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Abstract

Slow and suspicious malicious activities on modern computer networks

are increasingly hard to detect. An attacker may take days, weeks or

months to complete an attack life cycle. A particular challenge is to

monitor for stealthy attempts deliberately designed to stay beneath

detection thresholds. This doctoral research presents a theoretical

framework for effective monitoring of such activities. The main con-

tribution of this work is a scalable monitoring scheme proposed in a

Bayesian framework, which allows for detection of multiple attackers

by setting a threshold using the Grubbs’ test. Second contribution

is a tracing algorithm for such attacks. Network paths from a victim

to its immediate visible hops are mapped and profiled in a Bayesian

framework and the highest scored path is prioritised for monitoring.

Third contribution explores an approach to minimise data collection

by employing traffic sampling. The traffic is sampled using the strat-

ification sampling technique with optimum allocation method. Using

a 10% sampling rate was sufficient to detect simulated attackers, and

some network parameters affected on sampling error. Final contri-

bution is a target-centric monitoring scheme to detect nodes under

attack. Target-centric approach is quicker to detect stealthy attacks

and has potential to detect collusion as it completely independent

from source information. Experiments are carried out in a simulated

environment using the network simulator NS3. Anomalous traffic is

generated along with normal traffic within and between networks us-

ing a Poisson arrival model. Our work addresses a key problem of

network security monitoring: a scalable monitoring scheme for slow

and suspicious activities. State size, in terms of a node score, is a

small multiple of number of nodes in the network and hence storage

is feasible for very large scale networks.
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Chapter 1

Introduction

It has been estimated that the number of intrusion attempts over the entire Inter-

net was in the order of 25 billion per day in year 2003 (Yegneswaran et al., 2003)

and continues to increase (McHugh, 2001). While methods and technologies for

securing networks against intruders continue to evolve, system penetration at-

tempts continue to occur and go unnoticed until it is too late. This is due to a

variety of reasons including attackers continue to find novel and more sophisti-

cated techniques to breach the systems and the size and complexity of networks

is ever increasing (Patcha & Park, 2007; Yegneswaran et al., 2003).

Launching slow rates attack is one of such sophisticated techniques used by

skilful attackers to avoid detection. This allows for malicious activity to blend

into the network as noise to never exceed detection thresholds and to exhaust the

detection system state. The focus of this thesis is monitoring for slow attacks

that occur over longer periods of time and which are difficult to detect using

conventional detection methods largely developed for rapid attacks.

1.1 Motivation and main goals

Slow, suspicious and increasingly sophisticated malicious activities on modern

networks are incredibly hard to detect. An attacker may take days, weeks or

months to complete the attack life cycle against the target host. A particular

challenge is to monitor for such attempts deliberately designed to stay beneath
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detection thresholds. Attacker tactics such as source collusion and source address

spoofing are common, and tools and techniques to launch such attacks are widely

available (Hackers, 2013; Mullins, 2013). The aim of our study is to establish

a theoretical framework for an effective monitoring scheme for slow suspicious

activities. The research objectives of the study can be broken down to following:

1. How to effectively detect the sources of slow suspicious activities?

The main goal is to establish a scalable method for detecting sources of

such activities. A review of different possible methods and particularly an

investigation of whether a Bayesian approach is feasible to achieve this is

performed.

2. Can sampling techniques be employed to provide a lightweight monitoring

scheme?

Traffic volumes will continue to increase and huge volumes of traffic may

consume more resources of the monitoring infrastructures. This makes it

ever more difficult to provide lightweight schemes for near-real time moni-

toring. We investigate the feasibility of reducing the traffic volume needed

to be analysed by the proposed algorithm without degrading the quality of

detections.

3. How to effectively detect the target of slow suspicious activities?

The use of botnets and distributed attack sources make it very difficult to

attribute attacks. We investigate methods to profile such targets instead of

sources of activities to overcome source collusion.

1.2 Scope of the study

The main purpose of this work is to develop a conceptual framework for a pos-

sible solution for this critical problem. Our approach should be considered as

complementary to current intrusion detection deployments. It will serve as an

early warning system for slow suspicious activities over networks that warrant

further investigations.

2



1.2.1 Terminology

Slow activity - if any attack activity is not alarmed by existing methods only due

to stretching its steps over longer times, then it is identified as a slow activity for

this study.

Node - anything in terms of identities which can be a user, machine, account

number or a location (physical or virtual), essentially a source or a destination

point of a potential attack.

Suspicious event - any type of user activities that can be triggered by existing

IDSs techniques are considered as suspicious events for this study. Sending a

connection request to a node which is not in the network and entering incorrect

user-name/password are just two examples for such an event.

Scalability - ability of a computer system to continue to function well when its

context is changed in size or volume.

1.3 Thesis outline

The rest of the thesis is organised as follows. Chapter 2 provides an overview of

intrusion detection in computer systems, and explains why typical methods for

intrusion detections cannot be employed in slow activity monitoring. It reviews

the incremental anomaly detection and visualisation techniques which is used

as a data reduction method for anomaly detection. An introduction to IDSs

evaluation datasets and techniques are also provided.

Chapter 3 proposes a novel algorithm for slow activity monitoring. The main

problem is broken down into two sub problems, and each sub problem is addressed

separately. This chapter identifies Bayesian approach as a method for information

fusion to address the problem, and examines the effectiveness of such an approach

under different network conditions: multiple attackers, traffic volume and subnet

configuration. Theoretical account of the approach and detailed discussions of

experimental results are provided. The main contribution of this chapter is a

novel algorithm for slow activity monitoring.

Chapter 4 discusses the attribution problem, and provides an anomaly based

adaptive method for tracing down the sources of slow suspicious activities in com-

3



puter networks. A theoretical account of the approach and experimental results

are provided. The main contribution of this chapter is the tracing algorithm.

Chapter 5 examines the feasibility of employing traffic sampling with our

monitoring algorithm as a method of data reduction without degrading the quality

of detection. A study of how the design of the network affects on sampling error

is also presented.

Chapter 6 presents a target-centric monitoring scheme which utilises destina-

tion information of activities disregarding its logic source. The purpose of this

chapter is to convey the core principle.

Finally, Chapter 7 summarises the main contributions of this thesis, presents

concluding remarks and ideas for further research.
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Chapter 2

Background

This chapter explores the literature on network security monitoring, and explains

why typical monitoring methods cannot be employed in slow activity monitoring.

2.1 Intrusion detection

Computer security threats have been comprehensively studied since the seminal

report written by Anderson (1980). Host based and network based are a typical

classification of IDSs based on the monitoring location. Signature (misuse) detec-

tion and anomaly detection are the two main common classifications of intrusion

detections based on the detection technique employed.

A host based IDS will monitor resources such as system logs, file systems

and disk resources; whereas a network based system monitors the data passing

through a network. Host based systems are incapable of detecting distributed

and coordinated attacks. Network based systems aim at protecting the entire

networks against intrusions by monitoring the network traffic either on designed

hosts or specific sensors and thus can protect simultaneously a large number of

computers running different operating systems against remote attacks such as

distributed denial of service attacks, propagation of computer worms (Tavallaee

et al., 2008).

Signature detection systems try to find attack signatures in the monitored

resource. Encoding the knowledge about patterns in the data flow (i.e. in form
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of specific signatures) is the aim of signature detection. Most attacks leave a

set of signatures in audit trails (or in network packets) is a common belief of

this approach. Signature based IDSs exploit signatures of known attacks. Hence

attacks are detectable only if these signatures can be identified by analysing the

audit trails (Tavallaee et al., 2008). Such systems require frequent updates of

signatures for known attacks. Detecting known attacks with lower false alarm

rates is a significant advantage of this approach. However, if signatures are not

available or unknown (with newer or unknown attacks) then this approach is

failed.

In contrast, addressing the weaknesses of signature detection (Tavallaee et al.,

2008), the concept of anomaly detection was formalized in the seminal report writ-

ten by Denning (1987). Anomaly detection systems typically rely on knowledge

of normal behaviour. When the actual system behaviour deviates from the nor-

mal profiles in the system an anomaly is flagged. This anomaly could be because

of either innocent or threat event in the system (see sections 2.1.1 and 3.3.1.1).

Though existing anomaly based IDSs can be employed in finding and preventing

known as well as unknown (zero day) attacks, they have many shortcomings such

as high rate of false alarms, and are failure to scale up to gigabyte speeds (Patcha

& Park, 2007). A structured and comprehensive survey on network security tools

and systems which are useful for security researchers can be found in (Hoque

et al., 2013). Hoque et al. classify existing tools, including information gathering

and launching tools, and provide an analysis of their capabilities. A comparison

among different Network IDSs is also provided in the same report.

2.1.1 Evidential scenario

Computer systems are dynamic systems having many components such as servers,

clients, routers, switches, firewalls and IDSs. At each time interval, these com-

ponents produce large amount of event based data which, in principle, can be

collected and used for security analysis. The signature elements of an attack is

scattered spatially and temporally, and often embedded within the totality of

events of the distributed systems. This evidence distribution can be depicted as

in Figure 2.1, and has following characteristics.

6



Figure 2.1: Evidential scenario. si - information source i, ti - time point i, oi -
observation i, ni - node i.

• Two dimensional event distribution: temporal and spatial.

• Four possible types of events:

Malicious - events occurred certainly due to an intrusion attempt (rep-

resented by red diamonds in Figure 2.1).

Innocent - events occurred certainly due to a legitimate activity (rep-

resented by green diamonds in Figure 2.1). Hence monitoring systems

will not report them.

Suspicious - events occurred due to either a malicious attempt or a

legitimate activity. They can be considered as either red or green

diamonds based on the motivation behind the activity. Events such

as an execution of cmd.exe, a multiple loging failure attempts, an

overwhelming number of ICMP unreachable messages are examples

for such events.

Not reported - events occurred as a part of malicious attempt, but not

reported by the monitoring system due to its incapability to detect

and alert them.

• Source anonymity: The exact origin of the event (who did that?) is not

always certain.
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As mentioned above, every suspicious event alerted by a monitoring system

cannot be treated certainly as a part of malicious attempt. For example, a ma-

jor router failure could generate many ICMP unreachable messages while some

viruses and worms (e.g. CodeRed and Nimda) generate the same in probing

process. By just looking at such an event you cannot simply judge its motiva-

tion that it is a part of malicious attempt or not. This uncertainty which we

called Motivation needs to be acknowledged. Our approach in Chapter 3 for slow

attack monitoring is capable of acknowledging this.

There is no guarantee on publicly visible source of an event is to be the true

source. For example, employing various proxy methods and zombie nodes (e.g.

bots), manipulation of TCP/IP elements (e.g. IP Spoofing), using random rout-

ing or even proliferation of weakly encrypted wireless networks let an attacker to

be anonymous. Hence source oriented monitoring schemes are often vulnerable to

this Source uncertainty. Chapter 6 proposes an alternative monitoring approach

to overcome this.

2.1.2 Signature elements

In order to identify a trace of an attack, an efficient correlation algorithm is an

essential. For example, let {S1, S2, S3, ..., Sn} is a sequence of signature elements

which characterises a multi step attack M. In order to detect M within a given

dataset (a trace), the detector should be able to observe the same sequence (or

an acceptable level of similar pattern of Sis) within the dataset. That recognition

is not easy as it looks like as Sis will not come into the scene as a consecutive

sequence, one after other according to the same manner defined in the signature

definition database.

Signature elements are randomly distributed, spatially and temporally, among

other types of events mentioned above. Like other pattern recognition problems,

an attack scenario signature (a pattern of signature elements which uniquely de-

scribes the attack) is needed to distinguish a given attack (say A) from other

attacks (B and C ) and from normal network activities (see Figure 2.1). With

large amount of event data, the critical challenge is how to correlate these events

(Ois) across observation space and time to detect and track various attack sce-
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narios such as A, B and C. The detection accuracy relies on the accuracy of

scenario signature as well as the accuracy of event correlation (Jiang & Cybenko,

2004). Defining scenario signature is possible for known attacks, but for unknown

attacks it is impossible.

2.1.3 Holding event data

State full security devices such as firewalls and routers are capable of maintaining

the history of events for security purposes, but limited to a very short history,

usually for few minutes back from the present state (Sheth & Thakker, 2011;

Wool, 2006). After that specific time period the information is discarded for

using the limited storage space for capturing most recent events. Hence holding

event data for very long times (i.e. for larger observation windows) is impossible

due to the current computational constraints.

On the other hand it is unknown in advance that how long a particular sus-

picious event to be retained to correlate with proceeding events occurred. For

example, in order to detect attack M above, it is needed to hold all the event data

until it recognises the complete sequence of signature elements s1, s2, s3, ..., sn. If

the time gap between emergence of s1 and sn (event horizon) was few days, weeks

or even months the problem getting only into its worst case, especially, in a high

volume high speed environments. For example, capturing complete traffic with

just a 512 kbps connection which is operating at a 50% of average utilization rate

would end up with a 2.7GB in a day. Obviously it is impossible to store complete

data of a modern enterprise network for analysis over a long time period.

As a solution, often monitoring systems simply log the history of connec-

tion information neglecting other traffic data such as the packet payloads. Al-

though this reduces significantly the amount of data recorded, it will still re-

sult in thousands of log entries per day which is an unmanageable amount for

a network professional to read line by line (van Riel & Irwin, 2006b). As de-

scribed in the Cisco’s Security Information Event Management (SIEM) deploy-

ment guide (CSIEM, 2013), managing the sheer volume of raw logs and events

gathered from various devices and applications throughout the enterprise can be

a very costly effort in terms of time, bandwidth and computational resources,
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and therefore organizations need a unified view of the state of network security

in a single dashboard.

2.2 Slow attacks

It is essential to exploit more evidence (signature elements) from large number

of network events to get better detection accuracy for some attacks while other

attacks can be detected using a single packet or a connection (Jiang & Cybenko,

2004; Lazarevic et al., 2003). Often, network based intrusions signatures are

state-full and usually require several pieces of data to match an attack signature.

If the length of the event horizon (time amount from the initial data piece to

the final data piece needed to complete the attack signature) is longer, IDSs

cannot maintain state information indefinitely without eventually running out

of resources. This helps slow attackers to hide behind noise and other traffic.

Most current approaches do not track activity over an extended period of time

due to computational constraints and disk storage requirements. In order to

avoid detection, an attacker can stretch her attack attempts (distribute signature

elements) across temporal or/and spatial spaces.

An attack which stretches deliberately its steps (events) over temporal space

is defined as a slow attack for this work while an attack which stretches its steps

over spatial space is defined as a distributed attack. If an attack distributed its

signature elements over both dimensions then it is known as a slow distributed

attack. To best of our knowledge, there is no clear boundary to distinguish

slow attacks from typical rapid attacks based on the temporal aspects of attack

life cycle. Any suspicious attempt which is deliberately operated slowly to stay

beneath the detection threshold is identified as a slow event for this study. A

combination of such events that is sufficient to complete an attack life cycle form

a slow attack. A node used to launch such attack is known as a slow attacker in

this work.

As mentioned above for detection of typical attack types the IDSs consider

the event stream as a function of time and use signature or anomaly based meth-

ods against the event flow. This is usually not an issue when the progression of

attack events is rapid. Most current IDSs are capable of doing this with signifi-
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cant performances as traditional attackers relied more on rapid attacks. However

increasingly nowadays attackers are trying to remain undetected and to steal

information over and over again, adopting a much more patient type of struc-

ture to compromise a network. An attacker may take days, weeks or months to

complete the attack life cycle against the target host. Attacks may blend into

the network noise in order to never exceed detection thresholds and to exhaust

detection system state. Therefore, as computer networks scale up in terms of

number of nodes and volume of traffic analysing slow attack activities, delib-

erately designed to stay beneath thresholds, becomes ever more difficult using

typical methods designed for rapid attack detections. Appendix A includes a real

world simple attack scenario which can hide beneath thresholds by means of slow

activity rates. When a slow attack is progressing, scarcity of attack data within a

short period of time allows an attacker to avoid detection. For example Hackers

(2013); Mullins (2013) present tools and technique to perform such attacks. Ad-

vanced Persistent Threats (APTs) is an example threat model for a slow attack.

This thesis focuses on slow attacks only. All other types of attacks are beyond

the scope of this study.

2.2.1 Advanced persistent threat

Advanced Persistent Threats (APTs) require a high degree of stealthiness over a

prolonged duration of operation in order to be successful. Therefore compromised

systems continue to be of service even after key systems have been breached and

initial goals reached (DAMBALLA, 2013).

Advanced - Criminal operators behind the threat utilize the full spectrum of

computer intrusion technologies and techniques. They combine multiple attack

methodologies and tools in order to reach and compromise their target.

Persistent - Criminal operators give priority to a specific task, rather than oppor-

tunistically seeking immediate financial gain. The attack is conducted through

continuous monitoring and interaction in order to achieve the defined objectives.

A “low-and-slow” approach is usually more successful.

Threat - means that there is a level of coordinated human involvement in the

attack, rather than a mindless and automated piece of code. The criminal op-
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erators have a specific objective and are skilled, motivated, organized and well

funded.

2.3 Anomaly detection

Intrusions detection can be performed based on information collected from com-

puter systems. An intrusion is different from the normal behaviour of the system,

and hence anomaly detection techniques are applicable in intrusion detection do-

main (Chandola et al., 2009). This has been formulated in (Giacinto & Roli,

2002) as a pattern recognition problem. Finding nonconforming patterns or be-

haviours in data is referred as anomaly detection. Anomalies, outliers, discordant

observations, exceptions, aberrations, surprises, peculiarities or contaminants are

various terms used in different application domains to denote these patterns. In-

trusive activity is always a subset of anomalous activity is the ordinary belief of

this idea (Delooze & Kalita, 2006; Patcha & Park, 2007). The key challenge for

anomaly detection in this domain is the huge volume of data, typically comes in

a streaming fashion, thereby requiring on-line analysis. The anomaly detection

techniques need to be computationally efficient to handle these large sized inputs.

When there is an intruder who has no idea of the legitimate user’s activity pat-

terns, the probability that the intruder’s activity is detected as anomalous is high.

There are four possibilities with none zero probabilities that can be happened in

such a situation (Bhuyan et al., 2011):

• Intrusive but not anomalous: The detection system may fail to detect this

type of activity since the activity is not anomalous. This is known as a

false negative because it falsely reports the absence of an intrusion when

there is one.

• Not intrusive but anomalous: The detection system reports an activity as

intrusive, when it is not, since it produces an anomaly. This is known

as a false positive because an intrusion detection system falsely reports

intrusions.

• Not intrusive and not anomalous: These are true negatives; the activity is not

12



intrusive and should not be reported as intrusive.

• Intrusive and anomalous: These are true positives; the activity is intrusive and

should be reported as such.

Good detection systems should always try to reduce the probability of occur-

ring false positives and false negatives while trying to increase the probability of

true negative and true positives. Since the data amounts to millions of data ob-

jects, a few percent of false alarms can make analysis overwhelming for an analyst.

But it is very challenging in network security monitoring to achieve lesser false

alarms, due to the nature of anomalies keeps changing over time as the intruders

adapt their network attacks to evade the existing intrusion detection solutions.

Clustering Based, Information Theoretic, Neural Networks, Nearest Neigh-

bour based, Rule-based Systems, Spectral Analysis, Statistical (parametric and

non-parametric) are examples of anomaly detection techniques used for network

intrusion detections (Chandola et al., 2009). Since late 90’s, a significant number

of anomaly based intrusion detection approaches have been proposed, but lot of

them are general in nature and quite simple (Patcha & Park, 2007; Spafford &

Kumar, 1994; Chandola et al., 2009). Only a few of them are incremental ap-

proaches which could be useful in evidence accumulation, but are not scalable.

An incremental approach updates profiles dynamically incorporating new profiles

as it encounters them (Bhuyan et al., 2011). Bhuyan et al. (2011) is an exhaustive

survey of incremental anomaly detection approaches which concludes that most

current approaches have high rate of false alarms, are non-scalable, and are not

suitable for deployment in high-speed networks.

Supervised, semi-supervised and unsupervised are three possible types of

anomaly detection methods. This classification is based on availability of data

labels. Techniques that operate in supervised mode assume that availability of

a training data set which has labelled instances for normal as well as anomaly

classes. Semi-supervised mode depends on a training data which has labelled

instances only for the normal class while unsupervised mode not requiring any

training data. Published works for each of these three types are available. Get-

ting a labelled set of anomalous data instances that covers all possible type of

anomalous behaviour is more difficult in this domain than getting labels for nor-
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mal behaviour (Chandola et al., 2009). Both normal and anomalous behaviour

are often dynamic (e.g. new types of anomalies might arise for which there is no

labelled training data), and hence unsupervised mode (or semi-supervised mode

running in unsupervised mode) is encouraged and widely acceptable in this do-

main (Chandola et al., 2009). Our proposed anomaly detection approach in this

thesis is unsupervised. Therefore discussions on supervised and semi-supervised

approaches are excluded from this section, and interesting readers are invited to

refer (Chandola et al., 2009).

As mentioned above our work is an unsupervised incremental approach which

does not require training data. Most existing unsupervised anomaly detection ap-

proaches are clustering based (Bhuyan et al., 2011; Hsu & Huang, 2008; Zhong &

Li, 2008a), a technique uses to group similar objects, and packet based clustering

is used as the means of detection. Clustering plays a vital role in analysing data

in detection of anomalies by identifying various groups as either belonging to nor-

mal or to anomalous categories. Most commonly used clustering techniques are:

partitioning-based (Ren et al., 2008), hierarchical (Zhong & Li, 2008b), density-

based (Burbeck & Nadjm-Tehrani, 2007), and grid-based techniques. The pro-

posed approach in this thesis does not use clustering as the means of detection.

Clustering is quite difficult when dealing with mixed data observed from differ-

ent types of observation spaces (multivariate) (Hsu & Huang, 2008; Zhong & Li,

2008a). Usually clustering methods partition the dataset into two or more clus-

ters and then label each clusters as normal or anomalous. Obtaining accurate

and representative labels are challenging in this domain (Bhuyan et al., 2011).

Further, as described in (Chandola et al., 2009) though testing phase is usually

fast in clustering based methods, the computational complexity for clustering

the data often forms bottlenecks, especially when O(N2d) clustering algorithms

are used. Many techniques detect anomalies as a by-product of clustering, and

hence are not optimized for anomaly detection. Therefore existing clustering

based approaches are not scalable and not fitted with slow activity detection,

and hence excluded from this discussion. A comprehensive overview of the re-

search on anomaly detections can be found in (Chandola et al., 2009). Bhuyan

et al. (2011) is a comprehensive survey on incremental anomaly detection tech-

niques which concludes that incremental approaches reduce memory utilization,
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are faster, exhibit higher detection rate, and improve real time performance.

2.3.1 Incremental approaches

Chivers et al. (2009, 2013) provide a scalable solution for insider detection in a

Bayesian framework by maintaining incremental node scores for each node in the

network. All nodes, in fact origin of activities, in the network are profiled by the

time and distinguished between anomaly and normal behaviours by setting a con-

trol (baseline). If the cumulative node score (i.e. node scores accumulated over

the time) of a particular node is deviated from the predefined control, an anomaly

is declared and that node is identified as a slow suspicious insider. The major

drawback of this approach is setting a predefined control as the baseline. Setting

predefined controls is very challenging in network security monitoring. As de-

scribed in section 3.3.3.1, in a network scenario, normal behaviour keeps evolving

and a current notion of normal behaviour might not be sufficiently representative

in the future.

Kandias et al. (2010) combine tools and techniques of computer science and

psychology for insider threat prediction. Real time user’s technological traits (i.e.

usage information) are integrated with data obtained from psychometric tests (i.e.

user characteristics) to profile users, and hence to analyse their misbehaviours.

Kandias et al.’s model combines the above information, categorizes users, and

identifies those that require additional monitoring as they can potentially be

dangerous for the organization as insiders.

Greitzer et al. (2009) is a similar work to (Kandias et al., 2010). It provides a

research framework for testing hypothesises for insider threats by integrating em-

ployee data with traditional cyber security audit data. Their approach is based

on pattern recognition and model-based reasoning. Reasoner is the pattern recog-

nition component which analyses the large amount of noisy data to distinguish

variations from norms. Data is processed using a dynamic Bayesian network

which calculates belief levels assigned to indicators and assessed the current in-

dicators with the combination of previously assessed indicators to determine the

likelihood of behaviours that represent threats. Probabilities are assigned for the

Reasoner through expert knowledge. Authors have chosen simulation method to
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evaluate the proposed approach realising the difficulty to find real cases in this

domain. However this study has limited its focus on predicting individual em-

ployee’s (human) behaviour rather than node behaviours in computer networks.

The interesting idea proposed in (Kandias et al., 2010; Greitzer et al., 2009)

is to incorporate wider range of information into the monitoring which we believe

very important. This idea increasingly becomes popular among security commu-

nity (Davidoff & Ham, 2012). Kandias et al.; Greitzer et al. propose to combine

some features of technical solutions (e.g. system call alerts, intrusion detection

system alerts, honey pot, systems logs, etc) with data drawn from psychomet-

ric tests (e.g. predisposition, stress level, etc). However, including psychometric

tests data is possible in principle, but in practice determining sources of events

and their degrees of potential (i.e. characteristics) is the real challenge. Deter-

mining the source of event is not straightforward as attackers usually use various

methods for getting anonymous. We discuss the anonymity problem, a critical

research area in this domain in Chapter 4. When addressing non human threats

these approaches may face difficulties due to the psychological profiling compo-

nents. Hence they are highly organisational dependent, and expertise knowledge

is needed to fine-tune the model in order to fit with new environments. Impor-

tantly those approaches are not scalable as when the operating environment is

changed, the model needs to rebuild.

Eberle et al. (2010) is a graph-based anomaly detection (GBAD) systems

which discovers anomalous instances of structural patterns in data that represent

entities, relationships and actions. GBAD is applied to datasets that represent

the flow of information between entities, as well as the actions that take place on

the information. Authors claim GBAD can be applied to tackle several security

concerns including identifying violation of system security policies and differenti-

ating suspected nasty behaviour from normal behaviour. The graph substructures

are analysed for discovering three types of graph-based anomalies: modifications,

insertions and deletions. The Minimum description length heuristic is used to

discover the best substructure of the given graph and, for anomalous modifica-

tions, cost of transformation and frequency values for all of the instances of that

substructure are calculated using an inexact matching algorithm. These values

are used to distinguish the anomalies pattern from the normative patterns. For
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anomalous insertions, all extensions (instead of all instances) to the normative

pattern are examined probabilistically to determine if there is an instance that

extended beyond its normative structure. For anomalous graph deletions, all

of the instances of ancestral substructures are examined and transformation cost

and frequency are calculated. Hence anomaly patterns are distinguished from the

normative patterns. Proposed approach has tested against Enron e-mail dataset,

a sample of cell-phone traffic and simulated order-processing model using OM-

NeT++. Authors have acknowledged the need of improvement to the GBAD

system by reducing the time spent for main computational bottleneck. Hence

proposed approach is not suitable for real time monitoring, specially for high vol-

umes and high speeds environments. Obviously when the data set is huge graph

based approaches face difficulties.

As mentioned in (Tavallaee et al., 2008), though machine learning techniques

can be employed on detecting network anomalies, they are faced with problems.

Leaning algorithms are failed in this domain due to the behavioural non-similarity

in training and testing data. But, signal processing techniques can be successfully

applied. Hence, a novel covariance matrix based approach is proposed in (Taval-

laee et al., 2008) for detecting network anomalies using the correlation between

groups of network traffic samples. The signs in the covariance matrix of a group

of sequential samples is compared against the training (normal) data, and the

number of differences is counted to compare it with a specified threshold. The

major drawback of this approach, as of many supervised approaches, is depending

on predefined normal behaviours through training datasets. Defining normality

in advanced is a challenge as characteristics of normality is not stationary. Also,

newly generated threats will not be characterized by drawn training datasets

and hence these threats will not be detected. Frequently training is possible,

but how to determine the need of training without knowing new threat is ex-

isted. Other interesting incremental supervised (and semi supervised) anomaly

detection approaches such as (Yu & Lee, 2009; Laskov et al., 2006; Ren et al.,

2008; Khreich et al., 2011; Lu et al., 2011; Yi et al., 2011; Rasoulifard et al., 2008;

Burbeck & Nadjm-Tehrani, 2007) will not be discussed here. In general, there are

two major issues associated with supervised anomaly detections (Bhuyan et al.,

2011): 1-numbers of anomalous instances are far fewer than the number of nor-
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mal instances in the training dataset and 2-obtaining accurate and representative

labels are challenging. These issues are discussed in detailed in (Joshi et al., 2001;

Theiler & Cai, 2003).

2.3.2 Visualisation

Managing overwhelming amount of data is a major challenge in network security

monitoring. Network monitoring becomes unmanageable (bulky) when working

with a huge quantity of log entries and intrusion alerts (van Riel & Irwin, 2006a).

Having to go through huge amount of text data (packet traces, log files, etc) to

gain insight into networks is a common, but a tedious and an untimely, task as

terabytes of information in each day is usual in a moderate sized network (Ball

et al., 2004). Works summerised in this section have been used information

visualisation as a data reduction method for anomaly detection.

Since most of current network monitoring tools do not provide rapid overview

of the security state of networks, especially during a crisis as most of them are

textbased, Ball et al. (2004) present a novel computer security visualisation tool

which visualises a quick overview of current and recent communication patterns in

the network. Authors propose to visualise packet flows in the network assuming

it will help network professionals to have an accurate mental model of what is

normal on their own network and hence to recognise abnormal traffic.

Fisk et al. (2003) claim that “the human perceptual and cognitive system

comprises an incredibly flexible pattern recognition system which can recognise

existing patterns and discover new patterns, and hence recognizing novel patterns

in their environment which may either represent threats or opportunities”. Hence,

authors proposed a 3-D immersive network monitoring system underlining that

proposed system allows users to survey day’s worth of traffic in minutes. They

argue that using memorable visual images to represent traffic makes easy for non-

skilled people to observe events that only skilled analysts were sensitive before.

van Riel & Irwin (2006a) use graphical depictions to cover up alert information

over raw network traffic by combining dedicated sensor network monitoring (such

as network telescopes or honeynets) with visualisation. All observed traffic is

treated as mistrust as no genuine clients (services) reside in dedicated sensor
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networks. Yin et al. (2004) provides traffic visualization design, similar to (Ball

et al., 2004; Fisk et al., 2003; van Riel & Irwin, 2006a), to enhance administrator’s

ability on detecting anomalous traffic patterns.

van Riel & Irwin (2006b) claim that visual analysis facilitates the rapid re-

view and correlation of events utilizing human intelligence in the identification of

patterns. They acknowledge that data scalability has complicated to distinguish

between suspicious and legitimate activities in computer networks, and proposes

a novel investigating method for network monitoring combining network telescope

traffic and visualisation, concluding that visualisation saliently suggest anoma-

lous patterns. They criticise existing IDDs as signature based IDSs can only

adopt uncovering known attacks while anomaly based (or hybrid) IDSs tend to

have higher rates of false alarms. It is essential IDSs to be extremely accurate as

most traffic is innocent in many situations. Crafting packets to generate a dev-

astating number of alerts and disrupting traffic patterns are possible techniques

that can be used by attackers deliberately to disturb intrusion detections by both

signature and anomaly detections methods (van Riel & Irwin, 2006b).

The intended aim of network security measures is to reduce the effort expend-

ing by network professionals in uncovering suspicious network activity. But in

practice this has became a challenge (bulky) when dealing with a huge amount

of data such as large number of log entries and intrusion alerts. Note that in

principle all above works acknowledge that visualisation (by means of graphs or

animation) is useful in identifying anomalies patterns. But our understanding,

though visualisation can be motivated on this as visual cognition is highly parallel

and pre-attentive than the text or speech, it does little on slow attack monitoring.

Just presenting raw data in graphical form would not be sufficient. For example

visualising a traffic flow of a large network for a very long time will end up with

a very complicated web of traffic flow. It would be very difficult to compare this

with administrator’s mental model of the netflow already made in mind. There-

fore some kind of data reduction and simplification is needed before visualising

security measures. As explained in Chapter 3, converting all information gathered

through various information sources into a single node score (information fusion)

is the simplification strategy we use in this work. In addition, standardization of

security measures would help for better comparison as anomaly detection can be
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highly sensitive to small changes of node behaviours.

2.4 Evaluation

Getting validity for a novel method is only possible through a proper evaluation.

But in the domain of intrusion detections, evaluation of novel algorithms against

real time network data is difficult (Bhuyan et al., 2011; Kayacik et al., 2005; KDD,

1999). Specially it becomes a real challenge if the focus is on slow activities.

Current IDSs require expensive human input for either creating attack signatures

or determining effective models for normal behaviour. Learning algorithms which

derive models from training data for characterizing normal and attack behaviours

provide an alternative to expensive human input (Kayacik et al., 2005). But due

to the extensive amount of data in networks and lack of availability of training

datasets have limited the feasibility of using Learning algorithms in this domain.

2.4.1 Evaluation datasets

As it is very difficult to evaluate a novel algorithm based on live (or any raw)

network traffic, very often simulation methods or some benchmark datasets are

used by researchers for evaluations of their algorithms (Bhuyan et al., 2011). In

1998, MIT’s Lincoln Lab generated the DARPA training and testing datasets

to evaluate IDSs (Lippmann et al., 2000). Both datasets are included with at-

tacks and background traffic. One year after, pre-processed DARPA training and

testing data sets (known as the KDD99) is supplied (Burbeck & Nadjm-Tehrani,

2007). KDD99 is consisting of about four gigabytes of compressed binary tcp-

dump data from seven weeks of simulated network traffic. Simulated attacks

fall into one of four categories: denial of service, remote-to-local (R2L), user-to-

root(U2R), and surveillance (probing). Background traffic is simulated and the

attacks are all known. The training set, consisting of seven weeks of labelled

data, is available to the developers of IDSs. The testing set also consists of simu-

lated background traffic and known attacks, including some attacks that are not

presented in the training set. Kayacik et al. (2005) studies the contribution of

41 features (grouped into four categories as basic, content, time and connection
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based features) in KDD99 datasets to attack detection. Features constructed from

the data content of the connections are more important when detecting R2L and

U2R attack types in KDD99 intrusion datasets (KDD, 1999), while time-based

and connection based features are more important for detection of DoS (Denial

of Service) and probing attack types (Lee & Stolfo, 1998).

LBNL is an evaluation dataset that can be obtained from Lawrence Berkeley

National Laboratory (LBNL) in the USA. Traffic in this dataset is comprised

of packet level incoming, outgoing, and internally routed traffic streams at the

LBNL edge routers (Bhuyan et al., 2011). The traffic is anonymous, and the

attack rate is significantly lower than the background traffic rate. Endpoint

Datasets, is a dataset that having the feature of traffic rates observed at the end

points are much lower than those at the LBNL routers. To generate attack traffic,

the analysts infected virtual machines on the endpoints with different malwares

such as Zotob.G, Forbot-FU, Sdbot-AFR. For each malware, attack traffic of 15

minutes duration has been inserted in the background traffic at each end-point

at a random manner (Bhuyan et al., 2011; Spafford & Kumar, 1994). ISCX2012

is also a simulated data set for evaluating IDSs (Shiravi et al., 2012). In this

dataset, behaviours of certain group of users are abstracted into profiles, and

then agents are programmed to execute them mimicking user activities. Attack

scenarios are then simulated to express real world cases of malicious behaviours.

Network traces captured from live networks is also used for evaluation of

IDS (Chandola et al., 2009). The main advantage of this is that the results do not

demonstrate any bias. However (Bhuyan et al., 2011) claims, when network traces

are available, they are often limited, and researchers evaluate their algorithms

based on live network traffic cannot claim that their detection methods work in

all situations. Also flow level data captured at the router level in online mode is

called NetFlow data and quite useful for high-speed traffic analysis (Giacinto &

Roli, 2002). Due to the loosing packet contents, some attack can be undetected

when using only NetFlow data.

DARPA and KDD99 are the most widely employed data sets in intrusion

detection domain. Despite the signicant contributions of DARPA and KDD99

datasets being the first standard corpora in this domain, their accuracy and abil-

ity to reflect real world conditions has been extensively criticized (Brown et al.,
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2009; McHugh, 2000). Brugger & Chow (2007) states that detection performance

of these data sets are low and false positive rates are unacceptable. Some schol-

ars argue that these data sets are too old and not suitable for modern research

approaches. They identify that simulated environment as the only convenience

method at present in this domain. This data sensitivity has been restricted the

research progression of this area.

Obviously, as mentioned above, existing datasets focus on evaluation of algo-

rithms developed for typical quick attacks. They are not suitable for evaluating

algorithms developed for slow attacks. Hence, we choose simulation method to

evaluate algorithms proposed in this thesis.

2.4.2 Measures

Metrics, ROC Analysis and Complexity & Delay Comparison are some common

measures used to evaluate IDDs.

2.4.2.1 Metrics

Four metrics are commonly used: detection rate, false positive rate, true negative

rate and false negative rate (Delooze & Kalita, 2006). In addition, effectiveness

and efficiency are introduced by (Kayacik et al., 2005). Effectiveness is the ra-

tio of detected attacks (true positives) to all attacks (true positives plus false

negatives). Efficiency is defined as the ratio of the number of identified attacks

(true positives) to all cases flagged as attacks attepmts (true positives plus false

positives) (Bhuyan et al., 2011).

2.4.2.2 ROC analysis

Receiver Operating Characteristics (ROC) curve has false positive rate on its

X-axis and true positive rate on its Y-axis. It was introduced by Lincoln Lab

for evaluation of anomaly based detection systems, currently being used by some

other researches (KDD, 1999). The detection system must return a likelihood

score between 0 and 1, when it detects an intrusion in order for the ROC curve

to provide meaningful results. The ROC curve is used to determine how well

the overall system performs, to determine the appropriate threshold values given
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acceptable true and false positive rates, and to compare different detection sys-

tems (Bhuyan et al., 2011).

2.4.2.3 Complexity & delay comparison

The training time, classification time and training & run-time memory require-

ments taken by anomaly detectors are computed using tools like HPROF1 (Spaf-

ford & Kumar, 1994). A delay value is listed if an attack is not detected alto-

gether. These measures indicates the performance of anomaly detection in terms

of computational complexity rather than the accuracy of an anomaly detector.

However, many researches very often use the evaluation metric in section 2.4.2.1

to establish their works than using any other measures (Bhuyan et al., 2011).

2.5 Conclusion

Number of methods have been proposed during last three decades for computer

system monitoring. Most of them focus on monitoring for typical quick attacks

lasting within short period of time (few seconds or minutes). Hence such methods

not suitable for monitoring slow activities. Signature based detection methods

cannot be employed in slow activity monitoring due to current computational

constraints of monitoring devices. The key challenge for anomaly detection in

this domain is the huge volume of data, and therefore more computationally

efficient (lightweight) methods are needed. Since the data amounts to millions

of data objects, a few percent of false alarms can make analysis overwhelming

for an analyst. Therefore false alarms need to be reduced as much as possible.

Evaluation of a novel algorithm is a critical challenge in this domain. Some

benchmark datasets are available, but not suitable for slow activity monitoring

due to number of limitations.

All in all monitoring for slow activities in computer networks poses a set of

unique challenges:

- The monitoring techniques are required to operate in an online manner.

1HPROF is a tool capable of presenting CPU usage, heap allocation statistics, and monitor
contention profiles.
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Due to the severe resource constraints in network devices, the monitoring

method needs to be lightweight.

- The data is distributed, and collected in a distributed fashion from various

devices at various points. Hence a distributed data analysis technique or

an information fusion technique needs to be employed.

- The presence of noise in the data collected makes the analysis more chal-

lenging, and hence distinguish between interesting events and unwanted

noise is required.
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Chapter 3

A Bayesian framework for

monitoring

This chapter presents a Bayesian approach as a method for information fusion

to address effective monitoring of slow suspicious activities, and examines the

effectiveness of such an approach under different network conditions. Theoreti-

cal account of the approach and detailed discussions of experimental results are

included. The main contribution of this chapter is a novel algorithm for slow

activity monitoring.

3.1 Introduction

Slow and low attacks can be difficult to detect. In order to detect slow activities,

it is necessary to maintain a long history of what is happening in the environment.

There is a processing and storage overheads involved in the state-full IDSs, as

maintaining state information of every packet and comparisons between current

packets and previous all packets are needed (Krishnamurthy & Sen, 2001). Most

systems cannot keep enough event data to track across extended time intervals for

this purpose due to the performance issues and computational constraints such as

storage and processing limitations of monitoring devices (Krishnamurthy & Sen,

2001; Vallentin et al., 2007; Vasiliadis et al., 2011). As a result the scarcity of

attack data within a short period of time allows a slow attacker to go undetected
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hiding her attempts in the background noise.

This chapter proposes profiling, through information fusion and accumulation,

as a possible method for data reduction in slow activity monitoring. It reduces

the sheer volume of data gathered from various sources into a single profile score,

and solves the critical issue of maintaining long term states of systems while

managing data volumes (CSIEM, 2013). The primary objective of the proposed

approach is to identify nodes for further investigation. The series of experiments

presented in this chapter examine the effectiveness of such an approach under

different parameters including multiple attack sources, traffic volume and subnet

size.

3.2 Related work

Our work is inspired by Chivers et al. (2009, 2013) who provide a scalable solution

to identify suspicious slow insider activities in a Bayesian framework. They profile

all nodes (i.e. origin of activities) by the time and distinguish between anomalous

and normal behaviours by setting a predefined control (base line). If the node

score function of a particular node deviates from a predefined control then the

causal node is identified as a slow suspicious node. This decision criteria is a major

limitation of their approach. When there are more than one attackers in a subnet,

especially with a higher variation of node behaviours, that decision criteria is not

effective. It can be affected by even dimensions of the drawing canvas as any

kind of standardisations is not been used. Moreover setting a predefined baseline

for node behaviours is very difficult. In a network scenario normal behaviour

keeps evolving by the time and a current notion of normal behaviour might not

be sufficiently representative in the future. Hence, thresholds too need to evolve

according to the situation and current state of the network.

Kandias et al. (2010) propose a model to integrate user’s technological traits

with data obtained from psychometric tests. In (Kandias et al., 2010; Bradford

et al., 2004), users are profiled according to their behaviour and use that informa-

tion to identify users who warrant further investigation. This is highly subjective,

organizational dependent and cannot be used to profile non human actors. Basu

et al. (2001) propose an approach which uses connection based windows to detect
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low profile attacks with a confidence measure while Streilein et al. (2002) use mul-

tiple neural network classifiers to detect stealthy probes. Evidence accumulation

as a means of detecting slow activities is proposed in (Heberlein, 2002).

(Barbara et al., 2001; Sebyala et al., 2002; Valdes & Skinner, 2000; Ye et al.,

2000; Bronstein et al., 2001) use naive Bayesian networks for network intrusion

detection which estimate the posterior probability of observing a class label given

a test data instance. Maximum posterior is chosen as the predicted class for a

given test data instance. The likelihood of observing the test instance given a

class and the prior on the class probabilities are estimated from training data

sets. Such techniques assume independence between different attributes. The

complex Bayesian networks proposed in (Siaterlis & Maglaris, 2004; Janakiram

et al., 2006; Das & Schneider, 2007) capture conditional dependencies between

different attributes.

Davidoff & Ham (2012) claim flow record analysis techniques are statistical in

nature, but exceptionally powerful and very useful in a slow attack environment

where full content captures are limited by the amount of disk space and processing

power. The purpose of flow record collection is to store a summary of information

about traffic flows across a network and to analyse it to find any kind of network

issues which can be operational, accountable or security. Existing tools (Argus,

2012; Damien Miller, 2012; CERT Network Situational Awareness Team, 2012;

ProQueSys, 2012), some switches (Cisco catalyst), routers and firewalls (current

revisions of Cisco) support flow record generation and exportation (Davidoff &

Ham, 2012). Our approach is different from existing flow record analysis tech-

niques because of the Bayesian framework and evidence accumulation. Existing

systems consider flow record elements such as IP addresses, ports and flags, pro-

tocols, date and time, and data amount as separate parameters without any kind

of data fusion.

All above approaches, except (Chivers et al., 2009, 2013; Heberlein, 2002),

require storage of large volumes of event data for analysis. Systems that try

to model the behaviour of individuals or protocols are forced to retain large

amounts of data which limits their scalability. The work presented in this chapter

is different from Chivers et al. (2009, 2013)’s work from the decision criteria

consisting of both horizontal and vertical analysis, as well as from the way defining
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the hypothesis. Heberlein (2002)’s work differs from this work as it uses counting

algorithm instead of Bayesian approach and also in its decision criteria. Chivers

et al. (2009, 2013) demonstrate Bayesian approach is superior to the counting

algorithm. Since the aim of this chapter is not only just proposing an efficient

monitoring algorithm but also an investigation of its effectiveness under different

conditions, work presented in this chapter is novel.

3.3 Methodology

We propose an incremental approach which updates normal node profiles dynam-

ically based on changes in network traffic. If some aberrant changes happen in

network traffic over the time it should be reflected in profiles as well is the under-

lying assumption. Then based on profile scores it is possible to raise a suspicious

activity subject to the above assumption. We look at the main problem as two

sub problems: profiling and analysis. It enables us to study each part separately

and reduce the complexity.

3.3.1 Motivation and source

Prior to seeking methods for profiling and analysis, it should be noted that there

are two types of uncertainties: motivation and source of each event of interest.

These uncertainties need to be acknowledged in profiling and analysis. Ignoring

them could be resulted to more false alarms in the monitoring process.

3.3.1.1 Motivation uncertainty

The motivation behind a network event is not always easy to judge. Some suspi-

cious events1234 can be appear as part of an attack as well as can originate from

1A major router failure could generate many ICMP unreachable messages while some com-
puter worms (e.g.CodeRed and Nimda) generate the same in active probing process.

2An alert of multiple login failures could result from a forgotten password as well as could
be a result of a password guessing attack.

3An execution of cmd.exe could be a part of malicious attempt or a legitimate as it is
frequently used by malicious programs to execute commands while it is also frequently used by
legitimate users during their normal day-to-day operations.

4An attempt to access the file robots.txt (see Appendix A for more details).

28



normal network activities. By just looking at alerts generated by such an event

we cannot simply judge its cause. Other contextual information can be used to

narrow down the meaning of such an event (Davidoff & Ham, 2012). For exam-

ple, suspicious port scanning activity may have the following characteristics: a

single source address, one or more destination addresses, and target port numbers

increasing incrementally. When fingerprinting such traffic, we examine multiple

elements (multivariate) and develop a hypothesis for the cause of behaviour on

that basis.

The environment is noisy due to underlying uncertainty. In a deterministic

system, the states of a dynamic process are observed and tracked without noise.

But in a noisy environment such observations are often polluted by underlying

noise. Therefore adopting a probabilistic approach is useful to acknowledge that

uncertainty. This is because probabilistic approaches perform well in noisy envi-

ronments than deterministic approaches (Jiang & Cybenko, 2004; Chivers et al.,

2013). A multivariate version of Bayes’ formula is used for this purpose.

3.3.1.2 Source uncertainty

There is no guarantee on visible source of an event to be the true source. As men-

tioned in (De Tangil Rotaeche et al., 2010), to remain anonymous, an attacker

attempts to either disguise the elements that characterise the attack or hide the

source. The localisation process becomes evermore difficult when the attacker

employs various proxy methods (e.g. Generic port routing, HTTP, Socks, IRC

etc) and zombie (e.g. bots) nodes. Manipulation of TCP/IP elements (e.g. IP

Spoofing), using relay or random routing (e.g. Tor networks, Crowds, Freenet

systems etc) approaches can help an attacker protecting her location. Prolifer-

ation of weakly encrypted wireless networks could also help an attacker getting

anonymous locations.

3.3.2 Profiling

Profiling is the method for evidence fusion across space and time updating node

profiles dynamically based on changes in evidence. Simply put, we compute a

suspicion score for each node in the system and that score is updated as time
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progresses.

3.3.2.1 Evidence fusion

Security events must be analysed from as many sources as possible in order to

assess threat and formulate appropriate response. According to Drew (n.d), de-

ploying and analysing a single device in an effort to maintain situational awareness

with respect to the state of security within a network is the computerised version

of tunnel vision. Extraordinary levels of security awareness can be attained in an

organization’s network by simply listening to what its all devices are telling you.

Note that proposed profiling technique in this thesis fuses information gathered

from different sources into a single score.

3.3.2.2 The Bayesian paradigm

The posterior probability of the hypothesis Hk given that E is given by the

well-known Bayes formula:

p(Hk/E) =
p (E/Hk) .p(Hk)

p(E)
(3.1)

Hypothesis for the monitoring algorithm is built as follows. Let H1 and H2 be

two possible states of a node in computer network and define H1 - the node acts

as an attacker and H2 - the node does not act as an attacker. Then H1 and H2

are mutually exclusive and exhaustive states. P(H1) expresses the prior belief, in

term of probability, that the node is in state H1 in absence of any other knowl-

edge. Once we obtain more knowledge on our proposition H1 through multiple

information sources (observation spaces), in form of evidence E={e1,e2,e3,...,em},
our belief can be expressed as a conditional probability p(H1/E). Using the

Bayes’ theorem in Equation 3.1:

p(H1/E) =
p (E/H1) .p(H1)

p(E)
(3.2)

P (E) is the probability of producing suspicious events, but on its own is

difficult to calculate. This can be avoided by using the law of total probability
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and reformatted Equation 3.2 as:

p(H1/E) =
p (E/H1) .p(H1)
2∑
i=1

p(E/Hi).p(Hi)

(3.3)

Assuming statistical independence between information sources:

p(H1/E) =

m∏
j=1

p(ej/H1).p(H1)

2∑
i=1

m∏
j=1

p(ej/Hi).p(Hi)

(3.4)

Once E is observed, to calculate the posterior probability p(H1/E) that the

node is in state H1 given E it is necessary to estimate:

- the likelihood of the event ej given the hypothesis Hi , i.e. p(ej/Hi) and,

- the prior probability p(Hi).

Assuming that we know the prior and likelihoods, it is possible to use Equation

3.4 to combine the evidence from multiple sources to a single value (posterior

probability which is known as node score) which describes our belief during a

short observation period that the node is an attacker given E. Brynielsson et al.

(2013) is one of the most recent works following a similar idea for detecting lone

wolf terrorists.

3.3.2.3 Statistical independence

In probability theory and statistics, two events are statistically (stochastically)

independent if the occurrence of one does not affect the probability of the other.

Furthermore, two (or more) random variables are independent if the realization of

one does not affect the probability distribution of the others, and are identically

distributed (i.i.d.) if each random variable has the same probability distribution

as the others and all are mutually independent (Clauset, 2011). Independent

events are not affected by other events. To give some intuition about what this

means, taking coloured marbles from a bag without replacements is a series of
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dependent events as there are less marbles left in the bag for the next event,

so that the probabilities are changed. With replacements such events become

independent.

In a loose usage of the above definition, possible sources of information to our

monitoring algorithm are outputs of signature based IDSs, anomaly detection

components, antivirals, file integrity checkers, SNMP-based network monitoring

systems, information from L3 switches, etc. Hence the assumption on statistical

independence in Equation 3.4 is reasonable as we propose to use distinct types

of information sources which operate independently. In general, an alert of a

suspicious event from one source does not affect the probability of alerting the

same (or different) event from the other source. For example, if there are s sus-

picious packets in a traffic collection consists of T packets, probability of alerting

a suspicious event at SNMP-based network monitoring systems (i.e. s
T

) is not

affected by an alert of unusual file access generated in the file integrity checker.

They work statistical independently. In practice, a good Security Information

Event Management (SIEM) deployment aggregates a number of solutions from

many independent vendors (CSIEM, 2013). Even if we deploy identical multiple

sensors of an IDS (e.g. CISCO IDS) in different locations in the same network,

this assumption is held as long as they work independently. Usually, in multi-

ple sensor deployments each sensor independently reports visibility of suspicious

events. However, when using Intrusion Prevention Systems (IPS) this might not

be held as such systems block/discard the causal traffic for such events on the

spot.

3.3.3 Analysis

If attacker activity pattern is sufficiently reflected by profiles then detecting

anomalous profiles would be sufficient to identify attackers. Hence detecting

anomalous profiles in a given set of node profiles is the analysis. When there is

an attacker who violates legitimate user’s activity patterns, the probability that

the attacker’s activity is detected as anomalous should be high (Bhuyan et al.,

2011).
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3.3.3.1 Anomaly detection

An anomaly is an irregularity of data patterns or points which deviates from

expected or normal states. The problem of detecting patterns (points) in data

that do not conform to expected behaviour is called anomaly detection. The

terms anomalies, outliers, discordant observations, exceptions, aberrations, sur-

prises, peculiarities or contaminants are often used to refer these non-conforming

patterns in different application domains (Patcha & Park, 2007; Chandola et al.,

2009; Lazarevic, 2013; Tanase, 2002).

The simple approach to anomaly detection is to define a region representing

normal behaviour and declare any observation in the data which does not belong

to this normal region as an anomaly. This simple approach is very challenging

in network security monitoring due to the nature of anomalies. Consider the

following:

- Defining a normal region in advance which encompasses every possible nor-

mal behaviour is very difficult. In addition, the boundary between normal

and anomalous behaviour is often not precise;

- When anomalies are the result of malicious actions, the malicious adver-

saries often adapt themselves to make anomalous observations appear nor-

mal, thereby making the task of defining normal behaviour more difficult;

- Normal behaviour keeps evolving and a current notion of normal behaviour

might not be sufficiently representative in the future;

- Availability of labelled data for training and validation of models used by

anomaly detection techniques is usually a major issue; and

- Often data contains noise which tends to be similar to actual anomalies and

hence is difficult to distinguish and remove.

Due to the above challenges (Chandola et al., 2009), most of the existing

anomaly detection techniques solve a specific formulation of the problem, which

is induced by various factors such as data types and types of anomalies of inter-

ested, and encourage unsupervised anomaly detection techniques. Various con-

cepts from diverse disciplines such as statistics, machine learning, data mining,
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information theory, spectral theory, etc are adopted in specific problem formula-

tions and providing solutions. We use a statistical method for detecting anomalous

profiles.

3.3.3.2 Statistical anomaly detection

An anomaly is an observation in a dataset which is suspected of being partially

or wholly irrelevant because it is not generated by the stochastic model assumed

for that dataset is the underlying principle of any statistical anomaly detection

technique (Anscombe & Guttman, 1960). Such techniques are based on the key

assumption that normal data instances occur in high probability regions of a

stochastic model, while anomalies occur in the low probability regions of the

stochastic model (Chandola et al., 2009). Subject to the above two key concepts,

we propose to use following two types of techniques: Peer analysis and Discord

analysis to detect anomalies in a given set of node profiles and identify slow

suspicious activities.

3.3.3.3 Peer analysis

The critical challenge in slow attack monitoring is to keep information about

activities of each node over an extended period of time. Aggregating posterior

probability terms obtained from Equation 3.4 over the time helps to accumulate

relatively weak evidence for long periods. These accumulated probability terms∑
t

p(H1/E) (t is time), known as node scores, can be used as a measurement of the

level of suspicion for a given node at any given time; subject to the assumption

that if an attacker’s activity pattern is sufficiently reflected by profiles, then

detecting anomalous profiles would be sufficient to identify attacker. Algorithm 1

presents node score calculation procedure for any given time. Its implementation

using R Language can be found in Appendix B.1.

A given set of node profiles, e.g. profiles corresponding to a network, is a uni-

variate data set. Hence it is possible to use the univariate version of Grubb’s

test (GRUBBS, 1969) (maximum normed residual test) to detect anomalous

points in the set, subject to the assumption that normal node profiles in a given

set follow an unknown Gaussian distribution (Guo, 2011; Hagen et al., 2007).
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Λ: A set of suspicious events;
Ω: A set of node profiles;
input : Current set Ω
output: Updated set Ω
if Λ is non empty then

Compute the posterior probability p(H1/E);
foreach node score ω ∈Ω do

if node corresponded to ω caused Λ then
ω= ω + p(H1/E);

end

end

end
Algorithm 1: Node score calculation for peer analysis.

Of course, the set-up where we have the distribution is very well a mixture of

Gaussians. Testing of our hypothesis for any given time is a Bernoulli trial. Accu-

mulated Bernoulli trials makes a Poisson binomial distribution (Hodges & Cam,

1960; Le Cam, 1960; Daskalakis et al., 2012) which can be approximated by a

Normal distribution. For each profile score ω, its z score is computed as z = ω−ω̄
s

;

where ω̄ and s are mean and standard deviation of data set. A test instance is

declared to be anomalous at significance level α if:

z ≥ T =
N − 1√
N

√√√√ t2α/N,N−2

N − 2 + t2α/N,N−2

(3.5)

where N is the number of profile points in the set, and tα/N,N−2 is the value

taken by a t-distribution (one tailed test) at the significance level of α
N

. The α

reflects the confidence associated with the threshold and indirectly controls the

number of profiles declared as anomalous (Chandola et al., 2009). Note that

the threshold T adjusts itself according to current state of a network. This is

a vertical analysis to detect one’s aberrant behaviour with respect to her peers,

hence we call it peer analysis. Looking at one’s aberrant behaviour within similar

peer groups (e.g. same user types, departments, job roles, etc.) would give better

results in terms of false alarms than setting a universal baseline (Eldardiry et al.,

2013; Berk et al., 2012). Hence first classifying similar nodes into peer groups,

based on behaviour related attributes/features, and then applying the monitoring
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algorithm is recommended as it accounts for regular variations over peer groups.

Investigation for a suitable classification algorithms for this task depends on the

nature of the target network and its attributes.

3.3.3.4 Discord analysis

When a slow attack is progressing, malicious activities are occurring according

to an on-off pattern in time. As a result, lack of agreement or harmony between

points in the profile sequence of a given node can occur in a similar or different

on-off fashion. This type of anomalies are known as discords (Yankov et al.,

2008; Bu et al., 2007; Yankov et al., 2007; Fu et al., 2006). In a slow attack

environment, discords are random time context and peer analysis technique itself

is not sufficient to detect them if the progression rate of malicious activities is far

lower than the similar innocent activities. This is illustrated in Section 3.5.3

The objective of this analysis is to detect sub-sequences within a given se-

quence of profiles which is anomalous with respect to the rest of the sequence.

Problem formulation occurs in time-series data sets where data is in the form of

a long sequence and contains regions that are anomalous. A generic technique

in this category can be described as follows. A model is learned from the data

in the recent history, which can predict the expected behaviour with respect to

the learned context. If the expected behaviour significantly deviates from the

observed behaviour, an anomaly is declared. A simple example of this generic

technique is regression in which the contextual attributes can be used to predict

the behavioural attribute by fitting a regression line on the data (Chandola et al.,

2009). However, in real-life research and practice, patterns of the data are un-

clear, individual observations involve considerable error (random shock), and we

still need not only to uncover the hidden patterns in the data but also generate

forecasts. Simple regression is not sufficient to model such datasets due to this

complexity.

Any time series can be described in terms of regular and irregular components

(random shocks) (StatSoft, 2014). An ARIMA models has three parts, although

not all parts are always necessary, to describe the effects of each component.

These three parts are auto-regression (AR), integration (I) and moving average
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(MA). The AR part describes the dependency of the observed value on some linear

(or non-linear) combination of previously observed values, which is defined to a

maximum lag denoted by p, plus a random error term. The MA part describes the

observed value as a random error term plus some linear combination of previous

random error terms up to a maximum lag denoted by q. To analyse the time series

using AR and MA terms, it requires that all of the observations are independently

identifiable. This is called stationary which can be achieved via differencing. In

order to be stationary, all of regular (i.e. trend and seasonal) effects must be

removed from the series so that series is left with only the irregular (random)

components. The process of differencing is known as integration, and the order

of differencing is denoted by d. The ARIMA methodology has confirmed its power

and flexibility, and has gained enormous popularity in many areas and research

practice for modelling complex time series (StatSoft, 2014). Hence, we propose

to use Auto-Regressive Integrated Moving Average - ARIMA(p, d, q) model. In

this work model parameters p, d, q are automatically estimated by a built-in R

script.

As in most other analyses, in time series analysis it is assumed that the data

consists of a systematic pattern and random shock (error) which usually makes the

pattern difficult to identify using simple regression. It requires that the pattern

of observed time series data is identified and more or less formally described.

Once the pattern is established, we can interpret and integrate it with data to

validate it. Regardless of the depth of our understanding and the validity of

our interpretation (theory) of the phenomenon, we can extrapolate the identified

pattern to predict future events (StatSoft, 2014). In summary, the underlying idea

of this analysis is that the normal behaviour of the time-series follows a defined

random pattern, and a subsequence within the long sequence which does not

conform to this pattern is an anomaly. In general, the purpose of this analysis is

to detect one’s aberrant behaviour with respect to her own behaviour regardless

of her peers. We propose following method for discord analysis using ARIMA

model.

At the (t−1)th time point, using an autoregressive integrated moving average

model ARIMA(p, d, q) which describes the autocorrelations in the data (Chat-

field, 2003), 95% Confidence Interval (CI) for the tth profile score is predicted. If
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the observed profile score at time t lies outside of the predicted CI then absolute

deviation of the profile score from CI is calculated. This deviation is used as

a measure of non-conformity of a given profile score to the pattern of its own

sequence (group norms). These deviations average out over the time to calculate

the anomaly score for a given node. Note that this anomaly score is the average

dissimilarity of profile scores with its own profile sequence of a node. This dis-

similarity occurs randomly from time to time due to the deliberate intervention

of the attacker. Algorithm 2 below presents the anomaly score calculation pro-

cedure while its implementation using R Language can be found in Appendix B.2.

τ : An ARIMA(p, d, q) model, p, d, q are estimated by the built-in R script;
ω: 95% CI for the profile score at time t;
ϑ: observed profile score at time t;
input : Set of profile scores of a given node
output: An anomaly score
foreach point in the time line do

Fit τ using n number of previous profile points;
Compute ω;
if ϑ ≥ upperlimit(ω) or ϑ ≤ lowerlimit(ω) then

Deviation=Deviation+absolute(ϑ - ω);
Anomaly score=Deviation/(number of cut-off points so far);

end

end
Algorithm 2: Anomaly score calculation for discord analysis.

Due to the lack of training data available, we propose to run above algorithm

in an unsupervised mode. The length of the ARIMA model (i.e. n - number of

previous points to be used) is critical as containing anomalous regions in input

sequence makes difficult of creating robust model of normalcy. Note that keeping

the length of the ARIMA model less than the minimum of time gaps between two

consecutive attack activities will give better results. However since the time gap

between two consecutive attack activities is unknown in advance, using a smaller

observation window (i.e. slicing whole observation period into many smaller parts

as much as possible) to generate short time profiles would be the better. Marceau

(2000) applies a similar technique to detect system call intrusions using Finite

38



state automata (FSA). He uses FSA to predict the next event of a sequence based

on the previous n events, and if the observed value significantly deviates from the

predicted value an anomaly is declared.

It should be noted that both above analyses are based on parametric tech-

niques which assume the knowledge of underlying distribution and estimate the

parameters from the given data. However, in case of distribution is unknown, it is

possible to use non parametric techniques to determine the model of distribution

from given data first and then to use parametric method to detect anomalies as

described above.

3.4 Experiment

As mentioned in section 2.4.1, in the domain of intrusion detection, evaluation of

novel algorithms against real time network data is difficult (Bhuyan et al., 2011;

Kayacik et al., 2005; KDD, 1999). Evaluation even against an offline real network

data set is a challenge if the focus is on slow attacks. Because current computa-

tional constraints, specially storage requirements, does not permit to capture and

store all data even in a average network for longer times to produce such datasets.

To the best of our knowledge there is no any prominent data set available for this

task focusing on slow attacks. Note that existing IDS evaluation datasets, e.g.

DARPA -the most widely employed data set and ISCX2012-a modern dataset, for

typical attacks also have simulated both attack and normal traffic in real world

networks to produce datasets (see section 2.4.1 for more details about evalua-

tion datasets). Because it is a real challenge to find data produced by actual

attackers. Therefore to assess the feasibility of our proposed approach a series

of experiments were conducted simulating slow suspicious activities in simulated

networks. Simulating such activities in a real network certainly gives more realis-

tic conditions than in a simulated network. However practical constraints of the

project keep away us using a real world network for this purpose at this stage.
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Figure 3.1: Network topology used for experiments.

3.4.1 Experimental design

Network Simulator 3 (NS3 ) (Riley & Henderson, 2010) was used to build the net-

work topology given in Figure 3.1 and to generate the traffic patterns of interest.

Poison arrival model, with inter-arrival time gap between two consecutive events

as an exponential, was assumed. Each simulation was run for a reasonable period

of time (over one millions events) to ensure that enough traffic was generated.

The C++ codes written in NS3 for simulations of our experiments presented in

this thesis can be found in Appendix B.3.

3.4.1.1 Network topology

Figure 3.1 shows the network topology used for our experiments. A total of 2,122

nodes were distributed among four networks labelled as A (99 nodes), B (400

nodes), C (800) and D (800 nodes). In addition, a network dedicated to a server

farm was simulated with 23 nodes.
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3.4.1.2 Suspicious events

Attackers were located one in each of the three different subnets. Anomalous

traffic, by means of unusual port numbers like 32769, 33333 etc, was generated

in addition to generating usual traffic within and between subnets and to exter-

nal networks. To simulate uncertain events like forgotten passwords, suspicious

events were generated by normal nodes as well, but at different rates. If λa, λn

are mean rates of generating suspicious events (where we only generate a subset

of flow data elements including source and destination address and port num-

bers, and where suspicious activity is judged by unexpected port numbers) by

attacker and normal nodes (i.e. the noise) respectively, we ensured maintaining

λa ∈ λn±3
√
λn and λn(≤ 0.1) sufficiently smaller for all our experiments to char-

acterise slow suspicious activities which aim at staying beneath the threshold of

detection and hiding behind the background noise. The idea to use the above

relationship for generating attacker activities was to keep them within the nor-

mality range of innocent activities (i.e. background noise).
√
λn is the standard

deviation of rates of suspicious events generated by normal nodes.

3.4.1.3 Parameter estimation

Prior probabilities and Likelihoods are assigned as follows.

p(H1) =
1

2
= 0.5 (3.6)

Equation 3.6 believes there is a 50% chance for a given node to be a slow

attacker. However, this is not the case in many situations. In networks, one

node may have a higher prior belief of being suspicious than another. Since prior

probabilities are based on previous experiences, p(H1) can be judged based on

information gathered from contextual analysis. However if there is no basis to

distinguish between nodes or groups of nodes equally likely (i.e.same probability

of occurring) can be assumed.

For the experiment presented in this chapter, we followed the equally likely

assumption initially, and prior probabilities were assigned as in equation 3.6.

Then the posterior probability of a given node at time t− 1 is used as the prior

of the same node at time t when time is progressing. This lets prior probabilities
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to adjust itself dynamically, according to suspicious evidence observed over time.

p(ej/H1) = k (3.7)

Equation 3.7 expresses the likelihood of producing event ej by a subverted

node. For the purpose of demonstration we assigned arbitrary, but different,

values (≤1) for k to distinguish different type of events (ej) produced for the

simulation. Likelihoods for real world implementation can be estimated as follows.

If ej is an event resulting from a certain type of known attack (e.g. a UDP

scan or LAND1 attack), then k can be assigned to one. However, k cannot always

be one, as described in section 3.3.1.1, as there are some suspicious events (e.g.

an alert of multiple login failures) that can be part of an attack signature as well

as originate from normal network activities. The question is how to estimate

p(ej/H1), i.e. the true positives ratio, if ej becomes such an observation. One

possible solution would be to use existing IDS evaluation datasets such as ISCX

2012 (Shiravi et al., 2012) or DARPA (McHugh, 2000) to estimate true positives

ratios. Estimating likelihoods for real world implementation is left as a future

work

According to Chivers et al. (2009), in some cases, the historical rate of oc-

currences of certain attacks is known and can be used to estimate the likelihood

that certain events derive from such attacks or it may be sufficient to quantify

these frequencies by an expert in a similar way to estimating risk likelihoods to an

accuracy of an order of magnitude. Note that Chivers et al.’s claim is completely

theoretical as it follows the Subjectivist2 interpretation of probability theory (Ge-

NIe, n.d). According to Davidoff & Ham (2012), the biggest challenge is the

absence of large publicly available data sets for research and comparisons, but

within an organization it is entirely possible to empirically analyse day-to-day

traffic and build statistical models of normal behaviour.

1A Denial of Service (DoS) attack which sets the source and destination information of a
TCP segment to be the same. A vulnerable machine will crash or freeze due to the packet being
repeatedly processed by the TCP stack.

2There are three fundamental interpretations of probability: Frequentist, Propensity and
Subjectivist. In Subjectivist, probability of an event is subjective to personal measure of the
belief in that event is occurring.
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Figure 3.2: Z- Score graphs are sensitive to node behaviour.

3.5 Results

In this section experimental results are presented. We use graphical forms (e.g. Z-

Score graphs) to present information. As mentioned in section 2.3.2 visualisation

helps to quickly recognise patterns in data.

3.5.1 Node behaviour

First of all, to investigate whether proposed Z-score graphs reflect the behaviour

of nodes, three attacker nodes were located in a 50 size subnet in network D in

Figure 3.1. All others were innocent. Two out of three attackers stopped their

attack activities at 200 and 300 time points respectively. Figure 3.2 presents

the outcome, where A1, A2 and A3 are attacker nodes while Min and Max are

the minimum and maximum Z-scores of normal nodes. T is the Grubbs’ critical

value (threshold) for a single outlier. If an attacker node changed its behaviour,

the corresponding z-score graph (see A2 and A3 in Figure 3.2) responses to that

behaviour by changing its direction.
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3.5.2 Peer analysis outcomes

Our peer analysis technique was tested against 24 test cases as shown in Table 3.1.

Test cases are different from each other by the subnet size and the number of

attackers as these two parameters (i.e. peer information) are important and can

affect detection. Cases 1, 7, 13 and 20 are the best case scenarios while cases

6, 12, 18 and 24 are the worst case scenarios under each subnet size. Defining

each test case was completely arbitrary, and there was not specific reason to

choose these test cases except best and worst cases. Our approach was capable

of detecting slow attackers in all cases, except worst cases. However, only one

case (Case 16) is presented here. In this case, four slow attackers were located

in a hundred size subnet. At each time point, node profiles were calculated as

described in section 3.3.2 and converted to Z-scores as described in section 3.3.3.3

and plotted against time as in Figure 3.3. In Figure 3.3, nodes corresponing to

A1, A2, A3 and A4 denote attackers. Min and Max denote the minimum and

the maximum Z-scores of normal nodes at each time point. T is the Grubbs’

critical value (threshold) for a single outlier.

3.5.2.1 Aberrant peers

Aberrant node profiles A1, A2, A3 and A4 in Figure 3.3 always corresponded

to the four slow attackers located in the subnet. They are above or near the

threshold (T ), and most importantly, there is a clear visual separation between

the set of normal nodes and anomalous nodes. Hence it is possible to recognise

slow suspicious activities using the proposed method.

3.5.2.2 Best and worst cases

Behaviour of the proposed approach in best and worst cases is also investigated.

There were no attacks in best cases (test cases 1,7,13 and 20) while all nodes were

subverted in worst cases (test cases 6,12,18 and 24). Similar graphs, as shown in

Figure 3.4, were obtained in all cases. Almost all the nodes are nearly below the

threshold (T ), and none of nodes can be seen clearly separated from the majority.

However note that Discord analysis technique is capable of detecting attackers in

these cases too.
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Test Case Subnet Size Number of Attackers
1 Twenty five nodes No attacker
2 Twenty five nodes One attacker
3 Twenty five nodes Two attackers
4 Twenty five nodes Four attackers
5 Twenty five nodes Seven attackers
6 Twenty five nodes All attackers
7 Fifty nodes No attacker
8 Fifty nodes One attacker
9 Fifty nodes Two attackers
10 Fifty nodes Four attackers
11 Fifty nodes Seven attackers
12 Fifty nodes All attackers
13 Hundred nodes No attacker
14 Hundred nodes One attacker
15 Hundred nodes Two attackers
16 Hundred nodes Four attackers
17 Hundred nodes Seven attackers
18 Hundred nodes All attackers
19 Two hundred and fifty nodes No attacker
20 Two hundred and fifty nodes One attacker
21 Two hundred and fifty nodes Two attackers
22 Two hundred and fifty nodes Four attackers
23 Two hundred and fifty nodes Seven attackers
24 Two hundred and fifty nodes All attackers

Table 3.1: Subnet size and number of attackers in each test case.
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Figure 3.3: Z-Scores of node profiles for test case 16.

In a situation monitoring system depends only on peer analysis technique and

has been seen similar graphs as in worst (or best) cases, it is safe to assume

all nodes are subverted (instead of assuming free of attackers) and doing further

investigations on one or two nodes to verify. If investigated nodes are attackers

it is reasonable to consider all nodes are attackers or vice versa.

3.5.3 Discord analysis outcomes

Discord analysis technique was tested against number of test cases in Table 3.1

in addition to testing it against a special test case defined as follows. In a slow

attack environment, discords are random time context and peer analysis technique

itself would not be capable to detect them if the progression rates of malicious

activities are far lower than the rates of similar innocent activities. Therefore a

small subnet consisting of five nodes including one attacker was set-up in network

D in Figure 3.1. Attacker’s activity rate was decreased until observing a node

score graph like in Figure 3.5 where peer analysis technique itself fails to detect

the attacker. In Figure 3.5, the attacker which is denoted by red dotted line

always keeps a very low profile score than all innocent nodes denoted by other
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Figure 3.4: Z-Scores of node profiles for test case 7.

lines (see magnified version in Figure 3.6). As it is clearly seen in Figures 3.5

and 3.6 attacker hides behind the normal nodes, and since attacker’s profile score

is far lower than all normal nodes it is not detected by the peer analysis technique.

Randomness of event generation can also be clearly seen from Figure 3.6.

Algorithm 2 in section 3.3.3.4 was applied for this case and observed that

discord analysis is capable of detecting the attacker very well. First using an

ARIMA(p, d, q) model 95% CI is predicted for each node in the network (see

Figures 3.7 and 3.8 which are created for the attacker node and a normal node

respectively). Then absolute deviations of the profile score from CI is calculated,

for example the distance between points P1 and P2 in Figure 3.7. These devia-

tions average out over the time to calculate the anomaly score for a given node

and converted into Z-scores and plotted against the time line as in Figure 3.9.

Twenty five previous points were used as the length of the ARIMA model. In

Figure 3.9, the node corresponded to A denotes the attacker. Min and Max

denote the minimum and the maximum Z-scores of anomaly scores of normal

nodes at each time point. T is the Grubbs’ critical value (threshold) for a single

outlier. As it is obvious in Figure 3.9 attacker node is clearly distinguished from

innocent nodes.
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Figure 3.6: Magnified version of Figure 3.5 - red dotted line denotes the attacker,
all other lines denote innocent nodes.
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49



0 200 400 600 800 1000

−
1.

5
−

0.
5

0.
5

1.
5

Time

Z
−

S
co

re

A

Min

Max

T

Figure 3.9: Z-Scores of anomaly scores for Discord analysis.

3.5.4 Network parameters

In this section we investigate how different network parameters: traffic volume,

subnet size and number of attackers affect on monitoring of slow activities. A

measure called detection potential is defined in this section for this analysis. That

measure explains how far an attacker node is deviated from the average of nor-

mal nodes (statistical norm), and helps to compare between different network

conditions.

3.5.4.1 Traffic volume

An attacker was located in a 51 size subnet of Network C and generated suspicious

events. The same experiment was repeated six times by keeping all parameters

unchanged, except attacker’s traffic volume. If the attacker’s traffic volume is

V at the first time, then at each repetition the attacker’s traffic volume was

incremented by one time as 2V , 3V , ...,7V . For each experimental run detection

potential was calculated, and standardized values of detection potentials (z-scores

of deviations) are plotted as in Figure 3.10. As shown in Figure 3.11 detection

potential is proportional to the traffic volume. The higher the traffic volume
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Figure 3.10: Z-Scores of deviations of cumulative node scores.

produced by an attacker is the better for her detection using the monitoring

algorithm.

3.5.4.2 Subnet size

To investigate how the subnet size affects on detection, an attacker was located in

a 500 size subnet and the same experiment was repeated six times by keeping all

other parameters, except the subnet size, unchanged. Subnet size was changed

to 400, 300, 200, 100, 50 and 25 at each experimental run and the graphs in

Figures 3.12, 3.13 and 3.14 were obtained. According to graphs in Figure 3.12

and 3.13, attackers have less chance to hide behind innocent events, when the

subnet size decreases. It is further reinforced by 3.14 showing that “the smaller

the subnet size, the better for detection of suspicious slow activities”. But in

practice, it should be noted that partitioning a network into very small subnets

would not be a feasible solution in sometimes, as it depends on several other

factors such as resources availability and user requirements. According to the

Figure 3.14, detection potential is negative exponential to the subnet size and

going beyond 100 size subnet size would not make any real sense in terms of
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Figure 3.11: Traffic volume vs Detection potential.

detection in this case.

3.5.4.3 Number of attackers

Keeping all conditions unchanged, except number of attackers, the same experi-

ment was repeated many times as described in table 3.1. The outcomes of only

two test cases (21 and 22) are presented in Figures 3.15 and 3.16. The attacker’s

node score (see figures 3.15 and 3.16) is dependent on “the number of attackers

in her own subnet” (compare attackers’ Z-scores). It rationalises our choice to

using peer analysis technique. Looking at one’s aberrant behaviour with respect

to her peers (i.e within the same domain, department, similar user group, re-

gion, country etc.) would give better results (in terms of lower false alarms) than

defining it universally. Comparison of nodes profiles regardless of similar peer

groups (e.g. subnets) would give higher false alarms. Hence, first classifying sim-

ilar nodes into peer groups, based on behaviour related attributes/features, and

then applying the monitoring algorithm will give better results. Investigations

for suitable classification algorithms for this task is left as a future work.
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Figure 3.13: Percentages (%) of suspicious events generated by the attacker.
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Figure 3.15: Z-Score graphs for same size subnets with different number of at-
tackers (250 size subnet, two attackers).

54



0 100 200 300 400 500

−
2

0
2

4
6

Time

Z
−

S
co

re

A1
A2

A3
A4 A5 A6

A7

Min

Max

T

Figure 3.16: Z-Score graphs for same size subnets with different number of at-
tackers (250 size subnet, seven attackers).

3.6 Discussion

The purpose of the proposed approach is to serve as an early warning system

for slow suspicious activities over computer networks that warrant further inves-

tigations. Long-term state of a node is restricted to an incremental estimate of

the probability that each node is an attacker. Node estimates are updated fol-

lowing every security event taking account of transient network information that

is available at the time of the event. A state size (i.e. a node score) in peer

analysis technique is a small multiple of the number of nodes in the network and

hence its storage is feasible even for organizations with global networks. Even in

the discord analysis technique using about 25 profile points (i.e. holding only 25

numbers) would be enough to fit the ARIMA model for a given node and hence

is scalable in terms of storage.

However in terms of processing discord analysis technique may demand more

processing power than the peer analysis technique because of its model fitting

part. Therefore using one of either techniques (or even both together) would

be a trade-off between a computational cost and required level of precision of
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the monitoring process. Note that analysis in rest of chapters in this thesis

depends on peer analysis technique only as it provided required precision for

the purpose of such analyses and also due to its lightweight nature. A study

of the requirements of host statistics such as CPU load, I/O operations and

memory usage for proposed techniques is out of the scope of this study, and

hence has not been included in the thesis. Because the aim of this study is to

establish the theoretical framework for a monitoring scheme rather than detailed

implementation issues.

Proposed approach in this thesis is an incremental approach which accumu-

lates evidences by the time to detect slow activities that occur over longer periods

of time. Hence our approach would not be suitable for handling situations if the

progression of attack activities are rapid (i.e. typical quick attacks lasting within

few seconds or minutes). Proposed methods have not been evaluated against real

world network data. Because it is very hard to find useful network traces from

real systems for IDS evaluations, especially, in a situation needed larger variations

of network parameters during very long times. Though each technique proposed

in this thesis has been tested in simulated environments, simulation environments

may not necessary be representative to the exact real world networks. Therefore

one possible option to evaluate the proposed approach under more realistic con-

ditions would be using a community-lab test bed. Since our aim is at this stage

to establish the conceptual framework that type of evaluation is left as a future

work.

The model using to generate node profiles in this thesis is a rather simple,

in fact, the multivariate version of the well known simple Bayesian formula. It

was chosen for this work because of its simplicity. Attributes are conditionally

independent is the simplified assumption in this version which greatly reduces

the computation cost (Wasilewska, 2010). However, there can be dependences

between value of attributes. To avoid this, extended versions of Bayes’ theorem

such as Bayesian Belief networks which provide joint conditional probability dis-

tribution can be used. Such a choice may add more precision to the monitoring

process in terms of accuracy, but can demand for more computational resources

of the monitoring devices (Kjaerulff, 1994; Zhang & Poole, 1994). However, in-

vestigations to find the optimal method among number of different techniques for
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information fusion1 would be interesting, but out of the scope of this thesis and in-

teresting readers are invited to refer (Hall & McMullen, 1992; Hall & Llinas, 2001;

Hall & Garga, 1999; Hall & Llinas, 1997; Hall & McMullen, 2004) for more details

on different information fusion techniques including their pros and cons. Using

Dempster-Shafer’s theory of evidence towards multi sensor data fusion for DoS

detection can be found in (Siaterlis & Maglaris, 2004). Following a taxonomy

in (Hall & McMullen, 1992), Siaterlis & Maglaris identify Dempster’s-Shafer’s

theorem as the promising method for their work.

3.7 Conclusion

An efficient method for slow activity monitoring and investigation of its effective-

ness under different conditions have been proposed, simulated and demonstrated.

Experimental outcomes and recommendations presented in this chapter provide

tactical and operational principles for systematic and efficient profiling and anal-

ysis. They are particularly useful in the capacity planning stage of network design

process.

Breaking down the monitoring problem into two sub problems reduces the

complexity of the problem and explores ways to investigate alternative methods.

Acknowledging the event uncertainty to the monitoring process reduces the false

alarms and hence provides better monitoring. Our approach is a complementary

to conventional intrusion detection techniques but not a replacement. Proposed

approach is domain agnostic. It can be extended to use for the wider context of

Cyber defence (e.g. profiling geographical locations of adversaries), and can be

used also in other domains such as crime and juridical sciences.

This chapter proposed a novel algorithm for slow activity monitoring in a

Bayesian framework. Theoretical account of the approach was established and

detailed discussions of experimental results were included. Next chapter uses the

proposed Bayesian framework to provide an anomaly based adaptive method for

tracing down the sources of slow suspicious activities. Chapter 5 examines the

1Investigations to use some advanced methods like N-gram version of HMM, Bayesian Belief
networks, Kernel Density Estimation (KDE), Dempster-Shafer theorem, Kalman Filter, Viterbi
algorithm, Gi*, Evidential reasoning, Logic based fusion, Preference aggregation, Neural net-
works and Ontology & category theory to generate node profiles would be interesting.
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feasibility of employing traffic sampling with the proposed monitoring algorithm

in this chapter. A target-centric monitoring scheme is presented in Chapter 6

utilising only the destination information of activities by the algorithm.

Finally the technical findings of this chapter include:

- breaking down the monitoring (main) problem into two sub problems (pro-

filing and analysis) which reduces the complexity of the problem and enable

researchers to study/improve each part separately;

- demonstrating the feasibility of using a probabilistic, particularly a Bayesian,

approach for profiling to acknowledge motivation uncertainty. It reduces

possibility of occurring false alarms;

- introducing peer analysis technique consisting of a dynamic threshold which

capable of adjusting itself according to the current state of the network;

- introducing discord analysis technique which capable of detecting slow sus-

picious activity regardless of how much is it slow.
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Chapter 4

Tracing slow attackers

This chapter discusses the tracing down problem, and provides an anomaly based

adaptive method for tracing down the sources of slow suspicious activities in com-

puter networks. A theoretical account of the approach and experimental results

are provided. The main contribution of this chapter is the tracing algorithm.

4.1 Introduction

Tracing down anonymous slow attackers creates number of challenges in network

security. There is no guarantee on publicly visible source of an event is to be the

true source. As mentioned in (De Tangil Rotaeche et al., 2010) to remain anony-

mous the attacker attempts to either disguise the elements that characterize the

attack or hide the source of its acts. The localization process becomes evermore

difficult when the attacker employs various proxy methods (e.g. Generic port

routing, HTTP, Socks, IRC etc) and zombie (e.g. bots) nodes. Manipulation of

TCP/IP elements (e.g. IP Spoofing), using relay or random routing (e.g. Tor

networks, Crowds, Freenet systems etc) approaches can help an attacker protect-

ing her location. Proliferation of weakly encrypted wireless networks could also

help an attacker getting anonymous locations.

The methodology presented in Chapter 3 is based on underlying assumption

that attack activity can be attributed to a meaningful specific source or an inter-

mediate. This assumption is not held for anonymous slow attackers and identi-

59



fying source of such an attack requires tracing packets back to the source hop by

hop. Current approaches for tracing these attacks require the tedious continued

attention and cooperation of each intermediate Internet Service Providers (ISPs).

This is not always easy given the world-wide scope of present day Networks (Burch

& Cheswick, 2000). Many researchers claim completely depending on information

derived from single network device will do little on Cyber conflict attribution and

detection due to the nature of the current Internet infrastructure (Drew, n.d).

Therefore there is a need for approaches that combine technical solutions data

with the information gathered from contextual analysis (combining prior belief

with posterior knowledge).

This chapter presents a methodological way to trace anonymous slow activities

to their approximate sources by prioritizing evidence acquisition. First, network

paths from a victim to its immediate visible hops are mapped as a tree. Then

each path is profiled in a Bayesian framework and highest scored path is chosen

to move towards. This is repeated until the exact location of the attacker is found

or the entire topology is covered. As shown in the rest of the chapter this method

eliminates all but a handful of suspicious nodes that could be the source of the

suspicious activity.

4.2 Related work

Parker (2010) claims that a common problem with many analysis tools and tech-

niques today is that they are simply not designed for purposes of attribution.

Beidleman (2009); Morrill (2006); Wheeler & Larsen (2003) mention attribution

of Cyber activity - “knowing who is attacking you” or “determining the identity

or location of an attacker or an attacker’s intermediary”- is naturally a vital ingre-

dient in any Cyber security strategy. Although current approaches are capable of

alarming suspicious activities, most of them are not suitable for this information

age because when computers are under attack “who” and “why” are frequently

unknown (Charney, 2009; Saalbach, 2011).

Tracing back is one of the most difficult problems in network security, and a lot

of research being conducted in this area (John & Sivakumar, 2009; Mitropoulos

et al., 2005). But deterministic packet marking and out of band approaches are
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not relevant to this work. Because our approach is a probabilistic approach. As

explained in Chapter 3 deterministic approaches are not capable to acknowledge

motivation uncertainty and leading to more false alarms (Chivers et al., 2009,

2013; Heberlein, 2002).

Flooding tests network links between routers are controlled to approximate

the source in (Burch & Cheswick, 2000). Sager and Stone suggest to log packets

at key routers and then to use data mining techniques to determine the path

which packets traversed through the network (Sager, 1998; Stone et al., 2000).

The upside of this approach is traceability of an attack long after it has completed.

Obviously, the downside it is not scalable. Snoeren et al. (2002) propose to mark

within the router to reduce the size of packet log and to provide confidentiality

using a hash-based logging method. Stefan et al. (2001) suggest probabilistically

marking packets as they traverse through routers. They propose router marking

the packet with either the routers IP address or the edges of the path that the

packet traversed to reach the router. With router based approaches, the router

is charged with maintaining information regarding packets that pass through it.

Most of above approaches are focus on DDoS attacks. Since our interest is not

on events related to quick attacks, the work presented in this chapter differs from

all above works.

4.3 Methodology

As mentioned in Chapter 3, the environment we are working is noisy due to the

motivation uncertainty. By just looking at an event it is impossible to simply

judge its motivation. As Davidoff and Ham claim other information such as con-

textual information (i.e. using a multivariate approach) can be useful to narrow

down the meaning of such an event (Davidoff & Ham, 2012). For example a sus-

picious port scanning activity may have following characteristics: a single source

address, one or more destination addresses, and target port numbers increasing

incrementally. When fingerprinting such traffic multiple elements are examined

to develop a hypothesis for the cause of behaviour (Davidoff & Ham, 2012).

By following the above idea, a multivariate approach is proposed for our trac-

ing algorithm which profiling plays a key role. The formula 3.4 in section 3.3.2.2
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is used for profiling assuming that immediate predecessor (or successor) of any

node can be certainly found. In fact immediate hop can always be found by

looking at the physical path of packet arrivals. Accumulated probability term

(i.e.
∑
t

p(Hk/E), t is time) is divided by number of nodes behind the target hop

(i.e. nk - size of the subnet behind hop k if there is one) and known as channel

profile score. The channel profile score is used as a measurement of the level of

suspicion of channel k. The underlying idea is that by aggregating information

of large volume of events it is possible to build a clear set of benchmarks of what

should be considered as normal over extended period of time and hence to iden-

tify channels that anomalous data comes to the victim node. If the topological

information is available let:

ckt =

∑
t

p(Hk/E)

nk
(4.1)

is the channel profile score of kth channel at time t. Then

zkt =
ckt − c̄t
σt

(4.2)

is the Z-score of channel k at time t. where c̄t =

∑
i
cit

n
, σt =

√∑
i

(cit−c̄t)2

n−1
, and

i = 1, 2, 3, ..., n.

4.3.1 Tracing algorithm

This section presents our algorithm for tracing slow suspicious nodes. The tracing

algorithm has two segments: tree formation and tree traversal. Tree formation

builds an equivalent tree structure for a given attack scenario enabling tree traver-

sal to move towards the attacker’s physical source. Algorithms for both process

are given below.

4.3.1.1 Tree formation

Tree formation is the process of building an equivalent tree structure for a given

attack scenario. Victim node is the starting point. Gateway node to victim is
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considered as root of the tree and all immediate visible nodes (either internal or

external) to the root are considered as children of the root. If a given child is a

host node in the network then it becomes a leaf of the tree. If it is a gateway then

it becomes a parent node of the tree and all immediate visible nodes to that node

are attached as its children. This process is continued until the entire topology

is covered (see Figure 4.2).

ϑ: Tree;

ω: A node;

τ : Set of all nodes in the given topology;

input : Topological information together with victim’s location

output: Tree structure for the given attack scenario

Initialize the tree ϑ to have the root as the gateway of the victim;

List all nodes into the list τ ;

/* attached each node to the tree*/;

tree-construction(ϑ,τ);

foreach node ω in τ do

if num-of-hops-between(ϑ,ω)==1 then
insert ω into ϑ;

end

end

foreach ϑ.child do
tree-construction(ϑ.child,τ)

end
Algorithm 3: Tree formation for a given attack scenario.

4.3.1.2 Tree traversal

Once the equivalent tree structure is built, proposed tree traversal algorithm is

applied. To traverse a non-empty tree, perform the following operations recur-

sively at each node, starting from the root of the tree, until suspected node is

found.

1. Visit the parent node
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2. Compute channel scores for all children of the parent

3. Traverse the highest channel scored sub tree (if an attacker node is found

backtrack to the parent)

4. Traverse next highest channel scored sub trees (only sub trees significantly

deviate from rest of nodes of same parent)

The algorithm continues working towards a built tree node by node, narrow down-

ing the attack source to one network and then to a node. At this point we can

run more standard trace back methods by contacting the entity which controls

that network if it is beyond our control.

input : A Tree constructed for anonymous slow attack scenario

output: A node where attacker is located

proposed-traverse(ϑ);

while not found do
visit node ω;

if node ω is a leaf then
return;

else
profile all children of node;

proposed-traverse(node.top scored child);

proposed-traverse(node.next scored child);

end

end
Algorithm 4: Tree traversal for a given tree.

4.4 Experiment

Figure 4.1 presents the network topology used for our experiments. Subnet sizes

are as follows: S1(25), S2(25), S3(50), S4(25), S5(15), S6(25), S7(25), S8(5), S9(5)

and Server farm(10). Following scenario is defined to test our approach.
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Figure 4.1: Network topology used for the experiment.

4.4.1 Scenario

Suppose that security staff have noticed someone’s suspicious activity on a node in

the server farm (see Figure 4.1) for sometime. Though they have a packet capture

of the activity, they can’t figure out what’s going on, whether those events are

a result of simple user mistakes or a malicious attempt. Origin of packets seems

to be fake and the time gap between two consecutive events of that particular

activity seems to be significantly high.

Above scenario is simulated using NS3 by considering two cases: single and

multiple attackers. In single attacker case an attacker is located at a node in

subnet S6, and in multiple attackers case three attackers are located one in each

in three different subnets S3, S5 and S6. Network traffic is generated as described

in section 3.4.1.2 ensuring that the source anonymity for attack events. Prior

probabilities and Likelihoods are assigned as described in section 3.4.1.3. Equally

likely assumption, i.e. p(H1) = 0.5 in Equation 3.6, is followed for the single

attacker case. But for multiple attacker case a slightly higher chance (55%) of

sitting back the attacker at a node outside to the server farm is assumed and initial

prior probabilities are assigned accordingly (i.e. p(H1) = 0.55 in Equation 3.6).

Each simulation was run for a reasonable time period to ensure that enough traffic
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was generated (over one million events).

4.5 Results

Figure 4.2 presents the equivalent tree structure produced by Algorithm 3 for

above scenario. The root denotes victim node while gij and hij denote a gateway

or a host node at level i in Figure 4.2. j is a node number. Dashed rectangles

represent a collection of leaves corresponded to hosts in each subnet. Once the

tree is obtained, Algorithm 4 is run to locate the attackers as shown in Figures 4.3

to 4.6 for single attacker, and Figures 4.7 to 4.14 for multiple attackers.

Figure 4.3 represents the Step 1 of tracing process created at the root of the

derived tree. Min and Max represent the minimum and maximum Z-scores of all

immediate visible nodes (11 in total, except g13) to the root at each time point.

Since that graph suggests moving towards g13 , Step 2 graph is created at node

g13 , and so on. Finally search is narrow downing to the subnet S6. Step 4 graph

(see Figure 4.6) is created at S6 ’s gateway node g34 . In that graph A denotes the

Z-scores corresponded to the true attacker located in that subnet. Min and Max

represent the minimum and maximum Z-scores of all other nodes in subnet S6.

Note that T denotes the threshold (Grubbs’ critical value) which is not defined

when number of data points in a set is two or less than two. In that case the

highest scored path is chosen to move towards (see Figure 4.4) in finding attacker

or directions to her location.

A similar manner should be followed in interpreting graphs in Figures 4.7

to 4.14 obtained for multiple attackers. In that case, once an attacker is found

tracing algorithm should be back tracked to its immediate parent node and should

proceed with next highest Z-scored sub tree if it deviates significantly from major-

ity to find other suspicious nodes. Step 1 at Figure 4.7 depicts such a situation.

After Steps 3 and 7, algorithm back tracks to the root node. Table 4.1 summarises

travel sequences for tracing single and multiple attackers.
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Figure 4.2: Equivalent tree structure for the given scenario.
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Figure 4.3: Single attacker Step 1 - node scores at root.
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Figure 4.4: Single attacker Step 2 - node scores at g13.
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Figure 4.5: Single attacker Step 3 - node scores at g25.
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Figure 4.6: Single attacker Step 4 - node scores at g34.
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Figure 4.7: Multiple attackers Step 1 - node scores at root.
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Figure 4.8: Multiple attackers Step 2 - node scores at g12.
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Figure 4.9: Multiple attackers Step 3 - node scores at g23.
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Figure 4.10: Multiple attackers Step 4 - node scores at g13.
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Figure 4.11: Multiple attackers Step 5 - node scores at g25.
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Figure 4.12: Multiple attackers Step 6 - node scores at g34.
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Figure 4.13: Multiple attackers Step 7 - node scores at g11.
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Figure 4.14: Multiple attackers Step 8 - node scores at g21.
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Scenario Travel sequence (until all attackers are found)

Single attacker root, g13 , g25 , g34

Multiple attackers root, g12 , g23 , root, g13 , g25 , g34 ,root, g11 , g21

Table 4.1: Traversal sequences for tracing attackers.

4.6 Discussion

Requiring topological information of monitoring network is a limitation of our

approach. This limitation occurred due to denomination factor (nk) in Equa-

tion 4.1. However automated tools and techniques are available at present for

obtaining topological information (network layer map) of a given network (Tozal

& Sarac, 2012), and such a tool can be integrated with our algorithm to over-

come that limitation. These tools are capable of capturing a network layer map

with various topological characteristics such as total number of routers, degree

distribution of routers, average router degree and betweenness (Tozal & Sarac,

2012). Introducing a normalization factor for nk is another option to overcome

that limitation and hence to extend our approach for any network.

Since our focus is slow activities we assume that there is enough time to move

equipment and programs into place, map routes, and perform the actual trace

back. Our approach assumes that attacker is not moving to other networks as

a part of launching the attack. Therefore tracing collusion activities still remain

unsolved. We acknowledge that use of sophisticated attack activities such as use

of bot-nets, throwaway systems and distributed sources makes it very difficult to

tracing down slow activities. Of further interest is to determine the target of such

activity as a part of defensive mechanism (see Chapter 6).

It is possible to automate the proposed approach for real world implemen-

tation by developing simple scripts which enables remote data collections from

network devices (Braun et al., 2010). For example Satten (2007) shares a collec-

tion of code, methods and insight for capturing packets remotely from a network

without connecting a capture box to the remote network. Our approach can be

implemented on that type of code base to improve the performance of remote

capturing.
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There is a possibility to extend this work as an adaptive approach to net-

work traffic analysis would also be welcome to address selective monitoring and

collection of packets. Little research has considered this problem. One hardware-

based approach to characterise unlikely uninteresting traffic more cheaply that

can be devoid of further more expensive software-based analysis exists (Gonzalez

et al., 2007); this is demonstrated to be effective for potential Gigabit Ethernet

operations. However, further work is needed to allow for traffic monitoring to be

sensitive to the type of services a given node may be vulnerable against. This

will help avoid undue attention to suspicious traffic that will not prove harmful.

4.7 Conclusion

In a situation there are multiple suspected sites to be investigated (eg, different

actors, subnets, LANs, locations etc) prioritization centres of attention would

be a problematic. Localisation attackers’ identities as much as possible, at least

for an intermediary level, or choosing the smallest subset which attacker may be

included would greatly save the cost and time to be spent for investigations. Our

approach serves on this task.

This approach is independent from the subnet size. Increasing or decreasing

subnets’ size, but keeping the same topological structure, does not change the

number of steps required in tracing process. Our approach changes its traversal

sequence according to the suspicious traffic. As a result, suspicious node comes

forward in the sequence and probability of trapping it early becomes high.

Requiring topological information is a limitation of our approach at present

and hence specially suitable for tracing down anonymous insiders. In future we

hope to further develop this approach for any network. Finally the main technical

finding of this chapter is the tracing algorithm.
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Chapter 5

Lightweight monitoring

This chapter explores possibility to minimise data collection for our monitoring

algorithm by employing traffic sampling, and examines effects of network de-

sign on sampling error. The main contribution of this chapter is proposing a

lightweight monitoring scheme.

5.1 Introduction

Network monitoring for traffic analysis ranges from counting the volume of traffic

to capturing packets transferred throughout the network using various meth-

ods (Shaikh et al., 2009). As contemporary enterprise networks scale up in size

and speed, huge volume of traffic has a cost ramification for collection infras-

tructures. Resources of network devices are comparatively expensive and scarce.

Such resources need to be utilised on their regular activities than utilising on

monitoring activities. As volume and rate of traffic are rising, inspection of each

and every individual packet is not feasible any more. A data reduction is needed

and could be motivated as long as it preserves the required level of precisions for

monitoring objectives.

Employing statistical sampling and estimating interested security parameters

of entire population by analysing a small unbiased sample would be a possible

method for data reduction. If a drawn sample faithfully represents entire traffic

characteristics of interested parameter then it can be used to analyse. It helps
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with data reduction in terms of both traffic collection and processing. Traffic

sampling approaches have been suggested by the Internet Engineering Task Force

(IETF) working groups (IETF, 2009), and already been employed by some tools

(e.g. Cisco NetFlow (Cisco, 2013)) in their router design. Note that random

sampling techniques have a distinct advantage against other alternative methods

for data reduction. It allows retention of arbitrary details while other methods

for data reduction (e.g. filtering and aggregation) require knowing the traffic

features of interest in advance.

Despite all the benefits mentioned above, there is an inherent tension and

debate of using traffic sampling for security specific tasks. Obviously, signature

based detection methods can be seriously affected by sampling as selection of only

a subset of signature elements would not be sufficient to recognise a predefined

signature pattern. But in anomaly based detections, should whole traffic still

need to be investigated? By definition an anomaly of a parameter of interest is

a deviation of a computed statistic of that parameter from a norm of the normal

traffic statistics. If sampling changes the statistics of normal and anomalous

traffic equally, it is reasonable to hypothesise that detectability would not be

affected by the sampling rate.

This chapter presents our study on impact of traffic sampling on our mon-

itoring algorithm presented in Chapter 3. The study has two objectives: 1-

investigating the feasibility of employing traffic sampling with our monitoring

algorithm to produce a more light-weighted version of the algorithm, and 2-

examining how design of the network affects on sampling error.

5.2 Related work

Objectives of network monitoring can be classified into three main categories:

traffic engineering, accounting and security specific. The accuracy requirements

of these applications are quite different. Traffic sampling for security specific tasks

(particularly anomaly detections) has not been comprehensively studied when it

compared with number of studies available on traffic sampling for engineering and

accounting tasks. Using sampling for traffic engineering and accounting tasks

is widely studied (Duffield, 2004) and already been employed by commercially
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available tools (Cisco, 2013). However those studies are not relevant to this

work as our objective is a security specific. Because a sampling technique which

performs well in traffic engineering and billing tasks might not be necessarily a

good choice for effective anomaly detection (Jurga & Hulb, 2007).

Using sampling for security specific objectives can be found in (Ali et al.,

2010; Ishibashi et al., 2007; Claffy et al., 1993; Tellenbach et al., 2008; Mai et al.,

2006a,b; Barakat et al., 2005; Brauckhoff et al., 2006; Fazio et al., 2012; Taylor

& Alves-Foss, 2001; Reeves & Panchen, 2002). But none of them focuses on slow

activities. Note that methods proposed for typical rapid attacks cannot be used

to monitor for slow activities due to several constraints including limitations of

computational resources (Chivers et al., 2013). To the best of our knowledge

this is the first attempt to use sampling technique for slow activity monitoring in

computer networks.

Based on sampling frame, existing sampling proposals can be classified into

two groups: packet-based and flow-based. Packet-based techniques (Ali et al.,

2010; Ishibashi et al., 2007; Claffy et al., 1993; Tellenbach et al., 2008; Mai et al.,

2006a,b; Duffield et al., 2005; Reeves & Panchen, 2002) consider network packets

while flow-based techniques (Hohn & Veitch, 2006; Duffield et al., 2002; Mai et al.,

2006a; Androulidakis & Papavassiliou, 2008; Androulidakis et al., 2009; Bartos &

Rehak, 2012) consider network flows as elements for sampling. Packet sampling is

easy to implement as it does not involve any processing before selection of samples.

But in the case of flow sampling, monitored traffic is processed into flows first

and then apply sampling technique on whole set of flows for drawing a sample.

This requires to use more memory and CPU power of network devices. Yang

& Michailidis (2007) is a study of combination of packet and flow sampling. A

comparison of packet vs flow sampling can be found in (Hohn & Veitch, 2006).

The most widely deployed sampling method in literature is packet sampling. It is

computationally efficient, requiring minimal state and counters (Tellenbach et al.,

2008).

Ali et al. (2010) propose an algorithm to sample malicious packets with higher

rates to improve the quality of anomaly detection. High malicious sampling rates

are achieved by deploying in-line anomaly detection system which encodes a bi-

nary score (malicious or benign) to sampled packets. Packets marked as malicious
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are sampled with a higher probability. Obviously this approach involves addi-

tional processing and storage overheads. Ishibashi et al. (2007) evaluate quanti-

tatively how sampling decreases the detectability of anomalous traffic. They show

that by changing the measurement granularity it is possible to detect anomalies

with low sampling rates and to use relationship between the mean and variance

of aggregated flows to derive optimal granularities.

Claffy et al. (1993) investigate the performance of various methods of sampling

in network traffic characterization. They use several statistics to compare two

distributions for similarities in order to compare sample traces with their parent

population. Tellenbach et al. (2008) evaluate effect of traffic mix on anomaly

visibility using traces collected at four different border routers. They use prior

knowledge of two different worm types to measure the visibility level of anomaly at

various sampling rates. Mai et al. (2006a,b) are evidence to show that suitability

of a sampling technique depends on the detection method. Former investigates

how packet sampling impacts on three specific port scan detection methods. The

same work has been extended in later to investigate impact of other sampling

methods. Both studies conclude that packet sampling is less effective on anomaly

detection when using their detection method. Brauckhoff et al. (2006) show that

entropy metrics are less affected by sampling and are able to expose the blaster

worm even at high sampling rates.

Event based and Timer based are two possible mechanisms to trigger the

selection of a sampling unit for inclusion in a sample. Event based approaches

collect one elements out of N elements using chosen sampling method. Naive 1

in N sampling strategy by Cisco NetFlow (Cisco, 2013) is a well known example

for that method. It samples one packet after every N packets. Event based

approaches consume more CPU and memory of network devices as it involves

some processing (counting). In a timer based approach one packet is sampled

during N time units. This approach is effective in terms of CPU and memory

consumptions as it depends on system timer. However choosing larger Ns returns

higher sampling errors due to non-time-homogeneous nature of packets arrivals

to the network.
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5.3 Lightweight monitoring

As mentioned above decision to inspect each and every packet (or flow) can be

expensive for collection infrastructures in terms of time, bandwidth and computa-

tional resources, and also may not feasible in modern day Gigabit networks (Jurga

& Hulb, 2007). This section proposes a Lightweight monitoring scheme for slow

activities. It minimises amount of information needed to collect from different

parts of the network while still be able to distinguish slow suspicious activities

from normal activities. First traffic is sampled and then monitoring algorithm is

applied on drawn samples.

5.3.1 Sampling methodology

Network data constitutes a potentially unlimited population continuously grow-

ing up by the time. Hence whole observation window W is segmented to number

of smaller time windows w and traffic is sampled within smaller windows using

stratification sampling technique with optimum allocation method, which is de-

signed to provide the most precision for the least cost (Trek, n.d; Dıaz-Garcıa &

Cortez, 2006). If h is a traffic stratum the best sample size nh for stratum h is

given by:

nh = n.
[Nh.sh√

ch
]∑

Ni.si√
ci

(5.1)

where nh-sample size for stratum h, n-total sample size, Ni-population size

for stratum i, si-standard deviation of stratum i, and ci-direct cost (in terms of

time, bandwidth, and computational resources) on the collection infrastructure

to sample an individual element from stratum i. Note that the direct cost should

be in a common unit (CU) of measurement for the amount of computational cost

spending on different parameters. The time, bandwidth, memory or processor

requirements that constitutes one common unit (1CU) varies based on which re-

quirement is being measured, and how each parameter is critical and scarce to the

network. Hence definition of such a unit (CU) would be subjective. For instance

one can define: 1CU is memory equivalent of 128MB, 1CU is bandwidth equiv-
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alent of 56KBPS, 1CU is CPU-Time equivalent of 100 nsec etc. International

unit (IU) in pharmacology is a well-known example for a similar approach for a

common unit of measurement for the amount of a substance (Ansel & Prince,

2004). The main advantage of above sampling technique is producing the most

representative sample of a population to the least cost. Hence it is a reasonable

choice to employ with our problem as “cost” parameter can be minimised, subject

to the required precision, to obtain a light-weighted monitoring scheme. Traffic

classification is employed to establish the strata. Using a basic classification tech-

nique (e.g. using known L4/L3 access lists and Protocols) would be enough as

advanced classification techniques may consume more computational resources.

All other traffic which is not belonged to a predefined stratum is pooled into a

common stratum. A detailed discussion of possible types of network traffic is be-

yond the scope of this thesis. Note that running an advanced traffic classification

algorithm to establish the strata is not recommended at this point as it can add

processing overheads to collection infrastructure.

The simple random sampling (SRS) technique is used to select a nh size sam-

ple from stratum h. Stratification ensures that each traffic type is adequately

represented (Trek, n.d). Ensuring (as much as possible) heterogeneity among

strata with homogeneity within stratum will increase the precision of sampling.

Each element of the population having a non-zero probability of selection is a

preliminary condition for any random sampling technique. Sampling traffic sim-

ply from backbones or edge routers (as most existing works do1) seriously violates

this condition in terms of security specific view. Because it ignores consideration

of traffic within same broadcast domains, and hence potential insider activities.

Therefore traffic is sampled at each broadcast domain in this work but consider-

ing incoming traffic only. Considering incoming traffic avoids selection of a given

unit (packet or flow) twice for inclusion in a sample at source and destination

points.

1Sampling traffic from backbones or edge routers is enough for most of accounting and
traffic engineering tasks.
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5.3.2 Monitoring algorithm

The algorithm presented in Chapter 3 is applied on drawn samples. It further

reduces data sampled during w into a single value which is important to main-

tain information about node activities for a very larger time window W . However

considering complex methods likes Principal Components Analysis (Smith, 2002)

(combines variables based on the correlation) as the data fusion technique is pur-

posely ignored as they introduce extra computational overheads to monitoring

process. The probability term p(H1/E) in Equation 3.4 is accumulated by time

to generate node scores for larger observation window W . Peer analysis tech-

nique described in section 3.3.3.3 is used at each time point to distinguish slow

suspicious activities from normal activities.

5.3.3 A Case study

An attacker is located at a node in a subnet of network B (see Figure 3.1), and

network traffic including suspicious activities is generated as described in sec-

tion 3.4.1.2. Each simulation is run for a reasonable period of time to ensure that

enough traffic is generated (over one million events). A simple R (R Develop-

ment Core Team, 2010) script (see Appendix B.4) is written to sample packets

as described above. Prior probabilities and Likelihoods are assigned as in sec-

tion 3.4.1.3. ci in Equation 5.1 is set to a constant value assuming there is no

significant difference between stratum for the cost of selecting an element for

inclusion in a sample.

5.3.3.1 Attacker detection

A series of experiments have been conducted by changing the sampling rate r,

hence n in Equation 5.1. Figure 5.1 presents the outcome of the proposed ap-

proach when r = 10% of the whole traffic N . Min and Max represent the min-

imum and the maximum profile scores of normal nodes in the subnet where at-

tacker node A is located. T represents the Grubbs’ critical value (threshold) for

attackers’ subnet. As it is obvious from Figure 5.1, our algorithm together with

chosen sampling technique is capable of detecting slow activity using a 10% size

sample.
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Figure 5.1: Running the detection algorithm over 10% size sample.

5.3.3.2 Detection potential

Detection potential measures how likely an activity could be detected as a sus-

picious slow activity. It can be expressed in terms of deviations of profile scores

from the threshold line. Obviously, the higher the deviation (order the real values

of deviations, not absolute values) has the better chance of detection. On that

basis the detection potential D is defined as: D = z − T . Figure 5.2 compares

the detection potential against the sampling rate r. It is obvious that a point of

diminishing returns is existed in Figure 5.2. When r is larger enough to produce

a reasonable level of accuracy making it further large simply wastes resources of

monitoring infrastructure.

5.4 Network design

A sampling process has two types of errors: sampling and non-sampling. Sam-

pling error occurs because of the chance, and it is impossible to avoid but can be

minimised by defining unbiased estimators with small variances. Non-sampling

errors can be eliminated, and occurred due to many reasons: inability to access
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Figure 5.2: Detection potential vs sampling rate.

information, errors made in data processing, etc (Tozal & Sarac, 2012). This

section examines what impact would varying network size and subnet structure

have on sampling error.

Proportion of anomaly packets φ is considered as the parameter of interest for

this analysis and hence sample proportion π is defined as π = (a/n); where a is

the number of suspicious packet in a given sample size n. Note that proportion of

illegitimate to legitimate traffic, i.e. a : (n− a), is a dominating factor for likeli-

hood of false alarms in an IDS (van Riel & Irwin, 2006b). Though the distribution

of φ is binomial, in a network scenario, this can be approximated by a normal

distribution given a overwhelm number of packets to deal with (it satisfies the

conditions of n.π̂ ≥ 15 and n.(1− π̂) ≥ 15). Hence, φ ∼ Normal

(
π̂,
√

π̂(1−π̂)
n

)
,

where π̂ is the observed proportion from samples. This can be used to draw

inference about the unknown population proportion φ.

5.4.1 A Case study

An attacker is located in a 224 size network and π̂ is estimated in each case as de-

scribed below. Following the Monte Carlo technique to simulations (Sawilowsky,
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Sampling
rate(r)

5% 10% 20% 40% 80% Whole
trace

π̂ 0.00038 0.00034 0.00036 0.00035 0.00036 0.00036
P.Value 0.0970 0.0929 0.0952 0.0971 0.9770 N/A

Table 5.1: Proportion over sampling rates.

2003), each simulation was repeated over 100 times. Goodness-of-fit test (Rao

& Scott, 1981) is applied to statistically test the independence (or homogeneity)

of proportion π over sampling rates, number of subnets and subnet sizes. If any

dependency is found it is depicted in a graph as shown in Figures 5.3 and 5.4.

5.4.1.1 Sampling rate (r)

Traffic samples at 5%, 10%, 20%, 40%, and 80% rates of the whole trace were

drawn and π̂ was calculated. The null hypothesis H0 is the assertion that the

sample proportion π conforms to the whole traffic proportion φ (i.e. H0:∀r πr=φ).

The alternative hypothesis H1 is the opposite of H0 (i.e. H1:∃r πr 6=φ). π̂s and

p-values of testing H0 vs H1 are given in Table 5.1 where p-values are greater than

the significance level α = 0.01 for all cases. Therefore there is no enough evidence

to reject the null hypothesis H0. Hence we conclude that sample proportion π

conforms to the whole traffic proportion φ. In other words π can be used to draw

inference about φ.

5.4.1.2 Number of subnets (b)

An attacker is located in a 224 size network and same experiment was repeated

for four more times by changing the number of subnets, which was doubled at

each time, but keeping all other conditions unchanged. The null hypothesis H0

- the assertion that the proportion π is not affected by the number of subnets

b (i.e. H0: π0 = π2 = π4 = π8 = π16 = k) vs alternative hypothesis H1 - the

opposite of H0 (i.e. H1: ∃b πb 6= k) was tested. π̂s and p-values of testing H0

vs H1 are given in Table 5.2. Since p-values are less than the significance level

α = 0.01 for some cases we conclude that there is no enough evidence to accept

the null hypothesis: “proportion π is not affected by the number of subnets b”,

which means that proportion is affected by the number of subnets. Figure 5.3
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Number of
Subnets(b)

0 2 4 8 16

π̂ 3.58E-04 2.86E-03 1.12E-04 8.52E-05 1.97E-05
P.Value N/A 2.65E-01 6.03E-06 3.94E-07 1.04E-11

Table 5.2: Proportion over Number of Subnets.
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Figure 5.3: Proportion vs Number of subnets at each sampling rate.

presents the relationship between number of subnets b and proportion π. When

b is increased π̂ is decreased (deviates from the actual value).

5.4.1.3 Subnet size (n)

An attacker was located in a 5 nodes size subnet in the network, and π̂ was

calculated at each sampling rate. The same experiment was repeated for different

subnet sizes: 10, 20, 40, and 80 without changing other parameters. The null

hypothesis H0 - the assertion that the proportion π is not affected by the subnet

size n (i.e. H0: π5 = π10 = π20 = π40 = π80 = k) vs alternative hypothesis H1 -

the opposite of H0 (i.e. H1: ∃n πn 6= k) was tested. π̂s and p-values of testing H0

vs H1 are given in Table 5.3. Since p-values are less than the significance level

α = 0.01 for some cases we conclude that there is not enough evidence to accept

the null hypothesis: ”proportion π is not affected by the subnet size”. Figure 5.4
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Subnet
Size(n)

5 10 20 40 80

π̂ 7.28E-04 8.61E-04 8.84E-05 2.06E-04 5.24E-05
P.Value 2.20E-16 2.20E-16 2.80E-01 6.39E-04 N/A

Table 5.3: Proportion over Subnet sizes.
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Figure 5.4: Proportion vs Subnet size at each sampling rate.

presents the relationship between subnet size n and proportion π: when n is

increased π̂ is decreased in overall (deviates from the actual value).

5.5 Discussion

Section 5.1 raised an important question “Do we need to look at whole traffic in

slow activity monitoring?” As it is obvious from Figure 5.2, when r ≥ 20% there

is no significant difference in detection potential d. Though a point of diminishing

returns is existed between 10% and 20% for this particular simulation scenario,

authors do not claim it generally for any algorithm. Instead we argue that a

point of diminishing returns can be existed for a given anomaly based detection

technique, and finding it leads to save resources of monitoring infrastructure.
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However, a very practical question occurred here is whether analysts are capable

of finding the size of “larger enough” sample (point of diminishing returns) of

their real world networks in day-to-day operations? A similar question has raised

in (Ishibashi et al., 2007). We leave this to pursue as future work.

Even for signature based methods, it should be noted that there are number

of malicious activities that can be detected with 100% accuracy even using a

single anomaly packet size sample. A protocol violation and a connection to an

IP address from a blacklisted NAT device are examples for such activities (Jurga

& Hulb, 2007). A single packet would also be sufficient for host and OS iden-

tification and such identification is often used for masquerade detection (Phaal,

2013; Zalewski, 2013). Obviously, there are network anomalies which cannot be

detected by observing only a single packet (e.g. DNS tunnelling). For instance, a

DNS tunnel could be detected by observing that the volume of data transferred

over port 53 is much higher than usual. In order to improve the accuracy of de-

tection, a minimum number of observations is required (Jedwab & Phaal, 1992).

However, required level of sampling rate depends on several factors: parameter of

interest, the statistic used for detection, detection algorithm, sampling method,

level of precision required, duration of monitoring, rate of attack events etc. Fur-

ther research is needed to identify group of security issues (parameters) that can

sampling be utilised and to find relationship between above parameters.

As shown in section 5.4.1.1, sampling methodology used in this work draws

representative samples for the proportion. Since the monitoring algorithm in this

work does not match exact signature sequences for detections (instead it accumu-

lates likelihoods), detectability is not considerably affected by the sampling rate of

such samples (see Figure 5.2 and section 5.4.1.1). Interestingly, though detectabil-

ity is not affected by the sampling rate it can be affected by the network design,

particularly by number of subnets and subnet size (see sections 5.4.1.2,5.4.1.3).

When either is increased, the estimated value is decreased and deviated from the

original value regardless of data is sampled or not. Note that since we have used

the proportion as the parameter of interest, in other way, this implies that how

many suspicious events you may observe to make your decisions as a return to

changing the network design. Studying the affects of network parameters such as

network design and sampling rates on visibility level of anomalies is increasingly
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popular among the research community. Tellenbach et al. (2008) is one such

example where authors use the prior knowledge of two different worm types to

measure the visibility level of the anomaly at various sampling rates.

It is important to highlight that the proposed approach is not intended to

study “how to sample network traffic so that any anomalies or security issues

can be identified by analysis of just the sampled packets and not requiring to

inspect all packets in the network traffic”. Our position sampling can not be

employed to tackle “any anomalies or security issues” in general, instead it can

be employed to tackle certain classes, groups of anomalies or security issues such

as slow activities that can be difficult to detect using typical detection methods.

5.6 Conclusion

Decision to inspect each and every packets can consume more resources at net-

work devices for packet processing, and more bandwidth for transmissions them

to collection points. Since we propose to sample data at the place of each sensor it

reduces the computational resources needed for packet processing and transmis-

sions. Sampling together with information fusion technique can be employed as a

data reduction method for slow activity monitoring. Sampling methodology used

in this work effectively captures the required number of anomaly observations for

the proposed monitoring algorithm even at smaller sampling rates. As shown in

section 5.4 the level of detectability can be affected by the network design.

At this stage of the research, we have shown that there is a possibility to use

sampling techniques in slow activity monitoring and some population character-

istics remain unchanged in samples as well. It is important to understand what

can and cannot be monitored using the proposed method and further research

is needed. In general, there is a higher tendency by higher order statistics to

show the same characteristics within samples as in the population. Therefore

investigating the sampling behaviours of detection algorithms, which are based

on higher order statistics, would be interesting. Lack of availability of such kind

of algorithms anticipates for testing this idea at present.

Finally the technical findings of this chapter include:
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- exploring feasibility of employing sampling technique with our monitoring

algorithm to produce a more lightweight version;

- relationship between network parameters and sampling error.
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Chapter 6

Target-centric monitoring

Unlike the source-centric approaches presented in previous chapters, this chapter

presents a target-centric approach. We strive to neglect any kind of information

about the source, and develop the method along the target alone to prove that

shifting to target-centric approach brings major benefits with respect to other

approaches. The main contribution of this chapter is proposing a shift to focus

of analysis.

6.1 Introduction

As mentioned throughout the thesis a particular challenge is to monitor for slow

and suspicious activities is deliberately designed to stay beneath detection thresh-

olds. It becomes even more difficult if such activities are a result of collusion

and/or anonymous. To detect any attack, monitoring systems must consider

event stream as a function of time and should use signature or anomaly based

methods against event flow. Most of existing monitoring schemes share a common

feature which we called source-centric analysis. They perform analysis based on

source information (in fact perceived last hop) of activity either it is a host based

or a network based monitoring system, and utilise that information at some stage

of detection assuming that suspicious activity can be attributed to a meaningful

specific source or an intermediate (Whyte et al., 2006). For example, as mentioned

in (Peng et al., 2004), most of the existing solutions become less effective when
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the attack is launched from distributed sources. The actual reason behind such

a deficiency is that their dependency on the Source IP addresses (or perceived

last hop) of activities for attack detection, i.e. the source-centric analysis. What

we propose in this chapter is we should move away from source-centric analysis

to destination-centric analysis. Note that this should not be mistaken as a host

based monitoring scheme, as it is not a problem of location of IDS deployment.

It is a matter of whether monitoring system depends on source information of

activities for attack detection or not.

As mentioned in section 3.3.1.2 there is no guarantee on publicly visible source

of an event is to be true source as various methods let an attacker getting anony-

mous. Source centric monitoring schemes are vulnerable to these situations. At-

tacker tactics such as source collusion and source address spoofing are common

and therefore make such attacker detection very hard. It becomes worst if the

attack is a slow attack as current computational constraints of monitoring devices

do not let to keep information about activities over extended periods of times to

correlate between suspicious events.

To address this we propose a method that does not require correlating to a

common source. We shift the focus away from potential sources of attacks to

potential targets of such activity. The proposed approach is designed to utilise

destination information of activities together with a data fusion technique to

combine output of several information sources to a single profile score. We analyse

for suspicious activities based on (or around of) the destination information only,

but completely independent from the source information. This provides target

node profiling where nodes suspected of being attacked are essentially monitored

for and detected. Simply put, we shift the focus of analysis away from potential

sources of attacks to potential targets of such activity. As a result resources

devoted to detection and attribution could be redeployed to efficiently monitor

for detection and prevention of attacks. The effort of detection should aim to

determine whether a node is under attack, and if so, effectively prevent the attack.
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6.2 Methodology

The problem of target-centric monitoring is also broken down into two sub prob-

lems: profiling and analysis as same as in source-centric monitoring approach in

Chapter 3. Profiling provides for evidence fusion across spaces in a Bayesian

framework and accumulation across time, and analysis distinguishes between

anomalous and normal profiles using Grubbs’ test. Note that we simply change

definitions of hypothesis H1 and H2 defined in section 3.3.2.2 as follows to use

them in the target-centric approach. If H1 and H2 be two possible states of a

node in computer network, we define H1 as node under attack and H2 as node

not under attack. Then H1 and H2 are mutually exclusive and exhaustive states.

If E={e1,e2,e3,...,em} is a set of evidences on proposition H1 obtained through

independent information sources then:

p(H1/E) =

m∏
j=1

p(ej/H1).p(H1)

2∑
i=1

m∏
j=1

p(ej/Hi).p(Hi)

(6.1)

As described in section 3.3.2.3, the assumption of statistical independence of

information sources is reasonable as we propose to use distinct types of informa-

tion sources operated independently.

6.3 A Case Study

Network simulator NS3 is used to build a network topology consisting of a server

farm and 10 subnets of varying size. Anonymous attackers located in 3 different

subnets are launching slow attacks on nodes in the server farm in a random man-

ner as described in section 3.4.1.2. Anomalous traffic, by means of unusual port

numbers, is generated along with normal traffic within and between networks.

To simulate innocent events like user mistakes suspicious traffic is also generated

by normal nodes but at different rates as in section 3.4.1.2. Each simulation is

run for a reasonable period of time to ensure that enough traffic is generated

(over one million events). Prior probabilities and likelihoods in Equation 6.1 are

93



assigned as described in section 3.4.1.3. Four cases are considered. In case 1 two

nodes on the server farm are targeted by three attackers, in case 2 one node on

the server farm is targeted by three attackers, in case 3 one node on the server

farm is targeted by a single attacker, and in case 4 two nodes on the server farm

are targeted by one attacker.

6.4 Results

This section presents graphs obtained for both approaches using the same trace

in each case. Figures 6.1 to 6.4 depict how the targets of slow attacks are detected

in all four cases. Graphs in Figures 6.1 to 6.4 are obtained utilising destination

information. Hence Equation 6.1 is used. Min, Max and T are the minimum,

maximum and threshold for profile scores of normal nodes in each subnet where

a targeted node V (or Vi, i=1,2 in cases 1 and 4) is located.

Figures 6.5 to 6.8 show how attackers are detected in all four cases. These

graphs are obtained utilising source information. Therefore Equation 3.4 in Chap-

ter 3 is used for this purpose. Min, Max and T are the minimum, maximum and

threshold for profile scores of normal nodes in each subnet where an attacker node

A is located. Since similar results are obtained for all three attackers in cases 1

and 2 only one attacker is presented.

6.5 Discussion

Our approach should not be mistaken as a host based monitoring scheme. The

focus of work presented in this chapter is not a problem of location of IDS de-

ployment. It focuses the event analysis stage of a monitoring system.

As mentioned in section 5.3.3.2, detection potential measures how likely an

activity could be detected as a suspicious slow activity. Figures 6.9 to 6.12 com-

pares detection potential across two approaches in each case. A (or Ai) represents

the detection potential for attackers while V (or Vi) represents the detection po-

tential for targets. The latter has a higher detection potential in all cases. Higher

variations (fluctuations) on detection potential indicate a higher chance for false

alarms.
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Figure 6.4: Utilising destination information. Case 4 - two targets
.
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Figure 6.7: Utilising source information. Case 3 - attacker
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Figure 6.8: Utilising source information. Case 4 - attacker
.
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Our approach is capable of detecting targets under attack successfully (see

Figures 6.1 to 6.4). Targets cut off (or very close to) the threshold while normal

nodes in target’s subnet are significantly away from the threshold. As depicted

in Figures 6.1 to 6.4 attackers hide among normal nodes and the source-centric

approach fails to detect them as quickly. Case 4, where colluded activities are

not simulated, is an exception here as it detects only one target out of two. But

in case 1, both target nodes are detected; a minimum number of observations are

required in order to detect a target successfully. In case 1, since three attackers

target two victims, there is a better chance for the monitoring system to observe

enough evidence against each victim than it is in case 4. Finding the relationship

between detectability and minimum number of observations required is future

work.

One difficulty with attribution is that attacks are carried out in multiple

stages using compromised machines as stepping stones (or in the form of bot-

nets). One argues that monitoring systems could be deployed to achieve both

attribution and early warning for attacks on target nodes. While this is feasible

in theory, in practice this means the cost of monitoring is incredibly high, as

networks expand in size, traffic volume rise, and slow attackers get slower. In one

sense, attribution is not serving effective security, but only a distraction for many

network administrators. Make no mistake that attribution remains important

but this is best left to be carried out by dedicated Cyber crime units, perhaps

operating at regional or national level providing for a coordinated response for

potential attribution. Only then are the complexities involved in responding to

large-scale organised attacks (Clayton, 2006) could be overcome both technically

and otherwise.

6.6 Related work

Whyte et al. (2006) offers a different direction for security monitoring by propos-

ing a class of scanning detection algorithms that focus on what is being scanned

for instead of who is scanning. But such an approach is not completely indepen-

dent from the source information either. It uses the source information of scan

packets for victim detection. Our approach does not require any information
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about the source. It completely depends on destination information and allows

for any suspicious event on the network to be accounted for. Most importantly,

we acknowledge two types of uncertainties of events defined in section 3.3.1 in a

Bayesian framework. Hence our effort is completely different from (Whyte et al.,

2006), but has been inspired from that work. Using Bayesian technique and its

variants for intrusion detection can be found in (Siaterlis & Maglaris, 2004). The

relevance of information fusion for network security monitoring has been widely

discussed (Chandola et al., 2009; Vokorokos et al., 2008).

6.7 Conclusion

We utilise a data fusion algorithm to combine the output of several information

sources to a single score. It acts as a data reduction method and enables us

to propose a lightweight monitoring scheme for the problem which is essential

in near-real-time analysis of slow, sophisticated targeted attacks. Our approach

promises scalable means for detection. A case study is presented for demon-

stration, and experimental results are encouraging. Experimental results offer

a promise for the feasibility of target detection in network security monitoring.

Target-centric monitoring provides for effective detection of slow and suspicious

activities as one does not have to rely on possible source aggregation. This could

be particularly useful for monitoring of high-profile nodes that are at particular

risk from sophisticated insider attacks or purposefully designed cyber weapons.

The focus on targeted nodes takes into account the importance of preventing such

compromise, which in itself should help to undermine attacks.

Finally the technical findings of this chapter include:

- proposing a radical shift to the focus of analysis.
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Chapter 7

Conclusion

This thesis set out to establish a theoretical framework for an efficient monitoring

scheme for slow activities in computer networks. In this final chapter we will

review the research contributions of this thesis, as well as discuss directions for

future research.

7.1 Contributions

This doctoral research has addressed some important questions in the area of

monitoring of slow suspicious activities on computer networks. We revisit the

research questions set out in section 1.1 and summarise how each of them has

been addressed.

• A Scalable monitoring scheme was proposed to fulfil the first objective

set out in section 1.1. As mentioned in Chapter 3, our approach is scalable

in terms of storage. Organizations find difficulties to weed through the

noise of routine security events and determine which threats warrant further

investigations. The profiling technique in section 3.3 addresses this issue. It

acknowledges the motivation uncertainty and hence reduces possible false

alarms. As mentioned in section 3.3.3.1, normal behaviour keeps evolving

and a current notion of normal behaviour is not sufficiently representative

in the future is a critical issue in this domain. Using Grubbs’ test in our

work overcomes that issue.
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• The Tracing algorithm proposed in Chapter 4 also serves for the first

objective in section 1.1. It is often the case in the networking world one

wishes to know “who did that”, and locate the right person responsible with

a view of persuading them not to do that again. In this regard, finding the

correct origin of the activities is very important. In a situation there are

multiple suspected sites to investigate prioritization centres of attention

would be a problematic. Tracing algorithm proposed in Chapter 4 serves

for this task. It helps to speed up the investigation process and to save the

cost and time spending on it.

• Lightweight monitoring scheme proposed in Chapter 5 addresses our

second objective of this research in section 1.1. We have shown that traffic

sampling can be employed with our monitoring algorithm, and some pop-

ulation characteristics (proportion) of network traffic remain unchanged in

samples. We hope this analysis helps further advancement of researches

on traffic sampling for security specific tasks which currently has drawn

comparatively a less attention of research community in this domain.

• Target centric monitoring scheme proposed in Chapter 6 addresses fi-

nal research objective set out in section 1.1. Proposed monitoring scheme

completely depends only on information within your control and ignores de-

pending on any source information to protect networks. This work demon-

strated the core principle taking into account the importance of preventing

such compromise. Moreover, our approaches to tracing the source of such

activity and a target-centric method to monitoring offer means to signifi-

cantly improve network security monitoring against increasing volumes of

traffic, spoofing attempts and collusion.

7.2 Future work

Our work opens several research questions for future works. Some of them are

briefly described as below.

• Sophisticated attacker models - further work should attempt to take
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into account more sophisticated attacker models against number of different

test cases either in simulated or real world environments. The point of the

current work is to demonstrate that the approach in principle is sound and

works. Further work should aim to address this particular point.

• Information fusion technique - we use a rather simple model for in-

formation fusion in this thesis. Investigations to find the optimal method

for information fusion among many other available methods should be per-

formed in future.

• SIEM deployment - Statistically independence between information sources

is a key assumption in the proposed approach. Although this assumption

seems reasonable in many situations in SIEM deployment, future study

should be performed to identify exceptional cases that violate this condi-

tion, and to treat accordingly for such cases.

• Classification algorithms - As mentioned in section 3.5.4.3, doing a peer

analysis within a similar peer group would give a better detection accuracy

in terms of lower false alarm rates. Future study should be performed to

introduce a suitable classification algorithm to this work in order to reduce

possible false alarms.

7.2.1 Implementation

Implementation of proposed approaches for real world networks is essential for

studying the requirements of host statistics such as CPU load, I/O operations

and memory usage in its runtime. This implementation can be done as a separate

monitoring system or as a component of existing monitoring system such as Snort

IDS.

7.2.2 Evaluation against real world

Most widely employed data sets for IDSs evaluation are DARPA and KDD99

which was created in 1998 and 1999. Still some researches use these two data sets
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to evaluate IDSs while others criticise them. Traffic for both data sets have been

generated via simulating the attacks and the background traffic and focusing on

rapid attacks, and hence not suitable for evaluation of slow attacks. During last 15

years there is no prominent IDS evaluation data set has been emergence, instead

most researches rely on simulation approach. This is evident that how difficult to

testing a new approach in this domain against real world data. Some data sets

like LBN, ISCX2012 have been produced, but lack of attention is drawn from

the research community. Therefore, one possible option is using a community-lab

test bed which will allow testing the research result under realistic conditions and

learn from it to improve the idea. This would be a future step of this research.
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Appendix A

1. WEB-MISC robots.txt access

Attack Scenario1

An attacker could retrieve robots.txt (made by search robots for site

indexing) from the server, and discover the path to an unprotected

administration interface for the server, and then gain control of the

web-server using this interface.

A Snort Rule 2

alert tcp $external net any -> $http servers $http ports

(msg:"web-misc robots.txt access"; flow:to server,

established; uricontent:"/robots.txt"; nocase; reference:

nessus,10302;classtype:web-application-activity;threshold:

type threshold, track by dst, count 10, seconds 60;

sid:1000852; rev:1;)

Discussion

An event is generated when an attempt is made to access the file

robots.txt directly. The rule logs every 10th event on this SID during

a 60 second interval. So if less than 10 events occurred in 60 seconds,

nothing gets logged.

1Source:http://www.selfsecurity.org/TrendMap/signature/eng/8.htm
2Source:http://manual.snort.org/node35.html
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Appendix B

1. R code for node score calculation for peer analysis.

l i b r a r y ( s q l d f )

nodeScore # A tab l e to hold node s c o r e s during a very long time window W

networkName # Network name where a t tacke r node i s l o ca t ed

networkTrace # A trace observed during a very sma l l e r time window w

portNumbers # Set o f usua l and unusual port numbers with t h e i r l i k e l i h o o d s

p r i o rB e l i e f # Pr ior b e l i e f o f each node being in s t a t e s H1 and H2

substrRight <− f unc t i on (x , n){ subs t r (x , nchar (x)−n+1, nchar (x ))} # A funct i on de f ˜

node l i s t<−as . data . frame ( s q l d f ( paste (” S e l e c t d i s t i n c t c5 from ” ,

networkTrace , ” where c5 l i k e ” ,” ’” , networkName , ” ’ ” , sep = ””) ) ) # Events from a network

nodeScore<− as . t ab l e ( nodeScore )

f o r ( i in 1 : nco l ( nodeScore )){

eventLis t<−as . data . frame ( s q l d f ( paste (” S e l e c t d i s t i n c t c3 , c7 from ” ,

networkTrace , ” where c5 l i k e ” ,” ’” , colnames ( nodeScore ) [ i ] , ” ’ ” ,

” order by c3 ” , sep = ””) ) ) # Events from a pa r t i c u l a r node

i f ( nrow ( eventL i s t )>0) {

tempScoreH1=1

tempScoreH2=1

f o r ( j in 1 : nrow ( eventL i s t ) ){

f o r ( k in 1 : nco l ( portNumbers ) ){

i f ( substrRight ( toS t r ing ( eventL i s t [ j ,2 ]) ,5)== colnames ( portNumbers ) [ k ] ){

tempScoreH1=tempScoreH1∗portNumbers [ 1 , colnames ( portNumbers ) [ k ] ]

tempScoreH2=tempScoreH2∗portNumbers [ 2 , colnames ( portNumbers ) [ k ] ]}}}

postProb=tempScoreH1∗ p r i o rB e l i e f [ 1 , colnames ( nodeScore ) [ i ] ] / ( tempScoreH1∗ p r i o rB e l i e f [ 1 ,

colnames ( nodeScore ) [ i ] ]+ tempScoreH2∗ p r i o rB e l i e f [ 2 , colnames ( nodeScore ) [ i ] ] )

nodeScore [ 1 , colnames ( nodeScore ) [ i ] ]= nodeScore [ 1 , colnames ( nodeScore ) [ i ] ]+ postProb}}

nodeZscore [1 , ]= s c a l e ( nodeScore [ 1 , ] ) # Converting node s c o r e s to Z−Scores

wr i t e . t ab l e ( nodeZscore , paste (” nodeZscore ” , networkName , ” . csv ” , sep = ””) ,

sep=” ,” , c o l . names=T, row . names=T, quote=F, append = TRUE) # Optional , i f needed

#to maintain s co r e tab l e on ex t e rna l s to rage

p lo t ( nodeZscore [ , 1 ] , c o l=”white ” , xlab=”Time” , ylab = ”Z−Score ” , cex =0.75 ,

ylim=range ( nodeScore ) , cex . lab =0.75 , cex . ax i s =0.75) # Plo t t ing graphs f o r each node

f o r (m in 1 : nco l ( nodeZscore ) ){

l i n e s ( nodeZscore [ ,m] , c o l=”orange ” , l t y=m)}

th r e sho ld=grubbs . t e s t ( nodeZscore , type = 20 , oppos i t e = FALSE, two . s ided = FALSE)

l i n e s ( thresho ld , c o l=”red ” , l t y =6)

box ( )
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2. R code for anomaly score calculation for discord analysis.

l i b r a r y ( s q l d f )

l i b r a r y ( f o r e c a s t )

nodeScore # Load the Node s co r e tab l e c reated by peer ana l y s i s program above

f o r ( i in 1 : nco l ( nodeScore )){

ln=25 # Length o f the ARIMA model to be used

totdv=0 # Total dev i a t i on from CIs

totpeak=0 # Total number o f cut o f f po in t s

r s t <− array ( 1 : l ength ( nodeScore [ , i ] ) , dim=c ( length ( nodeScore [ , i ] ) , 8 ) ) # An array to

# s t o r e pred i c t ed CIs and acc tua l va lues

r s t [ , 1 ]= nodeScore [ , i ] # Acctual va lues

r s t [ , 2 ]= nodeScore [ , i ] # Acctual va lues

r s t [ , 3 ]=0 . 0 # To s t o r e f i t t e d va lues

r s t [ , 4 ]=0 . 0 # To s t o r e upper bound o f 95%CI

r s t [ , 5 ]=0 . 0 # To s t o r e upper bound o f 80%CI

r s t [ , 6 ]=0 . 0 # To s t o r e lower bound o f 80%CI

r s t [ , 7 ]=0 . 0 # To s t o r e lower bound o f 95%CI

r s t [ , 8 ]=0 . 0 # number o f t imes acc tua l cut o f f the CI

f o r ( j in ( ln +1):( l ength ( nodeScore [ , i ] )−2))

{

xtf<−auto . arima ( r s t [ ( j−ln ) : ( j −1) ,2 ] ) # Forecas t ing next p o s s i b l e value with CIs

fv<−f o r e c a s t ( xt f , 1 )

df fv<−data . frame ( fv )

r s t [ j ,3]<− df fv$Po int . Forecast [ 1 ]

r s t [ j ,4]<−df fv$Hi .95

r s t [ j ,5]<−df fv$Hi .80

r s t [ j ,6]<−dffv$Lo .80

r s t [ j ,7]<−dffv$Lo .95

i f ( r s t [ j ,2]> r s t [ j , 4 ] ) # Acctual value cuts o f f the Upper bound o f 95%CI

{

r s t [ j ,8 ]=1

totpeak=totpeak+1

totdv=totdv+abs ( r s t [ j ,2]− r s t [ j , 4 ] )

}

i f ( r s t [ j ,2]< r s t [ j , 7 ] ) # Acctual value cuts o f f the lower bound o f 95%CI

{

totpeak=totpeak+1

r s t [ j ,8 ]=1

totdv=totdv+abs ( r s t [ j ,2]− r s t [ j , 7 ] )

}

i f ( totpeak >1){

summrdv [ j , i ]= totdv /( totpeak−1)} # Anomaly s co r e f o r d i s co rd ana l y s i s

}

} # End of the loop

wr i t e . t ab l e (summrdv , paste (” summrdv ” , networkName , ” . csv ” , sep = ””) ,

sep=” ,” , c o l . names=T, row . names=T, quote=F, append = TRUE) # Optional , i f needed

#to maintain anomaly s co r e tab l e on ex t e rna l s to rage

p lo t (summrdv [ , 1 ] , c o l=”white ” , xlab=”Time” , ylab = ”Z−Score ” , cex =0.75 ,

ylim=range ( nodeScore ) , cex . lab =0.75 , cex . ax i s =0.75) # Plo t t ing graphs f o r each node

f o r (m in 1 : nco l ( summrdv)){
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l i n e s (summrdv [ ,m] , c o l=”orange ” , l t y=m)}

th r e sho ld=grubbs . t e s t (summrdv , type = 20 , oppos i t e = FALSE, two . s ided = FALSE)

l i n e s ( thresho ld , c o l=”red ” , l t y =6)

box ( )

3. C++ code in NS3 for simulating the network topology and attackers.

//This program was wr i t t en to s imulate an at tacke r sending packets to three v i c t ims .

//The same prgram can be simply ed i t ed to

// s imulate a l l other exper iments presented in t h i s t h e s i s .

//This code segment developed by customis ing

//an example code given in NS3 .

// This s c r i p t e x e r c i s e s g l oba l rout ing code in

//a mixed point−to−point and csma/cd environment

#inc lude <iostream>

#inc lude <fstream>

#inc lude <s t r ing>

#inc lude <ca s s e r t>

#inc lude ”ns3/ core−module . h”

#inc lude ”ns3/ s imulator−module . h”

#inc lude ”ns3/node−module . h”

#inc lude ”ns3/ helper−module . h”

us ing namespace ns3 ;

NS LOG COMPONENT DEFINE (”MixedGlobalRoutingExample ” ) ;

i n t

main ( i n t argc , char ∗argv [ ] ) {

Config : : SetDefau l t (” ns3 : : OnOffApplication : : PacketSize ” ,

UintegerValue ( 2 1 0 ) ) ;

Config : : SetDefau l t (” ns3 : : OnOffApplication : : DataRate ” ,

Str ingValue (”448kb/ s ” ) ) ;

CommandLine cmd ;

cmd . Parse ( argc , argv ) ;

NS LOG INFO (” Create nodes . ” ) ;

NodeContainer c ;

c . Create ( 2 16 ) ;

u i n t32 t k = p // sub t i t u t e p with d i f f e r e n t

// numbers to obta in d i f f e r e n t s i z e subnets

u in t32 t t = q // run time o f the s imu lat i on

u in t16 t port1 = r ;// choose l e g i t ima t e por t s randomly

// f o r r to generate normal packets

u in t16 t port2 = s ;// choose unusual por t s randomly

// f o r s to generate s u sp i c i o u s packets

u in t16 t r1 = onrate ;// on time ra t e f o r packet genera t ing

u in t16 t r2 = o f f r a t e ;// o f f time ra t e f o r packet genera t ing

u in t16 t s =0;// app l i c a t i o n s s t a t i n g times , a s s i gn sutab l e va lues acco rd ing ly

u in t16 t t =3600;// app l i c a t i o n s ending times , a s s i gn sutab l e va lues acco rd ing ly

NodeContainer lan11 ;// node conta ine r f o r subnet 1 .1

f o r ( u in t 32 t i = 0 ; i < 25 ; ++i )

{

lan11 .Add( c . Get ( i ) ) ;

}
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lan11 .Add( c . Get ( 1 0 1 ) ) ;

NodeContainer lan121 ;// node conta ine r f o r subnet 1 . 2 . 1

f o r ( u in t 32 t i = 25 ; i < 35 ; ++i )

{

lan121 .Add( c . Get ( i ) ) ;

}

lan121 .Add( c . Get ( 1 0 1 ) ) ;

NodeContainer lan122 ;// node conta ine r f o r subnet 1 . 2 . 2

f o r ( u in t 32 t i = 35 ; i < 50 ; ++i )

{

lan122 .Add( c . Get ( i ) ) ;

}

lan122 .Add( c . Get ( 1 0 1 ) ) ;

NodeContainer lan21 ;// node conta ine r f o r subnet 2 .1

f o r ( u in t 32 t i = 50 ; i < 65 ; ++i )

{

lan21 .Add( c . Get ( i ) ) ;

}

lan21 .Add( c . Get ( 1 0 1 ) ) ;

NodeContainer lan221 ;// node conta ine r f o r subnet 2 . 2 . 1

f o r ( u in t 32 t i = 65 ; i < 85 ; ++i )

{

lan221 .Add( c . Get ( i ) ) ;

}

lan221 .Add( c . Get ( 1 0 1 ) ) ;

NodeContainer lan222 ;// node conta ine r f o r subnet 2 . 2 . 2

f o r ( u in t 32 t i = 85 ; i < 100 ; ++i )

{

lan222 .Add( c . Get ( i ) ) ;

}

lan222 .Add( c . Get ( 1 0 1 ) ) ;

NodeContainer se rv ;// node conta ine r f o r s e r v e r farm

f o r ( u in t 32 t i = 106 ; i < 116 ; ++i )

{

se rv .Add( c . Get ( i ) ) ;

}

se rv .Add( c . Get ( 1 0 2 ) ) ;

NodeContainer lan311 ;// node conta ine r f o r subnet 3 . 1 . 1

f o r ( u in t 32 t i = 116 ; i < 126 ; ++i )

{

lan311 .Add( c . Get ( i ) ) ;

}

lan311 .Add( c . Get ( 1 0 2 ) ) ;

NodeContainer lan312 ;// node conta ine r f o r subnet 3 . 1 . 2

f o r ( u in t 32 t i = 126 ; i < 136 ; ++i )

{

lan312 .Add( c . Get ( i ) ) ;

}

lan312 .Add( c . Get ( 1 0 2 ) ) ;

NodeContainer lan321 ;// node conta ine r f o r subnet 3 . 2 . 1
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f o r ( u in t 32 t i = 136 ; i < 151 ; ++i )

{

lan321 .Add( c . Get ( i ) ) ;

}

lan321 .Add( c . Get ( 1 0 2 ) ) ;

NodeContainer lan322 ;// node conta ine r f o r subnet 3 . 2 . 2

f o r ( u in t 32 t i = 151 ; i < 166 ; ++i )

{

lan322 .Add( c . Get ( i ) ) ;

}

lan322 .Add( c . Get ( 1 0 2 ) ) ;

NodeContainer lan4 ;// node conta ine r f o r subnet 4

f o r ( u in t 32 t i = 166 ; i < 216 ; ++i )

{

lan4 .Add( c . Get ( i ) ) ;

}

lan4 .Add( c . Get ( 1 0 2 ) ) ;

NodeContainer unal ; // node conta ine r f o r una l l o ca t ed core

f o r ( u in t 32 t i = 100 ; i < 106 ; ++i )

{

unal .Add( c . Get ( i ) ) ;

}

In te rnetStackHe lper i n t e r n e t ;

i n t e r n e t . I n s t a l l ( c ) ;

// We c r ea t e the channe ls f i r s t without

//any IP addres s ing in format ion

NS LOG INFO (” Create channe ls . ” ) ;

CsmaHelper csma ;

csma . SetChannelAttr ibute (”DataRate ” , Str ingValue (”5Mbps ” ) ) ;

csma . SetChannelAttr ibute (” Delay ” , Str ingValue (”2ms ” ) ) ;

NetDeviceContainer dvc11 = csma . I n s t a l l ( lan11 ) ;

NetDeviceContainer dvc121 = csma . I n s t a l l ( lan121 ) ;

NetDeviceContainer dvc122 = csma . I n s t a l l ( lan122 ) ;

NetDeviceContainer dvc21 = csma . I n s t a l l ( lan21 ) ;

NetDeviceContainer dvc221 = csma . I n s t a l l ( lan221 ) ;

NetDeviceContainer dvc222 = csma . I n s t a l l ( lan222 ) ;

NetDeviceContainer dvcSr = csma . I n s t a l l ( s e rv ) ;

NetDeviceContainer dvc311 = csma . I n s t a l l ( lan311 ) ;

NetDeviceContainer dvc321 = csma . I n s t a l l ( lan321 ) ;

NetDeviceContainer dvc312 = csma . I n s t a l l ( lan312 ) ;

NetDeviceContainer dvc322 = csma . I n s t a l l ( lan322 ) ;

NetDeviceContainer dvc4= csma . I n s t a l l ( lan4 ) ;

NetDeviceContainer dvunal = csma . I n s t a l l ( unal ) ;

// Later , we add IP addre s s e s .

NS LOG INFO (” Assign IP Addresses . ” ) ;

Ipv4AddressHelper ipv4 ;

ipv4 . SetBase ( ” 1 0 . 1 . 1 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc11 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 2 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc121 ) ;
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ipv4 . SetBase ( ” 1 0 . 1 . 3 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc122 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 4 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc21 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 5 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc221 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 6 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc222 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 7 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc311 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 8 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc321 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 9 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc312 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 1 0 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc322 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 1 1 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvc4 ) ;

ipv4 . SetBase ( ” 1 0 . 1 . 1 2 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

Ipv4 Inte r f a c eConta ine r i 5 i 6 = ipv4 . Assign ( dvcSr ) ;

ipv4 . SetBase ( ” 1 0 . 2 5 0 . 1 . 0 ” , ” 2 55 . 2 5 5 . 2 5 5 . 0 ” ) ;

ipv4 . Assign ( dvunal ) ;

// Create route r nodes , i n i t i a l i z e rout ing database and s e t up the rout ing

// t ab l e s in the nodes .

Ipv4GlobalRoutingHelper : : PopulateRoutingTables ( ) ;

// innocent events generate to f i r s t node in server farm

NS LOG INFO (” Create App l i ca t i ons . ” ) ;

OnOffHelper ono f f 1 (” ns3 : : UdpSocketFactory ” , Address ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 2 ” ) , port1 ) ) ) ;

ono f f 1 . Se tAtt r ibute (”OnTime” , RandomVariableValue ( Exponent ia lVar iab le ( r1 ) ) ) ;

ono f f 1 . Se tAtt r ibute (”OffTime ” , RandomVariableValue ( Exponent ia lVar iab le ( r2 ) ) ) ;

ono f f 1 . Se tAtt r ibute (”DataRate ” , Str ingValue (”300 bps ” ) ) ;

ono f f 1 . Se tAtt r ibute (” PacketSize ” , UintegerValue ( 5 0 ) ) ;

Appl i cat ionConta iner app1 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app1 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app1 . Star t ( Seconds ( s ) ) ;

app1 . Stop ( Seconds ( t ) ) ; / / need to t=3600 to ach ieve the same number o f events

// as in the paper innocent events generate to other nodes in server farm

ono f f 1 . SetAtt r ibute (”Remote” , AddressValue ( InetSocketAddress ( Ipv4Address

( ” 1 0 . 1 . 1 2 . 1 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app2 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app2 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app2 . Star t ( Seconds ( s ) ) ;

app2 . Stop ( Seconds ( t ) ) ;
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ono f f 1 . SetAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 3 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app32 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app32 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app32 . Star t ( Seconds ( s ) ) ;

app32 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 4 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app42 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app42 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app42 . Star t ( Seconds ( s ) ) ;

app42 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 5 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app52 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app52 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app52 . Star t ( Seconds ( s ) ) ;

app52 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 6 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app62 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app62 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app62 . Star t ( Seconds ( s ) ) ;

app62 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 7 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app72 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app72 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app72 . Star t ( Seconds ( s ) ) ;

app72 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 8 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app82 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{
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app82 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app82 . Star t ( Seconds ( s ) ) ;

app82 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 9 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app92 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app92 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app92 . Star t ( Seconds ( s ) ) ;

app92 . Stop ( Seconds ( t ) ) ;

ono f f 1 . Se tAtt r ibute (”Remote” , AddressValue ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 1 0 ” ) , port1 ) ) ) ;

Appl i cat ionConta iner app102 ;

f o r ( u in t 32 t i = 0 ; i < 216 ; ++i )

{

app102 .Add( ono f f 1 . I n s t a l l ( c . Get ( i ) ) ) ;

}

app102 . Star t ( Seconds ( s ) ) ;

app102 . Stop ( Seconds ( t ) ) ;

// con f i gu r e s u sp i c i o u s events , g ene ra t e s to one node

// in s e rv e r farm .

OnOffHelper ono f f 2 (” ns3 : : UdpSocketFactory ” , Address ( InetSocketAddress

( Ipv4Address ( ” 1 0 . 1 . 1 2 . 2 ” ) , port2 ) ) ) ; / / v ict im 1

ono f f 2 . SetAtt r ibute (”OnTime” , RandomVariableValue ( Exponent ia lVar iab le ( r1 ) ) ) ;

ono f f 2 . Se tAtt r ibute (”OffTime ” , RandomVariableValue ( Exponent ia lVar iab le ( r2 ) ) ) ;

ono f f 2 . Se tAtt r ibute (”DataRate ” , Str ingValue (”300 bps ” ) ) ;

ono f f 2 . Se tAtt r ibute (” PacketSize ” , UintegerValue ( 5 0 ) ) ;

Appl i cat ionConta iner app3 , app5 , app7 ;

app3 .Add( ono f f 2 . I n s t a l l ( c . Get ( 2 ) ) ) ;

app3 . Star t ( Seconds ( s ) ) ;

app3 . Stop ( Seconds ( t ) ) ;

app5 .Add( ono f f 2 . I n s t a l l ( c . Get ( 6 7 ) ) ) ;

app5 . Star t ( Seconds ( s ) ) ;

app5 . Stop ( Seconds ( t ) ) ;

app7 .Add( ono f f 2 . I n s t a l l ( c . Get ( 1 3 8 ) ) ) ;

app7 . Star t ( Seconds ( t ) ) ;

app7 . Stop ( Seconds ( t ) ) ;

// f o r v ict im 2

ono f f 2 . SetAtt r ibute (”Remote” , AddressValue ( InetSocketAddress ( Ipv4Address

( ” 1 0 . 1 . 1 2 . 3 ” ) , port2 ) ) ) ; // v ict im 2

Appl i cat ionConta iner app4 , app6 , app8 ;

app4 .Add( ono f f 2 . I n s t a l l ( c . Get ( 2 ) ) ) ;

app4 . Star t ( Seconds ( 1 0 0 . 0 ) ) ;

app4 . Stop ( Seconds ( t ) ) ;

app6 .Add( ono f f 2 . I n s t a l l ( c . Get ( 6 7 ) ) ) ;

app6 . Star t ( Seconds ( 1 4 0 . 1 ) ) ;

app6 . Stop ( Seconds ( t ) ) ;
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app8 .Add( ono f f 2 . I n s t a l l ( c . Get ( 1 3 8 ) ) ) ;

app8 . Star t ( Seconds ( s ) ) ;

app8 . Stop ( Seconds ( t ) ) ;

// packet captur ing in promiscuous mode .

csma . EnablePcap (” v i c t imPr o f i l i n g ” , dvcSr . Get (1 ) , t rue ) ;

NS LOG INFO (”Run Simulat ion . ” ) ;

S imulator : : Run ( ) ;

Simulator : : Destroy ( ) ;

NS LOG INFO (”Done . ” ) ;

}

4. R code for selection of samples.

networkName # Network name where a t tacke r node i s l o ca t ed

networkTrace # A trace observed during a very sma l l e r time window w

samplingRate # Sampling ra t e f o r the whole t r a c e

statumRates # Sampling r a t e s computed f o r each stratum using Equation 5 .1

#aga in s t p o s s i b l e types o f network t r a f f i c , e . g . colnames ( nodeScore ) <− c ( ’UDP’ , ’ICMP’ , ’ARP’ )

networkTrace <− as . t ab l e ( networkTrace )

l i b r a r y ( s q l d f )

f o r ( i in 1 : nco l ( statumRates ) )

{

tempdata<−s q l d f ( paste (” S e l e c t ∗ from ” , networkTrace , ” where Protoco l ==’”,

colnames ( statumRates ) [ i ] , ” ’ ” , sep = ””))

sampleSize=round (nrow ( tempdata )∗ statumRates [ 1 , colnames ( statumRates ) [ i ] ] , 0 )

smallSample [ i ] <− tempdata [ sample ( 1 : nrow ( tempdata ) , sampleSize , r ep l a c e=FALSE) , ]

bigSample <− rbind ( smallSample [ i ] , bigSample )

}

wr i te . t ab l e ( bigSample , paste (” bigSample ” , samplingRate , ” . csv ” , sep = ””) ,

sep=” ,” , c o l . names=F, quote=F, append = TRUE)
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Drew, S. (n.d). Intrusion Detection FAQ: What is the Role of Secu-

rity Event Correlation in Intrusion Detection? http://www.sans.org/

security-resources/idfaq/role.php. 30, 60

Duffield, N. (2004). Sampling for passive internet measurement: A review.

Statistical Science, 19, 472–498. 77

Duffield, N., Lund, C. & Thorup, M. (2002). Properties and prediction of

flow statistics from sampled packet streams. In Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet Measurment , 159–171. 78

Duffield, N., Lund, C. & Thorup, M. (2005). Estimating flow distributions

from sampled flow statistics. IEEE/ACM Transactions on Networking , 13,

933–946. 78

Eberle, W., Graves, J. & Holder, L. (2010). Insider threat detection using

a graph-based approach. Journal of Applied Security Research, 6, 32–81. 16

Eldardiry, H., Bart, E., Liu, J., Hanley, J., Price, B. & Brdiczka, O.

(2013). Multi-domain information fusion for insider threat detection. In 2013

IEEE Security and Privacy Workshops . 35

Fazio, P., Tan, K. & Kotz, D. (2012). Effects of network trace sampling

methods on privacy and utility metrics. In 2012 Fourth International Confer-

ence on Communication Systems and Networks (COMSNETS), 1–8. 78

Fisk, M., Smith, S., Weber, P., Kothapally, S. & Caudell, T. (2003).

Immersive network monitoring. In proc. PAM2003 Passive and Active Mea-

surement 2003 . 18, 19

Fu, A.W.C., Leung, O.T.W., Keogh, E. & Lin, J. (2006). Finding time

series discords based on haar transform. In Advanced Data Mining and Appli-

cations , 31–41, Springer. 36

122

http://www.sans.org/security-resources/idfaq/role.php
http://www.sans.org/security-resources/idfaq/role.php


REFERENCES

GeNIe (n.d). GeNIe-Documentation, Decision Theoritic Modelling: Probabil-

ity. http://genie.sis.pitt.edu/wiki/Decision-Theoritic-Modelling:

-Probability. 42

Giacinto, G. & Roli, F. (2002). Intrusion detection in computer networks

by multiple classifier systems. In Proc. of International Conference on Pattern

Recognition. Los Alamitos, CA. 12, 21

Gonzalez, J.M., Paxson, V. & Weaver, N. (2007). Shunting: a hardware/-

software architecture for flexible, high-performance network intrusion preven-

tion. In Proceedings of the 14th ACM conference on Computer and communi-

cations security , 139–149. 75

Greitzer, F., Paulson, P., Kangas, L., Edgar, T., Zabriskie, M.,

Franklin, L. & Frincke, D. (2009). Predictive modelling for insider threat

mitigation, pacific northwest national laboratory, richland, wa, tech. rep. pnnl

technical report. 15, 16

GRUBBS, R.E. (1969). Procedures for Detecting Outlying Observations in

Samples. Technometrics , 11, 1–21. 34

Guo, H. (2011). A simple algorithm for fitting a gaussian function [dsp tips and

tricks]. Signal Processing Magazine, IEEE , 28, 134–137. 34

Hackers (2013). Slowloris http dos. http://ha.ckers.org/slowloris/. 2, 11

Hagen, N., Kupinski, M. & Dereniak, E.L. (2007). Gaussian profile esti-

mation in one dimension. Applied optics , 46, 5374–5383. 34

Hall, D.D.L. & McMullen, S.A.H. (2004). Mathematical Techniques in Mul-

tisensor Data Fusion 2nd Ed.. Artech House Publishers. 57

Hall, D.L. & Garga, A.K. (1999). Pitfalls in data fusion (and how to avoid

them). In Proceedings of the Second International Conference on Information

Fusion (Fusion99), vol. 1, 429–436. 57

Hall, D.L. & Llinas, J. (1997). An introduction to multisensor data fusion.

Proceedings of the IEEE , 85, 6–23. 57

123

http://genie.sis.pitt.edu/wiki/Decision-Theoritic-Modelling:-Probability
http://genie.sis.pitt.edu/wiki/Decision-Theoritic-Modelling:-Probability
http://ha.ckers.org/slowloris/


REFERENCES

Hall, D.L. & Llinas, J. (2001). Multisensor data fusion. CRC press. 57

Hall, D.L. & McMullen, S.A. (1992). Mathematical techniques in multisen-

sor data fusion, artech house. Inc., Norwood, MA. 57

Heberlein, T. (2002). Tactical operations and strategic intelligence: Sensor

purpose and placement. Net Squared Inc, Tech. Rep. TR-2002-04.02 . 27, 28,

61

Hodges, J.L. & Cam, L.L. (1960). The poisson approximation to the poisson

binomial distribution. The Annals of Mathematical Statistics , 31, 737–740. 35

Hohn, N. & Veitch, D. (2006). Inverting sampled traffic. In IEEE/ACM

Transactions on Networking , 68–80. 78

Hoque, N., Bhuyan, M.H., Baishya, R., Bhattacharyya, D. & Kalita,

J. (2013). Network attacks: Taxonomy, tools and systems. Journal of Network

and Computer Applications . 6

Hsu, C.C. & Huang, Y.P. (2008). Incremental clustering of mixed data based

on distance hierarchy. Expert Systems with Applications , 35, 1177–1185. 14

IETF (2009). Reducing redundancy in ip flow information export (ipfix) and

packet sampling (psamp) reports. http://ops.ietf.org/psamp/. 77

Ishibashi, K., Kawahara, R., Tatsuya, M., Kondoh, T. & Asano, S.

(2007). Effect of sampling rate and monitoring granularity on anomaly de-

tectability. In In 10th IEEE Global Internet Symposium 2007 . 78, 79, 88

Janakiram, D., Adi Mallikarjuna Reddy, V. & Phani Kumar, A.

(2006). Outlier detection in wireless sensor networks using bayesian belief net-

works. In Communication System Software and Middleware, 2006. Comsware

2006. First International Conference on, 1–6, IEEE. 27

Jedwab, J. & Phaal, P. (1992). Traffic estimation for the largest sources on

a network, using packet sampling with limited storage. Tech. rep., Jonathan

Jedwab and Peter Phaal. 88

124

http://ops.ietf.org/psamp/


REFERENCES

Jiang, G. & Cybenko, G. (2004). Temporal and spatial distributed event

correlation for network security. In American Control Conference, 2004. Pro-

ceedings of the 2004 , vol. 2, 996–1001, IEEE. 9, 10, 29

John, A. & Sivakumar, T. (2009). Ddos: Survey of traceback methods. In-

ternational Journal of Recent Trends in Engineering , 1, 241–245. 60

Joshi, M.V., Watson, I.T.J. & Agarwal, R.C. (2001). Mining needles in

a haystack: Classifying rare classes via two-phase rule induction. SIGMOD

Record (ACM Special Interest Group on Management of Data), 30. 18

Jurga, R.E. & Hulb, M.M. (2007). Packet Sampling for Network Monitor-

ing. Tech. rep., CERN HP Procurve openlab project, CH-1211, Gen‘va 23,

Switzerland. 78, 80, 88

Kandias, M., Mylonas, A., Virvilis, N., Theoharidou, M. & Gritza-

lis, D. (2010). An insider threat prediction model. In Trust, Privacy and

Security in Digital Business , 26–37, Springer. 15, 16, 26

Kayacik, H.G., Zincir-Heywood, A.N. & Heywood, M.I. (2005). Select-

ing features for intrusion detection: A feature relevance analysis on kdd 99

intrusion detection datasets. In Proc. of the Third Annual Conference on Pri-

vacy, Security and Trust . 20, 22, 39

KDD (1999). Kdd cup 1999 data. 20, 21, 22, 39

Khreich, W., Granger, E., Miri, A. & Sabourin, R. (2011). Adaptive

ensembles of hmms applied to anomaly detection. Pattern Recognition (Elsevier

Science), July 19, 2011. 17

Kjaerulff, U. (1994). Reduction of computational complexity in bayesian net-

works through removal of weak dependences. In Proceedings of the tenth inter-

national conference on uncertainty in artificial intelligence, 374–382, Morgan

Kaufmann Publishers Inc. 56

Krishnamurthy, S. & Sen, A. (2001). Stateful intrusion detection system

(sids). In Proceedings of the 2 nd International Information Warfare and Se-

curity Conference, Perth, Australia. 25

125



REFERENCES

Laskov, P., Gehl, C., Kruger, S. & Muller, K. (2006). Incremental

support vector learning: Analysis, implementation and applications. Journal

of Machine Learning Research, 7, 19091936. 17

Lazarevic, A. (2013). Anomaly detection / outlier detection in security applica-

tions. http://www-users.cs.umn.edu/~aleks/anomaly_detection.htm. 33

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A. & Srivastava, J.

(2003). A comparative study of anomaly detection schemes in network intrusion

detection. Proc. SIAM . 10

Le Cam, L. (1960). An approximation theorem for the poisson binomial distri-

bution. Pacific Journal of Mathematics , 10, 1181–1197. 35

Lee, W. & Stolfo, S.J. (1998). Data mining approaches for intrusion detec-

tion. In Proc. of the T998 USENIX Security Symposium. 21

Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R.,

McClung, D., Weber, D., Webster, S.E., Wyschogrod, D., Cun-

ningham, R.K. et al. (2000). Evaluating intrusion detection systems: The

1998 darpa off-line intrusion detection evaluation. In DARPA Information Sur-

vivability Conference and Exposition, 2000. DISCEX’00. Proceedings , vol. 2,

12–26, IEEE. 20

Lu, N., Khoa, D. & Chawla, S. (2011). Online anomaly detection systems

using incremental commute time. CoRR, abs/1107.389. 17

Mai, J., Chuah, C.N., Sridharan, A., Ye, T. & Zang, H. (2006a). Is

sampled data sufficient for anomaly detection? In Proceedings of the 6th ACM

SIGCOMM conference on Internet measurement , IMC ’06, 165–176, ACM,

New York, NY, USA. 78, 79

Mai, J., Sridharan, A., nee Chuah, C., Zang, H. & Ye, T. (2006b).

Impact of packet sampling on portscan detection. NATIONAL UNIVERSITY

OF SINGAPORE, SINGAPORE IN , 24, 2285–2298. 78, 79

126

http://www-users.cs.umn.edu/~aleks/anomaly_detection.htm


REFERENCES

Marceau, C. (2000). Characterizing the behavior of a program using multiple-

length n-grams. In Proceedings of the 2000 workshop on New security

paradigms , NSPW ’00, 101–110, ACM, New York, NY, USA. 38

McHugh, J. (2000). The 1998 lincoln laboratory ids evaluation. In Recent Ad-

vances in Intrusion Detection, 145–161, Springer. 22, 42

McHugh, J. (2001). Intrusion and intrusion detection. International Journal of

Information Security , 1415. 1

Mitropoulos, S., Patsos, D. & Douligeris, C. (2005). Network forensics:

towards a classification of traceback mechanisms. In Security and Privacy for

Emerging Areas in Communication Networks, 2005. Workshop of the 1st In-

ternational Conference on, 9–16, IEEE. 60

Morrill, D. (2006). Cyber Conflict Attribution and the

Law. http://it.toolbox.com/blogs/managing-infosec/

cyber-conflict-attribution-and-the-law-10949. 60

Mullins, M. (2013). Defend your network from slow

scanning. http://www.techrepublic.com/blog/security/

defend-your-network-from-slow-scanning/361. 2, 11

Parker, T. (2010). Finger pointing for fun, profit and war? the importance of

a technical attribution capability in an interconnected world. 60

Patcha, A. & Park, J.M. (2007). An overview of anomaly detection tech-

niques: Existing solutions and latest technological trends. Comput. Netw., 51,

3448–3470. 1, 6, 12, 13, 33

Peng, T., Leckie, C. & Ramamohanarao, K. (2004). Proactively detect-

ing distributed denial of service attacks using source ip address monitoring.

In NETWORKING 2004. Networking Technologies, Services, and Protocols;

Performance of Computer and Communication Networks; Mobile and Wireless

Communications , 771–782, Springer. 91

Phaal, P. (2013). Detecting nat devices using sflow. "http://www.sflow.org/

detectNAT/. 88

127

http://it.toolbox.com/blogs/managing-infosec/cyber-conflict-attribution-and-the-law-10949
http://it.toolbox.com/blogs/managing-infosec/cyber-conflict-attribution-and-the-law-10949
http://www.techrepublic.com/blog/security/defend-your-network-from-slow-scanning/361
http://www.techrepublic.com/blog/security/defend-your-network-from-slow-scanning/361
"http://www.sflow.org/detectNAT/
"http://www.sflow.org/detectNAT/


REFERENCES

ProQueSys (2012). Flowtraq, for effective monitoring, security, and forensics

in a network environment. http://www.flowtraq.com/corporate/product/

flowtraq. 27

R Development Core Team (2010). R: A Language and Environment for

Statistical Computing . R Foundation for Statistical Computing, Vienna, Aus-

tria, ISBN 3-900051-07-0. 82

Rao, J. & Scott, A. (1981). The analysis of categorical data from complex

sample surveys: chi-squared tests for goodness of fit and independence in two-

way tables. Journal of the American Statistical Association, 76, 221–230. 85

Rasoulifard, A., Bafghi, A.G. & Kahani, M. (2008). Incremental hybrid

intrusion detection using ensemble of weak classifiers. in Communications in

Computer and Information Science, 6, 577584. 17

Reeves, J. & Panchen, S. (2002). Traffic monitoring with packet-based sam-

pling for defense against security threats. InMon Technology Whitepaper . 78

Ren, F., Hu, L., Liang, H., Liu, X. & Ren, W. (2008). Using density-based

incremental clustering for anomaly detection. In Proc. of the 2008 International

Conference on Computer Science and Software Engineering. Washington. 14,

17

Riley, G.F. & Henderson, T.R. (2010). The ns-3 network simulator. In

Modeling and Tools for Network Simulation, 15–34, Springer. 40

Saalbach, K. (2011). Cyberwar methods and practice. Available FTP: dirk-

koentopp. com Directory: download File: saalbach-cyberwar-methods-and-

practice. pdf . 60

Sager, G. (1998). Security fun with ocxmon and cflowd. Presentation at the

Internet , 2. 61

Satten, C. (2007). Lossless gigabit remote packet capture with linux. http:

//staff.washington.edu/corey/gulp/. 74

128

http://www.flowtraq.com/corporate/product/flowtraq
http://www.flowtraq.com/corporate/product/flowtraq
http://staff.washington.edu/corey/gulp/
http://staff.washington.edu/corey/gulp/


REFERENCES

Sawilowsky, S.S. (2003). You think you’ve got trivials? Journal of Modern

Applied Statistical Methods , 2, 21. 84

Sebyala, A.A., Olukemi, T. & Sacks, L. (2002). Active platform security

through intrusion detection using naive bayesian network for anomaly detec-

tion. In London Communications Symposium, Citeseer. 27

Shaikh, S.A., Chivers, H., Nobles, P., Clark, J.A. & Chen, H. (2009).

Towards scalable intrusion detection. Network Security , 2009, 12–16. 76

Sheth, C. & Thakker, R. (2011). Performance evaluation and comparative

analysis of network firewalls. In Devices and Communications (ICDeCom),

2011 International Conference on, 1–5, IEEE. 9

Shiravi, A., Shiravi, H., Tavallaee, M. & Ghorbani, A.A. (2012). To-

ward developing a systematic approach to generate benchmark datasets for

intrusion detection. Computers & Security , 31, 357–374. 21, 42

Siaterlis, C. & Maglaris, B. (2004). Towards multisensor data fusion for dos

detection. In Proceedings of the 2004 ACM symposium on Applied computing ,

439–446, ACM. 27, 57, 102

Smith, L.I. (2002). A tutorial on principal components analysis. Cornell Uni-

versity, USA, 51, 52. 82

Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchak-

ountio, F., Schwartz, B., Kent, S.T. & Strayer, W.T. (2002). Single-

packet ip traceback. IEEE/ACM Transactions on Networking (ToN), 10, 721–

734. 61

Spafford, S.K.E.H. & Kumar, S. (1994). An application of pattern matching

in intrusion detection. Tech. rep., Technical Report CSD-TR-94-013. Depart-

ment Computer of Science, Purdue University. 13, 21, 23

StatSoft (2014). How To Identify Patterns in Time Series Data: Time Series

Analysis. http://www.statsoft.com/Textbook/Time-Series-Analysis#

systematic. 36, 37

129

http://www.statsoft.com/Textbook/Time-Series-Analysis##systematic
http://www.statsoft.com/Textbook/Time-Series-Analysis##systematic


REFERENCES

Stefan, S., David, W., Anna, K. & Tom, A. (2001). Network support for ip

traceback. IEEE/ACM TRANSACTIONS ON NETWORKING , 9, 226–237.

61

Stone, R. et al. (2000). Centertrack: An ip overlay network for tracking dos

floods. In Proceedings of the 9th USENIX Security Symposium, vol. 9, 199–212.

61

Streilein, W.W., Cunningham, R.K. & Webster, S.E. (2002). Improved

detection of low profile probe and novel denial of service attacks. In Work-

shop on Statistical and Machine Learning Techniques in Computer Intrusion

Detection. 27

Tanase, M. (2002). One of these things is not like the others: The

state of anomaly detection. http://www.symantec.com/connect/articles/

one-these-things-not-others-state-anomaly-detection. 33

Tavallaee, M., Lu, W., Iqbal, S.A. & Ghorbani, A.A. (2008). A novel

covariance matrix based approach for detecting network anomalies. In Commu-

nication Networks and Services Research Conference, 2008. CNSR 2008. 6th

Annual , 75–81, IEEE. 5, 6, 17

Taylor, C. & Alves-Foss, J. (2001). Nate: N etwork analysis of a nomalous

t raffic e vents, a low-cost approach. In Proceedings of the 2001 workshop on

New security paradigms , 89–96, ACM. 78

Tellenbach, B., Brauckhoff, D. & May, M. (2008). Impact of traffic mix

and packet sampling on anomaly visibility. In Proceedings of the 2008 The Third

International Conference on Internet Monitoring and Protection, ICIMP ’08,

31–36, IEEE Computer Society, Washington, DC, USA. 78, 79, 89

Theiler, J.P. & Cai, D.M. (2003). Resampling approach for anomaly detec-

tion in multispectral images. In AeroSense 2003 , 230–240, International Society

for Optics and Photonics. 18

130

http://www.symantec.com/connect/articles/one-these-things-not-others-state-anomaly-detection
http://www.symantec.com/connect/articles/one-these-things-not-others-state-anomaly-detection


REFERENCES

Tozal, M.E. & Sarac, K. (2012). Estimating network layer subnet charac-

teristics via statistical sampling. In NETWORKING 2012 , 274–288, Springer.

74, 84

Trek, S. (n.d). Statistics and Probability Dictionary. http://stattrek.com/

statistics/dictionary.aspx?definition=Optimum_allocation. 80, 81

Valdes, A. & Skinner, K. (2000). Adaptive, model-based monitoring for cyber

attack detection. In Recent Advances in Intrusion Detection, 80–93, Springer.

27

Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V. & Tierney,

B. (2007). The nids cluster: Scalable, stateful network intrusion detection on

commodity hardware. In Recent Advances in Intrusion Detection, 107–126,

Springer. 25

van Riel, J. & Irwin, B. (2006a). Toward visualised network intrusion de-

tection. In Proceedings of 9th Annual Southern African Telecommunication

Networks and Applications Conference (SATNAC2006). Spier Wine Estate,

Western Cape, South Africa, 3–6. 18, 19

van Riel, J.P. & Irwin, B. (2006b). Identifying and investigating intrusive

scanning patterns by visualizing network telescope traffic in a 3-d scatter-plot.

In ISSA, 1–12. 9, 19, 84

Vasiliadis, G., Polychronakis, M. & Ioannidis, S. (2011). Midea: a multi-

parallel intrusion detection architecture. In Proceedings of the 18th ACM con-

ference on Computer and communications security , 297–308, ACM. 25

Vokorokos, L., Chovanec, M., Látka, O. & Kleinova, A. (2008). Secu-

rity of distributed intrusion detection system based on multisensor fusion. In

Applied Machine Intelligence and Informatics, 2008. SAMI 2008. 6th Interna-

tional Symposium on, 19–24, IEEE. 102

Wasilewska, A. (2010). Bayesian Networks.

http://www.cs.sunysb.edu/ cse634/presentations/Bayes-datamining-

presentation-06.ppt. 56

131

http://stattrek.com/statistics/dictionary.aspx?definition=Optimum_allocation
http://stattrek.com/statistics/dictionary.aspx?definition=Optimum_allocation


REFERENCES

Wheeler, D.A. & Larsen, G.N. (2003). Techniques for cyber attack attribu-

tion. Tech. rep., DTIC Document. 60

Whyte, D., van Oorschot, P.C. & Kranakis, E. (2006). Exposure maps:

removing reliance on attribution during scan detection. In Proceedings of the

1st USENIX Workshop on Hot Topics in Security , HOTSEC’06, USENIX As-

sociation, Berkeley, CA, USA. 91, 99, 102

Wool, A. (2006). Packet filtering and stateful firewalls. Handbook of Information

Security , 3, 526–536. 9

Yang, L. & Michailidis, G. (2007). Sampled based estimation of network

traffic flow characteristics. In SINFOCOM 2007 , 1775–1783. 78

Yankov, D., Keogh, E. & Rebbapragada, U. (2007). Disk aware discord

discovery: Finding unusual time series in terabyte sized datasets. In Data Min-

ing, 2007. ICDM 2007. Seventh IEEE International Conference on, 381–390,

IEEE. 36

Yankov, D., Keogh, E. & Rebbapragada, U. (2008). Disk aware discord

discovery: finding unusual time series in terabyte sized datasets. Knowledge

and Information Systems , 17, 241–262. 36

Ye, N., Xu, M. & Emran, S. (2000). Probabilistic networks with undirected

links for anomaly detection. In IEEE Systems, Man, and Cybernetics Informa-

tion Assurance and Security Workshop, 175–179. 27

Yegneswaran, V., Barford, P. & Ullrich, J. (2003). Internet intrusions:

global characteristics and prevalence. In ACM SIGMETRICS Performance

Evaluation Review , vol. 31, 138–147, ACM. 1

Yi, Y., Wu, J. & Xu, W. (2011). Incremental svm based on reserved set for

network intrusion detection. Journal of Expert Systems with Applications , 38.

17

Yin, X., Yurcik, W., Treaster, M., Li, Y. & Lakkaraju, K. (2004).

visflowconnect: netflow visualizations of link relationships for security situa-

132



REFERENCES

tional awareness. In Proc. of the 2004 ACM Workshop on visualization and

Data Mining for Computer Security , 35–44. 19

Yu, W.Y. & Lee, H. (2009). An incremental-learning method for supervised

anomaly detection by cascading service classifier and iti decision tree methods.

In Proc. of the Pacific Asia Workshop on Intelligence and Security Informatics.

Berlin. 17

Zalewski, M. (2013). p0f v3 (version 3.06b). http://lcamtuf.coredump.cx/

p0f3/. 88

Zhang, N.L. & Poole, D. (1994). A simple approach to bayesian net-

work computations. http://repository.ust.hk/dspace/bitstream/1783.

1/757/1/canai94.pdf. 56

Zhong, C. & Li, N. (2008a). Incremental clustering algorithm for intrusion

detection using clonal selection. In Computational Intelligence and Industrial

Application, 2008. PACIIA’08. Pacific-Asia Workshop on, vol. 1, 326–331,

IEEE. 14

Zhong, C. & Li, N. (2008b). Incremental clustering algorithm for intrusion de-

tection using clonal selection. In Proc. of the 2008 IEEE Pacific-Asia Workshop

on Computational Intelligence and Industrial Application.Washington. 14

133

http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/
http://repository.ust.hk/dspace/bitstream/1783.1/757/1/canai94.pdf
http://repository.ust.hk/dspace/bitstream/1783.1/757/1/canai94.pdf

	cover8
	PhD-Thesis of Harsha K Kalutarage (STNO-3174698)
	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation and main goals
	1.2 Scope of the study
	1.2.1 Terminology

	1.3 Thesis outline

	2 Background
	2.1 Intrusion detection
	2.1.1 Evidential scenario
	2.1.2 Signature elements
	2.1.3 Holding event data

	2.2 Slow attacks
	2.2.1 Advanced persistent threat

	2.3 Anomaly detection
	2.3.1 Incremental approaches
	2.3.2 Visualisation

	2.4 Evaluation
	2.4.1 Evaluation datasets
	2.4.2 Measures
	2.4.2.1 Metrics
	2.4.2.2 ROC analysis
	2.4.2.3 Complexity & delay comparison


	2.5 Conclusion

	3 A Bayesian framework for monitoring
	3.1 Introduction
	3.2 Related work
	3.3 Methodology
	3.3.1 Motivation and source
	3.3.1.1 Motivation uncertainty
	3.3.1.2 Source uncertainty

	3.3.2 Profiling
	3.3.2.1 Evidence fusion
	3.3.2.2 The Bayesian paradigm
	3.3.2.3 Statistical independence

	3.3.3 Analysis
	3.3.3.1 Anomaly detection
	3.3.3.2 Statistical anomaly detection
	3.3.3.3 Peer analysis
	3.3.3.4 Discord analysis


	3.4 Experiment
	3.4.1 Experimental design
	3.4.1.1 Network topology
	3.4.1.2 Suspicious events
	3.4.1.3 Parameter estimation


	3.5 Results
	3.5.1 Node behaviour
	3.5.2 Peer analysis outcomes
	3.5.2.1 Aberrant peers
	3.5.2.2 Best and worst cases

	3.5.3 Discord analysis outcomes
	3.5.4 Network parameters
	3.5.4.1 Traffic volume
	3.5.4.2 Subnet size
	3.5.4.3 Number of attackers


	3.6 Discussion
	3.7 Conclusion

	4 Tracing slow attackers
	4.1 Introduction
	4.2 Related work
	4.3 Methodology
	4.3.1 Tracing algorithm
	4.3.1.1 Tree formation
	4.3.1.2 Tree traversal


	4.4 Experiment
	4.4.1 Scenario

	4.5 Results
	4.6 Discussion
	4.7 Conclusion

	5 Lightweight monitoring
	5.1 Introduction
	5.2 Related work
	5.3 Lightweight monitoring
	5.3.1 Sampling methodology
	5.3.2 Monitoring algorithm
	5.3.3 A Case study
	5.3.3.1 Attacker detection
	5.3.3.2 Detection potential


	5.4 Network design
	5.4.1 A Case study
	5.4.1.1 Sampling rate (r)
	5.4.1.2 Number of subnets (b)
	5.4.1.3 Subnet size (n)


	5.5 Discussion
	5.6 Conclusion

	6 Target-centric monitoring
	6.1 Introduction
	6.2 Methodology
	6.3 A Case Study
	6.4 Results
	6.5 Discussion
	6.6 Related work
	6.7 Conclusion

	7 Conclusion
	7.1 Contributions
	7.2 Future work
	7.2.1 Implementation
	7.2.2 Evaluation against real world


	Appendix A
	Appendix B
	References




