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ABSTRACT

In recent years complex networks have been used to model a plethora of phenom-

ena, many of which reside outside the realm of traditional sciences. Of these,

mythology is one of the furthest removed fields from science. Many approaches to

the study of comparative mythology exist and almost all are entirely qualitative. In

this work, however, methods of network theory are applied to the myths and tales

of different cultures in order to quantitatively compare them to one another.

In total, 33 mythological sources are analysed here. Social networks are con-

structed based on characters’ interactions within each myth. The network proper-

ties allow us to make distinctions between the type of myth and, in some cases, to

distinguish the myths of one culture from another. This method provides an entire

new branch to the field of comparative mythology.
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1. INTRODUCTION

In recent years complex systems have been used to model a plethora of phenomena,

many of which reside outside the realm of traditional sciences (Newman 2011).

The overall behaviour of these systems tends to be extremely sensitive to a small

variation in the initial conditions and fundamental laws are lacking. The collective

behaviour exhibited is known as emergence: the properties of the resultant sys-

tem are often more than just simple aggregates of the behaviours of its individual

constituents.

Complex systems have been applied to a diverse array of fields, ranging from

archaeology (Knappett et al. 2008) to zoology (Lusseau 2003), and many new

mathematical methods have been developed to understand them. A particularly

popular tool that has recently emerged is that of complex network theory (Watts &

Strogatz 1998). Networks model the system as a set of interacting objects. In the

work presented here, the techniques of network theory are applied to the study of

mythology.

A mythology is a collection of myths generally belonging to a particular culture

or religion. They are often used to support or justify a particular culture’s rituals,

beliefs and ethics (Leeming 2005). Almost every culture has some type of myth

or belief system associated with it. A mythology is derived from a whole culture

and not just an individual. In this sense, it can be seen as an emergent property of

a society.

By applying the methods of complex networks to the social interactions of

characters in mythological narratives, mythology is quantitatively explored. This

allows for the properties of myths to be statistically compared and classified. This

approach has already been recognised as opening up a new field of inquiry (Hazelkorn

et al. 2013).

Sociophysics

One of the first applications of methods from statistical physics to social interac-

tions came from Serge Galam in a field he christened sociophysics (Galam et al.
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1982). Numerous Galam theories employ the Ising model to predict the collective

behaviour of groups of humans (Galam 2008). This is a model of a ferromag-

netic spin system arranged on a lattice in which each spin interacts with each of

its neighbours. While an individual spin has no direct influence on more distant

spins, a re-orientation of a spin can influence its neighbours causing a disturbance

to propagate over a large region of the lattice. This same principle is often used in

the modelling of opinion dynamics and other collective phenomena (Galam 2008;

Sznajd-Weron 2005).

More recently, a popular approach to sociophysics is to use graphs or complex

networks to model social phenomena. The application of graph theory to study so-

cial relations and the nature of human interactions has a long history. Here we take

this field a step further and study the societies portrayed in mythological narratives

rather than modern societies.

Graph Theory and Social Networks

The origins of graph theory can be traced back to a paper by Leonhard Euler in

1736 on the seven bridges of Königsberg. The question was asked as to whether

one could find a path through the city of Königsberg which traversed each of its

bridges just once. Euler proved that this is not possible and his study laid the

foundations for graph theory.

Early applications of graph theory outside of mathematics include to chemical

compositions and circuit diagrams. It was not until the 20th century that the first

application of graph theory to social systems appeared. Graphs representing peo-

ple and their interactions are usually referred to as social networks. The earliest

example of such is usually attributed to Jacob Moreno (Moreno 1934). Moreno

was interested in the social interactions between groups of people. In 1933, he

produced the first social network diagram representing friendships between school

children.

Interest in social networks quickly developed in behavioural science, sociology

and anthropology as well as statistics and mathematics. Many statistics and quan-

tities were developed in order to characterise properties of social networks. The

concept of small world was formulated in the 1950s by mathematician Manfred

Kochen and political scientist Ithiel de Sola Pool (see Schnettler (2009)). They

based the idea on the anecdote of two strangers meeting and discovering they had

a shared acquaintance. They presented the problem of determining the number of

steps that chains of contacts spread in the population.
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The psychologist Stanley Milgram took up the challenge of measuring the aver-

age number of steps separating two people. He devised a method to trace acquain-

tance chains by randomly allocating participants’ letters and asking them to send

them to preselected target persons. Participants could only send letters to some-

one that they knew on a first name basis. The average number of steps between

the participant and target came to around six (Milgram 1967). This led to the the

expression six degrees of separation, a phrase popularised by the John Guare play

of that name.

In spite of global concepts such as small world however, early social net-

work analyses were predominantly focused on measures of centrality and so-called

ego-centred networks. Studies were focused more on the microscopic rather than

macroscopic and large datasets were rare. In more recent years, social networks

have been studied and analysed as part of the field of complexity science. Here,

more interest is placed on the topological properties of the system rather than the

individual.

Complex Networks

The Galam approach to sociophysics often modelled human interactions using the

Ising or Potts model in which each individual has the same number of neighbours.

In a complex network however, connections are neither regular nor random. Com-

plex networks allow for a different approach to the analysis of the structure of

human relationships and a glimpse at their global emergent properties.

In their seminal paper, Watts & Strogatz (1998) observed similarities between

the structure of the neural network of a nematode worm, a movie actor social net-

work and the structure of a power grid. Since then a whole host of systems have

been modelled and analysed using complex networks. Costa et al. (2011) detail a

survey of applications ranging from technological networks to the US stock mar-

ket. Core network properties allow for the comparison of the structures of such

complex networks to one another.

While complex networks are ubiquitous in society, here we are interested in the

properties of social networks in particular. Online resources such as the physics

pre-print arXiv and the internet movie database IMDb, as well as online social

networks, allow us to gather data on a much larger scale than previously available.

Newman & Park (2003) demonstrate that social networks have different properties

to those of other complex networks. Amaral et al. (2000) discriminate between

different types of social networks, claiming that as the network of movie actors is
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economically driven, this is an inherently different system to the structure of school

friendships. Gleiser (2007) even identifies differences between the social network

of Marvel Universe’s comic book characters to more real-world social networks.

All of the above examples of social networks, however, are from the 20th cen-

tury onwards. Applying these techniques to the characters and interactions that

appear in myths may provide insights into the nature of human interactions for

different, and less contemporary, cultures.

Mythological Networks

There are many approaches to the study of comparative mythology. Some of these

look for meaning in myth to explain natural phenomena (e.g. Barber & Barber

(2006)), others search for common motifs and universalities of the human condi-

tion (Campbell 1949). However, almost all approaches thus far are qualitative. As

myths tend to contain an abundance of characters, they provide a unique source

for the construction of social networks. The analysis of their network properties

allows for a first approach to quantitative approach comparative mythology.

In the field of folklore, the Aarne-Thompson classification catalogues thou-

sands of folktales according to their plots and themes (Aarne & Thompson 1961).

No similar system exists in the field of comparative mythology (Lyle 2006). Mea-

suring the network properties which emerge from different narratives may allow us

to find classifications for myths. It may also provide an insight into the similari-

ties – or differences – between distinct cultures. Similarly, the methods of Gleiser

(2007) may allow us to discriminate between fictional, superhero-like, myths and

ones that are centred on a real society.

The following chapter introduces all the quantities from network theory that are

used and measured in this thesis. In Chapter 3, these quantities are determined for

readily available social network datasets in order to calibrate our approach and pro-

vide detailed empirical results for comparative purposes. In Chapter 4 the mytho-

logical data used and the methods employed to create the networks are discussed.

In Chapter 5, the analyses of the data relating to various mythological narratives

are presented. Chapter 6 presents an overview of the results and conclusions are

drawn in the final chapter.



2. NETWORK THEORY

2.1 Networks

A graph is an ordered pair G = (V, E) containing a set of vertices or nodes V and

a set of edges E . The number of vertices in the graph N is given by |V| and the

number of edges L is given by |E|. Each edge is a two-element subset of V . A

graph in which each pair of edges are in a specific order is called a directed graph

or a digraph.

A graph can be represented by its adjacency matrix A. This is an N × N

matrix where each element Aij = 1 if there is an edge between vertices i and

j, and Aij = 0 otherwise. For an undirected graph Aij = Aji. If there are no

self-loops (i.e. a vertex having an edge with itself) then TrA = 0.

The most fundamental property of a vertex is its degree. The degree ki of vertex

i is defined by ki =
∑

j Aij . This is the number of edges connected to vertex i.

The mean degree over the N vertices of a network is given by

〈k〉 =
1

N

N∑
i=1

ki. (2.1)

For an undirected graph, this can be expressed as

〈k〉 =
2L

N
. (2.2)

An edge in a graph can also have a weight. This indicates its relative strength

and can be represented by assigning a number to that edge. A graph with weighted

edges is usually called a network.

From here on, the terms ‘network’ and ‘graph’ will be used interchangeably

(as common in the literature). The networks contained herein are undirected and

contain no self loops. The weight of an edge does not contribute to the degree of

a vertex, therefore the degree refers to the number of neighbours associated with

that vertex.



2. Network Theory 6

2.2 Degree Distribution

The distribution of the degrees in a network gives some important characteristics

related to its structure. The degree distribution pk is the fraction of vertices in a

network with degree k, 1

pk =
1

N

N∑
i=1

δ(ki − k), (2.3)

where δ(ki − k) is the Kronecker delta function which, in this case, is 1 if ki = k

and 0 if ki 6= k.

The generating function associated with the degree distribution is given by

g(z) =
∑
k

zkpk =
1

N

∑
i

zki (2.4)

The first moment of the degree distribution 〈k〉 is the mean of that distribution,

〈k〉 =
∑
k

kpk = g′(z)
∣∣
z=1

. (2.5)

The second moment

〈k2〉 =
∑
k

k2pk = g′′(z)
∣∣
z=1

+ g′(z)
∣∣
z=1

(2.6)

is related to the variance σ2 of the distribution by

σ2
k = 〈k2〉 − 〈k〉2. (2.7)

The variance itself gives a measure of the spread of degrees about the mean.

2.2.1 Degree Distribution for Random Graphs

A random graph is a graph in which edges are distributed between pairs of ver-

tices at random. One of the most common models is the Erdős-Rényi random

graph (Erdős & Rényi 1959). Here an edge is created between each pair of ver-

tices with probability p. A given vertex has k edges to a maximum of N − 1. The

probability for a vertex to have degree k is proportional to pk(1− p)N−1−k where

the second term in the product represents the probability not to be linked to the
1 In terms of notation, pk is used for discrete distributions and p(k) for continuous distributions.
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Fig. 2.1: The average degree distribution for 100 Erdős-Rényi random graphs each with
N = 1000 and p = 0.05. Each point represents the average fraction of vertices
with degree k and the error bar is the standard deviation about that point. The
continuous blue line is a binomial distribution (2.8) and the dashed green line
is the Poisson distribution (2.14) The dotted vertical line represents the average
degree of network.

N − 1− k other vertices. The degree distribution is therefore binomial

pk =

(
N − 1

k

)
pk(1− p)N−1−k. (2.8)

Its corresponding generating function is

g(z) = [1 + p(z − 1)]N−1 . (2.9)

The first and second moments are then

〈k〉 = p(N − 1), (2.10)

〈k2〉 = p(N − 1)[p(N − 2) + 1]. (2.11)

The average degree distribution for 100 random graphs with N = 1000 and

p = 0.05 is plotted in fig. 2.1. The average degree is 〈k〉 = 49.95 and is marked

by the vertical black dotted line. Eq. (2.8) is represented by the continuous blue
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line.

In the limit of largeN , eq. (2.8) can be approximated by a Poisson distribution.

For N � k ≥ 1, Stirling’s approximation n! ≈
√

2πnn+1/2e−n can be applied to

the first term in eq. (2.8) giving

(N − 1)!

k!(N − 1− k)!
≈ NN+1/2eN

k!(N − k)N−k+1/2eN−k
≈ 1

k!
Nk. (2.12)

Assuming p � 1, then ln(1 − p) ≈ −p, so the last term in eq. (2.8) can be

approximated by

(1− p)N−1−k = e(N−1−k) ln(1−p) ≈ e−Np. (2.13)

Combining these, eq. (2.8) becomes

pk ≈
(Np)k

k!
e−Np, (2.14)

which is a Poisson distribution with mean Np. This is represented by the green

dashed line in fig. 2.1.

2.2.2 Degree Distributions for Complex Networks

For complex networks, degree distributions are often found to have positive or right

skew (Newman 2003b). These heavy tails are frequently due to a small number of

vertices having very large degrees. Highly connected vertices are often known as

hubs. In contrast, random graphs tend to have a lack of hubs due to having a small

standard deviation in degree compared to the mean degree.

Fig. 2.2 (a) depicts the degree distribution for protein interactions in yeast

(Jeong et al. 2001). The tail of this distribution is very noisy. This is because

there are multiple instances of only one vertex with a specific degree, e.g. more

than one vertex for which pk = 1/N . A common method to deal with this is

to consider the complementary cumulative distribution function (Newman 2005).

This is the probability a vertex has degree greater than k,

Pk =

∞∑
j=0

pk+j =

∞∑
q=k

pq. (2.15)

The complementary cumulative distribution function for protein interactions in

yeast is shown in fig. 2.2 (b).
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Fig. 2.2: (a) The degree distribution on a log-log scale for protein interaction network in
yeast (Jeong et al. 2001) with a fitted power law, observe that the tail is very noisy.
(b) The complementary cumulative distribution function for the same network,
again with a fitted power law.

Amaral et al. (2000) find three classes of degree distribution for small-world

networks (see section 2.6 for details on small-world networks). These are (i)

power-law degree distributions, (ii) truncated power-law distributions which are

characterised by power-law regimes followed by a sharp cut-off, and (iii) degree

distributions with fast decaying tails such as exponentials or Gaussians. We discuss

these in turn.

(i) Power-Law Distributions

A distribution commonly observed in complex networks is that described by a

power law (eg. Strogatz (2001); Albert & Barabási (2002)). This has the form

pk ∼ k−γ , (2.16)

where γ ≥ 1. Usually the power-law behaviour is found only in the tail of the

distribution beginning at some value of degree k = kmin > 0. Jeong et al. (2001)

show that the degree distribution for the protein interactions in yeast is fitted by a

power law. This is represented by the dotted line in fig. 2.2 (a) with kmin = 2 .

A network with a power-law distribution is often called a scale-free network. If

the scale of the degree k is increased by some factor a, the shape of the distribution

is unchanged except for an overall multiplicative constant (Newman 2005),

p(ak) = a−γp(k) ∼ p(k). (2.17)
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However, while the degree distribution may indeed be scale free, there are usually

scales present in other network properties.

Albert & Barabási (2002) find that complex networks often have exponents in

the range 2 ≤ γ ≤ 3. If, for largeN , we approximate the distribution as continuous

p(k) and take the second moment we obtain

〈k2〉 =

∫ N−1

kmin

k2p(k)dk ∼ 1

3− γ
[
k3−γ]N

kmin
. (2.18)

AsN goes to infinity, one observes that the second moment diverges when γ ≤ 3.

Therefore for the networks presented here, if the degree distributions follow a

power law with γ ≤ 3, they would be expected to have a large value of 〈k2〉. In

a similar manner, the first moment 〈k〉 diverges in an infinite network with γ ≤ 2,

however empirically exponents are not commonly found in this regime.

Remaining in the continuous regime, the complementary cumulative form of a

power-law degree distribution is given by (see A.8)

P (k) ∼ k1−γ . (2.19)

This preserves the power-law form but increases the value of the exponent. Hence

a power law is also depicted in fig. 2.2 (b).

A two-parameter variation of the power law is sometimes fitted to degree dis-

tributions (e.g. Gleiser & Danon (2003)). This has the form

pk ∼ (1 + αk)−γ (2.20)

for parameter α > 0. This distribution is no longer scale-free but the first and sec-

ond moment diverge in the same range as for the standard power law.

(ii) Truncated Power-Law Distributions

The second class of network described by Amaral et al. (2000) contains a power-

law regime followed by a sharp cut-off. Albert & Barabási (2002) provide a list of

exponents and corresponding cut-offs in a range of complex networks.

A power law with an exponential cut-off is known as a truncated power law

and has the form

pk ∼ k−γe−k/κ. (2.21)
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Fig. 2.3: (a) The complementary cumulative degree distribution on a log-log scale for the
scientific co-authorship network of the cond-mat arXiv (Newman 2001b) with a
fitted truncated power law. (b) The complementary cumulative degree distribution
for a US power grid network (Watts & Strogatz 1998) on a log-linear scale with
a fitted exponential.

A truncated power law is shown for the scientific collaboration network of the con-

densed matter arXiv from 1995 to 1999 in fig 2.3 (a) (Newman 2001b). This is

represented by the black dotted line in fig. 2.3 (a).

(iii) Exponential and Related Distributions

The exponential distribution is another commonly encountered degree distribution

in complex networks (Newman 2003b). It is given by

pk ∼ e−k/κ, (2.22)

where the parameter κ > 0 sets a scale.

Fig. 2.3 (b) depicts the degree distribution for the power-grid network of the

western states of the US (Watts & Strogatz 1998). This is shown on a log-linear

scale where the dotted blue is an exponential distribution.

Other distributions involving the exponential function commonly found in the

study of complex networks (Amaral et al. 2000; Newman 2003b) and which are

used here are:

• the Gaussian (or normal) distribution which has the form

pk ∼ exp

[
−(k − µ)2

2σ2

]
, (2.23)
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where µ is the mean and σ2 is the variance of the distribution.

• the log-normal distribution which is given by

pk ∼
1

k
exp

[
−(ln k − µ)2

2σ2

]
. (2.24)

This is more strongly skewed than the Gaussian distribution.

• the stretched exponential

pk ∼ e−(k/κ)β . (2.25)

If the parameter β = 1, then this is an exponential distribution. If β > 1

this is called the compressed exponential function. It recovers the Gaussian

distribution when β = 2.

• the Weibull distribution

pk ∼
(
k

κ

)β−1

e−(k/κ)β . (2.26)

The stretched exponential is the complementary cumulative function of the

Weibull distribution. For both the stretched exponential and the Weibull dis-

tribution, the concavity changes after the mean of the distribution when pa-

rameter β goes from β < 1 to β > 1.

The method of maximum likelihoods will be used to estimate the parameters of

these distributions. Details of the log-likelihood for each distribution are discussed

in Appendix A.

2.3 Maximum Likelihood Estimators

As mentioned in section. 2.2, the complementary cumulative distribution function

in eq. (2.15) is often used to reduce the noise in the tail of the probability distri-

bution. Fits are then often made to the cumulative distribution Pk rather than the

original degree distribution pk.

In recent years it has been suggested that applying the method of least squares

to cumulative distribution is unsuitable for empirical data (Edwards et al. 2007;

Clauset et al. 2009). This is in part due to the data being discrete and therefore the

continuous approach to the complementary cumulative form may not be appropri-

ate (in particular when dealing with small datasets). Further reason cited are the
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estimates for the parameters are subject to large errors and furthermore the errors

are difficult to estimate (Clauset et al. 2009). Instead it is claimed that Maximum

Likelihood Estimators (MLE) provide better measurements for the parameters as

no estimator has lower asymptotic error in the limit of large sample size as the

MLE (Clauset et al. 2009).

The likelihood L is the probability that an independent and identically dis-

tributed data-set of N observations were drawn from a model p(k) with parameter

θ,

L(θ|k) =
N∏
i=1

pθ(ki). (2.27)

The data are most likely to have been generated by the model with the value θ

that maximises the likelihood. It is often easier to deal with the logarithm of the

likelihood which has a maximum at the same parameter value.

To calculate the error σθ in the parameter θ, we use the variance of the most

likely value θ̂ when it is normally distributed (Fisher 1922),

σ2
θ = − 1

N

〈
∂2 log p(k|θ)

∂θ2

〉−1

. (2.28)

The expectation term is often called the Fisher information at θ. Alternatively, an

estimate for the error can be obtained by the method of ‘bootstraping’.

Both MLEs or least squares can give reasonable estimates for the parameters

of a given distribution, however this does not mean that the distribution is actually

a good model for the data. To compare different models the Akaike information

criterion for small sample size AICc (Akaike 1974; Burnham & Anderson 2002)

or the Bayesian information criterion BIC (Schwarz 1978) may be employed. The

AICc is given by

AICc = −2 lnL(θ̂|ki) + 2nθ +
2nθ(nθ + 1)

N − nθ − 1
, (2.29)

where nθ is the number of parameters in the model. When comparing different

models, the same numbers of data points must be used. Therefore, if fitting to the

tail of a distribution, the same kmin must be chosen in each case.

The AICc weights wm of a particular model m gives the relative likelihood of

R models as

wm =
e−∆m/2∑R
r=1 e

−∆r/2
, (2.30)
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where ∆m = AICcm − AICcmin and AICcmin is the minimum value of AICc for

the R models. The weight wm denotes the extent to which model m is favoured.

Note that this is not a goodness of fit test; it does not give an indication of how

well a model fits the data. Rather, it signals the most likely of the candidate models

used.

The BIC is given by

BIC = −2 lnL(θ̂|ki) + nθ lnN. (2.31)

A similar expression for the BIC weights as eq. (2.30) is used to determine the

most likely candidate model.

Further details on the Information Criteria are provided in Appendix A.3.

2.4 Paths and Connectivity

A path in a graph is a sequences of edges between two vertices. If there exists a

path between every pair of nodes in the graph then the graph is said to be connected.

If a graph is not connected, the largest connected sub-component is called the giant

component.

The shortest path, or geodesic, λij is the path that traverses the minimal number

of edges between vertices i and j. If there is no path between i and j then by

convention λij = ∞. The average path length ` is defined by summing over all

finite paths of each component. Defining {Cm} as the set of components in G, the

average path length is defined by

` =
∑
m

1

nm(nm − 1)

∑
i,j∈Cm

λij , (2.32)

where nm denotes the number of nodes in each component. The longest geodesic

`max is known as the diameter of the network.

2.4.1 Average Path Length for Random Graphs

Molloy & Reed (1995) show that for the Erdős-Rényi random graph, if
∑

k k(k −
2)pk > 0 then the graph almost surely connected. This can be re-expressed as

〈k2〉
〈k〉

> 2, (2.33)
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Fig. 2.4: The mean of the average path lengths ` for 50 random graphs with different sys-
tem sizes versus the probability p for creating edges. The error is given by the
standard deviation of `. Panel (a) shows eq. (2.36) as the dashed line for three
different system sizes. Panel (b) shows the entire range of p however and as the
probability becomes large, eq. (2.36) no longer fits. Above p = 0.5 + a/ lnN ,
the data is better fitted by the dotted line `(p) = 2− p.

and using eq. (2.10) and eq. (2.11), this becomes

p >
1

N − 2
. (2.34)

Above the critical threshold pc = 1/(N − 2) is where percolation occurs (Cohen

et al. 2000).

Albert & Barabási (2002) find that the diameter for a random graph is approx-

imately

`maxrand
=

logN

log〈k〉
, (2.35)

noting that for N � 1, 〈k〉 ≈ pN . They also suggest that the average path length

`rand scales with logN/ log〈k〉 in a proportional manner. However, a more accu-

rate expression is given by (Fronczak et al. 2004)

`rand =
lnN − a

ln pN
+

1

2
, (2.36)

where a ' 0.5772 is the Euler-Mascheroni constant.

In fig. 2.4 (a) the mean `rand is shown for three different systems sizes with

increasing probability for creating edges p. For each system size 50 random graphs

were generated. The mean and standard deviation of `rand are shown as the points

and error-bars respectively. Eq. (2.36) is the fitted to each data set. In fig. 2.4 (b),
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however, `rand is plotted for the entire range of p. This shows that the behaviour

becomes linear for large p and has the form

`rand(p) = 2− p. (2.37)

Substituting this into eq. (2.36), and assuming lnN � ln p, we find that

p ≈ 1

2
+

γ

lnN
. (2.38)

Thus there are three regimes characterising the behaviour of `rand(p):

• p < 1
N−2 , this is before the percolation threshold. The graph is likely to be

fragmented and contain many small components.

• 1
N−2 < p < 0.5 + γ

lnN , there will almost surely be a fully connected com-

ponent and `rand follows eq. (2.36).

• p > 0.5 + γ
lnN , here `rand is very short (` < 2) and has the linear form of

eq. (2.37).

Complex networks are generally found to have average path lengths comparable to

the average path lengths of random graphs (Watts & Strogatz 1998).

2.5 Clustering Coefficient

Another measure of connectivity in a graph is the clustering coefficient. This mea-

sures the probability of two neighbours of a vertex sharing an edge. The clustering

coefficient of vertex i is given by

Ci =
2ni

ki(ki − 1)
, (2.39)

where ni is the number of edges linking the ki neighbours of vertex i to each other

(Watts & Strogatz 1998). The mean clustering coefficient C of the entire network

is obtained by averaging eq. (2.39) for all N vertices,

C =
1

N

N∑
i=1

Ci. (2.40)

This is sometimes known as the Watts-Strogatz clustering coefficient. In the case

of single degree vertices (leaf nodes) ki = 1 where ni = ki − 1 = 0, we define
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Ci = 0. Note that some authors instead define Ci = 1 for vertices with ki = 1

(e.g. Brandes & Erlebach (2005)) and others ignore vertices with ki = 1 entirely

for the purposes of clustering coefficient calculations (eg. Latapy (2008)). These

however give artificially large values for the clustering coefficient. For example in

fig. 2.5, there are 7 vertices with only one closed triangle. The last two definitions

both give a clustering coefficient of C > 0.5. (For a full discussion on the effect of

leaf nodes on the clustering coefficient, see Kaiser (2008).)

An alternative measure for the clustering coefficient, sometimes known as the

transitivity (and which will be referred to as such from here on to avoid confusion),

is commonly used in the sociology literature (Wasserman 1994). Denoting N∆ as

the total number of triangles in the network and Nt as the number of connected

triplets (i.e. paths of length 2), then

CT =
3N∆

Nt
. (2.41)

This is a global quantity as opposed to the average of the local quantities of eq. (2.39).

The Watts-Strogatz version gives more weight to low degree vertices, as the de-

nominator in eq. (2.39) is small for such vertices (Newman 2003b). An illustration

outlining the difference is given in fig. 2.5. Empirically we find for social networks

that the clustering coefficient C is usually greater than the transitivity CT .

2.5.1 Clustering Coefficient for Random Graphs

For a random Erdős-Rényi graph, the probability that any two vertices have an edge

is the same regardless of whether they have a common neighbour, hence

Crand = p =
〈k〉

N − 1
, (2.42)

where eq. (2.10) has been used. For N � 〈k〉 ≥ 1, Crand tends to zero.

This is quite a stark contrast to complex networks which are often found to have

high clustering coefficients despite having relatively small mean degrees (Albert &

Barabási 2002). However, unlike the Erdős-Rényi graph, complex networks’ de-

gree distributions are not binomial. Attention is next turned to a random graph with

an arbitrary degree distribution pk and the behaviour of the clustering coefficient is

evaluated.

The probability for two vertices i and j to both be connected to vertex v is
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Fig. 2.5: Illustration of the clustering coefficient. There is only one closed triad of 13
connected triplets. This gives a value of CT = 3/13 ≈ 0.23. The Watts-
Strogatz definition from eq. (2.40) gives C = 0.3. If instead the Watts-Strogatz
clustering is only calculated for vertices with ki > 1, then C = 0.53 and if for
ki = 0, Ci = 1 then C = 0.73. These values are quite large considering there
is only one triangle. For a random graph of the same size and average degree,
Crand = 0.29.

given by

pv,ij =
(ki − 1)(kj − 1)

2L
, (2.43)

where it is assumed that the number of edges L � 1. The probability for any

neighbour of v to share an edge is then

nv =
∑
ij,i6=j

AviAvjpv,ij . (2.44)

For a graph generated at random, the probability to connect two vertices i and j is

proportional to the product of their degrees kikj . Hence the approximation

Aij ≈
kikj
2L

(2.45)

can be made. Combining eq. (2.44) and eq. (2.45), then,

nv ≈
k2
v

(2L)3

∑
ij

kikj(ki − 1)(kj − 1)(1− δij), (2.46)

where the 1 − δij term ensures there are no loops. Evaluating the summation and
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neglecting O(1/N) terms, nv can be expressed as

nv ≈
k2
v

N

(〈k2〉 − 〈k〉)2

〈k〉3
. (2.47)

Returning to eq. (2.39), the clustering coefficient of v is

Cv ≈
1

N

kv
kv − 1

(〈k2〉 − 〈k〉)2

〈k〉3
. (2.48)

For the entire network

C ≈ 1

N

(〈k2〉 − 〈k〉)2

〈k〉3
∑
v

kv
kv − 1

. (2.49)

In section 2.2.2, it is shown that 〈k2〉 diverges for a power-law distribution

when γ ≤ 3. As the exponents in many complex networks are commonly found

in the range 2 ≤ γ ≤ 3 (Albert & Barabási 2002), the clustering coefficient is no

longer dominated by factor of N−1.

A naı̈ve expression for the transitivityCT can also be obtained which we denote

as Cn. The number of triangles N∆ can be estimated by

N∆ ≈ a1

∑
v

nv = 〈k2〉(〈k
2〉 − 〈k〉)2

〈k〉3
, (2.50)

for some constant a1. The number of connected triplets, Nt is obtained from

Nt = a2

∑
i

∑
j,j 6=i

∑
k,k 6=i,j

AijAjk, (2.51)

with some constant a2. Employing eq. (2.45) and neglecting O(1/N) terms again,

this becomes

Nt ≈ a2N〈k2〉. (2.52)

Therefore eq. (2.41) can be expressed as

Cn ≈
a1

a2

1

N

(〈k2〉 − 〈k〉)2

〈k〉3
. (2.53)

For the Erdős-Rényi model for large N , eq. (2.53) gives C ≈ p a1/a2 which is
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Fig. 2.6: Mean clustering coefficient C̄k per degree for the cond-mat arXiv coauthorship
network from 1995-1999 (Newman 2001b). The dashed black line is a power law
of the form C̄(k) ∼ k−0.80.

eq. (2.42) when a1 = a2. Therefore we assume

Cn ≈
1

N

(〈k2〉 − 〈k〉)2

〈k〉3
. (2.54)

An alternate derivation of eq. (2.54) can be found in Newman & Park (2003).

2.5.2 Hierarchy

It has also been suggested that if the clustering coefficient Ci decreases as a power

of the degree ki, the network is hierarchical (Ravasz & Barabási 2003). As there

can be multiple values of Ck for degree k, the mean clustering coefficient per

degree C̄k is used,

C̄k ∼ k−β. (2.55)

Ravasz & Barabási (2003) observe that the exponent is often found to be β ≈ 1.

In fig. 2.6, this is shown for the cond-mat arXiv coauthorship network from 1999-

2003 (Newman 2001b) with a fitted power law with exponent β = 0.80± 0.04.

In practice however, a power-law may not describe the data well (see Gleiser

(2007); Luduena et al. (2013) for example). Nonetheless, a decay indicates that

high degree vertices tend to have low clustering coefficients. In many sub-communities
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such nodes play an important role in keeping the entire network intact.

2.6 Small Worldness

A common property of complex networks is that most vertices can reach other

vertices in just a small number of steps relative to the size of the network (Estrada

2011). This is known as the small-world effect (Milgram 1967).

A network is often said to be small world if it’s average path length ` scales

logarithmically with the size of the network N (Barrat & Weigt 2000),

` ∼ lnN. (2.56)

Here, however, we define the small worldness based on the Watts & Strogatz

model (Watts & Strogatz 1998). A network is small world if it meets the following

two criteria:

• The average path length is similar to the average path length of a random

graph of the same size and average degree ` ≈ `rand.

• The clustering coefficient is much larger than the clustering coefficient of a

random graph of the same size and average degree C � Crand.

A recent suggestion for a quantitative determination of small worldness is given

by

S =
C/Crand

`/`rand
. (2.57)

The network is then small world if S > 1 (Humphries & Gurney 2008).

2.7 Signed Graphs and Structural Balance

In addition to a weight, an edge in a graph can be assigned a positive or negative

sign. A signed graph is a pair (G, s) that consists of a graphG and a sign mapping s

from E to the sign group {+,−}. In a social network, these are used to distinguish

between friendly and hostile interactions. Friendly edges are denoted as positive

and hostile edges are negative. These are described in more detail in section 4.2.

In the overall network, closed triads with just one hostile edge are disfavoured

as a single hostile link prompts the opposite node in a triangle to take sides. The

propensity to disfavour odd numbers of hostile links in a closed triad is known as
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structural balance (Heider 1946; Cartwright & Harary 1956). This is related to the

notion of “the enemy of my enemy is my friend.”

Structural balance is normally used as a dynamical property. For example, it

has been observed in the shifting alliances of nations in the lead-up to war (Antal

et al. 2006). However, it has also been analysed statically by measuring the abun-

dance of triangles with an odd number of positive edges. This method has been

used in the social network of an online multiplayer game (Szell & Thurner 2010).

2.8 Assortativity

The tendency for individuals to associate with those who have similar attributes

(e.g. ethnicity, religious beliefs, etc.) to themselves is known as homophily (McPher-

son et al. 2001). In complex networks, this is similar to the notion of assortativity

(Newman 2002). Assortativity measures the correlations between properties of

vertices and their neighbours.

The most common attribute studied is the degree assortativity. A network with

correlations between the degrees of vertices is said to be assortatively mixed by

degree, and a network with anti-correlations is disassortatively mixed by degree.

In a random graph there are no correlations between the degrees of neighbouring

vertices.

Consider the two vertices at the extremities of a randomly chosen edge in a

graph. The probability of one vertex having degree k and the other degree q is

Φ(k, q) =
1

2L

∑
i,j

Aijδ(ki − k)δ(kj − q). (2.58)

Summing over the L edges, the average degree of the vertex at the end of an edge

is denoted by E[k]. As we are dealing with undirected graphs E[k] = E[q]. It is

important to note that E[k] is not the same as the average degree of the network 〈k〉
(which sums over the N vertices), these quantities are related however, as shown

below. Summing over the degree q, the marginal probability is given by

φ(k) =
∑
q

Φ(k, q). (2.59)
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From this E[k] is evaluated by

E[k] =
∑
k

kφ(k) =
〈k2〉
〈k〉

, (2.60)

and we observe the relationship between the average degree at the end of an edge

E[k] and the average degree of the network 〈k〉.
The quantity E[kq] is given by

E[kq] =
∑
k,q

kqΦ(k, q). (2.61)

If the graph is uncorrelated then Φ(k, q) = φ(k)φ(q). This implies,

E[kq] = E[k]E[q]. (2.62)

A network has positive correlations when E[kq] > E[k]E[q], and negative correla-

tions when E[kq] < E[k]E[q]. The degree assortativity rk is then defined as

rk =
1

σ2
k

(E[kq]− E[k]E[q]), (2.63)

where σ2
k is the variance of k

σ2
k = E[k2]− E[k]2. (2.64)

The variance acts as a normalisation ensuring −1 < rk < 1. If rk > 0 the network

is assortative, if rk < 0 it is disassortative and if rk = 0 there are no correlations

between the degrees of vertices.

Using eq. (2.58), the assortativity in eq. (2.63) can be re-expressed as

rk =

∑
ij Aij(ki − E[k])(kj − E[k])

E[k2]− E[k]2
, (2.65)

which is the standard form of the Pearson correlation coefficient.

The expected statistical error σk is calculated using the jackknife method (Efron

1979),

σ2
r =

L∑
e=1

(re − r)2, (2.66)

where re is the value of the r when the edge e is removed (Newman 2003a).
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Fig. 2.7: The ψ(∆) distribution for two networks. Panel (a) is the assortative network of
coauthors on network science (Newman 2006). Panel (b) shows the disassorta-
tive of the neural network of a nematode worm (Watts & Strogatz 1998). The
disassortative distribution has much larger and more frequent fluctuations in the
tail.

2.8.1 Degree Difference in Edges

A method of visualising the assortativity introduced here is presented as follows.

From eq. (2.65), one observes that a network is assortative if, on average, ki and kj
are both above or are both below the mean E[k] for any connected pair of vertices

i, j. We next define the probability Ψ(K,∆) for the sum and the difference of

the degree of each vertex to be equal to K and ∆ respectively. This is given by

(Mac Carron et al. 2014)

Ψ(K,∆) =
1

2L

∑
i,j

Aijδ(ki + kj −K)δ(ki − kj −∆). (2.67)

The marginal probability ψ(∆) =
∑

K Ψ(K,∆) gives the probability of finding

two vertices (at the extremity of the same edge) such that k1 − k2 = ∆. Plotting

this distribution allows one to visualise the behaviour of the assortativity. Large

fluctuations far from the mean 〈∆〉 cause a network to become more disassortative.

This function is symmetric for undirected networks.

Fig. 2.7 (a) shows the ψ(∆) distribution for the coauthorship network of re-

searchers on network science on a log-linear scale (Newman 2006). This is an

assortative network with rk = 0.46. The distribution is uniformly decaying away

from the mean 〈∆〉 = 0. A large fraction of vertices that share edges also have

the same degree. Fig. 2.7 (b) is the distribution for the disassortative network

(rk = −0.16) of neural network of the C. elegans nematode worm (Watts & Stro-
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Fig. 2.8: The neural network of a nematode worm (Watts & Strogatz 1998). Edges and
their correspond vertices that have a degree difference between 133 ≤ |∆| ≤ 122
are coloured yellow, and edges and vertices with 66 ≤ |∆| ≤ 62 are coloured
green. The average degree of vertices at the end of an edges is E[k] = 26.05.

gatz 1998; White et al. 1986). Here we observe three large peaks far from the

mean which drive the disassortativity. These are due to hubs connecting to a large

number of low degree nodes. The network is shown in fig. 2.8 where the yellow

edges and their associated vertices are in the range 133 ≤ |∆| ≤ 122 and the green

edges and their vertices have 66 ≤ |∆| ≤ 62. This allows us to easily identify the

vertices and edges that strongly contribute to the disassortativity.

For the mythological networks presented in this work, some narratives have

similar assortativity values but different mechanisms can account for this. The

ψ(∆) distribution allows us to visualise the assortativity to show the differences in

interactions.

2.8.2 Further Similarity Measures

Degree assortativity measures the similarity of the degrees of vertices connected to

one another. Assortativity can also be used for other properties. One may define

the clustering assortativity rC by replacing the degree ki of vertex i in eq. (2.65)

with its clustering coefficient Ci from eq. (2.39).

Further measures of similarity have also been defined for networks (Newman

2009). The Pearson similarity measure is also used here. This is similar to Pearson

correlation coefficient of eq. (2.65) but instead of examining the degrees of vertices
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that are linked, it measures how many neighbours v each pair of vertices i, j share.

Here i does not have to share an edge with j. This type of similarity measure is

often referred to as structural equivalence.

The Pearson similarity for vertices i and j is defined by

rij =

∑
v(Aiv −N−1ki)(Ajv −N−1kj)√∑

v(Aiv −N−1ki)2
√∑

v(Ajv −N−1kj)2
. (2.68)

The average Pearson similarity rP for the network can be calculated by summing

over all rij for all pairs of vertices.

A network that is highly disassortative may have positive Pearson similarity as

many low degree vertices that do not share an edge may be connected to the same

high degree vertices. For example a star graph is a graph whereN−1 vertices have

degree k = 1 and one vertex has degree k = N − 1. For N = 100 for example,

this has a degree assortativity of r = −1 but has a positive Pearson similarity of

rP = 0.96.

2.9 Centrality Measures and Robustness

In a network, it is often useful to identify influential or central nodes. One simple

measure of centrality is the degree. A vertex with a high degree is likely to have

more influence on the properties of the network than a vertex with a low degree.

Another measure of influence is the betweenness centrality of a vertex. This is

the total number of geodesics that pass through a given vertex (Freeman 1977). A

vertex with a high betweenness centrality has a high probability to be on a shortest

path between two other vertices. Therefore it controls the flow of information

between other vertices.

If σ(i, j) is the number of geodesics between vertices i and j, and if the number

of these which pass through node l is σl(i, j), the betweenness centrality of vertex

l is

gl =
2

(N − 1)(N − 2)

∑
i 6=j

σl(i, j)

σ(i, j)
. (2.69)

The normalization ensures that gl = 1 if all geodesics pass through l.

An expression analogous to Eq. (2.69) can be developed for edges to determine

the edge betweenness centrality which we will return to in the next section. This

determines which edges are traversed frequently on shortest paths in a network.

To test the robustness of a network, vertices can be removed and the size of
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Fig. 2.9: The robustness for the network of the protein interaction network in yeast. The
network is very susceptible to targeted attacks on degree (blue) and betweenness
(green) but is robust to the random removal of vertices (red).

the giant component measured. If the giant component fragments quickly then the

network is not robust (Albert et al. 2000). Targeted removal of vertices involves

eliminating vertices with the highest degree or betweenness centralities. When

removing vertices by betweenness centrality, the betweenness must be recalculated

after each removal. Vertices can also be removed by selecting them randomly.

Networks that have scale-free degree distributions tend to be robust to random

removal of vertices but fragile to targeted removal of vertices (Albert et al. 2000).

Fig. 2.9 shows the robustness for the protein interaction network in yeast (Jeong

et al. 2001). The giant component breaks down quickest by removing vertices of

high betweenness centrality followed closely by the removal of vertices by degree.

Vertices were removed randomly 50 times and the average size of the giant compo-

nent are shown as the red points. This network is robust when vertices are removed

randomly.

In the context of the social networks presented in this work, a lack of robustness

indicates the network is overly reliant on a few characters. Naı̈vely, we would

expect a social network to be robust due to a lack of disassortativity. For narratives

however, this may not be the case as they are often centred on a single protagonist.

Testing the robustness provides information as to whether the tale is hero-centred

or society-centred.
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Fig. 2.10: A network of jazz musicians between 1912 and 1940 (Gleiser & Danon 2003).
There are two distinct communities in this network due to the racial segregation
present at the time. Though collaborations did exist, bands mostly comprised
exclusively black or white musicians. The blue coloured edges here represent a
clique of 31 musicians who all collaborated together at one time or another.

2.10 Communities

A clique is maximal complete subgraph within a network containing at least three

vertices (Luce & Perry 1949). As complex networks tend to have high clustering

coefficients (Watts & Strogatz 1998), a large number of cliques of size Cs = 3

(triangles) are contained within them. Larger cliques are found in social networks

though their number decays rapidly.

The social network of Jazz musicians (Gleiser & Danon 2003) contains one

particularly large clique containing 31 vertices. Fig. 2.10 shows this as the cluster

with blue edges. Each musician collaborated with every member of that clique

at one time or another. However, the network contains 738 cliques in total only

two of which comprise 20 or more members. Fig. 2.11 depicts the complementary

cumulative the clique size distribution PCs with a fitted Gaussian distribution. With

the exception of the two largest cliques, the distribution fits the data well signalling

the speed of decay.

The requirement for every member of a clique to be connected is quite a strin-

gent one. Instead more focus is put on a community within a network rather than

a clique. A community in a network is a densely connected group of vertices with
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Fig. 2.11: The clique size distribution for the network of Jazz musicians (Gleiser & Danon
2003). The dotted black line represents a Gaussian distribution. The rightmost
two points which are not well fitted by the distribution represent only two cliques
of the 738 cliques.

relatively few edges going from vertices within that cluster going to vertices out-

side of that cluster (Newman & Girvan 2004). However, there is no universally

accepted definition of a community; this often depends on the system or applica-

tion at hand (Fortunato 2010).

Fig. 2.10 shows a network of jazz musician who collaborated together between

1912 and 1940 (Gleiser & Danon 2003). Due to racial segregations present in this

era, bands almost exclusively contained black or white musicians (though collab-

orations did exist). Gleiser & Danon (2003) identified two major communities (as

shown in the upper right cluster and the larger lower cluster in fig. 2.10). They

also identified two communities within the larger cluster, distinguishing between

musicians based in Chicago and musicians based in New York.

2.10.1 Community Detection

In order to identify communities within a graph, the Girvan-Newman algorithm

is employed (Girvan & Newman 2002). This algorithm removes edges with the

highest betweenness as these tend to be the most “between” communities. After

each edge removal, the edge betweenness needs to be recalculated. This breaks

the network down into smaller sub-components as it progresses. To find the op-

timal number of communities the modularity of these sub-components within the
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(a) (b)

Fig. 2.12: Illustration of communities in networks with different modularity. Panel (a)
has two types of nodes and two visible communities. The modularity for two
communities Q = 0.47. Panel (b) again has two types of nodes but they are
mixed randomly. This has modularity Q = −0.12 for two communities.

entire network is evaluated (Newman & Girvan 2004). The modularity reaches a

maximum (or sometimes a plateau) at the optimal number of communities.

To determine the modularity, the n× n matrix e is constructed, where n is the

number of communities. The element est of the matrix is the fraction of all edges

in the network that link nodes in community s to nodes in community t. Denoting

at as the sum of each row, at =
∑

s est. The modularity Q is then defined by

Q =
∑
t

(est − a2
t ). (2.70)

If the number of edges between communities is no better than if they were ran-

domly distributed, then Q = 0. At the other extreme, if the network is partitioned

into n sparsely inter-connected communities each containing approximately L/n

edges, then Est ≈ δst/n and at ≈ Ett ≈ 1/n, so that Q ≈ 1 − 1/n. Although

modularity is bounded by Q = 1 for large n, it is typically between about 0.3 and

0.7 in social networks with varying degrees of community structure (Newman &

Girvan, 2004).

Fig. 2.12 gives an example of two networks each with two types of nodes. In

fig. 2.12 (a) the two communities almost exclusively mix with members of their

own community. This yields a modularity of Q = 0.47. In fig. 2.12 (b) they mix

randomly and a value of Q = −0.12 is obtained.



3. SOCIAL NETWORKS

A social network is a graph in which the vertices represent people and edges repre-

sent some type of interaction between them. Newman & Park (2003) demonstrate

that social networks are different to other types of complex networks. They out-

line two key differences. The first is that social networks are usually assortatively

mixed by degree, whereas non-social networks are almost exclusively disassorta-

tive. The second is that the transitivity CT is higher than one would expect given

the degree distribution. A naı̈ve estimate for the transitivity Cn is obtained from

eq. (2.54). For social networks, CT > Cn, Newman & Park (2003) find that this

tends not to be the case for non-social networks.

Newman & Park (2003) explain both of these observations by fact that social

networks are usually divided into communities. Šubelj & Bajec (2012) find that

real world social networks are also assortatively mixed by clustering coefficient

and that this also indicates the presence of communities. Note that community

structure is not exclusive to social networks; for example biological, technological

and economic networks also exhibit community structure (Fortunato 2010).

Social networks are also found to be small world (Amaral et al. 2000). This

property is often used in epidemiology to model disease transmission on networks

(Kuperman & Abramson 2001).

Therefore we expect that social networks exhibit the following properties:

• Small worldness; ` ≈ `rand, C � Crand

• Assortativity; rk > 0, rC > 0

• High clustering coefficient; CT > Cn

• Community structure

Non-social networks may exhibit some of these properties but the combination of

all seems exclusive to social networks in empirical studies carried out so far.
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3.1 Types of Social Networks

Examples of social networks include the networks of school students (Resnick

et al. 1997), movie actors (Barabási & Albert 1999), scientific co-authors (New-

man 2001b), company boards of directors (Davis et al. 2003), e-mail contacts

(Guimera et al. 2003), romantic relationships between highschool students (Bear-

man et al. 2004), characters in Victorian novels (Elson et al. 2010), mobile phone

users (Palchykov et al. 2013), as well as a whole range of online social networks

(Mislove et al. 2007) to name but a few. There is also a field of study dedicated

to non-human social networks (Croft et al. 2008) ranging from the interactions of

baboons (Dunbar & Dunbar 1974) to wolves (Cohen et al. 2013).

Due to this diverse range of datasets, some authors claim that not all of these

networks are social networks. For example, Amaral et al. (2000) argue that the

movie actor network or scientific collaboration networks are ‘economic networks’

rather than social networks. Amaral et al. (2000) go on to show that degree distri-

bution of the social networks of Utah mormons (Bernard et al. 1988) and school

friendships (Fararo & Sunshine 1964) follow Gaussian distributions whereas the

movie actor network follows a power law (Barabási & Albert 1999). They at-

tribute different degree distribution behaviours to different classes of small-world

networks. However, the network of mormons only contains 43 vertices which is a

small sample size making it difficult to determine the nature of the degree distribu-

tion.

Newman (2001a), on the other hand, claims that collaboration networks are

truer examples of social networks than the friendships of school students. He ar-

gues that in a school, children may give different answers as to who their friends on

different days. However, in a scientific collaboration network, if two authors col-

laborate they are almost certainly acquainted (with the exception of subjects such

as experimental physics where author lists can be vast).

Similarly, sexual contact networks have very different properties to other social

networks. Bearman et al. (2004) observe that the sexual network of a group of high-

school students is disassortative. This network has 573 vertices but it only contains

one triangle giving it a very low clustering coefficient. By the properties listed

above this does not behave like the Newman & Park (2003) definition of a social

network. Newman (2003b) and Newman & Park (2003) do, however, classify it as

a social network. They also show that the error in the assortativity from eq. (2.66)

is higher than its value indicating it is not truly disassortative.
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Therefore different types of social networks can have differing properties de-

pending on how edges are created. To investigate this further, six different types

of social networks are analysed here. Two examples were chosen for each, based

on availability of data to represent each category. These are (i) the physical co-

location networks of students at Faux Mesa high school (Resnick et al. 1997;

Hunter et al. 2008) and the face-to-face contact of participants at an infectious

diseases exhibition in Dublin’s Science Gallery (Isella et al. 2011); (ii) the collab-

oration networks of authors on the condensed matter arXiv from 1995 to 1999

(Newman 2001b) and American jazz musicians from 1912 to 1940 (Gleiser &

Danon 2003); (iii) the communication networks of emails sent at Enron (Klimt

& Yang 2004; Leskovec et al. 2009) and the PGP (Pretty Good Privacy) web of

trust (Boguñá et al. 2004); (iv) the online social networks of a sample of Face-

book users (Viswanath et al. 2009) and users of the technology news site slashdot

(Kunegis et al. 2009; KONECT 2013); (v) the sexual contact networks of Jefferson

high school students (Bearman et al. 2004) and a Brazilian sexual escort network

(Rocha et al. 2011); and (vi) the fictional networks based on the co-appearance of

characters in Victor Hugo’s Les Misérables (Knuth et al. 1993) and Marvel Uni-

verse’s comic book characters (Alberich et al. 2002). The core properties of these

networks are listed in table 3.1.

3.1.1 Degree Distributions

The degree distributions for the 12 networks are shown in fig. 3.1. Of the three

classes of complex networks Amaral et al. (2000) identifies (power law, truncated

power law, and no power-law regime, see section 2.2.2), all belong to the third

category; namely distributions with fast decaying tails and no power law regime.

However, within this we find four different distributions:

• the physical co-location network of Faux Mesa high school, the sexual con-

tact network of Jefferson high school students and the fictional network of

Les Misérables are all best fitted by exponential distributions.

• the collaboration network of jazz musicians in fig. 3.1 (c) is shown with a

fitted Gaussian distribution from eq. (2.23). However the AICc and BIC give

almost equal weights to a Weibull distribution from eq. (2.26) suggesting

either model is a good candidate.

• the physical co-location network of participants at an infectious diseases ex-
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Fig. 3.1: The complementary cumulative degree distributions for the 12 social networks
shown on a semi-log scale. Four different kinds of distributions are shown
here; continuous lines represent exponential distributions, dashed lines repre-
sent Weibull distributions, dotted lines represent log-normal distributions and the
dashed-dotted line in panel (c) represents a Gaussian distribution.

hibition and the communication network of the PGP web of trust are both

best fitted by Weibull distributions. For the infectious diseases network, the

parameter β > 1 causing the distribution to be concave down after the max-

imum. This is not the case for the PGP web of trust.
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• the collaboration network of co-authors on the cond-mat arXiv, the commu-

nication network of Enron employees’ emails, the online social networks of

Facebook and slashdot users, the network of Brazilian sexual escorts and the

fictional network of Marvel Universe characters are all well fitted by log-

normal distributions from eq. (2.24). However, the AICc and BIC also gave

high weights to a Weibull distribution for Facebook and a truncated power

law for slashdot.

The debate about the applicability of power laws in complexity science extends

beyond the study of networks. Clauset et al. (2009) show that a large number of

empirical data sets that have been fitted by power-law distributions are better fit-

ted by log-normal distributions. This claim of log-normals being better suited to

empirical data than power-laws has also been made for urban growth (Eeckhout

2004) and firm growth in economics and econophysics (Mansfield 1962). For ex-

ample Eeckhout (2004) shows that despite Zipf’s law being applied to the growth

of cities for more than half a century, it only holds for the upper tail of the dis-

tribution. The exponent of the distribution is sensitive to where the truncation is

chosen. He shows that a log-normal distribution is a better candidate model and

the parameters are far more robust.

A further similarity between log-normal distributions and power laws is that in

each case the growth rate can be independent of the system size (Fujiwara et al.

2004). In complex networks, the degree is, of course, bounded by the system size,

however the maximum degree is often found to be orders of magnitude higher than

the average degree (see table 3.1 for example). For further details on the debate

about the suitability and ubiquity of power laws, see (for example) Edwards et al.

(2007); Clauset et al. (2009); Stumpf & Porter (2012).

3.1.2 Further Network Properties

(i) Physical co-location networks

Physical co-location networks both have relatively low average and maximum de-

grees. The variance is somewhat large for the infectious diseases network but its

standard deviation is still less than its mean. They are both degree and clustering

assortative. They also have larger clustering coefficients than the their random and

naı̈ve counterparts. However in both cases ` > `rand. Using the small-worldness

test of Humphries & Gurney (2008) from eq. (2.57), we find S > 1. However,

strictly speaking, they do not meet the Watts-Strogatz definition of small world.
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Tab. 3.1: Comparison of network properties for 6 types of social networks. The number of
vertices is given by N , L is the number of edges, 〈k〉 is the mean degree, kmax
is the largest degree in the network, 〈k2〉 is the mean of the square of the degree
(related to the variance), rk is the degree assortativity, and rC is the clustering
assortativity. In the lower half of the table ` is the average path length, C is the
clustering coefficient (`rand and Crand are their random equivalents). The diam-
eter, or longest shortest path is `max, CT is the transitivity and Cn is the naı̈ve
expectation for the transitivity. The symbol * signals that the error calculated
from eq. (2.66) is larger than this value indicating that there are no degree-degree
correlations.

N L 〈k〉 kmax 〈k2〉 rk rC

Physical co-location
Faux Mesa high school 147 202 2.75 13 11.70 0.12 0.36
Infectious diseases 410 2765 13.49 50 252.43 0.23 0.34

Collaboration
cond-mat arXiv 16726 47594 5.69 107 73.57 0.19 0.20
Jazz Musicians 198 2742 27.70 100 1070.24 0.02* 0.01*

Communication
Enron email 36692 183831 10.02 1383 1403.62 -0.11 0.19
PGP web of trust 10680 24316 4.55 205 85.98 0.24 0.50

Online Social Network
Facebook 63731 817090 25.64 1098 2257.25 0.18 0.24
slashdot 79120 467869 11.83 2537 1731.86 -0.07 0.26

Sexual Contact
Jefferson high school 573 477 1.67 9 3.78 -0.03* 0.49
Sexual Escorts 16730 39044 4.67 305 130.98 -0.11 0.00*

Fiction
Les Misérables 77 254 6.60 36 79.53 -0.17 0.27
Marvel Universe 6445 168267 52.22 1906 15857.53 -0.16 - 0.11

` `rand `max C Crand CT Cn

Physical co-location
Faux Mesa high school 6.81 4.87 16 0.25 0.02 0.28 0.03
Infectious diseases 3.63 2.59 9 0.46 0.03 0.44 0.06

Collaboration
cond-mat arXiv 6.63 5.76 18 0.62 0.00 0.36 0.00
Jazz Musicians 2.24 1.92 6 0.62 0.14 0.52 0.26

Communication
Enron email 4.03 4.81 13 0.50 0.00 0.09 0.06
PGP web of trust 7.49 6.24 24 0.27 0.00 0.38 0.01

Online Social Network
Facebook 4.32 3.73 15 0.22 0.00 0.15 0.01
slashdot 4.04 4.83 12 0.06 0.00 0.02 0.02

Sexual Contact
Jefferson high school 15.89 11.83 37 0.00 0.00 0.01 0.00
Sexual Escorts 5.79 6.44 17 0.00 0.00 0.00 0.01

Fiction
Les Misérables 2.64 2.50 5 0.57 0.09 0.50 0.24
Marvel Universe 2.64 2.57 6 0.77 0.01 0.20 0.27
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They do however fulfil the Newman & Park (2003) criteria for social networks.

(ii) Collaboration networks

The two collaboration networks have quite different properties. The network of

co-authors on the condensed matter arXiv has a relatively low average degree,

maximum degree and variance. It is assortative, as is commonly found in col-

laboration networks (Newman 2002). It also has a very high clustering coefficient

and transitivity compared to its random and naı̈ve clustering coefficients.

In the network of Jazz musicians on the other hand, vertices are linked to an

average of one eighth of the other musicians in the network. The musician with the

highest degree performed with half the musicians active during that period and the

variance in degree is large. Its assortativity is rk = 0.02± 0.02 indicating there no

significant degree-degree correlations. The clustering coefficient and transitivity

are still high, though not significantly larger than their random and naı̈ve versions.

Despite both these being collaboration networks however, edges are not formed

in the same way. For the network of jazz musicians, if two bands record together,

everybody in each band is linked. Similarly who performs with whom is not en-

tirely up to each individual musician. At the time there was also quite a small pool

of musicians available to perform with. In scientific collaboration however, two

co-authors actively choose (in general) to work together. There is also less exter-

nal pressure to collaborate with a specific scientist. In this regard, there is more

freedom for a vertex to choose their neighbours than in the case of jazz musicians.

There is also a much larger choice of vertices to interact with.

(iii) Communication networks

The maximum degree in the Enron email network is very large at kmax = 1383.

There is also a large variance in the degree. In fig. 3.2 (a), the ψ(∆) distribution

from section 2.8.1 for the difference in degrees of vertices at either end of an edge is

shown. At each end of the plot, we see there is a high fraction of edges with |∆| =
1382. Hence the vertex with the highest degree interacts with multiple vertices

which interact with no other nodes in the network. As a result the network is

disassortative. This network is small world, however the transitivity is comparable

to its naı̈ve estimate. This network does not meet the Newman & Park (2003)

definition of a social network.

The PGP web of trust network on the other hand has a relatively low maximum

degree and a low variance in degree. It is assortative and we observe in fig. 3.2 (b)
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Fig. 3.2: The ψ(∆) distribution showing the difference in degrees of vertices at either ex-
tremity of an edge. Panel (a) shows the Enron email network. This network
is disassortative and there are numerous edges with a difference of degrees of
|∆| = 1382. In contrast the PGP web of trust ψ(∆) distribution is shown in
panel (b). This is assortative and has a much more uniform distribution. Panel (c)
displays the Facebook users network which is also assortative. Panel (d) however
is for the online social network of slashdot users. This network is disassortative
and contains a large number of fluctuations as |∆| increases.

that there are comparatively few fluctuations in the difference of degrees of vertices

at the ends of an edge. Like the physical co-location networks and the network

of co-authors on the condensed matter arXiv, it has ` > `rand, C � Crand and

CT � Cn.

It is perhaps misleading to group the two communications networks together

as their edges are created by very different mechanisms. The PGP web of trust re-

quires both users to trust each other with their encryption keys in order for an edge

to be formed. As a result this is more like a collaboration network. In the Enron

email network however, an edge is created if one individual emails another. There

is no trust element involved and there is no requirement for the communication to

go both ways. Technically this is a directed network but we treat each network as
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undirected in this analysis as edges in social networks are preferred to be mutual.

These factors could explain why the two networks yield such different properties.

(iv) Online Social networks

The two online social networks are the largest networks used in this analysis. They

too have low average degrees relative to their size. Facebook is assortative while

slashdot is not. The ψ(∆) distribution of each is shown in fig. 3.2 (c-d). There

are large fluctuations around |∆| ≈ 1500 and |∆| ≈ 2500 for the slashdot users.

However the distribution for Facebook users is much more uniform. Facebook also

has a larger transitivity than the naı̈ve expectation from its degree properties unlike

that of the slashdot network. They are however both small world and clustering

assortative.

Once again, these two networks have different mechanisms for creating edges.

On Facebook users are only friends if both parties agree. It only takes one user

to initiate but the other must accept for a link to be formed. This is not the case

for slashdot. Here users can mark any other user as a friend or foe. There is no

requirement for the other user to reciprocate. Hence these are two different types

of online social networks.

Probing this further, we look at other studies of online social networks. A

different Facebook network of 4,039 users (McAuley & Leskovec 2012) is also as-

sortative (rk = 0.06). A network of 23,628 Google+ users (McAuley & Leskovec

2012) however is disassortative (rk = −0.23), as is a network of 81,306 Twitter

users (rk = −0.04) (McAuley & Leskovec 2012). Neither Google+ nor Twitter

require reciprocation for edges to be created. Any Google+ user can add another

user to their circles without being added in return. Similarly any Twitter user can

follow another Twitter user without the other following them back. Again these

networks are technically directed social networks rather than undirected ones. In

some cases only undirected data are available.

Kumar et al. (2010) find that online social networks go through distinct periods

of growth characterised by changes in the diameter and the structure of the giant

component. This may perhaps account for the different properties observed in them

as each of these websites were created at different times. However, it seems more

likely that the differences observed here are due to the nature of how the edges are

created.

(v) Sexual Contact networks
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The Jefferson high school sexual network has a relatively low average degree, max-

imum degree and variance. Its assortativity is rk = −0.03± 0.04 indicating there

are no significant degree-degree correlations. This network is not small world and

contains one triangle due to two bisexual vertices.

The network of Brazilian sexual escorts has a large maximum degree. This

network is disassortative. Though its average path length is shorter than its random

counterpart, it contains no triangles. Hence it is technically not small world.

These two networks are (for the most part) bipartite graphs as there are two

distinct types of vertices that do not interact with one another. For the case of Jef-

ferson high school there is roughly an equal number of male and female nodes.

However in the escort network there are far more users than escorts. This likely

leads to a larger variance in degree and the disassortativity. Though these networks

are technically social networks, they too have distinct mechanisms for creating

edges and different types of vertices. As a result, it is unsurprising that they have

such different properties to the other types of network analysed here.

(vi) Fictional networks

Both fictional networks have similar average and maximum degrees relative to their

size. They are also both disassortative by degree. The network of characters in Les

Misérables however is clustering assortative unlike that of the Marvel Universe.

Both these networks are small world, however in each case the their transitivity is

close to that of the naı̈ve estimate. Therefore both of these networks do not meet

the criteria of Newman & Park (2003) for social networks.

Friendly and Hostile networks

Finally we examine and compare the properties of a friendly network and a hostile

network. The data comes from the network of slashdot users where, as mentioned

above, users can mark other users as friends or foes. The core properties of each

network can be found in table 3.2.

Users mark other users as friends almost twice as frequently as foes. The full

slashdot network has a degree assortativity of rk = −0.07. Here we observe that

the friendly network has a slightly higher assortativity of rk = −0.06, but the hos-

tile network has a considerably lower assortativity of rk = −0.16. Neither network

has a large clustering coefficient. In particular however, the network of hostile users

has a lower transitivity than naı̈vely predicted. This lack of triangles is related to

the notion of structural balance. This was also observed in the hostile network of
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Fig. 3.3: The clique size distribution PCs for the two social networks. Panel (a) shows
the distribution for the cond-mat arXiv with a fitted exponential. Panel (b) is the
clique sizes distribution for the network of Facebook users with a fitted Gaussian
distribution.

Szell & Thurner (2010). There, the online social network of a multiplayer online

game is analysed which is also disassortative and contains few triangles.

3.1.3 Community Structure

With the exception of the sexual contact networks, these social networks contain a

number of different sized cliques. Fig. 3.3 shows the fraction of clique sizes PCs
plotted against the size of a clique Cs for two of the social networks. In the case of

co-authors on the condensed-matter arXiv this distribution is exponential, as shown

in fig. 3.3 (a). This however is not the case for most of the others distributions, for

example fig. 3.3 (b) shows the clique size distribution for the Facebeook network

with a fitted Gaussian distribution.

Tab. 3.2: Comparison of the friendly network and hostile network of slashdot where users
can mark other users as friends or foes. The hostile network is more disassortative
and contains almost no triangles.

N L 〈k〉 kmax 〈k2〉 rk rC

slashdot friendly 69998 351013 10.03 2506 1290.04 -0.06 0.34
slashdot hostile 37412 118755 6.35 685 412.67 -0.16 0.06

` `rand `max C Crand CT Cn

slashdot friendly 4.16 5.09 13 0.06 0.00 0.03 0.02
slashdot hostile 4.23 5.89 13 0.01 0.00 0.01 0.02
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In the case of the sexual networks we use the Girvan-Newman algorithm (Gir-

van & Newman 2002). For both of these networks the algorithm finds communities

with a high modularity. Therefore all these social networks exhibit some form of

community structure.

3.1.4 Summary

The 12 social networks analysed here share some common properties. They each

exhibit community structure and they all fall into the third class of small-world

network that Amaral et al. (2000) describe with fast decaying tails and an absence

of a power-law regime (though technically some are not small world). Log-normal

distributions are found to be the most common distribution. Every network with a

maximum degree above 250 is well fitted by a log-normal distribution. However,

in other properties they differ depending on how their edges are formed.

In the case where edges are mutual and freely chosen, specifically for the

two physical co-location networks, the collaboration network of arXiv co-authors,

the communication network of PGP web of trust users and the online social net-

work of Facebook, the networks have similar properties. These all are assortative,

have a high clustering coefficient and transitivity and have an average path length

` & `rand. These meet the Newman & Park (2003) classification of social net-

works.

The following networks have different properties. In the collaboration network

of jazz musicians there is less freedom for an individual to choose who they are

linked to. This network then has a high average degree and almost no assortativ-

ity. The networks in which the edges do not have to be mutual, such as in the

case of emails or slashdot users, are disassortative with transitivities not deviating

from their naı̈ve values. Sexual contact networks have almost an absence of tri-

angles and are not assortative. These networks also contain two types of vertices.

Finally networks appearing in the fictional works analysed here are disassortative

and have comparable clustering coefficients to their naı̈ve versions. Networks of

hostile interactions have different properties to their friendly counterparts.

Based on the properties of the networks with reciprocating edges, we expect

social networks to have the following properties:

• Fast decaying degree distribution with no power-law regime

• Close to small world; ` & `rand, C � Crand
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• Assortativity; rk > 0, rC > 0

• High clustering coefficient (transitivity); CT > Cn

• Community structure.



4. MYTHOLOGY

The word “myth” is derived from the Greek word “mythos” meaning “story”. In

particular, it is a story concerning the distant past. Mythology is a collection of

myths, and though there is no single definition of a myth, they are most commonly

described as religious or sacred narratives (Eliade 1998; Campbell 2001; Dundes

1984; Leeming 2005; Schrempp & Hansen 2002).

Many authors make specific distinctions between different types of myths.

Nilsson (1932), for example, distinguishes between divine and heroic mythology.

Divine mythology concerns the gods and what he calls cult myths. Heroic myths

however often begin with folktales and end with incidents that may have a histori-

cal appearance.

Bascom (1965) identifies three different types of prose narrative; folktales,

myth and legend. He defines them as follows:

• folktales are narratives that are regarded as fiction. They are often “timeless”

and generally not to be taken seriously.

• Myths may be considered by the society to be truthful accounts of what

happened in the remote past. They are usually sacred.

• Legends are set in a period less remote than myths but are also considered

basically true by the narrator and audience. They tend to be more secular

than sacred.

However, even the lines between these distinctions are often blurred. Dundes

(1997) in his discussion on the debate between Claude Lévi-Strauss and Vladimir

Propp on the approach to structuralism criticises the former for classifying Oedipus

as a myth. He calls it a folktale, citing the Bascom (1965) definition and cites its

Aarne-Thompson classification number. However, by the Nilsson (1932) definition

it is a heroic myth. Leeming (1991) similarly calls it a heroic myth. Using the

Bascom (1965) definition, some elements of Oedipus could allow one to interpret

it as a legend also. For example unlike most folktales it is not timeless, it has a
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distinct setting in both place and time. Some elements of it are also believed to

be historical, for example the plague described in it is likely based on a historical

epidemic (Kousoulis et al. 2012).

Instead of distinguishing between types of prose, Leeming (1991) identifies

four types of myth. These are:

• cosmic myths (i.e. dealing with creation)

• myths of the gods (such as the Greek Pantheon)

• hero myths (similar to the definition of Nilsson (1932) above)

• place and object myths (e.g. myths about Atlantis or the Golden Fleece).

Campbell (2001) and Leeming (2005) argue that religion can be seen as a sys-

tem that lends authority to myths. However, myths often serve many other purposes

outside of religion. Some myths or legends are associated with place-naming or to-

pography, this is a particularly common feature in the Irish Táin Bó Cuailnge (Kin-

sella 1969, p. xiii). Although the Táin is not a “sacred narrative”, it is regarded as

myth (O’Rahilly 1946; Kinsella 1969; Leeming 2005).

With all these differing types of narratives and opaque distinctions between

them, we use the word “myth” in the broadest possible sense. The Oxford dictio-

nary definition of myth is “a traditional story, especially one concerning the early

history of a people or explaining a natural or social fact.” This definition is close

to the original meaning of the word and this is the context to which it will be

used here. Using methods of network theory, we seek to uncover differences be-

tween myths quantitatively rather than qualitatively, like those of Nilsson (1932)

or Leeming (1991) above.

4.1 Comparative Mythology

There are a large number of approaches to the study of mythology. A common

approach involves searching for meaning in myths to explain phenomena, such as

everyday occurrences like the movement of the sun across the sky (Leeming 1991)

to more irregular events like a natural disasters, e.g. a flood. A brief overview of

a selection of types of comparative mythology is presented here. A more detailed

overview of comparative mythology can be found in the introduction of Morford

& Lenardon (1999). Dundes (1984) provides a collection of articles on differing
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approaches to the analysis of myth and Schrempp & Hansen (2002) offer an as-

sessment of the present state of the study of myth.

An early approach to comparative mythology, related to the notion of myths

explaining natural phenomena, was that of Friedrich Max Müller. Müller (1866)

viewed mythology as a “disease of language”. He believed most Indian, Greek

and Roman deities were originally just poetical names for forces of nature which

over time began to assume divine personalities never even contemplated by their

creators. Müller (1866) identifies similarities between the linguistic name of father-

god figures from a variety of cultures. Tolkien (1947), however, argues that this

disease of language view “can be abandoned without regret” and believes it is more

likely that European languages are a disease of mythology!

The relationship between myth and language are studied in far more detail in

the structuralist approach to mythology. Lévi-Strauss (1955) remarks that myth has

many similarities to language and that it is, in essence, a language “functioning on

an especially high level”. The structuralist approach addresses all the constituents

of a myth. The myth is broken down into mythemes which are the smallest compo-

nent (or units) of a myth. Meaning is derived from the relations between pairs of

mythemes, often opposites of one another (e.g. light versus dark, life versus death,

etc.). However, Morford & Lenardon (1999) argue that the binary functioning of

the human mind or human society may be common, but it is not universal or even

necessary in myth.

A modern approach, related to the idea of mythological characters personifying

natural phenomena, involves searching for archaeological, geological or astronom-

ical evidence to support the events portrayed in a myth. For example, a dragon in a

culture’s myth could correspond to volcanic activity that occurred in that culture’s

past (Barber & Barber 2006), or a comet could account for elaborate descriptions

of gods or heroes (McCafferty & Baillie 2005). Witzel (2012) however is critical

of this approach, which he deems as over-simplistic, and describes it as looking for

a “single method that would illuminate what myth is all about”.

An entirely different method is the psychological approach inspired by the

works of Sigmund Freud and Carl Jung. Joseph Campbell, for example, was

strongly influenced by ideas from psychology. The psychological approach ar-

gues that the common motifs and themes that appear in many myths are due to

universal subconscious archetypes in every person’s mind. The idea of the mono-

myth is almost an extension of this (Campbell 1949). The monomyth explains the

journey of the hero in many myths often which reflect common human struggles
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and concerns. Dundes (1984) argues that the Jung archetypes ideology and the

Campbell universality approaches are so general, that it is unsurprising they are so

widespread.

There are many other comparative approaches to mythology. Lyle (2012), for

example, looks for similar structures and roles for gods in many societies. Another

approach is that of Witzel (2012), this method identifies common features from a

variety of world mythologies that reflect the myths of our earliest ancestors from

Africa. Many approaches to comparative mythology aim to find an Ur-myth, the

idea that all myth evolved from an original single myth.

A recent approach to the study of mythology is a phylogenetical analysis of

myths. Phylogenetics is the study of evolutionary relationships among organisms

based on parallelism of genes. D’Huy (2013) observes that there are many simi-

larities between biological and mythological evolution. In mythology, instead of

genes, mythemes are transmitted. Then evolutionary relatedness between myths

can be observed and inferences about human migration and cultural diffusion can

be made. A similar approach has been applied to analyse cross-cultural relation-

ships among folktales (Tehrani 2013). These are examples of new exploratory

research that open new areas of inquiry.

Here an alternative approach to the study of mythology is presented using the

techniques of social-network analysis as described in the previous two chapters.

This is not the first network analysis approach to mythology. Choi & Kim (2007)

look at a directed network of Greek and Roman myths creating edges between char-

acters who are mentioned in another character’s entry. They find that this network

follows a power-law degree distribution and has similar properties to the social net-

work of movie actors. As this looks at a dictionary rather than specific myths, the

edges will only be a subset of the total edges from various myths. Similarly, for so-

cial networks it is better if the edges are undirected as the acquaintanceship should

go both ways, as discussed in the previous chapter. The approach, here delving

into each particular myth, is far more rigorous.

Initial investigations using these methods have been well received by both the

physics (Mac Carron & Kenna 2012) and the humanities communities (Mac Car-

ron & Kenna 2013b). In a report to HERA (Humanities European Research Area),

Hazelkorn et al. (2013) state that “the work of Mac Carron & Kenna (2012) pro-

vides an example of how digital techniques and technologies, applied to literary

works, can open-up a new field of inquiry.”
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4.2 Mythological Networks

Social networks from the myths of a variety of cultures are constructed here. To

gather the data, a character’s name, gender and page number corresponding to their

first appearance, are recorded. As shown in chapter 3, different mechanisms for

creating edges lead to different network properties. Therefore it is important when

gathering the data to have a consistent mechanism for creating edges. In light of

this, two distinct types of edges are defined, friendly (or social) edges and hostile

edges.

A friendly edge is created between two characters if:

– they speak directly to one another

– they are in the same immediate family (i.e. siblings or parents)

– they both know one another

– they are present together in a small congregation.

A hostile edge is made between characters if:

– they physically fight against one another

– they are at war with one another.

The edge must go both ways, if one character mentions another this is only a

link if it is clear the other also knows the first. Characters can have both friendly

and hostile edges. If two characters argue or are always aggressive to one another,

this is not a hostile edge. Hostile edges mostly occur where two characters meet

on the battlefield but don’t interact otherwise.

Longer myths are broken down into smaller sections (generally corresponding

to chapter breaks). A new network is started for each section. This allows us to

give a weight to the edges based on how many sections two characters interact in.

4.3 Data

As mentioned above, a myth here refers to a traditional story concerning a spe-

cific group of people. The narratives used for different cultures are laid out in the

following sections.
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4.3.1 Irish Mythology

Irish myths are the best preserved of Celtic mythology (MacKillop 2004). How-

ever, a lot of material was either destroyed or possibly never even committed to

writing. Of the myths that survived, these were transmitted orally for centuries

before being recorded in Christian times (O’Rahilly 1946). Due to religious influ-

ences of the Christian monks recording them, it is likely that the pagan aspects of

these myths were greatly toned down (Murphy 1961).

Irish mythology is generally divided into four distinct cycles; the Mythologi-

cal Cycle, the Ulster Cycle, the Fenian Cycle and the King’s Cycle (Gantz 1981).

Narratives from the first three of these are chosen in this study. There tends to be

an overlap of characters from the Mythological Cycle in the both the Ulster and

Fenian Cycles but this is more prominent with the Ulster Cycle.

When using translations for this study, a persistent issue is that there does not

appear to be one consistent convention for the spelling of characters’ names. For

example Fróech, the hero of The Cattle Raid of Fróech is also spelled “Fráech”,

“Fraı́ch” and “Fraoch”. Therefore the same translators are used as much as possi-

ble. This makes it difficult to merge all the narratives to get a large network for one

specific cycle.

The Mythological Cycle
The Mythological Cycle has the least number of surviving texts. These myths

tell of the Tuatha Dé Danann (a divine race often identified as the Irish gods (Mur-

phy 1961; O’Rahilly 1946)) and how they came to Ireland. Of these, network data

are gathered from the Second Battle of Mag Tuired (translations by Elizabeth Gray

(CELT 2004a) and Whitley Stokes (CELT 2004b)), the Wooing of Étaı́n, the De-

struction of Da Derga’s Hostel and the Dream of Óengus (all translated by Gantz

(1981)).

The Second Battle of Mag Tuired survives in a 16th century manuscript though

it is believed to have been compiled from 9th and 12th century material (Murphy

1961). It deals with how the Tuatha Dé Danann, led by Lugh, defeat their oppres-

sors the Fomorians. This story also alludes to the first battle in the same place

where the Tuatha Dé Danann overthrew the previous occupants of Ireland named

the Fir Bolg. This narrative effectively lists the entire Irish pantheon detailing each

character’s magical ability.

The Wooing of Étaı́n is a short story completely preserved in a 15th century

manuscript and partially preserved in a 12th century manuscript (Gantz 1981). It
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is written in a language dated to the 8th or 9th century (MacKillop 2004). It tells

of how Midir, of the Tuatha Dé Danann, falls in love with the daughter of the king

of Ulster, Étaı́n. Out of jealousy Midir’s wife casts a series of spells that leads to

Étaı́n being reborn to the wife of an Ulster warrior. This time she is married to

the High King of Ireland before Midir finds her. Midir steals Étaı́n and when High

King attacks him, Midir tricks him into taking back his own daughter thinking it is

his wife.

The Dream of Óengus is related to first part of the story the Wooing of Étaı́n

dealing with Midir’s foster son Óengus. Though it comes from a relatively late

source (15th century), it is also mentioned in a 12th century manuscript (Gantz

1981). In the story, Óengus dreams about a girl resulting in him falling in love

with her. After he finds her, it is revealed that she turns into a swan every year. Her

father will only allow him to marry her if he can identify her as a swan. Óengus

correctly identifies her and then turns himself into a swan and they fly away singing

beautiful music.

The Destruction of Da Derga’s Hostel follows on from The Wooing of Étaı́n.

It is found in three recensions, the earliest of which is from the 12th century. It

details the death of the High King Conare Már, the grandson (or great-grandson)

of Étain. Conare’s three foster brothers whom he had exiled to Alba (Scotland)

attacked the hostel he was staying in with a large band of raiders. Conare is killed

in the attack though the hostel is not actually destroyed.

Parts of both the Wooing of Étaı́n and the Dream of Óengus are set during the

Ulster Cycle. This allows us to merge their networks with those of the Ulster Cycle

to create a larger network to analyse.

The Ulster Cycle
The Ulster Cycle tells of the heroes of Ireland’s northernmost province. It is

mostly set during the reign of Conchobar Mac Nessa and frequently deals with

Ulster’s capricious relationship with its neighbouring province Connacht under

the rule of queen Medb. Networks of the following Ulster Cycle narratives are

constructed: Táin Bó Cúailnge (translated by Kinsella (1969)), the Cattle Raid of

Fróech, the Wasting Sickness of Cú Chulaind, the Tale of Macc Da Thó’s Pig, the

Intoxication of the Ulaid and Bricriu’s Feast (all of which are translated by Gantz

(1981)).

The Táin Bó Cúailnge (“Táin” from here on, also known as the Cattle Raid

of Cooley) is one of Ireland’s greatest epics. It survives in three manuscripts from
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the 12th to 14th centuries. It describes the invasion of Ulster by the armies of

Connacht in an attempt to obtain a magical bull. The men of Ulster are under a

spell making them unable to fight so the boy-hero Cúchulainn steps up to defend

Ulster by invoking the right of single combat once a day. This gives enough time for

the men of Ulster to recover and gather their army. Connacht, however, succeeds

in obtaining the bull.

The Táin is accompanied by a number of remscéla (pre-tales) describing the

protagonists’ backgrounds. Among these are How Conchobar was Begotten, The

Pangs of Ulster, The Exile of the sons of Uiliu, How Cúchulainn was Begotten,

Cúchulainn’s Courtship of Emer and his Training in Arms with Scáthach, The

Death of Aife’s One Son and The Quarrel of the two Pig-keepers and how the Bulls

were Begotten. These are all analysed with the Táin network and not separately.

The Cattle Raid of Fróech (or Táin Bó Fróech) contains another mixture of

Mythological Cycle characters and Ulster Cycle characters. It is found in a number

of manuscripts, the earliest from the 12th century but it is believed to be an 8th

century narrative (MacKillop 2004). The protagonist, Fróech, falls in love with

Findabair, the daughter of Ailill and Medb of Connacht. This causes concern for

Ailill and Medb as they promised Findabair to a king of Ireland. They plan to have

Fróech killed by a water monster but, with the help of Findabair, he survives and

kills the monster. Ailill and Medb next plan to have Findabair killed but Fróech

outsmarts them and so they allow them to be together. Later in the story Findabair

and Fróech’s cattle are stolen. With the help of the Ulster hero Conall Cernach they

travel to Alba and then the Alps and recover them. Fróech is killed by Cúchulainn

in the Táin.

The Wasting Sickness of Cú Chulaind (spelled Cúchulainn in the Táin) is a

combination of a 10th and an 11th century tale found in a 12th century manuscript

(MacKillop 2004). The narrative begins with an account of how the people of

Ulster celebrate Samhain (Halloween). Cúchulainnn is put to sleep after trying to

hunt a flock of birds. In his dreams two women abuse him and he remains prostate

for almost a year. He is nursed by a woman named Fand whom he falls in love

with. His wife Emer is jealous and she and Fand fight for Cúchulainn’s love. Fand

eventually yields. After they Cúchulainn and Emer drink a vial of forgetfulness.

The Tale of Macc Da Thó’s Pig is another popular tale surviving in at least six

manuscripts, the earliest of which is from the 12th century. This story includes

almost every major Ulster Cycle figure except Cúchulainn. Once again Ulster and

Connacht are in dispute, this time over a magical dog instead of a bull. The owner
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of the hound, Macc Da Thó is troubled by both provinces demanding his hound so

devises a plan to give the hound to both parties and let them fight for it. He invites

them both to his hostel and feeds them with an enormous pig. Eventually a fight

breaks out and Macc Da Thó unleashes the hound to see which side it chooses. It

chooses Ulster but is killed while routing the Connacht men. Gantz (1981) views

this narrative as a parody of the Táin.

The Intoxication of the Ulaid is found incomplete in two 12th century manu-

scripts. It is one of the more bizarre Irish narratives with no definite plot. The

heroes of Ulster get drunk and lose their way on their chariots ending up in Mun-

ster instead of Ulster. They become trapped in an iron house surrounded by their

enemies. The end of the story is contained in one of the versions however it is not

clear how they escape the trap.

Bricriu’s Feast is an 8th century tale found in various manuscripts, the earliest

being from the 12th century. At Bricriu’s feast, three Ulster heroes compete for the

champion’s portion – the largest serving of food. To decide who gets it they are

given a series of trials all of which Cúchulainn wins.

The Fenian Cycle
The Fenian Cycle is set after the Ulster Cycle and tells the tales of the hero

Fionn Mac Cumhaill and his band of warriors the Fianna. The texts used to gather

network data are Tales of the Elders of Ireland (translated by Dooley & Roe (1999))

and Fianaigecht (tranlsated by Meyer (1910)).

The Colloquy of the Ancients (also known as Tales of the Elders of Ireland)

collects Fenian stories and poetry from four manuscripts. The work is normally

dated to the late 12th or early 13th century. The story is framed by the warriors

Caı́lte and Fionn’s son, Óisı́n, who lived until Christian times, reciting tales of the

Fianna to St Patrick as they travel around Ireland. Many of the stories deal with the

rivalry between their leader Fionn Mac Cumhaill and his tenuous relationship with

Goll Mac Morna. Members of the Tuatha Dé Danann also crop up in numerous

stories. Like the Táin, the The Colloquy of the Ancients has a heavy emphasis on

place-naming (Kinsella 1969; Dooley & Roe 1999).

Fianaigecht is a compilation of the earliest accounts of Fionn and his Fianna.

These are six texts and poems dating from the 7th up the 14th century (Meyer

1910). Unlike The Colloquy of the Ancients, these tales are not narrated by an

ageing warrior of the Fianna to St Patrick. It contains six narratives about various

members of the Fianna and ends with a different account of the death of Fionn.
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4.3.2 Greek & Roman Mythology

Classical mythology is the body of myths from the ancient Greeks and Romans.

Greek myths tend to concern their gods and heroes. Roman mythology took a

more historical rather than religious approach. As the Romans were influenced by

Greek myths, some stories and events tended to be rationalised and reinterpreted

(Morford & Lenardon 1999). The texts used to create networks are Homer’s Iliad

(translated by E.V. Rieu (2003)) and Odyssey (translated by Kirk, G.S. (1980)) and

Virgil’s Aeneid (translated by Oakley, M. (2004)).

The Iliad is an epic poem attributed to Homer and is dated to the 8th century

BC (E.V. Rieu 2003). It takes place over a period of a few weeks from the final

year of the Trojan War. During this time the Greek King Agamemnon quarrels

with his greatest warrior Achilles resulting in the latter’s refusal to fight. After the

Trojan hero Hector kills Achilles’ brother-in-arms, Achilles is enraged and rejoins

the battle. The story ends shortly after Hector is killed in single combat by Achilles.

The Odyssey is effectively a sequel to the Iliad. It is also attributed to Homer

and dated to the late 8th century BC. It is set ten years after the Trojan War.

Odysseus still has not returned to Ithaca and his wife, Penelope, is under pres-

sure to remarry and has many suitors. Odysseus, however, has been captured by

the nymph Calypso. He is kept prisoner on an island for seven years until the gods

allow him to leave. When he returns to Ithaca he disguises himself as a beggar and

outperforms Penelope’s suitors in a competition for her hand. With the help of his

son he then kills all the suitors and reveals his identity to Penelope.

The Aeneid is an epic Latin poem composed by Virgil between 29 and 19 BC.

The story deals with the protagonist Aeneas and his destiny to begin the Roman

empire. After the events of the Trojan war, a group of Trojans led by Aeneas es-

cape. They land in Carthage where the queen, Dido, falls in love with Aeneas (with

the help of the gods). After a year they leave and eventually settle in Latium. Some

of the locals, lead by Turnus, engage in a series of battles. The story culminates

with Aeneas defeating Turnus in single combat.

4.3.3 Germanic Mythology

Germanic mythology refers to the myths of the Germans, Scandinavians and Anglo-

Saxons (Leeming 2005). Similar to Irish mythology mentioned earlier, most of the

material was committed to writing after Christianisation. The material was mostly

passed orally before this and some myths have been distorted by the Christian
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monks recording it (Lindow 2002). The texts used here are Beowulf (translations

by Heaney (1999) and Crossley-Holland (1999)), the Poetic Edda (translated by

Larrington (1999)), Snorri Sturluson’s Prose Edda (translated by Byock (2005)),

Völsungasaga (translated by Byock (1999)), Nibelungenlied (translated by Hatto

(2004)) and Orkneyinga saga (tanslated by Pálsson & Edwards (1981)).

Beowulf is an Old English heroic epic, set in Scandinavia. A single codex

survives which is dated from between the 8th and early 11th centuries (Bloomfield

1970). In the poem, Beowulf, a Gaetish hero, vanquishes Grendel, a monster who

had been attacking the mead hall of the Danes. After returning home Beowulf

eventually becomes the king of his people. Fifty years after his battle with Grendel,

his kingdom is attacked by a dragon. Beowulf battles it and, although he defeats it,

he is fatally wounded in the process.

The Poetic Edda is a collection of Old Norse poems mostly preserved in a 13th

century Icelandic manuscript. Many of the poems pre-date the conversion of Scan-

dinavia to Christianity, allowing for a glimpse into the Norse religion (Larrington

1999). The poems tell of the world’s creation from the body of the frost giant

Ymir to its fiery destruction with the aid of the giant Surt. It also contains many

Germanic heroic legends.

The Prose Edda is a 13th century compilation of tales attributed to Snorri Stul-

suson. It contains many of the same stories as the Poetic Edda and cites it as a

source (Byock 2005). A distinct difference is it contains an euhemerised Christian

account of the origins of the Norse gods. Similar to the Aeneid, they are described

as warriors who left Troy after the fall of Trojan War, eventually settling in northern

Europe.

Völsungasaga (or Saga of the Völsungs) was written by an unknown Icelandic

author in the 13th century (Byock 1999). It is based on older Norse myths and

a version of it is found in the both Poetic and Prose Eddas. The tale follows the

descendants of Volsung, initially his son Sigmund followed by his son, Sigurd “the

dragon slayer”. Sigurd is in love with the Valkyrie Brynhild, however, he is given

a potion that makes him forget his love for Brynhild and then marries Gudrun.

After Sigurd is killed by Gudrun’s brothers the tale follows Gudrun and her family

as they quarrel with other kings. Nearly all the characters in this section can be

identified with historical characters (Byock 1999).

The Nibelungenlied (or the Song of the Nibelungs) is an epic written in the early

13th century by an unnamed poet (Hatto 2004). Similar to many of the other epics

it has an oral tradition far pre-dating its time of writing. There are distinct par-
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allels between the characters Siegfried and Kriemhild to the Völsungasaga’s Sig-

urd and Gudrun (whom also appear in the two Eddas) (Leeming 2005). Siegfried

wins queen Brunhild for King Gunther in exchange for Gunther’s sister Kriemhild.

However Siegfried is murdered by Gunther’s vassals and his treasure is stolen.

Kriemhild avenges her husband by killing his murderers but is killed in the pro-

cess.

Orkneyinga saga is a history of the earls of the Orkney Islands from the 9th

until the 12th century. It was written by an unknown Icelandic author in the 13th

century. It is both Norse and Scottish and has similarities in its narrative style to

the sagas of the Icelanders combining elements of fiction and history (Pálsson &

Edwards 1981). It details wars, vengeance and reconciliation between the earls and

their involvement in the complexities of the old and the new religions.

4.3.4 Sagas of Icelanders

The Íslendinga sögur, or Sagas of Icelanders, are texts describing events purported

to have occurred in Iceland in the period following its settlement in late 9th to

the early 11th centuries. It is generally believed that the texts were written in the

13th and 14th centuries by authors of unknown or uncertain identities but they may

have oral prehistory (O’Donoghue 2004). The texts focus on family histories and

genealogies and reflect struggles and conflicts amongst the early settlers of Ice-

land and their descendants. The sagas describe many events in clear and plausible

detail and are considered to be amongst the gems of world literature and cultural

inheritance.

Five of the sagas contain large casts of characters and are selected for indi-

vidual study here. These are Gı́sla saga Súrssonar (Gisli Sursson’s Saga), Vatns-

dæla saga (Saga of the People of Vatnsdal), Egils saga Skallagrı́mssonar (Egil’s

Saga), Laxdæla saga (Saga of the People of Laxardal) (all of which are contained

in Smiley 2000) and Njáls saga (translated by Bayerschmidt & Hollander 1998).

Smiley (2000) also contains 13 shorter sagas and tales, many of which contain re-

curring characters. These are merged with the five larger sagas and referred to as

“18 Sagas” in the analysis. These are Bolli Bollason’s Tale, the Saga of Hrafnkel

Frey’s Godi, the Saga of the Confederates, the Saga of Gunnlaug Serpent Tongue,

the Saga of Ref the Sly, the Saga of the Greenlanders, Eirik the Red’s Saga, The

Tale of Thorstein Staff-Struck, The Tale of Halldor Snorrason II, The Tale of Sar-

castic Halli, The Tale of Thorstein Shiver, The Tale of Audun from the West Fjords,

and The Tale of the Story-wise Icelander.
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Gı́sla Saga is an outlaw narrative centred on human struggles, as the epony-

mous character is “on the run” for 13 years before being finally killed. It is set in

the period 940-980 AD. There are two versions of this and we use the version trans-

lated by Regal in (Smiley 2000). Gı́sla Saga, is an “outlaw saga” is mostly centred

on one character rather than on a society and in this sense it is quite different to the

other sagas considered here.

Vatnsdæla Saga is essentially a family chronicle. It follows the settling of

Ingimund, the grandson of a Norwegian chieftain, in Iceland with his family until

the arrival of Christianity in the late 10th century.

Egils Saga tells of the exploits of a warrior-poet and adventurer. The story

begins in Norway with Egil’s grandfather and his two sons. After one of them is

killed, as a result of a dispute with the king, the family leaves to settle in Iceland.

The latter part of the story is about the life of Egil himself. Egils Saga is also

noteworthy in that a significant proportion of it is set outside Iceland. It begins

in Norway with the protagonist’s family, where about a third of the saga’s charac-

ters first appear. Later in the story Egil travels to Norway, amongst other places.

Therefore the network contains overlapping social structures rather than a single

coherent one.

Laxdæla Saga tells of the people of an area of western Iceland from the late 9th

to the early 11th century. It has the second highest number of preserved medieval

manuscripts and also contains the second largest network.

Njáls saga is widely regarded as the greatest piece of prose literature of Ice-

land in the Middle Ages and more vellum manuscripts containing it have survived

compared to any other saga (Mahnusson & Pálsson 1960). It also contains the

largest saga-society network. The epic deals with blood feuds, recounting how mi-

nor slights in the society could escalate into major incidents and bloodshed. The

events described are purported to take place between 960 and 1020 AD and, while

most archaeologists believe the major occurrences described in the saga to be his-

torically based, there are clear elements of artistic embellishment.

4.3.5 Welsh & Arthurian Mythology

Welsh mythology comes from a variety of sources, only some of which contain the

mythology of pre-Christian Britain. These are collected in the first four “branches”

of the Mabinogion (Davies 2007). The rest often concerns Arthurian romances and

legends, the earliest of which are found in two ninth century manuscripts (Leeming

2005). The texts used here are the Mabinogion (translated by Davies (2007)),
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Thomas Malory’s Le Morte d’Arthur, Chrétien de Troyes’ Arthurian Romances

(translated by De Troyes (1991)), Queste del Saint Graal (translated by Matarasso

(1969)) and Gottfried von Strassburg’s Tristan.

The Mabinogion is a collection of eleven prose stories found in two medieval

manuscripts from the 14th century. The tales were not conceived as a single col-

lection and the link between them is often tenuous at best (Davies 2007). As with

many of the narratives employed here, they had a long oral tradition before being

committed to writing. There are two distinct sections in the Mabinogion. The first

four contain tales known as “the four branches of the Mabinogion”. These are of

a more mythological nature, containing characters with supernatural abilities. Of

the remaining narratives, five of them are set in Arthurian times and the remaining

two tell of early British history.

Le Morte d’Arthur is a compilation by Thomas Malory of chivalric romances

about King Arthur and his knights. Malory interprets French and English tales

about these characters as well as adding some original content. It is set in the 5th

century, mostly in Britain and France. There are eight tales, beginning with the

birth and rise of Arthur, and ending with his death and the breaking of the Knights

of the Round Table.

Arthurian Romances is a collection of all five of Chréten de Troyes’ chivalric

romances. De Troyes drew inspiration from both Breton minstrels and Geoffrey

of Monmouth’s 12th century pseudo-historical Historia Regum Britanniæ (History

of the Kings of Britain). These are the earliest of the romances and they added

many of the staples of Arthurian literature, for example the affair of Sir Lancelot

and Lady Guinevere, the Holy Grail and the castle of Camelot. Each tale centres

on the adventures of a different knight, Eric, Cligès, Yvain, Lancelot and Perceval.

Queste del Saint Graal (or the Quest for the Holy Grail) is part of the of a

compilation known as the Prose Lancelot. It is thought to have been written in the

13th century and is one of the sources Thomas Malory used (Matarasso (1969)).

The story focuses on five knights; Lancelot, Perceval, Bors, Gawain and Galahad

and their search for the Holy Grail. Galahad, Lancelot’s son, succeeds in finding it

and, after obtaining it, ascends into heaven. After this the grail is also brought to

heaven never to be seen by man again.

Tristan or Tristan and Iseult is a chivalric romance pre-dating the Arthurian

romances above. The first written version was composed by Thomas of Britain in

the 12th century, however it is believed there are earlier versions which are now

lost (von Strassburg 2004). Only fragments of Thomas’ poem survive but it was
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used by Gottfried von Strassburg as a source in the early 13th century. The story

details how the young prince Tristan wins the hand of Isolde for his uncle and king,

Mark. However, they accidentally drink a love potion intended for the king and his

bride and begin an illicit affair. Isolde marries Mark but continues her affair with

Tristan. When Mark finds out, Tristan flees to Normandy, where he meets another

Isolde, Isolde of the White Hands, and finds himself conflicted over which Isolde

he loves.

4.3.6 World Mythology

Network data for three non-European myths are also gathered. These are the Epic

of Gilgamesh (translated by George (2002)), the Popol Vuh and Navaho Indian

Myths.

The Epic of Gilgamesh is the world’s oldest epic and is among the earliest sur-

viving works of literature. Fragments of it have been discovered on many tablets

providing a number of different versions. The oldest fragments date from the 18th

century BC. The most complete version, known as the “standard Babylonian” ver-

sion dates from the 13th to the 10th century BC. The first part of the story deals

with the friendship and adventures of King Gilgamesh and Enkidu. After Enkidu

dies, Gilgamesh undertakes a journey in an attempt to discover the secret of eternal

life which he never finds.

The Popol Vuh is a collection of myths from the K’iche’ people in Central

America. They were recorded in Spanish in the early 18th century by Francisco

Ximénez, a Dominican friar. The protagonist of many of the epic tales are the twins

Hunahpú and Xbalanqué. The Popol Vuh also features a creation myth and has a

strong emphasis on cosmology.

Navaho Indian Myths are a collection of tales from the Navajo (or Navaho) peo-

ple recorded in 1928 (O’Bryan et al. 1993). An elderly chief approached O’Bryan

asking her to record the legends for future generations of his people. These narra-

tives also include a creation myth and show the importance of omens to the Navajo

people. The character Atse’hastqin, the First Man, is central to the myths.



5. NETWORK ANALYSIS

In this chapter, the methodology introduced in chapter 2 is applied to each of the

narratives discussed in chapter 4. An overview of the results is presented in the next

chapter. The core properties of each network are listed in table 5.1 and table 5.2.

In some cases two translations of a narrative were used. These were the Second

Battle of Mag Tuired, the Táin, Beowulf and the Popol Vuh. The edges were found

to be almost identical. In most cases, a second translation allows for further clarity

when there is uncertainty in creating an edge.

Many of the edges in these networks are both friendly and hostile. When using

the community detection algorithm, we are interested in friendly edges as hostile

links are often formed between opposing factions. When the term “purely hostile”

is used, edges that are both friendly and hostile at different points in the narrative

are treated as friendly. In networks which contain relatively few hostile edges, the

friendly assortativity and structural balance is not reported.

As well as the mythological networks presented here, two further fictional

networks are analysed at the end of the chapter. This allows us to compare the

networks of contemporary narratives with mythological ones. These are J.R.R

Tolkein’s Lord of the Rings trilogy and The Girl with the Dragon Tattoo by Stieg

Larsson (referred to as “Dragon Tattoo” in table 5.4), the first book of the Mille-

nium trilogy, both of which contain a large cast of characters. These are by no

means an attempt to characterise the entire corpus of world fiction, just two mere

examples to contextualise. There are many other studying the social networks of

fiction (e.g. Elson et al. (2010), Stiller et al. (2003), etc.).

5.1 Irish Mythology

A number of the Irish texts contain less than 50 vertices but many of these charac-

ters appear in other texts from the same cycle. These texts are not reported individ-

ually in table 5.1 and table 5.2, instead they are merged with other texts from their

corresponding cycle as described below.
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Tab. 5.1: Comparison of the properties of the mythological networks. The number of ver-
tices is denoted by N and the number of edges by L. The average degree is 〈k〉,
the maximum degree is kmax, and 〈k2〉 is the mean of the square of the degree.
The degree assortativity is rk where an asterisk (*) denotes that the error is larger
than the value, rC is the clustering assortativity and rP is the Pearson similarity.

N L 〈k〉 kmax 〈k2〉 rk rC rP

Irish
Mag Tuired 95 332 6.99 43 92.5 -0.16 0.07 0.07
Da Derga’s Hostel 126 410 6.51 71 107.3 -0.18 0.31 0.08
Étaı́n + Óengus 53 108 4.08 18 31.3 -0.23 -0.02* 0.07
Táin Bó Cúailnge 422 1266 6 168 243.8 -0.35 -0.30 0.14
Intoxication of the Ulaid 82 194 4.73 26 45.3 -0.08 0.24 0.05
Bricriu’s Feast 76 591 15.55 39 387.2 0.48 0.40 0.10
Ulster Cycle 229 1070 9.34 81 247.2 -0.03* 0.19 0.06
Mythological + Ulster 374 1574 8.42 83 201.4 -0.01* 0.21 0.03
Colloquy of the Ancients 732 2268 6.20 159 205.8 -0.01* 0.48 0.02
Fianaigecht 193 338 3.50 53 34.5 -0.07 0.47 0.02
Fianaigecht (no gene) 138 283 4.10 53 46.6 -0.14 0.30 0.05
Greek & Roman
Iliad 694 2684 7.73 106 212.4 -0.08 0.53 0.02
Odyssey 301 1019 6.77 112 126.9 -0.08 0.38 0.04
Aeneid 444 982 4.42 118 76.2 -0.13 0.33 0.03
Germanic
Beowulf 72 167 4.64 27 39.9 -0.12 -0.05* 0.04
Poetic Edda 354 1138 6.43 26 92.2 0.70 0.64 0.01
Prose Edda 374 1955 10.45 80 252.2 0.33 0.52 0.02
Prose Edda (no dwarves) 315 1155 7.33 80 137.0 0.02* 0.36 0.02
Völsungasaga 103 304 5.9 24 57.1 -0.01* -0.04* 0.03
Nibelungenlied 66 313 9.48 43 178.2 -0.28 -0.22 0.23
Orkneyinga saga 441 1197 5.43 73 77.7 -0.09 0.20 0.02
Sagas of Icelanders
Gı́sla saga 103 254 4.93 44 55.5 -0.15 0.01* 0.06
Vatnsdæla saga 132 290 4.39 31 39.2 0.00* 0.08 0.02
Egils Saga 292 770 5.27 59 64.3 -0.07 0.28 0.02
Laxdæla saga 332 894 5.39 45 61.0 0.19 0.25 0.01
Njáls saga 575 1612 5.61 83 103.7 0.01* 0.12 0.01
5 Sagas 1282 3729 5.82 87 93.5 0.04 0.17 0.00
18 Sagas 1546 4267 5.52 88 83.9 0.06 0.16 0.00
Welsh & Arthurian
Mabinogion 666 2427 7.29 135 217.5 0.19 0.37 0.02
Mabinogion 4 Branches 75 217 5.79 26 57.9 -0.03* -0.00* 0.05
Mabinogion 7 Tales 601 2212 7.36 135 232.0 0.15 0.38 0.02
Le Morte d’Arthur 504 2497 9.91 237 452.4 -0.23 -0.04 0.09
Arthurian Romances 255 714 5.60 91 122.5 -0.29 -0.12 0.08
Queste del Saint Graal 122 225 3.69 36 44.4 -0.23 0.11 0.08
Tristan 49 133 5.43 44 74.3 -0.37 -0.33 0.28
World
Epic of Gilgamesh 46 81 3.52 19 27.7 -0.34 0.10* 0.11
Popol Vuh 98 409 8.35 27 123.4 -0.32 -0.05* 0.10
Navaho Indian Myths 140 283 4.04 32 35.4 -0.18 0.31 0.03
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Tab. 5.2: Comparison of the properties of the mythological networks. The average path
length is given by ` and `rand for its random graph. The diameter is `max. The
clustering coefficient is denoted by C and the random clustering coefficient is
Crand. The transitivity is CT and Cn is the naı̈ve value for the transitivity. The
size of the giant component as a percentage of N is given by GC .

` `rand `max C Crand CT Cn GC

Irish
Mag Tuired 2.64 2.55 6 0.72 0.07 0.50 0.23 97.9%
Da Derga’s Hostel 2.76 2.77 7 0.64 0.05 0.50 0.29 98.4%
Étaı́n + Óengus 2.93 2.92 6 0.49 0.08 0.30 0.21 100.0%
Táin Bó Cúailnge 2.80 3.55 8 0.73 0.01 0.10 0.62 98.8%
Intoxication of the Ulaid 3.04 2.96 8 0.44 0.06 0.38 0.19 91.5%
Bricriu’s Feast 2.29 1.87 5 0.70 0.20 0.84 0.48 100.0%
Ulster Cycle 3.02 2.67 10 0.60 0.04 0.52 0.30 98.3%
Mythological + Ulster 3.42 3.01 10 0.62 0.02 0.49 0.17 98.9%
Colloquy of the Ancients 3.66 3.80 13 0.38 0.01 0.51 0.23 77.5%
Fianaigecht 17.48 4.24 64 0.29 0.02 0.32 0.12 92.7%
Fianaigecht (no gene) 3.41 3.58 10 0.41 0.03 0.33 0.19 89.9%
Greek & Roman
Iliad 3.49 3.42 11 0.44 0.01 0.45 0.13 99.4%
Odyssey 3.29 3.18 8 0.45 0.02 0.38 0.15 98.3%
Aeneid 3.57 4.21 9 0.41 0.01 0.21 0.13 88.3%
Germanic
Beowulf 2.38 2.91 6 0.57 0.06 0.37 0.17 69.4%
Poetic Edda 4.99 3.34 13 0.57 0.02 0.84 0.08 69.2%
Prose Edda 4.36 2.78 14 0.67 0.03 0.81 0.14 85.8%
Prose Edda (no dwarves) 4.32 3.10 14 0.60 0.02 0.58 0.14 86.7%
Völsungasaga 3.41 2.79 7 0.68 0.06 0.44 0.12 100.0%
Nibelungenlied 2.14 2.11 5 0.69 0.14 0.48 0.51 97.0%
Orkneyinga saga 5.04 3.76 21 0.50 0.01 0.27 0.07 99.5%
Sagas of Icelanders
Gı́sla saga 3.38 3.04 11 0.60 0.05 0.26 0.21 98.1%
Vatnsdæla saga 3.86 3.41 10 0.49 0.03 0.34 0.11 97.0%
Egils Saga 4.19 3.57 12 0.56 0.02 0.38 0.08 97.3%
Laxdæla saga 5.01 3.60 16 0.45 0.02 0.41 0.06 99.1%
Njáls saga 5.14 3.85 24 0.42 0.01 0.26 0.09 100.0%
5 Sagas 5.10 4.24 16 0.46 0.00 0.28 0.03 98.8%
18 Sagas 5.58 4.46 19 0.46 0.00 0.28 0.02 98.6%
Welsh & Arthurian
Mabinogion 3.83 3.48 11 0.48 0.01 0.63 0.17 76.0%
Mabinogion 4 Branches 3.17 2.63 8 0.52 0.08 0.46 0.19 100.0%
Mabinogion 7 Tales 3.52 3.42 10 0.47 0.01 0.64 0.21 72.9%
Le Morte d’Arthur 2.76 2.96 7 0.59 0.02 0.27 0.40 98.2%
Arthurian Romances 2.92 3.38 6 0.67 0.02 0.19 0.30 99.2%
Queste del Saint Graal 3.35 3.74 13 0.45 0.03 0.22 0.27 90.2%
Tristan 1.99 2.46 4 0.75 0.11 0.27 0.61 100.0%
World
Epic of Gilgamesh 2.54 3.08 5 0.46 0.08 0.27 0.29 93.5%
Popol Vuh 2.80 2.39 6 0.55 0.09 0.42 0.23 94.9%
Navaho Indian Myths 3.81 3.62 9 0.44 0.03 0.26 0.11 92.1%
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Fig. 5.1: Panel (a) shows the complementary cumulative degree distribution for the Second
Battle of Mag Tuired fitted with an exponential distribution (continuous green
line) and a Weibull distribution (dashed blue line). Panel (b) shows the ψ(∆)
distribution. With the exception of ∆ = 0, there is almost equal probability of
having a large or low value of ∆.

With the exception of Bricriu’s Feast, most Irish mythological networks are

small world, disassortative, have low positive Pearson similarity measures and their

clustering coefficients are not much larger than the naı̈ve prediction. They are

also structurally balanced, however only the Táin contains an abundance of hostile

links. These networks have different properties to the general social networks in

Chapter 3. The specifics of each network are discussed below.

5.1.1 Second Battle of Mag Tuired

The Second Battle of Mag Tuired (referred to as Mag Tuired in table 5.1 and ta-

ble 5.2) contains 95 characters, each of which interacts with almost 7 others on

average. Its degree distribution is shown in fig. 5.1 (a). The most likely candi-

date model is a Weibull distribution. This has parameters β = 0.83 ± 0.09 and

κ = 5.04 ± 0.03 and is represented by the dashed blue line. The AICc and BIC

weights also give strong support for an exponential distribution however. This has

κ = 6.18± 0.05 and is represented by the continuous green line. We observe that

this fits all the data well except for the highest degree vertex.

The network is disassortative with rk = −0.16± 0.05. The protagonist, Lugh,

has a degree k = 43 which is almost twice that of the next highest character, Nuada

Airgetlám, k = 23 who was the king of Ireland in certain parts of the story. This

large deviation in degree, and Lugh’s frequent encounters with low degree vertices

are the main cause of the disassortativity. This is shown visually by the frequent
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large values of ∆ in the ψ(∆) distribution in fig. 5.1 (b). The network is mildly

clustering assortative, rc = 0.07 ± 0.06, and has a positive Pearson similarity

measure, rP = 0.07, indicating vertices share the same neighbours.

The Second Battle of Mag Tuired is small world with an average path length

of ` = 2.64 and a clustering coefficient of C = 0.72. The naı̈ve value for the

transitivity, Cn = 0.23, is not much smaller than actual value, CT = 0.50. The

network is fragile to the targeted removal of vertices but robust to their random

removal. Removing the 5 characters with highest betweenness leaves the giant

components 57% of its original size. However, upon the random removal of one

quarter of the vertices (24 characters), averaging over 30 realisations, the giant

component still contains 87% of the nodes.

The network contains 46 cliques with an average size of 〈Cs〉 = 4.3. The

largest clique contains 11 vertices. The Girvan-Newman algorithm finds 6 com-

munities with modularity Q = 0.59. This separates the two factions in the battle

and it finds sub-communities within one faction. Although this narrative tells of a

battle, the two factions are not exclusively hostile to one another as most characters

who fight also had a friendly interaction at some point in the tale. There are only

10 purely hostile edges in the network. For this reason the community structure of

the friendly network is similar to that of the overall one. For the friendly network,

the Girvan-Newman algorithm finds 5 communities with a modularity ofQ = 0.59

and again separates the two factions who are in the battle.

5.1.2 Destruction of Da Derga’s Hostel

The Destruction of Da Derga’s Hostel is the largest of the four Mythological Cycle

networks with 126 characters. The protagonist, the high king Conare Már interacts

with 71 of these. The next highest degree is k = 25. As a result of this, the degree

distribution (fig. 5.2 (a)) is similar to that the Second Battle of Mag Tuired, in that

it is well fitted by an exponential (κ = 5.99 ± 0.03) except for the vertex with

the highest degree. Using the entire distribution however, it is best fitted by a log-

normal with parameters µ = 1.32±0.07 and σ = 1.08±0.05. This is has a longer

tail than the Weibull distribution of the Second Battle of Mag Tuired as kmax is

much larger.

This network is also small world and disassortative with rk = −0.18±0.03. As

shown at the limits of fig. 5.2 (b), the disassortativity is due to the interactions of the

highest degree character with many low-degree characters. The network has a high

transitivity, CT = 0.50, but its naı̈ve estimate is also relatively high, Cn = 0.29.
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Fig. 5.2: Panel (a) shows the complementary cumulative degree distribution for the De-
struction of Da Derga’s Hostel fitted with an exponential distribution (continuous
red line) except for the vertex with highest degree. A full fit is made using a log
normal distribution (dotted black line). Panel (b) shows the ψ(∆) distribution.
There are differences in degree at the ends where the king interacts with many
low degree characters.

Testing for the robustness, the network is very dependent on the highest degree

vertex. Upon removal, the size of the giant component is reduced to 48% of its

original size. On the other hand, it is robust to the random removal of vertices.

The largest clique contains 16 vertices and the average size of the 38 cliques is

〈Cs〉 = 4.87. The modularity reaches a plateau at Q = 0.46 with 2 communities.

These communities comprise the king’s men (in which he is central) and most of

his enemies. Though this network has many similarities to that of the Second Battle

of Mag Tuired, it is more dependent on its protagonist. The communities here are

centred on their king, unlike the previous network.

5.1.3 Wooing of Étaı́n and Dream of Óengus

The Wooing of Étaı́n and the Dream of Óengus both contain less than 50 characters.

These tales share many of the same characters and their amalgamation contains 53

unique vertices. Due to this small size, the two networks are not treated individ-

ually but amalgamated and referred to as the “Étaı́n + Óengus” in table 5.1 and

table 5.2.

As there is only a small number of vertices, it is difficult to decipher the nature

of the degree distribution. A log-normal distribution and a Weibull distribution both

have strong support from the AICc and BIC weights and are shown in fig. 5.3 (a).

The network is disassortative with rk = −0.23 ± 0.09. This can be seen visually
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Fig. 5.3: Panel (a) shows the complementary cumulative degree distribution for the amal-
gamation of the Wooing of Étaı́n and the Dream of Óengus fitted with a Weibull
distribution (dashed red line) and a log normal (dotted blue line). Panel (b) shows
the ψ(∆) distribution. The disassortativity is clear in that characters show no
preference to interact with characters of a similar degree.

in fig. 5.3 (b) where there is no clear peak for small difference in degree ∆.

The amalgamated network is small world, but its transitivity, CT = 0.30, is

well predicted byCn = 0.21, unlike what is found in the social networks in Chapter

3. The network robust to the random removal of nodes only. The community detec-

tion algorithm separates the two narratives and does not find any sub-communities

with each.

5.1.4 Táin Bó Cúailnge

The Táin is the second largest of the Irish narratives with 422 characters. It also

has the largest proportion of hostile edges among the Irish texts with more than

11% of the edges being hostile.

The degree distribution is shown in fig. 5.4 (a). Six characters have a degree

above k = 75 and there are no characters in the range 35 < k < 75. This makes

it difficult to find a functional form for the degree distribution. The AICc and BIC

weights show the strongest support for a log-normal distribution but they also do

not rule out a power law with exponent γ = 2.27± 0.08 or a truncated power law

with a slightly lower exponent of γ = 2.16± 0.04 and κ = 168.6± 0.1.

Due to the large disparity in degree, the network is disassortative with rk =

−0.35 ± 0.02. This can be seen visually in fig. 5.4 (b) where we observe that the

six most connected characters frequently interact with individuals with a degree

difference of up to ∆ = 150. The assortativity for the friendly network is barely
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Fig. 5.4: Panel (a) shows the complementary cumulative degree distribution for the Táin.
The most likely candidate model is a log normal distribution (dotted green line).
The AICc and BIC weights also give support to a power law (dash-dotted red line)
and a truncated power law (continuous yellow line). Panel (b) shows the ψ(∆)
distribution. The high degree characters frequently interact with low degree char-
acters resulting in multiple peaks with large ∆. In panel (c) the mean clustering
per degree is shown with a fitted power law. Panel (d) shows the relative size of
the giant component as vertices are removed. It is robust to the random removal
of vertices but fragile when removing by degree or betweenness.

affected with rk = −0.33± 0.05. The Táin is the only Irish myth whose network

has a strong clustering disassortativity, rC = −0.30±0.03. It has, however, a high

Pearson similarity, rP = 0.14. This is due to a large amount of characters sharing

the same neighbours, namely the 6 highest degree vertices.

The Táin network is small world. It has a high clustering coefficient, however

its transitivity, CT = 0.10, is more than six times smaller than the naı̈ve estimate,

Cn = 0.62. The mean clustering coefficient per degree C̄k is shown in fig. 5.4 (c)

on a log-log scale. The distribution is hierarchical and follows C̄k ∼ k−β , where

β = 1.03± 0.06.

The network is structurally balanced with less than 10% of the triangles con-
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Fig. 5.5: The Girvan-Newman algorithm applied to the friendly network of the Táin. Dif-
ferent coloured vertices represent different communities. The two largest are the
Ulster faction (red) and the Connacht faction (green).

taining an odd number of hostile edges. In fig. 5.4 (d), the robustness of the network

is analysed. It is robust when vertices are randomly removed, however, the size of

the giant component diminishes rapidly when vertices are removed by degree or

betweenness.

The community detection algorithm is applied to the friendly network to give

a better representation of the factions. The algorithm finds 6 communities with

modularity Q = 0.40. These communities are shown with different colours in

fig. 5.5. The two largest communities are the two opposing sides in the conflict.

The 6 most connected characters are named in the figure and the algorithm assigns

them all to the correct factions. Fergus Mac Roich however does change factions

within the story and spends more of the story in the Connacht (green) faction than

the Ulster (red) one.

It is clear from the degree distribution and the ψ(∆) distribution that the 6 most

connected characters have a large influence on the network. To investigate this
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Fig. 5.6: Panel (a) shows the complementary cumulative degree distribution for the Intox-
ication of the Ulaid. The AICc and BIC weights give almost equal support to a
Weibull distribution (dashed red line) and a log-normal distribution (dotted black
line). In panel (b) the ψ(∆) distribution is shown. There are some fluctuations in
at the extremities causing the network to become disassortative.

further we remove all edges with a weight of 1 associated with these six vertices.

This leaves all the vertices intact but reduces the degree of the top 6 characters.

The degree distribution decays faster with no support for a power law regime any

longer. The most support is instead for a Weibull distribution.

The friendly network becomes neither assortative or disassortative with rk =

−0.04 ± 0.05. The clustering assortativity also increases significantly with rC =

0.62± 0.03. The network remains small world with this change, however the tran-

sitivity, CT = 0.33, is almost 9 times higher than naı̈vely estimated, Cn = 0.04.

Therefore by removing the weak interactions for the most connected characters,

the network becomes more like the social networks of chapter 3.

5.1.5 Intoxication of the Ulaid

There are 82 characters in the network of the Intoxication of the Ulaid. Its degree

distribution is shown in fig. 5.6 (a). It is well fitted by both a Weibull distribution

and a log-normal distribution. The network is mildly disassortative with rk =

−0.08± 0.07. This is visualised in fig. 5.6 (b).

It is a small world network and its transitivity, CT = 0.38, is twice that of its

naı̈ve value, Cn = 0.19. The network is structurally balanced and robust to the

random removal of nodes only. It has an average clique size of 4.1 and the largest

clique contains 7 vertices.
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Fig. 5.7: Panel (a) shows the complementary cumulative degree distribution for Bricriu’s
Feast with an exponential distribution fitted as the continuous green line. In panel
(b) the ψ(∆) distribution is shown. This decays uniformly as the network is
assortative. The robustness of the network is analysed in panel (c), the network is
robust to the removal of vertices by degree until almost half of the vertices have
been removed. Panel (d) shows three communities as identified by the Girvan-
Newman algorithm with the clique (most of the red vertices) visible in the lower
left.

5.1.6 Bricriu’s Feast

Bricriu’s Feast contains a clique of 29 Ulster warriors. These warriors all appear

throughout many of the Ulster Cycle tales, however this is the only instance where

they each interact with one another. This clique has a large effect on the properties

of the network. For example, it has the largest average degree, 〈k〉 = 15.55, of

all the mythological networks studied here despite it having a comparatively low

number of vertices, N = 76.

The degree distribution is shown in fig. 5.7 (a). It is not well fitted by any of the

model distributions in section 2.2 but an exponential with parameter κ = 15.5±0.2

is displayed. The approximation κ ≈ 〈k〉 when kmin = 0 from eq. (A.20) offers

some support for an exponential distribution however.
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The Bricriu’s Feast network is highly assortative with rk = 0.48 ± 0.05, in

contrast to the other Irish mythological networks studied here. The average degree

of a vertex at the end of an edge from eq. (2.60) is E[k] = 24.90. This is less

than the degree of each character in the clique. Therefore when calculating the

assortativity, the degree at either end of all edges in the clique is above E[k] which

drives the assortativity. Fig. 5.7 (b) shows the ψ(∆) distribution in which there

are very few fluctuations here when compared to what is observed in disassortative

networks. This network also has a high clustering assortativity, rC = 0.40± 0.04,

and a Pearson similarity of rP = 0.10.

The network is small world. It has a high clustering coefficient, C = 0.70, and

transitivity, CT = 0.84, highlighting an abundance of triangles, most of which are

contained in the clique. The transitivity however, is not much larger than naı̈vely

estimated, in contrast to the social networks in chapter 3. The clique also makes the

network very robust to targeted removal of nodes by degree as shown in fig. 5.7 (c).

Randomly removing 25% of the vertices (19 vertices) leaves the giant component

94.7% intact, removing the 19 characters with the highest degree leaves the giant

component 82.5% intact but removing them by highest betweenness leaves it at

just 36.8%.

The Girvan-Newman algorithm detects three communities with a modularity

of Q = 0.32. These are displayed in fig. 5.7 (d) where the Ulster warriors are

coloured red. The other two communities correspond to some Ulster characters in

other households and the characters who judge the three Ulster heroes.

5.1.7 Amalgamated Selection of Ulster Cycle Texts

Many of the Ulster cycle narratives contain too few characters for reliable network

analysis but they contain recurring characters. Therefore the texts where characters

are named consistently are merged to form a larger Ulster Cycle network. The texts

included in this network are as follows; the Cattle Raid of Fróech, the Wasting

Sickness of Cú Chulaind, the Tale of Macc Da Thó’s Pig, the Intoxication of the

Ulaid, Bricriu’s Feast, and the Táin pre-tales (translated by a different author);

the Exile of the Sons of Uisliu, the Boyhood Deeds of Cú Chulaind, the Twins of

Macha, the Death of Aife’s only son and the Birth of Cú Chulaind. The Táin itself

is not included as characters’ names are spelled differently to other translations.

There are too many characters to reliably identify each correctly here.

This amalgamated Ulster Cycle network contains 229 unique characters with

an average degree of 〈k〉 = 9.34. The degree distribution is shown in fig. 5.8 (a).
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Fig. 5.8: Panel (a) shows the complementary cumulative degree distribution on a log-log
scale for the Ulster Cycle with a log-normal distribution fitted as the dotted blue
line. In panel (b) Bricriu’s Feast has been removed from the network. The lack
of the large clique smoothens the distribution and support is given for truncated
power law (continuous grey line) and a log-normal distribution (dotted blue line).
The ψ(∆) distribution is shown in panel (c). This is neither assortative or disas-
sortative. Panel (d) shows the mean clustering per degree C̄k with a fitted power
law for the network without Bricriu’s feast. Its decay indicates the network has a
hierarchical structure.

It is best fitted by a log-normal distribution with parameters µ = 1.53 ± 0.06 and

σ = 1.23 ± 0.05. The clique from Bricriu’s Feast has an affect on the network

which can clearly be seen in the degree distribution at k = 28. Upon removing

Bricriu’s Feast from the Ulster Cycle network, the distribution becomes smoother

as shown in fig. 5.8 (b). The AICc and BIC weights offer strongest support for a

truncated power law with parameters γ = 1.90 ± 0.07 and κ = 56.59 ± 0.01. A

log-normal distribution is still not ruled out however.

The removal of Bricriu’s Feast from the network leaves 187 unique characters

with an average degree of 〈k〉 = 5.70. The loss of the clique also reduces the as-

sortativity from rk = −0.03 ± 0.04 to rk = −0.13 ± 0.03. As with the Bricriu’s
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Feast network the clique has a large effect on the assortativity of the amalgama-

tion. The ψ(∆) distribution for the entire network is shown in fig. 5.8 (c). This

network has no significant correlations between the degrees of interacting vertices,

therefore we do not observe large fluctuations in the tails of the distribution like

the disassortative networks, nor do we observe the uniform decay about the mean,

as with assortative networks.

The network is small world (with or without Bricriu’s Feast) and shows ev-

idence of hierarchical structure. This is more clear in the case without Bricriu’s

Feast as shown in fig. 5.8 (d). Here, a power law with exponent β = 0.82± 0.11 is

fitted to the distribution. The network is also structurally balanced with 9% of the

triangles containing an odd number of hostile edges.

The Girvan-Newman community detection algorithm does not have much suc-

cess finding communities. The modularity peaks at Q = 0.23 with 15 communi-

ties. Removing Bricriu’s Feast however yields a modularity of Q = 0.34 for 7

communities and a higher Q = 0.44 for 13 communities. There are 9 distinct nar-

ratives without Bricriu’s Feast, however the algorithm does not successfully split

them apart due to the abundance of overlapping characters.

Of the ten Ulster Cycle narratives, Bricriu’s Feast is the most distinct of the

networks and has a large effect on the amalgamated network. However, it does

not seem pertinent to leave it out. In each of the Ulster Cycle narratives we are

introduced to various Ulster heroes, many of whom appear at one point or another

in the Táin too (which is not in the amalgamated network). It does seem likely that

all these characters from the same time who serve the same king interact with each

other. However only Bricriu’s Feast makes that clear.

It is also interesting to note that with Bricriu’s Feast, the network looks more

like the social networks studied in chapter 3; it is not disassortative, a log-normal

is the most likely degree distribution and it has an average path length slightly

longer than that of its random counterpart, unlike that of most of the other Irish

myths. This implies that the social networks in most of these myths do not give a

good representation of the societies they portray and only one of these narratives

catches a glimpse of this society. As each story is just a snapshot of characters’

interactions, this network captures more about the type of narrative rather than the

social network at the time. If this is indeed the case, this has strong implications

for what information the networks in this study portray. This point will be returned

to in section 6.2.
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Fig. 5.9: Panel (a) shows the complementary cumulative degree distribution for the amal-
gamation of the Mythological and Ulster Cycles translated in Gantz (1981). The
AICc and BIC weights give almost equal support to a truncated power law (con-
tinuous yellow line), a Weibull distribution (dashed blue line) and a log-normal
distribution (dotted black line). In panel (b) the ψ(∆) distribution is shown, this
network is also assortative or disassortative.

5.1.8 The Mythological and the Ulster Cycle

As mentioned in section 4.3.1, the Mytholocial and Ulster Cylces in Irish mythol-

ogy contain many overlapping characters. The following network merges all 13

narratives from Gantz (1981). These are the three Mythological Cycle narratives

above: the Wooing of Étaı́n, the Destruction of Da Derga’s Hostel and the Dream

of Óengus, and the 10 Ulster Cycles tales in the previous section.

The combined network contains 374 characters with 1574 interactions. Of

these, only 52 edges are hostile. The clique from Bricriu’s Feast also has an im-

pact on this network as shown at k = 28 on the degree distribution in fig. 5.9 (a).

The AICc and BIC weights give support for a truncated power law, a Weibull dis-

tribution and a log-normal distribution. However if Bricriu’s Feast is removed, a

log-normal distribution with parameters µ = 1.15 ± 0.05 and σ = 1.11 ± 0.03

becomes the most likely of the candidate models.

The assortativity of the network is rk = 0.01 ± 0.03, again indicating that

there are no correlations between neighbours’ degrees. The ψ(∆) distribution is

shown in fig. 5.9 (b) highlighting this lack of correlation. However, as with the

previous network, when Bricriu’s Feast is removed, the assortativity drops to rk =

−0.14±0.03. The clustering assortativity rC = 0.21±0.03 and Pearson similarity

rP = 0.02 are unaffected by the removal of Bricriu’s Feast.

In either case, the network is small world and is fragile to the removal of nodes
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Fig. 5.10: The Girvan-Newman algorithm applied to the amalgamated network of the
Mythological and Ulster Cycles. The red vertices are characters from the Ul-
ster faction and the green vertices are characters from the Tuatha Dé Danann in
the Mythological cycle and the Connacht faction. The blue nodes are characters
who appear in the text the Destruction of Da Derga’s Hostel.

by degree or betweenness. Applying the community detection algorithm, 3 com-

munities are found with modularity Q = 0.50. These communities are shown in

fig. 5.10. The vertices coloured in red are mostly Ulster warriors. The green ver-

tices are a mixture of characters from Connacht and the mythological characters

from the Tuatha Dé Danann. Finally the blue vertices are mostly characters from

the tale the Destruction of Da Derga’s Hostel. In spite of this network containing

13 tales, the Ulster and Connacht factions are still easily separable, however most

of the different narratives are not.

One final observation is that the network properties of the amalgamation of

Irish myths does not drastically change as additional texts are added. The proper-

ties of most of these myths alone are not too dissimilar from one another with the

exception of Bricriu’s Feast. The tales are mostly centred on a small number of

protagonists and usually involve them going on a journey.
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5.1.9 The Colloquy of the Ancients

The network of the Colloquy of the Ancients is the largest of the myths with 732

characters. The average degree of the network is 〈k〉 = 6.20. The degree distri-

bution for the network is shown in fig. 5.11 (a). It is fitted with both a truncated

power law (with parameters γ = 1.61 ± 0.03 and κ = 79.89 ± 0.01) and a log-

normal (with parameters µ = 0.00± 0.05 and σ = 1.67± 0.06). The two highest

degree vertices are Fionn mac Cumhaill (k = 127) and Cáilte (k = 102). Though

these two high degree vertices frequently interact with characters with much lower

degrees, the network also contains a clique of 41 vertices. These two factors bal-

ance each other out, causing the network to have no degree-degree correlations,

rk = −0.01 ± 0.02. There are peaks for large ∆, but even larger peak about

∆ = 0 as displayed in fig. 5.11 (b). The network is also clustering assortative

(rC = 0.48± 0.02) and has a low Pearson similarity measure (rP = 0.02).

The average path length for the Colloquy of the Ancients, ` = 3.66, is close

to its random counterpart, `rand = 3.80 and its clustering coefficient, C = 0.62

is much greater, Crand = 0.01. This is the small world property. The transitivity,

CT = 0.51, is reasonably well estimated by the naı̈ve prediction, Cn = 0.23.

Due to the large clique, the network is more robust to the removal of vertices by

degree than normal however it is still fragile when nodes are removed in order of

betweenness. Removing 10% of the vertices (73 characters) by betweenness the

giant component is 3% of its original size. However removing by degree it is 31%,

and randomly 72%, of its original size.

The network of the Colloquy of the Ancients has similar properties to the amal-

gamated selection of Ulster Cycle narratives. They each contain a large clique,

but also interacting characters with large difference in degrees resulting in an ab-

sence of assortativity. Their degree distributions are both well fitted by log-normal

distributions.

5.1.10 Fianaigecht

Fianaigecht contains further tales of the Fianna. It contains 193 vertices with an

average degree of 〈k〉 = 3.50. This network contains a genealogy of 55 characters

going from a king of Ireland back to God, each with a degree of 2. Removing this,

the size changes to N = 138 and the average degree increases to 〈k〉 = 4.10. This

is referred to as “Fianaigecht (no gene)” in table 5.1 and table 5.2.

The degree distribution with the genealogy is shown in fig. 5.12 (a). The most
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Fig. 5.11: Panel (a) shows the complementary cumulative degree distribution for the Col-
loquy of the Ancients. The most likely candidate models are a truncated power
law (green continuous line) and a log normal distribution (dotted blue line). Two
characters have higher degrees than estimated from the fits. Panel (b) shows the
ψ(∆) distribution. The two highest degree characters frequently interact with
low degree characters resulting in peaks with large ∆. This causes the disassor-
tativity in the network.

likely of the candidate models is a truncated power law with parameters γ = 2.21±
0.06 and κ = 53.59 ± 0.01. There is also strong support for a power law with

exponent γ = 2.40 ± 0.12. Without the genealogy, a truncated power law is still

supported but a Weibull distribution and a log-normal distribution are also likely.

The protagonist of this text is again Fionn Mac Cumhaill who has a degree

of k = 53. The second highest character (Cáilte again) has a degree of k = 19.

This large difference in degree has implications for the assortativity, rk = −0.07±
0.03. Fionn’s interaction with low degree characters are clearly represented in

fig. 5.12 (b). The genealogy also affects the assortativity as each character in it has

the same degree. Removing the genealogy, the network becomes more disassorta-

tive with rk = −0.14 ± 0.04. The network has a high clustering assortativity in

each case but when removing the genealogy, the Peason similarity increases from

its original value of rP = 0.03 to rp = 0.05, as vertices share neighbours more

commonly.

The genealogy however has its largest effect on the network’s average path

length, ` = 17.48, and diameter, `max = 64. Removing the genealogy reduces

these to ` = 3.41 and `max = 10. The clustering coefficient also goes from

C = 0.29 to C = 0.41. Without the genealogy the network is small world. The

clustering transitivity is close to its naı̈ve estimate in each case. Fig. 5.12 (c) shows

the decay of the clustering coefficient with degree. It is fitted with a power law
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Fig. 5.12: Panel (a) shows the complementary cumulative degree distribution for the Fi-
anaigecht. The most likely candidate models are a power law (black dash-dotted
line) or a truncated power law (continuous cyan line). Panel (b) shows the ψ(∆)
distribution. The protagonist frequently interacts with low degree characters as
seen at the ends of the plot. In panel (c) the mean clustering per degree is shown
with a fitted power law. Panel (d) shows the relative size of the giant component
as vertices are removed. After the loss of the three most connected characters, it
becomes robust to the removal of vertices by degree.

with exponent β = −1.08± 0.20.

Upon removing the three most connected vertices, the network becomes very

robust to the removal of vertices by degree, as shown in fig. 5.12 (d). This is be-

cause the text contains 6 different tales which are rather loosely connected. These

three Fianna warriors tie the different narratives together. This is investigated in

more detail by using a community detection algorithm. One of the 6 tales in Fi-

anaigecht only contains two characters. With the exception of this, the community

detection algorithm succeeds in separating the 5 components with Q = 0.61.

Like the Colloquy of the Ancients, the Fianaigecht network relies heavily on

its protagonist. For example removing Fionn the assortativity jumps to rk±0.32±
0.03.
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Fig. 5.13: Panel (a) shows the complementary cumulative degree distribution for the Iliad.
The most likely candidate model is a truncated power law (continuous red line).
After removing the clique at k = 33, the degree distribution is shown again in
panel (b). The most likely model again is a truncated power law (continuous yel-
low line) however mild support is offered for a log-normal distribution (dotted
black line). Panel (c) shows the ψ(∆) distribution. It is only mildly disassorta-
tive due to the long tails. In panel (d) the mean clustering per degree is shown
with a fitted power law.

5.2 Greek & Roman Mythology

The networks of classical mythology have similar properties. They are all small

world and disassortative. However, we see below that there are differences due to

the number of protagonists in the Iliad which affects the degree distribution.

5.2.1 Iliad

The Iliad has the largest number of edges of all the single mythological networks

constructed here. It contains 694 vertices with 2684 edges. Of these, 355 interac-

tions are purely hostile. The network contains a clique of 34 Neirids (sea-nymphs).

These all appear to comfort Achilles’ mother Thetis. When showing the degree
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distribution (fig. 5.13 (a)), these cause a large jump at k = 33. The most likely fit

for the degree distribution of the candidate models is a truncated power law with

parameters γ = 1.52 ± 0.03 and κ = 82.59 ± 0.01. The Neirids who are only

linked to other Neirids are then removed and shown in fig. 5.13 (b). A truncated

power law is still the most likely distribution with a parameters γ = 1.69 ± 0.03

and κ = 105.2 ± 0.1. The AICc and BIC weights also offer mild support for a

log-normal.

The network is mildly disassortative, rk = −0.08 ± 0.02. Fig. 5.13 (c) shows

some fluctuations in the tail of the ψ-distribution. The heroes in the Iliad tend to

have very large hostile degrees (which are essentially kill counts). As this network

has a relatively large number of hostile links we examine the assortativity for just

the friendly edges. This yields rk = 0.09± 0.02 making it assortative. In contrast

the hostile network is disassortative with rk = −0.45±0.05. Removing the Neirids

reduces the friendly network’s assortativity slightly to rk = −0.01 ± 0.02 but it

is still neither assortative for disassortative. The Iliad is clustering assortative,

rC = 0.53± 0.02, but has a low Pearson similarity measure, rP = 0.02.

The Iliad network is small world and has slightly higher transitivity than naı̈vely

expected. The mean clustering coefficient per degree is shown in fig. 5.13 (d). Its

decay shows evidence of hierarchical structure in the network. It is fitted with a

power law with exponent β = 0.95 ± 0.13. The network is also structurally bal-

anced with less than 2% of its triangles containing an odd number of hostile edges.

The Girvan-Newman community detection algorithm finds 3 communities with

Q = 0.60 for the friendly network of the Iliad. These three communities (shown

in fig. 5.14) correspond to the two opposing factions, the Greeks and the Trojans,

and the third group is the Neirids. The modularity reaches a plateauQ = 0.66 with

12 communities. Eight of these communities have 22 or fewer vertices. The four

larger ones are the Neirids, the gods, the Greeks and the Trojans.

5.2.2 Odyssey

The network of the Odyssey contains 301 vertices ad just 30 of the 1019 edges

are purely hostile. The protagonist Odysseus has a degree of kmax − 112 which

much larger than the next highest degree, that of his son Telemachus k = 43.

This large jump is clearly illustrated in the degree distribution in fig. 5.15 (a). A

Weibull distribution with parameters β = 0.70±0.04 and κ = 4.27±0.02 receives

the strongest support. However there is also moderate support for an exponential

when Odysseus is excluded. An exponential is shown when the highest two degree
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Fig. 5.14: The Girvan-Newman algorithm finds 3 communities in the friendly network of
the Iliad. The red vertices are from the Greek faction, the green vertices are
Trojan characters. The blue nodes are Neirids.

characters are excluded, this has an exponent of κ = 5.78± 0.01.

The network is disassortative with rk = −0.08±0.02. Fig. 5.15 (b) displays the

ψ(∆) distribution where we observe Odysseus’ frequent interactions with minor

characters on his journey. The network is clustering assortative, rC = 0.38± 0.03,

which is in part due to to an abundance of cliques. The network has 171 cliques, the

largest of which contains 17 vertices. The distribution of cliques PCs is depicted

in fig. 5.15 (c) with a fitted exponential showing its fast decay.

The network is small world with ` = 3.29 and C = 0.45, similar values to

those of the Iliad. The transitivity, CT = 0.38, is a little larger than the naı̈ve

estimation, Cn = 0.15. The network is surprisingly robust to the removal of ver-

tices by degree as shown in fig. 5.15 (d). Removing the 30 highest degree vertices,

the giant component remains at 76% of its original size, however in the case of
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Fig. 5.15: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Odyssey. The most likely candidate model is a Weibull distribution
(dashed red line). There is moderate support for an exponential also (contin-
uous yellow line) which does not fit to the two highest degree vertices. Panel
(b) shows the ψ(∆) distribution. Odysseus, the protagonist, frequently interacts
with low degree characters as seen at the ends of the plot. The clique size distri-
bution PCs

is shown with a fitted exponential in panel (c). Panel (d) shows the
robustness of the Odyssey network. It is initially robust to the removal of high
degree vertices but very fragile when nodes are removed by betweenness.

betweenness this is just 14%.

With the exception of the degree distribution the Odyssey has many similar

network properties to those of the Iliad. A core difference is that the Odyssey

has single protagonist rather than multiple which affects the degree distribution.

Excluding Odysseus from the degree distribution, we observe that an exponential

fits the data well, this combined with the robustness upon degree removal shows

that the network is not reliant on its protagonist unlike the case of networks with

power law distributions.

A final note on the Odyssey is that Miranda et al. (2013) also analysed the social

network of this which yields different results to our own. A difference between
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Fig. 5.16: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Aeneid. The most likely candidate models are a Weibull distribution
(dashed green line) and a log-normal distribution (dotted black line). There is
moderate support for an exponential also (continuous yellow line) which does
not fit to the two highest degree vertices. Panel (b) shows the ψ(∆) distribution
for the disassortative network.

the number of vertices is most likely due to the fact that we exclude characters

with degree k = 0 from the network. Therefore when we report the number of

vertices, it is not necessarily the same as the number of names in the text. A

second key difference is in how the edges are created. Miranda et al. (2013) create

an edge if one characters cites another. We only do this when it is clear both

characters have met. This leads to a large difference in the number of edges. For

example characters regularly say Zeus’ name, we do not create an edge between the

character and Zeus unless it is explicit that they have interacted. Similarly, when

characters die they are often said to go to “the House of Hades”. At one point in

the tale, Odysseus even travels to the Underworld and meets many of the dead.

We do not create a link between a deceased character and Hades, therefore Hades

and Zeus have relatively low degrees in our network. As shown by Miranda et al.

(2013) however, Zeus is the second most connected characters, and Hades has the

seventh highest degree in their network. This accounts for the large deviation in

the network properties.

5.2.3 Aeneid

There 444 unique characters in the Aeneid with an average degree of 〈k〉 = 4.42.

As in the Odyssey previously however, two of these characters have particularly

high degrees in comparison to the others. These are Aeneas k = 118 and Turnus
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k = 68. The degree distribution in fig. 5.16 (a) highlights this. The AICc and BIC

weights give the almost equal support for a Weibull distribution (β = 0.55± 0.02

and κ = 1.48 ± 0.03) and a log-normal distribution (µ = 0.62 ± 0.04 and σ =

1.21 ± 0.04). However, again like the Odyssey, an exponential (κ = 4.87 ± 0.02)

receives moderate support when fitting to all but the two highest degree vertices.

The network is disassortative with rk = −0.13± 0.02). This is clearly shown

by the large peaks for difference of degree |∆| > 50 in the ψ(∆) in fig. 5.16 (b). It

is clustering assortative rC = 0.33±0.03. The Aeneid is small world with ` = 3.57

and C = 0.41. However its transitivity, CT = 0.21, is close the naı̈ve estimate,

Cn = 0.13.

5.3 Germanic Mythology

The Germanic myths contain different types of networks. The heroic epics like

Beowulf, Völsungasaga and the Nibelungenlied are small world and disassortative.

The Eddas and the Orkneyinga saga contain many different narratives giving them

longer than expected average path lengths. Specific details of each are given below.

5.3.1 Beowulf

The network of Beowulf contains 72 characters and 167 edges. Of these, 26 edges

are hostile. Two of the characters have disproportionately large degrees as shown

in fig. 5.17 (a). These are the eponymous protagonist Beowulf and Hrothgar, the

king of the Danes. The AICc and BIC weights for the candidate models provide

strongest support for a log-normal distribution with parameters µ = 1.26 ± 0.07

and σ = 0.77 ± 0.04. There is also mild support for an exponential distribution

with κ = 4.12± 0.04.

The network is disassortative with rk = −0.12±0.06. As shown in fig. 5.17 (b),

the two highest degree vertices frequently interact with low degree characters. The

Beowulf network has low clustering assortativity with rC = −0.05 ± 0.09 and a

low Pearson similarity measure.

Beowulf is small world and structurally balanced with just 4% of the triangles

containing an odd number of hostile edges. The mean clustering coefficient per

degree is displayed in fig. 5.17 (c). It is fitted with a power law with exponent

β = 0.83 ± 0.11. The network component is less than 70% connected however.

This is due to two tales in the story dealing with events from the past. It is fragile to

the removal of vertices in order highest degree and betweenness (see fig. 5.17 (d)).



5. Network Analysis 84

5 10 15 20 25 30

k

10-2

10-1

100
P
k

(a)
Beowulf
p(k)∼exp(−k/κ)

p(k)∼(1/k)exp
(
−(lnk−µ)2

2σ2

)

20 10 0 10 20
∆

10-2

10-1

ψ
(∆

)

(b)

101

k

10-1

100

C
k

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of nodes removed

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
si

ze
 o

f G
ia

nt
 C

om
po

ne
nt

(d) degree
betweenness
random

Fig. 5.17: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Beowulf. The most likely candidate model is a log normal distribution
(dotted black line). There is moderate support for an exponential also (con-
tinuous yellow line). Panel (b) shows the ψ(∆) distribution. The protagonist
frequently interacts with low degree characters as seen at the ends of the plot.
The mean clustering per degree C̄k is shown with a fitted power law in panel (c).
Panel (d) shows the robustness of the Beowulf network. It is very fragile when
vertices are removed by degree or betweenness.

The community detection algorithm finds 5 components (with Q = 0.40) in

friendly network as displayed in fig. 5.18. In the figure the red vertices are Geats

and the green nodes are the Danes that Beowulf goes to aid. The two orange

vertices are ancestors of Beowulf. The blue vertices are the Swedes who had been

at war with the Geats and the grey nodes are the characters who were involved in

the incident with the dragon towards the end of the narrative.

5.3.2 Poetic Edda

The Poetic Edda contains three large cliques that dominate the properties of the

network. The god Heimdall creates the structure of human society by creating

three different houses, the lowest being the house of a Thrall, the next a Farmer
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Fig. 5.18: The Girvan-Newman algorithm finds 5 communities in the friendly giant com-
ponent of Beowulf.

and the highest a Lord. Each house has a large family to continue their line. These

cliques for each house contain 19, 24 and 19 vertices respectively. There is a

fourth large clique containing 17 characters. The complete network contains 354

characters and has an average degree of 〈k〉 = 6.43.

The degree distribution is displayed in fig. 5.19 (a). A log-normal and Weibull

distribution receive almost equal support from the AICc and BIC weight but there

is also moderate support for a truncated power law. None of these fit the data

particularly well however. This is due to the cliques causing a large jump in the tail

of the degree distribution.

The network is very strongly assortative with rk = 0.70± 0.03. Again, this is

a result of the cliques. Almost every character in the clique interacts with nobody

outside of that clique. Therefore the degree of each vertex is on the same side

of the average degree at the of an edge E[k] thus positively contributing to the

assortativity. The corresponding ψ(∆) distribution is shown in fig. 5.19 (b). The

network is also strongly clustering assortative rC = 0.64 ± 0.03. Again each

member of a clique shares the same clustering coefficient.
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Fig. 5.19: Panel (a) shows the complementary cumulative degree distribution for the Prose
Edda network. The most likely candidate model is a log-normal distribution
(dotted black line) and Weibull distribution (dashed green line). There is mod-
erate support for a truncated power law also (continuous yellow line). Panel
(b) shows the ψ(∆) distribution. The protagonist frequently interacts with low
degree characters as seen at the ends of the plot.

The average path length of the Poetic Edda is ` = 4.99 which is large compared

to average path length of its random graph `rand = 3.34. Therefore the network

is not small world. The Poetic Edda comprises many different texts that are only

loosely connected. This causes the large value for the average path length and also

a strong community structure. The transitivity is also particularly high, CT = 0.84,

compared to the naı̈ve prediction of Cn = 0.08. Once again this mostly due to an

abundance of triangles in the cliques.

The network is not well connected as shown from the giant component con-

taining 69.2% of the vertices. Removing 18 of the 354 (5%) vertices leaves the

largest component containing just 24 vertices. As a result the community detection

algorithm finds 10 communities with a high modularity of Q = 0.77.

As a result of the Poetic Edda containing many loosely related texts and 4 large

cliques, it has the most similar properties to the social networks of chapter 3 of all

the narratives. This is somewhat surprising as this text is among the least realistic

of the myths studied here. Only the disjoint degree distribution sets it apart from

the social networks studied earlier.

5.3.3 Prose Edda

The Prose Edda contains 374 characters with an average degree of 〈k〉 = 10.45.

The beginning of the narrative deals with the creation of the world. In this, three
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Fig. 5.20: Panel (a) shows the complementary cumulative degree distribution for the Prose
Edda network. The most likely candidate model is a log normal distribution
(dotted black line). There is moderate support for an exponential also (con-
tinuous yellow line). Panel (b) shows the ψ(∆) distribution. The protagonist
frequently interacts with low degree characters as seen at the ends of the plot.
The mean clustering per degree C̄k is shown with a fitted power law in panel
(c). Panel (d) shows the robustness of the Prose Edda network. It is very fragile
when vertices are removed by degree or betweenness.

groups of dwarves are created and named. Here it is assumed that each dwarf

knows all the other dwarves in each group. This, however, gives three large cliques

of characters, none of whom appear at any point later in the text. As a result the

network is studied both with and without the clique. Removing the dwarves yields

315 characters with a lower average degree of 〈k〉 = 7.33. This is referred to as

Prose Edda (no dwarves) in table 5.1 and table 5.2.

The degree distribution is shown in in fig. 5.20 (a). The most likely of the

candidate models is a Weibull distribution with parameters β = 0.81 ± 0.06, κ =

10.05 ± 0.01. Removing the dwarves, the new degree distribution is displayed in

fig. 5.20 (b). Here the parameters are β = 0.74± 0.05 κ = 5.7± 0.02. As shown

however, without the three highest degree characters (Odin, Loki and Thor), an
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exponential with κ = 8.54± 0.03 is also supported.

The three large cliques make the network assortative with rk = 0.33 ± 0.04,

however upon removing them this drops to rk = 0.02± 0.03. This change can be

seen in fig. 5.20 (c) and fig. 5.20 (d) where ψ(0) = 0.53 drops to ψ(0) = 0.24.

The clustering assortativity also drops from rC = 0.52± 0.03 with the dwarves to

rC = 0.36± 0.03 without. The Pearson similarity measure remains unchanged.

The average path length of the Prose Edda, ` = 4.36, is longer than the average

path length of the same sized random graph, `rand = 2.78. Therefore the network

is not small world and this is the case with or without the dwarves. The transitivity,

CT = 0.81, is higher than naı̈vely predicted, Cn = 0.14. After the removal of the

clique, this drops to CT = 0.58 and the naı̈ve estimate remains unchanged.

Even without the dwarves, the Prose Edda still has 128 cliques, the largest of

which contains 22 vertices. The community detection algorithm finds 12 commu-

nities with a modularity of Q = 0.55.

This network has similar properties to the social networks of chapter 3 with a

high assortativity, non-power law degree distribution, high transitivity and slightly

larger than small world. However the assortativity and high transitivity are the re-

sult of 59 characters introduced in three cliques at the beginning of the story. With-

out these, the Prose Edda has similar properties to other mythological networks

studied here.

5.3.4 Völsungasaga

Völsungasaga is a tale spanning multiple generations of those associated with Vol-

sung. As it takes place over such a long time period, characters cannot accumulate

links throughout the entire story. Hence the maximum degree for the 103 charac-

ters is relatively low at kmax = 24. This yields a degree distribution with a fast

decaying tail as shown in fig. 5.21 (a). The most likely of the candidate models are

a log-normal distribution (with parameters µ = 1.44 ± 0.06 and σ = 0.8 ± 0.03)

and a Weibull distribution (with β = 0.84± 0.09 and κ = 3.6± 0.04).

The network is neither assortative nor disassortative, rk = −0.01 ± 0.06

visualised in fig. 5.21 (b). This is also the case for the clustering assortativity

rC = −0.04± 0.06. The average path length ` = 3.41 is slightly longer than for a

random graph `rand = 2.79. The transitivity is almost 4 times larger than its naı̈ve

prediction giving it similar behaviour to the social networks in chapter 3.

The Girvan-Newman algorithm separates the friendly network into 7 commu-

nities with modularity Q = 61. The blue, green, red and grey nodes correspond to
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Fig. 5.21: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Völsungasaga. The most likely candidate models are a log normal dis-
tribution (dotted blue line) and a Weibull distribution (dashed green line). Panel
(b) shows the ψ(∆) distribution. The distribution highlights that there are virtu-
ally no correlations between the degree of vertices at either ends of an edge.

the four generations of characters in the story. The other coloured vertices represent

different kingdoms in the text.

5.3.5 Nibelungenlied

The Nibelungenlied follows the same story as the last generation of Völsungasaga.

Here we have only 66 vertices however, and the story goes into much more detail

about the characters. This leads to a much higher average degree of 〈k〉 = 9.48.

The degree distribution is shown in fig. 5.23 (a). Like Völsungasaga, the most

likely of the candidate models are a log-normal distribution, with parameters µ =

2.29± 0.09 and σ = 0.86± 0.04, and a Weibull distribution with β = 0.97± 0.18

and κ = 10.79 ± 0.03. The AICc and BIC weights also give mild support for an

exponential distribution with κ = 10.21 ± 0.15. The value of β in the Weibull

distribution is already very close to 1 giving further support for a pure exponential

rather than a Weibull distribution.

The network is disassortative with rk = −0.28 ± 0.06. The peak of the

ψ(∆) distribution is very low indicating an absence of correlations between the

degrees of interacting vertices. The network is also clustering disassortative with

rC = −0.22 ± 0.06. It has a very high Pearson similarity measure of rP = 0.23

highlighting that many nodes share the same neighbours.

The Nibelungenlied network has an average path length, ` = 2.14, almost

equal to its random graph, `rand = 2.11. It has a high clustering coefficient,
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Fig. 5.22: The Girvan-Newman algorithm finds 7 communities in the friendly giant com-
ponent of Völsungasaga. This separates the 4 different generations as well as
some additional kingdoms in the narrative.

C = 0.69, however its random graph also has a relatively high clustering coef-

ficient, Crand = 0.14. Its transitivity, CT = 0.48, is well estimated by Cn = 0.51.

The network is robust to the random removal of vertices but fragile when removing

nodes by degree or betweenness. The Girvan-Newman algorithm finds no commu-

nity structure, the modularity never increases above Q = 0.16 (12 communities).

5.3.6 Orkneyinga saga

There are 441 unique characters in the Orkneyinga saga. The average degree of

the network is 〈k〉 = 5.43. The degree distribution is shown on a log-log scale in

fig. 5.24 (a). It is best fitted by a log-normal distribution with parameters mu =

1.31 ± 0.03 and σ = 0.9 ± 0.02. However the tail of the distribution behaves a

differently, when kmin = 8, a power law is the most likely model with an exponent
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Fig. 5.23: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the Nibelungenlied. The most likely candidate models are a log normal
distribution (dotted blue line) and a Weibull distribution (dashed red line). Panel
(b) shows the ψ(∆) distribution for the disassortative network.

γ = 3.03± 0.22.

The network is disassortative with rk = −0.09± 0.03. The ψ(∆) distribution

is displayed in fig. 5.24 (b). The fluctuations for large difference in degree ∆

drive the disassortativity. Orkneyinga saga is clustering assortative however with

rC = 0.20± 0.03. The network has a low Pearson similarity measure, rP = 0.02.

The average path length of ` = 5.04 is quite high. This is in part due to the

narrative containing genealogies of the Earls of Orkney which can be seen in the

long diameter, `max = 21. The network also has a high clustering coefficient, C =

0.50, and a transitivity, CT = 0.27, three times higher than predicted, Cn = 0.07.

The mean clustering coefficient per degree decays as a power law (with exponent

β = 1.04 ± 0.08) as shown in fig. 5.24 (c). This gives evidence of a hierarchical

structure within the network.

The Orkneyinga saga network is fragile to the removal of vertices by degree or

betweenness. It also contains 257 cliques, the largest of which comprises just 10

vertices. The average clique size is 〈Cs〉 = 3.96. The clique size distribution PCs is

displayed in fig. 5.24 (d). It is fitted with an exponential with parameter 1.44±0.04.

The Girvan-Newman community detection algorithm finds 12 communities with

modularity Q = 0.69.

5.4 Sagas of Icelanders

The networks of the sagas of Icelanders feature different properties depending on

type of saga (i.e. family saga, outlaw saga, etc.). The sagas contain many recurring
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Fig. 5.24: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the amalgamation of Orkneyinga saga. The most likely candidate model
is a log normal distribution (dotted black line). A power law is also shown (cyan
dash-dotted line) for kmin = 8. Panel (b) shows the ψ(∆) distribution which is
disassortative. The mean clustering per degree C̄k is shown with a fitted power
law in panel (c). Panel (d) shows the clique size distribution PCs

on a semi-log
scale with a fitted exponential.

characters allowing them to be merged into a larger network. In spite of the overlap

however, the sagas have differences in their network properties as outlined below

and in Mac Carron & Kenna (2013a) and Mac Carron & Kenna (2013c).

5.4.1 Gı́sla saga

Gı́sla saga is the smallest of the sagas. As mentioned in section 4.3.4, this is

known as an “outlaw saga” and therefore is centred on one particular character

rather than a family or population. Consequently the maximum degree kmax = 44

is comparatively large next to the other sagas, for example it is just less than the

most connected character in Laxdæla saga, which is over three times larger.

The degree distribution is shown in fig. 5.25 (a) on a log-log scale. A log-
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Fig. 5.25: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Gı́sla saga. The most likely candidate models are a log normal distri-
bution (dotted black line) and a truncated power law (continuous orange line).
Panel (b) shows the ψ(∆) distribution.

normal distribution (with µ = 0.38 ± 0.1 and σ = 1.17 ± 0.07) and a truncated

power law (with γ = 1.72± 0.12 and κ = 19.08± 0.02) have the highest support.

The fits do not capture the degree of the vertex of the protagonist however.

Gı́sla saga has the highest disassortativity of the sagas with rk = −0.15±0.04.

This is due to the high degree protagonist interacting with characters who have

a large difference in degree ∆ as shown in fig. 5.25 (b). The network has no

clustering assortativity, rC = 0.01 ± 0.07. The Pearson similarity measure is

rP = 0.06 indicating a preference for characters to share the same neighbour.

The network is small world with an average path length of ` = 3.38 and cluster-

ing coefficient of C = 0.60. Its transitivity is well predicted by its naı̈ve estimate.

The network is robust to the random removal of vertices but fragile upon their

targeted removal. The community detection algorithm finds 9 communities with

modularity Q = 0.50.

5.4.2 Vatnsdæla saga

The network of Vatnsdæla saga contains 132 vertices with an average degree of

〈k〉 = 4.39. The degree distribution is shown in fig. 5.26 (a) on a log-log scale.

The AICc and BIC weights give almost equal support to a truncated power law

(γ = 1.82±0.1 and κ = 18.88±0.02) and a log-normal distribution (µ = 0.0±0.1

and σ = 1.25± 0.08).

There are no correlations between the degrees of interacting vertices, rk =

0.00 ± 0.06. This is visualised in fig. 5.26 (b) where there is no large peak about
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Fig. 5.26: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Vatnsdæla saga. The most likely candidate models are a truncated
power law (continuous cyan line) and a log normal distribution (dotted blue
line). Panel (b) shows the ψ(∆) distribution.

the mean but also no large fluctuations at the edges. It has a low but slightly positive

clustering assortativity, rC = 0.08± 0.06.

The network has a low average path length ` = 3.86 and high clustering coef-

ficient C = 0.49 making it small world. The transitivity is over three times higher

than the naı̈ve estimation. The network is fragile when removing vertices by de-

gree or betweenness but robust to the random removal of nodes. Vatnsdæla saga

is found to have 5 communities with modularity Q = 0.58. This network shares

many of the features of the social networks in chapter 3.

5.4.3 Egils Saga

Egils saga is often referred to as a “poet’s saga” and centres on its protagonist

Egil Skallagrimsson and his travels. As mentioned in section 4.3.4, half of the

saga takes place in Norway and the rest in Iceland differentiating it from the other

sagas studied here. There are 292 characters in this narrative and 770 edges. Of

these, 716 of the edges are friendly edges. The degree distribution is shown in

fig. 5.27 (a). It is best fitted by a log-normal distribution with parameters µ =

1.11± 0.04 and σ = 0.98± 0.03. None of the distributions fit the final few points

well however.

The network is disassortative with rk = −0.07 ± 0.03. Fig. 5.27 (b) shows

some large fluctuations in the difference of degrees ∆ at the ends of the ψ(∆) dis-

tribution. The friendly network however has an rk = −0.03± 0.04 indicating that

there are no correlations between the degrees of interacting vertices. The network
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Fig. 5.27: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Egils saga. The most likely candidate model is a log normal distribution
(dotted green line). Panel (b) shows the ψ(∆) distribution.

has a high clustering assortativity with rC = 0.28± 0.04.

The Egils saga network has slightly longer average path length, ` = 4.19, than

the same sized random graph, `rand = 3.57. Its clustering coefficient, C = 0.56, is

much larger than the random clustering coefficient, Crand = 0.02. The transitivity,

CT = 0.38, is almost 5 times higher than naı̈ve expectation, Cn = 0.08. It is also

structurally balanced with less than 4.5% of its triangles containing hostile edges.

The network is particularly fragile to the removal of vertices by betweenness.

Removing 10% of the highest betweenness vertices (29 characters) leaves the gi-

ant component less than 5% connected. In the case of removal by degree it is

almost 28% connected and random 92% connected. Egils saga contains a clique

of 14 characters. Using the Girvan-Newman community detection algorithm, the

modularity peaks at Q = 0.67 with 6 communities.

5.4.4 Laxdæla saga

The network of Laxdæla saga contains 332 vertices and an average degree of

〈k〉 = 5.39. The complementary cumulative form of degree distribution is shown

in fig. 5.28 (a) on a semi-log scale. It is well fitted by a log-normal distribution with

parameters µ = 1.28 ± 0.04 and σ = 0.91 ± 0.02. An exponential distribution

(κ = 5.63± 0.02) is also shown excluding the 4 highest degree characters.

Laxdæla saga has the highest assortativity of the sagas with rk = 0.19± 0.04.

This ψ(∆) distribution is very uniform as displayed in fig. 5.28 (b). This may be

in part due to the narrative being a family saga and not centred on one particular
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protagonist. The network is also clustering assortative with rC = 0.25± 0.04.

The average path length, ` = 5.01, is longer than expected compared to its

random counterpart, `rand = 3.60. Therefore the network is not small world, even

though it has a high clustering coefficient of C = 0.45. The mean clustering per

degree C̄k is shown in fig. 5.28 (c). It is fitted with a power law with exponent

β = −0.99 ± 0.14 showing evidence of hierarchy. Laxdæla saga’s transitivity,

CT = 0.41, is much higher than naı̈vely expected, Cn = 0.06.

The Laxdæla saga network is initially robust to all forms of vertex removal as

shown in fig. 5.28 (d). However upon removal of 5% of the vertices (17 charac-

ters) in order of betweenness centrality, the size of the giant component reduces

to 53% of its original size. Removing the 5% of characters by degree however,

the giant component is at 88% of its original size and 95% in the case of random

removal. Applying the community detection algorithm, 9 communities are found

with modularity Q = 0.56. Of these communities, 3 of them contain more than 20

vertices.

5.4.5 Njáls saga

Njáls saga is the largest of the sagas of the Icelanders with 575 characters. It con-

tains many more hostile edges than the other sagas with 224 of the 1612 edges

being purely hostile. The degree distribution is best fitted by a log-normal dis-

tribution with parameters µ = 0.0 ± 0.05 and σ = 1.46 ± 0.05 as displayed in

fig. 5.29 (a).

The overall network has almost no assortativity rk = 0.01 ± 0.02. This is

visualised in fig. 5.29 (b). The friendly network however is assortative with rk =

0.07± 0.03. The network is also clustering assortative rC = 0.12± 0.03.

Like Laxdæla saga, the network of Njáls saga is not small world with its aver-

age path length ` = 5.14 being longer than the random average path length, `rand =

3.85. Njáls saga however contains an unusually long diameter of lmax = 24 which

affects the average path length. It has a high clustering coefficient, C = 0.42, and

its transitivity is almost 3 times its naı̈ve prediction. The network is structurally

balanced with 9.7% of the triangles containing an odd number of hostile edges.

The network is most fragile when removing vertices by betweenness centrality

and reasonably robust when removing nodes by degree. Despite its large size,

its biggest clique contains only 11 vertices. The community detection algorithm

requires the removal of 412 edges to separate into smaller components. This yields

44 communities (9 of which have more than 20 vertices) with modularity Q =
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Fig. 5.28: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Laxdæla saga. The most likely candidate model is a log-normal dis-
tribution (dotted black line). There is moderate support for an exponential also
(continuous yellow line). Panel (b) shows the ψ(∆) distribution and the network
is clearly assortative. The mean clustering per degree C̄k is shown with a fitted
power law in panel (c). Panel (d) shows the robustness of the Laxdæla saga net-
work. It is initially quite robust but becomes fragile when continually removing
vertices by betweenness.

0.62.

5.4.6 Amalgamation of the Sagas

Initially we amalgamate the 5 larger sagas discussed up to now. The resulting

network has 1282 characters and properties similar to those of Njal’s saga. We

are interested in breaking this network back down to see if we can separate the 5

distinct sagas.

Using the Girvan-Newman algorithm, we break the amalgamated network down

until it has five large components. These have sizes 670, 230, 136, 129 and 105,

which are not dissimilar to the sizes of each original network (table 5.1). Of the

five emergent communities, those corresponding to Egils saga, Vatnsdæla saga and



5. Network Analysis 98

10 20 30 40 50 60 70 80 90

k

10-3

10-2

10-1

100
P
k

(a) Njáls Saga

p(k)∼(1/k)exp
(
−(lnk−µ)2

2σ2

)

50 0 50

∆

10-3

10-2

10-1

ψ
(∆

)

(b)

Fig. 5.29: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Njáls saga. The most likely candidate model is a log-normal distribution
(dotted black line). Panel (b) shows the ψ(∆) distribution which has an assorta-
tivity of almost 0.

Gı́sla saga emerge over 80% intact – see table 5.3. However, the breakdown to five

components delivers Q ≈ 0.5 and fails to separate the societies of Njáls saga and

Laxdæla saga as, not only are there multiple characters that appear in both, but

these characters often interact with different people in each narrative.

To separate Njáls saga and Laxdæla saga, one more step is required. Indeed,

the modularity for the full network reaches a plateau at n = 6 communities with

Q ≈ 0.7. the largest component now contains 463 characters, 91% of which are

from Njáls saga. The third largest component contains 207 characters, 80% of

which are from Laxdæla saga. However, the latter society emerges split into two

separate components.

The large overlap between Njáls saga and Laxdæla saga is visible in the net-

work representation of Fig.5.30. In the figure, characters from each of the five

Tab. 5.3: Percentages of characters from different sagas which emerge when the amalga-
mated network is broken into 5 components. Note that the percentages can sum
to more than 100 as the sagas share characters.

Component size Main society Secondary society
670 67% in Njáls saga 30% in Laxdæla Saga
230 85% in Egils saga 15% in Njáls Saga
136 82% in Vatnsdæla saga 13% in Njáls Saga
129 59% in Laxdæla saga 51% in Njáls Saga
105 85% in Gı́sla saga 18% in Laxdæla Saga
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Fig. 5.30: Network for the amalgamation of the five major sagas. White nodes represent
characters who appear in more than one saga. There is a large overlap of char-
acters from Laxdæla saga (green) and Njáls saga (red).

major sagas are colour coded. The characters in Laxdæla saga appear the most

scattered indicating that it is more weakly connected than some of the other sagas.

It has been suggested that the author of Njáls saga used Laxdæla saga as a source

(Mahnusson & Pálsson 1960; Hamer 2008), this would explain the extent of the

overlap.

Next all 18 sagas are amalgamated. This network contains 1546 unique char-

acters making it the largest network in this study. The properties of the network

are most similar to that of the largest individual network, Njáls saga. The average

degree is 〈k〉 = 5.52. The degree distribution is shown in fig. 5.31 (a). It is best

fitted by a log-normal distribution with µ = 0.70± 0.02 and σ = 1.20± 0.02.

The network is assortative with rk = 0.06 ± 0.02. The ψ(∆) distribution is

displayed in fig. 5.31 (b). It is also clustering assortative rC = 0.16± 0.02.

The average path length ` = 5.58 is longer than that of a random graph with
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Fig. 5.31: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the amalgamation of 18 sagas. The most likely candidate model is a
log-normal distribution (dotted green line). Panel (b) shows the ψ(∆) distribu-
tion which is assortative. The mean clustering per degree C̄k is shown with a
fitted power law in panel (c). Panel (d) shows the clique size distribution PCs

on
a semi-log scale with a fitted exponential.

this size and average degree, `rand = 4.46. The clustering coefficient, C = 0.46,

is much larger than its random equivalent, Crand = 0.004. The mean clustering

coefficient per degree is shown in fig. 5.31 (c) with a fitted power law with exponent

β = 0.88 ± 0.09. The transitivity, CT = 0.28, is much larger than the naı̈ve

estimation,Cn = 0.02. This network has the same properties as the social networks

of chapter 3.

The network contains 978 cliques with an average size of 〈Cs〉 = 4.19. The

clique size distribution PCs is displayed on a semi-log scale in fig. 5.31 (d). An

exponential distribution with parameter 1.56±0.04 is fitted to PCs . The modularity

peaks atQ = 0.67 with 11 different communities. This separates the 5 larger sagas

but it cannot easily break them down into their 18 components due to the high

overlap between characters.
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5.5 Welsh & Arthurian

The three Arthurian networks have very similar network properties. They are all

small world, disassortative, have lower than expected transitivities and are best

fitted by power or truncated power laws. The Mabinogion, which is a collection of

shorter Welsh tales has different properties as discussed next.

5.5.1 Mabinogion

The Mabinogion collects 11 different tales. As mentioned in section 4.3.5, there

are two distinct sections however, the first four “branches” containing 75 characters

and the last seven narratives with 601 characters. The properties for the overall

network, the four branches and seven tales are given in table 5.1 and table 5.2.

There are only 10 characters shared between the two sections giving a total of

N = 666. The overall network of the Mabinogion shares similar properties to

the network of the seven texts, mostly due to the larger size of the seven tales

compared to the four branches. Less than 4% of the edges in the Mabinogion are

purely hostile links.

The degree distribution for the complete network is shown in fig. 5.32 (a).

It is best fitted by a truncated power law with parameters γ = 1.22 ± 0.04 and

κ = 39.39 ± 0.01. There are two large cliques of sizes 41 and 20 that can be

clearly identified. The distribution for the four branches is displayed in fig. 5.32 (b).

The most likely of the candidate models is an exponential distribution with κ =

5.61 ± 0.03. In the case of seven tales, the degree distribution is similar to that of

the complete network as shown in fig. 5.32 (c). It is also best fitted by a truncated

power law with γ = 1.31± 0.04 and κ = 55.09± 0.01.

The overall network is assortative with rk = 0.19 ± 0.03 and rC = 0.37 ±
0.03. There are two factors behind this; the first is that each narrative contains a

small number of characters relative to the full network but the protagonist of one

story tends not to feature in another. Therefore this does not allow a character to

mass a particularly high degree compared to others. The second factor driving the

assortativity is the two large cliques, the degree of each member of the larger one is

higher than the average degree at the end of an edge E[k]. The network of the four

branches however has no assortativity, rk = −0.03±0.06 and rC = −0.00±0.07.

The assortativity of the seven tales is much the same as that of the entire network,

rk = 0.15± 0.03 and rC = 0.38± 0.03.

Each Mabinogion network is small world with the complete network having
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Fig. 5.32: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the Mabinogion. The most likely candidate model is a truncated power
law (continuous green line). The degree distribution for the four branches is
shown in panel (b). This is best fitted by an exponential distribution (continuous
cyan line). Panel (c) shows the degree distribution for the seven tales which, like
the complete network, is fitted with a truncated power law. Panel (d) shows the
ψ(∆) distribution. The network is assortative.

an average path length of ` = 3.48 and clustering coefficient C = 0.48. The

transitivity is higher than the naı̈ve prediction in each case too. Each network is

robust to the random removal of vertices but fragile when targeting nodes by degree

or betweenness centrality.

The Girvan-Newman algorithm completely separates the two sections of the

Mabinogion with the removal of 25 edges. This yields a modularity of Q = 0.26

and also splits each section in two. The modularity peaks atQ = 0.47 with 13 com-

munities. This however does not split up the 11 stories as some of the Arthurian

ones are highly interconnected.

The overall Mabinogion network has similar properties to those of the social

networks in chapter 3. One distinction however, is that it has a power-law regime

in its degree distribution. Like the Poetic Edda earlier, as this network is made up
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Fig. 5.33: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Le Morte d’Arthur. The most likely candidate model is a truncated
power law (continuous red line). Panel (b) shows the ψ(∆) distribution. The
large fluctuations at the extremities of the figure make the network disassorta-
tive.

of many loosely connected narratives and contains some large cliques.

5.5.2 Le Morte d’Arthur

Le Morte d’Arthur is the largest and most comprehensive of the Arthurian narra-

tives studied here. It contains 504 characters and has a relatively high average de-

gree of 〈k〉 = 9.91. The degree distribution is shown in fig. 5.33 (a). It is best fitted

by a truncated power law with parameters γ = 1.39± 0.03 and κ = 73.89± 0.01.

In fig. 5.33 (b), we observe frequent differences of degrees with ∆ > 200. This

the network is disassortative with rk = −0.230.02. It is also clustering disassorta-

tive with rC = −0.04± 0.02. This network however has a relatively high Pearson

similarity measure rP = 0.09 indicating that vertices commonly share the same

neighbours.

The network is small world, with a low average path length of ` = 2.76 and a

clustering coefficient of C = 0.59. However its transitivity is lower than expected.

The network is fragile to the targeted removal of vertices but robust upon random

removal.

Le Morte d’Arthur has 698 cliques, the largest of which contains 27 vertices.

The average clique size is relatively high with 〈Cs〉 = 6.44. The community

detection algorithm fails to ever reach a modularity above Q = 0.26. This finds 28

communities however the largest of which has 329 vertices.
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Fig. 5.34: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Arthurian Romances. The most likely candidate model is a truncated
power law (continuous green line). There is moderate support for a power law
also (black dot-dashed line). Panel (b) shows the ψ(∆) distribution and the net-
work is clearly disassortative. The mean clustering per degree C̄k is shown with
a fitted power law in panel (c). Panel (d) shows the robustness of the Arthurian
Romances network. It is unusually fragile to the targeted removal of vertices.

5.5.3 Arthurian Romances

The network of Arthurian Romances has 255 characters and an average degree

of 〈k〉 = 5.60. The network contains only 33 purely hostile edges. The degree

distribution is shown on a log-log scale in fig. 5.34 (a). The AICc and BIC weights

give best support for a truncated power law with parameters γ = 2.10 ± 0.05

and κ = 91.59 ± 0.01 but also give support for a power law with exponent γ =

2.30± 0.10.

As well as the degree distribution, this network has similar properties to Le

Morte d’Arthur. It is also degree and clustering disassortative; rk = −0.29 ±
0.03 and rC = −0.120.04. The ψ(∆) distribution has many high peaks for large

difference in degree ∆ as shown in fig. 5.34 (b). The network also has a higher
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than normal Pearson similarity measure rP = 0.08.

The Arthurian Romances network is small world with an average path length

of ` = 2.92 and a clustering coefficient of C = 0.67. The network has a lower

transitivity, CT = 0.19, than naı̈vely predicted, Cn = 0.30. The mean clustering

coefficient per degree C̄k is displayed in fig. 5.34 (c). It is shown with a fitted

power law with exponent β = −0.99± 0.13.

The network is more fragile than usual. The removal of the top 5% of charac-

ters (13 vertices) by either degree or betweenness results in the giant component

shrinking to less than 10% of its original size. This may be in part due to the text

containing five separate narratives. To investigate this further, we use the Girvan-

Newman algorithm to try to separate the different narratives. The modularity peaks

at Q = 0.56 with 6 communities. This completely separates the first three tales

from the final two, however these two contain many overlapping characters and so

are not entirely separated. Instead 3 different communities are found within the

amalgamation of the final two texts.

5.5.4 Queste del Saint Graal

Queste del Saint Graal is the smallest of the three Arthurian networks with 122

characters, however it has similar network properties. Of the 225 edges only 6 are

purely hostile. The degree distribution is shown in fig. 5.35 (a). A truncated power

law (γ = 2.05 ± 0.08 and κ = 36.59 ± 0.02) and a power law (γ = 2.34 ± 0.15

both receive strong support from the AICc and BIC weights though the former is

slightly favoured.

The network is disassortative rk = −0.23 ± 0.05 and fig. 5.35 (b) shows that

there are many interacting vertices with large differences in degree ∆. Unlike the

previous two Arthurian networks however, Queste del Saint Graal is clustering

assortative rC = 0.11± 0.07. The Pearson similarity rP = 0.08 is relatively high

again however.

The average path length, ` = 3.35, is smaller than its random graph, `rand =

3.74, and its clustering coefficient, C = 0.45, is larger than Crand = 0.03. The

transitivity of CT = 0.22 is well predicted, though slightly smaller, than its naı̈ve

estimate of Cn = 0.27. The network is robust to the random removal of vertices

but fragile when nodes are removed by degree or betweenness. Applying the com-

munity detection algorithm, the network is found to have 12 communities with

modularity Q = 0.47.
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Fig. 5.35: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Queste del Saint Graal. The most likely candidate models are a trun-
cated power law (continuous red line). Panel (b) shows the ψ(∆) distribution.
The large fluctuations at the extremities of the figure make the network disassor-
tative.

5.5.5 Tristan

The Tristan network is one of the smaller networks analysed here. It contains only

49 characters with an average degree of 〈k〉 = 5.43. Due to its small size, it is

hard to determine the functional form of its degree distribution. The AICc and BIC

weights offer support for each of the candidate models. A log-normal distribution

with parameters µ = 0.49 ± 0.15 and σ = 1.23 ± 0.12 is slightly favoured and is

shown in fig. 5.36 (a). A power law with exponent γ = 2.23± 0.22 is also shown

however as this is the only fit to predict the vertex with the highest degree.

The network is disassortative rk = −0.37±0.05. This is visualised in fig. 5.36 (b).

Tristan is also clustering disassortative rC = −0.33± 0.09 and has a high Pearson

similarity rP = 0.28 due to vertices sharing the same neighbours. As with the

Arthurian networks, Tristan is small world with an average path length of ` = 1.99

and clustering coefficient of C = 0.75. Similarly its transitivity, CT = 0.27, is

lower than predicted, Cn = 0.61.

This network is most fragile when vertices are removed in order of betweenness

but only robust when nodes are randomly removed. Once again the small size of the

network makes it difficult to find community structure. The largest clique contains

6 characters and the modularity with the Girvan-Newman algorithm never goes

above Q = 0.25, peaking with 13 communities, only two of which contain more

than 5 characters.
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Fig. 5.36: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Tristan. All of the candidate models are offered some support but a
log-normal distribution is slightly favoured (dotted black line). A power law is
also shown (dash-dotted red line). Panel (b) shows the ψ(∆) distribution. The
large fluctuations at the extremities of the figure make the network disassorta-
tive.

5.6 World Mythology

Of the three non-European myths studied here, two of them come from the Ameri-

cas. They are both small world and disassortative but their degree distributions are

somewhat different as portrayed below.

5.6.1 Epic of Gilgamesh

The Epic of Gilgamesh is the oldest and smallest of all the narratives studied here.

It contains 46 characters and just 81 edges (2 of which are hostile). Like Tristan

above, its size makes it difficult to evaluate its degree distribution. Support is

offered for each of the candidate models with a slight favouring towards a log-

normal distribution (µ = 0.0 ± 0.18 and σ = 1.41 ± 0.18) and a truncated power

law (γ = 1.57± 0.16 and κ = 19.58± 0.03) as shown in fig. 5.37 (a).

The network is disassortative with rk = −0.34 ± 0.10. The ψ(∆) distribu-

tion shown in fig. 5.37 (b) displays an absence of any structure. Gilgamesh has

no significant clustering assortativity, rC = 0.10 ± 0.11, but has a high Pearson

similarity, rP = 0.11. The network is small world with an average path length of

` = 2.54 and clustering coefficient of C = 0.46. Its transitivity, CT = 0.27, is

well estimated by Cn = 0.29.

The Gilgamesh network is robust to the random removal of vertices but upon

removing the two protagonists, King Gilgamesh and Enkidu, the giant component
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Fig. 5.37: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the Epic of Gilgamesh. All of the candidate models are offered some
support but a log-normal distribution (dotted black line) and truncated power
law (dash-dotted red line) are slightly favoured. Panel (b) shows the ψ(∆) dis-
tribution. The lack of any structure signifies that the network is disassortative.

reduces to 50% of its original size. The network contains only 18 cliques. The

Girvan-Newman algorithm finds 4 communities with modularity Q = 45. These

correspond to the different communities King Gilgamesh encounters on his travels.

5.6.2 Popol Vuh

The Popol Vuh contains 98 unique vertices. Of the 409 edges, 87 of these are

hostile. The degree distribution is shown in fig. 5.38 (a). The AICc and BIC

weights give the most support to a log-normal distribution with parameters µ =

2.56± 0.05 and σ = 0.53± 0.01 with kmin = 5. An exponential distribution with

κ = 7.84 ± 0.05 is also shown, however this is not fitted to the highest degree

vertex.

Fig. 5.38 (b) shows no peak about the mean of the ψ(∆) distribution. This is

due to the network’s disassortativity, rk = −0.32± 0.05. The Popol Vuh network

has no clustering assortativity, rC = −0.05± 0.06, and a high Pearson similarity,

rP = 0.10. Considering 21% of the edges are hostile this network can not be

considered to be structurally balanced with 25% of its triangles containing an odd

number of hostile edges. This is the only network we observe no structural balance.

The average path length, ` = 2.80, is slightly longer than the random average

path length, `rand = 2.39, for a graph of this size and average degree. The cluster-

ing coefficient, C = 0.55, is only about six times larger than the random clustering

coefficient, Crand = 0.09. The transitivity, CT = 0.42, is about twice that of the
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Fig. 5.38: Panel (a) shows the complementary cumulative degree distribution for the net-
work of Popol Vuh. The most likely candidate model is a log-normal distribution
(dotted black line). An exponential distribution fitted without the highest de-
gree is also shown (continuous red line). Panel (b) shows the ψ(∆) distribution
and the network is clearly disassortative. The mean clustering per degree C̄k is
shown with a fitted power law in panel (c). Panel (d) shows the robustness of
the PopolVuh network. It is more robust to the targeted removal of vertices by
degree than usual.

naı̈ve value, Cn = 0.11. The network also exhibits evidence of hierarchy as shown

by the decay of the mean clustering coefficient per degree in fig. 5.38 (c). A power

law with exponent β = 0.99± 0.20 is fitted to the tail of the distribution.

The network is robust to the removal of vertices by degree as displayed in

fig. 5.38 (d). Removing the 10 highest connected vertices reduces the giant com-

ponent at 77% of its original size. Randomly removing ten vertices an average of

30 times leaves the giant component at 93% of its original size. However when

removing the 10 vertices with highest betweenness the network is less than 47%

connected. The average clique size of the network is 〈Cs〉 = 5.07 and largest clique

contains 8 vertices. Using the community detection algorithm, 5 communities are

found with modularity Q = 0.53.
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Fig. 5.39: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the Navaho Indian Myths. Both log-normal distribution (dotted black
line) and truncated power law (continuous green line) are supported by the AICc

and BIC weights. Panel (b) shows the ψ(∆) distribution. The large fluctuations
at the extremities indicate that the network is disassortative.

5.6.3 Navaho Indian Myths

The myths of the Navaho Indians contain 140 vertices with an average degree of

〈k〉 = 4.04. The network only contains 3 purely hostile edges. The degree distri-

bution is displayed on a log-log scale in fig. 5.39 (a). The most likely candidate

models are a log-normal distribution (µ = 0.0 ± 0.1 and σ = 1.24 ± 0.08) and a

truncated power law (γ = 1.9± 0.1 and κ = 22.36± 0.02).

The network is disassortative with rk = −0.18 ± 0.05. In fig. 5.39 (b) the

ψ(∆) distribution is shown for the difference in degree ∆. The fluctuations at the

extremities give rise to the disassortativity. The network is clustering assortative

however with rC = 0.31 ± 0.06. It has a low Pearson similarity measure, rP =

0.03.

The network is small world with an average path length of ` = 3.81 and a

clustering coefficient of C = 0.44. The transitivity, CT = 0.26, is higher than the

expected Cn = 0.11. The network is fragile when removing vertices in order of

degree or betweenness but robust to random removal. Using the Girvan-Newman

algorithm the network is found to have 5 communities with modularity Q = 0.60.

5.7 Fictional Networks

Finally we turn our attention to the non-mythological networks. Like the fictional

networks in chapter 3, both of these are disassortative, small world and have tran-
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Fig. 5.40: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the Lord of the Rings. A Weibull distribution (dashed green line) and
truncated power law (continuous yellow line) are equally supported by the AICc

and BIC weights. Panel (b) shows the ψ(∆) distribution for the disassortative
network.

sitivity values well predicted.

5.7.1 Lord of the Rings

Lord of the Rings contains 223 characters and has an average degree of 〈k〉 = 7.97.

Both a truncated power law (γ = 1.09±0.07 and κ = 28.45±0.01) and a Weibull

distribution (β = 0.50± 0.03 and κ = 2.59± 0.04) receive equal support from the

AICc and BIC weights. These are shown in fig. 5.40 (a).

The network is disassortative with rk = −0.21 ± 0.03 and has no clustering

assortativity, rC = 0.01 ± 0.04. The ψ(∆) distribution is shown in fig. 5.40 (b)

with long and high tails. The Pearson similarity is rP = 0.09 indicating characters

share neighbours.

Tab. 5.4: The network properties of two further fictional networks.

N L 〈k〉 kmax 〈k2〉 rk rC rP

Lord of the Rings 223 889 7.97 81 194.9 -0.21 0.01* 0.09
Dragon Tattoo 130 332 5.11 53 79.7 -0.24 0.06* 0.12

` `rand `max C Crand CT Cn GC

Lord of the Rings 2.90 2.83 7 0.63 0.04 0.37 0.31 94.6%
Dragon Tattoo 2.88 3.13 7 0.57 0.04 0.28 0.32 95.4%
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Fig. 5.41: Panel (a) shows the complementary cumulative degree distribution for the net-
work of the The Girl with the Dragon Tattoo. A truncated power law (contin-
uous yellow line) is the most likely of the candidate distributions. However a
log-normal distribution (dotted black line) and a power law (dash-dotted blue
line) are also offered support. Panel (b) shows the ψ(∆) distribution for the
disassortative network.

The network is small world and its transitivity, CT = 0.37, is well estimated by

Cn = 0.31. The network is surprisingly robust initially to the removal of vertices

both by degree and betweenness, an uncommon feature in the graphs analysed so

far. Upon removal of the top 5% of characters (11 vertices) by betweenness the

giant component is still at 45% of its original size. This is 63% when removing by

degree and 93% when removing randomly. Though it is still susceptible to attack

by betweenness centrality, most other networks are less than 20% connected upon

removal of the initial 5% of characters.

5.7.2 The Girl with the Dragon Tattoo

The network of The Girl with the Dragon Tattoo (referred to as “Dragon Tattoo” in

table 5.4) contains 130 vertices and 332 edges. The degree distribution is displayed

in fig. 5.41 (a). A truncated power law with parameters γ = 1.80 ± 0.09 and

κ = 53.59± 0.01 receives the best support of the candidate models. A log-normal

distribution with parameters µ = 0.0 ± 0.13 and σ = 1.49 ± 0.12 also has high

AICc and BIC weights and a power law with exponent γ = 2.16 ± 0.14 receives

moderate support too.

The network is disassortative with rk = −0.24 ± 0.04 as can be seen in

fig. 5.41 (b). Like the network of Lord of the Rings, it has no clustering assor-

tativity, rC = 0.06±0.06, and a high Pearson similarity, rP = 0.12. It too is small
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world and again its transitivity of CT = 0.28 is well estimated by Cn = 0.32. It

is also relatively robust to the removal of vertices by betweenness centrality and

degree with the giant component remaining over 40% of its original size upon re-

moval of the top 5% of characters.

Both of these fictional networks have similar properties to the two fictional

networks studied in chapter 3; namely the Marvel Universe and Les Misérables, as

well as some of the heroic epics above.



6. RESULTS

In the previous chapter each mythological network was analysed and grouped ac-

cording to the culture it originated from. However it is clear from table 5.1 and

table 5.2 that the network properties from a given culture’s myths are not always

the same. Here we attempt to group them based on similar network properties

in a manner akin to universality classes in statistical physics and to the Aarne-

Thompson system for folktales.

6.1 Network Properties

The network properties discussed in chapter 2 are applied to each of the mytho-

logical networks in the previous chapter. However, when comparing the different

networks to one another, we find some properties are better than others when dis-

criminating between them. Properties such as the robustness and clustering hierar-

chy illuminate details about specific networks but are not as useful when comparing

networks.

In chapter 3, it was found that social networks are likely to have the following

properties:

• Fast decaying degree distribution with no power-law regime

• Close to small world; ` & `rand, C � Crand

• Assortativity; rk > 0, rC > 0

• High clustering coefficient (transitivity); CT > Cn

• Community structure.

Most of the mythological networks contain some level of community structure.

This can as be hard to quantify, however, as the Girvan-Newman algorithm will

eventually find communities. There may be a few exceptions where the modularity

never becomes large, but since community structure is almost ubiquitous, we do not
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employ it as a discriminator in the classification of the networks below. Similarly as

most networks here have high clustering coefficients and are clustering assortative,

we omit these properties from our scheme. We therefore restrict ourselves to the

average path length ` when discussing small world and the degree assortativity rk
when discussing the assortativity.

Hence, we try to characterise the networks from four properties, (i) the func-

tional form of the degree distribution, (ii) the assortativity rk (iii) the transitivity

CT and (iv) the average path length `.

(i) Degree Distribution

In section 2.2.2, different classifications of small world networks based on their de-

gree distribution were outlined (as in Amaral et al. (2000)). These are power-law

degree distributions, truncated power-law distributions, and degree distributions

with fast decaying tails (such as exponentials or Gaussians). However with the

small empirical datasets presented here, it can be difficult to discern a strict dis-

tinction between some distributions. As a result we choose two different classifica-

tions of degree distributions; those with support for a power-law regime (truncated

or otherwise) and those without support for a power-law regime from the AICc and

BIC weights.

(ii) Assortativity

Here we have three regimes, disassortative rk < 0, no assortativity rk ≈ 0 and

assortative rk > 0. Social networks tend to be in the third but later we pool the

second and third together and discuss rk ≥ 0.

(iii) Transitivity

Newman & Park (2003) show that social networks have higher transitivity than ex-

pected. While Cn from eq. (2.54) works well for random graphs, it is still just an

estimate. To ensure the transitivity is sufficiently higher than expected we take the

criteria CT > 3Cn.

(iv) Average Path Length

We define two regimes; small world when ` . `rand and slightly larger than small

world with ` > `rand. The social networks in chapter 3 were mostly in the latter.
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6.2 Classification of Mythological Networks

Table 6.1 lists each of the networks in separate categories based on the four proper-

ties above. The most immediate feature distinguishing the mythological narratives

is the assortativity.

6.2.1 Disassortative Networks

Almost all of the disassortative networks are heroic adventure stories. The only ex-

ception here is the Orkneyinga saga. This, however, is also one of only two disas-

sortative networks that has a high transitivity and is not small world. Therefore we

can say that each of the mythological networks that is small world, disassortative

and does not have a particularly high transitivity is a “heroic adventure” narrative.

Within these we have a few further distinctions based on the degree distribu-

tions. The Iliad (with all edges), Fianaigecht and the three Arthurian romances (Le

Morte d’Arthur, Arthurian Romances and Queste del Saint Graal) all have support

for power-law regimes in their degree distributions and no support for exponentials

or faster decaying distributions. Each of these features multiple protagonists as

opposed to just one.

This is not the case for the majority of the disassortative networks that have no

support power-law regimes. In particular, the following five networks are all well

fitted by exponential distributions when excluding the highest degree vertex (or in

some cases the two highest): the Second Battle of Mag Tuired, the Destruction

of Da Derga’s Hostel, the Odyssey, the Aeneid and Beowulf. Each of these has a

sole protagonist, Lugh, Conare Már, Odysseus, Aeneas and Beowulf respectively.

Some have a second, but less important, high degree character central to the story.

Each of these five myths follow a hero’s journey and end in a battle. On the other

hand, the network of the Popol Vuh is well fitted by an exponential (fig. 5.38 (a)),

but here the exponential overshoots the highest degree vertex.

A similar observation to the above five networks, can be made in the degree

distributions of Tristan and Gı́sla saga. Although these not fitted by exponentials,

the fit for the degree distribution underestimates the character with the highest de-

gree. A particularly high degree character has implications for the assortativity.

This will raise the average degree at the end of an edge E[k] causing the network

to more likely be disassortative. This can be visualised by the ψ(∆) distributions

which have high peaks for large difference of degrees ∆.
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Tab. 6.1: An overview of the properties of the mythological networks. The assortativity is
rk. Degree distributions with evidence for a power-law regime receive a check-
mark under∼ k−γ whereas distributions with evidence for a faster decaying tails
receive a checkmark under∼ e−k/κ. The transitivity is given by CT and its naı̈ve
estimate by Cn. The network is not small world if the average path length ` is
greater than the random average path length `rand.

rk ∼ k−γ ∼ e−k/κ CT > 3Cn ` > `rand
Iliad (All) < 0 X – – –
Le Morte d’Arthur < 0 X – – –
Arthurian Romances < 0 X – – –
Queste del Saint Graal < 0 X – – –
Fianaigecht < 0 X – – X
Fianaigecht (no gene) < 0 X X – –
Epic of Gilgamesh < 0 X X – –
Navaho Indian Myths < 0 X X – –
Tristan < 0 X X – –
Táin Bó Cúailnge < 0 X X – –
Orkneyinga saga < 0 X X X X
Gı́sla saga < 0 X X – X
Mag Tuired < 0 – X – –
Da Derga’s Hostel < 0 – X – –
Étaı́n + Óengus < 0 – X – –
Intoxication of the Ulaid < 0 – X – –
Odyssey < 0 – X – –
Aeneid < 0 – X – –
Beowulf < 0 – X – –
Nibelungenlied < 0 – X – –
Popol Vuh < 0 – X – X
Egils Saga (All) < 0 – X X X
Iliad (Friendly) 0 X – – –
Ulster Cycle 0 X X – X
Mythological + Ulster 0 X X – X
Colloquy of the Ancients 0 X X – –
Vatnsdæla saga 0 X X X X
Mabinogion 4 Branches 0 – X – X
Egils Saga (Friendly) 0 – X X X
Njáls saga 0 – X X X
Völsungasaga 0 – X – X
Prose Edda (no dwarves) 0 – X X X
Mabinogion > 0 X – X X
Mabinogion 7 Tales > 0 X – X –
Poetic Edda > 0 X X X X
Bricriu’s Feast > 0 – X – X
Prose Edda > 0 – X X X
18 Sagas > 0 – X X X
Laxdæla saga > 0 – X X X
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6.2.2 Non-disassortative Networks

For each of the assortative networks rk > 0, there is no clear protagonist and

many of the narratives are collections of shorter stories. The Mabinogion is the

only one to receive support exclusively for a power-law regime. Bricriu’s Feast

is also notable as it has CT < 3Cn, however none of the other networks have a

higher transitivity than this (CT = 0.84). While this tale features three heroes

competing to be the champion, it deals with many characters from this cycle and

there is no clear protagonist. In contrast to the disassortative networks, almost all

of the assortative texts have a high transitivity and are not small world.

The networks that have rk ≈ 0 are on the border of the above protagonist

distinction. Many are collections, but some have a clear protagonist (in particular:

Egils saga (friendly network), the Iliad (friendly network) and the Colloquy of the

Ancients). These, however, are among the largest of the networks. They also tend

to spread over vast geographic areas focusing on different characters in each region,

unlike the disassortative networks which remain with their protagonists when they

move. Most of these networks are not small world.

We now pool these two categories together. Many of the networks with an

assortativity rk ≥ 0 are collections of stories; either separate tales we have merged

(such as the Selection of Ulster Cycle Myths or the amalgamation of the 18 sagas)

or short stories with some recurring characters throughout (like the Poetic Edda

or the Mabinogion). Due to these containing many different segments, the heroes

of one tale do not get an opportunity to continue accumulating interactions as the

narrative continues. As a result the difference in the degree ∆ of those they interact

with are not as large, or frequent, as in the heroic adventures. Similarly these

texts can be broken into modules which is the reason Newman & Park (2003)

cite for social networks having a high transitivity – because they contain many

communities. However in the case of collections of stories the community structure

is artificial.

Therefore we shift our focus to those networks with rk ≥ 0 that are not

collections. These are the Iliad (friendly), the Colloquy of the Ancients, Vatns-

dæla saga, Völsungasaga, Egils Saga (friendly), Njáls saga, Bricriu’s Feast and

Laxdæla saga. The first two here are the only ones that are small world and have

CT < 3Cn. They also both have support for power-law distributions unlike most

of the others. The Colloquy of the Ancients takes place over a very long time pe-

riod and moves all over Ireland. Effectively, this is a collection of short stories

that, unlike the Mabinogion and the Poetic Edda, continually deals with the same
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characters. This is most likely why its network properties are different to the other

collections.

The friendly network of the Iliad features two opposing factions and contains

heroes on both sides. It takes place over a short period of time in the same location.

This and Bricriu’s Feast are the only remaining texts that are not collections and

not Norse. They each contain many interactions in the society and do not feature

clear protagonists, instead they are stories of a people.

As observed in section 5.1.7, Bricriu’s Feast makes clear that many of the Ul-

ster Cycle heroes are, in fact, associated with one another. As a result this network

gives a better indication of the actual social network than the other Ulster Cycle

narratives, which contain the same characters but with fewer interactions between

those characters. As each network deals with the same characters, this leads one to

believe that the network properties are often telling us about the type of story rather

than the actual social network of the society. The tales centred on heroes tend to

reveal fewer interactions between the recurring characters.

If the Eddas are included, then almost all the Norse networks are in the same

category. Each has a high transitivity, is not small world and has an assortativity

rk ≥ 0. It is remarkable that these have similar properties when they are different

types of stories. The two Eddas are stories of their gods, Vatnsdæla saga, Laxdæla

saga and Völsungasaga are tales of people or a region, and Egils Saga and Njáls

saga are family sagas.

6.2.3 Networks of Different Cultures

The Norse are not the only culture whose networks have similar properties. Each

of the three Arthurian texts falls into the same category having power-law regimes,

small worldness, transitivities that are not particularly high and are disassortative.

Similarly, early Irish narratives from the Mythological and Ulster Cycles (with the

sole exception of Bricriu’s Feast) contain the last three of these properties. How-

ever, they rarely have power-law degree distributions, distinguishing them from the

Arthurian and Mabinogion networks.

When the Irish myths are amalgamated, the Ulster Cycle and Fenian Cycle also

have similar properties. Both have no assortativity, are not small world and have

evidence for log-normal or truncated power-law degree distributions. These both

contain many short stories featuring the same cast of characters. Their network

properties are also distinct from the amalgamation of the sagas, or the Welsh myths

of the Mabinogion.
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The Greek and Roman myths also all have similar properties (ignoring the

distinction between the full network of the Iliad and its friendly network). Each

is disassortative, is small world and does not have a particularly high transitivity.

It seems that with the exception of the Norse myths, individual myths tends to be

heroic adventures.

Outside of European myths, the Popol Vuh is the only network that is not struc-

turally balanced. Otherwise this network, surprisingly, has similarities to the Gil-

gamesh network. Almost all ψ(∆) distributions contain a peak at ∆ = 0, and if

they are disassortative further peaks for larger difference in degree ∆. However,

both the Popol Vuh and Gilgamesh have almost no distinct peaks and both are dis-

assortative. This seems to distinguish them from the European heroic myths.

As the network properties allows us to discern between types of myths, this

may also tell us something about the type of myths certain cultures tend towards.

The Irish, Anglo-Saxon and Greek and Roman myths are mostly heroic adven-

ture stories, an individual myth often dealing with just a single protagonist. The

Welsh and American myths however are also adventure stories but with multiple

protagonists. The Nordic myths are more regional stories of a people.

6.2.4 Comparisons to Real and Fictional Networks

If we were to make a strict comparison to the social networks of chapter 3, we

would observe that only the networks in the lower section of table 6.1 have the

same properties as real social networks. If we were to be a bit more lenient and

allow rk ≈ 0, then we would find that the Nordic networks are “realistic” and

that most of the disassortative networks, having the same properties as the fictional

networks, are not-realistic.

Similarly it would tell us that collections of myths such as the Mabinogion

or tales of the Irish Fianna, are more realistic. This, of course, does not imply

that the society presented is real. Instead, it indicates that because there are few

connections going from one tale to the next so it gives the network a community

structure which is commonly observed in real social networks.

We can make adjustments to other networks, such as looking at only the friendly

interactions of the Iliad, or reducing the degree of the most connected characters

of the Táin (Mac Carron & Kenna 2012). If a tale such as the latter only shows a

spotlight on a few characters, many interactions are lost as made clear in Bricriu’s

Feast which has many of the same characters but entirely different network proper-

ties. One must take care when making adjustments however. Reducing the degree
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of a highly connected character will always increase the assortativity. Caution must

be taken before claims are made about the results when artificially increasing the

assortativity (c.f. Miranda et al. (2013)). Also, a distinction must be made between

‘real’ and ‘realistic’.

6.2.5 Further Considerations

An important property of many of the social networks presented here are the cliques.

Large cliques (e.g. in Bricriu’s Feast, the Prose Edda) have significant impact on

the global properties of the network. The interactions of every pair of character

within a clique increases the assortativity and transitivity, and creates a large jump

in the degree distribution data. In networks such as the Poetic Edda and the Il-

iad, the majority of characters in the largest clique only appear once. However

in Bricriu’s Feast they are central to the entire mythology. A clique, however, is a

particularly tight community, and communities are one of the key features of social

networks.

Further properties of these networks that could be analysed are the role of gen-

ders in myths. Most of these myths are male-dominated but occasionally, such

as in Laxdæla saga, the protagonist is female. This increases the proportion of

male-female interactions and is higher than the other sagas (Mac Carron & Kenna

2013c). Another approach could be to analyse the evolution of the network proper-

ties as the networks grows. This could offer insights into the structures of different

narratives.

It is also important to note that this selection of myths is just a sample. With the

addition of further myths, particularly more non-European ones, more insights into

the differences between the networks of distinct cultures could be made. An anal-

ysis of more fictional narratives from different genres could also provide further

understanding of the network structure for distinct types of narratives.

6.3 Summary

The overview of the network properties of these myths provide us with some key

insights. Network analysis distinguishes between collections of myths of a culture

from a large epic. Within this we find that the myths of the Norse gods are simi-

lar to the Welsh Mabinogion. However they are distinguishable from their degree

distributions. The collections of Irish myths from two periods have similar prop-

erties to each other and slightly different to the Norse and Welsh ones in that they
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have no assortativity. A collection of Navaho and South American myths also have

different properties as they are disassortative.

Of the myths that are not collections, it is almost exclusively Nordic sagas that

are not disassortative. The only exception is an Irish myth that has different prop-

erties to all the other Irish narratives. The majority of myths are disassortative,

however within these are still distinctions. Seven of these have a significant pro-

tagonist identified by their degree distribution; namely Destruction of Da Derga’s

Hostel, the Odyssey, the Aeneid, Beowulf, Tristan and Gı́sla saga. These are all

tales concerning a the adventure of a hero. In essence these could be seen as a

universality class and similar to the Campbell (1949) notion of universality of the

hero’s journey. The remaining disassortative myths tend to deal with more than one

protagonist. These can be distinguished from the previous myths by their degree

distribution.



7. CONCLUSION

Many methods of comparative mythology exist, but up to now, none of them have

been purely quantitative. The approach presented here not only allows us to com-

pare the myths of different cultures to one another, but also allows us to compare

different myths from the same culture to each other. This allows for unique insights

to be made into the world of myth.

In total, 33 mythological social networks were analysed here. Two different

types of networks are identified; the networks of individual epics and collections

of myths. Within these we find further distinctions. Individual myths tend to have

two categories; these are heroic adventure type tales and the stories of a people.

With the exception of the Nordic narratives, most myths studied here fall into the

former category. However within the heroic adventure type tales we find a fur-

ther distinction between narratives that are centred on a single protagonist versus a

group.

Social networks have different properties depending on how the edges are

formed. We are most interested in networks in which the edges are mutual and

vertices are relatively freely allowed to choose who they interact with. When gath-

ering data for the mythological networks, edges were created on the basis that they

were mutual, however, characters in these stories do not have the same freedom to

choose edges as the networks in chapter 3. There is a constraint based on the focus

of the story, in essence the mythological networks only ever show a spotlight of a

social network centred on who the narrator is focused on at a given time. There

is no information on the characters that are “offscreen” at any time and thus we

encounter many very low degree vertices.

Of the mythological networks, very few have the same properties as these real

social networks. If we were to compare, the ones that have these properties tend to

be collections of short narratives or large regional tales of a people. However, what

this comparison to real and imaginary might more likely tell us, is the nature of the

type of story a culture prefers. If this is the case, it seems that the Irish, English

and Americans favour the story of the super-hero “against the world”; whereas the
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Norse rather the more down-to-earth tales of a people and their more large-scale

conflict.

However, to simplify to the realistic versus imaginary level may take away

from the subtleties and allure of the mythological narratives. After all, this is just

a selection of myths from a vast global sample size. This mere drop in the ocean

of myth does, however, provide us with some unique insights. It reveals that col-

lections of myths and tales have different properties to heroic epics but similar

properties to regional based narratives. The network properties allow us to make

distinctions between the type of myth but more remarkably, in some cases, they

allow distinguish the myths of one culture from another. But most importantly, this

method provides an entire new branch in the field of comparative mythology.



APPENDIX



A. MAXIMUM LIKELIHOOD ESTIMATORS

As discussed in section 2.3, it has been suggested in recent years that the methods

of Maximum Likelihoods yield better estimates when fitting. In the next section,

this is tested for the power-law distribution. The following section gives the like-

lihoods to be maximised to obtain estimates for the parameters of different distri-

butions. The final section discusses the methods of choosing the most likely of the

candidate models to fit the data.

A.1 Power-Law Distributions

A distribution commonly observed in complex networks is the power law (eg. Stro-

gatz (2001); Albert & Barabási (2002)). This has the form

pk ∼ k−γ , (A.1)

where γ > 1 and k 6= 0. Usually the power-law behaviour is found only in the tail

of the distribution beginning at some kmin.

The normalisation of eq. (A.1) is evaluated by

kmin∑
k=0

ρk +
∞∑

k=kmin

pk = 1, (A.2)

where ρk is the distribution below kmin. Thus eq. (A.1) becomes

pk =
(1−∆)

ζ(γ, kmin)
k−γ (A.3)

where ∆ ≡
∑kmin

k=0 ρk and ζ(γ, kmin) ≡
∑∞

n=0(kmin + n)−γ is the Hurwitz zeta

function. In the case where kmin = 1, the denominator is then just the Riemann
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zeta function ζ(γ). The cumulative distribution function is given by

Pk =
∞∑
q=k

pq = (1−∆)
ζ(γ, k)

ζ(γ, kmin)
. (A.4)

This is only valid for k ≥ kmin.

In order to fit to the data, it is easier to treat the degree distribution as if it is

continuous. Eq. (A.1) can then be normalised by∫ kmin

0
ρ(k)dk +

∫ ∞
kmin

p(k)dk = 1, (A.5)

where ρ(k) is the behaviour of the unknown distribution below kmin. The nor-

malised distribution is then

p(k) = (1− δ)γ − 1

kmin

(
k

kmin

)−γ
, (A.6)

where δ ≡
∫ kmin

0 ρ(k)dk.

If this is treated for the entire data (i.e. kmin = 1) and in the limit δ � 1, then

one observes p(1) ≈ γ − 1. As the probability to have degree k = 1 is bound by

unity, then one concludes γ < 2. Taking the first moment of eq. (A.6) yields

〈k〉 =

∫ ∞
1

kp(k) ∼ 1

2− γ
[
k2−γ]∞

1
. (A.7)

If γ ≤ 2, then we observe that 〈k〉 diverges. For the discrete case, this is just a

large finite value. Empirically in these networks we observe that the mean degree

is never large, usually 〈k〉 < 10. As a result, we should use kmin > 1. In general a

value of kmin = 2 is chosen here as we also wish to fit to as much data as possible.

However, it is also worth considering using the modal degree as the value for kmin

as the distribution decays beyond this point. Clauset et al. (2009) provide various

methods for estimating kmin, however, that study assumes large values of N .

We next determine the cumulative distribution function by integrating eq. (A.6),

P (k) =

∫ ∞
k

p(q)dq = (1− δ)
(

k

kmin

)−γ+1

. (A.8)

Thus the cumulative distribution function also follows a power law but with an

exponent differing by 1 to the original. A fit to this can be used to determine an
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estimate for the exponent and its error.

To evaluate the exponent using MLE we take the likelihood L of eq. (A.6)

L(γ|k) =

N∏
i=1

(1− δ)γ − 1

kmin

(
ki
kmin

)−γ
. (A.9)

Taking the logarithm

lnL = N ln(1− δ) +N ln(γ − 1)−N ln kmin − γ
N∑
i=1

ln
ki
kmin

. (A.10)

An estimate for δ can be obtained from the data. However as kmin is fixed, the

first term does not affect the maximisation. Eq. (A.10) can either be numerically

maximised to obtain an estimate for γ or alternatively, setting ∂(lnL)/∂γ = 0 and

solving for γ we obtain

γ̂ = 1 +N

[
N∑
i=1

ln
ki
kmin

]−1

, (A.11)

where γ̂ denotes an estimate from the data rather than the true value. If a power

law is a good model for the data, then γ̂ ≈ γ.

The error is calculated using eq. (2.28) to get

σγ̂ =
γ̂ − 1√
N
. (A.12)

However depending on how kmin is estimated, there can be O(1/N) corrections

(Clauset et al. 2009).

As most of our datasets are quite small, however, it may not be reasonable

to use these continuous approximations. The data is also rarely a complete set

of discrete integers, i.e. there is often significant gaps between two consecutive

degrees.

It is more accurate to look at the discrete case from eq. (A.3). Taking the log

of the likelihood of this we get

lnL = N ln(1−∆)−N ln ζ(γ, kmin)− γ
N∑
i=1

ln ki. (A.13)

This can be numerically maximised to obtain an estimate for γ. The error is calcu-
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lated again by eq. (2.28) to give

σγ =

[
N

(
ζ ′′(γ, kmin)

ζ(γ, kmin)
−
(
ζ ′(γ, kmin)

ζ(γ, kmin)

)2
)]−1/2

, (A.14)

where ζ(m)(γ, kmin) = (−1)m
∑∞

n=0(ln(kmin + n))m(kmin + n)−γ . For large N

eq. (A.12) gives comparable results.

Alternatively Clauset et al. (2009) find an approximation for the log-likelihood

in eq. (A.13) as

γ̂ ' 1−N

[
N∑
i=1

ln
ki

kmin − 1
2

]−1

. (A.15)

A.1.1 Comparisons of the Exponent Estimates

Denoting γc as the continuous estimator for the exponent from eq. (A.11), γd as

the maximisation in the discrete case in eq. (A.13), γ̃d as the approximation for the

exponent in the discrete case in eq. (A.15) and γls as the estimate of the exponent

using a least squares fit to eq. (A.8), the different estimates for the exponent are

now compared. 1,000 synthetic power laws with an exponent of γ = 2.5 were

generated each containing 1,000 observations.

The synthetic power law is generated by the method in Clauset et al. (2009)

using code provided by the author (Clauset 2007). The average exponents and

their standard deviation for the 1,000 samples are shown in Table A.1. For low

kmin, the least squares fit to the cumulative distribution of eq. (A.8) gives the most

accurate results kmin = 1, γls = 2.47 ± 0.19. However as kmin increases, the

discrete estimate from eq. (A.13) becomes the closest to the true value of 2.5.

If, instead of using the Hurwitz zeta function in eq. (A.3), we take the upper

kmin γc γd γ̂d γls

1 1.65 ± 0.07 1.96 ± 0.03 1.77 ± 0.02 2.47 ± 0.19
2 3.07 ± 0.26 2.55 ± 0.08 2.41 ± 0.06 2.47 ± 0.23
3 2.77 ± 0.32 2.52 ± 0.10 2.47 ± 0.09 2.46 ± 0.23
4 2.66 ± 0.42 2.51 ± 0.14 2.49 ± 0.13 2.42 ± 0.27

Tab. A.1: Comparison of estimates for the scaling exponent of a power law distribution
with an exponent of 2.5. The error is the standard deviation from the difference
in estimates for 1,000 datasets. For low kmin, γls is the closest and as kmin

increases γd becomes the most accurate.
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limit of the power law as kmax as in the maximum value as suggested by Edwards

et al. (2007), then estimates for γd become some slightly less accurate in the third

decimal place. Therefore we sum to some arbitrarily large value instead of kmax.

From this we observe that the least-squares approach yields adequate results.

However its errors are hard to estimate (Clauset et al. 2009). Therefore eq. (A.3)

is be used for the MLE estimates when dealing with power laws.

A.2 Estimating the Parameters with MLEs

In order to obtain estimates for the parameters of the model distributions in sec-

tion 2.2, the log-likelihood must be numerically maximised. For a power law this

is given by eq. (A.13). When depicting histograms for degree distributions, the

complementary cumulative distribution function is used. For the power law, this is

given by eq. (A.4). Note that this is only valid for k > kmin. From the data we can

use P (kmin) = 1−∆ to get an estimate for ∆.

The following sections give the log-likelihood that is to be maximised for each

model distributions in section 2.2. These are used in the code developed for fitting

the degree distributions.

A.2.1 Exponential Distributions

The normalised exponential distribution, eq. (2.22) is given by

pk = (1−∆)

(
1− e−1/κ

e−kmin/κ

)
e−k/κ, (A.16)

where again ∆ ≡
∑kmin

k=0 ρk and ρk is the distribution below kmin. The log-

likelihood corresponding to this is then

lnL = N ln(1−∆) +N ln
(

1− e−1/κ
)
− 1

κ

N∑
i=1

(ki − kmin). (A.17)

Maximising this, one obtains the MLE

κ̂ =

[
ln

(
1 +

N∑N
i=1 ki −Nkmin

)]−1

. (A.18)
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In the case where the exponential is fitted to the entire distribution and not just the

tail, then kmin = 0, eq. (A.18) simplifies to

κ̂ =

[
ln

(
1 +

1

〈k〉

)]−1

. (A.19)

Using the leading order term from the Taylor expansion ln(1 + 1/x) ≈ 1/x, then

for large 〈k〉
κ ≈ 〈k〉. (A.20)

The cumulative distribution function

P (k) = (1−∆)e−(k−kmin)/κ. (A.21)

A.2.2 Truncated Power Laws

Normalising the truncated power law from eq. (2.21) yields

p(k) = (1−∆)
ekmin/κ

Z(kmin)
k−γe−k/κ, (A.22)

where Z(x) ≡
∑∞

m=0(x+m)−γe−m/κ. The log-likelihood is then given by

lnL = N ln(1−∆) +
Nkmin

κ
−N lnZ(kmin)−

N∑
i=1

(
γ ln ki +

ki
κ

)
, (A.23)

which must be maximised numerically. The cumulative distribution is then given

by

P (k) = (1−∆)
Z(k)

Z(kmin)
e−(k−kmin)/κ. (A.24)

A.2.3 Stretched Exponential and Weibull Distributions

The stretched exponential is given by

p(k) ∼ e−(k/κ)β , (A.25)
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The stretched exponential is the complementary cumulative function of the Weibull

distribution

p(k) ∼
(
k

κ

)β−1

e−(k/κ)β . (A.26)

The log-likelihood for the stretched exponential is

lnL = N ln(1−∆)−N ln

 ∞∑
m=kmin

e−(m/κ)β

− N∑
i=1

(
ki
κ

)β
, (A.27)

and for the Weibull distribution,

lnL = N ln(1−∆)−N ln

 ∞∑
m=kmin

(m
κ

)β−1
e−(m/κ)β


−N(β − 1) lnκ+ (β − 1)

N∑
i=1

ln ki −
N∑
i=1

(
ki
κ

)β
.

(A.28)

A.2.4 Normal and Log-Normal Distributions

The normal (or Gaussian) distribution has the form

p(k) ∼ e−
(k−µ)2

2σ2 , (A.29)

where µ is the mean and σ2 is the variance. A similar distribution is the log-normal

which is more strongly skewed and is given by

p(k) ∼ 1

k
e−

(ln k−µ)2

2σ2 . (A.30)

The log of the likelihood of these are given by

lnL = N ln(1−∆)−N ln

 ∞∑
m=kmin

e−
(m−µ)2

2σ2

− N∑
i=1

(ki − µ)2

2σ2
(A.31)



A. Maximum Likelihood Estimators 133

and

lnL = N ln(1−∆)−N ln

 ∞∑
m=kmin

1

m
e−

(lnm−µ)2

2σ2

− N∑
i=1

ln ki−
N∑
i=1

(ln ki − µ)2

2σ2

(A.32)

respectively.

A.2.5 Poisson Distributions

The Poisson distribution is given by

p(k) ∼ λk

k!
e−λ. (A.33)

The log-likelihood is

lnL = N ln(1−∆)− ln

(
1− e−λ

kmin−1∑
m=0

λm

m!

)
−Nλ

+ lnλ
N∑
i=1

ki −
N∑
i=1

ln(ki!).

(A.34)

In the case that the entire distribution follows a Poisson distribution, then the first

and last term vanish and it can be maximised to get

λ̂ =
1

N

N∑
i=1

ki (A.35)

which is just the mean. Otherwise eq. (A.34) has to be numerically maximised to

obtain an estimate of λ.

A.3 Model Selection

In order to chose the appropriate model to represent the degree distribution, the

Akaike and Bayesian Information Criteria are used as described in section 2.3.

The standard form of the Akaike Information Criterion is given by

AIC = −2 lnL(θ̂|ki) + 2nθ, (A.36)
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Fig. A.1: Panel (a) shows probability distribution for 10,000 samples generated from a nor-
mal distribution. The AICc give the strongest support for a normal distribution
which is shown as the dashed line. Panel (b) shows the complementary cumula-
tive form of the same data.

where nθ is the number of parameters. The version given in section 2.3 however, is

is the Akaike Information Criterion with a correction for finite sample sizes, AICc.

This gives greater penalty for extra parameters. Burnham & Anderson (2002) rec-

ommend using the AICc always as if the sample size is large the final term in

eq. (2.29) vanishes. For smaller samples the AIC can provide stronger support for

models with more parameters than the AICc.

Testing the AICc for the models in section 2.2.2, 10,000 points are drawn from

a normal distribution with mean µ = 25 and standard deviation σ2 = 5. The

weights from eq. (2.30) yield wGaussian = 1.0 indicating that they give full support

for the Gaussian/normal distribution. The MLEs provide estimates of µ̂ = 24.6±
0.1 and σ̂2 = 5.0± 0.1 in close agreement to the actual values. This distribution is

shown with a fit generated by the MLEs in fig. A.1 (showing both the probability

distribution and the complementary cumulative distribution).

In some cases however there is no model that is completely supported. For

example, in the degree distribution for the Aeneid shown in fig. 5.16, the AICc

weights give support for both a log-normal distribution, wlog−norm = 0.53, and a

Weibull distribution, wWeibull = 0.46.

Schwarz (1978) suggests that the Bayesian Information Criterion is used in-

stead of the AIC. The BIC penalises parameters more strongly than the AIC. Burn-

ham & Anderson (2002) however argue the AICc has some theoretical advantages

over the BIC. As a result, both the AICc and the BIC are used for model selection.

However in the data presented here, they always provide support in the same order.
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et al. (2007). Revisiting lévy flight search patterns of wandering albatrosses,

bumblebees and deer. Nature, 449(7165), 1044–1048.

Eeckhout, J. (2004). Gibrat’s law for (all) cities. American Economic Review, (pp.

1429–1451).

Efron, B. (1979). Computers and the theory of statistics: thinking the unthinkable.

Siam Review, 21(4), 460–480.

Eliade, M. (1998). Myth and reality. Waveland Press, Long Grove.

Elson, D. K., Dames, N., & McKeown, K. R. (2010). Extracting social networks

from literary fiction. In Proceedings of the 48th Annual Meeting of the Associ-

ation for Computational Linguistics, (pp. 138–147). Association for Computa-

tional Linguistics.
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