6.14)

Those checks ensure that the higher the speed difference is, the longer the separation

is to safely change lanes. Note that those checks only apply if the potential follower

is travelling faster than the current vehicle and the potential predecessor is moving

slower. The relative speeds between the current vehicle and a potential predecessor

∆Ṽp, and the potential follower Ṽf are defined as:

∆Ṽp = V − Vp

∆Ṽf = V − Vf
(6.15)

where V is the speed of the vehicle that is considering changing lanes (see Figure

6.10)

If the lane change desire has been expressed, but the safety constraints have not

been satisfied the desire indication is cleared, but will be re-assessed in the next

simulation cycle to take into account changes in traffic conditions. If all of the

safety requirements have been fulfilled the simulator relocates the vehicle on to the
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desired lane.
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Figure 6.10: Illustration of the lane changing mechanism.

6.3.5 Vehicle following (Platooning)

If any given vehicle encounters a slower moving vehicle and cannot overtake

it by performing a lane change it has no choice but to follow. If two or more

vehicles engage in such behaviour a platoon is formed. It is assumed that each

vehicle in a platoon, apart from the platoon leader, desires to travel faster than its

predecessor (otherwise the platoon would not be formed or it would break up into

smaller platoons), however it is prohibited from doing so by the vehicle in front of

it. In such a case the vehicle can only travel as fast as its predecessor while keeping

an appropriate distance.

The low level vehicle controller (see Subsection 6.3.3) maintains desired speed

by actuating brakes and throttle. It is the task of the high level controller to

generate such speed demand. If the road in front of the vehicle is empty the

task of the high level controller is reduced to setting the speed limit as the desired

speed. The situation is different when the vehicle has to follow another. In such a

case it aims to move with the same speed as its predecessor while maintaining an
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appropriate separation gap. If the gap is too small/large the speed demand should

be decreased/increased to maintain the required gap. The desired speed difference

is given as follows:

∆Vdesired = ∆sp βd|ACC (6.16)

Where βd|ACC is an empirically chosen tuning parameter and ∆sp is a separation

error given by:

∆sp = sp − sdesiredp (6.17)

Where sp is the current separation between the vehicles. Desired separation sdesiredp

is obtained using constant time headway spacing policy [15], defined as follows:

sdesiredp = s0 + V τ (6.18)

Where s0 is a minimal constant separation (set to s0=1 meter to make the vehicles

maintain spacing even if stopped), V is the vehicle speed and τ is the time headway.

The simulator uses an experimentally established constant time headway of τ=1

second (see Subsection 7.8.3 of Chapter 7), however this might be revised to variable

time headway policy in nearby future as this area of vehicle control holds a great

promise in increasing traffic performance [90].

Once the desired speed difference ∆Vdesired is obtained the speed demand can be

calculated as follows:

Vi =

min(Vmax, Vp + ∆Vdesired), ∆s < sp,max

Vmax, ∆s ≥ sp,max

(6.19)

Where sp,max is the preceding vehicle detection distance that depends on the road

speed limit Vmax.

sp,max = VmaxβsMax (6.20)
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βsMax defines how long it takes for a vehicle to close the distance to the detected

object while travelling at Vmax. Setting βsMax to 5 seconds has shown to be sufficient

for all simulated scenarios.

Having obtained current speed demand Vi, the low level controller is used to

determine throttle and brake settings for the next simulation cycle (see Subsection

6.3.3).

6.3.6 Cooperative platooning

When performing standard platooning a vehicle can reliably take into account

only the vehicle in front of it. In some instance, it can observe further into the

platoon but such visibility cannot be guaranteed. This can lead to inefficient vehicle

following behaviour.

Cooperative platooning or CACC aims to increase the platoon performance by

providing vehicles with advance information about platoon leader’s current behaviour

and intent using wireless V2V communication, see Section 6.4. This information

makes it possible to coordinate vehicle manoeuvres increasing the stability of the

platoon [41, 93, 96] and allowing smaller inter-vehicle gaps [41] leading to greater

road utilisation and therefore increased overall traffic performance.

Every vehicle in a platoon is aware at least of the platoon leader’s speed and in

some occasions can access other data such as intended acceleration or deceleration

[96]. In this work, all vehicles in a CACC platoon have access to the platoon leader’s

current speed and current target speed which the lead vehicle is trying to achieve.

The platoon leader uses ACC to govern its speed and the speed demand for the

followers is generated using CACC such that:

Vi =

V
desired
lead + ∆Vpβv|CACC + ∆spβd|CACC , ∆sp < smax

Vmax, ∆sp ≥ smax

(6.21)
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Note that this equation is similar to (6.19) but instead of using the preceding vehicle

speed (Vp) it uses the platoon leader’s desired speed V desired
lead as the base speed

demand. Even though the preceding vehicle speed Vp is not the base for the speed

demand calculation the vehicle will still aim to maintain an appropriate separation

form its predecessor and keep their relative speed ∆Vp low. sp is calculated the same

way as in ACC platooning approach described in the previous section (see Equations

6.17 and 6.18), however due to superior string stability of CACC platooning over

ACC (see Subsection 2.4.1 of Chapter 2) it is possible to use smaller time headway

with CACC platoons. In this work τCACC = 0.6 seconds was used. The expression

∆Vpβv|CACC aims to minimise the speed differences between the consecutive vehicles.

The parameters βv|CACC and βd|CACC are used to tune the CACC platooning

controller. Increasing their value will reduce the influence of the platoon leader and

make the vehicle prioritise the minimisation of the speed difference to maintain the

separation gap from the immediate predecessor constant. Reducing those values will

have the opposite effect and increase the influence of the platoon leader at the cost

of the separation gap. The values of βv|CACC = 1.9 and βd|CACC = 3.5 were used.

6.3.7 Off-board speed advice

The ITS-vehicles are capable of wireless communication and can benefit from

receiving off-board speed advice from the traffic management system. The simulator

supports two types of off board speed requests. The first type is an explicit speed

limit that replaces the current lane speed limit Vmax (see Euations 6.19 and 6.21).

The second type is the intersection approach advice issued by the Intersection

Approach Trajectory Optimisation (IATO). In such case the vehicle is provided

with the time until the traffic light changes, the direction of change (red to green or

green to red) and the location of the stop line. Knowing its position, the vehicle can

approximate the distance to the stop line and calculate the approach trajectory as
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described in Section 3.4 of Chapter 3. The vehicle follows the calculated trajectory

unless the road situation requires further deceleration.

The difference between the explicit speed limit and IATO speed advice is that if

the vehicle receives a new speed limit, usually by entering a new speed limit zone

or passing a speed limit sign, it will brake to slow down if necessary. If the vehicle

travels faster than the speed advice dictates it will coast down to appropriate speed

without using brakes.

6.3.8 Driver modelling

The driver is a crucial component of the vehicle’s control system that performs

the high level control over the vehicle behaviour. Its task is to safely guide the

vehicle to its intended destination while obeying various road rules, interacting with

other road users and handling unforeseen situations. Work of several researchers

has been summarised in [142] claiming that due to very complex feedback system

between the driver and the vehicle, the driver-vehicle system has to be treated as

a whole. Such approach was adopted when designing the traffic simulator and the

driver model was constructed as an integral part of the vehicle model. The tasks

performed by the human driver have been identified as:

• path following

The driver is responsible for getting the vehicle to the intended destination.

This includes changing lanes when appropriate and taking appropriate turns

at intersections.

• obstacle avoidance

The driver has to react to frequently changing traffic conditions to avoid

collisions with other traffic participants and other objects that might be on

road.

• headway control
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It is the driver’s responsibility to maintain an appropriate separation gap from

preceding vehicle. The size of the separation gap is a trade-off between road

utilisation and safety of traffic participants.

In the traffic simulator tool the path following problem is reduced to the selection

of the most appropriate lane. It is due to the method chosen to simulate lateral

vehicle motion (see Subsection 6.3.1). Obstacle avoidance as such is not necessary as

the simulator does not support simulating non-vehicular objects on lanes. Headway

control is simulated in detail, as described in Subsection 6.3.5.

The driver model is therefore defined by the ACC headway control and the

lane changing mechanism, both of which can be tuned to reflect different driver

personalities. The CACC platooning is based on automated vehicle control and

therefore is not affected by human driver modelling. Drivers that tend to accept

lower safety margin when changing lanes, maintain smaller gap from the vehicle in

front and are more likely to overtake have been termed aggressive drivers. On the

other hand drivers that tend to avoid overtaking, always leave bigger safety margins

when changing lanes and maintain large separation gaps are referred to as prudent

driver in this work.

In order to reflect the driver personality the parameters governing the decision

process of both the longitudinal and lateral vehicle control components are modified

accordingly. Increasing the lane dissatisfaction threshold parameter ιi (see Equation

6.10) will cause the driver to be dissatisfied with the occupied lane more often

resulting in much more frequent desire to change lanes. Decreasing the lane changing

safety parameters βs|p and βs|f (see Equation 6.12) as well as increasing βv|p and

βv|f (see Equation 6.14) will result in the driver to accept lower safety margins when

performing lane changes.

The parameters mentioned above have been chosen experimentally to make the

vehicles compromise between maximising the benefit from choosing a best lane and
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minimising the negative impact on other vehicles resulting from doing so. Those

values of the parameters correspond to the normal driver behaviour in the context

of this work.

In the headway control mechanism the driver personality affects the time headway

τ (see Equation 6.12), which determines the separation gap the vehicle aims to

maintain. Aggressive drivers will have the time headway lowered which will result

in decreased separation gaps and sharper accelerations and decelerations. Prudent

drivers will use an increased time headway and therefore maintain higher separation

gap.

The driver’s personality is determined by the driver aggravation coefficient ξ

which adjusts the model parameters as follows:

ῑi = ιi(1 + ξ)

¯βv|p = βv|p(1 + ξ)

¯βv|f = βv|f (1 + ξ)

¯βs|p = βs|p(1− ξ)

¯βs|f = βs|f (1− ξ)

τ̄ = τ(1− ξ)

(6.22)

where ξ ∈ [−0.1, 0.1] where the lowest value corresponds to prudent driver, and

the highest value results in aggressive driver behaviour. The parameter ξ is chosen

randomly from the specified range, using uniform distribution, for every new vehicle

joining the simulation provided that the appropriate option is selected.
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6.4 Simulation of wireless communication

Wireless Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications

are among the fundamental technologies that enable ITS. In this work V2V communications

are used to enable cooperative platooning (see Subsection 6.3.6) and V2I communications

enable IATO speed advice (see Subsection 6.3.7.

One of the technologies enabling such communication is IEEE 802.11p based

DSRC [113] system discussed in Section 2.5 of Chapter 2. Extensive studies on

the performance of IEEE 802.11p based DSRC systems have been carried out in

[143], where the authors investigated the performance of that technology in various

scenarios and conditions. The performance of DSRC was observed to be very

variable and heavily dependent on the environment, however on average the system

performed well achieving high packed delivery ratios.

Independent studies of 802.11p based DSRC systems have been carried out at

MIRA as part of the NAV project [138]. Point to point communications were

tested on MIRA proving ground, using three different 802.11p hardware devices,

and measures such as latency and packet delivery ratio were examined with respect

to the type of hardware used, separation distance and relative velocity between the

nodes.

Figure 6.11 shows the average delay incurred in one of the examined hardware

with respect to distance between the communicating node. Even though the communication

was possible at large distances, due to the application of DSRC only the first 1000

meters were taken into account. It is visible that that latency within the selected

range was varying between 18 ms and 22 ms. The obtained results are in line with

[97] where 20 milliseconds network latency was assumed by the authors.

The simulator does not possess dedicated network simulation capability at this

point and the wireless communication is simulated in the form of transmission

latency between the sender and the receiver. Due to the discrete sampling space used
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in the simulation the minimal simulated latency is one time sample. The sampling

time of 100 milliseconds used in the simulator was sufficient to account for both the

wireless communication latency and processing delays. Implementation of extended

network simulation or integration with an external network emulation tool [111] is

considered for future work.

6.5 Road network simulation

The simulated traffic network is composed of roads, lanes and intersections. It is

defined as a directed graph where intersections are vertexes and roads are the edges.
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Figure 6.11: DSRC latency with respect to separation distance measured on MIRA proving
ground. Low latency between 18 and 22 milliseconds observed in range of 1000m. Increased
latency observed beyond that range due to retransmissions triggered by packet loss.
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Figure 6.12: Example lane configuration. The simulator allows creation of lanes that span
a fraction of the road length. This allows ramps or dedicated intersection turn lanes to be
created.

6.5.1 Road simulation

A road is defined as a bidirectional link between intersections with a specified

numbers of lanes in each direction and a defined top speed limit, which can be

overridden by placing appropriate static signs or VMS. Lanes can span the entire

length of the road or just its sections. Such lane configuration makes it possible to

define turning lanes on the intersections or ramps. Figure 6.12 illustrates an example

of a road comprising unidirectional lanes, two of them span the entire length of the

road and the remaining two are available just in its sections.

The lanes belonging to each direction of a road hold references to adjacent lanes

to enable vehicles to change lanes. A one way street can be defined by setting the

amount of lanes in one of the directions to zero.

6.5.2 Intersection simulation

An intersection is a point where two or more roads converge. It allows the vehicles

to advance from one road link to another. Lanes from different roads are joined and

the resulting flow compatibility is defined and regulated by the intersection object.

Each intersection has connection nodes to which the roads can be attached.

Depending on the intersection type there can be several ways of joining roads in

an intersection. The simulator has a basic cross type of intersection implemented
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Figure 6.13: Cross type intersection flow compatibility for right hand traffic. Nodes A1,
A2, B1 and B2 are used by the simulator to attach roads to the intersection.

and an interface is provided that can be used to define custom intersection types.

The intersection definition holds traffic flow compatibility rules. In the simplest

cross-type intersection each node, marked A1, A2, B1, B2, can have three outflow

destinations indicated by the subscript L, F and R for left forward and right respectively,

see Figure 6.13.

The simulator automatically generates signalling phases based on flow compatibility

Table 6.3: Intersection flow compatibility truth table. Value of 1 indicates compatibility
between the flows and lack of thereof is indicated by 0.

A1 A2 B1 B2
L F R L F R L F R L F R

A1
L 1 1 1 1 0 0 0 0 1 0 0 1
F 1 1 1 0 1 1 0 0 1 0 0 0
R 1 1 1 0 1 1 1 0 1 1 1 1

A2
L 1 0 0 1 1 1 0 0 1 0 0 1
F 0 1 1 1 1 1 0 0 0 0 0 1
R 0 1 1 1 1 1 1 1 1 1 0 1

B1
L 0 0 1 0 0 1 1 1 1 1 0 0
F 0 0 0 0 0 1 1 1 1 0 1 1
R 1 1 1 1 0 1 1 1 1 0 1 1

B2
L 0 0 1 0 0 1 1 0 0 1 1 1
F 0 0 1 0 0 0 0 1 1 1 1 1
R 1 0 1 1 1 1 0 1 1 1 1 1
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Procedure GenerateStages():
stageList = empty list of stages
for each flowA from Intersection do

stage = empty list of compatible flows
add flowA to stage
for each flowB from Intersection do

if flowA compatible with flowB then
add flowB to stage

end

end
if stage does not exist in stageList then

add stage to stageList
end

end
Algorithm 6: Dynamic signalling stage generation

matrices that describe the compatibility between the different ways of traversing the

intersection. Table 6.3 provides the flow compatibility information for a cross-type

intersection for right hand traffic (see Figure 6.13). The simulator has a similar

table for use with left hand traffic. Such table can be utilised to generate a list of all

possible combinations of signalling stages, where a stage is composed of compatible

flow directions that can be given green phase simultaneously. It is achieved using

the method listed as Algorithm 6.

Adaptive intersection management algorithms such as the ITSP (see Section 3.2 of

Chapter 3) can utilise such freedom in choosing the combination of flows to activate.

Throughput is maximised by activating those combinations of flow directions that

will result in maximising the intersection throughput or optimising other intersection

management criteria.

6.5.3 Infrastructure simulation

The simulator can simulate variable message signs (VMS), induction loops and

ITS-Sensors. All of those entities can be placed on lanes (see appendix A) and
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interact with the traffic.

Induction loops are assumed to be robust sensors (see Subsection 2.2.3 of Chapter

2) and therefore able to detect all the vehicles passing above them without failures.

The ITS-Sensors, relying on visual observations are prone to measurement errors.

It is assumed that the location of a vehicle is measured with accuracy of δx and

its speed is measured with accuracy δV . The measured speed V̂ and location x̂ are

therefore given by:

V̂ = V + δV

x̂ = x+ δx

(6.23)

Where V and x are the true values of vehicle speed and location. The measurement

errors δx and δV are randomised form the range of δx ∈ [−2, 2] meters and δV ∈

[−0.5, 0.5] m/s.

6.6 Defining simulation scenarios

The simulator is required to be configured prior to carrying out simulation studies.

The configuration includes loading an appropriate simulation scenario. A simulation

scenario consists of a defined traffic network, boundary conditions and simulator

engine parameters. The traffic network definition comprises roads and intersections

definitions.

Currently only cross-type intersection definitions are implemented, but the modular

architecture of the simulator will allow to add more types in the future. A cross

type intersection can have four or less intersecting roads, and each road can have

a virtually unlimited number of lanes in either direction. Intersection definition

includes its location in two dimensional space and information about which turns

are available from which direction.

Once the basic traffic network topology has been defined it is possible to place
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dynamic entities such as vehicle spawners, traffic signs, sensors and individual

vehicles. Vehicle spawners inject vehicles at the position they are placed. The

starting speed of the injected vehicles is user defined. The injection rate of the

vehicle can either be fixed or injection plans can be defined to enable variable, time

dependant injection rates. The configuration of the traffic simulator is discussed in

detail in Appendix A.

6.7 Gathering simulation data

The traffic simulator software collects traffic data from various sources and different

scopes. The collected traffic data has been divided into the following categories:

• Route data

Route data consists of information about all routes traversed by the vehicles in

a given scenario. Each vehicle records information about its journey, including

the time it spent queued and waiting. Throttle and brake usage history is

recorded as well and is used to estimate fuel that has been consumed by each

vehicle. When exiting the simulated area the vehicle’s journey data is retrieved

and sent to the Area Management Service (AMS), which is responsible for

organising the route data information received from the vehicles. When the

simulation is finished the route information is downloaded from the AMS and

saved in the simulation scenario directory.

• Flow data

Flow data is collected by both lane sensors and vehicles on each road section.

The vehicles provide information on the time it took them to traverse a given

road section as well as the corresponding wait time, queue time and energy

consumption. The lane sensors provide information about the amount of

vehicles that traverse a given section in a given time period. The collection
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of flow data enables the identification of road sections which are prone to

congestion. Flow data is used by the AMS to perform dynamic routing (see

Section 3.6 of Chapter 3).

• Signal timing data

In order to provide insight on how various ICA switch traffic lights, information

on signalling phase duration is recorded.

6.8 ITS-Cloud integration

The integration with the ITS-Cloud was the main reason for the development of

a new traffic simulation tool rather than use of the existing tools.

All the intersections were equipped with the cloud interface and software necessary

to request the allocation of ICS. The lane sensors were implemented in such way

that a static ITS-Cloud service is created to allow other services to read sensor data.

Similarly the simulated V2I nodes create an RCS.

The simulator can use the ITS-Cloud to link multiple simulator instances together.

This is done to address the limitations of the size of the area that can be simulated

on a single computer.

The simulator, besides providing services to interact with the traffic or read

its status, can use the ITS-Cloud to up-scale the simulated area. The size of the

simulated area is constrained by the computational resources of the machine running

it. The simulator can use the ITS-Cloud to mitigate those constraints by splitting the

simulated area into smaller sections and simulating each one on a different processing

nodes. The process of scaling the simulated area is transparent to the CTMS and

is regarded by the traffic control system as one traffic network. The ITS-Cloud

enables a service referred to as the Link-Model (LM) to handle the connection and

synchronisation between two simulator instances (see Figure 6.14).
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Figure 6.14: The Link-Model can be used to link traffic realms simulated by two different
simulator instances and allow vehicles to pass between them.

The LM simulates a road in a macroscopic scale. It was not meant for long

corridor simulations but for joining adjacent areas, therefore several simplifying

assumptions were made. It is assumed that the vehicles do not change lanes and

keep a constant speed while traversing the macroscopic road representation of the

link model. The LM was therefore implemented as a set of first in first out (FIFO)

queues, one for each lane of the road. A predefined traversal time of TLM is used.

When a vehicle enters the LM it is placed at the back of the FIFO queue and its

scheduled departure time is noted. The LM service monitors the vehicle at the

front of the queue and once its scheduled departure time comes it is removed from

the queue and sent to an appropriate simulator instance. The LM passes all the

information required to re-create the microscopic scale representation of the vehicle,

including its travel time and energy usage data, between the simulator instances.
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6.9 Conclusions

The traffic simulation tool described in this chapter provides an environment for

deployment, testing and validation of the Cloud based Traffic Management System.

While there are several powerful traffic simulation tools available (see Section 2.3

of Chapter 2) none of them was deemed to be suitable for modification allowing

for integration with the ITS-Cloud. The new simulation tools, whilst having less

features than mature software such as Vissim, provides a highly configurable and

realistic traffic simulation environment.

The main advantages of the developed simulator include:

• Nanoscopic aspects

Introducing nanoscopic level of detail allows investigation of a greater amount

of details regarding the vehicle’s behaviour. It allows the modelling of vehicle

dynamics and more advanced behaviour such as deceleration by coasting.

Simulating nanoscopic aspects of the vehicle models enables the simulations

of cooperative adaptive cruise control (CACC) which relies on the vehicle

low level controller to maintain the desired speed. These complex behaviours

enable each vehicle in the simulation to contribute towards creation of the

total energy consumption and C02 emissions estimate.

• Scalability

The capability to use the ITS-Cloud to scale the simulation helps to mitigate

the traffic network size constraints imposed by the computational complexity

required by the nanoscopic level of modelling. Provided that sufficient amount

of computational nodes is available, very large traffic networks can be simulated.

• Portability

The traffic simulator was implemented from scratch in Java without dependence

on any licensed software components. The tool can be run on many platforms,

and have been tested on Linux and Microsoft Windows. The instances of the
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simulator can cooperate within one system regardless of the platform they are

running on.

• Modular design

Significant emphasis has been put on the modularity of the simulator design.

It allows for the software to be extended with new functionality without having

to change its existing components.

The biggest disadvantages of the new simulation tool have been identified as:

• Computational costs

Modelling vehicle components at a nanoscopic scale results in increased processing

power and memory demand. Although it is mitigated by the possibility to scale

the simulation using the ITS-Cloud to many processing nodes the simulator

is constrained to simulating up to 1000 vehicles simultaneously on a standard

desktop computer.

• Specialisation

It was realised from the beginning of the project that it would be impossible to

integrate all the functionality of a mature traffic simulator (see Section 2.3 of

Chapter 2 within the project time frame. The simulator was purpose-designed

and implemented to be part of the CTMS. Only the functions essential to the

intended application were implemented.

• Lack of microscopic intersection modelling

The vehicles inside the intersections are not modelled in micro scale in the

current version of the simulator. The vehicles are not aware of vehicles on

incompatible traffic flows and therefore there is no yielding rules implemented.

The traffic lights are relied upon to ensure that there will be no collisions within

the intersection area.

• No modelling of unsignalled intersections

Due to the lack of microscopic modelling of the area inside an intersection it
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is impossible to simulate unsignalled intersections.

• Simplified vehicle model

The vehicle model used was a trade-off between computational costs and

the depth of simulated details. A simplified representation of the vehicle

components such as the engine and brakes was used and the remaining powertrain

components were not modelled.

• Unsophisticated user interface

The simulator was designed to collect traffic data from large scale simulations

and the emphasis was placed on data collection. A simple graphical user

interface was designed to enable visual inspections of the current traffic situation

and control the simulation. However many features still remain inaccessible

through the interface and require either source code change or editing the

scenario configuration files.
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Simulation studies

This chapter summarises the features of the components and the algorithms

described in this thesis and demonstrates the effectiveness of the novel elements

through simulation studies.

The simulation studies focus initially on evaluating the ITS traffic management

components and algorithms that are part of the CTMS. The investigated ITS

components include Cooperative Adaptive Cruise Control (CACC), Intersection

Approach Trajectory Optimisation (IATO), Dynamic Routing (DR), Micro and

Meso Scale Prediction Services (MiSPS and MeSPS). The intersection management

algorithms include FC, ILC, ITSP and Two-Step.

The second stage evaluates the ITS components that can cooperate, see Table

7.1 for an outline of such inter-component compatibility. CACC platooning and DR

Table 7.1: ICA features and compatibility with the CTMS system components

ICA Adaptive CACC aware IATO MiSPS MeSPS

FC No No Yes No No
ILC Yes No No No No

ITSP Yes Yes No No Yes
Two-Step Yes Yes Yes Yes Yes

134



7.1. Simulation set-up and scenarios

are independent from the intersection control algorithms (ICA), therefore the choice

of ICA does not affect their behaviour. However the ICA can affect performance of

the aforementioned components. The ultimate aim of this chapter is therefore to

quantify the interactions between all the components of the overall system.

The chapter is organised as follows:

• The first section describes the simulation set-up including the investigated

traffic scenarios.

• The second section provides an overview of the criteria used to evaluate the

investigated traffic management techniques.

• The next three sections evaluate the non-novel, but required, ITS components

namely ACC, CACC, IATO and DR.

• Sections 7.6 and 7.7 investigate the performance of MiSPS and MeSPS, the

Micro and Meso scale prediction mechanisms.

• In Section 7.8 the parameter sensitivity study is conducted, where the impact

of various tuning parameters used within the CTMS components is investigated.

• Section 7.9 investigates the effect of processing and network communication

within the cloud on the traffic management.

• Section 7.10 contains extensive studies of the novel Two-Step traffic management

method to evaluate its performance in different scenarios compared to ITSP

and benchmark algorithms.

• The final section discusses the findings and concludes the chapter.

7.1 Simulation set-up and scenarios

A set of representative scenarios was designed to evaluate the strengths, weaknesses

and robustness of the developed traffic management strategies. A scenario includes

an urban area comprising roads with fixed or time dependent speed limits and traffic
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flows as well as sensors to monitor the traffic and V2I communication capabilities.

The traffic flows are calculated based on individual vehicle movement.

Each vehicle is randomised based on a validated family saloon car in terms of

both dynamic characteristic and driver behaviour (see Subsections 6.3.2 and 6.3.8 of

Chapter 6). The remainder of this section describes the simulation set-up starting

with the ITS-Cloud platform components.

7.1.1 ITS-Cloud platform

The ITS-Cloud platform was configured to satisfy the computational needs of

all scenarios as well as to demonstrate the portability of the platform. The cloud

environment consisted of three heterogeneous computing nodes, two 64 bit Linux

machines and one 32 bit Windows machine (see Table 7.2).

The set-up was done in MIRA Ltd. offices. The computers were located in

different buildings, therefore corporate network with measured average latency of 4

milliseconds was used for communication.

7.1.2 Urban areas

Four urban areas were selected to capture a range of realistic road layouts within

a city boundary including a grid city layout, one of the urban traffic corridors in

Coventry, UK an arterial road and a single intersection. A range of speed limits

were investigated based on inner city (urban) as well as outer ring roads (suburban)

speed limits. In all cases it was assumed that all intersections are managed using

Table 7.2: Test bed configuration

Name Operating system CPU model CPU clock RAM

UniCalc Linux 3.7.10 Intel Core i5 M450 2.2 GHz 3 GB
WS1398 Windows 7 (6.1.7601) Intel Core i5 M560 2.67 GHz 4 GB

LinuxDev1 Linux 3.7.10 Intel Xeon 5120 1.6 GHz 2 GB
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traffic lights and vehicles drive on the right hand side.

Speed limits

There were two speed limits considered for the simulated scenarios:

• Urban speed limit

The urban speed limit was set to 15m/s (54km/h or 33.75mph) which is close

to the official urban speed limits in many countries.

• Suburban speed limit

The suburban speed limit was set to 30m/s (108km/h or 67.5mph) which was

meant to represent the speed limit on multi-carriageways in the UK.

Traffic flows

The traffic flow intensities considered for the scenarios are based on the traffic

flow intensities observed on a major road in Coventry, UK, namely the northbound

Foleshill road (see Figure 7.1).

The heaviest traffic was observed in the morning between 8 am and 9 am and in

the afternoon 5 pm and 6:30 pm. The morning peak registered traffic flow intensities

between 1000 and 800 vehicles per hour. The flow intensity in the afternoon peak

was between 800 and 900 vehicles per hour. The investigated road is a major transit

arterial in Coventry therefore the traffic intensity remained high throughout the day

varying between 650 and 800 vehicles per hour. The fastest increase in traffic flow

intensity was observed between 7:30 am and 8 am where the measured flow increased

from about 400 to 1000 vehicles per hour.

• High traffic flow intensity

The high traffic flow intensity profile is different for each scenario. In the

Coventry scenario (see Subsection 7.1.5) the vehicle injection rate was set to

900 vehicles per hour. It corresponds to the morning and afternoon peak hours.

137



Chapter 7. Simulation studies

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

0
0

:0
0

0
1

:0
0

0
2

:0
0

0
3

:0
0

0
4

:0
0

0
5

:0
0

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

T
ra

ff
ic

 f
lo

w
 i
n

 v
e
h

ic
le

s
 p

e
r 

h
o

u
r

Time of day

Figure 7.1: Traffic flow measured in Floeshill Road, Coventry, UK between 12:00
29/11/2012 and 12:00 30/11/2012.

In the remaining scenarios the high traffic flow intensity scenario corresponds

to a situation where the road network is on the verge of saturation assuming

that the intersections are managed using FC and there are no ITS-vehicles

present (0% ITS-vehicle concentration rate).

• Low traffic flow intensity

The low traffic flow intensity assumed injection rate of 200 vehicles per hour

per lane.

• Variable traffic flow intensity

The variable traffic intensity profile varies the vehicle injection rates in time.

It assumes the simulation lasts for two hours. During the first 20 minutes the

injection rate is constant at 200 vehicles per hour and corresponds to the low
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traffic intensity profile. During the next 20 minutes, between the 20th and

40th minute of the simulation, the injection rate linearly increases to reach the

levels of the high traffic intensity profile. This corresponds to the increase rate

observed in Coventry (see Figure 7.1). High traffic intensity conditions are

then kept for the next 30 minutes until the 70th minute of the simulation time.

In the next 30 minutes, between the 70th and 100th minute of the simulation,

the traffic flow intensity decreases linearly back to the levels of 200 vehicles

per hour and remain at this low level for an additional 20 minutes.

• Saturated traffic

In the saturated traffic profile the vehicle injection mechanism was configured

to inject a new vehicle every time the previous one has moved away 10 meters

from the injection point.

7.1.3 Long corridor

The long corridor scenario consisted of a single lane road and was used in the

evaluation of the ACC and CACC platooning mechanisms. The road was of sufficient

length to prevent the vehicles from reaching its end throughout the duration of the

experiments.

7.1.4 Single intersection scenario

The single intersection scenario aimed to help with evaluation of the CTMS

components in saturated traffic conditions, in particular the impact of speed limit

and cooperative platooning on intersection throughput.

The scenario comprises two intersecting one way single lane roads. The vehicle

injection on both roads was configured to create saturated flow conditions.
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7.1.5 Coventry scenario

The Coventry scenario represents a section of the Foleshill road in Coventry, UK.

It consists of a main road intersecting with several side roads (see Figure 7.2). All

the roads are single carriage ways with urban speed limit.

This scenario aims to evaluate the developed traffic control strategies in a realistic

urban environment. Its creation was motivated by obtaining real traffic flow readings

Figure 7.2: The Coventry scenario topology.
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from an induction loop sensor, which was then used to set the vehicle injection rates

in this scenario (see Figure 7.1). The injection rates on the main road can be set

according to one of the traffic intensity profiles described on page 137.

The traffic flow intensity measured on the side roads has shown to never grow

over 200 vehicles per hour during the measurement time. The worst case of value

of 200 vehicles per hour is therefore used on the side roads in this scenario.

The signalling stages in on Foleshill road were configured in north-south / east-west

manner. In such configuration turning vehicles must yield to oncoming traffic

even though they have green light. The lack of microscopic intersection modelling

capability in the simulator means the vehicles are unaware of traffic from the opposing

direction making it impossible to replicate the stage configuration from Coventry.

Instead of using north-south / east-west signalling stages configuration the intersections

are set up to have one stage for each flow direction.

7.1.6 Arterial road scenario

The Arterial Road scenario comprises three lanes in each direction in a suburban

environment. It contains four signalled intersections where side roads cross the

arterial road. The side roads comprise one lane in each direction (see Figure 7.3).

The distance between the intersections varies from 350 to 500m. On the main road

90% of the vehicles were set to travel the entire length of the arterial with the

remaining 10% picking a random destination. Half (50%) of the side road traffic

was set to cross the arterial and the other half to pick a random destination, joining

the arterial.

The previously described Coventry scenario consisted only of single carriageways.

Using a scenario with multi lane roads allows for the traffic flow to express behaviours

such as lane changing that could not be observed in the previous scenario. The aim

of this scenario is to enable the evaluation of the CTMS traffic management methods
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Figure 7.3: The arterial road scenario topology.

in more complex environment than allowed by the previous scenario.

The Arterial Road scenario is configured by default for suburban speed and high

traffic intensity vehicle injection profile. 930 vehicles are injected per hour on each

lane on both ends of the arterial road, resulting in the total injection rate of 2790

vehicles per hour in each direction on the arterial road. The injection rate on the

side roads was set to 600 vehicles per hour.

7.1.7 Grid City scenario

The Grid City scenario aimed to resemble an arterial layout of a modern city. The

scenario uses a 3 by 4 grid layout and consists of three parallel avenues with three

lanes in each direction in north-south orientation and four one way links intersecting

with the avenues, two in east to west direction and two in the opposite direction.

The distances between intersections are between 500m and 1000m.

This scenario aims evaluate of all traffic management techniques used in the

CTMS. The scenario configuration enables all considered vehicle behaviours to
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occur. Multi lane roads allow vehicles to change lanes and overtake and the topology

of the scenario makes it possible to use different paths to reach any destination

enabling the evaluation of the DR component.

On the outlying north-south avenues half of the traffic volume was set to continue

through the avenue and the other half was set to diagonally cross the simulated area

(see Figure 7.4). Such configuration forces the vehicles to employ appropriate lanes

to make the required turns at intersections, thus ensuring that routing related lane

changing occurs on approach to intersections.

The traffic intensity in this scenario was set to 900 vehicles per hour on each of

the east-west roads. The injection rates on the outlying north-south avenues were

set to 1800 vehicles per hour, out of which half of the vehicles aimed to travel the

Figure 7.4: The Grid City scenario topology.
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entire length of the road while the other half aimed to diagonally cross the simulated

area.

In order to investigate the impact of speed limit on the performance of CTMS

and its components the Grid City scenario considered both urban and suburban

speed limits.

7.2 Result quantification

The criteria used to evaluate traffic management systems have been identified

in Section 2.1 of Chapter 2. In this work, the following widely used criteria were

selected:

• Average journey time

The average travel times are expressed as the mean end to end travel time of all

vehicles between specified start and finish points. In complex scenarios, such

as the Grid City scenario, there are multiple possible routes the vehicles can

take to reach the destination. To obtain a common reference which provides

the means to compare the performance of the investigated traffic management

techniques, a situation where all traffic lights are green is used. All the

measured journey times TJ are presented as percentage of such reference that

is termed the base journey time T baseJ .

• Waiting and queued times

Studies have shown that congestion not only negatively impact the economy

and the environment but also the driver’s mental well-being [6]. The waiting

and queued time criteria reflect the time the vehicle had to remain stationary,

and had to travel at a reduced speed. The vehicle is considered to be waiting

if it travels below 5% of the maximal allowed speed on the lane it is on and it

is considered queued if it is forced to travel below 50% of the speed limit by
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having to follow another vehicle or being unable to change lanes. All waiting

and queue time measurements are expressed in terms of percentage of the

associated journey time.

• Energy expenditure

The energy expenditure reflects the energy cost of having the vehicle travel to

its intended destination. It is derived from the individual vehicle behaviour

(see Subsection 6.3.1 of Chapter 6). Similarly to the journey time measures,

the energy expenditure EC measurements are presented relative to the best

energy expenditure for each route, which is referred to as base energy con-

sumption Ebase
C within the scope of this work.

• Throughput

The throughput describes the number of vehicles that can pass through a

component of the road network in a defined period of time. Throughput is

measured in vehicles per hour in this work.

All the time measurements are gathered by the simulator tool (see Section 6.7 of

Chapter 6) independently for each defined end to end route, every direction of every

road and for the entire simulated traffic network. Throughput is measured for every

intersection and road.

7.3 Cooperative platooning evaluation

Cooperative platooning or cooperative adaptive cruise control (CACC) enables

vehicles to form tight and stable platoons. It is achieved by communicating the lead

vehicle’s intent to all the vehicles in the platoon and automatically controlling their

speed (see Subsection 6.3.5 of Chapter 6).

The main application area of CACC is motorway traffic and most research in
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the field was focused there [25, 41, 89, 93, 95, 96]. Some researchers have started

to recognise the potential benefit CACC can provide in urban environment with

signalled intersections [33, 40].

The aim of this study is to evaluate and compare the behaviour of the implementation

of ACC and CACC mechanism used herein. There were four scenarios evaluated.

The first scenario investigates the stability of ACC and CACC platoons on a freeway.

The second experiment investigates the throughput benefits of CACC in an urban

environment. The third evaluates the potential disadvantages of CACC in an urban

environment. The fourth experiment evaluates the impact CACC has on journey

times in an urban environment. The common assumptions and setting for all

experiments are:

• Communication delay of 100 ms for CACC [96].

• Time headway τACC = 1 second for ACC platoon and τCACC = 0.6 second for

CACC platoon.

7.3.1 Experiment 1 - freeway

This experiment evaluates vehicles interaction in ACC and CACC platoons on a

freeway.

Criteria:

• Separation gap to provide a measure of string stability.

Experiment setup:

• Long corridor scenario, see Subsection 7.1.3.

• A seven vehicle platoon as in [96].

Initial conditions:

• Initial vehicle separations: 10 meters.

• Initial speed set to 20 m/s.
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Experiment:

The time headway policy (see Subsection 6.3.5 of Chapter 6) requires the vehicles to
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Figure 7.5: Separation gaps between the vehicles in ACC platoon.
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Figure 7.6: Separation gaps between the vehicles in CACC platoon.
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maintain a 21 meter separation gap at the initial speed of 20 m/s, forcing vehicles

to increase the gap on the beginning of the experiment. The lead vehicle introduces

disturbances to the platoon by changing its target speed at specified moments in

time (see Figures 7.5 and 7.6). 15 seconds into the experiment the platoon leader

starts to decelerate towards the new set speed of 8 m/s, however the manoeuvre is

interrupted 5 seconds later as the target speed of the platoon leader is set back to

20 m/s. The next deceleration begins 28 seconds after the simulation started with

the lead vehicle aiming to achieve new set speed of 4 m/s. The set speed is set back

to 20 m/s in the 32nd second of the simulation.

Results:

• The ACC platoon is shown to be string unstable as the separation gap error

grows in each successive vehicle in the platoon during the platoon accelerations

(see the increased overshoot in Figure 7.5).

• CACC reduces the separation gap errors, caused by the disturbances introduced

by the lead vehicle, as they propagate down the platoon. It is therefore string

stable confirming the results in [96]

7.3.2 Experiment 2 - Intersection clear time

This experiment evaluates the benefit of CACC in an urban environment.

Criteria:

• Time it takes for the platoon to clear an intersection.

• Time measurement is started when the lead vehicle crosses the stop line and

the stop line crossing time for each vehicle is recorded.

Experiment setup and assumptions:

• Single intersection scenario, as described in Subsection 7.1.4.

• A 23 vehicle platoon.

• The downstream road is kept clear form any obstructions to prevent any
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spill-backs that could affect the measurement.

Initial conditions:

• The platoon is stationary in front of the intersection.

• Initial vehicle separations: 1 meter (equal to the required vehicle separation

when stationary, see Subsection 6.3.5 of Chapter 6).

Experiment:

• Both ACC and CACC platoons investigated.

• Urban (15 m/s) and suburban (30 m/s) speed limits investigated.

Results:

• The results presented in Figure 7.7 match the theoretical assumptions and

previous investigations of platooning mechanisms (see Subsection 2.4.1 of Chapter

2).

• The CACC platoon cleared the intersection 16% faster than the ACC platoon

with urban speed limits and 44% faster for suburban speed limit.
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7.3.3 Experiment 3 - Impact of traffic lights

The previous experiment demonstrated that CACC platooning can be used to

increase road throughput and decrease the time it takes for a platoon to clear an

intersection. It was assumed that the traffic lights remain green long enough to let

the entire platoon pass. This experiment investigates the impact, in terms of energy

consumption, of breaking a platoon of moving vehicles leaving a junction.

Criteria:

• Kinetic energy Ek [kJ] accumulated in each vehicle.

• Cumulated kinetic energy Esum
k [kJ] in all vehicles before the stop line.

Experiment set-up and assumptions:

• Single intersection scenario, as described in Subsection 7.1.4.
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• A 60 vehicle platoon representing a platoon length of 360 meters (when stationary).

• The downstream road is kept clear form any obstructions to prevent any

spill-backs that could affect the measurement.

Initial conditions:

• The platoon is stationary in front of the intersection.

• Initial vehicle separations: 1 meter (corresponding to the required vehicle

separation when stationary, see Subsection 6.3.5 of Chapter 6).

Experiment:

• Both ACC and CACC platoons investigated.

• Urban (15 m/s) speed limit investigated.

Results:
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Figures 7.8 and 7.9 illustrate the changes in distribution of kinetic energy in ACC

and CACC platoons in front of an intersection with respect to the distance from

the intersection and simulation time. Figure 7.10 shows the total kinetic energy

accumulated on the investigated intersection approach in relation to time that has

passed since the traffic light turned green.

It was observed that:

• The vehicles in CACC platoon start moving almost simultaneously. The

energy builds up much faster than with ACC, especially in the areas further

away from the stop line.

• The vehicles in the ACC platoon start accelerating one after another resulting

in a much slower energy build up.

• The kinetic energy cumulated before the stop line Esum
k reduces as the vehicles
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pass the intersection.

• In the first 25 seconds of the simulation the Esum
k is higher in the CACC

platoon.

Conclusion:

If the traffic light turns red before the entire platoon passes the intersection

the kinetic energy accumulated in the vehicles that have not managed to pass is

lost. If such a change occurs within the first 25 seconds after the platoon started

moving more energy would be lost in the CACC platoon than in its ACC governed

counterpart. Therefore traffic lights can cause the CACC platooning mechanism to

increase energy consumption and CO2 emissions in an urban environment compared

to ACC.

7.3.4 Experiment 4 - Impact on journey times in urban en-

vironment

The previous simulations investigated the behaviour of pre-assembled vehicle

platoons and assumed that either pure ACC or CACC were used. This experiment

investigates the impact of CACC on journey times in an urban environment using

ACC, CACC and mixed platooning.

Criteria:

• Average journey time in the entire traffic network.

• Cumulated kinetic energy Esum
k [kJ] in all vehicles before the stop line.

Experiment setup and assumptions:

• Arterial Road scenario, as described in Subsection 7.1.6.

• Variable traffic flow intensity (see Section 7.1 and Subsection 7.1.6).

• Suburban speed limit (30 m/s).

• Only ITS-vehicles can engage in CACC platooning.

• Stage lengths for FC: 32 seconds for the arterial road and to 19 seconds for
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the side roads.

• FC and ITSP intersection management methods were used.

Experiment:

• ITS vehicle penetration rates of 0%, 50% and 100% investigated.

Results:

Figure 7.11 shows the length of the average journey time with respect to the

simulation time. It was observed that in low traffic intensity (from 0 to 2000 and

5500 to 7000 seconds of the simulation) the CACC platooning does not have any

effect on the journey time, regardless of the type of ICA used. This is due to

insufficient traffic density to allow formation of CACC platoons [94]. In the heavy

traffic conditions however, the CACC was shown to reduce journey times.
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Conclusion:

In agreement with literature, CACC platooning was found to increase the road

network throughput. The performance of CACC is limited by the fixed cycle based

intersection management, which is observable as the small difference between 50%

ITS and 100% ITS-vehicle penetration rate. Even though the intersection clearance

time under CACC (100% ITS-vehicle penetration rate) is much faster, as observed in

the previous example, the platoon is still likely to be stopped at the next intersection.

Such effect can be mitigated by using an adaptive intersection control scheme such

as the ITSP, which will attempt to switch the traffic lights taking into account

incoming platoons. Figure 7.11 shows that CACC can increase road throughput to

such extent that the journey time is not affected by traffic conditions that would

cause severe delays otherwise.

7.4 Intersection Approach Trajectory Optimisa-

tion

This experiments evaluates the Intersection Approach Trajectory Optimisation

(IATO) component of the CTMS.

Criteria: (see Section 7.2)

• Average journey time TJ as a percentage of T baseJ .

• Average energy consumption EC as a percentage of Ebase
C .

Experiment set-up and assumptions:

• Two scenario maps:

– Arterial Road scenario, see Subsection 7.1.6.

– Grid City scenario, see Subsection 7.1.7.

• FC intersection management method used with following stage lengths:

– Arterial Scenario: 32 seconds for the arterial road and to 19 seconds for
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the side roads.

– Grid city: 20 seconds for each stage.

• High traffic flow intensity (see Section 7.1 and Subsection 7.1.6).

• Suburban speed limit (30 m/s).

• IATO component is evaluated alone, CACC and DR are disabled in this

experiment.

Experiment:

• ITS vehicle penetration rates of 0% to 100% in 10% increments were investigated.
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Results:

• It is shown in Figure 7.12 that the EC reduces with an increasing ITS-vehicle

penetration rate. The rate of improvement varies significantly between the

scenarios:

– In the Grid City scenario the biggest EC reduction of 6.5% Ebase
C occurs

below 30% ITS-vehicle penetration rate whereas only minor improvement

can be observed by increasing the number of ITS-vehicles beyond 30%.

– In the Arterial Road scenario EC reduces gradually throughout the entire

range of ITS-vehicle penetration rate. EC reduction of 12% Ebase
C is

observed.

• In the Grid City scenario TJ decreases with growing ITS-vehicle penetration

rate in range of 0% to 60%. Small TJ reduction of 2% T baseJ is observed.

• TJ increase of up to 5% T baseJ was observed in the Arterial Road Scenario in

ITS-vehicle penetration rates between 20% and 70%. A decrease of 11% T baseJ

is observed with 100% ITS-vehicle penetration rate.

Conclusions:

• IATO is capable of reducing both energy consumption and journey times

confirming observations made in [10].

• The observed differences in energy consumption improvement rates in the

investigated scenarios are caused by normal vehicles overtaking ITS-vehicles

that optimise their approach, therefore moving slower than the speed limit

allows. In Grid City the vehicles are forced to follow a particular lane in order

to reach their destination, therefore no spontaneous lane changing occurs just

before the intersection. This forces normal vehicles to follow ITS-vehicles when

they optimise the intersection approach trajectory. In the Arterial scenario the

vehicles can assume any of the three lanes in the arterial road enabling normal

vehicles to overtake the ITS-vehicle in the vicinity of the intersection. This
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behaviour persists until all normal vehicles are eliminated with a 100% ITS

vehicle penetration rate.

• The increase in TJ observed in the Arterial scenario is due to strategy used

within IATO to estimate the distance the vehicle is going to travel before

the traffic light switching event occurs (see Section 3.4 of Chapter 3). If

the vehicle enters the IATO managed area with a speed significantly lower

than the speed limit it might be advised to decelerate even though it could

still make through the intersection if it accelerated. It is impossible however

to determine if reaching the velocity required to make it through is possible

unless the vehicles in front of the vehicle in question participate in a CACC

platoon. Owing to short distances between intersections in the Arterial Road

scenario, the vehicles enter the IATO range while they are still gaining speed

after slowing down at the previous intersection. The result is reduced traffic

stage utilisation leading to increased TJ in situations where ACC vehicles mix

with CACC vehicles as shown in Figure 7.12.

7.5 Dynamic routing

This experiment evaluates the Dynamic routing (DR) component of the CTMS.

Criteria: (see Section 7.2)

• Average journey time TJ as a percentage of T baseJ .

• Average waiting time TW as a percentage of TJ .

• Average queued time TQ as a percentage of TJ .

• Average energy consumption EC as a percentage of Ebase
C .

Experiment set-up and assumptions:

• Grid City scenario, as described in Subsection 7.1.7.

• FC intersection management method was used. Each stage duration was set
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to 20 seconds.

• High traffic flow intensity (see Section 7.1 and Subsection 7.1.6).

• Suburban speed limit (30 m/s).

• DR component is evaluated alone, CACC and IATO are disabled in this

experiment.

• DR calculates the routes using information on road congestion and traffic flow

as described in Section 3.6 of Chapter 3.

• Only ITS-vehicles are able to receive DR advice.

Experiment:

• ITS vehicle penetration rates of 0% to 100% in 10% increments were investigated.
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Figure 7.13: DR performance in different ITS-vehicle concentration rates using FC inter-
section management method in Grid City scenario.

159



Chapter 7. Simulation studies

Results:

• Dynamic routing has shown to improve all the considered criteria (see Figure

7.13).

• The biggest improvement rate is observed in the range of 0% to 20% ITS-vehicle

penetration ranges.

• The vast majority of improvement is achieved for 50% ITS-vehicle penetration

rate with further improvement being minor.

• The average journey time TJ decreased by 9% T baseJ and the average energy

consumption EC was reduced by 3% Ebase
C .

Conclusion:

• The DR mechanism has shown to be an effective mean for improving traffic

flow in an urban environment.

• Similarly to IATO, the DR is effective even in low ITS-vehicle penetration

rates.

7.6 The Micro Scale Prediction Service

This experiment evaluated the performance of the Micro Scale Prediction Service

(MiSPS).

Criteria:

• Accuracy of prediction measured in terms of error between actual and predicted

traffic flow.

Experiment set-up and assumptions:

• Arterial Road scenario, as described in Subsection 7.1.6.

• Variable traffic flow intensity (see Section 7.1).

• Suburban speed limit (30 m/s).

• The Two-Step intersection management method was used to enable MiSPS.
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• ITS sensors provide the following information:

– Vehicle location with the accuracy of δx = 2 meters.

– Vehicle speed with accuracy δV = 0.5 m/s.

– Vehicle ITS capability.

Experiment:

• In order to examine similar amount of ITS and normal vehicles, the ITS-vehicle

penetration rate was set to 50%.

• The performance of the component was evaluated by comparing the predicted

situation images to the situation image snapshots taken at the appropriate

moments in time. Assuming that the prediction was made Hp time units

into the future and was based on a situation image Si(t) observed at time t

the obtained predicted situation image Ŝi(t + Hp|t) will be compared to the

situation image Si(t+Hp) observed at time t+Hp.

• The predicted and observed situation images are compared using the ITS

pressure indexes πi defined in Section 3.2 of Chapter 3.
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Figure 7.14: Accuracy of MiSPS prediction observed on road r1 approach to intersection
is2 in the Arterial Road scenario (see Figure 7.3).
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Results:

• In the whole scenario the predictions have shown to be of a very good quality

yielding the root mean square error (RMSE) of 0.99. In the ITS pressure index

the value of 1 corresponds to a single stopped vehicle (it increases with the

vehicle’s speed as described in Section 3.2 of Chapter 3)

• The coefficient of determination RT 2 of 76% was obtained.

• The observed pressure fluctuations observed in Figure 7.14 are due to changes

in traffic conditions caused by the traffic lights. When the traffic light is red

the pressure builds up resulting in the ICA eventually switching the lights to

green. When that happens the pressure starts to drop until it is deemed that

the traffic light should switch to a different stage.

Conclusion:

The quality of the MiSPS method was deemed satisfactory, however the obtained

result is subject to several implementation assumptions. MiSPS uses the same micro

simulation mechanism that is used to simulate the entire traffic network, therefore

the vehicle model used in the prediction might be too similar to the one used in

the simulation representing the real world. However, to make the prediction more

realistic the following approximations were implemented:

• Vehicle model tuning differences

The model parameters of vehicles in the simulation are randomised upon

creation of the vehicles making every vehicle slightly different (see Section

6.3 of Chapter 6). The MiSPS uses a single set of tuning parameters for all

vehicles in the predicted situation image.

• Added sensor measurement errors in terms of vehicle location and speed

The accuracy of the situation image depends on the quality of data obtained

from the ITS-sensors, which are prone to measurement errors (see Subsection

6.5.3 of Chapter 6).
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• Routing and lane selection

The vehicles may have to choose a certain lane in order to follow their desired

route. The information about each vehicle’s destination is not part of the

situation image therefore the MiSPS is not able to predict the lateral behaviour

of the vehicles.

• Driver behaviour

The driver remains the most unpredictable component of a vehicle control loop

[144]. MiSPS uses the same driver model for all the vehicle in the prediction

whilst, in the road network simulation, the parameters describing the driver

are randomised (see Subsection 6.3.8 of Chapter 6).

Note that if such a method is used in practise it will be possible to increase the

model accuracy by accounting for the typical range of vehicles likely to be involved

using information from ITS sensors or upstream junctions.

7.7 The Meso Scale Prediction Service

This experiment evaluates the Meso Scale Prediction Service (MeSPS) component

of the CTMS which predicts the influence of surrounding traffic on a particular

intersection.

Criteria:

• Accuracy of prediction measured in terms of error between the predicted and

measured amount of vehicles.

Experiment set-up and assumptions:

• Grid City scenario (see Subsection 7.1.7) modified as follows:

– Nine intersections in 3 by 3 grid layout and single carriageway roads.

– The intersections were labelled using matrix indexing where is00 was in

the south-west corner and is22 was in the north-eastern corner.
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– Variable vehicle injection rate was used using the same rates as in the

original Grid City scenario (see Subsection 7.1.7).

– ITS vehicle penetration rate of 50% was investigated.

– The link between middle intersection (is11 ) and its northern neighbour

(is12 ) was chosen for investigation.

• Variable traffic flow intensity (see Section 7.1).

• Suburban speed limit (30 m/s).

Experiment:

• To test the self tuning capability of MeSPS the proportions of vehicles taking

different routes changed in time. Initially 80% of vehicles travelling north from

is10 through is11 would continue north towards is12 with the remaining 20%

randomly taking either west or east turn. Throughout the simulations the

proportions changed linearly to 40% vehicles continuing north and 60% taking

a different turn.

Results:

Figure 7.15 shows the predicted amount of vehicles on the investigated link

plotted against its measured equivalent.

• The initial probability of a vehicle choosing the northbound link from is11

was 33% (see Section 5.4 of Chapter 5), while the real rate was 80%. This

is visible on the plot as the estimator initially underestimates the amount of

arriving vehicles (observations 1 to 6).

• The quality of the prediction improves as the estimator tunes itself.

• The heavy traffic conditions occurring between the 28th and the 37th estimation

result in large differences between the estimated and measured vehicle counts.

This is caused by the traffic queuing at is12 and obstructing the lane sensor.

Conclusions:

• The overall performance of the MeSPS mechanism is satisfactory, with the
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prediction error usually being constrained to a few vehicles.

• The validation mechanism that is used to tune the predictor is prone to

measurement issues caused by congested traffic. Owing to this observation

the self tuning component is prevented from changing the tuning parameter of

the predictor if more than 60 vehicles in a wave were predicted and the error

between the measured and predicted situations is greater than 20%. This

is done to prevent losing the current predictor parameters by attempting to

retune it using invalid input data.
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Figure 7.15: The amount of vehicles predicted by MeSPS to arrive at is12 from is11 plotted
against validation measurement.
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7.8 Parameter sensitivity

This section investigates the sensitivity of the traffic management components

tuning parameters. The following criteria were used in the first three experiments:

• Average journey time TJ as a percentage of T baseJ .

• Average energy consumption EC as a percentage of Ebase
C .

The experiment set-up and assumptions common to the first three experiments

were:

• Use of Coventry scenario (see Subsection 7.1.5).

• Variable traffic flow intensity (see Section 7.1).

• Urban speed limit (15 m/s).

7.8.1 Experiment 1 - ICA sampling rate

This experiment investigates the impact of intersection control algorithm (ICA)

sampling rate on the traffic management performance.

Experiment set-up and assumptions:

• ITS vehicle penetration rate of 50% was investigated.

• Two different intersection management methods were used: ITSP and Two-Step.

Experiment:

• Sampling rate value range of TICA = [0.5, 2.5] seconds were used with 0.5

second increments.

Table 7.3: Impact of ICA sampling rate

ICA sampling rate TICA [s]
0.5 1.0 1.5 2.0 2.5

ITSP
TJ 131.9% 126.8% 130.8% 131.6% 144.3%
EC 143.9% 143.7% 140.8% 142.0% 142.3%

Two-Step
TJ 133.3% 134.0% 139.9% 144.3% 146.1%
EC 137.1% 135.6% 134.3% 138.0% 140.3%
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Results:

The simulation results are shown in Table 7.3.

• Sampling too slowly reduces the traffic management efficiency and increase

EC and TJ .

• The Two-Step method was designed to handle network transmission latency

(see Section 3.3 of Chapter 3). The additional latency incurred by low sampling

rates can be handled in a similar manner making the Two-Step less sensitive

to TICA changes than ITSP. ITSP requires timely implementation of the traffic

management decision in order to be effective.

Conclusion:

The value of TICA = 1s was selected as a good compromise solution between the

bandwidth usage and the performance of both investigated intersection management

methods. It has shown to be a good choice for both algorithms and such value was

used for all the remaining experiments in this work.

7.8.2 Experiment 2 - ITSP speed weight

This experiment investigates the impact of the speed coefficient weighting parameter

βV used in the ITSP and inherently in the Two-Step ICA. It is used by the ITSP to

determine the impact the vehicle speed has on the constructed pressure coefficient

(see Section 3.2 of Chapter 3).

Experiment:

• ITS vehicle penetration rate of 50% was investigated.

• ITSP and Two-Step intersection management methods used.

• βV = [0, 0.3] with an increment of 0.05 was investigated.

Results:

The simulation results are shown in Table 7.4.

• Under ITSP intersection control TJ increases and EC decreases with increasing
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Table 7.4: Impact of ITSP speed weighting βV

ITSP speed weight βV
0 0.05 0.1 0.15 0.2 0.25 0.3

ITSP
TJ 125.4% 126.8% 127.9% 132.2% 132.8% 139.4% 141.0%
EC 146.4% 143.7% 141.8% 141.1% 140.2% 139.7% 139.9%

Two-Step
TJ 134.7% 135.4% 131.3% 132.8% 132.6% 133.6% 135.5%
EC 136.2% 135.6% 133.6% 132.5% 132.9% 134.2% 134.2%

βV . The increase in TJ remains low for βV = [0, 0.1] and accelerates thereafter.

On the other hand the decrease of EC in this range is more significant than in

the remaining βV range.

• The Two-Step has shown to be less sensitive to the parameter change than

ITSP. This is due to the effect of IATO diminishing the incorrect choice of βV .

The best EC and TJ were achieved with βV = [0.1, 0.2].

Conclusion:

The most appropriate value of the speed coefficient weighting parameter is βV =

0.1.

7.8.3 Experiment 3 - the time headway

This experiment investigates the impact of the time headway τACC used in ACC

platooning has on EC and TJ .

Experiment:

• ACC controlled vehicles (ITS vehicle penetration rate of 0%) were investigated.

• ITSP and Two-Step intersection management methods used.

• Based on time headway investigations in [90, 94, 145] the parameter range of

τACC = [0.6, 1.2] seconds was chosen for investigation.

Results:

Table 7.5 shows that both TJ and EC increase with increasing τACC . Increase in

TJ is caused by the reduced road throughput due to increased inter vehicle gaps. An
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Table 7.5: Impact of time headway τACC

Time headway τACC
0.6 0.7 0.8 0.9 1.0 1.1 1.2

ITSP
TJ 119.3% 121.3% 122.7% 125.4% 126.8% 133.8% 143.8%
EC 136.5% 138.1% 139.1% 142.6% 143.7% 147.7% 152.9%

Two-Step
TJ 121.4% 121.8% 124.1% 128.4% 135.4% 143.9% 159.8%
EC 127.4% 127.5% 127.5% 131.0% 135.6% 138.3% 144.7%

increase in EC is observed due to increased amount of time vehicles have to stop at

traffic lights. The vehicles have to stop on traffic lights more often increasing energy

consumption.

Conclusion:

Adopting lower time headways increases traffic performance in terms of TJ and

EC . However setting the time headway too low might result in string instability

[145] and potentially hazardous situations. The experiment has led to adopting the

lowest value of τACC=1 second considered in [94]. Such value was subsequently used

with ACC platooning mechanism in all experiments conducted in this work.

7.8.4 Experiment 4 - Speed limit

This experiment evaluates the impact of the speed limit on road network throughput

with vehicles under ACC and CACC control.

Criteria:

• Intersection throughput measured in vehicles per hour.

Experiment set-up and assumptions:

• Single intersection scenario, as described in Subsection 7.1.4.

Experiment:

• ACC (0% ITS-vehicle penetration) and CACC (100% ITS-vehicle penetration)

platoons were investigated.

• Intersection management methods used: FC, ITSP and Two-Step.
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• Speed limits from 10 m/s to 30 m/s in 5 m/s increments were investigated.

Table 7.6: Speed limit impact on throughput [veh/h]

Speed limit [m/s]
10 15 20 25 30

FC
ACC 2200 2602 2804 2933 3007

CACC 2723 3355 3955 4485 4847

ITSP
ACC 2214 2615 2821 2980 3075

CACC 2616 3041 3534 4079 4633

Two-Step
ACC 2266 2646 2861 3002 3085

CACC 2635 3092 3688 4266 4788

Results:

• It was observed that with ACC platoons increasing speed limit from 10m/s

to 20m/s resulted in a throughput increase of 26% to 27% depending on the

type of ICA used. Similar results were obtained in [96] where an throughput

increase of 28% was observed.

• The advantage CACC holds over ACC in terms of throughput grows with

increasing speed limit. In the 10m/s speed limit such advantage is within

the range of 16 − 24% and in the 30m/s speed limit the advantage grows to

55− 61%, depending on the type of ICA used.

• Using CACC with the FC intersection control yielded better results than using

the adaptive intersection control techniques. This is caused by the reduced

number of traffic light switches performed by FC than by the adaptive ICA.

The FC stage length was set to be 50 seconds and the average duration of a

stage with the adaptive ICA varied from 30 to 40 seconds.

7.9 Cloud system performance

In this section the consequences communication delays incurred by using a networked,

distributed processing environment are assessed. Use of the ITS-Cloud, despite
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bringing many advantages, may introduce significant communications overheads

that can affect the traffic management performance. The communication delays in

CTMS can be divided into two categories: processing and network delays. Network

delays occur in the cloud system due to its distributed nature which requires the

nodes to communicate through a network.

Processing delays are due to the time it takes to process the data in the cloud

instead doing it locally, which also includes network transmission delays. In CTMS

each client specifies an update interval when connecting to a Sensor Service (SS),

which defines the SS sampling rate. The update interval of 500 milliseconds was

chosen to provide decent refresh rate while keeping the bandwidth usage low. This

means that on average 250ms delay is applied to each sensor reading even without

counting the network delays. Due to the same reasons the ICS run the traffic

optimisation cycle (which includes execution of ICA) in a one second interval. The

time it takes to run each optimisation cycle is negligible compared to the sampling

rate.

7.9.1 Impact of data processing latency

This experiment evaluates the impact of data processing latency in the CTMS

on the performance of traffic management.

Criteria:

• Average journey time TJ as a percentage of T baseJ .

• Average waiting time TW as a percentage of TJ .

• Average queued time TQ as a percentage of TJ .

• Average energy consumption EC as a percentage of Ebase
C .

Experiment set-up and assumptions:

• Arterial Road scenario, as described in Subsection 7.1.6.

• Variable traffic flow intensity (see Section 7.1).
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• Suburban speed limit (30 m/s).

Experiment:

• ITS vehicle penetration rates of 0% to 100% in 10% increments were investigated.

• Local and cloud versions of ITSP intersection management method were used.

– The local delay-free configuration of the TMS represents an unrealistic

absolute best (delay-wise) situation, where there are no communication

or data handling delays in the system. In this test case the traffic

management algorithm was run inside the Traffic Simulator application.

Sensor readings are accessed in real time and are time-wise accurate to

a single sample length. The communication delay between the ICA and

the traffic light controller is one sample (100ms) however there are no
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Figure 7.16: Performance comparison between a local implementation of ITSP and its
equivalent running in the CTMS.
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data handling delays and no bandwidth issues.

– The remote, cloud based, version of ITSP suffers from delays due to

transmission and remote processing latency as described in Section 7.9.

Results:

• As expected, the delay-free version of ITSP outperformed its counterpart that

used CTMS in all considered measures. It is worth keeping in mind that the

delay-free situation is not achievable in reality.

• The delays associated with CTMS data processing resulted in an TJ increase

of up to 7% T baseJ and EC increase up to 4.5% Ebase
C .

• TW and TQ were affected by up to 1.4% and 2.8% respectfully.

Conclusion:

The processing delays affecting the traffic management are noticeable but do not

reduce the performance significantly. In reality it would be impossible to implement

a delay-free intersection control that was used as the benchmark in this experiment.

7.9.2 Impact of network latency

This experiment investigates the impact of network latency on the CTMS traffic

control performance.

A wide area network (WAN) emulator netem [146] was used to simulate various

quality networks that could form the backbone of the CTMS. The primary interest

being the investigation of the impact the network latency has on the performance

of the traffic management. Besides the network delay parameters, such as expected

value and distribution of transport delay, it can simulate packet loss and many other

wide area network parameters.

In order to create an appropriate test scenario, internet latency measurements

were performed between the MIRA site and several locations worldwide using an

on-line latency measurement tool [147]. Figure 7.17 shows that the latency varies
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from 5 milliseconds to a different area in the UK to over 280 milliseconds to a server

located in China. No packet losses were observed when doing those measurements.

The experiment was conducted as follows:

Criteria:

• Average journey time TJ as a percentage of T baseJ .

• Average waiting time TW as a percentage of TJ .

• Average queued time TQ as a percentage of TJ .

• Average energy consumption EC as a percentage of Ebase
C .

Experiment set-up and assumptions:

• Arterial Road scenario, as described in Subsection 7.1.6.

• High traffic flow intensity (see Section 7.1).

• Suburban speed limit (30 m/s).

Experiment:

• ITS vehicle penetration rates of 0% to 100% in 10% increments were investigated.

Figure 7.17: Measured latency between mira.co.uk and selected destinations.
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• Three network qualities were investigated using netem:

– High quality network with low (5 ms) latency and no packet loss representing

a country-local network.

– Medium quality network with high latency (250 ms) and 1% packet loss

rate which meant to reflect conditions on a long distance link such as the

connection between the UK and China.

– Low quality network with very high latency (500 ms) and 2% packet loss

rate representing a damaged or congested data link.

Results:

• The CTMS is able to cope even with a low quality network link, however the

performance is not left unaffected.
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Figure 7.18: Impact of network quality on traffic management performance of the Two-
Step method.
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• Use of the medium quality network, compared to the high quality network,

resulted in performance degradation of TJ up to 6% T baseJ and EC up to 3%

Ebase
C .

• Similarly using the low quality network caused an increase of TJ up to 14%

T baseJ and EC up to 6% Ebase
C .

Conclusion:

In a distributed processing system such as the CTMS the quality of the network

connection is crucial to the system performance. The experiment has shown that

even though the system is capable of functioning based on low quality network links

the traffic management performance is significantly reduced.

7.10 Evaluation of complex traffic management

solutions

Previous sections investigated the performance of individual CTMS components.

The impact of parameters has been evaluated and their values established. This

section evaluates all the CTMS components working together. The main aim is to

compare the performance of the novel Two-Step traffic management technique to

the remaining traffic management techniques.

Adaptive intersection control approaches have shown to improve traffic flow

significantly. In [22] improved traffic flow for a single intersection led to a reduction

of the average delays by 11.5% and improved throughput by 0.5%. A larger road

network was modelled in [65] using cellular automata. One of the scenarios evaluated

a 4 by 4 grid similar to the Grid City scenario used in this work. The average

journey times were reduced by up to 8% in heavy traffic and 15% in the light traffic

scenario. The adaptive traffic signal control system evaluated in [29] increased the

average vehicle speed by 1.5% in the peak traffic and 6.59% in average case. The
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modelled scenario was an urban grid of 9 by 7 blocks.

The fixed cycles (FC) method is commonly used by authors [22, 23, 29, 35, 65]

to evaluate adaptive intersection management schemes. It was noted in [65] that

adaptive traffic control almost always yields better results than FC approach and

with the adaptive vehicle actuated traffic management schemes becoming mature

some authors chose them to benchmark their methods [148, 149, 150]. In this

work both approaches were adopted. The novel traffic management scheme was

benchmarked using both FC and simple adaptive, vehicle actuated scheme (ILC).

The analysis was divided into three case studies, one for each scenario. The

common features of the experiments are:

Criteria:

• Average journey time TJ as a percentage of T baseJ .

• Average waiting time TW as a percentage of TJ .

• Average queued time TQ as a percentage of TJ .

• Average energy consumption EC as a percentage of Ebase
C .

Experiment set-up and assumptions:

• ITS-vehicle penetration rate varying from 0% to 100% in 10% increment.

• Each experiment simulated two hours of traffic.

7.10.1 Coventry scenario analysis

This experiment evaluates the novel Two-Step traffic optimisation method in

a realistic urban environment modelled after a major route in Coventry, UK (see

Subsection 7.1.5).

Experiment set-up and assumptions:

• Coventry scenario, as described in Subsection 7.1.5.

• High and low traffic flow intensities (see Section 7.1).

• Urban speed limit (15 m/s).
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Experiment:

• ILC, ITSP and Two-Step intersection management methods used.

Results:

• The simulation results for the high traffic flow intensity profile are shown in

Figure 7.19. There following observations were made:

– ITSP and Two-Step outperformed the ILC method against almost every

measured criteria.

– Even without smart vehicles present ITSP registered journey times of

approximately 132% of TBaseJ (see Section 7.2), which is just 32% longer

than the best possible journey time TBaseJ on the investigated route.

– The journey time decreased in almost linear manner with the increase of

ITS vehicle concentration rate, yielding journey times close to 127% of
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Figure 7.19: Coventry scenario, high traffic density

178



7.10. Evaluation of complex traffic management solutions

TBaseJ .

– The novel Two-Step technique leads to increases in journey time between

1-3% TJ compared to ITSP. Journey times range from 134% without any

ITS-vehicles present to 129% when all of the traffic consists of ITS-vehicles.

– The ILC was outperformed by the pressure algorithms yielding journey

times varying from 144% to 137% TBaseJ , which was 10% to 12% worse

than the journey times under ITSP management.

– The best performance in terms of EC was achieved using the Two-Step

method. The greatest energy efficiency improvement rate was observed in

range of 0% to 60% ITS-vehicle concentration rates, with ITSP outperformed

by 7% and ILC by 21%. Such improvement can be largely attributed to

the IATO, as observed in Section 7.4 of this chapter.

117.0%

117.5%

118.0%

118.5%

119.0%

119.5%

120.0%

120.5%

 0% 20% 40% 60% 80% 100%

J
o

u
rn

e
y
 t

im
e

 [
%

]

Journey time TWO-STEP
ITSP

ILC

110%

115%

120%

125%

130%

135%

140%

145%

 0% 20% 40% 60% 80% 100%

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

%
] Energy consumption

5.5%

6.0%

6.5%

7.0%

7.5%

8.0%

 0% 20% 40% 60% 80% 100%

W
a

it
 t

im
e

 [
%

]

ITS vehicle penetration rate [%]

Wait time

9.0%

9.5%

10.0%

10.5%

11.0%

11.5%

12.0%

12.5%

13.0%

13.5%

14.0%

 0% 20% 40% 60% 80% 100%

Q
u

e
u

e
d

 t
im

e
 [

%
]

ITS vehicle penetration rate [%]

Queued time

Figure 7.20: Coventry scenario, low traffic density
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– It is worth remembering that both wait and queue times are presented

as a fraction of the total journey time under the given circumstances

(see Section 7.2). Figure 7.19 shows that due to the CACC platooning

waiting TW and queue TQ times decreased with increasing ITS-vehicle

penetration rates. The rate of such decrease varied depending on the ICA.

The Two-Step method reduced the waiting times the most by through

the use of the IATO.

• The results obtained using the low traffic flow intensity profile can be seen in

Figure 7.20. The observations are as follows:

– The differences between journey times were much smaller than in the

heavy traffic variant of the scenario.

– The average journey times were approximately 120% TBaseJ for the ILC,

117% TBaseJ for the ITSP and 118% TBaseJ for the Two-Step.

– It was observed that the ITS-vehicle penetration rate had little impact on

TJ . It was observed in [93] that sufficient vehicle density has to be reached

in order for the platooning to occur, therefore the benefits associated with

CACC over the traffic flow are insignificant.

– It was observed that the energy consumptionEC was similar in all evaluated

ICA in low (0-10%) ITS-vehicle penetration rates. The ILC and ITSP

algorithms are shown to produce similar results across the entire examined

ITS-vehicle penetration range.

– Due to the availability of the IATO the Two-Step method demonstrated

EC reduction over the other methods as the concentration of ITS vehicles

increased.

Conclusions:

• In both traffic intensity variants of the examined scenario it was observed

that the type of ICA is the defining factor for most of the journey time
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characteristics. The supporting technologies cooperating with ITS vehicles

being able to deliver an improvement which is relatively small in comparison.

However whilst the type of ICA still has a significant impact, supporting

technologies such as the IATO have a considerable contribution towards energy

saving.

• In this particular scenario the novel Two-Step optimisation technique was

slightly inferior, in terms of journey time, to the ITSP method it was derived

from. This was caused by the negative effect of IATO on intersection throughput

when the distances between the intersections are too short thereby preventing

the vehicles from reaching their cruising speed, see Section 7.4.

• Despite the slight disadvantage of Two-Step against ITSP in terms of journey

time, the energy savings delivered by the Two-Step method are significantly

larger than those provided by ITSP, especially in high ITS vehicle concentration

rates. The improvements associated with the Two-Step are about 10% EBase
C

in heavy traffic and 14% EBase
C in light traffic.

7.10.2 Arterial Road scenario analysis

This experiment evaluates the novel Two-Step traffic optimisation method using

the Arterial Road scenario (see Subsection 7.1.6).

Criteria:

• Average journey time TJ as a percentage of T baseJ .

• Average waiting time TW as a percentage of TJ .

• Average queued time TQ as a percentage of TJ .

• Average energy consumption EC as a percentage of Ebase
C .

Experiment set-up and assumptions:

• Arterial Road scenario, as described in Subsection 7.1.6.

• High traffic flow intensity (see Section 7.1).
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• Suburban speed limit (30 m/s).

• The stage timings for the FC algorithm were set to 32 seconds for the arterial

road and to 19 seconds for the side roads.

Experiment:

• Intersection management methods used: FC, ILC, ITSP and Two-Step.

Observations and conclusions:

The simulation results can be seen in Figure 7.21.

• The fixed cycle intersection control outperformed against every criteria the

ILC, which is an adaptive ICA. The main reason is that in congested conditions

the amounts of stage switch-overs should be minimised by using very long

signalling stages [123]. It was measured that ILC activates the arterial road
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Figure 7.21: The performance of the investigated ICA in high intensity traffic flow condi-
tions in the Arterial Road scenario.
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stages for 14 seconds on average, while FC was configured to keep those stages

active for 32 seconds.

• The frequent stage switches performed by ILC resulted in the network becoming

saturated. This revealed a vulnerability in induction loop based vehicle detection

which does not provide the vehicle speed as well as the loop occupation.

Assuming that the induction loop sensor can only count vehicles, a slow moving

line of vehicles in congested conditions can be confused with sparse traffic. The

ILC algorithm estimates the time it would take to clear the vehicle queue, and

when activating the stage it assumes that all vehicles will make it through the

intersection (see Subsection 3.1.2 of Chapter 3). Such assumption makes the

ILC vulnerable to spill-backs from downstream intersections that could prevent

the vehicles from crossing the intersection. Using just inflow induction loops

the system is unable to verify that the entire queue has been cleared.

• ITS-sensors can observe the traffic in real time and unlike induction loops

are not affected by traffic spill-backs. It is visible that the pressure based

algorithms handled such congested traffic conditions well, reducing TJ from

402% TBaseJ (FC) to 238% TBaseJ (Two-Step) and 208% TBaseJ (ITSP).

• A significant increase in energy consumption in high (above 70%) ITS-vehicle

concentration rates was observed when the traffic was governed by the CACC

platoon unaware ICA such as FC and ILC (see Table 7.1 and Figure 7.21). The

phenomenon is caused by inappropriate switching of traffic lights leading to

wasted energy in CACC platoons, see Subsection 7.3.2. Such a negative effect

can be partially mitigated by using a CACC platoon aware ICA (ITSP and

Two-Step). It is impossible however to completely avoid platoon breakup by

the intersection controller. There are situations, where a pressure based ICA

will still decide to switch cycles while a platoon is in transit. Such a situation

can occur when there is another platoon, with greater pressure (more cars,
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greater speed), approaching form an other direction. The amount of wasted

energy can however be reduced by using the Two-Step method with an IATO

mechanism to advise the vehicles of the imminent signal change.

7.10.3 Grid City scenario analysis

The Grid City is the largest and most complex scenario. Contrary to the previous

scenarios, there is no single major flow direction. There are multiple sets of journey

start-end points configured, each defining a distinct route, which can overlap and

interact with other routes in different sections of the scenario. There are several

different routes a vehicle can take to reach its destination, and with the help of

the Dynamic Routing subsystem the CTMS endeavours to improve traffic flow by

suggesting alternative routes to ITS-vehicles.

The experiment was carried out in following manner:

Experiment set-up and assumptions:

• Grid City scenario, as described in Subsection 7.1.7.

• High traffic flow intensity (see Section 7.1).

• Urban (15 m/s) and suburban (30 m/s) speed limits.

Experiment:

• FC, ILC, ITSP and Two-Step intersection management methods used.

Results:

• Figure 7.22 shows the simulation results for the Grid City scenario under heavy

traffic conditions and high speed limit. The following observations were made:

– The Two-Step management technique performed well, yielding significant

improvement in energy consumption while retaining journey time performance

of the ITSP. Similarly to previously investigated scenarios the energy

expenditure decreased with an increase of ITS vehicle penetration, however

the rate of such improvement and the range of ITS vehicle penetration
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rate was different. In all investigated ICA studies a significant improvement

in journey time and energy consumption is observed in low (0-40%) ITS

vehicle penetration rates, an effect that had not been observed in other

scenarios. This is the result of DR optimising the routes taken by the

ITS-vehicles and was examined in detail in Section 7.5 of this chapter.

– Compared to ILC, the simplest adaptive ICA considered in this work,

the combined effect of the Two-Step intersection management, ITAO,

DR and CACC platooning, has decreased energy expenditure by 37% of

the base energy consumption.

• The simulation results for the low speed limit (high traffic intensity) variant

of the examined scenario are shown in Figure 7.23. The most significant
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Figure 7.22: The performance of the investigated ICA in high intensity traffic flow condi-
tions in the suburban speed variant of the Grid City scenario.
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differences from the high speed version include:

– Smaller differences between journey times when using adaptive ICA are

caused directly by the lower speed limit. Owing to the vehicles carrying

less kinetic energy, the speed coefficient in the vehicular pressure equation

is smaller, reducing the difference between the way ILC and pressure

based algorithms work.

– An increase in energy consumption is observed in high ITS vehicle concentration

rates when using the fixed cycles intersection control. Such an effect

was observed and explained in previous scenarios, see Subsection 7.3.3,

however this time it is more pronounced with FC than with ILC.
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Figure 7.23: The performance of the investigated ICA in high intensity traffic flow condi-
tions in the urban speed variant of the Grid City scenario.
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7.10.4 Summary

This section presents a summary of the findings associated with the evaluation

of the novel Two-Step traffic optimisation method, against ITSP, ILC and FC,

using three different scenarios. Tables 7.7 and 7.8 summarise algorithm performance

against ILC with 0% ITS-vehicle penetration rate. High traffic intensity is considered

as it is more challenging and offers the most scope for improvement.

In low traffic intensities, with the exception of the Two-Step method which

significantly reduced EC , the observed differences in performance between the adaptive

traffic control methods were small (see Subsection 7.10.1).

Table 7.7: Journey time TJ summary

%ITS
Intersection control algorithm

FC ILC ITSP Two-Step

Coventry
0 -71.1% 0.0% 8.8% 7.2%
50 -57.5% 2.9% 10.7% 9.2%
100 -60.7% 4.9% 12.2% 10.2%

Grid City
0 -26.3% 0.0% 13.5% 10.7%
50 -15.6% 11.0% 19.7% 19.8%
100 -12.8% 13.8% 21.6% 22.7%

Arterial
0 10.6% 0.0% 53.8% 47.1%
50 25.6% -9.1% 62.7% 58.7%
100 28.7% 10.4% 67.2% 64.2%

Pressure based ICA (ITSP and Two-Step) outperformed the remaining intersection

management methods. ITSP has shown to be slightly better than Two-Step in

terms of TJ in two of the examined scenarios. Such outcome is expected assuming

0% ITS-vehicle concentration rates. The reason is that the Two-Step relies on

MiSPS to provide prediction of future situation image that cannot be completely

accurate, thus reducing the effectiveness of intersection management. Usually this

is compensated by the ability to use IATO, however that requires the vehicles to be

appropriately equipped.
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Furthermore it was observed that higher ITS-vehicle concentration rates do not

guarantee the Two-Step superiority over ITSP in terms of TJ . This is observed in

the Arterial and Coventry scenarios, where the intersections are close to each other

(see Section 7.4).

Table 7.8: Energy consumption EC summary

%ITS
Intersection control algorithm

FC ILC ITSP Two-Step

Coventry
0 0.6% 0.0% 8.0% 7.7%
50 14.3% 3.1% 12.6% 16.2%
100 6.3% 5.5% 13.1% 18.8%

Grid City
0 -0.2% 0.0% 7.4% 6.8%
50 4.5% 3.2% 9.0% 16.0%
100 4.5% 1.6% 10.2% 21.6%

Arterial
0 3.2% 0.0% -8.2% -8.3%
50 7.5% -1.6% -4.0% -1.1%
100 0.2% -10.5% -0.9% 9.8%

Table 7.8 summarises the investigated traffic management methods with respect

to EC .

Provided that sufficient ITS-vehicle penetration rate has been achieved, the novel

Two-Step approach has shown to be superior in terms of EC to the remaining

methods. The sufficient ITS-vehicle penetration rate varies between scenarios and

the traffic flow.

In congested traffic (Arterial Road scenario) the superior performance in terms of

TJ is offset by the significantly increase inEC observed in low ITS-vehicle concentration

rates. The EC is then driven down as the amount of ITS-vehicles increases. When

demonstrating the benefits of their traffic management approaches authors in [8, 21,

22, 23, 35, 65, 148, 149, 150] did not measure the impact of their solution on energy

consumption. It has been found in this work that in some of the cases reduction of

journey times or delays can be offset by an increased energy consumption and CO2

emissions.
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7.11 Conclusions and findings summary

This chapter has evaluated the Cloud based Traffic Management System (CTMS)

and its subcomponents using three distinct traffic network configurations. The

components of the system were evaluated both independently and in combination

with the others.

The following published findings were confirmed:

• CACC platooning:

– Provides string stability, see [96] and Subsection 7.3.1.

– Increases road throughput, see [96] and Subsection 7.3.2.

• The intersection approach optimisation mechanism has shown to improve TJ

slightly and offers significant reduction in EC , see [33, 40] and Section 7.4.

• Increasing speed limit increases road throughput, see [96] and Section 7.8.4.

• In congested traffic conditions the best performance is achieved by maximising

the stage durations, see [123] and Subsection 7.10.2.

The following new findings were made:

• The novel Two-Step traffic management approach has shown to successfully

combine the benefits of adaptive intersection control and intersection approach

optimisation. In all investigated scenarios the new method achieved similar

performance in terms of TJ to the ITSP, on which it is based on, while achieving

much greater EC savings. Combining IATO with an adaptive intersection

management scheme yielded very good results. While IATO coupled with

the FC intersection management method reduced EC by 6.4% Ebase
C from

156.4% Ebase
C (0% ITS-vehicles) to 150% Ebase

C (100% ITS-vehicles), using

the Two-Step approach reduced EC by 23.1% Ebase
C from 145.5% Ebase

C (0%

ITS-vehicles) to 122.4% Ebase
C (100% ITS-vehicles) in the same scenario (see
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Section 7.4 and Subsection 7.10.3).

• The Two-Step method relies on the existence of ITS-vehicles to perform intersection

approach optimisation and is therefore unsuitable to operate in 0% ITS-vehicle

penetration rates. While in such conditions it is still usually superior to ILC

and FC, the ITSP method is a better choice.

• The Two-Step method is beneficial in terms of EC even for low ITS-vehicle

penetration rates. In most of the investigated scenarios the Two-Step achieved

EC superiority over ITSP starting with 10% to 20% of ITS-vehicle penetration

rates (see Figures 7.19, 7.20, 7.22 and 7.23).

• Situations where the vehicles enter the IATO range, while travelling significantly

slower than the assumed speed limit, can cause a small number of vehicles (in

each signalling stage) to assume suboptimal intersection approach decreasing

TJ performance (see Section 7.4). Such situations occur in scenarios where

intersections are so close to each other that when leaving one intersection, the

vehicle enters IATO range of the next one without having achieved cruising

speed.

• The manual vehicles can also benefit from the IATO if they are forced to

follow an ITS-vehicle. In scenarios where there was no overtaking possible the

IATO has shown to be most effective with ITS-vehicle penetration rates of 30%

with very little improvement observed beyond that point (see Figure 7.12). In

scenarios where overtaking is possible the non ITS-vehicles, unaware of the

intersection approach optimisation, will overtake the ITS-vehicle optimising

its approach. In such cases the IATO EC benefits are achieved gradually, with

the best performance being achieved when all interfering non ITS-vehicles are

eliminated (see Section 7.4).

• The experiments have shown that using CACC greatly improves road throughput

and journey times, however paired with an inappropriate intersection management
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technique CACC can lead to significantly increased energy consumption. This

phenomenon, described in Subsection 7.3.3, is caused by greater kinetic energy

density in the CACC platoon compared to the ACC platoons. Use of the

inappropriate intersection management method increases the probability of

CACC platoon break-up by the traffic light resulting in increased energy losses

in vehicles that were forced to stop.

• The Arterial Road scenario analysis has demonstrated that a fixed cycle intersection

control can be the most appropriate approach in congested conditions. The

adaptive schemes aim to optimise the traffic flow based on some criteria and

identify which stage to activate. In congested traffic, where the vehicles are

queuing on all sides of the intersection, the conditions for stage activation are

similar on all approaches. In such conditions the throughput is maximised by

using long signalling stages.

• It was observed in Subsection 7.10.2 that in congested conditions the spill-backs

from downstream intersections can confuse the induction loop based ILC

intersection management method. ILC assumes that all the queued vehicles

will pass the intersection once the appropriate stage is activated for a sufficient

amount of time (see Subsection 3.1.2 of Chapter 3). The vehicle counter

associated with an induction loop is then reset. If the vehicles were unable

to clear the intersection the amount of vehicles left queued is underestimated

which leads to suboptimal intersection control.

• An interesting effect where in low ITS vehicle penetration rates smart vehicles

are separated from the vehicle stream by following DR alternative route advice.

Such filtered out ITS vehicles are much more likely to form platoons as the

probability of a non-equipped vehicle interfering is lower. This effect supports

the idea of creating dedicated lanes for ITS-vehicles, such as the CACC platoon

lanes investigated in [41].
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• The CTMS has shown to be tolerant to network delays expected to occur in

metropolitan networks. The design of the novel Two-Step method accounts

for processing delay and network latency. Large network delays will cause

reduction in the advice horizon Ha and therefore slight degradation in traffic

flow performance, however the IATO advice and the moment of traffic light

change will remain timely.

• The CTMS has demonstrated an ability to configure itself automatically for

the needs of the different traffic scenarios. The system requires static traffic

information, such as the road layout and location of sensors to be provided.

Using such information the system automatically configures the traffic management.
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Chapter 8

Conclusions and Future Work

The previous chapter evaluated the performance of the developed Cloud based

Traffic Management System using the purpose built traffic simulation tool.

This chapter concludes this work and highlights the novelties and their impacts

on future ITS traffic management and platform development. A deployment plan for

the developed system is outlined prior to discussing the limitations of the developed

techniques and possible future research directions.

8.1 Conclusions

The research presented in this thesis has focused in two main areas. The first area

addressed the issues of traffic management with the aims of reducing journey times

and energy consumption in an urban environment. This was achieved by creating

the Cloud based Traffic Management System (CTMS) that integrates novel traffic

management methods, developed in this work, with existing Intelligent Transport

Systems (ITS) techniques.

The second area of work addressed the issues of managing information obtained

from distributed data sources and challenges of distributed processing. The traffic
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management performance was further improved using increased traffic situation

awareness provided by distributed data management techniques in the novel ITS-Cloud

platform. The ITS-Cloud endeavoured to increase flexibility, scalability and reliability

of the novel urban traffic management system.

The developed traffic management methods were evaluated against two benchmarks,

namely the fixed cycle and the adaptive intersection control algorithm exploiting

traffic flow information form induction loops. By contrast to the literature the

methods and algorithms were evaluated against both journey times and energy

consumption for a fairer comparison. The benefits of the ITS-Cloud were also

assessed against the additional burden associated with network communication.

The reported incompatibility between adaptive intersection control and intersection

approach optimisation techniques has prompted the need for a new traffic management

approach. The novel Two-Step traffic management scheme was created to address

the aforementioned issue and is one of the fundamental contributions of this work.

It exploits a traffic prediction mechanism combined, using the ITS-Cloud platform,

with the ITS pressure (ITSP) adaptive intersection management algorithm to select

the most appropriate signal timing. The delayed implementation of the timing

decision enables the intersection controller to advise vehicles on the most appropriate

intersection approach trajectory. The simulation studies have shown that the novel

technique was successful in combining the benefits of two previously incompatible

approaches resulting in significant and simultaneous reduction of journey times,

energy consumption and CO2 emissions. The method relies on the presence of

ITS-vehicles appropriately equipped to receive the intersection approach instructions

regarding the most appropriate speed profile to approach the intersection. The

method was shown to be less effective than the underlying adaptive intersection

control algorithm when there are no ITS-vehicles present. However the Two-Step

method leads to significant gains even in low (20-30%) ITS-vehicle concentration
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rates.

The ITSP adaptive intersection control algorithm used in the Two-Step method

was designed based on the concept of ITS pressure. It differs from the existing

work by providing a new formulation for the vehicular pressure coefficient which

exploits information on approaching vehicle speeds and locations, obtained from the

ITS-sensors. Such information is then used to calculate the pressure and derive an

appropriate signalling stage. Such method was evaluated independently and has

shown to be successful in reducing both journey times and energy consumption

compared to the benchmark methods.

The need for scalability, reliability and self configuration capabilities has prompted

the development of a new processing platform meant for hosting traffic management

system components. The platform was called ITS-Cloud and was developed with

the purpose of hosting the CTMS and in future other ITS services. The novelty

lies with the application of cloud computing mechanisms in the field of ITS with

aim to provide the aforementioned benefits. The ITS-Cloud organises access to

sensor data by constructing situation images of traffic in the intersection vicinity.

A data integration technique is employed to construct such situation images using

information obtained from different geographically distributed data sources such

as lane sensors, V2I communication and information provided by the upstream

intersections. Furthermore the specific requirements of ITS traffic management

system prompted design and implementation of a new multi-dynamic service allocation

method for the ITS-Cloud platform. Such a method has been implemented in

the ITS-Cloud and combined the cloud and grid service allocation models. The

multi-dynamic services benefit form increased reliability provided by the service

duplication and relocation mechanisms of the ITS-Cloud.

A further contribution is the creation of a dedicated microscopic CTMS integrated

traffic simulation tool. This new tool enabled extensive and in depth studies of

195



Chapter 8. Conclusions and Future Work

different traffic networks with signalled intersections. The modelled road network

components include roads, lanes, static signs, variable message signs and wireless

communication infrastructure. Additionally it is capable of modelling behaviours

such as adaptive cruise control (ACC), cooperative ACC (CACC), lane changing,

dynamic routing and intersection approach optimisation. The probability of lane

change, following distance and accepted safety margins are different for each vehicle

and are part of the driver modelling in the simulator. The vehicle model used in

the simulator was created and validated using experimentally obtained data. The

simulator randomises the model parameters to simulate a range of different vehicles.

Sensors, VMS and wireless communication nodes were interfaced with the ITS-Cloud

interface which presented them as a cloud services. The microscopic modelling

of traffic flow enabled simulating important ITS behaviours such as cooperative

platooning or intersection approach optimisation. The nanoscopic aspect of vehicle

modelling enabled energy consumption estimations.

Finally the developed methods and algorithms were integrated within the unique

Cloud based Traffic Management System that was developed in the form of software

services and deployed on the ITS-Cloud. This novel traffic management solution

benefits form the scalability, self configuration capability, reliability and data management

capabilities of the underlying ITS-Cloud platform. It comprises four intersection

control algorithms (ICA) namely FC, ILC, ITSP and the novel Two-Step ICA. In

addition to intersection control it is capable of coordinated traffic management in

larger areas and provides dynamic routing advice.

The scalability and flexibility of the system was demonstrated in simulation

by using the system to control traffic on different road networks, using different

road, lane layouts and speed limits. In all of the cases, after being provided basic

information about the road network, the CTMS automatically configured itself and

provided the area with benefits of smart traffic management.
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A unique aspect of this work included studying multiple ITS technologies together

and evaluating their relative and combined impact on each other. The technologies

studied included adaptive intersection management, intersection approach optimisation,

cooperative platooning and dynamic routing. The individual component investigations

have confirmed the observations made in the literature. The adaptive intersection

control approaches excelled in reducing journey times and usually provided some

energy savings as well. Cooperative platooning was shown to increase road throughput

and platoon stability that contributed towards reducing journey times and energy

consumption. The intersection approach optimisation has shown to provide significant

energy savings and in some scenarios small decrease in journey times. Investigating

the ITS components together has unveiled an issue caused by the lack of cooperation

between cooperative platooning and some intersection management algorithms. A

significant increase in energy consumption and CO2 emissions was observed when a

CACC platoon is broken by an untimely signalling stage change.

There was no proprietary or licensed software or libraries used in the implementation

of CTMS, ITS-Cloud, the traffic simulator and supporting applications. All the

components were implemented in Java SE and they can be deployed on any computer

with the Java runtime environment installed.

The overall outcome of the work marks a significant milestone towards improving

urban traffic management. The developed traffic management solutions addressed

the issue by integrating existing traffic management methods with novel solutions.

The platform on which the aforementioned solutions were deployed provided scalability,

flexibility and reliability of the traffic management system as a whole.
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8.2 Deployment plan

The CTMS was designed and implemented with future commercialisation and

deployment in mind. The abstraction layer between the hardware and the traffic

management system provided by the ITS-Cloud enables different kinds of traffic

management hardware, such as lane sensors or traffic light controllers, to be integrated

with the CTMS.

8.2.1 MIRA deployment

It is planned to hold the first real world tests of CTMS on the innovITS Advance

city circuit on the MIRA premises. This state of the art test track was dedicated

to testing and validating various ITS technologies. It is equipped with various

forms of wireless communication infrastructure, traffic lights controllable through

the network, variable message signs, and induction loops on some approaches. Even

though there are no video sensing capabilities at this time, sensors referred to as

ITS sensors in this work will be emulated by equipping each vehicle on the test

track with a global navigation satellite system (GNSS) receiver and using it to track

the vehicle’s position. GNSS positioning will also be used to track the behaviour

of the vehicles and collect data which will be used to assess the traffic management

system’s performance.

The Network Assisted Vehicle (NAV) was developed for use on the innovITS

Advance test track (see Appendices F and G). Its primary purpose is ITS test

automation and it is capable of receiving and following remotely received speed

demands. It will be therefore used as what is referred to as an ITS-vehicle in this

work to demonstrate the intersection approach optimisation capability of the CTMS.

After demonstrating the system in a closed and tightly controlled environment

such as the MIRA proving ground, it is planned to deploy the system in a real city.
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8.2.2 Coventry city deployment

Coventry city was chosen as an area for potential real life demonstration of the

CTMS for multiple reasons. Close cooperation between Coventry City Council,

MIRA Ltd. and Coventry University have led to the traffic data form the existing

urban traffic management system to be made available for use in this project.

CTMS can make use of pre-existing infrastructure in Coventry. Central Coventry

is equipped with NOW Wireless Mesh 4G mesh network, which is currently mainly

used to relay estimated bus arrival times that are displayed at the bus stops within

the city. Induction loop sensors have been installed in multiple locations throughout

the city and are being used with the SCOOT traffic management system. Such

sensors are connected to the traffic management network in Coventry and simple

software wrapper will need to be created to connect them to the CTMS as sensor

services.

It is planned to equip public use vehicles such as buses, taxis and city council

vehicles with a advisory system that would inform the drivers on how should they

approach the intersection.

8.3 Limitations and future work

The CTMS in its current state is a complete and fully operational traffic management

system, however there are several areas that can be either improved or extended.

The future work and limitations are divided into four major sections related to the

traffic simulation tool, the ITS-Cloud platform, the Cloud based Traffic Management

System and urban traffic scenarios.

The current limitations and possible future improvement of the traffic simulator

includes:
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• Vehicle model extension

A simplified vehicle model is currently used (see Section 6.3 of Chapter 6).

Its design represents a trade-off between computational performance and the

amount of detail simulated. It is planned to create a more detailed model to

enable modelling of vehicle sub components with aim to capture effects such as

different road surfaces, weather conditions or the impact of traffic management

system on mechanical wear of the vehicle components.

• Emission and fuel consumption model integration

The vehicle model used in the traffic simulator can only model the energy

consumption using simplifying assumptions. It is planned to integrate fuel

consumption and emission models to be able to model the amount and type

(CO2, NOx etc.) of emission as well as the amount of fuel consumed.

• Hybrid Electric Vehicle (HEV) power train model

Hybrid electric vehicles and other means of energy saving and recovery have

become an important research area. Integrating a HEV power train model

with the traffic simulation tool would greatly extend its application area.

Benefiting from advance traffic information form CTMS a new regenerative

braking strategies could be developed and new energy management techniques

could be explored.

• Macroscopic link model

The simulator aims to provide a universal, flexible and scalable platform for

ITS traffic simulation. Using the ITS Cloud framework the simulation can be

scaled to represent very large areas on a microscopic scale (see Section 6.1 of

Chapter 6), however such level of detail is not always needed or justifiable.

It is planned to improve the current implementation of Link-Model with a

macroscopic link model that would be used to simulate long sections of road,

such as motorways between ramps.
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• Road surface simulation

While the ITS traffic simulation tool does not aim to model events such as

tyre slips and anti-lock braking systems, it does model energy consumption in

the road network. Energy consumption varies depending on the road surface,

weather conditions and elevation, all of which are not implemented in the

current version of the tool. Implementing those features would increase the

detail level of the simulation capabilities.

• Advanced road definitions

Currently roads are defined as straight links between intersections. This limits

the variety of scenarios that could be simulated. Implementing advanced road

definitions that would enable roads of any shape to be simulated would broaden

the application range of the simulation tool.

• Component failure

In order to investigate the consequences of a traffic network component failure

it is necessary to extend the simulator with a failure scripting capability.

The limitations of the ITS-Cloud platform and the areas for future improvement

include:

• Improved service allocation

The current service allocation method aims to balance the amount of services

allocated on each resource. This approach is valid as long as it is assumed

that all services consume similar amount of resources. In order to improve

load balancing in the system mechanisms such as performance indexes [151]

or auctioning [152] might be applied in future.

• Decentralised cloud management

The ITS-Cloud framework uses a central service registry to provide service

discovery and allocation capabilities. Such approach, while valid for relatively

small scale systems such as the CTMS, introduces a single failure point to the
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system and a potential performance bottleneck. In order to address that a

decentralised service discovery system could be used in future evolution of the

ITS-Cloud.

• Improved messaging format

The ITS-Cloud relies on the Java serialization mechanism to exchange information

between the services. While this approach is widely used in many networked

Java applications it might be worth investigating alternative messaging formats,

possibly using compression to reduce bandwidth requirements.

• System security

The security in the developed system was provided by means of network

isolation. In order to protect the system from malicious users more sophisticated

security measures, such as communication encryption and user authentication,

will need to be implemented before the system is deployed on a public network.

The future work in the area of to the traffic management methods includes:

• Self tuning methods

In this research various tuning parameters have either been assumed or established

experimentally. Each of those parameters should be investigated in detail

and their impact on traffic management in various conditions examined. The

use of self tuning and system identification methods would enable parameter

adjustment to adapt the behaviour of traffic management to specific conditions,

thereby maximising its performance for a wide range of conditions.

• IATO improvement

The evaluation of the IATO has revealed a weakness in the conservative

approach adopted. It can cause slight degradation of the traffic management

performance when the vehicle is restricted to reducing its speed or keeping

it constant when approaching an intersection (see Section 7.4 of Chapter

7). Further research is required to investigate acceleration profiles whilst
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approaching an intersection and the impact of other vehicles.

• Examine different CACC approaches

Throughout the literature search different approaches to CACC were identified.

All of them relied on wireless exchange of vehicle status information, however

the way vehicles acted on such information differed. In this work one of such

approaches, assuming that all the vehicles attempt to match the behaviour

of the platoon leader, was implemented and investigated in this work. It is

desirable to compare the remaining CACC approaches with the implemented

one and investigate their effect on urban traffic management.

• Extension of the MiSPS mechanism

The Micro Scale Prediction Service uses microscopic simulations to perform

short term predictions of traffic situation in intersection area. An appropriate

vehicle model is required to achieve good results. Currently only a car model

is available in MiSPS. Whilst such vehicle model was sufficient for the scope of

the simulations carried out in this work, real world deployment would warrant

the implementation of a range of vehicle models within MiSPS

• Further investigation of the Two-Step method

In the Two-Step traffic management approach, after the prediction of future

traffic situation is obtained using MiSPS, the ITSP is used to generate the

intersection management decision. While the evaluations have shown that the

ITSP performs well it might be worth investigating applications of different

adaptive traffic management methods for use with the Two-Step method.

• Variable prediction horizon for Two-Step

In the current implementation of the Two-Step method the prediction horizon

is determined during ICS configuration and remains constant thereafter. It

is speculated that adopting variable length prediction horizon could lead to

further improvement of the traffic management efficiency. In such approach
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several predictions would be made, each with different prediction horizon and

the prediction horizon with the most potential for improving traffic flow would

be selected.

The developed traffic management system and the simulator enable investigation

of other aspects of road traffic. The scenarios that could be investigated using the

developed software include:

• ITS vehicle lanes

Some publications suggest using dedicated lanes for CACC/ITS vehicles and

investigate their impact on the overall traffic performance [41]. Such a feature

could be added to the simulator without significant effort to extend its capabilities

and increase the variety of supported traffic scenarios.

• Emergency vehicle modelling

Both the simulator and CTMS can be expanded with emergency vehicle modelling

and handling. The main challenge in the simulator would be to implement the

unique manner the traffic reacts to an emergency vehicle. The CTMS would

attempt to control the traffic to minimise the time required for the emergency

vehicle to arrive at the incident scene.

• Incident response

Using the emergency vehicle modelling it would be possible to evaluate the

impact of the CTMS has on the incident response time. It would be aimed to

decrease the travel time of ambulances, fire services and the police as much as

possible.
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Appendix A

Traffic simulator application

This appendix describes the functions and the interface of the traffic simulator

application described in Chapter 6.

A.1 Scenario configuration

Before running a simulation it is necessary to configure the simulation scenario.

The simulation scenario consists of the road network definition and information on

how and where vehicles should be injected. A simple scripting format was introduced

to enable text based configuration of the simulator. Every line of the configuration

file contains a declaration of a simulation entity (see Section 6.2 of Chapter 6). Each

entity has a name which must be unique in the scope of the simulation and a list of

parameters that define its behaviour and relationship with other entities. There are

following entity definitions available:

• INTERSECTION < name >< x, y, z >< type >< parameters >

This command declares an intersection with a specified name, location, type

and parameters:

– < x, y, z > - the first parameter is the set coordinates of the intersection
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in simulated space. The height z is optional and will be set to zero if

omitted.

– < type > - the second parameter defined the type of the intersection,

currently two types are supported. T1 is the generic intersection with up

to four roads. Link defines a terminus for a Link-Model (see Section 6.8

of Chapter 6).

– < parameters > - the last parameter is a list of semicolon separated

sub-parameters that define the inner working of the intersection. The

sub-parameters are optional and can be specified in any order.

∗ < node >= Lx,Ry - the first sub-parameter defines the amount

of left turn lanes (e.g. L2 for 2 left turns) and right turn lanes

for the appropriate node. A T1 intersection has 4 nodes: A1, A2,

B1, B2. In the intersection context nodes are points where roads

can be connected (see Section 6.5 of Chapter 6). This parameter

can be specified for all four nodes of a T1 type intersection. Those

parameters are optional. If not specified the default values of one left

and one right turn will be used.

∗ < join > - the second sub-parameter defines if the turning lanes can

be shared with ahead lanes.

An example definition of an intersection is as follows:� �
INTERSECTION i s 1 50 ,50 T1 A1=L1 , R1 ; A2=L1 , R2 ; B1=L1 , R1 ; B2=L1 , R1 ; j o i n� �
This defines a T1 type intersection called is1 located at point x = 50 y = 50

z = 0 in the simulated area. There is one left and one right turn from nodes

A1, B1, and B2 and one left and two right turns from node A2. Joining of

turning and ahead lanes is permitted. The amount of ahead lanes depends

on the total amount of lanes of the road attached to the node. For example

attaching 2 lane (in one direction) road to node A1 will result in the left lane
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allowing vehicle to turn left (B1 is the left turn from A1, see Section 6.5 of

Chapter 6) and go straight (to the road linked to A2).

• ROAD< name >< startIS : Node >< endIS : Node >< lanesUp, lanesDown ><

speedLimit >

This command defines a road between two intersections. The first two parameters

specify between which intersections should the road be created and which

intersection nodes should be used. The third parameter allows specifying the

amount of lanes in each direction. The fourth parameter defines the default

speed limit on this road.

• CAR < name >< laneID >< startPosition >< initialSpeed >

This command creates a vehicle in a specified position and sets its initial

speed. Specifying a name starting with a capital letter results in creation of

an ITS-vehicle. Otherwise a normal/manual vehicle is created (see Section 6.3

of Chapter 6).

• RTPLAN < name >< listofintersections >

A route plan is a list of intersections that the vehicle should visit on its journey.

• SPRATE < name >< smoothing >< time1, rate1 > [time2, rate2][...] The

injection rate plan used with vehicle spawners defines how vehicle injection

rate varies with time. If smoothing is enabled the transitions between set

points will be done gradually. The list of parameters consists of pairs which

define vehicle injection rates and the moments of time when said rates should

be used. If smoothing option is used the injection rate will linearly change in

between the specified times. Without smoothing option the old injection rate

is replaced with the new one once the specified time passes. Each plan can be

used with multiple spawners.

• SPAWNER< name >< laneId >< location >< startingSpeed >< clearDistance ><

spawnRate >< %ITS >< routeP lan >
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This command creates a vehicle spawner that injects vehicles into the simulated

area. The parameters are as follows:

– < laneId > - The first parameter specifies the lane on which the spawner

should be placed.

– location - The second parameter is the spawner location relative to the

beginning of the lane (0 means the beginning of the lane and 100 is the

end)

– < startingSpeed > - The third parameter is the initial speed of injected

vehicles.

– < clearDistance > - The fourth parameter specifies the how far the

previously created vehicle has to move away from the spawner to allow

injection of following vehicle.

– < spawnRate > - This parameter specifies the vehicle injection rate. A

name of a previously defined variable injection plan (SPRATE) can be

provided here. alternatively a fixed injection interval can be specified.

– < %ITS > - This parameter determines the proportions between normal/manual

and ITS vehicles created by this spawner. Setting this to 100 will result

in only ITS vehicles being created. Value of 0 will cause the spawner to

create only normal vehicles.

– < routeP lan > - The final parameter is optional and allows user to

specify the path (RTPLAN) the created vehicles should follow. Normal/manual

vehicles injected by the associated vehicle spawner will follow this route

and ITS vehicles will rely on the DR mechanism (see Section 3.6 of

Chapter 3) to reach their destination.

• ILOOP < name >< laneId >< location >

This command places an induction loop at the specified location.

• ITSS < name >< laneId >< location >
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A.1. Scenario configuration

Results in an ITS-sensor being created at the specified location.

• VMS < name >< laneId >< location > [speedLimit]

Places a VMS at the desired location. Optionally an initial speed limit can be

defined.

• ALGORITHM < algotihmName >

Defines which intersection management method should be used (see Chapter

3). Available choices include:

– fc - the fixed cycle based algorithm.

– ilc - the induction loop count based intersection control algorithm.

– itsp - the ITS pressure adaptive intersection management scheme.

– 2step - the Two-Step novel intersection management method.

• REGISTRY < host : port >

Specifies the location of the ITS-Cloud SDS (see Section 4.4 of Chapter 4)..

• AREA < name >< x, y >

Defines the name for the area simulated in this scenario. This field is used by

ITS-Cloud to link areas using Link-Model.

An example of a single cross-type intersection is given below. The roads can

only be defined between intersections therefore it is necessary to define additional

intersections that define the boundaries of simulated road network. An intersection

with only one road attached to it is referred to as dummy intersection in the

simulator.� �
ALGORITHM ITSP

AREA Coventry 9834 ,5213

REGISTRY ServerName :1234

INTERSECTION middle T1 500 ,500 T1 j o i n

INTERSECTION north T1 500 ,500 T1 j o i n

INTERSECTION south T1 500 ,500 T1 j o i n
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INTERSECTION eas t l i n k 500 ,500 LM: RemoteAreaName

INTERSECTION west T1 500 ,500 j o i n

ROAD rNorth north : A1 middle : A2 2 ,2 15

ROAD rSouth south : A2 middle : A1 2 ,2 15

ROAD rEast ea s t : B1 middle : B2 2 ,2 15

ROAD rwest west : B2 middle : B1 2 ,2 15

RTPLAN routePlanEast middle ea s t

SPRATE eastSpawnRate smooth 1 ,8000 1200 ,8000 2400 ,2500 5400 ,8000

7200 ,8000

SPAWNER spEast rEas t to midd l e 0 1 30 10 eastSpawnRate 50 routePlanEast� �
Listing A.1: Example simulation configuration

A.2 Modes of operation

The traffic simulator can operate in two modes. The graphical user interface

(GUI) mode enables the user to visualise the road network and location of the

vehicles. The batch mode is designed to automatically run series of simulations

without user supervision.

A.3 Batch mode

In order to run a batch mode simulation it is required to place all the desired

scenario configuration files into a directory and invoke the simulation software as

follows:
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� �
java −j a r CTMS−SIM . j a r −C <con f i gD i r e c to ry> −r <samplingRate> −s

<amountOfSamples>� �
The software will run the specified scenarios in order and save all the results in a

subdirectory.

A.4 Graphical user interface mode

The GUI mode was meant for demonstrations and visualisation purposes. In

GUI mode the simulation is configured and run using the application’s graphical

user interface.

Figure A.1: Main traffic stimulation view
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Figure A.1 presents the main window of the traffic simulator. The rights side

is occupied by the control panel, which is always visible regardless of the currently

selected view. It allows users to start, stop and pause the simulation as well as

provides means of loading different traffic scenario configuration files.

The sampling section enables users to specify sample lengths and the amount

of samples to be simulated. It is possible to run the simulator for a undetermined

amount of samples by checking the infinite check box. In such case the simulation

will continue until explicitly stopped by the user. If real time option is chosen the

time flow in the simulation is governed by the computer’s real time clock. Real time

option has to be enabled in order to perform asynchronous distributed simulations

or when any component using ITS-Cloud platform is in use. When real time remains

unchecked the simulation will execute as fast as the host processing power allows

enabling simulating hours of traffic in few minutes.

Synchronous mode is only meaningful if the simulator is linked with other simulator

instances through ITS-Cloud. It enables event synchronisation throughout the

simulated realm which frees the components from having to use real time clock

as the time base. The simulation executes as fast as the slowest component in the

network. Event synchronisation introduces significant overheads in the network,

which in case of large simulation scenarios can make synchronous mode slower than

real time clock triggered asynchronous mode.

The options section gives users the possibility to enable or disable entity randomisation,

enable ITS-Cloud platform and switch between left and right hand traffic. Enabling

randomisation will cause parameters of various entities to be randomised to create

a varied and realistic traffic scenario. Disabling randomisation makes all vehicles

identical.

The final section of the control panel is the selection of the traffic control algorithm.
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A.4.1 Traffic simulation view

The traffic simulation view is the basic default view in the traffic simulator

application. It shows the road layout and current traffic situation in the simulated

road network fragment.

Figure A.2: Traffic simulation view

Figure A.2 illustrates an example of the traffic simulation view. The view is

equipped with sample counter informing the user of the elapsed simulation time and

zoom tools enabling viewing the simulated area in different zoom levels. An option

to disable display of entity names can be used to make the view clearer in situations

with many simulated vehicles and a dense road network. There are following views
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available:

A.4.2 Traffic simulation charts view

Figure A.3: Traffic simulation - charts

The charts view enables users to investigate current status of a selected vehicle

and whole routes as shown in Figure A.3. The top chart allows users to view

statistics of all vehicles injected by a spawner selectable from the list in the upper

left corner of the application window.

The two lower charts display the history of throttle and brake usage as well as

the current and desired speed of a vehicle selected from the list in lower left corner

of the application window.
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A.4.3 Vehicle administration view

Figure A.4 shows the vehicle administration view of the simulator. Such view is

meant for debugging purposes and allows the user to override the speed limit for

any vehicle in the simulation. This view can be used to simulate incidents or load

blocks by stopping a vehicle in a desired location.

Figure A.4: Vehicle Administration

A.4.4 Sensor view

The view presented in Figure A.5 allows the user to obtain the current readings

of any sensor in the simulation. The user selects a road from the left most list, then

a lane from the middle list and finally an individual sensor from the right most list.

The sensor reading are then displayed on the right and include:
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Figure A.5: Traffic simulation sensors

• Vehicle count - the current amount of vehicles seen by an ITS-sensor or the

amount of vehicles counted by an induction loop since the last counter reset.

• Vehicle flow - the average vehicle flow, averaged form the last 5 minutes.

• Averaged road statistics - The statistics for the road occupied by the sensor.

The average the time vehicles spent waiting and queued on this road section

as well as the average traversal time are available.

A.4.5 Options view

The options view presented in Figure A.6 allows the user to further customise

the simulation environment. It is possible to disable various forms of wireless

communications and subsystems. Disabling V2V communications will result in

CACC platooning being unavailable. Disabling V2I communication will prohibit

the simulated vehicles form benefiting from IATO and dynamic routing. Those two
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Figure A.6: Traffic simulation options

options are configurable separately as well.

The next option allows the user to override the ITS-Cloud registry setting loaded

form the scenario definition file.

Debugging options allow the user to override traffic light settings and force all to

green or red phase. The simulator can also log all the events in an OpenMicroSim

format.
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ITS-Cloud software

The CTMS and ITS-Cloud have been packaged into Java Archives (jar files) for

easy deployment. In order to obtain a functional ITS-Cloud platform it is necessary

to create an instance of the Service Discovery System (SDS, see Section 4.4 of

Chapter 4) and at least one resource (see Section 4.2 of Chapter 4). ITS-Cloud

components can be created on any software platform with Java SE platform installed.

B.1 Deployment of ITS-Cloud registry

Every CTMS/ITS-Cloud deployment requires an instance of the Service Discovery

System (SDS) to be present . The SDS can be deployed as follows:� �
java −j a r CTMS. j a r −R <port>� �

Listing B.1: Creation of SDS

It is configured to listen for requests on the defined port number, using all network

interfaces available on the host computer.
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B.2 Resource deployment

At least one resource is required to run CTMS and can be deployed as follows:� �
java −j a r CTMS. j a r −r <host : port> r e s ou r c e� �

Listing B.2: Resource creation

It is necessary to provide the resource with the network name of the computer

hosting SDS and the port number on which the service accepts requests.
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Abstract — In this paper a cloud computing based 

urban traffic control system is proposed. Its goals are to 

increase road throughput and optimise the traffic control for 

increased safety of the participants, reduced fuel consumption 

and carbon emissions. The urban vehicle control scenario 

assumes that the speed of each vehicle in the controlled area is 

set by an off-board control unit that supervises each traffic 

intersection. The software component responsible for that is 

called an Intersection Control Service (ICS). From the system’s 

point of view, the vehicles are treated as cloud services and are 

discovered and invoked using a cloud computing methodology. 

Geographical multicast addressing is used to target all vehicles 

in the specified areas. ICSs are part of a city/region wide cloud 

system that coordinates flow of traffic between intersections. 

The system’s optimisation objective is carried out on several 

planning planes simultaneously, the lowest being local to a 

single intersection and the highest being an entire city or region 

level. The ICS gathers traffic data from various sensors around 

the intersection, and from the vehicles themselves, creating a 

dynamic situation map which can be used to assess the road 

situation and perform short term predictions for vehicle 

control purposes. 

Cloud Computing Concept for Intelligent Transportation Systems 

Paweł Jaworski, Tim Edwards, Jonathan Moore, Keith Burnham
 

This item has been removed due to third party copyright. 
The unabridged version of the thesis can be viewed at the 

Lanchester Library, Coventry University.



  

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



  

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



  

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



  
This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 

Lanchester Library, Coventry University.



Appendix D

Paper - Distributed Traffic Flow

Optimisation and Control for

Intelligent Transportation Systems

243
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Transportation Systems 
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Abstract — This paper describes a microscopic traffic 

simulation tool for assessing the performance of ITS traffic and 

vehicle control systems. The scope of simulation is very broad. 

The traffic network is simulated in microscopic scale with 

nanoscopic components being available as well. The vehicles 

can be simulated down to basic physical properties including 

throttle and brake settings, fuel consumption and others. This 

allows for in-depth behavioural analysis of both individual 

vehicles and the whole traffic flow as a result of use of different 

traffic management systems. The simulator also allows 

investigating inter-vehicle interactions including platooning 

behaviour and its consequences such as the string stability 

problem. The simulator has been designed to be modular and 

easily extensible to allow for new functionality in future. 
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Paper - A Network Assisted

Vehicle for ADAS and ITS testing

The author contributed to this paper by designing and implementing the data

base system and longitudinal control algorithm for the vehicle described in the paper.
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Abstract—Rapid developments in technologies such as 
embedded devices, with increased processing capability, and 
sensor systems, with high accuracy and fast response, are 
enabling a wide range of new road traffic applications. These 
new systems and services promise significant improvements in 
areas such road safety, fuel economy and congestion 
management. In many cases the commercial deployment of 
these Advanced Driver Assistance Systems (ADAS), or 
Intelligent Transportation Systems (ITS), is no longer limited 
by just technical or economic constraints. There are ethical, 
legal or certification issues that need to be resolved for wide 
scale deployment.  

In this paper we present the Network Assisted Vehicle 
(NAV) concept. NAV is a prototype semi-autonomous vehicle 
with a modular design that can be adapted to support new 
ADAS and ITS test standards. Vehicle costs are minimized by 
making full use of existing OEM systems on the vehicle and the 
known conditions of a controlled test environment (innovITS 
ADVANCE City Circuit test facility). 
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Appendix G

Paper - Autonomous longitudinal

control for a Network Assisted

Vehicle

The author contributed to this paper by designing and implementing the data

base system and longitudinal control algorithm for the vehicle described in the paper.

Section 3 of the paper was written by the author of this thesis.

264



AVEC ’12 

Autonomous longitudinal control for a Network Assisted 

Vehicle  
  

Tim Edwards, Pawel Jaworski and Maria Loukadaki 

 
MIRA Ltd, Watling Street,  

Nuneaton, Warwickshire, CV10 0TU, UNITED KINGDOM  

 Phone: +44 24 7635 5484  

 Fax: +44 24 7635 8484  

 E-mail: tim.edwards@mira.co.uk    
  

The Network Assisted Vehicle is a semi-autonomous vehicle that is tightly integrated with the 

innovITS ADVANCE City Circuit test facility. The vehicle incorporates a low cost speed control 

system that utilizes a pre-existing adaptive cruise control system. A radio interface allows 

synchronization with an off-board control facility that can adjust the vehicle speed demand around 

other events on the track. This paper describes the design and evaluation of the both the low level 

on-board speed control system and the higher level off-board algorithm.  

  
Topics/Intelligent Transportation Systems, Semi-autonomous vehicles, Active safety testing  

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



AVEC ’12 

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



AVEC ’12 

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



AVEC ’12 

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.



AVEC ’12 

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at 
the Lanchester Library, Coventry University.


	cover1
	140623 - Pawel Jaworski FInal Thesis_Redacted
	Introduction
	Introduction and research motivation
	The aim and objectives
	The aim of the project
	Objectives

	Methodology
	Deliverables and original contributions
	Outline of approach

	Literature background
	Traffic management criteria, constraints and objectives
	Traffic management and control
	Traffic light based traffic control
	Vehicle actuated traffic control
	Vehicle detection

	Traffic modelling and simulation
	Macroscopic traffic models and simulators
	Microscopic traffic modelling and simulation

	Vehicle control methods
	Longitudinal control
	Lateral control

	Communication methods in the vehicular environment
	Networking in vehicular environment

	Distributed processing and its applications
	Discussion
	Conclusion

	Traffic Management Methods
	Benchmark algorithms
	Algorithm 1: Fixed cycles intersection control algorithm
	Algorithm 2: ILC intersection control algorithm

	ITS Pressure intersection control algorithm
	The Two-Step Traffic Optimisation Method
	Intersection Approach Trajectory Optimisation
	The Two-Step process illustration
	Dynamic routing
	Conclusions

	The ITS-Cloud platform
	The ITS-Cloud platform
	Service types
	Multi-dynamic service allocation
	Service discovery and deployment
	Service discovery
	Service deployment
	Service migration and duplication

	Reliability, fault tolerance and redundancy
	The cloud interface and user interaction
	Messaging
	Conclusions

	The Cloud based Traffic Management System (CTMS)
	CTMS overview
	Approach to traffic management
	Creation of a situation image
	Meso Scale Prediction Service
	Micro Scale Prediction Service
	Intersection Control
	Intersection Approach Trajectory Optimisation
	Failure modes
	Conclusions

	The traffic simulator
	Goals of the simulator
	Simulator design
	Vehicle simulation
	Vehicle dynamics - longitudinal behaviour
	Vehicle dynamics - longitudinal model tuning
	Vehicle speed control
	Lane changing - lateral behaviour
	Vehicle following (Platooning)
	Cooperative platooning
	Off-board speed advice
	Driver modelling

	Simulation of wireless communication
	Road network simulation
	Road simulation
	Intersection simulation
	Infrastructure simulation

	Defining simulation scenarios
	Gathering simulation data
	ITS-Cloud integration
	Conclusions

	Simulation studies
	Simulation set-up and scenarios
	ITS-Cloud platform
	Urban areas
	Long corridor
	Single intersection scenario
	Coventry scenario
	Arterial road scenario
	Grid City scenario

	Result quantification
	Cooperative platooning evaluation
	Experiment 1 - freeway
	Experiment 2 - Intersection clear time
	Experiment 3 - Impact of traffic lights
	Experiment 4 - Impact on journey times in urban environment

	Intersection Approach Trajectory Optimisation
	Dynamic routing
	The Micro Scale Prediction Service
	The Meso Scale Prediction Service
	Parameter sensitivity
	Experiment 1 - ICA sampling rate
	Experiment 2 - ITSP speed weight
	Experiment 3 - the time headway
	Experiment 4 - Speed limit

	Cloud system performance
	Impact of data processing latency
	Impact of network latency

	Evaluation of complex traffic management solutions
	Coventry scenario analysis
	Arterial Road scenario analysis
	Grid City scenario analysis
	Summary

	Conclusions and findings summary

	Conclusions and Future Work
	Conclusions
	Deployment plan
	MIRA deployment
	Coventry city deployment

	Limitations and future work

	References
	Appendices
	Traffic simulator application
	Scenario configuration
	Modes of operation
	Batch mode
	Graphical user interface mode
	Traffic simulation view
	Traffic simulation charts view
	Vehicle administration view
	Sensor view
	Options view


	ITS-Cloud software
	Deployment of ITS-Cloud registry
	Resource deployment

	Paper - Cloud Computing Concept for Intelligent Transportation Systems
	Paper - Distributed Traffic Flow Optimisation and Control for Intelligent Transportation Systems
	Paper - Microscopic Traffic Simulation Tool for Intelligent Transportation Systems
	Paper - A Network Assisted Vehicle for ADAS and ITS testing
	Paper - Autonomous longitudinal control for a Network Assisted Vehicle




