
 Coventry University

DOCTOR OF PHILOSOPHY

An integrated approach to deliver OLAP for multidimensional Semantic Web
Databases

Matei, Adriana P.

Award date:
2015

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. May. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/an-integrated-approach-to-deliver-olap-for-multidimensional-semantic-web-databases(db0016f4-fb92-49f3-9a36-2d078db5a59c).html

An integrated approach to deliver

OLAP for multidimensional Semantic

Web Databases

Adriana P. Matei

PhD

September 2015

ii

An integrated approach to deliver

OLAP for multidimensional Semantic

Web Databases

Adriana P. Matei

A thesis submitted in partial fulfilment of the University’s
requirements for the Degree of Doctor of Philisophy

September 2015

iii

©Coventry University, 2015

All rights reserved. No part of this publication may be reproduced without the

written permission of the copyright holder.

iv

Acknowledgement

Firstly and foremost I would like to express my gratitude towards my director of

studies, Professor Kuo-Ming Chao, and my supervisors, Professor Nick Godwin and Dr.

Nazaraf Shah. Not only did they support and encourage me throughout this research

project, but unknowingly, by doing so, they helped me to mature myself in the person

that I am today. Without their support, this work would not have been achieved.

I would like to thank each member of stuff at Faculty of Engineering and Computing

at Coventry University which helped me with all the administrative issues I came across

the years and let me focus on the work carried on in this research.

Finally I would like to thank my family, especially to Philipp and to all my friends,

some of whom were alonside me from the beginning of my journey, some of whom

joined along the road, but whom nevertheless understood, encouraged and supported me

at different moments during these years.

v

List of publications

Matei, A. , Chao, K.-M, Godwin, N. (2015) “OLAP for Multidimensional Semantic

Web Databases” in Enabling real-time business intelligence, Lecture Notes in

Business Information Processing, Volume 206, M Castellanos, Springer Berlin

Heidelberg, 2015, pp. 81-96

James, A.E., Chao, K-M; Li, W., Matei, A., Nanos, A.G.; Stan, S-D., Figliolini, G.,

Rea, P., Bouzgarrou, C.B., Bratanov,D., Cooper, J., Wenzel, A., Van Capelle, J.,

Struckmeier, K. (2013) "An Ecosystem for E-Learning in Mechatronics: The CLEM

Project," Proceedings of IEEE 10th International Conference on e-Business

Engineering (ICEBE), Coventry, United Kingdom, 11-13 September 2013

Matei, A. , Chao, K-M., Godwin, N. (2013) “OLAP for Multidimensional Semantic

Web Databases” Proceedings of Business Intelligence for the Real Time Enterprise

(BIRTE) Workshop, Riva del Garda, Trento, Italy, 26-30 August 2013;

Chao, K-M., Shah, N., Farmer, R., Matei, A. (2012) “Energy Management System for

Domestic Electrical Appliances”, Proceedings of International Journal of Applied

Logistics (IJAL), Volume 3, Issue 4, 48-60

Chao, K-M., Shah, N., Matei, A., Zlamaniec, T., Li,W., Lo, C-C., and Li, Y. (2011)

“Intelligent Interactive System for Collaborative Green Computing”, Proceedings of

the 15th International Conference on Computer Supported Cooperative Work in

Design (CSCWD), Lausanne, Switzerland, 8-10 June 2011

Shah, N., Chao, K-M., Zlamaniec, T., and Matei, A. (2011) “Ontology for Home

Energy Management Domain”, Proceedings of Springer Berlin Heidelberg -

International Conference, DICTAP 2011, Dijon, France, June 21-23, 2011, Part II,

337-347

Chao, K-M., Shah, N., Farmer, R., Matei, A., Chen, D., Schuster-James, H., and Tedd,

R. (2010) “A Profile Based Energy Management System for Domestic Electrical

Appliances”, Proceedings of the IEEE 7th International Conference on e-Business

Engineering (ICEBE), Shanghai, China, 10-12 November 2010

vi

Abstract

Semantic Webs (SW) and web data have become increasingly important sources to

support Business Intelligence (BI), but they are difficult to manage due to the

exponential increase in their volumes, inconsistency in semantics and complexity in

representations. On-Line Analytical Processing (OLAP) is an important tool in

analysing large and complex BI data, but it lacks the capability of processing disperse

SW data due to the nature of its design. A new concept with a richer vocabulary than the

existing ones for OLAP is needed to model distributed multidimensional semantic web

databases.

A new OLAP framework is developed, with multiple layers including additional

vocabulary, extended OLAP operators, and usage of SPARQL to model heterogeneous

semantic web data, unify multidimensional structures, and provide new enabling

functions for interoperability. The framework is presented with examples to

demonstrate its capability to unify existing vocabularies with additional vocabulary

elements to handle both informational and topological data in Graph OLAP. The

vocabularies used in this work are: the RDF Cube Vocabulary (QB) – proposed by the

W3C to allow multi-dimensional, mostly statistical, data to be published in RDF; and

the QB4OLAP – a QB extension introducing standard OLAP operators. The framework

enables the composition of multiple databases (e.g. energy consumptions and property

market values etc.) to generate observations through semantic pipe-like operators.

This approach is demonstrated through Use Cases containing highly valuable data

collected from a real-life environment. Its usability is proved through the development

and usage of semantic pipe-like operators able to deliver OLAP specific functionalities.

To the best of my knowledge there is no available data modelling approach handling

both informational and topological Semantic Web data, which is designed either to

provide OLAP capabilities over Semantic Web databases or to provide a means to

connect such databases for further OLAP analysis.

vii

The thesis proposes that the presented work provides a wider understanding of: ways

to access Semantic Web data; ways to build specialised Semantic Web databases, and,

how to enrich them with powerful capabilities for further Business Intelligence.

viii

Content

Acknowledgement .. iv

Abstract ... vi

List of Figures ... xi

List of Tables ... xii

Chapter 1 – Introduction .. 2

1.1 Research Context .. 3

1.2 Research Problem ... 3

1.3 Research Aim and Objectives ... 5

1.4 Research Approaches.. 6

1.5 Contribution to Knowledge .. 7

1.6 Thesis Structure .. 8

Chapter 2 – Research Background .. 11

2.1 Semantic Web main concepts ... 12

2.1.1 Ontologies ... 13

2.1.2 Resource Description Framework (RDF) and its Schema 17

2.2 Linked Data .. 19

2.2.1 SPARQL – RDF(S) Querying language ... 22

2.3 OLAP in conjunction with the Semantic Web .. 23

2.3.1 OLAP Fundamentals .. 23

2.3.2 Difficulty in providing OLAP systems over Semantic Web Data 29

2.4 Summary ... 32

Chapter 3 – Methodology ... 33

3.1 Research Process .. 34

3.2 Research Design ... 35

3.3 Steps and methods of the research methodology .. 41

3.4 Summary ... 46

Chapter 4 – Architectural Overview and Case Studies ... 48

4.1 Introduction .. 49

4.1.1 Case Study I: Energy Management for Domestic Electrical Appliances 49

4.1.2 Case Study II: Household’s energy consumption profile with market value

composition .. 50

ix

4.2 Conceptual framework.. 52

4.3 Architecture Overview .. 55

4.3.1 IGOLAP Vocabulary .. 59

4.3.2 Integrated OLAP Operators .. 61

4.4 Summary ... 63

Chapter 5 – IGOLAP Vocabulary Development.. 64

5.1 Introduction .. 65

5.2 Identification of a base vocabulary ... 65

5.2.1 RDF data cube vocabulary and QB4OLAP overview .. 66

5.3 Identification of the limitations of the base vocabulary ... 69

5.3.1 Informational and topological dimensions ... 69

5.3.2 Multidimensional data representation ... 71

5.3.3 OLAP operations of QB and QB4OLAP .. 72

5.4 IGOLAP Vocabulary and possible OLAP Operations ... 73

5.4.1 Additions to the base and development of IGOLAP Vocabulary........................... 74

5.4.2 Usage of the IGOLAP Vocabulary ... 79

5.4.3 OLAP Operations over IGOLAP Vocabulary .. 84

5.5 Summary ... 88

Chapter 6 – Materialisation of Integrated OLAP Operators for SW Databases 89

6.1 Introduction .. 90

6.2 Architecture of Federated OLAP Operators (F_Operators).................................... 91

6.2.1 General OLAP Characteristics ... 92

6.2.2 Characteristics of Federated Operators ... 94

6.3 Implementation of F_Operators .. 103

6.3.1 F_Roll_up ... 107

6.3.2 F_DRILL Operator ... 120

6.3.3 F_SLICE Operator .. 127

6.3.4 F_DICE Operator.. 133

6.4 Summary ... 140

Chapter 7 – Evaluation ... 141

7.1 Introduction .. 142

7.2 Evaluation Design and Process ... 142

7.3 The Domain for Evaluation .. 144

x

7.3.1 Domain Description .. 144

7.3.2 Characteristics of the Domain .. 144

7.4 Queries for Evaluation .. 145

7.4.1 Queries Description .. 146

7.4.2 Emulation of Real World Requests .. 147

7.4.3 Queries Aggregation Requirements .. 147

7.5 Data Overview .. 149

7.5.1 Real Datasets .. 149

7.5.2 Synthetic Dataset .. 149

7.6 Federated Operators’ Evaluation .. 150

7.6.1 Operators’ Portability ... 150

7.6.2 Correctness of the Federated Operators’ Output .. 151

7.6.3 Operators’ Performance Evaluation.. 155

7.6.4 Analysis of the test results .. 158

7.7 Overview of the evaluations ... 169

7.8 Summary ... 170

Chapter 8 – Conclusion and future work .. 171

8.1 Introduction .. 172

8.2 Research questions coverage .. 172

8.3 Overview of the research contribution.. 173

8.4 Foreseen related areas of research .. 175

8.5 Reflections .. 175

References .. 177

APPENDIX A - Vocabularies... 184

APPENDIX B – Operators’ implementation and sample datasets 191

APPENDIX C – Results of the evaluation... 185

xi

List of Figures
Figure 1.1 Thesis' chapters based structure ... 8

Figure 2.1 The Structure of OWL 2 (W3C OWL Working Group , 2012) 16

Figure 2.2 RDF triple and its RDF/XML serialization example ... 18

Figure 2.3 Traditional roll-up OLAP operator (Tutorial Point, n.d.) .. 26

Figure 2.4 Traditional dice OLAP Operator (Tutorial Point, n.d.).. 27

Figure 2.5 Traditional slice OLAP operator (Tutorial Point, n.d.) .. 28

Figure 2.6 Traditional drill-down OLAP operator (Tutorial Point, n.d.) 28

Figure 3.1 Activities inside the research process .. 35

Figure 3.2 Research methodology overview ... 37

Figure 4.1 Identified topological and informational dimensions in collected data 50

Figure 4.2 Integrated system for collective query of semantic OLAP Databases 52

Figure 4.3 Conceptual Framework .. 54

Figure 4.4 Components diagram ... 56

Figure 4.5 Components diagram with highlighted mandatory components 57

Figure 4.6 Data flow in a multiple databases scenario .. 58

Figure 4.7 IGOLAP vocabulary .. 60

Figure 5.1 QB vocabulary (Tennison & TSO, 2011) .. 67

Figure 5.2 QB4OLAP vocabulary ... 68

Figure 5.3 Identified topological and informational dimensions in collected data 70

Figure 5.4 IGOLAP vocabulary .. 75

Figure 5.5 Topological roll-up in information networks (reproduced from (Qu, et al., 2011)) .. 86

Figure 6.1 Integrated architecture of the introduced framework ... 96

Figure 6.2 Integrated architecture for multiple databases access .. 98

Figure 6.3 Activity diagram of F_Operators’ architecture .. 99

Figure 6.4 Sequence diagram of F_Operators ... 102

Figure 6.5 Dimensions and Levels definitions .. 106

Figure 6.6 Sample members of TopoDimension household and income 106

Figure 6.7 Sample members of levels in InfoDImensions .. 106

Figure 7.1 Queries overview of achieved QpS 1... 159

Figure 7.2 Queries overview of achieved QpS 2... 159

Figure 7.3 Performance across CONSTRUCT queries ... 160

Figure 7.4 Performance across SELECT queries .. 161

Figure 7.5 F_ROLL_UP visualisation requests .. 162

Figure 7.6 F_ROLL_UP materialisation requests ... 163

Figure 7.7 F_Slice materialisation queries .. 163

Figure 7.8 F_Slice visualisation queries .. 164

Figure 7.9 F_Dice materialisation queries ... 164

Figure 7.10 F_Dice visualisation queries .. 165

Figure 7.11 F_Drill visualisation requests .. 167

Figure 7.12 F_Drill materialisation requests ... 167

xii

List of Tables
Table 1.1 Research plan on achieving the research objectives ... 7

Table 2.1 Comparing QB and QB4OLAP Vocabularies .. 30

Table 3.1 Research process and design mapping .. 41

Table 3.2 Queries' detailed description and expected outcome ... 44

Table 5.1 Classes and properties comparison between QB and QB4O 69

Table 5.2 Classes and properties of IGOLAP in addition to QB and QB4OLAP vocabularies . 76

Table 6.1 SPARQL 1.1. included operators and functions in F_Operators implementation 105

Table 7.1 Key four evaluation requirements and their addressability 143

Table 7.2 Multidimensionality modelling concepts in Semantic Web 145

Table 7.3 Query mapping to OLAP operators and IGOLAP dimensions type 147

Table 7.4 Queries that can not be answered by QB or QB4OLAP ... 148

Table 7.5 Identified evaluation markers for Queries 1 to 5 ... 152

Table 7.6 Identified evaluation markers for Queries 6 to 10 ... 152

Table 7.7 F_Roll_up correctness evaluation based on defined markers 155

Table 7.8 Summary of the outcome of the F_Operators evaluation of correctness 155

Table 7.9 SPARQL and IGOLAP characteristics per query ... 157

Table 7.10 Average QpS obtained for materialisation requests .. 160

Table 7.11 Average QpS obtained for visualisation requests.. 162

Table 7.12 Improvement on Query 5 SELECT through SP Optimisation 166

Table 7.13 Improvement on Query 5 CONSTRUCT through SP Optimisation 166

Table 7.14 Comparision between Q8b and Query 12 from (Bizer & Schultz, 2009) 168

2

Chapter 1 – Introduction

3

1.1 Research Context

 In today’s business, the data (e.g. web data) obtained over the Internet and their

semantics can play an important role as resources in enhancing data analysis, when used

in combination with internal enterprise business information systems. The Semantic

Web (SW) technologies provide the capability of annotating web data with semantics

hence generating Semantic Web data.

The information and activities in a typical Business Intelligence (BI) scenario can be

modelled by three different layers (Berlanga, et al., 2012): the data source layer, the

integration layer and the analysis layer. The combination of Data Warehouses (DWs)

and On-Line Analytical Processing (OLAP) covers these layers in order to support BI

efficiently. OLAP tools and algorithms have been used successfully in BI to query large

multidimensional (MD) databases or DWs for supporting decision making. In the

middle layer the multidimensional model is used for normalizing and formatting the

data, gathered from other sources, for subsequent analysis. The MD dataset

representation is done through the OLAP Cube which is built from the data source using

the ETL (extract, transform and load) process.

The evolution of data management on Semantic Webs (SW) has recently showed an

increase in the use of the On-Line Analytical Processing (OLAP) approach. Different

representations of the OLAP adaptation to a Semantic Web resulted in different

structures and vocabularies developments for handling semantic data (Etcheverry &

Vaisman, 2012) (Tennison & TSO, 2011) (Chen, Yan, Zhu, Han, & Yu, 2008) (Qu, et

al., 2011) (Berlanga, et al., 2012). This triggered a trend in the development of

autonomous and usually heterogeneous OLAP databases for SWs. As a consequence

data can be found in different OLAP databases on SWs with different query languages

to access it; which makes it harder for individual databases to communicate and share

with others.

1.2 Research Problem

An increasing number of large repositories containing semantically annotated data

are available over the Internet, but summarising the semantic data to support decision

making is not a trivial task due to its exponential data growth and complexity issues.

4

The utilisation of OLAP capability in organising semantic web data into statistical or

concise information can increase efficiency in analysis and visualisation. The

implementation of OLAP analysis over a semantic web (SW), however, was understood

in more than one way and two main types of approach were adopted. Firstly, OLAP is

performed after retrieving multidimensional information from a Semantic Web and

stored in traditional databases. The second targets the development of OLAP operations

directly over Resource Description Framework (RDF) data. As for the first approach,

storage of semantic web data in local DWs conflicts with the dynamic nature of web

data, as OLAP is designed for static and batch offline processing. In addition, the

manually built DWs cannot automatically reflect changes in the sources so that it is hard

to maintain the consistency between them.

On the other hand in order to perform OLAP over SW data there are a set of key

aspects needed in the modelling process. There is a need for a precise, explicit

describing vocabulary in order to represent OLAP data consistently. The key concepts

of dimension and measure need to be introduced to support OLAP operations since

these employ measures such as AVG, MIN, SUM etc. and dimension related actions

such as roll-up, dice, slice, and drill.

SW data are, however, often published on the web in different cube representations

(Etcheverry & Vaisman, 2013) (Tennison & TSO, 2011) for OLAP operations. As a

consequence these generated multidimensional semantic web databases become

standalone databases, so they only offer limited OLAP capabilities and only work with

their own query languages. The information contained in these web databases can be

incomplete for complex applications which may require information from multiple

databases. Their proprietary specifications do not provide the possibility of direct

communication or simple data sharing in order to compose appropriate responses. This

is complicated when queries need to be performed over disparate data sources for new

multidimensional semantic web databases. The situation could be improved if we could

better understand SW data’s modelling requirements and model it from an OLAP

perspective and so publish it for further aggregations.

After carefully studying the literature available, under the researcher’s

understanding, the main guiding research question can be defined as:

5

Q0 – How can we address Semantic Web data in order to provide OLAP

capabilities across distributed SWDBs?

The complexity of this research question requires a number of more specific, derived

research questions. Answering these questions through this research would provide a

complete answer of the main introduced research question. These secondary research

questions are:

 Q1 – What do we understand by OLAP over SW data? By answering this

question, the boundary and the context of this research can be defined. The

focus of a new modelling vocabulary for OLAP can also be emphasised.

 Q2 – Why are the current vocabularies and modelling approaches not

suitable to appropriately model SW data for OLAP? In order to answer this

question we first have to justify why OLAP capabilities are needed over SW

data. Then we have to explain why the current vocabularies are not able to

deliver an accurate modelling tool. This will lead to the suggestion of a need

for a new vocabulary (Integrated Graph OLAP – IGOLAP) to be developed

in this research.

 Q3 – How can we perform OLAP over the SW’s modelled data? After we

understand what the limitations of performing OLAP on SW data are, we will

have the context to develop the necessary OLAP operators, capable of

performing OLAP on the data modelled by the introduced IGOLAP

vocabulary.

 Q4 – How will these new set of operators and vocabulary help improve the

communication and OLAP capabilities across shared SWDBs? Answering

this question will allow the generation of a procedure in applying IGOLAP

vocabulary and operators in modelling existing SW data.

1.3 Research Aim and Objectives

The aim of this research is defined, based on the research problem identified in the

previous section, as it follows:

6

The definition and development of both a vocabulary and a set of operators

which can be used to model distinct SWDBs and provide them with OLAP

capabilities and communication and information sharing facilities

In order to achieve this aim, the following objectives were established:

1. Define the particularities of SW data, describe the differences between

informational and topological SW data.

2. Define the OLAP requirements to operate over SW data.

3. Develop a vocabulary to model both informational and topological SW data

including OLAP capabilities of dimensions, measures, hierarchies and operators.

4. Assess the IGOLAP Vocabulary

5. Define a set of OLAP operators able to operate on RDF format.

6. Develop the operators.

7. Assess the operators

8. Define how the vocabulary and operators deliver an integrated system for

collective querying over multiple multidimensional databases.

9. Demonstrate the benefits of this system.

1.4 Research Approaches

This work is based on a pragmatic approach to research, making use of methods,

techniques and procedures from both quantitative and qualitative approaches.

The research methods and techniques selected to fulfil the objectives described in

Section 1.3. Research Aim and Objectives are presented in Table 1.1. Their selection is

based on the research milestones. First, a good understanding of the research context is

established. This lead to identifying the research problem in the above given context.

Derived from the research problem was identified the need for SW’s data modelling for

OLAP capabilities. Then a review of relevant literature was carried out to help develop

and assess a specialised modelling vocabulary (IGOLAP) and additional required

operators. The next milestone was met when the IGOLAP and the operators were

developed and verified on the basis of OLAP modelling and querying over Semantic

Web data. And finally, the IGOLAP Vocabulary and introduced operators are proposed

and demonstrated.

7

Research Objectives Research methods and techniques

1. Defined the particularities

of SW data, describe the

differences between

informational and

topological SW data.

Review of relevant literature;

2. Define the OLAP

requirements to operate over

SW data.

Review of relevant literature;

3. Develop a vocabulary to

model both informational

and topological SW data

including OLAP capabilities

of dimensions, measures,

hierarchies and operators.

 Data collection –

o Data samples collected from relevant literature review

(RDF format);

o Raw data collected from a real-life data energy

monitoring data (SQL);

o Synthetic data collected through online manual data

mining;

 Data analysis – Analyse the data for retrieving semantic

web specific data patterns and properties;

3. Assess the IGOLAP

Vocabulary

 Data modelling – Modelling the sample data from

Objective 3 based on the developed vocabulary

(IGOLAP) from the same objective;

4. Define a set of OLAP

operators over RDF format.

Review of relevant literature (OLAP and RDF querying

languages)

5. Develop the operators. Usage of traditional OLAP operators main characteristics as

guideline through the development;

6. Assess the operators. Apply the provided operator on data provided by

achieving Objective 4;

 Evaluate the correctness of the operators’ output;

7. Define the integrated

system for collective

querying over multiple

multidimensional databases

Usage of the vocabulary to model multiple multidimensional

SW database;

Usage of the operators to perform composed queries across

these databases;

8. Demonstrate the benefits

of the system.

A relevant case study;

Table 1.1 Research plan on achieving the research objectives

1.5 Contribution to Knowledge

This research will mainly contribute to the domain of Semantic Web usage. It intends

to provide a new way of modelling SW data for enhancing BI potential in this area

through providing an OLAP capability. Satisfying the aim and the objectives from this

research will provide three primary contributions to knowledge. Firstly, by using the

8

introduced vocabulary and operators this research provides an integrated system for

collective querying over multiple multidimensional databases. Secondly, this research

provides an extended vocabulary for multidimensional data representation. Lastly, it

presents an example materialization of a semantic OLAP database capability.

In conclusion this research contributes to the field of data modelling and data

integration in the Semantic Web and Linked Data area.

1.6 Thesis Structure

Figure 1.1 Thesis' chapters based structure

This thesis is structured as eight chapters designed to deliver the thesis’ content in

three stages. Firstly, Chapters 1 to 3 provide the pre-requisites to understand the

conducted research work presented. The next four chapters, Chapter 4 to 7, deliver the

Chapter 1 – Introduction

Chapter 2 – Research Background

Chapter 3 – Research Methodology

Chapter 4 – OLAP for Semantic Web Multidimensional
Databases

Chapter 6 – Materialisation of Integrated OLAP Operators
for SW Databases

Chapter 5 – IGOLAP Vocabulary Development

Chapter 8 – Conclusion

Chapter 7 – Evaluation

9

thesis’ research work. In the final chapter the thesis is concluded and future research

visions provided.

The thesis’ chapters and above introduced stages are visualized in Figure 1.1 Thesis'

chapters based structure.

Furthermore each of these chapters is summarised below:

 Chapter 1 – Introduction:

In the current chapter the discussion considered the research context and the

problem as well as the research approach and the contribution to knowledge.

This chapter is concluded with the introduction of the thesis’ structure.

 Chapter 2 – Research Background:

The research context was extracted from an initial literature review, but an

additional literature review was essential in answering the research questions.

The entire research background is presented in Chapter 2 and focuses on the

interactions of two main worlds: on the one hand the Semantic Web world

and its tools and technologies and on the other hand the important BI tool –

OLAP – and its adoption in the Semantic Web. A critique of the available

work and the requirements for solving the research problem are also specified

in this chapter.

 Chapter 3 – Methodology:

The methodological approach used in this research work is described in this

chapter. Part of the methodological approach includes the research design and

process.

 Chapter 4 – OLAP for Semantic Web Multidimensional Databases:

In Chapter 4 the overview of the desired output as well as the framework of

the research is introduced both graphically as well as being detailed in an

explanatory way. This chapter also presents the design and architectural

aspects of the work currently delivered.

 Chapter 5&6 – IGOLAP Vocabulary Development & Materialisation of

Integrated OLAP Operators for Semantic Web Databases:

The main two components of the system developed in this research have each

their own chapter dedicated. Each chapter introduces the implementation of

10

the vocabulary and operators based on the methodology previously

introduced. The variations of the implementations, the sequence of the

iterations over the implementation and special delivered characteristics in

each of the final versions are all detailed in these chapters.

 Chapter 7 – Evaluation of the Integrated Framework:

The entire chapter 6 is dedicated to the evaluation of this research. The

evaluation process covers individual components as well as their inter-

operability and overall system evaluation.

 Chapter 8 – Conclusion and future work:

The final chapter of this thesis concludes the findings of this research, it

presents how the research aims and objectives were achieved. This chapter

discusses over the limitations of this work but also introduces the

contributions delivered during the research. After providing the identified

future areas of research, this chapter ends this thesis with the concluding

remarks.

11

Chapter 2 – Research Background

12

2.1 Semantic Web main concepts

The Semantic Web operates with a series of terms and technologies either

specifically designed or adapted to represent and process web content in a machine

readable way.

One important concept in understanding the Semantic Web is information.

Information is stored everywhere in one way or another, from big enterprises’ databases

to web pages as HTML (Hyper Text Markup Language) documents, all can contain data

that can be provided, or not, by a database. This means that access to raw data is not

necessarily provided. In addition the transition from information intended primarily for

human readability into information for computers and machines to process, was viewed

as a necessary next step and as a consequence the Semantic Web was introduced

(Berners-Lee, Hendler, & Lasssila, 2001). Overall it represents a group of technologies

and ways of making the semantics (meaning) of the information on the Web (World

Wide Web) accessible for machines. A description of the Semantic Web was made

available by the World Wide Web Consortium (W3C) (W3C Consortium, 2010) and its

director, Tim Berners-Lee.

There are many areas in which the semantics can be used. The Semantic Web idea is,

ideally, user oriented; trying to understand problems like user’s access and the sharing

of the data. Most importantly the Semantic Web should facilitate user – machine

communication on a level on which applications will understand the meaning of

different data and text and be able to make connections between them.

The main idea of the Semantic Web’s design was that this will not be only another

data model but it will be appropriate to the linking of data of many different models. As

a result it will be able to add information relating different databases on the Web, this

will lead to the possibility of performing sophisticated operations across them (Berners-

Lee T. , 1998). The way in which data was made available on the Web previously to

this was mostly as CSV, XML or marked up as HTML tables but in all these cases

much of its structure and semantics was lost.

As mentioned in (Beheshti, Benatallah, Motahari-Nezhad, & Allahbakhsh, 2012), the

Semantic Web envisages the transition from a Web of documents to a Web of data. In

13

order to achieve that, the access to data should be made using the Web’s architecture

and the relationships between data need to be defined and described. On top of that,

relationships themselves, between two resources or values, need to be named.

Automatic interchange of data relies on the explicit naming and defining of those

relationships, which generally is done using the Resource Description Framework

(RDF) (Berners-Lee T. , 1998) which has the capability to give a formal definition for

that interchange. (Beheshti, Benatallah, Motahari-Nezhad, & Allahbakhsh, 2012)

As publishing and sharing of the data was encouraged, the holders of diverse and

heterogeneous datasets needed a common way to integrate data coming from different

domains, fields and subfields. In order to achieve this, adopting common

conceptualization was considered the first step and these frameworks were referred to as

ontologies (N. Shadbolt, 2006). But this wasn’t the only necessary step to be made as

the data needed to be published and to address not only document linkage representation

but also the documents and the data to be linked in a global information space. In order

to provide common guidance for this, a set of best practices was made available under

the name of Linked Data (Linked Data community, n.d.).

2.1.1 Ontologies

In the context of the Semantic Web (and Computer Science in general), an ontology

is used to formally describe a domain of knowledge. It describes a set of concepts and

the relationship between them within that domain and it opens the possibility of

reasoning about the entities from a domain. In other words it provides a mechanism to

describe information about the objects and relationships between them in a specific

domain, using a defined vocabulary.

The necessity of accessing existing data sources, by more and more organizations,

using tools that on top of being flexible should be powerful and efficient was also

emphasised in previous research work (Poggi, et al., 2008). Research has been

conducted in this area on different aspects such as developing ontology languages

(Poggi, et al., 2008), extensions of existing ones (Krötzsch, Maier, Krisnadhi, & Hitzler,

2011) and optimizing ontological queries (Orsi & Andreas, 2011).

14

As presented in (Poggi, et al., 2008), linking the data source to an ontology through a

new ontology language promises to be a step forward towards what linked data tries to

deliver. But, in this case, the linkage is done using a mapping language for handling the

difference between the elements that represent the data source and the elements of the

ontology. These types of initiative do address aspects of representing ontologies.

However, when used for accessing a large amount of data they show that such

ontological access of that quantity of data would be highly costly from the

computational point of view. As a consequence, the presented work, fails to take into

consideration general availability aspects of ontologies.

The new direction in Linked Data, Semantic Web (and even in independently derived

ontologies) is towards the possibility of publishing, sharing and reusing ontologies. This

arises from the desire to enable and facilitate data interoperability. A complex survey

(d’Aquin & Noy, 2012) presents the status of the most representative available results

regarding the publishing, sharing and accessing of ontologies. As the survey states, it

appears that it is more cost-efficient for data providers to reuse available, well-

established and tested ontologies than to build from scratch an ontology used solely to

describe their data.

In order to be able to reuse ontologies (d’Aquin & Noy, 2012), these need to be

published and to be able to be accessed in a specific format. For this purpose, systems

for collecting ontologies and making them available have been increasingly developed

under different names as: ontology repository; ontology directory; ontology archive, or,

ontology library. Regardless the name, they serve the same purpose, to give users the

ability to find, reuse and publish ontologies.

The use of standard formats such as RDF makes possible the reuse of data and the

linkage of diverse data by guaranteeing the interoperability at the syntactic level.

Further, OWL (Web Ontology Language) has become the commonly adopted

language for representing ontologies on the Web. OWL is the latest standard in

ontology languages provided by World Wide Web Consortium (W3C) (W3C Semantic

Web, 2004) and its full description can be found in W3C Recommendations (W3C

Semantic Web, 2004). It is built on top of RDF and RDF Schema (RDFS), which it

15

extends and it is based on DAML (DARPA Agent Markup Language) and OIL

(Ontology Inference Layer). Components of an OWL Ontology are classes, individuals

and properties and it is primarily designed to describe and define classes.

OWL has three sublanguages as introduced in (W3C Semantic Web, 2004) and these

sublanguages have different expressiveness levels in order to address the diverse

requirements of their users. The sublanguages’ levels of expressiveness are constrained

by their computational completeness and they are presented in three variations as

follows: OWL Lite, OWL DL (supporting description logic business segment) and

OWL Full. From OWL Lite which offers restricted expressiveness but guaranteed

computational completeness to OWL Full in which the expressiveness is maximum but

the computational completeness is not guaranteed, they all are extensions of RDF with

Lite and DL being extensions of a restricted view of RDF. (W3C Semantic Web, 2004).

Looking at Figure 2.1, the newly adopted OWL 2, which is the successor of OWL,

has almost the same structure as its predecessor and the relationship between RDF-

Based and Direct Semantics (a direct model-theoretic semantics as described in (Motik,

2010) remains the same. (W3C OWL Working Group , 2012)

As mentioned in (W3C OWL Working Group , 2012), adding different levels of

semantics to an ontology, can be done either directly or indirectly. The ontology

structures can be amended directly and the resulting semantics are then compatible with

the SROIQ description logic, which is an extension of the underlying OWL-DL

description logic (Horrocks Ian, 2006). The indirect route is through the mapping of the

RDF graphs to the ontology structure where the meaning is directly assigned to the RDF

graphs. (W3C OWL Working Group , 2012)

Research has been conducted into different extensions to ontology languages. For

example (Krötzsch, Maier, Krisnadhi, & Hitzler, 2011) presents research work

conducted into the extension of a descriptive language (DL)-based ontology language.

Although only theoretical results have been presented in this case, it shows that this type

of extension, for this particular case, nominal schemas extension offers expressivity to

incorporate rule-based modelling into ontologies. This has been exemplified by the

16

integration of rule based languages such as the Semantic Web Rule Language (SWRL)

and the Rule Interchange Format (RIF) with OWL 2.

As acknowledged in (Orsi & Andreas, 2011), recent years have shown an increase of

Linked Data initiatives and the adoption of Semantic Web tools such as RDF, RDFS

and OWL. This has triggered research on techniques for data management of a

Semantic Web in order to be able to support large repositories of semantic data. In this

context these technologies should address both the querying and the efficient storage of

these repositories since the solutions available still often rely on relational database

systems to deliver efficiency.

Figure 2.1 The Structure of OWL 2 (W3C OWL Working Group , 2012)

Nowadays, although research is still conducted into ontologies, the perspective from

which this is addressed has shifted. The quantity of Linked Data research has overtaken

that on the improvement of ontology usage. Comparing Linked Data and ontology as

standalone concepts and/or approaches, both have benefits and drawbacks relative to

each other. Firstly, as discussed in (Studer, Simperl, & Kämpgen, 2011), ontologies are

required to have a good balance between effort and the added value that they provide.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged
version of the thesis can be viewed at the Lanchester Library, Coventry University.

17

On one hand they need to be lightweight in order to be more easily understood and

reused. But, on the other hand, the reuse of ontologies is still not fully embraced due to

the current designs not providing sufficient benefit for the effort required for their

exploitation. Additionally Linked Data follows the current direction for Open Data and

has proved that viral growth works well in some respects but they still are

heterogeneous, inconsistent and often not trustworthy. Consequently there are benefits

that can be foreseen from using ontologies in a Linked Data context and the other way

around but these will be discussed after a deeper introduction into Linked Data.

2.1.2 Resource Description Framework (RDF) and its Schema

 As introduced in (Klyne & Carroll, 2004): “The Resource Description Framework

(RDF) is a framework for representing information in the Web”.

RDF’s syntax is abstract and reflects a graph-based model. The development and

acceptance of RDF was mainly motivated by issues such as: Web metadata;

representation; machine-readable information; interoperability between applications,

and, automated processing of information available across the Web. One of RDF’s

expected characteristics is the representation of information in a flexible way with

minimum constraints. RDF provides a graph data model which retains data and

assertions over resources in a triplet form represented by subject– predicate– object and

it is the main way of representing Linked Data, as presented by the “Linked Data

principles” (Berners-Lee T. , 2006). In these triplets the subject, predicates and objects

are resources while subjects can be also blank nodes and object literals.

While RDF represents means to deliver statements about resources, the definition of

the classes of resources and their properties is done through the use of a set of reserved

words – RDF Schema (RDFS).

As mentioned in the previous sections , RDF became the commonest way to

represent and address Web ontologies and as well it is a building block of Linking Data.

All this makes RDF a very important way of describing data in the Semantic Web

approach. In fact RDF was designed to address Semantic Web data representation.

18

A consequence of this is that most research conducted and addressing Web

Ontologies, Linked Data and the Semantic Web are either adding to research into RDF

or using RDF for exemplifying the investigation. A collection of this work is presented

in (Bizer, Heath, & Berners-Lee, 2009) (d’Aquin & Noy, 2012) (Parundekar, Knoblock,

& Ambite, 2010) (Berners-Lee, et al., 2006) (Le, Duan, Kementsietsidis, Li, & Wang,

2011) (Motik, 2010) (Wenzel, 2011) (Kämpgen & Harth, 2011) (Etcheverry &

Vaisman, 2012) (Kämpgen, O’Riain, & Harth, 2012).

Figure 2.2 RDF triple and its RDF/XML serialization example

One downside of RDF could be considered to be the lack of RDF browsers that

would make the data easy to explore and analyse. Considering the increasing

importance of linked RDF data in the Semantic Web and overall in the Web of Data

context, making data quickly viewable was acknowledged as a highly desired

functionality (Berners-Lee, et al., 2006). Nonetheless, achieving this functionality and

generic browsing quality is, as concluded in (Berners-Lee, et al., 2006), highly

connected with the expressiveness of the comments included in provided ontologies as

these have the purpose of providing applications with the ability to offer views from

previously unknown domains.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

19

 When retrieving data from RDF the most frequently adopted query language is

SPARQL (a recursive acronym for SPARQL Protocol and RDF Query Language)

(W3C Working Group, 2008) which can query data which is either stored as RDF or

viewed as RDF and the result of the queries performed can be either structured as RDF

graphs or simple result sets.

2.2 Linked Data

A broad definition of Linked Data is provided by (Linked Data community, n.d.),

discussing a variety of interpretations of the term. The introduction emphasise the

linkage or connection of related data across the Web through some specific newly

designed methods.

A clearer introduction to Linked Data is perhaps done in (Bizer, Heath, & Berners-

Lee, 2009), mentioning simply that it refers to using the Web for linking data from

different sources and it is has a large level of applicability. It can be used by

organizations sharing data from different geographic locations and also for

heterogeneous systems within an organization. There is a well-defined set of rules, also

known as: “Linked Data principles” and they have the role of guiding the way in which

data should be published, in order to become part of a single data space. These

principles have been previously formulated in (Berners-Lee T. , 2006) and have since

been emphasised by all research work involving Linked Data and therefore are

presented below:

1. Use Uniform Resource Identifiers (URIs) as names for things

2. Use HyperText Transfer Protocol (HTTP) URI so that people can look up

those name

3. When someone looks up a URI, provide useful information, using the

standards (RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things

In consequence the two fundamental technologies on which Linked Data relies are

URI and HTTP but they are supplemented by RDF which is a technology that is critical

for the Web of Data. URI, or even IRI (Internationalized Resource Identifiers (Hyland,

Atemezing, & Villazón-Terrazas, 2014)), in addition to RDF, as supported by (Bizer,

20

Heath, & Berners-Lee, 2009), (Berners-Lee T. , 1998), provides a graph data model

which is generic enough to structure and link Linked Data. One of the main reasons for

this is the subject – predicate – object triples form in which data is encoded.

One major example of Linked Data principles put into practice is the Linked Open

Data project (OPEN GOVERNMENT PARTNERSHIP, 2011) which is a community

shared effort supported by W3C Semantic Web Education and Outreach Group (W3C

SWEO, n.d.) with the aim of identifying datasets available under open license and to

publish them on the Web after a conversion to RDF applying Linked Data principles

(Bizer, Heath, & Berners-Lee, 2009)

The openness of governments and public agencies for sharing their data was a

consequence of the Open Data initiative. At this time complex data is available under

open licences and covers information about geographical locations, scientific

publications, books, entertainment areas, bioinformatics, medicine, online communities,

statistical data, reviews, companies and many others. More detailed information about

publishing linked data is generally available and it is presented as well in (Bizer, Heath,

& Berners-Lee, 2009) alongside use and reuse of RDF Vocabularies and URIs. With all

this there are three main steps that are involved in the process and they are generally

followed. As presented in (Bizer, Heath, & Berners-Lee, 2009) these steps refer to:

assigning URIs to entities and the provision of the URIs over the HTTP protocol for

dereferencing into RDF representation; linking to other data sources on the Web; and,

the provision of metadata about published data. In this context, issues such as usage of

terms from well-known RDF vocabularies rather than describing new vocabularies

where possible or the common serialization format that it is advised and generally

accepted to use, RDF/XML represent an important discussion point, as also identified in

(Bizer, Heath, & Berners-Lee, 2009). Additional important discussion topics in the

Linked Data context and best practices are aspects on link generation, metadata or

publishing tools.

It is worth mentioning that, depending on the publisher, Linked Data can be

accompanied by metadata of different types which help the consumers of Linked Data

to choose if they want to trust specific data. For example, evidence based on:

information about data creation properties; the evidence for RDF links, and, the tracing

21

of the changes in links, together with technical metadata describing the means of access,

and, differentiable URIs, can be used by the consumer. Use of this can help decide if the

described data will be: taken as trustworthy; contain the needed information; and, be

usefully used. Presented in (Bizer, Heath, & Berners-Lee, 2009) can be found a large

variety of publishing tools and all of them support the dereferencing of URIs into RDF

descriptions. On top of that some may offer SPARQL querying access to datasets and

support the publication of RDF dumps.

Analysis of research on the state of Open Data (Braunschweig, Eberius, Thiele, &

Lehner, 2012) points out that a large amount of data, generated by different bodies, was

made available for general use at the (OPEN GOVERNMENT PARTNERSHIP, 2011)

initiatives which triggered the appearance of various Open Data platforms. This study

states that the openness of Open Data platforms depends a lot on the publishing format

since many of the available platforms lack of APIs and proper standards. The platforms

use proprietary formats or the non-machine-readable publishing of them makes their

data not really usable and open. This shows the lack of coordination under which Open

Data community is working at the moment. The Linked Data research programme

acknowledges the mentioned problems in the Open Data initiative, additionally

concluding that sole publishing of the data and offering it to the public for consumption

doesn’t have many advantages if it is hard to consume. Furthermore it notices that

properties such as standardization, machine readability or discoverability need to be

taken into account and the data should be published under a common publishing

guideline which the Linked Open Data is aiming to achieve.

As mentioned in (Parundekar, Knoblock, & Ambite, 2010), the linkage of data at the

ontologies level is another challenge for Linked Data. This work also proposes an

approach on linking ontologies and aligning them but problem remains regarding the

vocabulary and the designed use and access across multiple standalone linked data

resources.

In order to be able to address Linked Data and ontologies, another concept should be

understood, this is RDF. As mentioned by (Klyne & Carroll, 2004), Linked Data relies

on documents having their data in RDF format. This concept is briefly introduced in the

following subsection of this Chapter.

22

2.2.1 SPARQL – RDF(S) Querying language

SPARQL is the standard query language sustained and continuously improved by the

World Wide Web Consortium (W3C) for RDF (W3C Working Group, 2008) (W3C

Working Group, 2013). It is a declarative language, which uses Boolean expressions to

evaluate filter conditions, including not only the existence but also the non-existence of

a filtering pattern. The query evaluation mechanism is based on graph matching, which

performs best on a set of pattern selections. A query has a minimum of three clauses

that are used, firstly the PREFIX clause provides the namespaces to be used, the

SELECT clause provides the format of the result and the WHERE clause encapsulates

the constructed pattern to be used. Additional clauses as FROM, CONSTRUCT or

DISTINCT are used to provide identification of the namespace used, building a specific

graph result or retrieving unique results respectively.

A simple SPARQL query example, based on the RDF dataset example from section

2.1.2, which returns all resources that are of type foaf:Person, the persons URI and their

given name, is provided below:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT *

WHERE {

?person rdf:type foaf:Person .

?person foaf:givenName ?name .

}

SPARQL also provides aggregated functions that provide summarized information

from multiple triplets into one. As some of the same basic aggregations and sorting

functions are encountered in SQL, SPARQL also offers: COUNT, SUM, MAX, MIN

and AVG functions, as well as HAVING, FILTER, GROUP BY and ORDER BY

sorting operations with ASC or DESC sorting option.

23

Additional inner-outer query combination, or subqueries, are provided through the

WHERE clause, while UNION and MINUS operations combine, or compute the

difference between, the results of two subqueries.

With this set of functions, SPARQL provides the basis to develop OLAP

aggregations such as roll-up, drill-down, slice or dice when the data is modelled to

support these types of complex queries.

2.3 OLAP in conjunction with the Semantic Web

In order to be able to apply OLAP principles over Semantic Web data, the

fundamentals of OLAP needs to be understood and the challenges of applying them

over Semantic Web databases need to be identified. In this section the concepts and

definitions used to guide this work are presented. The challenges identified in this

sections are also based on the provided understanding of OLAP.

2.3.1 OLAP Fundamentals

In the context of business intelligence, a set of processes, architectures, systems and

technologies are used to process raw data into information. This information is then

used in the decision making processes. For a long time, one of the most used

mechanisms for structuring, aggregating, analysing, querying and exploiting the data in

this context has been online analytical processing (OLAP). OLAP terminology was

coined by (Codd, 1993) as describing the set of requirements needed to summarise,

consolidate, synthesize and view data accordingly to multiple dimensions.

Data warehousing is primarily used in organisational decision making as a “subject-

oriented, integrated, time varying, non-volatile collection of data” (Inmon, 2005). That

assumes that this is the place where various, historical, collections of data are integrated

for further analysis. As presented in (Chaudhuri & Dayal, 1997) (Agrawal, Gupta, &

Sarawagi, 1997), in order to be able to deliver complex analysis and visualisation, this

data is generally modelled in a multidimensional way. Querying this data and the

response time of ad hoc, complex queries across spread data requiring multiple joins

and aggregates is more important than transactional throughput. As such, the OLAP

24

approach is the appropiate one as it delivers the possibility to perform OLAP operations

as rollup, drill-down, slice and dice or pivot.

The primary function of data warehouses is to provide data from different sources,

cleansed and customised (Chaudhuri & Dayal, 1997), ready to be filtered, aggregated

and then even stored in smaller data stores or data marts. The approach to perform these

operations is provided through OLAP applications (Vassiliadis, 1998). But in order to

provide these functionalities, the data has to be stored in a multidimensional way. This

multidimensional way is represented by a Cube concept, where a Cube define a group

of data cells arranged by the dimensions of the data (OLAP Council, 1997). In view of

this definition, a dimension is defined as "a structural attribute of a cube that is a list of

members, all of which are of a similar type in the user's perception of the data" (OLAP

Council, 1997). Furthermore the aggregated data can be viewed inside a dimension

based on different levels of details. These levels denote the hierarchical structure of a

dimension based on levels. Furthermore the real measured values are represented by

measures, variables, facts or metrics and they can also be referred to in these terms

(Vassiliadis, 1998).

As presented in the previous paragraph, the main two aspects to be considered in the

OLAP systems are: dimensions and aggregations. Each dimension represents a

perspective over the data and each of these dimensions or perspectives are

complementary to each other. Aggregation levels are the other important aspect of

OLAP systems and they are a defining concept of OLAP. Based mainly on these two

aspects we can consider different operations within OLAP. On one hand the

multidimensional aspect supports “slicing” and “dicing” operations along multiple

dimensions. They also support “pivot” or “cross table” operations where the direction of

the analysis can be changed. On the other hand aggregations offer “drill down” and “roll

up” operations for a view including more or less details from the data as well as saving

analysis time through the pre-calculated aggregations.

As mentioned earlier, there are different representations of OLAP systems,

depending of the purpose that they need to serve. Basic representation models are the

Relational OLAP (ROLAP) and Multidimensional OLAP (MOLAP) as well as the

Hybrid OLAP (HOLAP). The main difference between MOLAP and ROLAP

25

architectures, as presented in (Chaudhuri & Dayal, 1997) and (Vassiliadis & Sellis,

1999) is where the multidimensionality of data is represented. In MOLAP architecture it

is provided a direct multidimensional view of the data through the usage of a

multidimensional storage engine. On the other hand, in a ROLAP architecture a

multidimensional interface to relational data is built. In this approach, usually, a

specialised middleware extends the traditional relational servers to support

multidimensional OLAP queries. There are identified pros and cons of this models, but

the benchmarks comparisons and evaluations of these is out of scope for this research

work.

One important aspect in regards to OLAP Systems is that alongside the benefits that

they offer, OLAP Systems have problems in modelling issues like: traceability, shortest

paths or social networks. These are, however, handled by graph structures and their

properties. The latter can address real-life application queries, which otherwise are not

properly supported by OLAP systems.

As per defined in (OLAP Council, 1997) the OLAP operators definitions are

extracted and then summarised below:

 A roll-up operation assumes a data summarization inside a given cube

alongside a given dimension such as a given Cube C, a dimension D ∈ C and

a dimension level lu ∈ D, the Roll-up(C,D, lu) will return a new cube C’

where measures are aggregated along D up to the level lu as presented in

below:

26

Figure 2.3 Traditional roll-up OLAP operator (Tutorial Point, n.d.)

 In the dice operation a new cube C’ is generated from a given cube C and a

set of constraints along its dimensions. The emerging cube has the same

schema as the initial cube C and the instances in C’ are also instances of C.

Through performing a dice operation a smaller cube is extracted from the

given cube by removing the other members from the dimension, without

changing the given level of the dimension.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged
version of the thesis can be viewed at the Lanchester Library, Coventry University.

7

Figure 2.4 Traditional dice OLAP Operator (Tutorial Point, n.d.)

 Slice operation receives a cube C, and a dimension D ∈ C and returns a sub

cube C’, with the same schema except the dimension D.

This operation it is also referred to as “two dimensional page” – selection or

“page display” (OLAP Council, 1997). Furthermore, the generated data from

a slice operation defines a “spreadsheet” – like data view.

 Drill-down is considered to be the reverse of roll-up operation and assumes

the disaggregation on a previously stored aggregation, navigating through the

hierarchical path of a given dimension.

Some materials have been removed from this thesis due to Third Party Copyright. The
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry
University.

Figure 2.6 Traditional drill-down OLAP operator (Tutorial Point, n.d.)

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

29

These are the definitions used in these work as reference for extrapolating the

standard operators to the needs of the graph structures of the Semantic Web.

2.3.2 Difficulty in providing OLAP systems over Semantic Web

Data

On-Line Analytical Processing (OLAP) has been undeniably proven a successful

approach to analysing large sets of data (Berlanga, et al., 2012). Furthermore OLAP is

an approach that can be built on top of different database models and respond to multi-

dimensional queries as long as they fall under some evaluation criteria regarding, but

not limited to, multidimensionality, accessibility, transparency, dimensions and

aggregation levels.

The characteristics and the relationship of the data of the Semantic Web can be

divided in two categories: informational (dimensions are coming from node attributes)

and topological (when dimensions are coming from node and edge attributes). Recently,

a considerable stream of works (Etcheverry & Vaisman, 2012) (Tennison & TSO, 2011)

(Chen, Yan, Zhu, Han, & Yu, 2008) (Qu, et al., 2011) (Berlanga, et al., 2012) (Chen,

Yan, Zhu, Han, & Yu, 2009) (Zhao, Li, Xin, & Han, 2011) (Etcheverry & Vaisman,

2012) was directed towards online analytical processing on informational network and

mostly focusing on the Semantic Web data. (Chen, Yan, Zhu, Han, & Yu, 2008) (Chen,

Yan, Zhu, Han, & Yu, 2009) (Zhao, Li, Xin, & Han, 2011) and (Qu, et al., 2011) take

the first steps towards introducing graphs in a multidimensional and level context by

proposing conceptual frameworks for graph data cubes and a data warehousing model

able to support graph OLAP queries. They both consider attribute aggregations and

structure summarization, where the authors in (Chen, Yan, Zhu, Han, & Yu, 2008)

classify their framework into topological and informational OLAP based on the

dimension. They proposed different aggregation functions to build summarisations for

each dimension and these cannot be mutually applied.

(Kämpgen & Harth, 2011) introduce linked data transformations for OLAP analysis

and in (Kämpgen, O’Riain, & Harth, 2012) they attempt to map statistical Linked Data

to an OLAP to conform to the RDF Data Cube Vocabulary (Tennison & TSO, 2011)

but they did not provide sufficient semantics required for the topological elements to

30

build parts of the multiple dimensions. (Etcheverry & Vaisman, 2012) introduces Open

Cubes which focus on the publication of multidimensional cubes on the Semantic Web

and they found the limitation of the RDF Data Cube (Tennison & TSO, 2011) which

can only address statistical data. Their work revolves around the informational OLAP’s

aggregations. As such they revise the RDF Data Cube (DC) by extending its capabilities

in order to support multidimensional levels, to build hierarchies and to implement

additional OLAP operators. The DC Vocabulary describes only the Slice operator.

(Beheshti, Benatallah, Motahari-Nezhad, & Allahbakhsh, 2012) continue the work

from (Chen, Yan, Zhu, Han, & Yu, 2008) (Chen, Yan, Zhu, Han, & Yu, 2009) (Zhao,

Li, Xin, & Han, 2011) (Qu, et al., 2011) and offers a graph data model for OLAP

informational networks. The approach supports the description of entities and

relationships between them and provides topological aggregations. They use three levels

of partitioning conditions to implement their proposed model as well as an adapted

query language extended from SPARQL in order to support necessary n-dimensional

computations. The aforementioned works do not only show the diversity of the

approaches towards online analytical processing of Semantic Web but also the rapid

change in the research direction.

Table 2.1 Comparing QB and QB4OLAP Vocabularies

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of
the thesis can be viewed at the Lanchester Library, Coventry University.

31

The RDF Data Cube Vocabulary (QB) (Tennison & TSO, 2011) focuses on the

adherence to Linked Data principles while publishing statistical data and metadata using

RDF. QB4OLAP (Etcheverry & Vaisman, 2012) introduces an extended vocabulary for

QB in order to support OLAP operators directly over RDF representations. As seen in

Table 2.1 Comparing QB and QB4OLAP Vocabularies QB4OLAP introduces levels, members

and aggregated functions in order to represent an OLAP dimension structure which is

not offered by QB vocabulary. With all these, QB4OLAP, however, does not support a

vocabulary to model online analytical processing on graphs introduced by (Chen, Yan,

Zhu, Han, & Yu, 2008). (Zhao, Li, Xin, & Han, 2011) introduced a data warehousing

model that supports OLAP queries on graph and the Graph Cube. None of these (Linked

Data community, n.d.) provides a semantic-driven framework considering both

informational and topological dimensions of graphs. (Beheshti, Benatallah, Motahari-

Nezhad, & Allahbakhsh, 2012) concentrate their approach on topological graphs

without considering informational graphs. This is an important factor as semantic data is

usually found in a mix of topological and informational graphs. Furthermore, in order to

address topological dimensions constraints for OLAP, they use partitioning and an

adapted SPARQL query to operate over the data. This approach hinders the published

datasets being reused or being queried by applications and users against other datasets

offering automated OLAP observations.

In order to reuse and extend existing implementations while extending OLAP

capabilities to both topological and informational dimensions, we used the vocabulary

in QB and QB4OLAP as a basis to form a new vocabulary. Furthermore we introduced

new elements and relationships able to model the topological OLAP. By describing

topological and informational elements in the same vocabulary and identifying the

relationships between entities we enable OLAP to operate over both aspects.

Research on bringing the pipe concept to the Semantic Web was introduced by

(Morbidoni, Polleres, Tummarello, & Le Phuoc, 2007), where their focus was to build

RDF-mashups by fetching RDF models on the Web and producing an accessible output.

While the Semantic Pipes operators can access different RDF graphs and produce

outputs to be consumed by other pipes, they do not offer means to access summary data

or support OLAP operations.

32

2.4 Summary

The brief introduction of the up-to-date research in the Semantic Web’s data

management shows that a new model is required to answer computational intensive

semantically queries but no existing OLAP system is capable of accessing, retrieving,

and reusing semantic OLAP databases efficiently. In order to address this challenge we

introduce a new model which can interpret a query based on the OLAP concept. The

model offers standard OLAP functionalities with a built-in Pipe concept by extending

existing OLAP systems with observations generated from individual RDF graphs or

other SW OLAP. This new model is equipped with facilities for composing multiple

queries to operate on multiple OLAP databases. It also provides an extended vocabulary

for modelling semantic data for OLAP operations.

The challenges presented in this chapter show the need of a specifically designed

research methology to address the research problem introduced in this work. This

methodology combines diferent methods and these are introduced in the following

chapter.

33

Chapter 3 – Methodology

34

As presented in Chapter 1.4 – Research Approaches, the research approach used in

this work combines methods from both qualitative and quantitative research

methodologies. Supporting literature for combining research methodologies (Cook &

Reichardt, 1979) (Jick, 1979) (Kaplan & Duchon, 1988) (Greene & Caracelli, 1997)

presents the advantages of such an approach, but an important factor is still represented

by the selection of appropriate methods and techniques of each particular methodology.

The following subsections introduce the research process and the research design.

During the research process, discussed in the following section, a set of methods and

techniques were used to achieve the necessary steps. In Figure 3.1 it can be seen how

these methods, specific to each methodology, are used as building blocks in the final

methodology of this research. The research approach used in this work is presented in

details in the next subsections by describing the research process and design.

3.1 Research Process

Following the guidelines introduced by (Kothari, 2004), the activities that describe

the research process can be summarized as follows:

 Formulating the research problem

 Extensive literature survey

 Development of working hypotheses

 Preparing the research design

 Determining sample design

 Collecting the data

 Execution of the project

 Analysis of data

 Hypothesis-testing

 Generalisations and interpretation

 Preparation of the report of the thesis

In this research work these activities were performed in parallel at different stages

and their sequence is summarized in Figure 3.1. Beside the Generalisations and

interpretation and the Preparation of the report of the thesis activities, all the other

activities are repeated in an iterative manner during the research progress. The reason

for this iterative repetition of the activities is due to the research design, where different

35

methodological technologies and methods describing the same research activity are

designed to be used in different stages of this research work.

Figure 3.1 Activities inside the research process

Furthermore the details of these activities can be seen, not only through the chapters

of this thesis, but also in the following subsection –3.2 Research Design– which

additionally introduces the methods and techniques used in this research.

3.2 Research Design

The conducted research work was initiated in the context of the DEHEMS (EU 7th

Framework Programme, 2008) project where one of the targets was understanding the

semantics behind the energy consumption of household across Europe.

The design of the overall sequence of steps followed in this research are presented in

this section, together with the methods used in each of them. Although the research was

initiated as part of the above presented European Project, the methodology was

designed based on the encountered problem that needed to be addressed, independent of

Preparing the

research design

Determining

sample design

Collecting the data

Execution of the

project
Analysis of data

Generalisations

and interpretation

Preparation of the

report of the thesis

Development of

working hypotheses

Formulating the

research problem

Extensive

literature survey

Hypothesis-testing

36

the carried out work in the project. Furthermore the research methodology designed for

this research work consists of 6 Steps and the European Project provides the initial data

collected in Step 1. The entire steps and the methods used are presented below:

Step 1: As mentioned by (Kaplan & Maxwell, 2005) qualitative research

methodologies’ methods can be successfully applied in relation to Computer

Information Systems. The methods used in this step from the qualitative research

methodologies are:

 Data collection

 Data observation

 Data analysis

These methods were used with the goal of constraining the research to the particular

research problem and to be able to derive the hypotheses and predictions based on the

observations of the data during the data collection phase and literature review. The

Semantic Web domain is rich in semantics, with a vast area of application, and needed

an in depth understanding of the context, the particularities of the data and the research

problem, in order to construct the research hypotheses.

The initial Data Collection method is reflecting the raw data (time series) collection,

in the context of the mentioned project, from around 250 houses across United

Kingdom and Bulgaria from the first cycle of data available. The sample dataset,

although very large, was observed to be within a specific domain of interest: energy

consumption of home appliances. The existing and ongoing development of an

ontology describing the entities producing the raw data was already limiting the

variation of the starting sample datasets and triggered the context of a literature review

on Semantic Web Technologies. Using the Data observation method, the characteristics

and particularities of the data were identified. As shown by (Patton, 1990), the context

of the research (described in section 1 of Chapter 1) together with the sample data

required a purposeful approach to research. The starting sample data comes from using

“Maximum Variation sampling” with the existing characteristics of the data, which

were outlined through the Data Analysis Method from the qualitative research approach.

The outcome of this step was the initial hypothesis formulated as:

37

 Hypothesis 1: ”OLAP operations over Semantic Web data structures require a

specific vocabulary for modelling the data and adapted operators, in order to gain the

benefits of performing OLAP operations over semantic web databases”

Figure 3.2 Research methodology overview

Based on the observations from Step 1 a specific methodology was designed as

presented in Figure 3.2 Research methodology overview, in which the next Steps of the

research were designed. By using these methods described in Step 1, it was identified

that a system needs to be build and to set the context in which this system needed to be

implemented and developed, as well as gain a better understanding to be used in

explaining the events, processes and outcomes of particular cases and further to

extrapolate from them through quantitative research methods.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

38

It was identified that in the next steps it is needed to extract the research questions

through qualitative methods and quantitative research methods need to be used to

investigate these questions. Combining a quasi-experimental quantitative research

design (Gall, Borg, & Gall, 1996) with models specific to scientific research in

computer sciences (Elio, et al., 2011), quantitative data needed also to be introduced in

order to be able to test the generated hypotheses but also to remain objective in the

design and implementation of the needed solution.

Starting with Step 2 the following identified methods were introduced:

 Model method to define the abstract model of the entire system (containing a

vocabulary and operators’ general overview and connection)

 Build method to build the components of the abstract model. Techniques such

as system design, components reuse, adequate programming languages and

continuous testing were used.

 Experimental method is used on two levels, on one hand to identify the

questions that the system is expected to answer in the evaluation phase and on

the other hand to help answering this during evaluation.

The introduced methods and techniques alongside intense literature review are used

in parallel in different stages of the research and characterize the research design.

The research design was developed guided by the research process’ activities and the

aims and objectives of this research outlined by the outcome work from Step 1. Based

on the provided hypothesis it was already known that the research need to focus on two

main points: a vocabulary and a set of OLAP operators for Semantic Web data. This

influenced the design of the research by defining the context of the research. Starting

with this point, the design was independent of the presented European Project, and was

designed as following:

 Step 2:

 The hypothesis formulated in Step 1 needs to be analysed and improved;

 In order to improve the hypothesis, further data analysis and data observation

needs to be carried on;

39

 The niche literature review should provide the required knowledge of the

state of the art technologies and research approaches available in the defined

domain;

 Based on a model method, the characteristics of a system able to support the

improved hypothesis in relation with the findings from the niche literature

review will be defined;

Step 3:

 New relevant data sets from the Semantic Web needs to be identified:

 Based on the output model from Step 2 and further performed niche

literature review, the build method needs to be used in order to identify if

any available and reusable components exist, which programming languages

are needed, design the system architecture and define the testing methods for

the identified components;

In this Step will also be identified if other ontologies or vocabularies exist on

the defined domain of knowledge and if not which methodology should be

applied to design such a vocabulary.

 Using the experimental method, the set of questions that need to be answered

in the evaluation phase are identified.

Step 4:

The two components of the system need to be implemented and continuously

adjusted using three methods:

 Build method for implementing and adjusting the components through

continuous testing

 Qualitative method for data observation over the validity of the vocabulary

and the results of the operators

40

 Experimental method in order to continuously evaluate the vocabulary

against the set of questions and the operators against the identified

requirements

Step 5:

 The two components are part of a modelled system, as such the system needs

now to be evaluated as a whole against the predefined evaluation questions

and the identified evaluation benchmarks;

 The outcome of the previous steps as well as of the final evaluation need to

be analysed and interpreted, as such the contextual and narrative analysis

approach (Kaplan & Maxwell, 2005) needs to be used at this step.

 The experiment is designed to evaluate the findings and the components that

are built in the previous steps. The evaluation design and outcomes have a

dedicated chapter, Chapter 7 – Evaluation, and in section Evaluation Design

and Process it is presented the methodology used in designing the evaluation

as presented in Table 7.1 Key four evaluation requirements and their

addressability. The evaluation design considers the evaluation requirements

introduced for domain related benchmarks (Grey, 1993)

Step 6:

 Consist of the actual preparation of the performed work and results in a

written form.

Since different technologies and methods were used as part of the same process

activity, an activities-methodology’s methods mapping matrix is presented in Table 3.1.

As presented in this table, each activity is composed from one or more methods or

techniques and can be repeated across different steps until the final outcome is achieved.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

41

Table 3.1 Research process and design mapping

3.3 Steps and methods of the research methodology

It is presented in the previous section how the methodology of this research work is

designed and each needed method identified for the presented steps. In the following

paragraphs it introduced the outcomes of each step and how this influenced how the

research work it is performed in the next steps. Additionally, the identified evaluation

criteria are presented accordingly to each step.

Step 1 outcomes:

 it was identified that the relevant domain of the Semantic Web research is the

usage of OLAP aggregation on semantic data.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

42

 The initial hypothesis is formulated: Hypothesis 1: ”OLAP operations over

Semantic Web data structures requires a specific vocabulary for modelling

the data and adapted operators, in order to gain the benefits of performing

OLAP operations over semantic web databases”

 Households profiles and energy consumption data is the first collected data

Repercussions on next steps: It identifies the need of a vocabulary and a set of

operators which influences the step 4 of the research design

Step 2 outcomes:

 The hypothesis previously formulated can be adjusted based on additional

literature review is conducted alongside data observation and further analysis.

Hypothesis 2: ”OLAP operations over multidimensional Semantic Web

databases require a specialized vocabulary for modelling both topological

and informational data and adapted operators, none of which is currently

fully available”

 An initial model is identified. This is presented in detail in Chapter 4 in

Conceptual framework and Architecture Overview sections. Although in

Chapter 4 it is presented the final model, this was refined throughout the

other steps of the conducted research.

 The research context and data observation is provided by the two use cases

presented in detail in Chapter 4 – Architectural Overview and Case Studies

Repercussions on next steps: These outcomes however, have no impact on the next

steps presented in the research design.

Step 3 outcomes:

 A set of queries that need to be answered in the evaluation phase are now

available as:

Query 1: Monthly energy consumption of a dataset (cube) containing daily

43

consumption measurements.

In this query, the result is the monthly energy consumption is obtained by

aggregating the values of “Day” members in that month. The measure remains the

same, but the value of the new observation’s measures are the SUM of the values of

the daily measures. If there are other dimensions in conjunction with which the

measure is defined, this will remain on the same level. For example, when both

“location” and “time” dimensions are in the observations, the “city” level in

“location” dimension will not be removed or altered when aggregating on a “time”

dimension level.

Query 2: Average daily consumption based on households’ income ranges.

This query needs to navigate through a given cube from the “Household” to the

“Income” dimension. The outcome of this query lists all the Income members, and

each member’s average energy consumption is calculated based on the households

linked to it. All other dimensions remain on the same level of detail, as this query

shares the same principle as Query 1.

Query 3: Count the number of days in a month that have a recorded energy

consumption.

Given a set of daily consumption observation, per city, per household, this query

will aggregate in the “Time” dimension from “Day” level to “Month” level. The

measure’s value is obtained by counting the number of days for each household and

city that has a value.

Query 4: Retrieve the days that had a recorded energy consumption, and the

values, used to aggregate the monthly energy consumption.

This query is the reverse operation of Query 1. The daily energy consumption is

retrieved only for the months specified in the input dataset.

Query 5: From the daily average energy consumption per Income, retrieve the

households and their daily energy consumption for the recorded Income ranges.

The target of the query is to retrieve all the Household members in an Income

range from the input dataset. This is an aggregation operation from one topological

dimension to another topological dimension.

Query 6: Extract the February month from the monthly energy consumption of the

44

given dataset (cube).

When given a dataset with energy consumption on the “Month” level in the

“Time” dimension, this query should return only the observations over the “February”

member. If there are multiple observations containing this member in conjunction

with other dimension’s members, all of these observations should be returned.

Query 7: Extract a specific household’s monthly consumption from a give dataset.

This query is the same as Query 6 with the difference that the member in this case

is a specific household, belonging directly to a topological dimension.

Query 8: Retrieve all consumption observations for Birmingham city, for the

months of February and March.

The query will retrieve only those observations containing specific members. Only

the required members and their measure will be displayed. The above mentioned

members belong to all levels in informational dimensions.

Query 9: Retrieve all monthly consumption observations for a specific household.

This query would return all the months containing a measure and its value, for a

given household member. This member belongs to a topological dimension. Only the

specified member and its energy consumption measurements would be retrieved.

Query 10: Retrieve all consumption observations for Birmingham city, for Months

February and March for two specific household.

This query requires an aggregation along specified members from both

informational and topological dimensions. As in the previous two queries, only the

members specified and their measure will be provided.

Table 3.2 Queries' detailed description and expected outcome

 A set of requirements for the vocabulary and the operators is formulated:

o Vocabulary should model both topological dimensions in

informational data, covering all Semantic Web data structure, in

regards to dimensions, levels and measures representation, which are

required in order to perform OLAP analysis;

o The operators should be able to provide materialised and visualisation

outputs in regards to all 4 operations: roll-up, slice, dice and drill-

45

down. The operators should be able to perform over informational and

topological data;

 Additionally it is identified in this step that there are ontologies available that

could be considered as vocabulary to model Semantic Web data for OLAP.

Repercussions on next steps: In Step 4 the identified ontologies need to be

evaluated and the need of considering the ontology design methodology in the build

method applied.

Step 4 outcomes:

 The operators’ structure defined as presented in Architecture of Federated

OLAP Operators (F_Operators), where the federation approach is designed as

semantic federation, by modelling the data using the same vocabulary.

 During the evaluation of the identified ontologies, came out that a viable

candidate as a basis for the needed vocabulary was available. Partially

applying the ontology design methodology as presented in (Uschold &

Gruninger, 1996) and (Noy & Mcguinness, 2001).

Since the needed vocabulary is based on a knowledge-level modelling

framework, addressing the building of an OWL ontology adhering to the

Semantic Web standards, the methodology chosen to build and evaluate the

vocabulary built was the one also sustained by Protégé (Noy & Mcguinness,

2001). Details on standards in ontologies for the Semantic Web are presented

in Chapter 2 – Section 2.1.1 Ontologies.

This methodology and ontology development guideline was applied to

evaluate the existing vocabularies, to extend them with the required

knowledge representation and evaluate the final vocabulary. As presented in

Chapter 5 – IGOLAP Vocabulary Development.

The methodology steps applied, as described in detail in Chapter 5 –

IGOLAP Vocabulary Development, are:

46

1. Definition of the domain and scope of the vocabulary/ontology

(Introduction)

2. Consideration of reusing existing ontologies (Identification of a base

vocabulary)

3. Enumeration of important terms in the ontology (Identification of the

limitations of the base vocabulary)

4. Definition of classes and class hierarchy (IGOLAP Vocabulary and

possible OLAP Operations)

5. Definition of properties of classes (IGOLAP Vocabulary and possible

OLAP Operations)

6. Definition of the classes types (IGOLAP Vocabulary and possible OLAP

Operations)

The required ontology should support the modelling of all semantic web graph

structure for the OLAP analysis.

Repercussions on next steps: No impact on Step 5, which was performed fully as

presented in Research Design section.

Step 5 outcomes:

 The full evaluation as presented in Chapter 7 – Evaluation

 The contextualisation and interpretation of the conducted work and

evaluation as presented in Chapter 8 – Conclusion and future work

Step 6 outcomes:

 The written outcome in the structure to the presented thesis.

3.4 Summary

The methodological design used in this research was provided in this chapter. This

was achieved by introducing the Research Process and the Research Design used in this

research work. The Research Process provides a well-defined set of activities that were

followed in this work, while the Research Design provides specific methods and

techniques from different research methodologies, which were combined over a set of

six steps.

The content of all these steps is discussed in more details across the chapters of this

thesis. The entire literature review was concentrated in Chapter 2, the identification of

the research questions and the evaluation questions are presented in Chapter 1,

47

subsections 1.2 and subsection 1.3 as well as in the evaluation chapter –Chapter 7. The

model of the system is presented in the next chapter – Chapter 4, while the entire Step 4

from the research design can be seen in Chapter 5 and 6. Chapter 7 and 8 provides the

content identified in Step 5 of the research design, while Step 6 represents this entire

thesis delivery.

48

Chapter 4 – Architectural Overview and

Case Studies

49

4.1 Introduction

In this research work two case studies were analysed:

 Case Study I: The energy management for domestic electrical appliances

 Case Study II: The household’s energy consumption profile with market

value composition

 The first case study provided the initial research context and data required to extract

the first characteristics and observations in order create the prototype of the system

delivered in this research work. This is derived from the time series structure of the data

collected from the DEHEMS project. Additional to this data was also collected

contextual information, providing household’s semantic information, as for example

incoms, type of appliances used (make and models), number of inhabitants and ages,

etc. The second case study is an extension of the first one, providing a better

understanding of the applicability of the research work on generalised real world use

case scenarios. This case, is relevant to the contextual information of the households,

like address, general state of the propriety based on the value on the market etc.

Furthermore, the second case study validated the hypothesis made on the first case

study and provided additional information in order to finalize and validate the work in

this research.

4.1.1 Case Study I: Energy Management for Domestic Electrical

Appliances

As part of the Digital Environment Home Management System (DEHEMS) Project

(EU 7th Framework Programme, 2008) it was a challenge to provide the users with

effective and focused advice on their energy consumption in order to improve their

consumption. In the collection of work related to this project (Chao, et al., 2010) (Shah,

Chao, Zlamaniec, & Matei, 2011) (Chao, et al., 2011) (Chao, Shah, Farmer, & Matei,

2012) a number of issues are discussed. The household and energy consumption profiles

of household appliances were collected. The large volume of generated data from

energy consumption’ monitoring sensors were summarised into meaningful information

for an intelligent system to reason with. Part of this work materialised into an approach

to build an ontology for the home energy management domain. This ontology,

50

compatible with Suggested Upper Merged Ontology (ArticulateSoftware, n.d.) (Shah,

Chao, Zlamaniec, & Matei, 2011), identified and classified the attributes that contribute

to the overall appliances’ energy consumption.

Figure 4.1 Identified topological and informational dimensions in collected data

As it is presented in Figure 4.1, in the process of semantic modelling of the data

identified the need for representing both the topological and the informational

dimensions of the data. Additionally these dimensions are not independent of each other

but highly interlinked. The two types of dimensions, as well as the full description of

their attributes are introduced in the following sections of this chapter and detailed in

Chapter 5 – IGOLAP Vocabulary Development.

4.1.2 Case Study II: Household’s energy consumption profile

with market value composition

The second case study looks into the situations in which it is beneficial and desirable

that multiple databases can be accessed simultaneously, by complex queries, in order to

provide adequate answers. In this subsection such an example is introduced in which

consideration is given to two different databases with complementary information,

which, if they are able to communicate, can provide the consumers with complete and

valuable information.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

51

One large Semantic Web OLAP database, DB1, contains detailed energy

consumption information of households from different countries as well as household

attributes such as household income, accommodation size/layout (number of rooms),

number of inhabitants, appliances and so on. A separate Semantic OLAP database,

DB2, contains information about the historical value on the market of specific

properties and their layouts.

Energy consumption for households can be viewed in conjunction with different

factors such as: number of inhabitants; household income; house size, or, house value,

in order to analyse correlations with energy consumption. The house energy efficiency

profile can be a factor in the house acquisition or renting process, so it is desirable to

have access to composed information. For example, a natural language version of a

query relating to average energy consumption for houses within a selling price range

and having a set of other characteristics may be issued by the users as follows:

Find the yearly average electricity consumption in Bristol for households with

detached – terrace houses, with 4 occupants and an average selling price between

350000 and 450000 £ (meaning both actual and historical)

This new aggregation can be materialized and stored as a new observation in the

queried OLAP or in an independent OLAP structure. From the example, the following

features are essential in order to satisfy the requests from users:

 Perform OLAP operations over the data

 Access to both databases without changing their structure but being able to

generate the results

 Both databases have an OLAP structure in which basic OLAP operations

such as AVG, SUM, COUNT can be applied as multi-level and multi-

dimensionally

 Build OLAP observations in a common format

 Be able to perform data merging for building the response or to materialise it

in a new database

52

In order to offer a solution for the above example, we need to provide a way in which

the query is able to distribute to multiple databases, perform OLAP over each database

and compose the results retrieved from them as presented in Figure 4.2 below.

Figure 4.2 Integrated system for collective query of semantic OLAP Databases

4.2 Conceptual framework

A key factor in successfully performing OLAP over Semantic Web data is to

acknowledge the characteristics and the relationship of data. As previously introduced

in Chapter 2, the two categories are: informational (dimensions are coming from node

attributes) and topological (when dimensions are coming from node and edge

attributes). In the case of informational data, which is also represented as a three graph,

each node represents a level in a given dimension as time. On the other hand,

topological data focuses on linking information from two different nodes (identified as

dimensions) based on a connecting edge’s attributes, describing a semantically richer

connection of the data. Such an example is described in the case study through

Household and Income dimension, where the connecting edge (property) is describing

that a household hasA income.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

53

Some databases may be structured using one type, (for example DB2 introduced in

the previous section) while others may have a mix of structures with the information

offered from different dimensions (for example DB1 from the same section).An

example of a mix structure was introduced in Case Study I above and visualized in

Figure 4.2.

A middleware system is needed to perform collective OLAP operations over multiple

databases to store the newly generated views in a multidimensional database as well as

having an expressive vocabulary to model both topological and informational structure.

Even though multiple semantic OLAP databases are accessible, composing retrieved

data from them is a complex process. A pipe architectural style can be designed to

handle RDF and summary data that can be fed into OLAP functions to support decision

making.

This work asserts that the key elements for composing such complex results are not

yet fully available. Some related work, introduced in Chapter 2, has been proposed but

each approach has limitations.

In order to provide OLAP functionality over multiple semantic databases, the work

presented in this thesis provides a three level contribution:

 An integrated system for collective querying over multiple multidimensional

databases

 An extended vocabulary for multidimensional data representation

 A materialization of semantic OLAP database capability

The conceptual framework, presented in Figure 4.3 , includes multiple layers in order

to address the issues identified and discussed in the previous chapters.

On the bottom layer we have the raw data from relational databases and web data in

different forms. In the case of data stored in relational databases, the layer on top of it

provides multidimensional modelling of data. For the web data, there is an intermediate

layer between raw data and data modelling for OLAP. This layer is described by linked

data, which is a specific type of semantic web data. This layer can also be an

intermediate layer between data in relational databases and the modelling layer, when

54

data is transformed from relational databases to linked data (W3C Working Group,

2012) before further OLAP analysis.

Figure 4.3 Conceptual Framework

Regarding the multidimensional modelling layer, the data is transformed into cubes

for multidimensional models. It contains a series of different vocabularies which trigger

different semantic OLAP databases, so this layer can have different representations of

data for OLAP. In this work an extended representation is introduced with an enhanced

vocabulary and functionalities, which are lacking in other existing vocabularies on the

same support layer. The introduced vocabulary and the functionalities are briefly

introduced in the next subchapters and fully described in Chapter 5 – IGOLAP

Vocabulary Development, respectively Chapter 6 – Materialisation of Integrated OLAP

Operators for SW Databases.

The introduced framework is a multiple layer Semantic OLAP database which is able

to handle data in dimensions, levels and measures in order to respond to OLAP related

queries.

The top layer in the framework provides users with interfaces to specify queries and

visualise the retrieved information in relation to business intelligence or decision

making. The other layers provide necessary mechanisms and functions to transform the

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

55

requests into executable syntax. The framework also increases interoperability among

different semantic OLAP databases. So a query can be executed to: locate datasets;

retrieve data; summarise information, and, compose semantics from various semantic

OLAP databases. In order to support this functionality a pipe architecture and

distributed query processing is introduced.

4.3 Architecture Overview

Figure 4.4 Components diagram, shows the components and steps needed to be

included in order to provide a complete middleware system, able to offer to the user a

set of OLAP functionalities over multiple Semantic Web databases.

Considering the diverse input data, as presented in the Conceptual Framework, there

is a need for data transformations. Based on the format of the input data, the set of

transformations differ. But in order to provide access over multiple databases, the

vocabulary used to model and transform the input data in the required – ready to store –

output data should be the same. The output data will have the same format: RDF,

regardless of the chosen RDF serializations available.

In case the input data is already in RDF format, the data transformation process will

include only the necessary mapping and data modelling based on the provided

vocabulary.

There exist different implementations and systems available for providing data

transformation into RDF data. In case of XML data there is the possibility of using Jena

(The Apache Software Foundation, 2011) based implementations as well as other

commercial tools. On the other hand, for relational datasets, a good solution for data

transformation can be provided using mappings with Relational database (RDB) to RDF

Mapping Language (R2RML) (W3C Working Group, 2012) and a selected vocabulary.

56

Figure 4.4 Components diagram

In regards to the storage of the RDF output data, there are also a variety of solutions

available, both open source and commercial (Rohloff, Dean, Emmons, Ryder, &

Sumner, 2007) (Voigt, Mitschick, & Schulz, 2012). All of these solutions are able to

store graph data in RDF format and what is important, they provide a SPARQL

endpoint for querying the published semantic web data. Although these solutions

provide storage and querying means, they do not provide a modelling vocabulary which

is a highly important component in performing OLAP operations over the data.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of
the thesis can be viewed at the Lanchester Library, Coventry University.

57

Figure 4.5 Components diagram with highlighted mandatory components

In conclusion, the focus in this work is to provide the necessary vocabulary to model

the semantic databases’ datasets and the needed integrated OLAP operators that can be

integrated in different user interfaces and provide the user with OLAP functionalities

over Semantic Web Databases. The additional components can be choose at the

discretion, resources and needs of any party deciding to implement this middleware

solution as presented in Figure 4.5. – Components Diagram with highlighted necessary

components.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

58

Figure 4.6 shows that using the same extended vocabulary to model the data can

provide the possible use of integrated OLAP operators to retrieve composed data from

multiple databases.

Figure 4.6 Data flow in a multiple databases scenario

As will be presented in the following subsection, the introduced operators are

designed not only to retrieve and compose the data from multiple semantic web

databases but also to materialize the result in an additional dataset and store it in a

provided semantic database.

As the main components in this middle layer, and the ones on which this work is

focusing, are the vocabulary and the integrated OLAP operators. They are briefly

introduced in the following two subsections and fully described in two dedicated

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

59

chapters, Chapter 5 – IGOLAP Vocabulary Development and Chapter 6 – Materialisation of

Integrated OLAP Operators for SW Databases.

4.3.1 IGOLAP Vocabulary

As mentioned in Chapter 2 – Research Background, there is existing work regarding

a vocabulary for multidimensional data modelling for OLAP support. In this work it

was considered that the QB vocabulary does not have sufficient capabilities to handle

OLAP, but it has the adequate structure. Additionally the QB4O vocabulary is an

extended version of the QB vocabulary, offering more functionality to support OLAP.

Nevertheless, both vocabulary sets have missing facilities in relation to modelling two

groups of data: Informational (where dimensions are coming from node attributes) and

Topological (where dimensions are coming from node and edge attributes). The two

groups of data are described more into details in the next Chapter – IGOLAP

Vocabulary development. Their vocabulary needs to be extended and altered in order to

provide full OLAP capabilities. Since an informational graph is modelled by

dimensions and hierarchical levels and the topological graph is modelled in dimensions,

members and defined relationships, the type of aggregations over their measures are

very different. On the informational graphs the standard measure aggregations such as

SUM, AVG, and COUNT are used to summarise the data, but the topological graphs

require relationship type of aggregations. To design a unified semantic OLAP to handle

both graphs is not trivial.

Considering that the dimensions in the topological structure do not have levels but

direct members, two different classes were introduced to model it:

igolap:InfoDimension and igolap:TopoDimension as subclasses of the

qb:DimensionProperty class. Additionally the property that connects these two classes

to their superclass: igolap:dimensionType was also introduced. The new vocabulary is

presented in Figure 4.7 and explained in detail in Chapter 5.

60

Figure 4.7 IGOLAP vocabulary

The main required changes and additions are summarized below:

 The existing QB4OLAP had to be altered in order to handle the topological

dimension. As such, the modified member concepts which has new

connecting property with the introduced topological dimension was

introduced.

 Alterations regarding the attribute properties have now to reflect both

topological and informational dimension attributes. The informational

dimension has levels which have members and the topological dimension has

direct members. In order for the property qb4o:hasAttribute to apply to both

topological and informational dimension, it has to connect the

igolap:Member to qb:AttributeProperty.

 As the topological dimensions can be connected to each other through a

topological property and each member of the dimension holds the property, a

new property was needed in order to define those connections.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version
of the thesis can be viewed at the Lanchester Library, Coventry University.

61

 For support in the drill-down operation, an inverse function for the

parentLevel property was introduced in the presented vocabulary.

In this subchapter the Vocabulary is briefly introduced while in Chapter 5 it will be

fully described and compared with the base QB4O and QB vocabularies.

4.3.2 Integrated OLAP Operators

The proposed framework is based on a set of specialized OLAP operators (Federated

OLAP operators) that can operate over multiple semantic OLAP databases, merge the

outputs into a common format and translate them according to the desired output which

can be materialized or viewed.

The Federated OLAP operators need to interpret the requests according to a specific

OLAP database in order to retrieve the data and convert it to a requested output format.

The Federated OLAP operators represent an extension of the classic OLAP operations

as: roll-up, dice, drill down or slice.

All the operators used in this research work are based on the traditional description

formulated and agreed upon in many research approaches (Agrawal, Gupta, &

Sarawagi, 1997) (Chaudhuri & Dayal, 1997) (OLAP Council, 1997).

The extension of the SPARQL querying language with federation capability is out of

the scope of this research. There are other stream of works focusing on this aspect

including (Buil-Aranda, Arenas, & Corcho, 2011), which focuses on the optimization

techniques for querying federations. In this approach the federation targets the metadata

representation aspect, and the possibility of such designed operators to access multiple

semantic databases modelled using this vocabulary.

The dimension operations that are used in this approach are defined as F_Operators.

These include the standard dimension operators as F_ROLL_UP, F_DICE, F_SLICE

and F_DRILL. They are derived from the standard OLAP dimension operations, but

they are adapted to have the necessary functions to access multiple semantic databases.

The standard OLAP measure operations are used as restriction functions in the

dimension operations that include AVG for retrieving the arithmetical mean of a set of

62

numerical values, SUM for the sum of a set of numerical values, COUNT for the

cardinality of a set of elements and MIN and MAX for the minimum and maximum

element of a set of elements.

Exemplification of the F_OPERATORS through F_ROLL_UP

The F_ROLL_UP operator is briefly introduced in the next paragraphs, with a

complete description being available in Chapter 6.

The F_ROLL_UP operator includes a set of processes. For the retrieval stage, the

operator identifies the targeted databases, builds the SELECT operators for each

database with given constraints and gathers information from multiple databases by

applying the built-in operators to specific datasets. In the building stage, the

CONSTRUCT operator is initiated to compose the response from the retrieved data.

When the datasets retrieved by each SELECT operator are in the same format, the

CONSTRUCT operator is applied directly, but if the datasets have different formats,

data normalisation is performed before generating the output. In order to handle the data

exchange, the F_ROLL_UP operator is described as a pipe architecture containing a

CONSTRUCT operator and a number of SELECT operators. If data normalisation is

required before the output is generated the third operator, the MERGE operator, is

included in the F_ROLL_UP pipe construction. The MERGE operator is used to

structure the partial RDF triple results from the SELECT operators using the same

vocabulary for the output construction. Even though the MERGE concept has some

similarity with the one in the semantic web pipes, the MERGE from semantic web pipes

is a simple join of the CONSTRUCT and/or SELECT operators output without

normalisation capabilities and facilities to support OLAP. In the F_Operators case, the

MERGE operator is merging the different databases by merging the namespaces

prefixes, as presented in Chapter 6, and also in Figure 6.4 Sequence diagram of

F_Operators.

Since F_OPERATOR’s are designed to access one or more than one OLAP database,

they require a set of arguments in order to interpret the requests. Based on the

arguments received, F_ROLL_UP distinguish between:

 single or multiple database access;

63

 formatted or unformatted output;

 request for view or request for materialization of the output, and so on.

This means that the parameters can be divided into two main categories: the

mandatory and the optional ones (e.g. materialised or immaterialised output represents

an optional parameter). The mandatory parameters that need to be passed on are:

location of accessed Semantic Web OLAP implementation(s) (URIs or IRIs),

dimensions (and dimension level for F_ROLL_UP) and some others.

4.4 Summary

This chapter introduced the two case studies that provided the context and the data

for this research. The use cases contain time series data enhanced by semantics which is

a challenge for the traditional RDMS systems to model without missing out existing

semantic or semantical information that could be added later. While in the energy

consumption use case was illustrated that there is already available data that is rich in

semantics which can be lost in the case of modelling for relational databases, the second

use case shows how data could be enriched at any point of time with additional

information coming from additional databases. But in order to be able to aggregate and

to retrieve contextual insights from these additional resources, this information should

be modelled using also a multidimensional modelling vocabulary.

Further this chapter contains the conceptual framework as well as the architectural

overview of the work described in this thesis, providing the context to understand the

importance of the contribution of this research work. The main to components that this

thesis focuses on are briefly introduced in this chapter, giving the possibility to the

reader to investigate in detail the implementation and construction of these components

in the two chapters to follow.

64

Chapter 5 – IGOLAP Vocabulary

Development

65

5.1 Introduction

With the increasing volume of data available, integration of data from disparate data

sources is becoming harder to achieve, especially in the case of data from the semantic

web. Increasingly available repositories with semantic data provide the content for

further analyses for better decision making support. But, in order to provide the required

reports and data analysis, a certain type of data warehousing over semantic web data

needs to be provided.

In the previous chapters the existence of a set of vocabularies for publishing RDF

statistical data was presented. From this set, two vocabularies provide a good basis for

modelling semantic web data for OLAP: Data Cube Vocabulary (Tennison & TSO,

2011)(denoted QB) and QB4OLAP (Etcheverry & Vaisman, 2012), with the latter being

an extension of the first. Nevertheless, while QB follows statistical data models and

QB4OLAP follows the classic multidimensional models for OLAP, neither consider the

variety of characteristics of the two categories of data by which semantic web data can

be classified.

The following subsections introduce why there is a need to extend the available

vocabularies and describe the difference between the two classifications of semantic

web data used in this research work, namely, informational and topological data. As it

was mentioned in the previous chapter, the current chapter also explains the

development and the additions in the IGOLAP vocabulary in a detailed way.

5.2 Identification of a base vocabulary

The first concept used in performing OLAP is the capability to model data multi-

dimensionally – into data cubes. Additionally, in the semantic web context, it is

particularly important to be able to publish these data, which is commonly done through

RDF. In this context and considering the research conducted and depicted in Chapter 2

– Research Background, the best candidate was considered to be QB4OLAP, which is

itself an extension of the RDF data cube vocabulary (QB). On one hand the QB

vocabulary does not have sufficient capabilities to handle OLAP, but it has adequate

structure. On the other hand, although QB4OLAP vocabulary is an extended version of

66

QB, offering more functionality to support OLAP it only addresses the informational

type of data.

Although there is other existing work that was considered and presented in Chapter

2, those streams of work do not provide a sufficiently powerful vocabulary. As shown

in that research background chapter, the research work identified to model

multidimensional semantic data is addressing only informational or topological

semantic data, but not both; and most available online semantic web data contains both.

The concepts of informational and topological data are explained in the following

section of this chapter, while identifying the additional limitations of the base

vocabulary identified in this section.

5.2.1 RDF data cube vocabulary and QB4OLAP overview

The RDF data cube vocabulary (QB) covers the initial set of requirements, presented

previously, for statistical data and metadata which is published on the web. An

overview of the QB vocabulary is presented in Figure 5.1., where the RDF classes and

properties with which the vocabulary operates can be identified. The representation uses

capitalized terms for classes and non-capitalized terms for properties.

Further, the vocabulary is targeting statistical data by use of concepts from the model

which is the ISO standard for data exchange among organisations. Additionally QB

imports concepts and properties from the Simple Knowledge Organization System

(SKOS) (ArticulateSoftware, n.d.) vocabulary. These classes, alongside the other

external vocabularies’ classes and properties, are depicted in Figure 5.1. in light grey.

As previously introduced, the QB vocabulary is designed to address statistical data

with its defined support data structure definition (DSD), defined as an instance of the

class qb:DataStructureDefintion. This is used to specify the schema of a dataset, which

is an instance of the class qb:DataSet. Different datasets can share the same structure

definition. In order to represent dimensions, measures and attributes, a DSD contains

component properties to represent these, and they are explicitly named, as seen in

Figure 5.1. As such these are defined using the component property and blank nodes.

67

Additionally the vocabulary provides means to represent observations

(qb:Observation), which can be then grouped in datasets through the qb:dataset

property. Instances of the qb:DimensionProperty are properties which can link an

observation to a value in a DSD dimension. The qb:MeasureProperty and the

qb:AttributeProperty work in a similar way in regard to observations and a set of

measures or attributes.

Figure 5.1 QB vocabulary (Tennison & TSO, 2011)

With all these, QB allows the representation of hierarchical relationships between

members of dimension levels, making use of the SKOS vocabulary, but it cannot

represent a multidimensional schema. More insights with regard to multidimensional

representation issues are provided in the following section alongside other encountered

issues for both QB and QB4OLAP.

 The QB4OLAP vocabulary aims to counteract the shortcomings of the QB

vocabulary in regard to multidimensional data representation and the possibilities for

performing OLAP standard operations over the modelled data. In order to be able to

overcome these limitations QB4OLAP introduces a set of new classes and properties to

model the relationships and support the mentioned functionalities.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of
the thesis can be viewed at the Lanchester Library, Coventry University.

68

Figure 5.2 QB4OLAP vocabulary

The new additions to the initial QB vocabulary extended it with dimension levels

(introducing hierarchies on the dimension) and level members as well as providing

aggregating functions which are linked to measures. The additions presented are

highlighted in dark gray, and as it is observed from the Figure 5.2 they do not affect the

structure of the QB vocabulary. Thus the existing applications developed with it are not

invalidated.

In Table 5.1 the set of classes and properties available in the QB vocabulary and the

additions of QB4OLAP are depicted. As the QB4OLAP is an extension of the former

vocabulary, it contains also all the classes and properties of the QB Vocabulary but this

is not repeated in the table, only the new concepts introduced.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of
the thesis can be viewed at the Lanchester Library, Coventry University.

69

5.3 Identification of the limitations of the base vocabulary

In the previous section the vocabularies chosen in this research work as a base

vocabulary were introduced. As mentioned in the research background (Chapter 2) and

previously in this chapter, these have a set of limitations that can be considered in three

main categories:

 handling of both structures of data from the semantic web: topological and

informational

 the capability to represent the semantic web data multi-dimensionally

 supporting the construction of specialized OLAP operators

5.3.1 Informational and topological dimensions

As briefly introduced in the previous chapters and sections, there is a stream of work

that addressed the fact that graph network data, such as semantic web data, comes

across in informational and topological types of graphs. In an approach to multi-

dimensionally represent these graphs, it is necessary to consider the two different types

of dimensions that these graph types generate:

 Informational dimension, where the dimensions are generated from the

graph node attributes. In an informational dimension it will be possible to

have different hierarchical levels of the dimension. The representation of this

type of data would resemble a tree-type of graph, in which going from the top

node to the last leaf in the graph, each level would represent a more detailed

and context restricted view of the data.

Table 5.1 Classes and properties comparison between QB and QB4O

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of
the thesis can be viewed at the Lanchester Library, Coventry University.

70

 These tree-graph data usually are available in online statistical type of data;

one such example would be government demographic data delivered by the

census bureau. In this case it would be easy to identify time dimension with

hierarchal levels as: year, quarter, and month or location dimension with

levels as country, county, and city. Additionally, measures are a given year,

quarter or month of a year. In this example, taking the time dimension, each

node would be a level and the edge connecting year node (or level) to quarter

node, and this could be parentLevel.

 Topological dimension represents dimensions that come from a combination

of the node and edge attributes. This combination of node and edge attribute

delivers a perspective that is relevant for the topological aspect of the data

graph. Taking the example run through this thesis, in which would had

income as a dimension of the graph. Income can only have measures defined

by different concrete income values or income ranges. But it would have a

connecting edge or property to another dimension, for example household.

Since each dimension can have directly connecting property with some other

such dimensions, the resulting visualisation of a graph containing topological

dimensions would be a network graph.

Real world online data is available in a mix of topological and informational graphs.

For data available in this structure, mostly semantic data, it is challenging to apply

generic OLAP operators. An example of such data is visualised in Figure 5.3, derived

from Case Study II, introduced in the previous chapter.

Figure 5.3 Identified topological and informational dimensions in collected data

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

71

As previously introduced, an informational graph is modelled by dimensions and

hierarchical levels and the topological graph is modelled in dimensions, members and

defined relationships, the types of aggregation over their measures are very different.

On the informational graphs the standard measure aggregations such as SUM, AVG,

and COUNT are used to summarise the data, but the topological graphs require

relationship types of aggregation. To design a unified semantic OLAP to handle both

graphs is not trivial.

Continuing the example provided in the previous Chapter in the Case Study II, as

seen in Figure 5.3as well, it is now understood as if in a database information about

energy consumption is available and also information regarding the household and

appliances that produce this consumption. It would be necessary for this information to

be modelled using both topological and informational dimensions. These two types of

dimensions have relationships that connect them. These relationships are described

through new properties designed to connect topological and informational dimensions.

In Figure 5.3, it is observed as Household, Income, Appliances, are topological

dimensions of the collected data. These dimensions do not have hierarchical levels, but

the relationships connecting different such nodes have attributes that determine the

dimension that they represent. As such the attributes of both the nodes and their

relationships are encapsulated in the attributes of the dimension. On the other hand,

information regarding actual consumption, including dimensions such as Location and

Time and their hierarchical levels, and the measure of Consumption, represent typical

cases of informational dimensions with classical multidimensional attributes. The latter

types of dimensions are the ones that can be modelled using QB4OLAP as well.

Another aspect is that additional properties connecting the topological dimensions to the

informational ones are not available either in the chosen base vocabularies or in the

available literature presented in Chapter 2.

5.3.2 Multidimensional data representation

With regard to the multidimensional data representation capability, as also identified

in (Vaisman & Zimányi, 2014), the QB vocabulary allows for the representation of

hierarchical relationships between members of dimension levels. This is mostly done

72

through using the SKOS vocabulary. With all this, by using the property

skos:hasTopConcept to define the highest hierarchy level in the dimension and making

use of the skos:narrower property to allow navigation from higher to lower levels in the

dimension’s hierarchy, the QB vocabulary has an opposite direction data retrieval model

as compared with the majority of the common OLAP operations. In the case of the

OLAP operations, with the exception of drill-down, the dimension is traversed from the

lower to the higher granularity of the dimension’s levels.

Addressing this aspect, the QB4OLAP model has the property qb4o:parentLevel to

define the relationship between instances of the class qb4o:LevelProperty. As well, in

contrast with QB, it uses the skos:broader property to define the parent of a level

member. Also the property qb4o:inLevel indicates to which level a level member

belongs. With the additions that QB4OLAP provides, however, it still is sufficiently

compatible to handle observations defined using the QB vocabulary and add these to

data expressed using the QB4OLAP vocabulary.

But while on one hand QB had a top down approach to navigating to the levels of a

dimension, using the SKOS vocabulary, on the other hand QB4OLAP introduced only a

property to handle a bottom up approach – qb4o:parentLevel. While this property

addresses the most common OLAP operators’ data retrieval direction, it doesn’t directly

support the drill-down OLAP operator. For this, an inverse property needs to be defined

to the qb4o:parentLevel. This gives the possibility to use any direction of navigation as

per considered appropriate for the desired operator. Considering the OWL syntax

defined in (W3C, 2004) and the previous definition oft he qb4o:parentLevel propriety,

this is defined as:

 <owl:ObjectProperty rdf:ID="childLevel">

 <owl:inverseOf rdf:resource="&qb4o;parentlLevel" />

</owl:ObjectProperty>

5.3.3 OLAP operations of QB and QB4OLAP

In the previous section there was brief mention of the possible operators for OLAP.

This is mostly due to the fact that OLAP operators rely on the multidimensional

73

representation of the data. Common OLAP operators have great limitations in regard to

data represented using the QB vocabulary, with the exception of the Dicing operator

they cannot be directly implemented. This latter can be implemented with the use of the

FILTER clause in SPARQL. With regard to the other operators, due to the limited

support for the dimension hierarchy, they are not supported and the reasons for this can

be summarized as follows. In the case of the roll-up operations this is due to the

direction in which the dimension is traversed and the missing modelling of the levels

and relationships between level members. Additionally for both drilling-down and

slicing, the missing modelling of the aggregation functions for a given measure means

that the implementation of the mentioned operators is not supported. This is due to the

fact that for OLAP tools generally there is an association of each measure to an

aggregation function to support the standard roll-up, drill-down and slicing operators.

Although the QB4OLAP makes it possible to implement the slice, roll-up and dice

operators, the drill-down operator is not supported. Furthermore, these operators can

address only data modelled by informational dimensions and as such cannot be

expressive enough to address the entire spectrum of information from semantic web

data. Furthermore, not only can topological and informational data not be

simultaneously handled by these operators, but the possibility of using the mentioned

OLAP operators over multiple databases, to create further aggregations, is not

supported.

5.4 IGOLAP Vocabulary and possible OLAP Operations

In the previous section of the current chapter, the base vocabulary used and the

limitations that this vocabulary has, was identified. In this section there is an

introduction to the additions needed in regards to the main three limitations identified:

 mix informational and topological data handling,

 multidimensional representation,

 support for OLAP operations.

As noted, the existing vocabularies modelling multidimensional data for OLAP

activity can only be considered as base vocabularies. It was previously identified that

74

both QB and QB4OLAP vocabulary sets have missing facilities in relation to modelling

two groups of data: informational and topological. These aspects are considered in the

proposed vocabulary’s additions in order to provide full OLAP capabilities.

Nonetheless, as the purpose of this work is to address OLAP functionalities, in

section 5.4.3 the OLAP operations that are now available due to the new set of

vocabulary’s additions are identified.

5.4.1 Additions to the base and development of IGOLAP

Vocabulary

Considering that the dimensions in the topological structure do not have levels but

direct members, two different classes are introduced to model it: igolap:InfoDimension

and igolap:TopoDimension are subclasses of the qb:DimensionProperty class. The

property that connects these two classes to their superclass is: igolap:dimensionType.

The new vocabulary is presented in Figure 5.4 and the comparison of the vocabularies’

capabilities is presented in Table 5.2. The set of classes and properties introduced in the

IGOLAP Vocabulary are depicted in a light blue colour in the mentioned figure.

The existing qb4o:LevelMember had to be altered in order to handle the topological

dimension. The modified igolap:Member is introduced; which, while keeping the

connection with qb4o:LevelProperty also has a new connecting property to the

topological dimension: igolap:ofDimension. Since both topological and informational

dimension have attributes, the property qb4o:hasAttribute had to be altered to reflect

this.

The informational dimension has levels which have members and the topological

dimension has direct members. In order for the property qb4o:hasAttribute to apply to

both topological and informational dimension, it has to connect the igolap:Member to

qb:AttributeProperty.

75

Figure 5.4 IGOLAP vocabulary

The topological dimensions can be connected to each other through a topological

property and each member of the dimension holds the property. To define those

connections the igolap:topoDConnectedTo property has been introduced.

QB4OLAP introduces the qb4o:parentLevel property which connects levels and can

support the roll-up operation, but in order to offer a better support for the Drill-down

operation this proposal introduces the igolap:childLevel property which also connects

levels and is an inverse function to qb4o:parentLevel, but not symmetric. The meaning

of this is that, while the qb4o:parentLevel property delivers a parent to child

relationship, which is a 1 to many type of relationship, from child to parent is a many

to 1 type of relationship which is explicitly provided through the igolap:childLevel

property.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of
the thesis can be viewed at the Lanchester Library, Coventry University.

76

Table 5.2 Classes and properties of IGOLAP in addition to QB and QB4OLAP vocabularies

OWL materialization of the vocabulary is presented in full below. As the IGOLAP is

based on the QB4OLAP Vocabulary this extract included both in order to maintain the

context. Highlighted in light blue are the additions and changes to the original

QB4OLAP. As no changes were added to the QB vocabulary, this is provided in full

alongside the original QB4OLAP vocabulary in the Appendix A.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

77

@prefix igolap: <http://topublish.org/igolap#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

http://topublish.org/igolap a owl:Ontology;

owl:versionInfo "0.1";

rdfs:label "The IGOLAP vocabulary";

rdfs:comment "This vocabulary allows to publish and operate with OLAP cubes in RDF

containing both topological and informational data";

dcterms:created "2013-01-17"^^xsd:date;

dcterms:modified "2013-08-15"^^xsd:date;

dcterms:title "Vocabulary for publishing topologicaland informational OLAP data cubes";

dcterms:license <http://www.opendatacommons.org/licenses/pddl/1.0/> ;

dcterms:contributor [foaf:mbox "mateia@uni.coventry.ac.uk"];

.

--- Levels and Level members ---------------------------

qb4o:LevelProperty a rdfs:Class, owl:Class;

rdfs:label "Level property"@en;

rdfs:comment "The class of components which represent the levels of a dimension"@en;

rdfs:subClassOf qb:ComponentProperty;

rdfs:subClassOf qb:CodedProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

igolap:InfoDimension a rdfs:Class, owl:Class;

rdfs:label "Informational Dimension"@en;

rdfs:comment "The class of Dimension Property for Informational Graphs"@en;

rdfs:subClassOf qb:DimensionProperty;

.

igolap:TopoDimension a rdfs:Class, owl:Class;

rdfs:label "Topological Dimension"@en;

rdfs:comment "The class of Dimension Property for Topological Graphs"@en;

rdfs:subClassOf qb:DimensionProperty;

.

igolap:Member a rdfs:Class, owl:Class;

rdfs:label "Level member"@en;

rdfs:comment "The class of components which represent the members of a level in a

InfoDImension or the members of TopoDimensions"@en;

rdfs:subClassOf skos:Concept;

.

qb4o:level a rdf:Property, owl:ObjectProperty;

rdfs:label "level"@en;

rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a level"@en;

rdfs:subPropertyOf qb:componentProperty;

rdfs:range qb4o:LevelProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

igolap:member a rdf:Property, owl:ObjectProperty;

rdfs:label "member"@en;

rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a member, which is relevant for members in Topodimensions"@en;

rdfs:subPropertyOf qb:componentProperty;

rdfs:range igolap:Member;

.

igolap:dimensionType a rdf:Property,owl:ObjectProperty;

rdfs:label "type of dimension"@en;

rdfs:comment "Indicates the type of dimension that the Dimension Property is"@en;

rdfs:range qb:DimensionProperty;

rdfs:domain igolap:TopoDimension;

rdfs:domain igolap:InfoDimension;

.

igolap:topoDConnectedTo a rdf:Property, owl:ObjectProperty;

rdfs:label "topological dimensions connections"@en;

78

rdfs:comment "Indicates to which other topological dimension a topological dimension is

connected"@en;

rdfs:range igolap:TopoDimension;

rdfs:domain igolap:TopoDimension;

.

qb4o:inDimension a rdf:Property, owl:ObjectProperty;

rdfs:label "level in dimension"@en;

rdfs:comment "Indicates to which dimension the level belongs, applicable only to

InfoDimensions"@en;

rdfs:range qb4o:LevelProperty;

//this is not applicable in igolap anymore as only InfoDimensions have levels

rdfs:domain qb:DimensionProperty;

rdfs:domain igolap:InfoDimension;

.

igolap:ofDimension a rdf:Property,owl:ObjectProperty;

rdfs:label "member in dimensions"@en;

rdfs:comment "Indicates for topological dimensions, that a member belongs to a dimension

without levels "@en;

rdfs:range igolap:Member;

rdfs:domain igolap:TopoDimension;

.

qb4o:inLevel a rdf:Property, owl:ObjectProperty;

rdfs:label "level member in level"@en;

rdfs:comment "Indicates to which level the level member belongs"@en;

rdfs:range igolap:Member;

rdfs:domain qb4o:LevelProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:parentLevel a rdf:Property, owl:ObjectProperty;

rdfs:label "is parent of"@en;

rdfs:comment "Indicates which is the parent level of each level"@en;

rdfs:range qb4o:LevelProperty;

rdfs:domain qb4o:LevelProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

igolap:childLevel a rdf:Property, owl:ObjectProperty;

rdfs:label "is child of"@en;

rdfs:comment "Indicates which is the child level of a level"@en;

rdfs:range qb4o:LevelProperty;

rdfs:domain qb4o:LevelProperty;

owl:inverseOf qb4o:parentLevel;

.

--- Aggregate Functions ---------------------------

qb4o:AggregateFunction a rdfs:Class, owl:Class;

rdfs:label "Aggregate function"@en;

rdfs:comment "The class of components which represent aggregate functions that are

applied to compute measure aggregate values"@en;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:sum a qb4o:AggregateFunction;

rdfs:label "SUM"@en;

rdfs:comment "Returns the numeric value obtained by adding a set of numeric values."@en;

owl:sameAs dbpedia:Summation;

.

qb4o:avg a qb4o:AggregateFunction;

rdfs:label "AVG"@en;

rdfs:comment "Returns the arithmetic mean of a set of numeric values."@en;

owl:sameAs dbpedia:Average;

.

qb4o:count a qb4o:AggregateFunction;

rdfs:label "COUNT"@en;

rdfs:comment "Returns the number of elements in a set of elements (the cardinality of

the set)."@en;

owl:sameAs dbpedia:Counting;

79

.

qb4o:min a qb4o:AggregateFunction;

rdfs:label "MIN"@en;

rdfs:comment "Returns the minimum element in a set of elements, where a partial order is

defined."@en;

owl:sameAs dbpedia:Min;

.

qb4o:max a qb4o:AggregateFunction;

rdfs:label "MAX"@en;

rdfs:comment "Returns the maximum element in a set of elements, where a partial order is

defined."@en;

owl:sameAs dbpedia:Max;

.

qb4o:hasAggregateFunction a rdf:Property, owl:ObjectProperty;

rdfs:label "has aggregate function"@en;

rdfs:comment "Indicates which aggregate function has to be applied to obtain measure

aggregate values, for a certain measure in a cube"@en;

rdfs:range qb:ComponentSpecification;

rdfs:domain qb4o:AggregateFunction;

rdfs:isDefinedBy <http://purl.org/olap>;

.

As presented in this section, the newly introduced classes and properties directly

address the QB and QB4OLAP vocabularies’ limitations described in the previous

section. Furthermore, these additions also address the issues from the current literature

in regard to OLAP capabilities over multidimensional semantic web data; as identified

in Chapter 2 – Research Background

.

5.4.2 Usage of the IGOLAP Vocabulary

Using Case Study II from the Chapter 4, it is shown how both informational and

topological structures can be implemented using the IGOLAP vocabulary elements. The

content and structure of DB1 in the scenario are described in Figure 4.1 and Figure 4.2

and it contains curated data of both types of structure. In this example the datasets’

prefixes are omitted.

The code extract – Extract-1 below – shows the structure of the informational

dimensions of an energy consumption database, DB1. It shows the representation of the

time and location dimension structures as well as instances of the location. The structure

of the informational dimension is very similar to the QB4OLAP vocabulary, but the

igolap:childLevel in association with qb4o:parentLevel property give the potential for

80

bidirectional navigation in order to support both roll-up and drill-down OLAP

operations.

Extract 1: Informational Dimensions – Time and Location Schema – and

Location Instances:

e:location a igolap:InfoDimension.

e:country a qb4o:LevelProperty;

 qb4o:inDimension e:location;

 igolap:childLevel e:firstAdminDivision.

e:firstAdminDivision a qb4o:LevelProperty;

 qb4o:inDimension e:location;

 igolap:childLevel e:secondAdminDivision;

 qb4o:parentLevel e:country.

e:secondAdminDivision a qb4o:LevelProperty;

 qb4o:inDimension e:location;

 igolap:childLevel e:city;

 qb4o:parentLevel e:firstAdminDivision.

e:city a qb4o:LevelProperty;

 qb4o:inDimension e:location;

 qb4o:parentLevel e:secondAdminDivision.

e:time a igolap:InfoDimension

e:year a qb4o:LevelProperty;

 qb4o:inDimension e:time;

 igolap:childLevel e:quarter.

e:quarter a qb4o:LevelProperty;

 qb4o:inDimension e:time;

 igolap:childLevel e:month;

 qb4o:parentLevel e:year.

e:month a qb4o:LevelProperty;

 qb4o:inDimension e:time;

 igolap:childLevel e:day;

 qb4o:parentLevel e:quarter.

e:day a qb4o:LevelProperty;

 qb4o:inDimension e:time;

 qb4o:parentLevel e:month.

gn:2635167 a igolap:Member;

 qb4o:inLevel e:country;

 rdfs:label "United Kingdom@en";

 igolap:childLevel gn:6269131.

gn:6269131 a igolap:Member;

 qb4o:inLevel e:firstAdminDivision;

 rdfs:label "England@en";

 igolap:childLevel gn:3333134;

 igolap:childLevel gn:3333125.

gn:3333134 a igolap:Member;

 qb4o:inLevel e:secondAdminDivision;

 rdfs:label "City of Bristol@en";

 igolap:childLevel gn:2654675.

gn:2654675 a igolap:Member;

 qb4o:inLevel e:city;

 rdfs:label "Bristol@en";

 qb4o:parentLevel gn:3333134;

gn:3333125 a igolap:Member;

 qb4o:inLevel e:secondAdminDivision;

 rdfs:label "City and Boroughof Birmingham@en";

 igolap:childLevel gn:2655603.

gn:2655603 a igolap:Member;

 qb4o:inLevel e:city;

 rdfs:label "Bristol@en";

 qb4o:parentLevel gn:3333125;

81

Extract 2 below, shows the representation of the topological dimensions that include

the three dimensions: income, household, and, appliances. These dimensions are

connected by a connecting property. These dimensions do not have a well-defined

hierarchical structure but they define aggregations based on common attributes (e.g.

number of bedrooms, or number of inhabitants, in the household dimension). Shown in

Extract 2 are the instances of each dimension, with the necessary attributes to populate

DB1; producing possible observations.

Extract 2: Topological Dimensions: Income, Household, Appliance and instances

te:incomeRange a igolap:TopoDimension;

 igolap:TopoDConnectedTo te:household.

te:ukI04 a igolap:Member;

 igolap:ofDimension te:incomeRange;

 igolap:TopoDConnectedTo te:hhBrs01;

 igolap:TopoDConnectedTo te:hhBhm73;

 te:min 25000;

 te:max 35000;

 te:currency "GBP".

te:household a igolap:TopoDimension;

 igolap:TopoDConnectedTo te:incomeRange;

 igolap:TopoDConnectedTo te:appliances.

te:hhBrs01 a igolap:Member;

 igolap:ofDimension te:household;

 igolap:TopoDConnectedTo te:ukI04;

 igolap:TopoDConnectedTo te:fridge_ZZRB934FW2Brs01;

 igolap:TopoDConnectedTo te:tv_SUE22D5003Brs01;

 te:hasCity gn:2654675;

 te:hasPostCode "BS35";

 te:size 57;

 te:bedrooms 3;

 te:bathrooms 2;

 te:houseType "detached";

 te:built 1987.

te:appliance a igolap:TopoDimension;

 igolap:TopoDConnectedTo te:household.

te:fridge_ZZRB934FW2Brs01 a igolap:Member;

 igolap:ofDimension te:appliances;

 igolap:TopoDConnectedTo te:hhBrs01;

 te:hasModel "ZZRB934FW2";

 te:hasPostCode "Zanussi";

 te:consumption e:fridge_ZZRB934FW2_20090522;

 te:consumption e:fridge_ZZRB934FW2_20090523;

 te:consumption e:fridge_ZZRB934FW2_20090527;

 te:consumption e:fridge_ZZRB934FW2_20090612;

 te:consumption e:fridge_ZZRB934FW2_20090719.

te:tv_SUE22D500Brs01 a igolap:Member;

 igolap:ofDimension te:appliances;

 igolap:TopoDConnectedTo te:hhBrs01;

 te:hasModel "SUE22D500";

 te:hasPostCode "Samsung";

 te:consumption e:tv_SUE22D500_20090522;

 te:consumption e:tv_SUE22D500_20090523;

 te:consumption e:tv_SUE22D500_20090527;

 te:consumption e:tv_SUE22D500_20090612;

 te:consumption e:tv_SUE22D500_20090719.

82

Subsequently there is the definition of the measure for the database and the included

attribute properties which are used in generating observations. In Extract-3, there is a

definition of a measure for consumption and its attribute which is the measurement unit

(e.g. kWh).

Extract 3: Observations structure definitions and instances

e:consumptionYCity a qb:DataStructureDefintion;

 qb:component [qb4o:level e:year];

 qb:component [qb4o:level e:city];

 qb:component [qb4o:measure e:consumption;

 qb4o:hasAggregateFunction qb4o:sum];

 qb:component [qb:attribute e:electricMeasureUnit].

e:datasetYCC a qb:DataSet;

 rdfs:label "Yearly consumption in a city@en";

 qb:structure e:consumptionYCity.

e:consumptionMHAC a qb:DataStructureDefinition;

 qb:component [qb4o:level e:month];

 qb:component [igolap:member te:household];

 qb:component [igolap:member e:appliance];

 qb:component [qb4o:member e:consumption;

 qb4o:hasAggregateFunction qb4o:sum];

 qb:component [qb:attribute e:electricMeasureUnit].

e:datasetMHAC a qb:DataSet;

 rdfs:label "Monthly consumption of household by appliance@";

 qb:structure e:consumptioMHAC.

e:consumption a qb:MeasureProperty.

e:electricMeasureUnit a qb:AttributeProperty.

e:kWh a e:electricMeasureUnit;

 rdfs:label "Kilowatt-hour@en".

e:o1 a qb:Observation;

 qb:dataSet e:datasetYCC;

 e:year db:2009;

 e:city gn:2654675;

 e:consumption 60000000;

 e:electricMeasureUnit e:kWh.

e:o2 a qb:Observation;

 qb:dataSet e:datasetMHC;

 e:month tl:05_2009;

 te:household te:hhBrs01;

 te:appliance te:fridge_ZZRB934FW2Brs01;

 e:consumption 70;

 e:electricMeasureUnit e:kWh.

The structures, instances, measures and attributes mentioned are used to obtain

different observations over both topological and informational dimensions, as shown in

Extract 3 above. Additional constraints over topological dimensions’ attributes and/or

different levels of the informational dimensions are used to structure the observations.

Assume that the proposed system needs to satisfy a query in regards to the yearly

energy consumption for a specific household and location. In this case it is essential to

83

retrieve the household information from different topological dimensions and measures

like: income, property price range, household appliances or number of bedrooms. This

information in conjunction with informational dimensions like time and location on

different aggregation levels – as city and monthly – can deliver a complex answer on

different levels of aggregation.

Furthermore, aggregations over multiple databases with topological and

informational dimension, deliver the expected completeness of the answer. In this

example, DB1 can only provide partial information to answer this query, such as

consumption of different appliances in a household. DB2, containing informational

dimensions regarding properties’ market values in different years, based on the location

and property layout details, can offer the complimentary information. This requires

federated OLAP operations to retrieve, summarise and compose data from multiple

semantic databases.

But the dimensions from different databases can have mismatched structure such as

different level of detail in modelling. . The location dimension in DB2 has a level called

area which is a smaller division of city in DB1. Another mismatch in structure among

them is the existence of a redundant level secondAdministrationDivision from DB1.

Extract 4 provides the structure and an instance of an area level observation.

Extract 4: Structure and instance of DB2’s location dimension level

z:area a qb4o:LevelProperty;

 qb4o:inDimension z:location;

 qb4o:parentLevel z:city.

z:BS3 a qb4o:member;

 qb4o:inLevel z:area;

 rdfs:label "Area covering Bristol BS3 postcode@";

 qb4o:parentLevel gn:2654675.

Other dimensions used in this database include time and the property (home) with the

property’s price as measure. Extract 5 shows observations over the price of a certain

type of property, based on the year and the layout of the property.

Extract 5: Observation instance of DB2:

z:priceByAreaProperty a qb:DataStructureDefinition;

 qb:component [qb4o:level z:area];

 qb:component [qb4o:level z:Year];

 qb:component [qb4o:level z:bedno];

84

 qb:component [qb4o:measure z:propertyPrice;

 qb4o:hasAggregateFunction qb4o:avg];

 qb:component [qb:attribute z:currency];

z:datasetPriceAreaProperty a db:DataSet;

 rdfs:label "Properties price by Area, nuumber of bedrooms and year@en";

 qb:structure z:priceByAreaProperty.

z:obbsBS3B1Y2009 a qb:Observation;

 qb:dataSet z:datasetPriceAreaProperty;

 z:area z:BS3;

 z:year db:2009;

 z:bedno 1;

 z:propertyPrice 125000;

 z;currency z:GBP.

Extract 6 shows observation structure over two databases with a common dimension:

time. In this observation consumption information, household information and the

property’s market value are combined over the common dimension.

Extract 6: Observation structure over multiple databases (DB1 and DB2)

d:consByYearHousehold a qb:DataStructureDefinition;

 qb:component [qb4o:level z:city];

 qb:component [qb4o:level e:Year];

 qb:component [igolap:topoDImension te;household];

 qb:component [qb4o:measure e:consumption;

 qb4o:hasAggregateFunction qb4o:sum];

 qb:component [qb:attribute e:electricMeasureUnit];

d:datasetConsByYearHouseholdCMBI a db:DataSet;

 rdfs:label "Yearly consumption for households from a specific area by number of

bedrooms and inhabitants and restricted by market value@en"

 qb:structure d:consByYearHousehold

These standalone observations from both databases give useful overviews of the data

but their combination can provide the complete output to the query. As an example:

yearly energy consumption of households is obtained by performing roll up operations

over these databases from and to different levels.

5.4.3 OLAP Operations over IGOLAP Vocabulary

The proposed approach targets the capability that will provide a collective querying

operation over semantic web databases. As such, the development also offers a set of

specialized OLAP operators (Federated OLAP operators) that can operate over multiple

semantic OLAP databases, merge the outputs into a common format and translate them

according to the desired output; which can be materialized or viewed. The previously

introduced vocabulary supports the possibility of applying these operators over the

modelled data.

85

The federated OLAP operators need to interpret the requests according to a specific

OLAP database in order to retrieve the data and convert it to a requested output format.

These operators represent an extension of the classic OLAP operations: roll-up, dice,

drill-down or slice. As such, traditional definition presented in OLAP Fundamentals are

used to define the operatos over both topological and informational graphs.

5.4.3.1 Roll-up

The Roll-up operation was defined in this work with the following definition:

Definition: A roll-up operation assumes a data summarization inside a given cube

alongside a given dimension such as in a given Cube C, a dimension D ∈ C and a

dimension level lu∈ D, the Roll-up(C,D, lu) will return a new cube C’ where measures

are aggregated along D up to the level lu.

Taking this definition for the required OLAP capability in an Informational Network

and using

Figure 2.3 describing the traditional Roll-up operation, and Figure 5.5 proving the

adaptation of Roll-up for topological data, provide a complementary solution on how a

Roll-up operator can be applied to semantic web data.

The Roll-up operator is designed as an aggregation operator, operating over a cube

by climbing up a concept hierarchy for a dimension and performing a dimension

reduction.

In order to climb the dimension’s hierarchy, the roll-up operator needs to use the

initial hierarchy concept in order to be able to aggregate by ascending the dimension’s

hierarchy from the current level of the data to the desired level of aggregation. By

performing a roll-up operation, one or more dimensions are not presented in the newly

generated observation.

 In the case of topological dimensions, these do not have hierarchy levels and as such

the aggregation happens based on the dimensions’ connection relationship to another

topological dimension.

Figure 5.5 Topological roll-up in information networks (reproduced from (Qu, et al., 2011))

5.4.3.2 Drill down

Drill down is considered to be the reverse of Roll-up and assumes the disaggregation

on a previously stored aggregation.

Furthermore the drill-down is performed by navigating through the hierarchy of a

dimension from a less detailed level towards a more detailed data representation level.

A generic definition of the drill down operator is provided below:

Definition: A drill-down operation assumes a data dissaggregation inside a given

cube alongside a given dimension such as in a given Cube C, a dimension D ∈ C and a

dimension level lu∈ D, the Drill-down(C,D, lu) will return a new cube C’, where

measures are the values used to aggregate the measures on level lt, where lt>lu∈ D,

along D down to the level lu.

Although the drill-down operators is a reverse roll-up operator, while roll-up applies

aggregated functions to generate the new observations, for the accuracy of the drill-

down operators, the initial observations dataset from which the rolled-up ones were

made needs also to be available for retrieval. In conclusion, while Roll_up and

F_roll_up rely on aggregated functions, the drill-down relies on paths and hierarchical

levels connections.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

87

Since in the case of topological dimensions there is no stable mapping of one-to-one

or one-to-many but it also can contain the many-to-many type of cardinality between

dimensions.

In this case, navigating from one topological dimension to others, will not

necessarily deliver a reduced or detailed view. In this case, the drill-down and roll-up

OLAP operations have the same output in terms of the level of details.

There is one main difference though, it is that the measures for the topological

dimension that we are navigating to (drilling towards), need to exist already, since the

drill operator doesn’t support aggregate functions on the available measures. This is due

to the general description of the operator, where the focus is to find out from which

measures the current one was built.

5.4.3.3 Slice

A slice operation in an OLAP understanding delivers a selection of a particular

dimension from a given cube in order to provide a sub-cube.

Definition: Slice operation receives a cube C, a dimension D ∈ C and a member M

in level l ∈ D and returns a sub cube C’, with the same schema except that all other

members in level l ∈ D are removed.

Since this operation addresses the members of a given level or dimension and not the

levels themselves, and the TopoDimensions have direct members defined in the same

way as the InfoDimension through the IGOLAP Vocabulary, there is no difference

between handling informational and topological dimension’s members.

5.4.3.4 Dice

The dice operation delivers a composition of slice operations across multiple

dimensions.

88

 Definition: A dice operation delivers a new cube C’, generated from a given cube C

and selected members across two or more dimensions D. The emerging cube C’ has the

same schema as the initial cube C and the instances in C’ are also instances of C.

In this case, which is similar to the F_SLICE operation case, since there is no need to

have hierarchical navigation through the cube, the aggregation is applied on the

members of the observations in the given dataset. As was previously introduced, in the

IGOLAP Vocabulary, the igolap:Member property is able to define both topological

dimension members and informational dimension members. Through this introduction,

the dice capability for the two types of dimension members was made available.

5.5 Summary

In this chapter the reason why current vocabularies cannot completely handle

semantic data for OLAP were identified and an extended vocabulary was introduced. In

addition the difference between informational and topological data, concepts that were

briefly introduced in chapter 2- Research background, was investigated in more detail.

This chapter introduced the main OLAP operations that can be performed on the data

modelled using the introduced vocabulary. In the following chapter it will be shown

how a pipe of architectural OLAP operators can perform over the semantic web data

modelled using the introduced vocabulary.

89

Chapter 6 – Materialisation of Integrated

OLAP Operators for SW Databases

90

6.1 Introduction

It is mentioned in the previous chapter, Chapter 5 – IGOLAP Vocabulary

Development, that the available vocabularies, including the chosen base vocabulary

have a set of limitations in regards to:

 handling of both structures of data from the semantic web: topological and

informational

 the capability to multi-dimensionally represent the semantic web data

 the supported construction of specialized OLAP operators

In Chapter 5, section OLAP operations of QB and QB4OLAP, was introduced that

topological and informational data cannot be simultaneously handled by the OLAP

operators introduced by the referenced vocabularies’ implementations. Additionally, the

possibility to use the OLAP operators over multiple databases to create further

aggregations is another limitation of these approaches.

This chapter, based on the IGOLAP vocabulary previously introduced, shows how

specialized OLAP operators can be implemented to address the above mentioned

limitations.

This research refers to generic OLAP functionality, as such the related pros and cons

in regards to ROLAP (Relational OLAP) and MOLAP (Multidimensional OLAP) or

other types of traditional OLAP implementations are not considered in this approach.

The MOLAP perspective in which multidimensional representation of the data is

provided in the database, has no real impact on the efficient storage of the data as an

additional dimension can be represented in a couple of more triples describing the same

resource. The ROLAP perspective (in which updates can be easily generated) it can be

achieved straightforwardly in semantic web data, due to the way in which semantic web

technologies make it possible to publish, describe and reference resources on the web.

One aspect considered in this work is the possibility to materialise the generated

views or observations. This can speed up the data querying and aggregation process

required in any of the OLAP operators by giving the possibility to the operator

implemented in this manner to make further aggregation based on the generated dataset

from a previous used operator.

91

In order for this set of operators to be able to address the entire spectrum of

information from semantic web, means means need to be provided to perform

aggregations over both informational and topological data simultaneously, coming from

multiple databases. Furthermore, this approach provides the possibility to implement all

OLAP operations, including drill-down.

6.2 Architecture of Federated OLAP Operators (F_Operators)

The architecture introduced in this section, describes the architecture of the

Federated OLAP Operators, based on the introduced IGOLAP Vocabulary from

Chapter 5. Through this set of operators and vocabulary, the possibility of creating a

middleware component is provided. This middleware, as presented through this work

supports the definition and modelling of semantic web databases in preparation for

performing OLAP operators on this data.

The challenge here is not to access multiple resources or semantic databases since

these are access through the prefixing or mapping of the URI addresses, but to provided

a multidimensional modelling vocabulary (IGOLAP) for these databases, and a set of

operators based on these vocabulary (F_Operators) that can replicate the standard

OLAP operators on any type of information modelled with the presented vocabulary.

The architecture of the Federated Operators (F_Operators), is based on the pipe-like

design, in which the success of a preceding operator delivers the required input for the

next operator. By orchestrating the F_Operators using this approach, a SELECT

function can be replaced with another one, receiving other parameters, without changing

the entire operator’s orchestration. More precisely, in the architecture and

implementation of F_Operators, this refers to the SELECT – CONSTRUCT sequence,

in which a replacing the parameters of a SELECT doesn’t change the behaviour of the

CONSTRUCT function, but it will produce the corresponding output.

In the following subsections of this chapter there is a description of added

capabilities and general OLAP characteristics included in the F_Operators’ architecture.

92

6.2.1 General OLAP Characteristics

As previously introduced, a set of specialized OLAP operators (Federated OLAP

operators) were designed to be able to operate simultaneously over multiple

multidimensional semantic OLAP databases, merge the outputs into a common format

and translate them accordingly to the desired output. Finally, this output can be

materialised or only viewed.

The set of operators has the role of a middleware, through which it provides access to

semantic data in OLAP specific aggregations. As presented in Figure 6.3 Activity diagram

of F_Operators’ architecture, there are two inter-dependant flows that are separately

initiated but rely on the same components to finish successfully. In consequence, the

IGOLAP vocabulary is a key element in building the multidimensional semantic web

databases on which OLAP aggregations can be performed. Secondly, the OLAP

operators offer a set of validations and data retrieval options based on the concepts

defined by the IGOLAP Vocabulary and instantiated in the databases’ schemas.

Furthermore, the set of OLAP operators act as a middleware between the user (person

or application) and published semantic web databases, providing the means to create

OLAP aggregations, visualise them and publish them if required.

The Federated OLAP operators need to interpret the requests according to a specific

OLAP database in order to retrieve the data and convert it to a requested output-format.

The Federated OLAP operators represent an extension of the classic OLAP operations

as: roll-up, dice, drill down and slice.

Below are the definitions used in this work to guide the design and implementation

requirements of the Federated OLAP Operators:

 A roll-up operation assumes a data summarization inside a given cube

alongside a given dimension such as a given Cube C, a dimension D ∈ C and

a dimension level lu∈ D, the Roll-up(C,D, lu) will return a new cube C’

where measures are aggregated along D up to the level lu.

 Drill down is considered to be the reverse of the Roll up operation and

assumes the disaggregation on a previously stored aggregation.

93

 Slice operation receives a cube C, a dimension D ∈ C and a member in level l

∈ D and returns a sub cube C’, with the same schema except that all other

member of the given level in dimension D are removed.

 In the dice operation a new cube C’ is generated from a given cube C by

selecting a set of members from two or more given dimensions. The

emerging cube has the same schema as the initial cube C and the instances in

C’ are also instances of C.

As it emerges from the above definitions, the roll-up and drill-down operates by

navigating through the hierarchy of a dimension. On the other hand, slice and dice

operate on the members from the current hierarchical level of two or more dimensions,

from a given cube.

The dimension operations that are used in this approach are referred throughout in

this work as F_OPERATORS. These include the standard dimension operators as

F_ROLL_UP, F_DICE, F_SLICE and F_DRILL. These operators are derived from

the standard OLAP dimension’s operations, but are adapted to have the necessary

functions to access multiple semantic web databases.

The standard OLAP measure operations are used as restriction functions in the

dimension and include:

 AVG for retrieving the arithmetical mean of a set of numerical values

 SUM for the sum of a set of numerical values

 COUNT for the cardinality of a set of elements

 MIN and MAX for the minimum and maximum element of a set of elements.

As is mentioned throughout this work, agreeing with the generally accepted

definition in the OLAP terminologies, the main two concepts applied in data

warehousing are aggregate functions and OLAP operators. Although both represent

some type of operations for data aggregation there exists a basic differentiation between

the two as described below:

94

 Aggregate functions are applied on the measures of a level. As such

hierarchical operators can make use of the aggregate function, but more than

that, it assumes the inter-level aggregations.

 OLAP operators are used to retrieve or produce observations, navigating

through the levels of a dimension. Aggregating the measures in a given

selected level, assumes the usage of aggregated functions. Different OLAP

operations define the combination and usage of different aggregation

methods, as it results from the presented definitions of the operators.

As this is a quite straight-forward and easy to understand process for one dimension

in a given cube containing only informational dimensions, applying OLAP operators

becomes more complicated in the following scenarios:

 When the cube over which we want to apply this operator has also

topological dimensions

 When the operators need to be performed over multiple databases and data

cubes, in which case the dimensions hierarchy and dimensions types need to

be handled in a way that is based on their described schema

Since there is available a set of aggregation options through SPARQL capabilities

and given that this work delivers implementations of OLAP operators based on the

SPARQL querying language, the focus of this work is on exemplifying the

implementation of such operators based on the vocabulary introduced in Chapter 5 –

IGOLAP Vocabulary Development.

6.2.2 Characteristics of Federated Operators

The F_OPERATORS include a set of processes defining the retrieval, building and

normalisation stages as introduced below:

 If the datasets have different formats, data normalisation is performed before

generating the output, this operation is included inside the F_Operators when

the schema and data triplets are read.

 For the retrieval stage, the operators identify the targeted databases, builds

the SELECT operators for each database with given constraints, and gather

95

information from multiple databases by applying the built operators to

specific datasets.

 In the building stage, if the materialisation is required, the CONSTRUCT

operator is initiated to compose the response from the retrieved data by

applying the SELECT operator. If a materialisation of the created

observations is not required, then generated output of the SELECT operator is

displayed and released from memory. In this context a “pretty” display is

used, in which the labels or “pretty name” for the levels and members are

displayed instead of their identifiers.

In order to handle the data exchange, the F_OPERATORS are described as a pipe

architecture containing a set of automatically built CONSTRUCT operator and a

SELECT operator. If data normalisation is required before output is generated the third

operator, the MERGE operator, is included in the F_OPERATOR pipe construction.

The MERGE operator is used to structure the partial RDF triple results from the

SELECT operators using the same vocabulary for the output construction. Even though

the MERGE concept has some similarity with the one in the semantic web pipes

(Morbidoni, Polleres, Tummarello, & Le Phuoc, 2007), the MERGE from semantic web

pipes is a simple join of the CONSTRUCT and/or SELECT operators output without

normalisation capabilities and facilities to support Semantic OLAP Operators.

96

Figure 6.1 Integrated architecture of the introduced framework

Another difference in this approach is that, while CONSTRUCT and SELECT

operators are a well identified block of code in the construction of F_Operators, the

MERGE operator is mostly a tacit set of strategically placed methods designed to

automatically address the needs of normalisation of F_Operators.

Given the above defined approach, the SELECT and CONSTRUCT operators are

displayed for each F_OPERATOR and their implementation described for each of the

F_Operators description.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

97

Since F_OPERATORs are designed to access one or more than one OLAP database,

they require a set of arguments in order to interpret the requests. Based on the

arguments received, F_OPERATOR distinguish between:

 Single or multiple database access;

 Formatted or unformatted output;

 Request for view or request for materialisation of the output.

Some of the above identified functionality of the operators is not critical for the

usage of the operator. This means that the parameters that can be provided to the call of

the operators can be divided into two main categories:

 Mandatory parameters: these are parameters without which the operators

cannot function: location of accessed SW OLAP implementation(s) (URIs or

IRIs), dimensions (and dimension levels e.g. for F_ROLL_UP) and some

others. These need to be validated before the aggregation is performed.

 Optional parameters: these are parameters which if omitted the operator will

give a standard output, so the operator’s delivered functionality would not be

changed by parameter value. For example the materialised or immaterialised

output indication represents an optional parameter.

98

Figure 6.2 Integrated architecture for multiple databases access

The capability to operate over one or multiple databases is included in the

implemented operators, by the way in which data is retrieved. The interface of the

operator and the functionality delivered are encapsulated in one implementation.

A generic description of the architectural approach used to design the

implementation of the presented F_Operators is presented in Figure 6.3.

99

Figure 6.3 Activity diagram of F_Operators’ architecture

Each one of the F_Operators defines a different type of aggregation as per the

provided definitions in the first section of this chapter. The steps that define the basis of

the development of all OLAP Operators introduced in the following subsections can be

summarised as following:

 In Step 1, the request of any F_Operator is validated by verifying the number

of parameters and their types as defined in the implementation of the possible

constructors (generally there are two constructors available for each operator:

one for single database access and one for multiple databases access)

 Each database implementation defines which dimensions are available in the

implemented database and what the hierarchy levels look like. In Step2, the

100

concepts used to instantiate the dimensions, levels and particular constraints

are identified, across one or multiple databases in order to be able to build the

requested aggregation.

 In order to create the required aggregation, in the implementation of the

F_Operators, Step 3 checks if the measures required to be used are also valid

measures across one or multiple databases and if the requested constraints can

be applied on the measure’s type.

After the required measure and its constraints are validated, the observation is

constructed, as defined in the implementation of each OLAP operator, based

on a set of SELECT and CONSTRUCT pipe-like operators

 Step 4 refers to the materialisation or visualisation option. If the

materialisation option is selected, a set of observations can be published to

be used in other aggregations. If this is not desired, it can just be displayed

and released from the memory after the output was displayed.

Although the “materialisation” of a set of observations is an optional, in order to drill

down and up through different levels of aggregations the observations representing the

input data need to be stored in a database.

101

The Sequence Diagram introduced in

Figure 6.4 describes the base sequence on which all F_Operators are built. Depicted

in this Diagram is the MERGE operator, introduced in the implementation section. The

additional two operators SELECT and CONSTRUCT are introduced for each operators

implementation. The diagram also describes the operators’ behaviour based on the

conditionals of continuation, which are the same for all operators: validity of the

102

request, materialisation or visualisation only request and the inter-calls of SELECT and

CONSTRUCT operators.

Figure 6.4 Sequence diagram of F_Operators

103

6.3 Implementation of F_Operators

The implementation of the above mentioned operators is realised in Java and makes

use of Apache Jena libraries (The Apache Software Foundation, 2011).

The methods or steps that form the MERGE functionality and through which the

integration of different database is delivered, are shared among all operators and are

described below.

Step 1: First normalisation support; it is delivered through the possibility of loading

various source data with a standard RDF/XML up to JVM memory. The data comes

from different RDF serialisations, but they are normalised by employing the

ModelFactory class for which sample code is shown below:

Model model = ModelFactory.createDefaultModel();

InputStream in = FileManager.get().open(dataset);

 if (in == null) {

 throw new IllegalArgumentException("File: " + dataset + " not found");

 }

 // read the N3 dataset file

 model.read(in, null, "N3");

Step 2: The prefixes or namespaces of the Vocabularies are located in the

Namespaces class which gives the possibility of retrieving all the namespaces at run-

time, but also to add the namespaces to the datasets and schema on which operators are

applied. This gives the possibility of adding all database references to the same base

namespace which operates at run-time:

package igolapOperators;

public class Namespace {

 static public final String NL = System.getProperty("line.separator");

 static private String prefix = "prefix dc: <http://purl.org/dc/elements/1.1/> " + NL

 + "prefix dcterms: <http://purl.org/dc/terms/> " + NL

 + "prefix igolap: <http://topublish.org/igolap#> " + NL

 + "prefix qb: <http://purl.org/linked-data/cube#> " + NL

 + "prefix qb4o: <http://purl.org/olap#> " + NL

 + "prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " + NL

 + "prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> " + NL

 + "prefix xml: <http://www.w3.org/XML/1998/namespace> " + NL

 + "prefix xsd: <http://www.w3.org/2001/XMLSchema#> " + NL

 + "prefix ctr: <http://www.energydb.eu/igolap/Countries/> " + NL

 + "prefix ct: <http://www.energydb.eu/igolap/Counties/> " + NL

 + "prefix c: <http://www.energydb.eu/igolap/Cities/> " + NL

 + "prefix pc: <http://www.energydb.eu/igolap/PostCodes/> " + NL

 + "prefix foaf: <http://xmlns.com/foaf/0.1/> " + NL

 + "prefix owl: <http://www.w3.org/2002/07/owl#> " + NL

 + "prefix scovo: <http://purl.org/NET/scovo#> " + NL

 + "prefix db1: <http://www.energydb.eu/igolap/schema#> " + NL

 + "prefix t: <http://www.energydb.eu/igolap/Data/Time#> " + NL

104

 + "prefix l: <http://www.energydb.eu/igolap/Data/Location#> " + NL

 + "prefix topo: <http://www.energydb.eu/igolap/Data/Topo#> " + NL

 + "prefix ds: <http://www.energydb.eu/igolap/Data/DataSets#>" + NL

 + "prefix dbpedia: <http://dbpedia.org/resource/> " + NL

 + "prefix fn: <http://www.w3.org/TR/xpath-functions/> ";

 public static String getPrefixes() {

 return prefix;

 }

 public static void setPrefix(String pref, String uri) {

 prefix = prefix + NL + "prefix " + pref + ": <" + uri + "> ";

 }

}

Step 3: The validation and the actual aggregation calculation methods are

constructed in a manner in which the name of the database to which the dimension,

levels or members belong to is also required. The example below shows the simple

method calls of the F_Roll_up operator for validating and constructing a single

database:

public static boolean validate(String db_name, HashMap<String, String> aggLevelDim,

String measure, String measureConstraint, Model …

public static void calculate(String db_name, Model schemasModel, Model dataModel, String

measure, String measureConstraint, boolean materialize)

Step 4: The same serialization (N3) is also used in the materialisation process of the

CONSTRUCT operator for consistency and better interoperability:

if (materialize) {

 String constructString = prefix + NL + "CONSTRUCT { "

 + "?id a qb:Observation; qb:dataSet

ds:dataSet_"+rLevel+"_"+measure+"_"+measureConstraint+" ; "+db_name+":"+rLevel+"

?"+rLevel+"; "+q3a+" "+db_name+":"+measure+" ?"+measure+"}"

 + "WHERE{"

 + " {"

 + SelectConstruct

 + "}"

 + "}";

 Query constructQuery = QueryFactory.create(constructString);

 QueryExecution constr = QueryExecutionFactory.create(constructQuery, m2);

 Model obsModel = constr.execConstruct();

 obsModel.write(System.out);

 OutputStream output = new FileOutputStream(dataWrite_path);

 obsModel.write(output, "N3", null);

The CONSTRUCT and SELECT operators are specific to each F_Operator

implementation and presented separately in the following subsection. The automated

way in which they are build is also described and their application in concrete

105

aggregation queries is also presented alongside the generated outputs. A set of features

and/or clauses specific to SELECT and CONSTRUCT operators and respectively for

the OLAP F_Operators are also introduced.

Due to increasing complexity or weight of the SPARQL queries, through usage of

filters and complex SPARQL operators, the presented design includes only a limited

number of SPARQL operators and complex functions. This is illustrated in Table 6.1:

 F_Roll_up F_Drill_down F_Slice F_Dice

View materialize view materialize view materialize view materialize

SELECT x x x x x x x x

CONSTRUCT x x x x

GROUP x x x x x x x x

DISTINCT x x x x x x x x

BIND x x x x

VALUES x x

IRI x x x x

SUBSTR x x x x

Table 6.1 SPARQL 1.1. included operators and functions in F_Operators implementation

The BIND, IRI and SUBSTR functions are used to support the SPARQL

CONSTRUCT operator. Since these functions are used to build the needed identifiers to

be used in delivering the required graph section. These are not needed in the case of the

“view-only” option of the F_Operators, since in these cases the aggregated values are

only displayed and not added to the graph. Additionally the VALUES function supports

the selection and usage of specific values, in the case of F_Dice the multiple needed

dimension and members.

The definition of the dimensions, levels, members and measures for DB1, which was

introduced and used throughout this work, is introduced below. These definitions are

used for all exemplifications of the operators presented in this chapter. The whole set of

code or data used for the exemplification of this section can be found in Appendix 2.1.

of this work.

Four dimensions are used in the following examples: Time, Location, Household and

Income.

106

Figure 6.5 Dimensions and Levels definitions

Figure 6.6 Sample members of TopoDimension household and income

The definitions of these dimensions are shown in (Figure 6.5) and a few sample

members across both topological dimensions and informational dimensions’ members

are also available in (Figure 6.6) (Figure 6.7) respectively.

Figure 6.7 Sample members of levels in InfoDImensions

#-Dimensions definitions of DB1 based on

IGOLAP Vocabulary

db1:Location a igolap:InfoDimension .

db1:Time a igolap:InfoDimension ;

 rdfs:label "All time "@en.

db1:Household a igolap:TopoDimension;

 igolap:topoDConnectedTo db1:Income .

db1:Income a igolap:TopoDimension ;

 igolap:topoDConnectedTo

db1:Appliance,

 db1:Household .

#--- Sample Levels definitions of DB1,

for InfoDimensions Location and Time

db1:Country a qb4o:LevelProperty ;

 qb4o:inDimension db1:Location ;

 igolap:childLevel db1:Region .

db1:County a qb4o:LevelProperty ;

 qb4o:inDimension db1:Location ;

 qb4o:parentLevel db1:Region ;

 igolap:childLevel db1:City .

[..]

db1:Year a qb4o:LevelProperty,xsd:gYear;

 qb4o:inDimension db1:Time ;

 igolap:childLevel db1:Month .

db1:Month a qb4o:LevelProperty,

xsd:gYearMonth;

 qb4o:inDimension db1:Time ;

qb4o:parentLevel db1:Year ;

 igolap:childLevel db1:Day .

topo:hh106 a igolap:Member ;

 rdfs:label "106"@en ;

 igolap:ofDimension db1:Household ;

 igolap:topoDConnectedTo topo:ukIrang3.

 [..]

topo:ukIrang2 a igolap:Member ;

 rdfs:label "Income range between 10000 and 20000"@en ;

 igolap:ofDimension db1:Income ;

 db1:hasMaxIncome "20000"^^xsd:integer;

 db1:hasMinIncome "10000"^^xsd:integer.

 # --- Sample members for the levels of dimension Location ---

l:uk a igolap:Member ;

 rdfs:label "United Kingdom"@en ;

 qb4o:inLevel db1:Country ;

 igolap:childLevel l:rWestMid ;

 igolap:childLevel l:rSouthWest ;

 igolap:childLevel l:rNorthEast .

l:rWestMid a igolap:Member;

 rdfs:label "West Midlands Region"@en ;

 qb4o:inLevel db1:Region;

 igolap:childLevel l:cWestMid ;

 qb4o:parentLevel l:uk .

t:D01M01Y2011 a igolap:Member ;

 rdfs:label "1st of January 2011@en";

 qb4o:inLevel db1:Day ;

 qb4o:parentLevel t:M01Y2011 ;

 rdfs:value "2011-01-01"^^xsd:date .

 [..]

t:M03Y2011 a igolap:Member ;

 rdfs:label "March 2011@en" ;

 qb4o:inLevel db1:Month ;

 qb4o:parentLevel t:Y2011 ;

 igolap:childLevel t:D01M03Y2011,t:D02M03Y2011,t:D03M03Y2011,t:D04M03Y2011,

t:D05M03Y2011,t:D06M03Y2011,t:D07M03Y2011,t:D08M03Y2011,t:D09M03Y2011,t:D10M03Y2011,

t:D11M03Y2011,t:D12M03Y2011,t:D13M03Y2011,t:D14M03Y2011,t:D15M03Y2011,t:D16M03Y2011,

t:D17M03Y2011,t:D18M03Y2011,t:D19M03Y2011,t:D20M03Y2011,t:D21M03Y2011,t:D22M03Y2011,

t:D23M03Y2011,t:D24M03Y2011,t:D25M03Y2011,t:D26M03Y2011,t:D27M03Y2011,t:D28M03Y2011,

t:D29M03Y2011,t:D30M03Y2011,t:D31M03Y2011 ;

 rdfs:value "2011-03"^^xsd:gYearMonth.

107

The datasets on which the operators applied, can be aggregated to deliver a specific

information from a detailed level, but it required a certain operator to operate on. As a

consequence, the datasets used for each operator are described in each respective

exemplification subsection and available in the Appendix B.

6.3.1 F_Roll_up

In order to exemplify the implementation and operation of the F_Roll_up operator, a

walk-through of the implementation and exemplification through queries is provided in

the following paragraphs. In order to better follow the example and the correctness of

the operator’s functionality, only a small sample of the dataset from the previously

introduced DB1 is used.

The entire data samples, including namespaces, are provided in the Appendix B. For

better readability, the namespaces are generally also omitted in this chapter.

6.3.1.1 Implementation

This section is designed as a walk-through the implementation of the F_Roll_Up

operator. The code presented below is the java code of the operator’s implementation.

Due to the fact that MERGE functionality is distributed throughout the

implementation of the operators and it is introduced in the previous section, in this

subsection the focus is on detailing the construction of the remaining building blocks of

the operator.

As presented in the sequence diagram introduced previously (Figure 6.4), the

remaining components include the validation and construction of the observations based

on SELECT and CONSTRUCT operators based on the materialisation or only viewing

constraints. These components were used in the implementation of the two core

methods of this operator: validate and calculate. As a consequence the definition of the

F_Roll_up operator is implemented as follows:

 public Roll_up(String dbSchemas_folder_path, String dataset_path, String db_name,

 HashMap<String, String> aggLevelDim, String measure, String

 measureConstraint, boolean materialize, String materialize_path)

 {

 Model schemasModel = ModelFactory.createDefaultModel();

 Model dataModel = ModelFactory.createDefaultModel();

108

 if (materialize){

 if (materialize_path!=null){

 dataWrite_path = materialize_path;

 } else {

 dataWrite_path = dbSchemas_folder_path+"\\Dataset_new.ttl";

 }

 }

 schemasModel = load_db(dbSchemas_folder_path, schemasModel);

 dataModel = load_dataSet(dataset_path, dataModel);

 if (validate(db_name, aggLevelDim, measure, measureConstraint,

 schemasModel, dataModel)){

 calculate(db_name, schemasModel, dataModel, measure,

 measureConstraint, materialize);

 }

 schemasModel.close();

 dataModel.close();

 }

Two main aspects of the operator’s design are retrieved in the constructor’s

declaration: on the one side, the database schema and the dataset model are computed

initially separately to reduce the validation time through executing the queries only on

the right subset of the triplets. On the other hand, there is no differentiation between the

topological and informational dimensions’ members in the constructor construction.

This is due to the fact that this information is retrieved in the validation process passed

as a private parameter of the operator to the calculation of the aggregation.

The validate() method makes sure the requested OLAP operation is applicable to the

give schemas and datasets in terms of syntax and grammar.

public static boolean validate(String db_name,

 HashMap<String, String> aggLevelDim, String measure,

 String measureConstraint, Model schemasModel, Model dataModel) {

 Iterator<String> it = aggLevelDim.keySet().iterator();

 if (it.hasNext()) {

 rLevel = it.next();

 rDim = aggLevelDim.get(rLevel);

 try {

 // find the type of the dimension to be aggregated over (Info or Topo) and

 //retrieve the required levels or members on which needs to be operated

 String queryDimensionType = prefix + NL

 + "SELECT ?dimensionType WHERE {" + db_name + ":"

 + rDim + " a ?dimensionType .}";

 Query queryDimension = QueryFactory.create(queryDimensionType);

 QueryExecution qExe = QueryExecutionFactory.create(queryDimension,schemasModel);

 ResultSet dimType = qExe.execSelect();

 QuerySolution dType = dimType.next();

 dimensionType = dType.get("dimensionType").toString();

 if (dimensionType.equalsIgnoreCase(Vocabulary.igolap+ "InfoDimension")) {

 String queryString = prefix + NL

 + "SELECT ?childLevel WHERE {" + db_name + ":"+ rLevel

 + " a qb4o:LevelProperty; qb4o:inDimension " + db_name + ":" + rDim

 + ";igolap:childLevel ?childLevel .}";

 Query query = QueryFactory.create(queryString);

 QueryExecution qe = QueryExecutionFactory.create(query, schemasModel);

 ResultSet results = qe.execSelect();

 while (results.hasNext()) {

 QuerySolution qs = results.next();

 levelChildren.add(qs.get("childLevel").toString());

 }

 if (levelChildren.isEmpty() || levelChildren == null) {

109

 System.out.println("The requiered level doesn't have child levels!");

 return false;

 }

 } else {

 if (dimensionType.equalsIgnoreCase(Vocabulary.igolap+ "TopoDimension")) {

 String queryString = prefix+ NL+ "SELECT ?topoConnected WHERE { "

 + "?topoConnected a igolap:TopoDimension; igolap:topoDConnectedTo"

 + db_name + ":" + rDim + " .}";

 Query query = QueryFactory.create(queryString);

 QueryExecution qe = QueryExecutionFactory.create(query, schemasModel);

 ResultSet results = qe.execSelect();

 boolean areConnected = false;

 while (results.hasNext()) {

 QuerySolution qs = results.next();

 String c=qs.get("topoConnected").toString().replaceAll(Vocabulary.db1,"");

 if (c.equalsIgnoreCase(rLevel)) {areConnected = true;}

 }

 if (areConnected==false) {return areConnected;}

 }

 }

 // validate that child and measure are in the datasets

 String selectTopoString = prefix + NL + "SELECT ?TopoDims "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o igolap:TopoDimension ?TopoDims" + " }";

 Query selectTopoComp = QueryFactory.create(selectTopoString);

 QueryExecution retrieveTopoComp = QueryExecutionFactory.create(selectTopoComp,

dataModel);

 ResultSet topoRes = retrieveTopoComp.execSelect();

 while (topoRes.hasNext()) {

 QuerySolution qs = topoRes.next();

 topos.add(qs.get("TopoDims").toString());

 }

 String selectInfoLevelString = prefix + NL

 + "SELECT ?InfoLvls WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o qb4o:level ?InfoLvls" + " }";

 Query selectInfoComp = QueryFactory.create(selectInfoLevelString);

 QueryExecution retrieveInfoComp = QueryExecutionFactory.create(selectInfoComp,

dataModel);

 ResultSet infoRes = retrieveInfoComp.execSelect();

 while (infoRes.hasNext()) {

 QuerySolution qs = infoRes.next();

 infoLevels.add(qs.get("InfoLvls").toString());}

 if (dimensionType.equalsIgnoreCase(Vocabulary.igolap + "InfoDimension")) {

 for (int i = 0; i < infoLevels.size(); i++) {

 for (int j = 0; j < levelChildren.size(); j++) {

 if (infoLevels.get(i).equalsIgnoreCase(levelChildren.get(j))) {

 rIMember = true;}

 }

 }

 } else if (dimensionType.equalsIgnoreCase(Vocabulary.igolap + "TopoDimension")) {

 for (int i = 0; i < topos.size(); i++) {

 if (topos.get(i).equalsIgnoreCase(Vocabulary.db1 + rDim)) {

 rTMember = true; }

 }

 }

 String selectMeasureString = prefix + NL + "SELECT ?measure "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o qb4o:measure ?measure }";

 Query selectMeasureComp = QueryFactory.create(selectMeasureString);

 QueryExecution retrieveMeasureComp =

 QueryExecutionFactory.create(selectMeasureComp, dataModel);

 ResultSet measureRes = retrieveMeasureComp.execSelect();

 boolean measure_valid = false;

 while (measureRes.hasNext()) {

 QuerySolution qs = measureRes.next();

 String found_measure = qs.get("measure").toString();

 measures.add(found_measure);

 if (found_measure.equalsIgnoreCase(Vocabulary.db1 + measure)) {

 measure_valid = true;

 }

110

 }

 String measureConsString = prefix + NL + "SELECT ?measureAgg "

 + "WHERE {?measureAgg a qb4o:AggregateFunction }";

 Query selectMeasureCostr = QueryFactory.create(measureConsString);

 QueryExecution retrieveMeasureCostr =

 QueryExecutionFactory.create(selectMeasureCostr, schemasModel);

 ResultSet constrains = retrieveMeasureCostr.execSelect();

 boolean exist_constrain = false;

 while (constrains.hasNext()) {

 QuerySolution qs = constrains.next();

 String found_measure = qs.get("measureAgg").toString();

 if (found_measure.equalsIgnoreCase(Vocabulary.qb4o

 + measureConstraint)) {

 exist_constrain = true; }

 }

 if ((measure_valid)&&(exist_constrain)&&((rIMember)||(rTMember))){return true;

 } else { return false; }

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("Dimensions retrieval exception!");

 return false;

 }

} else {

 System.out.println("No given roll-up target!");

 return false;

}}

The measure constraint reflects one of the aggregations functions that the Vocabulary

has to offer, as such in the validation process it is also verified that the requested

aggregation function is a valid one according to the IGOLAP Vocabulary.

After validate() method was run, if all the validation conditions were met, the

calculate() method is called and the following private parameters of the operator are

instantiated:

 static private List<String> levelChildren=new ArrayList<String>();//sublevel required

 static private List<String> topos=new ArrayList<String>();//TopoDimensions in dataset

 static private List<String> infoLevels = new ArrayList<String>();//InfoDimensions

 static private String dimensionType;//Info/TopoDim. aggregated dimension requested

The calculate method builds automatically the SELECT and the CONSTRUCT

request based on two constraints (or input and calculated parameters):

 It depends on the requested dimension over which the aggregation is

performed. It is either topological or informational.

 If there is a request for the generated observations to be written to the

database.

The difference between topological and informational type of dimension does not

affect the template of the SELECT and CONSTRUCT queries, just the way in which

the aggregation relationship is passed to the operators. As such, below the building

111

process of the informational SELECT query and the required changes for the

topological dimensions SELECT is presented.

This is followed by the CONSTRUCT for the materialisation and viewing if no

materialisation required. In the case of this operator no changes are required for the

topological dimensions.

The changes applied for the topological dimensions in the SELECT operator are

highlighted after the presented coded excerpt:

// SELECT

if (dimensionType.equalsIgnoreCase(Vocabulary.igolap + "InfoDimension")) {

 [..]

 Model m2 = ModelFactory.createUnion(schemasModel, dataModel);

 for (int i = 0; i < infoLevels.size(); i++) {

 iLevels.add(infoLevels.get(i).replaceAll(Vocabulary.db1, ""));

 if (!(infoLevels.get(i).equalsIgnoreCase(levelChildren.get(0)))) {

 q1 = q1 + " ?" + iLevels.get(i);

 q3a = q3a+db_name+ ":" + iLevels.get(i) + " ?"+ iLevels.get(i) + ";";

 q1Visual=q1Vis+ " ?" + iLevels.get(i) + "_label";

 q4Visual=q4Vis+"?"+iLevels.get(i)+"rdfs:label ?"+iLevels.get(i)+"_label.";

 }

 }

 for (int i = 0; i < topos.size(); i++) {

 tDims.add(topos.get(i).replaceAll(Vocabulary.db1, ""));

 q1 = q1 + " ?" + tDims.get(i);

 q3a = q3a + db_name + ":" + tDims.get(i) + " ?"+ tDims.get(i) + ";";

 q1Visual = q1Visual + " ?" + tDims.get(i) + "_label";

 q4Visual = q4Visual+"?"+tDims.get(i)+" rdfs:label ?"+tDims.get(i) + "_label .";

 }

 String q1a = " (" + measureConstraint + "(?measure) AS ?"+ measure + ") ";

 String q3b = q3a + db_name + ":" + measure + " ?measure .";

 String q0 = "SELECT DISTINCT ";

 String q0Constr = q0 + "?" + rLevel + " ?id";

 String q0Visual = q0 + "?" + rLevel + "_label";

 String q2 = " WHERE {" + "?o a qb:Observation; ";

 String q3 = "<" + levelChildren.get(0) + "> ?child; ";

 q4 = "?child qb4o:parentLevel ?" + rLevel + ".";

 q4Visual = q4Visual + "?" + rLevel + " rdfs:label?" + rLevel+ "_label .";

 String q5 = "} GROUP BY ";

 String q5Constr = q5 + "?" + rLevel + " ?id" + q1;

 String q5Visual = q5 + "?" + rLevel + "_label" + q1Visual;

 String q4Constr = "BIND (iri(concat(\"" + Vocabulary.ds+ "\",STRAFTER(str(?"+

tDims.get(0) + "), \"#\"),\"_\",STRAFTER(str(?" + rLevel + "),\"#\"))) AS ?id)";

 String SelectConstruct = q0Constr + q1+q1a+q2+q3+q3b+q4+q4Constr + q5Constr;

 String SelectVisualize = q0Visual + q1Visual+q1a+q2+q3+q3b+q4+q4Visual+ q5Visual;

The only change in the SELECT operator for the topological dimension is

highlighted above and presented below:

if (dimensionType.equalsIgnoreCase(Vocabulary.igolap+ "TopoDimension")) {

[..]

String q3 = db_name + ":" + rDim + " ?topoM;";

q4 = "?topoM igolap:topoDConnectedTo ?" + rLevel + ".";

This is made possible due to the extensions to the Vocabulary added by the IGOLAP

vocabulary as presented in Chapter 5.

112

If the materialisation is required, the CONSTRUCT operator is dynamically built as

follows:

// CONSTRUCT

String constructString = prefix+NL+"CONSTRUCT {?id a qb:Observation; qb:dataset"

 +ds:dataSet_"+rLevel+"_"+measure+ "_"+ measureConstraint+ " ; "+db_name+ ":"

 +rLevel+" ?"+rLevel+"; "+q3a+" "+db_name+ ":" + measure + " ?"+ measure + "}"

 + "WHERE{" + " {"

 + SelectConstruct + "}" + "}";

[..]

Additionally to writing the construct query automatically for OLAP operators, the

schema of the newly developed operators is in this case also automatically generated at

run-time.

// CONSTRUCT observations new data structure and dataset definition

String s = "ds:DailyHhECons a qb:DataStructureDefinition;" + NL

 + "qb:Component [igolap:TopoDimension " + db_name + ":" + rLevel + "];" + NL;

 for (int j = 0; j < iLevels.size(); j++) {

 s = s + "qb:Component [qb4o:level "+db_name+":"+ iLevels.get(j) + "];" + NL;

 }

 for (int j = 0; j < tDims.size(); j++) {

 if (!(tDims.get(j).equalsIgnoreCase(rDim))) {

 s=s+"qb:Component [igolap:TopoDimension "+db_name+":"+tDims.get(j)+"];"+ NL;

 }

 }

 s = s + "qb:Component [qb4o:measure " + db_name + ":"+ measure + ";" + NL

 + "qb4o:hasAggregateFunction qb4o:"+ measureConstraint + "]." + NL;

 String datasetSchema = s + "ds:dataSet_" + rLevel + "_"+ measure + "_"

 +measureConstraint+ " a qb:DataSet;" + NL+ " qb:structure ds:DailyHhECons.";

 output.write(datasetSchema.getBytes(Charset.forName("UTF-8")));

The call of the F_Roll_up operator is identical in this case for aggregating over both

topological and informational.

 public static void main(String[] args) {

 HashMap<String, String> aggLevelDim = new HashMap<String, String>();

 aggLevelDim.put("Month", "Time");

 HashMap<String, String> aggTopoDims = new HashMap<String, String>();

 aggTopoDims.put("Income", "Household");

 boolean materialize = true;

 String measureConstraint="AVG";

 String dbSchemas_path= "… schemas\\";

 String dataset_path="… DB1\\data\\Dataset_Day_Cons.ttl";

 String dataWrite_path_s="… DB1\\data\\Dataset_Month_Avg.ttl";

 String measure = "eCons";

 // can be use either aggLevelDim parameter for InfoDimensions or aggTopoDims for

TopoDimensions

 new Roll_up(dbSchemas_path,dataset_path,"db1", aggLevelDim, measure,

measureConstraint, materialize, dataWrite_path_s);

 }

The generation of the SPARQL queries, through the execution of the above code for

the SELECT and CONSTRUCT, are presented for specific attributes, as required in the

queries introduced in the next section.

113

6.3.1.2 Exemplification

This subsection introduces a set of queries that require rolling up aggregations on

both topological and informational dimensions. The F_Roll_up operator is used to

deliver these aggregations on the given schemas of the datasets and databases, and the

definition of the members, which was described previously. This section also provides

example use of the validate() and the calculate() methods.

One observation structure from the dataset used is presented below and the entire

data used for this exemplification can be found in Appendix B2.2.

ds:o1 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D08M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "4.01"^^xsd:decimal .

The validate() method can be summarised in six Steps as follows:

Step 1.retrieve dimensionType of the dimension to which the required level belongs.

Step2.

 If dimensionType equals “InfoDimension” then {

 Retrieve childLevels of required Level;

 }

 If dimensionType equals “TopoDimension” then{

 Validate if the target TopoDimension is “topoConnected” to the start TopoDimension

 }

Step 3.

 For all (dimension in dataset) {

 Find if chidlLevels or dimension is one of them;}

Step 4.

 For all (measure in dataset){

 Find if required dimension is one of them;}

Step 5.

 For all (AggregatedFunctions defined in IGOLAP){

 Find if measureConstraint is one of them;}

Step 6. If Step1 to 5 true then validation returns true.

Query 1: Monthly energy consumption of a dataset (cube) containing daily

consumption measurements.

In this query, a roll-up is used to aggregate data from the granularity level “Day” to

the level “Month” with the summing aggregation function.

For this the roll-up function call takes the following values for the relevant

parameters:

114

aggLevelDim: “Month”, “Time”

measure: “eCons”

measureConstraint: “SUM”

In this query example the validation method delivers:

Step 1.retrieve dimensionType of dimension “Time”.

 Returns: InfoDimension

Step2.

 If “InfoDimension” equals “InfoDimension” then {

 Retrieve childLevels of required Level;

 }

 Returns: childLevels ={“Day”}

 If “InfoDimension” equals “TopoDimension”;

Returns: true

Step 3.

 For all (dimension or levels in dataset) {

 If ”Day” in {Day, City, Household}}

Returns: true

Step 4.

 For all (measure in dataset){

 If “eCons” in {“eCons”}}

Returns: true

Step 5.

 For all (AggregatedFunctions defined in IGOLAP){

 If “SUM” in {“SUM”, “AVG”, “COUNT”, “MIN”, “MAX”};}

Returns: true

Step 6. If Step 2 to 5 are true then validation returns true.

Since the validate() method presented above passed, the second method, calculate()

is called. For this query, the calculate() method builds the SELECT and/or

CONSTRUCT queries as illustrated below:

SELECT DISTINCT ?Month_label

?City_label ?Household_label

(SUM(?measure) AS ?eCons)

 WHERE {

 ?o rdf:type qb:Observation .

 ?o db1:Day ?child .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?measure .

 ?child qb4o:parentLevel ?Month

.

 ?City rdfs:label ?City_label .

 ?Household rdfs:label

?Household_label .

 ?Month rdfs:label ?Month_label

 }

 GROUP BY ?Month_label

?City_label ?Household_label

CONSTRUCT

{?id rdf:type qb:Observation .

 ?id qb:dataSet ds:dataSet_Month_eCons_SUM .

 ?id db1:Month ?Month .

 ?id db1:City ?City .

 ?id db1:Household ?Household.

 ?id db1:eCons ?eCons .}

 WHERE {{ SELECT DISTINCT ?Month ?id ?City

?Household (SUM(?measure) AS ?eCons)

 WHERE {?o rdf:type qb:Observation .

 ?o db1:Day ?child .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?measure .

 ?child qb4o:parentLevel ?Month

 BIND(iri(concat("http://www.energydb.eu/igola

p/Data/DataSets#",strafter(str(?Household),

"#"),"_",strafter(str(?Month), "#"))) AS ?id)

 }

GROUP BY ?Month ?id ?City?Household

 }}

115

 The output of the function is provided below for both values of the parameter

materialize:

materialize = false;

| Month_label | City_label | Household_label | eCons |

===

| "March 2011@en" | "Birmingham"@en | "106"@en | 45.80 |

| "March 2011@en" | "Birmingham"@en | "2"@en | 185.90 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 395.63 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 185.50 |

| "February 2011@en" | "Birmingham"@en | "2"@en | 231.07 |

| "April 2011@en" | "Birmingham"@en | "119"@en | 31.30 |

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

ds:dataSet_Month_eCons_SUM a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:hh119_M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_SUM ;

 db1:City l:birm ;

 db1:Household topo:hh119 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 395.63 .

ds:hh2_M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_SUM ;

 db1:City l:birm ;

 db1:Household topo:hh2 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 231.07 .

ds:hh154_M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_SUM ;

 db1:City l:birm ;

 db1:Household topo:hh154 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 185.50 .

ds:hh2_M03Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_SUM ;

 db1:City l:birm ;

 db1:Household topo:hh2 ;

 db1:Month t:M03Y2011 ;

 db1:eCons 185.90 .

[..]

Query 2: Average daily consumption based on households’ income range.

This query requires a roll_up aggregation across topological dimensions to generate

the desired outcomes. In the case of topological dimension, these do not have hierarchy

levels and as such the aggregation happens based on the dimensions’ connection

relationship to another topological dimension.

116

 Income is a topological dimension in this database, but its members have no

measure relating to energy consumption. Additionally the Household topological

dimension has members which are connected with members of the topological

dimension Income. As such, it is desired to perform a roll up aggregation in which

members of the Household dimension are grouped based on their relationship with the

same Income dimension members. The output should be the different Income ranges

and the corresponding average energy consumption for that range.

For this query, the roll up function call takes the following values for the relevant

parameters:

aggLevelDim: “Income”, “Household”

measure: “eCons”

measureConstraint: “AVG”

These parameters are passed to the validate() method which performs the validation

process. This process is illustrated below.

Step 1.retrieve dimensionType of dimension “Household”.

Returns: TopoDimension

Step2.

 If “TopoDimension” equals “InfoDimension”;

 If “TopoDimension” equals “TopoDimension” then {

 if “Household igolap:topoDConnectedTo Income”;

 }

Returns: true

Step 3.

 For all (dimension or levels in dataset) {

 If ”Household” in {Day, City, Household}}

Returns: true

Step 4.

 For all (measure in dataset){

 If “eCons” in {“eCons”}}

Returns: true

Step 5.

 For all (AggregatedFunctions defined in IGOLAP){

 If “SUM” in {“SUM”, “AVG”, “COUNT”, “MIN”, “MAX”};}

Returns: true

Step 6. If Step 2 to 5 are true then validation returns true.

Applying the F_Roll_up operator with both visualisation and materialisation options,

produces the specific SELECT and CONSTRUCT SPARQL queries as illustrated.

117

The outcome of these queries, and the core of the F_Roll_up operator generating

them, is presented as follows: the first instance shows the visualisation outcome and the

second instance shows a fully new generated dataset.

materialize = false;

--

| Income_label | City_label | Day_label | eCons |

==

| "Income range between

60000 and 70000"@en | "Birmingham"@en | "10th of March 2011@en" | 4.98 |

| "Income range between

60000 and 70000"@en | "Birmingham"@en | "11th of March 2011@en" | 13.66 |

[..]

| "Income range between

40000 and 50000"@en | "Birmingham"@en | "10th of February 2011@en" | 19.06 |

| "Income range between

40000 and 50000"@en | "Birmingham"@en | "11th of April 2011@en" | 3.22 |

[..]

| "Income range between

10000 and 20000"@en | "Birmingham"@en | "10th of February 2011@en" | 20.88 |

| "Income range between

10000 and 20000"@en | "Birmingham"@en | "11th of February 2011@en" | 16.19 |

--

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [igolap:TopoDimension db1:Income];

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:level db1:Day];

qb:Component [[igolap:TopoDimension db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:AVG].

ds:dataSet_Income_eCons_AVG a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:_ukIrang5_birm_D15M04Y2011

 a qb:Observation ;

 qb:dataSet ds:dataSet_Income_eCons ;

SELECT DISTINCT ?Income_label

?City_label ?Day_label

(AVG(?measure) AS ?eCons)

 WHERE

 { ?o rdf:type qb:Observation .

 ?o db1:Household ?topoM .

 ?o db1:City ?City .

 ?o db1:Day ?Day .

 ?o db1:eCons ?measure .

 ?topoM igolap:topoDConnectedTo

?Income .

 ?City rdfs:label ?City_label .

 ?Day rdfs:label ?Day_label .

 ?Income rdfs:label

?Income_label

}

GROUP BY ?Income_label

?City_label ?Day_label

CONSTRUCT

{?id rdf:type qb:Observation .

 ?id qb:dataSet ds:dataSet_Income_eCons .

 ?id db1:Income ?Income .

 ?id db1:City ?City .

 ?id db1:Day ?Day .

 ?id db1:eCons ?eCons .}

 WHERE { { SELECT DISTINCT ?Income ?id ?City

?Day (AVG(?measure) AS ?eCons)

 WHERE{ ?o rdf:type qb:Observation .

 ?o db1:Household ?topoM .

 ?o db1:City ?City .

 ?o db1:Day ?Day .

 ?o db1:eCons ?measure .

 ?topoM igolap:topoDConnectedTo ?Income

 BIND(iri(concat("http://www.energydb.eu/igola

p/Data/DataSets#", "_",strafter(str(?Income),

"#"), "_", strafter(str(?City), "#"), "_",

strafter(str(?Day), "#"))) AS ?id)

}

GROUP BY ?Income ?id ?City ?Day

}}

118

 db1:City l:birm ;

 db1:Day t:D15M04Y2011 ;

 db1:Income topo:ukIrang5 ;

 db1:eCons 2.68 .

ds:_ukIrang5_birm_D03M02Y2011

 a qb:Observation ;

 qb:dataSet ds:dataSet_Income_eCons ;

 db1:City l:birm ;

 db1:Day t:D03M02Y2011 ;

 db1:Income topo:ukIrang5 ;

 db1:eCons 14.80 .

ds:_ukIrang7_birm_D05M03Y2011

 a qb:Observation ;

 qb:dataSet ds:dataSet_Income_eCons ;

 db1:City l:birm ;

 db1:Day t:D05M03Y2011 ;

 db1:Income topo:ukIrang7 ;

 db1:eCons 13.36 .

ds:_ukIrang2_birm_D26M02Y2011

 a qb:Observation ;

 qb:dataSet ds:dataSet_Income_eCons ;

 db1:City l:birm ;

 db1:Day t:D26M02Y2011 ;

 db1:Income topo:ukIrang2 ;

 db1:eCons 9.46 .

[..]

Query 3: Number of days in a month that have a recorded energy consumption

In this query, the aggregation needs to make use of the COUNT aggregation function

that will be applied on the aggregated level Month over its childLevels Day.

Furthermore the topological dimension “Household” requested in the query needs only

to be presented in the provided dataset of observations.

The steps are as described in the previous queries, as such, the above stages are only

referenced here.

Passed parameters to the F_Roll_up operator:

aggLevelDim: “Month”, “Time”

measure: “eCons”

measureConstraint: “COUNT”

Validation phase with the given parameters:

Step 1.retrieve dimensionType of dimension “Time”.

 Returns: InfoDimension

Step2.

 If “InfoDimension” equals “InfoDimension” then {

 Retrieve childLevels of required Level;

 }

 Returns: childLevels ={“Day”}

 If “InfoDimension” equals “TopoDimension”;

Returns: true

Step 3.

 For all (dimension or levels in dataset) {

 If ”Day” in {Day, City, Household}}

119

Returns: true

Step 4.

 For all (measure in dataset){

 If “eCons” in {“eCons”}}

Returns: true

Step 5.

 For all (AggregatedFunctions defined in IGOLAP){

 If “SUM” in {“SUM”, “AVG”, “COUNT”, “MIN”, “MAX”};}

Returns: true

Step 6. If Step 2 to 5 are true then validation returns true.

Generated queries by F_Roll_up operator:

In this case as well, the “pretty” (well-formatted) version for visualisation of the

output is first presented, followed by the materialised output of the same query.

materialize = false;

--

| Month_label | City_label | Household_label | eCons |

==

| "March 2011@en" | "Birmingham"@en | "106"@en | 6 |

| "March 2011@en" | "Birmingham"@en | "2"@en | 17 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 22 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 28 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 18 |

| "February 2011@en" | "Birmingham"@en | "2"@en | 15 |

| "April 2011@en" | "Birmingham"@en | "119"@en | 15 |

--

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:level db1:Day];

qb:Component [[igolap:TopoDimension db1:Household];

qb:Component [qb4o:measure db1:eCons;

SELECT DISTINCT ?Month_label

?City_label ?Household_label

(COUNT(?measure) AS ?eCons)

 WHERE

 { ?o rdf:type qb:Observation .

 ?o db1:Day ?child .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?measure .

 ?child qb4o:parentLevel ?Month

.

 ?City rdfs:label ?City_label .

 ?Household rdfs:label

?Household_label .

 ?Month rdfs:label ?Month_label

 }

 GROUP BY ?Month_label

?City_label ?Household_label

CONSTRUCT { ?id rdf:type qb:Observation .

 ?id qb:dataSet ds:dataSet_Month_eCons_COUNT .

 ?id db1:Month ?Month .

 ?id db1:City ?City .

 ?id db1:Household ?Household .

 ?id db1:eCons ?eCons .}

 WHERE { { SELECT DISTINCT ?Month ?id ?City

?Household (COUNT(?measure) AS ?eCons)

 WHERE {

 ?o rdf:type qb:Observation .

 ?o db1:Day ?child .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?measure .

 ?child qb4o:parentLevel ?Month

 BIND(iri(concat("http://www.energydb.eu/ig

olap/Data/DataSets#",

strafter(str(?Household), "#"), "_",

strafter(str(?Month), "#"))) AS ?id)

 }

 GROUP BY ?Month ?id ?City ?Household

 }}

120

qb4o:hasAggregateFunction qb4o:COUNT].

ds:dataSet_Month_eCons_COUNT a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:hh2_M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_COUNT ;

 db1:City l:birm ;

 db1:Household topo:hh2 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 15 .

ds:hh154_M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_COUNT ;

 db1:City l:birm ;

 db1:Household topo:hh154 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 18 .

ds:hh106_M03Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_COUNT ;

 db1:City l:birm ;

 db1:Household topo:hh106 ;

 db1:Month t:M03Y2011 ;

 db1:eCons 6 .

ds:hh2_M03Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_COUNT ;

 db1:City l:birm ;

 db1:Household topo:hh2 ;

 db1:Month t:M03Y2011 ;

 db1:eCons 17 .

6.3.2 F_DRILL Operator

6.3.2.1 Implementation

In order to achieve the expected functionality of a drill-down operator, the F_Drill

operator that is introduced in this work needs to navigate twice through the datasets. In

the first instance, it needs to retrieve the data structure definition of the current set and

then find the matching observation describing the deeper level of one dimension, while

still connected to the dimensions from the initial set.

For example, in the code from Extract 7 it is exemplified the data structure definition

from input data and the targeted data structure definition after the drill-down operation.

121

Extract 7:

The only difference between the above structures is the level of details on one of the

informational dimensions, in the above case.

Since the F_Drill operator is implemented to retrieve the dataset structure and

members from an input dataset and to retrieve the members representing at a deeper

granularity with the same data structure, it needs to have access to two different set of

data. Firstly to the input dataset and secondly to the entire datasets from the database in

order to identify the relevant observations.

In order to deliver this, the constructor has three data input parameters as:

 location of the database schema

 initial aggregation location

 location of all other datasets in the targeted database

In the case of the validate() method, this is implemented in the same way as in the

F_Roll_up operator. Consequently this is not illustrated in this section, but the

implementation source code is made available in the Appendix B of this work, together

with the entire F_Drill operator and all other Federated operators implementation,

available to download from the online repository provided.

In the case of the calculate() method, delivering the SELECT and CONSTRUCT

computation, the handling of the topological and informational dimensions require only

one difference in the SELECT construction. For this reason, the construction of the

SELECT, both for visualising or input for the CONSTRUCT, is illustrated for the

Input dataset data structure

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure

db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

Targeted dataset data structure

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure

db1:eCons].

122

informational dimension handling. Nevertheless, the change required for topological

dimension handling is highlighted and provided as well.

public static void calculate(String db_name, Model schemasModel, Model dataModel, String

measure, boolean materialize) {

if (dimensionType.equalsIgnoreCase(DB1_Vocabulary.igolap + "InfoDimension")) {

try {

 List<String> iLevels = new ArrayList<String>();

 List<String> tDims = new ArrayList<String>();

 String q1 = "";

 String q3a = "";

 String d_q3a ="";

 String q4 = "";

 String q1Visual = "";

 String q4Visual = "";

 for (int i = 0; i < infoLevels.size(); i++) {

 iLevels.add(infoLevels.get(i).replaceAll(DB1_Vocabulary.db1, ""));

 if (!(infoLevels.get(i).equalsIgnoreCase(levelsParent.get(0)))) {

 q1= q1 + " ?" + iLevels.get(i);

 q3a= q3a + db_name + ":" + iLevels.get(i) + " ?"+ iLevels.get(i) + ";";

 d_q3a =d_q3a+db_name+":"+iLevels.get(i)+" ?"+ iLevels.get(i) + "_cons ;";

 q1Visual=q1Visual + " ?" + iLevels.get(i) + "_label";

 q4Visual=q4Visual+"?"+iLevels.get(i)+" rdfs:label ?"+iLevels.get(i)+"_label .";

 }

 }

 for (int i = 0; i < topos.size(); i++) {

 tDims.add(topos.get(i).replaceAll(DB1_Vocabulary.db1, ""));

 q1 = q1 + " ?" + tDims.get(i);

 q3a = q3a + db_name + ":" + tDims.get(i) + " ?" + tDims.get(i) + ";";

 d_q3a = d_q3a +db_name+":"+tDims.get(i)+" ?"+tDims.get(i)+ "_cons ;";

 q1Visual = q1Visual +" ?" + tDims.get(i)+ "_label";

 q4Visual = q4Visual+"?" +tDims.get(i)+" rdfs:label ?"+ tDims.get(i)+"_label .";

 }

 String q1a = " ?" + measure + " ";

 String q3b = d_q3a+db_name +":"+measure+" ?measure_cons ."+"?o2 a qb:Observation; "+

db_name+":"+rLevel+" ?"+rLevel+"; "+q3a+ db_name+ ":" +measure+" ?"+measure+" .";

 String q0 = "SELECT DISTINCT ";

 String q0Constr = q0 + "?" + rLevel + " ?id";

 String q0Visual = q0 + "?" + rLevel + "_label" ;

 String q2 = " WHERE {" + "?o a qb:Observation; " ;

 String q3 = "<" + levelsParent.get(0) + "> ?parent; " ;

 q4 = "?parent igolap:childLevel ?" + rLevel + ". " ;

 q4Visual = q4Visual + "?" + rLevel + " rdfs:label?" + rLevel + "_label .";

 String q5 = "} GROUP BY ?"+measure+" ";

 String q5Constr = q5 + "?" + rLevel + " ?id" + q1;

 String q5Visual = q5 + "?" + rLevel + "_label" + q1Visual;

 String q4Constr = "BIND (iri(concat(\"" + DB1_Vocabulary.ds+ "\",STRAFTER(str(?" +

tDims.get(0) + "), \"#\"),\"_\",STRAFTER(str(?" + rLevel + "),\"#\"))) AS ?id)";

 String SelectConstruct = q0Constr+q1+ q1a+ q2+ q3+ q3b+ q4+ q4Constr+ q5Constr;

 String SelectVisualize = q0Visual+q1Visual+q1a+q2+ q3+q3b+ q4+ q4Visual+ q5Visual;

In the case of topological dimension, the highlighted section is implemented as

provided below:

q4 = "?topoM igolap:topoDConnectedTo ? " + rLevel + " .";

In regards to the CONSTRUCT, there is no change in the construction of the

SPARQL operator. With all these, there is a change in regards of data structure

definition accompanying the newly obtained dataset.

The implementation of the CONSTRUCT is introduced below:

123

if (materialize) {

 // CONSTRUCT

 String constructString = prefix + NL + "CONSTRUCT { "

 + "?id a qb:Observation; qb:dataSet ds:dataSet_"

 + rLevel + "_" + measure + " ; " + db_name + ":" + rLevel + " ?" + rLevel

 + "; " + q3a + " " + db_name + ":" + measure + " ?"

 + measure + "}" + "WHERE{" + " {" + SelectConstruct + "}" + "}";

 Query constructQuery = QueryFactory.create(constructString);

 QueryExecution constr = QueryExecutionFactory.create(constructQuery, m2);

 OutputStream output = new FileOutputStream(dataWrite_path);

 obsModel.write(output, "N3", null);

With regards to the data structure definition, again there is only one change required

for handling the two types of dimensions. As such, only one implementation is

introduced. Time the topological dimension is used for illustration, with highlight on the

required change. The implementation of the change is also provided.

String s = “ds:DailyHhECons a qb:DataStructureDefinition;”+ NL

 + “qb:Component [igolap:TopoDimension “ + db_name + “:” + rLevel + “];”;

 for (int j = 0; j < iLevels.size(); j++) {

 s = s + “qb:Component [qb4o:level “ + db_name + “:” + iLevels.get(j) + “];” ;

 }

 for (int j = 0; j < tDims.size(); j++) {

 if (!(tDims.get(j).equalsIgnoreCase(rDim))) {

 s = s +”qb:Component [igolap:TopoDimension “+db_name +”:”+tDims.get(j)+”];”+NL;

 }

 }

 s = s + “qb:Component [qb4o:measure “ + db_name + “:”+ measure + “].” + NL;

 String datasetSchema = s + “ds:123ataset_” + rLevel + “_” + measure + “ a qb:DataSet;”

+ NL+ “ qb:structure ds:DailyHhECons.”;

 output.write(datasetSchema.getBytes(Charset.forName(“UTF-8”)));

In order to build the data structure definition of the informational dimension, the

change in the highlighted portion it is the following:

String s = "ds:DailyHhECons a qb:DataStructureDefinition;"+ NL

 + "qb:Component [qb4o:level " + db_name + ":" + rLevel + "];";

Each of the SELECT and CONSTRUCT are exemplified in the following section.

6.3.2.2 Exemplification

In order to exemplify the F_Drill operators a set of queries was selected. In the

previous section, it was mentioned that the differences are limited and only on the level

of handling topological and informational dimensions. As the drill operator operates on

only one dimension at a time, it is sufficient and relevant to have two queries defined,

one for drill operation on a topological dimension and one for drill operation on an

informational dimension.

124

These two queries are exemplified for both a visualisation (SELECT only) request as

well as for a materialisation (CONSTRUCT) request.

Query 4: Retrieve the days that had an energy consumption input registered, and

their values, used to aggregate the monthly energy consumption.

In this query the input dataset, or the start point dataset is actually the output dataset

from Query 1.

The passed parameters to the operator’s call are:

deAggLevelDim: "Day", "Time"

Given these parameters and the required datasets paths, the F_Drill operator

computes the following SELECT and CONSTRUCT SPARQL queries:

Based on these SPARQL queries we have the output as for the SELECT only marked as

materialize=false and for CONSTRUCT true. A sample of this outputs is provided

below:

materialize = false;

--

| Day_label | City_label | Household_label | eCons |

==

| "15th of February 2011@en" | "Birmingham"@en | "119"@en | 14.94 |

| "17th of March 2011@en" | "Birmingham"@en | "2"@en | 12.89 |

| "21st of February 2011@en" | "Birmingham"@en | "106"@en | 6.19 |

| "27th of February 2011@en" | "Birmingham"@en | "154"@en | 6.64 |

| "6th of March 2011@en" | "Birmingham"@en | "2"@en | 6.02 |

| "2nd of February 2011@en" | "Birmingham"@en | "2"@en | 16.67 |

SELECT DISTINCT ?Day_label

?City_label ?Household_label

?eCons

 WHERE {

?o rdf:type qb:Observation .

?o db1:Month ?parent .

?o db1:City ?City_cons .

?o db1:Household ?Household_cons.

?o db1:eCons ?measure_cons .

?o2 rdf:type qb:Observation .

?o2 db1:Day ?Day .

?o2 db1:City ?City .

?o2 db1:Household ?Household .

?o2 db1:eCons ?eCons .

?parent igolap:childLevel ?Day .

?City rdfs:label ?City_label .

?Household rdfs:label

?Household_label .

?Day rdfs:label ?Day_label

 } GROUP BY ?eCons ?Day_label

?City_label ?Household_label

CONSTRUCT { ?id rdf:type qb:Observation .

?id qb:dataSet ds:dataSet_Day_eCons .

?id db1:Day ?Day .

?id db1:City ?City .

?id db1:Household ?Household .

?id db1:eCons ?eCons .}

 WHERE{ {SELECT DISTINCT ?Day ?id ?City

?Household ?eCons

 WHERE

 { ?o rdf:type qb:Observation .

 ?o db1:Month ?parent .

 ?o db1:City ?City_cons .

 ?o db1:Household ?Household_cons .

 ?o db1:eCons ?measure_cons .

 ?o2 rdf:type qb:Observation .

 ?o2 db1:Day ?Day .

 ?o2 db1:City ?City .

 ?o2 db1:Household ?Household .

 ?o2 db1:eCons ?eCons .

 ?parent igolap:childLevel ?Day

 BIND(iri(concat("http://www.energydb.eu/igola

p/Data/DataSets#", strafter(str(?Household),

"#"), "_", strafter(str(?Day), "#"))) AS ?id)

 }

 GROUP BY ?eCons ?Day ?id ?City ?Household }}

125

| "16th of February 2011@en" | "Birmingham"@en | "119"@en | 12.59 |

[..]

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension db1:Household];

qb:Component [qb4o:measure db1:eCons].

ds:dataSet_Day_eCons a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:hh119_D05M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Day_eCons ;

 db1:City l:birm ;

 db1:Day t:D05M02Y2011 ;

 db1:Household topo:hh119 ;

 db1:eCons 12.55 .

ds:hh119_D20M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Day_eCons ;

 db1:City l:birm ;

 db1:Day t:D20M02Y2011 ;

 db1:Household topo:hh119 ;

 db1:eCons 7.91 .

ds:hh106_D16M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Day_eCons ;

 db1:City l:birm ;

 db1:Day t:D16M02Y2011 ;

 db1:Household topo:hh106 ;

 db1:eCons 5.03 .

[..]

Query 5: From the daily average energy consumption per Income, retrieve the

households and their daily energy consumption for the recorded Income ranges.

For this query the input dataset, or the start point dataset, is the output dataset from

Query 2. This query requires a navigation through topological dimensions. From an

Income dimension view to a Household dimension view, while keeping the other

dimensions at the same level.

For retrieving topological dimension’s member, it is needed as in the case of

F_Roll_up, to be given the two topological dimensions, describing to which from

which topological dimension I want to navigate.

deAggTopoDim: "Household", "Income"

Using these parameters and the required datasets paths, the F_Drill operator

computes the below SELECT and CONSTRUCT SPARQL queries:

126

The outcomes of the above computed SPARQL queries will generate in this case the

outcome which is sampled below:

materialize = false;

--

| Household_label | Day_label | City_label | eCons |

==

| "119"@en | "15th of February 2011@en" | "Birmingham"@en | 14.94 |

| "2"@en | "17th of March 2011@en" | "Birmingham"@en | 12.89 |

| "106"@en | "21st of February 2011@en" | "Birmingham"@en | 6.19 |

| "154"@en | "27th of February 2011@en" | "Birmingham"@en | 6.64 |

| "2"@en | "6th of March 2011@en" | "Birmingham"@en | 6.02 |

[..]

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [igolap:TopoDimension db1:Household];

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:measure db1:eCons].

ds:dataSet_Household_eCons a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:_hh106_D09M02Y2011_birm

 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons ;

 db1:City l:birm ;

 db1:Day t:D09M02Y2011 ;

 db1:Household topo:hh106 ;

 db1:eCons 6.73 .

ds:_hh2_D28M02Y2011_birm

 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons ;

 db1:City l:birm ;

 db1:Day t:D28M02Y2011 ;

 db1:Household topo:hh2 ;

 db1:eCons 13.46 .

SELECT DISTINCT ?Household_label

?Day_label ?City_label ?eCons

 WHERE { ?o rdf:type

qb:Observation .

 ?o db1:Income ?topoM .

 ?o db1:Day ?Day_cons .

 ?o db1:City ?City_cons .

 ?o db1:eCons ?measure_cons .

 ?o2 rdf:type qb:Observation .

 ?o2 db1:Household ?Household .

 ?o2 db1:Day ?Day .

 ?o2 db1:City ?City .

 ?o2 db1:eCons ?eCons .

 ?topoM igolap:topoDConnectedTo

?Household .

?City rdfs:label ?City_label .

?Household rdfs:label

?Household_label .

?Day rdfs:label ?Day_label

 } GROUP BY ?eCons ?Day_label

?City_label ?Household_label

CONSTRUCT { ?id rdf:type qb:Observation .

?id qb:dataSet ds:dataSet_Household_eCons .

?id db1:Household ?Household .

?id db1:Day ?Day .

?id db1:City ?City .

?id db1:eCons ?eCons .}

 WHERE {{ SELECT DISTINCT ?Household ?id ?Day

?City ?eCons

 WHERE { ?o rdf:type qb:Observation .

 ?o db1:Income ?topoM .

 ?o db1:Day ?Day_cons .

 ?o db1:City ?City_cons .

 ?o db1:eCons ?measure_cons .

 ?o2 rdf:type qb:Observation .

 ?o2 db1:Household ?Household .

 ?o2 db1:Day ?Day .

 ?o2 db1:City ?City .

 ?o2 db1:eCons ?eCons .

 ?topoM igolap:topoDConnectedTo

?Household .

 BIND(iri(concat("http://www.energydb.eu/igola

p/Data/DataSets#", "_",

strafter(str(?Household), "#"), "_",

strafter(str(?Day), "#"), "_",

strafter(str(?City), "#"))) AS ?id)

 } GROUP BY ?eCons ?Household ?id ?Day ?City }}

127

ds:_hh106_D20M02Y2011_birm

 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons ;

 db1:City l:birm ;

 db1:Day t:D20M02Y2011 ;

 db1:Household topo:hh106 ;

 db1:eCons 3.92 .

[..]

6.3.3 F_SLICE Operator

6.3.3.1 Implementation

In the case of the Slice operators, since it operates on the members’ level from a

given cube or dataset, it is not relevant for the SELECT operator if the members

required for the Slice operation come from a topological or from an informational

dimension.

Since TopoDimensions do not have levels, the members in this case belong to the

dimension itself. This is allowed due to the characteristics introduced through the

defined IGOLAP Vocabulary.

In the case of F_Slice operator, the validate() method has a different focus. This is to

identify that the required members and measures are well defined and available in the

data so that the operation can be performed. Since a member can belong to a topological

dimension directly or to a level in an informational dimension, the one validation of a

member’s declaration in the method is as follows.

public static boolean validate(String db_name, HashMap<String, String> aggMemberLevel,

Model schemasModel, Model dataModel) {

 Iterator<String> it = aggMemberLevel.keySet().iterator();

 if (it.hasNext()) {

 rMember = it.next();

 rLevel = aggMemberLevel.get(rMember);

 try {

 String levelVal =prefix + NL

 + "SELECT ?lType WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o ?lType "+db_name+":"+rLevel+ "}";

 Query queryDimension = QueryFactory.create(levelVal);

 QueryExecution qExe = QueryExecutionFactory.create(queryDimension, dataModel);

 ResultSet levelsType = qExe.execSelect();

 if (levelsType.hasNext()){

 QuerySolution solLevel = levelsType.next();

 String c = solLevel.get("lType").toString().replaceAll(DB1_Vocabulary.qb, "");

 c = c.replaceAll(DB1_Vocabulary.igolap, "");

 c= c.replaceAll(DB1_Vocabulary.qb4o, "");

 if (c!=null){

 switch (c) {

 case "level": levelType = "InfoDimension"; break;

128

 case "TopoDimension": levelType = "TopoDimension";break;

 default: System.out.println("Invalid Vocab used!");break;

 }

 }

 }else{

 System.out.println("Level doesn't exist!");

 return false;

 }

 String selectTopoString = prefix + NL + "SELECT ?TopoDims "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o igolap:TopoDimension ?TopoDims" + " }";

 Query selectTopoComp = QueryFactory.create(selectTopoString);

 QueryExecution retrieveTopoComp = QueryExecutionFactory.create(selectTopoComp,

dataModel);

 ResultSet topoRes = retrieveTopoComp.execSelect();

 while (topoRes.hasNext()) {

 QuerySolution qs = topoRes.next();

 topos.add(qs.get("TopoDims").toString());

 }

 String selectInfoLevelString = prefix + NL + "SELECT ?InfoLvls "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o qb4o:level ?InfoLvls" + " }";

 Query selectInfoComp = QueryFactory.create(selectInfoLevelString);

 QueryExecution retrieveInfoComp = QueryExecutionFactory.create(

 selectInfoComp, dataModel);

 ResultSet infoRes = retrieveInfoComp.execSelect();

 while (infoRes.hasNext()) {

 QuerySolution qs = infoRes.next();

 infoLevels.add(qs.get("InfoLvls").toString());

 }

 String selectMeasureString = prefix + NL + "SELECT ?measure "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o qb4o:measure ?measure }";

 Query selectMeasureComp = QueryFactory.create(selectMeasureString);

 QueryExecution retrieveMeasureComp = QueryExecutionFactory.create(

 selectMeasureComp, dataModel);

 ResultSet measureRes = retrieveMeasureComp.execSelect();

 while (measureRes.hasNext()) {

 QuerySolution qs = measureRes.next();

 String found_measure = qs.get("measure").toString();

 measures.add(found_measure);

 }

 return true;

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("Dimensions retrieval exception!");

 return false;

 }

 }else{return false;}

 }

The SELECT and CONSTRUCT operators implementation is described below, for

the two options: visualisation and materialisation.

public static void calculate(String db_name, Model schemasModel, Model dataModel,

boolean materialize) {

//type of the level/dimension is not relevant here as all members are igolap:Member type

 try {

 Model m2 = ModelFactory.createUnion(schemasModel, dataModel);

 [..]

 for (int i = 0; i < infoLevels.size(); i++) {

 iLevels.add(infoLevels.get(i).replaceAll(Vocabulary.db1, ""));

 if (!(iLevels.get(i).equalsIgnoreCase(rLevel))){

 q1 = q1+" ?"+iLevels.get(i);

 q3a = q3a+db_name+":"+iLevels.get(i)+" ?"+iLevels.get(i)+";";

 q1Visual=q1Visual+" ?"+iLevels.get(i)+"_label";

 q4Visual= q4Visual+"?"+iLevels.get(i)+" rdfs:label ?"+iLevels.get(i)+"_label.";}

 }

 for (int i = 0; i < topos.size(); i++) {

129

 tDims.add(topos.get(i).replaceAll(Vocabulary.db1, ""));

 if (!(tDims.get(i).equalsIgnoreCase(rLevel))) {

 q1 = q1+" ?"+tDims.get(i);

 q3a = q3a+db_name+":"+tDims.get(i)+" ?"+tDims.get(i)+";";

 q1Visual=q1Visual+" ?"+tDims.get(i)+"_label";

 q4Visual= q4Visual+"?"+tDims.get(i)+" rdfs:label ?"+tDims.get(i)+"_label . ";}

 }

 String q1a = " ?"+measure;

 String q3b=q3a+db_name+":"+measure+" ?"+measure+" .";

 String q0 = "SELECT DISTINCT ";

 String q0Constr= q0+"?requested_"+rLevel+" ?id";

 String q0Visual =q0+"?requested_"+rLevel+"";

 String q2 = " WHERE {" ?o a qb:Observation; ";

 String q3= "db1:"+rLevel+" "+rMember+ "; ";

 q4Visual =q4Visual+rMember+" rdfs:label ?requested_"+rLevel+" .";

 String q5 ="} GROUP BY ";

 String q5Constr = q5+"?requested_"+rLevel+" ?id"+q1+q1a ;

 String q5Visual = q5+"?requested_"+rLevel+" "+q1Visual+q1a;

 String q4Constr="BIND (iri(concat(\""+Vocabulary.ds+"\",STRAFTER(str(?"+

tDims.get(0)+"), \"#\"),\"_\",STRAFTER(str("+rMember+"),\"#\"))) AS ?id)";

 String SelectConstruct = q0Constr+q1+q1a+q2+q3+q3b+q4+q4Constr+q5Constr;

 String SelectVisualize = q0Visual+q1Visual+q1a+q2+q3+q3b+q4+q4Visual+q5Visual;
The CONSTRUCT operator for the F_SLICE operators has the following

implementation:

if (materialize) {

 String constructString = prefix + NL + "CONSTRUCT { " + "?id a qb:Observation; "+

"qb:dataSet ds:dataSet_"+ rLevel+"_" +measure+"_" +rMember.replaceAll("t:", "") +" ;

"+db_name+":"+rLevel+" "+rMember+"; "+q3a+" "+db_name+":"+measure+" ?"+measure+"}"

 + "WHERE{ {"

 + SelectConstruct

 + "} }";

 Query constructQuery = QueryFactory.create(constructString);

 QueryExecution constr = QueryExecutionFactory.create(constructQuery, m2);

 Model obsModel = constr.execConstruct();

 System.out.println("The construct obtained:");

 obsModel.write(System.out);

 OutputStream output = new FileOutputStream(dataWrite_path);

 obsModel.write(output, "N3", null);

 String s= "ds:DailyHhECons a qb:DataStructureDefinition;"+NL;

 for (int j = 0; j < iLevels.size(); j++) {

 s= s+"qb:Component [qb4o:level "+db_name+":"+iLevels.get(j)+"];"+NL;}

 for (int j = 0; j < tDims.size(); j++) {

 s= s+"qb:Component [igolap:TopoDimension "+db_name+":"+tDims.get(j)+"];"+NL;}

 s=s+"qb:Component [qb4o:measure "+db_name+":"+measure+"]."+NL;

 String datasetSchema=s+"ds:dataSet_"+rLevel+"_"+measure+"_"+rMember.replaceAll("t:",

"")+" a qb:DataSet;"+NL+" qb:structure ds:DailyHhECons." ;

 output.write(datasetSchema.getBytes(Charset.forName("UTF-8")));

130

6.3.3.2 Exemplification

In order to exemplify the SLICE operators, two queries requiring slice aggregations

on both topological and informational dimensions are introduced in this section. The

F_Slice operator is used to deliver these aggregations on the given dataset; the database

schema; and, the members definition described previously. Taking the parameters

required for these queries, the output from the validate() and the calculate() methods

will also be exemplified.

The dataset used in these queries is the dataset obtained from applying F_Roll_up as

requested by Query 1. The structure of the dataset used is presented below and the

entire extract used for this exemplification can be found in Appendix B2.2.

ds:hh119_M02Y2011 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_SUM ;

 db1:City l:birm ;

 db1:Household topo:hh119 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 395.63 .

Since in the F_Slice case, the validation of a member is easy to follow without a

detailed examination of the validate() method, this will be omitted for the F_Slice

queries in this section.

The F_Slice operator is exemplified in the following paragraphs through two queries.

Query 6: Extract the February month from the monthly energy consumption of the

given dataset (cube).

In this query, all the months except February need to be removed from the dataset, or

in other words, a new dataset containing only the level Month – member February needs

to be created. In the case of the Slice operator, as presented in the definition above, the

structure of the dataset is maintained. As a consequence, this member is presented in

conjunction with all other members from other dimensions, to which it is related.

Passed parameters to the F_Slice_up operator:

aggMemberLevel: "t:M02Y2011", “Time”

131

Generate SPARQL queries by F_Slice operator for Query 6:

After running the above SPARQL queries, the outcome is presented below as with

materialized option for the CONSTRUCT and with the materialized being false for the

SELECT:

materialize = false;

| requested_Month | City_label | Household_label | eCons |

===

| "February 2011@en" | "Birmingham"@en | "2"@en | 231.07 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 395.63 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 185.50 |

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:level db1:Month];

qb:Component [igolap:TopoDimension db1:Household];

qb:Component [qb4o:measure db1:eCons].

ds:dataSet_Month_eCons_M02Y2011 a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:_M02Y2011_birm_hh106

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_M02Y2011 ;

 db1:City l:birm ;

 db1:Household topo:hh106 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 140.02 .

ds:_M02Y2011_birm_hh154

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_eCons_M02Y2011 ;

 db1:City l:birm ;

SELECT DISTINCT ?requested_Month

?City_label ?Household_label

?eCons

 WHERE{

 ?o rdf:type qb:Observation .

 ?o db1:Month t:M02Y2011 .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?eCons .

 ?City rdfs:label ?City_label .

 ?Household rdfs:label

?Household_label .

 t:M02Y2011 rdfs:label

?requested_Month

 }

 GROUP BY ?requested_Month

?City_label ?Household_label

?eCons

CONSTRUCT

 { ?id rdf:type qb:Observation .

 ?id qb:dataSet

ds:dataSet_Month_eCons_M02Y2011 .

 ?id db1:Month t:M02Y2011 .

 ?id db1:City ?City .

 ?id db1:Household ?Household .

 ?id db1:eCons ?eCons .}

 WHERE { { SELECT DISTINCT ?id ?City

?Household ?eCons

 WHERE {

 ?o rdf:type qb:Observation .

 ?o db1:Month t:M02Y2011 .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?eCons

BIND(iri(concat("http://www.energydb.eu/ig

olap/Data/DataSets#", "_",

strafter(str(t:M02Y2011), "#"), "_",

strafter(str(?City), "#"), "_",

strafter(str(?Household), "#"))) AS ?id)

 }

 GROUP BY ?id ?City ?Household ?eCons

 } }

132

 db1:Household topo:hh154 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 185.50 .

It can be observed that the schema in the materialized output of Query 6 and the one

of the initial dataset (output of Query1) remained the same.

Query 7: Extract a specific household’ monthly consumption from a give dataset.

In this case, the member belongs to the topological dimension Household, and the

level of detail in the input dataset is monthly consumption. The input in this case, can

also be the same as in the query above, the one generated by the F_Roll_up operator

from Query1.

Below is presented the member from the Household topological dimension, passed to

the operator as a parameter:

aggMemberLevel: "topo:hh119", "Household"

Generate SPARQL queries by F_Slice operator for Query 7:

After running the above SPARQL queries, the outcome is presented below as with

materialized option for the CONSTRUCT and with the materialized being false for the

SELECT:

SELECT DISTINCT

?requested_Household ?City_label

?Month_label ?eCons

WHERE

{ ?o rdf:type qb:Observation .

 ?o db1:Household topo:hh119 .

 ?o db1:City ?City .

 ?o db1:Month ?Month .

 ?o db1:eCons ?eCons .

 ?City rdfs:label ?City_label .

 ?Month rdfs:label ?Month_label .

 topo:hh119 rdfs:label

?requested_Household

 }

 GROUP BY ?requested_Household

?City_label ?Month_label ?eCons

CONSTRUCT

 { ?id rdf:type qb:Observation .

 ?id qb:dataSet

ds:dataSet_Month_eCons_M02Y2011 .

 ?id db1:Month t:M02Y2011 .

 ?id db1:City ?City .

 ?id db1:Household ?Household .

 ?id db1:eCons ?eCons .}

 WHERE { { SELECT DISTINCT ?id ?City

?Household ?eCons

 WHERE {

 ?o rdf:type qb:Observation .

 ?o db1:Month t:M02Y2011 .

 ?o db1:City ?City .

 ?o db1:Household ?Household .

 ?o db1:eCons ?eCons

BIND(iri(concat("http://www.energydb.eu/ig

olap/Data/DataSets#", "_",

strafter(str(t:M02Y2011), "#"), "_",

strafter(str(?City), "#"), "_",

strafter(str(?Household), "#"))) AS ?id)

 }

 GROUP BY ?id ?City ?Household ?eCons

 } }

133

materialize = false;

| requested_Household | City_label | Month_label | eCons |

===

| "119"@en | "Birmingham"@en | "February 2011@en" | 395.63 |

| "119"@en | "Birmingham"@en | "April 2011@en" | 31.30 |

materialize = true;

ds:_hh119_birm_M04Y2011

 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons_hh119 ;

 db1:City l:birm ;

 db1:Household topo:hh119 ;

 db1:Month t:M04Y2011 ;

 db1:eCons 31.30 .

ds:_hh119_birm_M02Y2011

 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons_hh119 ;

 db1:City l:birm ;

 db1:Household topo:hh119 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 395.63 .

6.3.4 F_DICE Operator

6.3.4.1 Implementation

The F_Dice operator, guided by the definition above, is implemented as a slice

operation across multiple dimensions. The main difference between F_Slice and F_Dice

is that in the later the only dimensions kept are the ones relating to a member parameter

passed in the operator’s call. The operator receives as input a HashMap object of each

member-level or member-dimension combination that needs to be aggregated.

In conclusion, the parameter takes a set of members as input, and retrieves from all

the dimensions to which a member belongs from the given dataset.

The validate() method in this case is the same as for the F_Slice operator, with the

main difference that a set of members, not just one, are each validated in a single call.

 public static boolean validate(String db_name, HashMap<String, List<String>>

aggLevelMembers, Model schemasModel, Model dataModel) {

 try {

 String selectTopoString = prefix + NL + "SELECT ?TopoDims "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o igolap:TopoDimension ?TopoDims" + " }";

 Query selectTopoComp = QueryFactory.create(selectTopoString);

 QueryExecution retrieveTopoComp = QueryExecutionFactory.create(selectTopoComp,

dataModel);

 ResultSet topoRes = retrieveTopoComp.execSelect();

 while (topoRes.hasNext()) {

134

 QuerySolution qs = topoRes.next();

 topos.add(qs.get("TopoDims").toString());

 }

 String selectInfoLevelString = prefix + NL + "SELECT ?InfoLvls "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o qb4o:level ?InfoLvls" + " }";

 Query selectInfoComp = QueryFactory.create(selectInfoLevelString);

 QueryExecution retrieveInfoComp = QueryExecutionFactory.create(

 selectInfoComp, dataModel);

 ResultSet infoRes = retrieveInfoComp.execSelect();

 while (infoRes.hasNext()) {

 QuerySolution qs = infoRes.next();

 infoLevels.add(qs.get("InfoLvls").toString());

 }

 String selectMeasureString = prefix + NL + "SELECT ?measure "

 + "WHERE {?ds a qb:DataStructureDefinition;"

 + "?p ?o . ?o qb4o:measure ?measure }";

 Query selectMeasureComp = QueryFactory.create(selectMeasureString);

 QueryExecution retrieveMeasureComp = QueryExecutionFactory.create(

 selectMeasureComp, dataModel);

 ResultSet measureRes = retrieveMeasureComp.execSelect();

 while (measureRes.hasNext()) {

 QuerySolution qs = measureRes.next();

 String found_measure = qs.get("measure").toString();

 measures.add(found_measure);

 }

 String rLevel;

 buildComponent = "ds:DailyHhECons a qb:DataStructureDefinition;";

 Iterator<String> it = aggLevelMembers.keySet().iterator();

 while (it.hasNext()) {

 boolean levelExists = false;

 rLevel = it.next();

 for (int i = 0; i < infoLevels.size(); i++) {

 if (rLevel.equalsIgnoreCase(infoLevels.get(i).replaceAll(DB1_Vocabulary.db1,

""))){

 buildComponent=buildComponent+ "qb:Component [qb4o:level

"+db_name+":"+rLevel+"];"+NL;

 levelExists=true;

 }

 }

 for (int i = 0; i < topos.size(); i++) {

 if (rLevel.equalsIgnoreCase(topos.get(i).replaceAll(DB1_Vocabulary.db1, ""))){

 buildComponent=buildComponent+"qb:Component [igolap:TopoDimension

"+db_name+":"+rLevel+"];"+NL;

 levelExists=true;

 }

 }

 if (!(levelExists)){return false;}

 }

 return true;

} catch (Exception e) {

 e.printStackTrace();

 System.out.println("Dimensions retrieval exception!");

 return false;

}}

Furtheron, the calculate() method, the same as in the case of the F_Slice operator, it

does not address differently the topological and informational members. As a

consequence, the query construction phase is the same, building the content for the

visualization of the F_Dice operator’s output, and the SELECT body for the

materialization request from the CONSTRUCT.

135

public static void calculate(String db_name, Model schemasModel, Model

dataModel,HashMap<String, List<String>> aggLevelMembers,boolean materialize) {

try {

 Model m2 = ModelFactory.createUnion(schemasModel, dataModel);

 String q3 ="";

 String q4Visual ="";

 String q0 = "SELECT DISTINCT ";

 String q0Visual ="";

 String q1 = " ?"+measures.get(0).replaceAll(DB1_Vocabulary.db1, "");

 String q1Constr =" ?id ?"+measures.get(0).replaceAll(DB1_Vocabulary.db1, "");

 String q1a = " WHERE {";

 String q2 =" ?o a qb:Observation;";

 String q0Constr= "";

 String q4Constr="BIND (iri(concat(\""+DB1_Vocabulary.ds+"\","+NL;

 String dsName ="";

 String constructAttr="";

 String rLevel;

 buildComponent=buildComponent+"qb:Component [qb4o:measure " +db_name+":"+

measures.get(0).replaceAll(DB1_Vocabulary.db1, "")+"]."+NL;

 List <String> rMembers;

 Iterator<String> it = aggLevelMembers.keySet().iterator();

 while (it.hasNext()) {

 rLevel = it.next();

 dsName =dsName+rLevel+"_";

 q0Constr= q0Constr+" ?"+rLevel;

 q0Visual =q0Visual+"?"+rLevel+"_label ";

 rMembers = aggLevelMembers.get(rLevel);

 q1a = q1a + " values ?"+rLevel+" {";

 for (int i = 0; i < rMembers.size(); i++) {

 q1a= q1a+rMembers.get(i)+" ";

 }

 q1a = q1a+"}";

 q2 = q2 +" "+db_name+":"+rLevel+" ?"+rLevel+";";

 q3 = q3 +" ?"+rLevel+" rdfs:label ?"+rLevel+"_label .";

 q4Constr = q4Constr + "STRAFTER(str(?"+rLevel+"), \"#\"),\"_\","+NL;

 constructAttr =constructAttr+db_name+":"+rLevel+" ?"+rLevel+"; ";

 }

 q2=q2+ " "+db_name+":"+measures.get(0).replaceAll(DB1_Vocabulary.db1, "")+"

?"+measures.get(0).replaceAll(DB1_Vocabulary.db1, "")+ ". ";

 q4Constr= q4Constr+

"STRAFTER(str(?"+measures.get(0).replaceAll(DB1_Vocabulary.db1, "")+"),\"#\"))) AS

?id)"+NL;

 q4Constr = q4Constr+ "}";

 String q5 =" GROUP BY ?id "+q0Constr+" "+q1;

 q4Visual =q4Visual+"}";

 dsName=dsName+measures.get(0).replaceAll(DB1_Vocabulary.db1, "");

 constructAttr = constructAttr+db_name+":"

+measures.get(0).replaceAll(DB1_Vocabulary.db1, "")+" ?"

+measures.get(0).replaceAll(DB1_Vocabulary.db1, "");

 String SelectVisualize = q0+q0Visual+q1+q1a+q2+q3+q4Visual;

 String SelectConstruct= q0+NL+q0Constr+NL+q1Constr+q1a+NL+q2+NL+q4Constr+NL+q5+NL;

The body of the built queries is executed as-is for the SELECT request or passed as

an input for the CONSTRUCT, based on the value of the materialized parameter, as

introduced below:

if (materialize) {

 String constructString = prefix + NL + "CONSTRUCT { "+NL + "?id a qb:Observation; " +

" qb:dataSet ds:dataSet_"+dsName+";"+NL+" "+constructAttr+"}"+NL

 + " WHERE{ {"

 + SelectConstruct

 + "}}";

 Query constructQuery = QueryFactory.create(constructString);

 QueryExecution constr = QueryExecutionFactory.create(constructQuery, m2);

 Model obsModel = constr.execConstruct();

 OutputStream output = new FileOutputStream(dataWrite_path);

136

 obsModel.write(output, "N3", null);

 String datasetSchema=buildComponent+"ds:dataSet_"+dsName+" a qb:DataSet;"+NL+"

qb:structure ds:DailyHhECons." ;

 output.write(datasetSchema.getBytes(Charset.forName("UTF-8")));

 }else {

 String visualizeString = prefix + NL + SelectVisualize+NL ;

 Query queryLevel = QueryFactory.create(visualizeString);

 QueryExecution qe = QueryExecutionFactory.create(queryLevel, m2);

 ResultSet rollup_results = qe.execSelect();

 }

6.3.4.2 Exemplification

The F_Dice operator, operates in the same manner on topological dimensions and

informational dimensions’ members. As such it is not relevant if there are topological or

informational members passed to the operator’s call.

To reflect this statement, three queries to exemplify the F_Dice operator are

introduced below. Two using only one type of members (either informational or

topological) and a third one using mixed topological and informational member.

Query 8: Retrieve all consumption observations for Birmingham city, for Months

February and March.

Passed parameters to the F_Dice_up operator:

aggLevelMembers: {“Month”,"t:M02Y2011"}, {“Month”,"t:M03Y2011"}, {“City”,"l:birm"}

Generate SPARQL queries by F_Dice operator for Query 8:

SELECT DISTINCT ?Month_label

?City_label ?eCons

 WHERE

 { VALUES ?Month { t:M02Y2011

t:M03Y2011 }

 VALUES ?City { l:birm }

?o rdf:type qb:Observation .

?o db1:Month ?Month .

?o db1:City ?City .

?o db1:eCons ?eCons .

?Month rdfs:label ?Month_label .

?City rdfs:label ?City_label

}

CONSTRUCT

 { ?id rdf:type qb:Observation .

?id qb:dataSet ds:dataSet_Month_City_eCons .

?id db1:Month ?Month .

?id db1:City ?City .

?id db1:eCons ?eCons .}

 WHERE

 { { SELECT DISTINCT ?Month ?City ?id ?eCons

 WHERE

 { VALUES ?Month { t:M02Y2011 t:M03Y2011 }

 VALUES ?City { l:birm }

?o rdf:type qb:Observation .

?o db1:Month ?Month .

?o db1:City ?City .

?o db1:eCons ?eCons

BIND(iri(concat("http://www.energydb.eu/igola

p/Data/DataSets#", strafter(str(?Month),

"#"), "_", strafter(str(?City), "#"), "_",

strafter(str(?eCons), "#"))) AS ?id)

 }

 GROUP BY ?id ?Month ?City ?eCons

 } }

137

Result of the SELECT example:

materialize = false;

| Month_label | City_label | eCons |

===

| "February 2011@en" | "Birmingham"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | 185.50 |

| "February 2011@en" | "Birmingham"@en | 231.07 |

| "February 2011@en" | "Birmingham"@en | 395.63 |

| "March 2011@en" | "Birmingham"@en | 185.90 |

| "March 2011@en" | "Birmingham"@en | 45.80 |

Result of the CONSTRUCT example:

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:measure db1:eCons].

ds:dataSet_Month_City_eCons a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:M02Y2011_birm_185.50

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_City_eCons ;

 db1:City l:birm ;

 db1:Month t:M02Y2011 ;

 db1:eCons 185.50 .

ds:M02Y2011_birm_140.02

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_City_eCons ;

 db1:City l:birm ;

 db1:Month t:M02Y2011 ;

 db1:eCons 140.02 .

[..]

Query 9: Retrieve all monthly consumption observations for specific households

only.

The output is reduced to the available months of February and March, used

throughout the exemplification dataset. In this case were selected three Household

members as parameters in the operator’s call.

aggLevelMembers: {“Household”," topo:hh2"},{“Household”," topo:hh119"},{“Household”,"

topo:hh106"}

138

Generate SPARQL queries by F_Dice operator for Query 9:

Result of the SELECT example:

materialize = false;

| Household_label | eCons |

============================

| "2"@en | 185.90 |

| "2"@en | 231.07 |

| "106"@en | 140.02 |

| "106"@en | 45.80 |

| "119"@en | 31.30 |

| "119"@en | 395.63 |

Result of the CONSTRUCT example:

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [igolap:TopoDimension db1:Household];

qb:Component [qb4o:measure db1:eCons].

ds:dataSet_Household_eCons a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:hh106_45.80 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons ;

 db1:Household topo:hh106 ;

 db1:eCons 45.80 .

ds:hh2_185.90 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons ;

 db1:Household topo:hh2 ;

 db1:eCons 185.90 .

ds:hh119_395.63 a qb:Observation ;

 qb:dataSet ds:dataSet_Household_eCons ;

 db1:Household topo:hh119 ;

 db1:eCons 395.63 .

SELECT DISTINCT ?Household_label

?eCons

 WHERE

 { VALUES ?Household { topo:hh2

topo:hh106 topo:hh119 }

?o rdf:type qb:Observation .

?o db1:Household ?Household .

?o db1:eCons ?eCons .

?Household rdfs:label

?Household_label

 }

CONSTRUCT

 { ?id rdf:type qb:Observation .

?id qb:dataSet ds:dataSet_Household_eCons .

?id db1:Household ?Household .

?id db1:eCons ?eCons .}

 WHERE

 { { SELECT DISTINCT ?Household ?id ?eCons

 WHERE

 { VALUES ?Household { topo:hh2 topo:hh106

topo:hh119 }

?o rdf:type qb:Observation .

?o db1:Household ?Household .

?o db1:eCons ?eCons

BIND(iri(concat("http://www.energydb.eu/igola

p/Data/DataSets#",

strafter(str(?Household), "#"), "_",

str(?eCons))) AS ?id)

 }

 GROUP BY ?id ?Household ?eCons

 } }

139

Query 10: Retrieve all consumption observations for Birmingham city, for Months

February and March for two specific households.

Passed parameters to the F_Dice_up operator:

aggLevelMembers: {“Month”,"t:M02Y2011"}, {“Month”,"t:M03Y2011"}, {“City”,"l:birm"}

{“Month”,"t:M02Y2011"}, {“Month”,"t:M03Y2011"}, {“City”,"l:birm"}

Generate SPARQL queries by F_Dice operator for Query 8:

Result of the SELECT example:

materialize = false;

| Month_label | Household_label | City_label | eCons |

===

| "February 2011@en" | "2"@en | "Birmingham"@en | 231.07 |

| "March 2011@en" | "2"@en | "Birmingham"@en | 185.90 |

| "February 2011@en" | "106"@en | "Birmingham"@en | 140.02 |

| "March 2011@en" | "106"@en | "Birmingham"@en | 45.80 |

| "February 2011@en" | "119"@en | "Birmingham"@en | 395.63 |

Result of the CONSTRUCT example:

materialize = true;

ds:DailyHhECons a qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [igolap:TopoDimension db1:Household];

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:measure db1:eCons].

SELECT DISTINCT ?Month_label

?Household_label

?City_label ?eCons

 WHERE

 { VALUES ?Month { t:M02Y2011

t:M03Y2011 }

 VALUES ?Household { topo:hh2

topo:hh106 topo:hh119 }

 VALUES ?City { l:birm }

?o rdf:type qb:Observation .

?o db1:Month ?Month .

?o db1:Household ?Household .

?o db1:City ?City .

?o db1:eCons ?eCons .

?Month rdfs:label ?Month_label

.

?Household rdfs:label

?Household_label .

?City rdfs:label ?City_label

 }

CONSTRUCT { ?id rdf:type qb:Observation .

?id qb:dataset

ds:dataSet_Month_Household_City_eCons.

?id db1:Month ?Month .

?id db1:Household ?Household .

?id db1:City ?City .

?id db1:eCons ?eCons .}

 WHERE { { SELECT DISTINCT ?Month ?Household ?City

?id ?eCons

 WHERE

 { VALUES ?Month { t:M02Y2011 t:M03Y2011 }

 VALUES ?Household {topo:hh2 topo:hh106

topo:hh119}

 VALUES ?City { l:birm }

?o rdf:type qb:Observation .

?o db1:Month ?Month .

?o db1:Household ?Household .

?o db1:City ?City .

?o db1:eCons ?eCons

BIND(iri(concat("http://www.energydb.eu/igolap/Dat

a/DataSets#", strafter(str(?Month), "#"), "_",

strafter(str(?Household), "#"), "_",

strafter(str(?City), "#"), "_", str(?eCons)))

AS ?id)

 }

 GROUP BY ?id ?Month ?Household ?City ?eCons }}

140

ds:dataSet_Month_Household_City_eCons a qb:DataSet;

 qb:structure ds:DailyHhECons.

ds:M03Y2011_hh106_birm_45.80

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_Household_City_eCons ;

 db1:City l:birm ;

 db1:Household topo:hh106 ;

 db1:Month t:M03Y2011 ;

 db1:eCons 45.80 .

ds:M02Y2011_hh119_birm_395.63

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_Household_City_eCons ;

 db1:City l:birm ;

 db1:Household topo:hh119 ;

 db1:Month t:M02Y2011 ;

 db1:eCons 395.63 .

ds:M03Y2011_hh2_birm_185.90

 a qb:Observation ;

 qb:dataSet ds:dataSet_Month_Household_City_eCons ;

 db1:City l:birm ;

 db1:Household topo:hh2 ;

 db1:Month t:M03Y2011 ;

 db1:eCons 185.90 .

6.4 Summary

In this chapter, the Federated OLAP operators, which can perform the traditional

OLAP aggregations on both informational and topological dimensions of the data were

introduced. The three core operators described in this chapter SELECT, CONSTRUCT

and MERGE were described for each implementation of the OLAP operators.

141

Chapter 7 – Evaluation

142

7.1 Introduction

This chapter illustrates the evaluation of the presented framework. The evaluation

criteria are defined to assess the IGOLAP Vocabulary and the Federated OLAP

Operators.

In the evaluation process, available benchmarks and comparisons are used. This

chapter will be a guide through the evaluation design, data generation, evaluation

principles and interpretation of results.

7.2 Evaluation Design and Process

The SPARQL query language is a W3C (W3C Working Group, 2008) recommended

querying language for RDF. At the moment there are different benchmarks available for

native SPARQL queries and optimisations (Schmidt, Meier, & Lausen, 2010) (Buil-

Aranda, Arenas, & Corcho, 2011), SPARQL queries patterns (Perez, Arenas, &

Gutierrez, 2009), queries rewriters, and RDF stores (Bizer & Schultz, 2009), but there is

no benchmark evaluating OLAP queries performed over data modelled with QB or

QB4OLAP (Tennison & TSO, 2011) (Etcheverry & Vaisman, 2011) vocabularies.

As described in Chapter 3 – Methodology, in the evaluation of this work both

qualitative and experimental methodological approaches are used.

The provided evaluation is not targeted at providing a benchmark, but will address

and highlight the expectations and constraints in regards to performing OLAP

operations over Semantic Web data. Further, the interpretation of the results of this

evaluation identifies the needed future areas of research, described in Chapter 8.

Although there is no benchmarking for OLAP Operators over the IGOLAP

Vocabulary, nor has the vocabulary itself been previously evaluated; the evaluation

design considers the evaluation requirements introduced for domain related benchmarks

(Grey, 1993). These principles are heavily used in benchmarking processes and

furthermore are relevant and applicable to the evaluation of this research as well.

These principles are introduced in Table 7.1, alongside the approach to address these

requirements.

143

Requirement Description Evaluation Steps

Relevance

 The testing should take place

within a specific domain.

The queries should

implement realistic requests.

 Common constellation of

evaluated operators.

 Correctness of the outputs.

1. Description of the specified domain

2. Design of evaluation queries to emulate

realistic requests

3. Identify the relevant operators’

characteristic for comparison criteria.

4. Assessment of the operators outcomes

in regards to definition and input data

Portability Refers to technical

implementation and ability

to execute on different

platforms

5. Overview of the limitations of

operators’ implementation.

Scalability The evaluation tests should

be run and assessed over

small and large datasets

(from 10 up to 500 thousand

triplets)

6. Description of datasets and definition of

datasets incremental step sizes.

7. Description of operators’ evaluation

results on the provided datasets

Understand

ability

 It is highly recommended that

queries are kept simple and

understandable.

 Identification of divers

optimisation requirements

8. Introduction of the queries used in the

evaluation process and their description

9. Future research topics highlighted based

on the evaluation outcome

Table 7.1 Key four evaluation requirements and their addressability

The nine identified evaluation steps are interdependent in the evaluation process and

these steps can be executed in a different order. In order to describe these steps, the

remaining sections of this chapter are organised as follows:

 Specification of the evaluated domain: highlighting the addressed domain –

evaluation step 1.

 Evaluation of the queries: including the introduction of various types of

queries and their emulation of real requests, relevant to the identified domain.

These queries may make use of different F_Operators, to navigate or retrieve

data from different dimensions. – evaluation steps 2, 3, 8

144

 Data overview: describing available datasets in the evaluation process –

evaluation target 6

 Federated Operators’ evaluation: delivering the assessment of the operators,

based on their performance, the correctness of their output and constraints.

This evaluation is performed on the previously defined set of queries using

evaluation steps 3, 4, 5, 7.

 Overview of the evaluations: providing a summary of the performed

evaluations and their results and briefly indicating further areas of research.

This fulfils the evaluation step 9.

7.3 The Domain for Evaluation

7.3.1 Domain Description

As presented in Chapter 1, the objective of this research is to provide OLAP

capabilities over the Semantic Web databases in order to enhance BI in a given

domain. The characteristics, constraints and related work in this area have been

described in Chapter 2. This introduced the limitations of the related work in this area,

which are addressed through the current work.

7.3.2 Characteristics of the Domain

The operators and vocabulary designed to deliver OLAP capabilities for SW

databases, need to support the characteristics of both the Semantic Web and traditional

OLAP capabilities. All these characteristics help to define the Vocabulary to model

Semantic Web data.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged
version of the thesis can be viewed at the Lanchester Library, Coventry University.

145

Table 7.2 Multidimensionality modelling concepts in Semantic Web

* (Zhao, Li, Xin, & Han, 2011) does acknowledge the existing of topological structure but treats it as part of the graph network

properties

(Etcheverry & Vaisman, 2012) provide a set of the multidimensional modelling

features to support the Semantic Web data management, but these are insufficient as it

was identified in Chapter 5. Table 7.2 lists a series of works including their identified

features and shows the extended characteristics of the IGOLAP Vocabulary to address

missing OLAP functionalities.

7.4 Queries for Evaluation

A set of queries that have been designed to assess the operators are presented in this

section.

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

146

7.4.1 Queries Description

In order to exemplify and evaluate all defined Federated Operators and their

capabilities, a compact set of queries were designed to provide a complete evaluation.

The essential criteria for the evaluation of the federated operators:

 Traditional roll-up operation is performed over only informational dimension

but the IGOLAP Vocabulary supports two types of dimensions (informational

and topological). In order to demonstrate that F_Roll_up can perform over

both types, Query 1 for informational and Query 2 for topological were

designed.

 The aggregation functions in roll-up are evaluated through three queries:

Query 1 for sum, Query 2 for average and Query 3 for count.

 The Dice operation is performed over dimensions, but does not use

aggregation functions. So only two queries (Query 4 and 5), one for each

dimension type, are sufficient for validation.

 The Slice operation is performed over only one member at a time. Members

can belong to only one dimension type. Consequently two queries (Queries 6

and 7) are designed for the two different member’s types to evaluate the

capabilities of slice operator.

 The Drill operation can be performed over multiple members at one time.

Since there are two member types and the order of the requested members is

irrelevant, the maximum number of combinations is listed as follows:

o informational members only – Query 8;

o topological members only – Query 9;

o mix of topological and informational members – Query 10.

As presented above, this set of minimum ten queries offer a complete coverage of

the operators for evaluation.

147

The ten queries are detailed in Table 3.2 Queries' detailed description and expected

outcome introduced in section Steps and methods of the research methodology from

Chapter 3.

7.4.2 Emulation of Real World Requests

The queries presented in this section include those designed initially for BI cases on

a set of the data provided from the DEHEMS (EU 7th Framework Programme, 2008)

research project. The data is based on “Cycle 3” data, which represents the households’

electrical consumption from around 250 households in United Kingdom and Bulgaria.

The dataset only contains the projects’ last 3 months of data: February, March and

April.

7.4.3 Queries Aggregation Requirements

Table 7.3 illustrates the required OLAP aggregation and interrogated dimensions for

each query, as it was introduced in Chapter 6 – Materialisation of Integrated OLAP

Operators for SW Databases.

Query OLAP Operator IGOLAP Dimension/Members Type

Informational Topological

Query 1 Roll-up yes no

Query 2 Roll-up no yes

Query 3 Roll-up yes no

Query 4 Drill yes no

Query 5 Drill no yes

Query 6 Slice yes no

Query 7 Slice no yes

Query 8 Dice yes no

Query 9 Dice no yes

Query 10 Dice yes yes

Table 7.3 Query mapping to OLAP operators and IGOLAP dimensions type

148

As it was previously explained, the overview provided in Table 7.2, shows that the

previously analysed vocabularies do not have the expressiveness required to model the

data queried by the defined set of queries in Table 7.3 above. This is due to missing

support for modelling the topological structure as well as some of the required OLAP

operators. Providing a parallel comparison between the needed dimensions types and

OLAP operations of each query and the QB and QB4OLAP vocabulary capabilities, it

can be easily observed which of the queries can not be answered by the previous

vocabularies in Table 7.4 as shown below.

Query OLAP

Operator

Dimension/Member

Type Requiered

QB QB4OLAP

Informational Topological (Tennison & TSO, 2011) (Etcheverry & Vaisman, 2012)

Query 1 Roll-up yes no Yes Yes

Query 2 Roll-up no yes No (no support for

topological structure)

No (no support for

topological structure)

Query 3 Roll-up yes no Yes Yes

Query 4 Drill yes no No (no de-aggregation

concept, no child

relationship)

No (no de-aggregation

concept, no child

relationship)

Query 5 Drill no yes No (no support for

topological structure)

No (no support for

topological structure)

Query 6 Slice yes no Yes Yes

Query 7 Slice no yes No (no support for

topological structure)

No (no support for

topological structure)

Query 8 Dice yes no No (no composition

across multiple slices)

Yes

Query 9 Dice no yes No (no support for

topological structure)

No (no support for

topological structure)

Query 10 Dice yes yes No (no support for

topological structure)

No (no support for

topological structure)

Table 7.4 Queries that cannot be answered by QB or QB4OLAP

149

7.5 Data Overview

For the evaluation of this work two types of data are used: real datasets and

synthetically generated ones. The reason for having synthetic data is to scale-up the size

of the dataset for the evaluation of the operators, as the real dataset was not sufficiently

large to meet the evaluation criteria.

7.5.1 Real Datasets

As mentioned in the previous subsection, the data used through this work reflects a

three month collection of energy consumption data from around 250 households around

United Kingdom and Bulgaria. More precisely, data comes from three distinct cities in

United Kingdom and two in Bulgaria. This data provides the basis for analytics on

regional energy consumption behaviour across different regions inside a country and

also between countries.

Due to privacy regulations the households’ detailed information cannot be revealed,

including the postcodes and users’ email addresses. Since it is sensitive data, household

income information was difficult to collect, so the data quality was inadequate. In order

to compensate for this factor, the linkage between households and income ranges was

automatically generated. Nevertheless the initial income ranges values were maintained.

The data was collected in relational database systems and needed to be transformed

into Semantic Web data for the purpose of this research work.

7.5.2 Synthetic Dataset

The available data provided two required dataset sizes (10 and 50 thousand triplets).

In order to cover the other dataset sizes required in the evaluation process, the data was

extrapolated. From the original dataset covering months of February to April, datasets

covering the remaining months up to a complete year where achieved.

While the stress performance of the operator is a factor in this evaluation, the focus

remains the functionality offered by the introduced vocabulary and operators for OLAP

aggregations.

150

7.6 Federated Operators’ Evaluation

As it was introduced in section 7.2 Evaluation Design and Process, in this section all

the relevant factors connected to the introduced operators covering: portability, output

correctness, performance and constraints are evaluated.

7.6.1 Operators’ Portability

The portability of the operators is discussed in regards to three factors:

 Programming language of implementation: The current operators are

implemented in the Java programming language. The version of the Java

SDK used is 1.7.

 Implementation’s libraries used: In the implementation of F_Operators the

Apache Jena library, which is a Java system for RDF (a RDF API) is used.

By using this library, the RDF models can be manipulated directly through

Java applications, as well as parsing RDF/XML and N3 RDF serialisations.

Additionally the ARQ library is used as a query engine for Jena.

 Querying engines for queries execution: Currently used in the

implementation of the operators and in the evaluation of these, is the ARQ

querying engine. This supports SPARQL Queries over RDF data.

Java is a very wide spread and various platforms-compatible programming language

for developing applications. Nevertheless, in regards to further portability of this work,

the implementation design, logic and complete code is provided and fully explained in

Chapter 6. This means that with a minimum of effort the operators can be translated to

any programming language that has a library for supporting RDF data manipulation.

In regards to querying engines for the execution of the operators’ generated

SPARQL queries, there is a broad selection of available querying engines and databases

providing endpoints for SPARQL queries. While the evaluation of these solutions is not

part of this research work, the addition of a connection to such a query engine or

database will have no impact of the current operator’s implementation and their

151

outcome. Nevertheless this can have an impact on the SPARQL query’s performance,

which is discussed in the operators’ performance evaluation section.

7.6.2 Correctness of the Federated Operators’ Output

In order to be able to evaluate the correctness of the Federated Operators in this

research work, a set of markers have been introduced. These markers are set for each

query to examine the actual output of a query against the expected one.

The success criterion requires that a query must pass all the markers. The

F_Operator validation requires that all queries using this operator are successfully

passed. If any marker of any query is not successfully validated, the entire F_Operator

is considered unsuccessful.

The correctness evaluation markers for each query are extracted from the queries

described in Table 3.2 Queries' detailed description and expected outcome.

 Marker 1 Marker 2 Marker 3

Q1 Only change in the output

data structure is the

replacement from component

“Day” to “Month” and

correctly identified as level.

The new values for the initial

measure are reflecting the

arithmetic sum of contained

members in a “Month”

For each member in the

“Day” level from the input

dataset, a corresponding

member for “Month” level

is created

Q2 Only change in the output

data structure is the

replacement from component

“Household” to “Income” and

correctly identified as

topological dimension.

The new values for the initial

measure are reflecting the

arithmetic mean of contained

members connected to the

same member in the “Income”

dimension

For each member in the

“Household” dimension

from the input dataset, a

corresponding member in

“Income” dimension is

created

Q3 Same Marker 1 of Q1 The new values for the initial

measure are reflecting the

counting of contained

members in the “Day” level

for represented members in

“Month” level.

Same Marker 3 of Q1

Q4 Only change in the output

data structure is the

replacement from component

The values of the measure

reflects existing data on that

level

-

152

“Month” to “Day” and

correctly identified as level.

Q5 Only change in the output

data structure is the

replacement from component

“Income” to “Household” and

correctly identified as

topological dimension.

The values of the measure

reflects existing data on that

level

-

Table 7.5 Identified evaluation markers for Queries 1 to 5

 Marker 1 Marker 2

Q6 Only the “Month” level of the “Time”

dimension and the measure remain in the

dataset definition and correctly identified as

level.

Separate reading coming from different

Households, city combination represent

separate entries for the “February” member

Q7 Only the “Household” dimension and the

measure remain in the dataset definition and

correctly identified as topological

dimension.

Separate reading coming from different

“Month” dimensions, city combination

represent separate entries for the “Household”

member

Q8 Only the measure and the components

“City” and “Month” remain in the data

structure definition and are correctly

identified as levels.

Only the mentioned members and their values

are displayed while combination based on

other dimensions represent separate entries for

the same unique members

Q9 Same Marker 1 as Q7 Same Marker 2 as in Q8

Q10 Only the requested dimension and the

measure remain in the dataset definition and

correctly identified as topological dimension

or levels in informational dimensions.

Same Marker 2 as in Q8

Table 7.6 Identified evaluation markers for Queries 6 to 10

Since multiple queries make use of the same F_Operator, each operator is evaluated

separately against the relevant markers. The required F_Operator for each query was

previously introduced in Table 7.3.

The steps for performing this evaluation are introduced in Table 7.7 for the

F_Roll_up operator and Appendix C provides the descriptions for the other operators.

153

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

ds:MonthlyHhECons a qb:DataStructureDefinition;

[..]

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

Evaluation of F_Operator: F_Roll_up

Query 1 – Marker 1 (Data structure definition in and out)

Data structure from the input dataset vs

output dataset:

The inputted and obtained datasets have the same data structure definition up to the

level that was aggregated. The aggregation function used is also written in the new

data structure definition, as per defined marker.

Marker Status: PASSED

Query 1 – Marker 2

Output values sample for Query 1:

Validated against recoded entries for month February of household “2” and the

measure’s value mathematically proved as arithmetic sum.

Marker Status: PASSED

Query 1 – Marker 3

Output from the exemplification of the queries contains only 3 distinct months:

| Month_label | City_label | Household_label | eCons |

===

| "March 2011@en" | "Birmingham"@en | "106"@en | 45.80 |

| "March 2011@en" | "Birmingham"@en | "2"@en | 185.90 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 395.63 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 185.50 |

| "February 2011@en" | "Birmingham"@en | "2"@en | 231.07 |

| "April 2011@en" | "Birmingham"@en | "119"@en | 31.30 |

For each month it was checked that there exists a minimum of 1 day from the

specified Month for the specified household.

Marker Status: PASSED

Query 2 – Marker 1

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

"February 2011@en" | "2"@en | "Birmingham"@en | 231.07

154

ds:DailyIncomeECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Income];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:AVG].

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:COUNT].

Data structure from the input dataset vs output dataset:

Marker Status: PASSED

Query 2 – Marker 2

Output values sample for Query 2:
|"Income range 60000 to 70000"@en|"Birmingham"@en|"11th of March 2011@en"| 13.66 |

For each income range and day, over all the values of the consumption of

households belonging to it, the arithmetic mean was calculated.

Marker Status: PASSED

Query 2 – Marker 3

Checked by comparing the query’s output with the all income range groups of

household and the days that had measures recorded on the sample dataset.

Marker Status: PASSED

Query 3 – Marker 1

Data structure from the input dataset vs

output dataset:

Marker Status: PASSED

Query 3 – Marker 2

For the output of the query over the sample data (7 entries), the entries in the

initial datasets were manually counted:

--

| Month_label | City_label | Household_label | eCons |

==

| "March 2011@en" | "Birmingham"@en | "106"@en | 6 |

| "March 2011@en" | "Birmingham"@en | "2"@en | 17 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 22 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 28 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 18 |

| "February 2011@en" | "Birmingham"@en | "2"@en | 15 |

| "April 2011@en" | "Birmingham"@en | "119"@en | 15 |

--

Marker Status: PASSED

Query 3 – Marker 3

For each month it was checked that there exists a minimum of 1 day from the

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

155

specified Month for the specified household.

Marker Status: PASSED

Evaluation Result for F_Roll_up: PASSED

Table 7.7 F_Roll_up correctness evaluation based on defined markers

The summary of the results of all the operators is available in Table 7.8, while the

detailed evaluation steps of performance are provided in Appendix C.

Evaluation of F_Operator: F_Roll_up Query 1 – Marker 1: PASSED

Query 1 – Marker 2: PASSED

Query 1 – Marker 3: PASSED

Query 2 – Marker 1: PASSED

Query 2 – Marker 2: PASSED

Query 2 – Marker 3: PASSED

Query 3 – Marker 1: PASSED

Query 3 – Marker 2: PASSED

Query 3 – Marker 3: PASSED

Evaluation of Operator: F_Drill Query 4 – Marker 1: PASSED

Query 4 – Marker 2: PASSED

Query 5 – Marker 1: PASSED

Query 5 – Marker 2: PASSED

Evaluation of F_Operator: F_Slice Query 6 – Marker 1: PASSED

Query 6 – Marker 2: PASSED

Query 7 – Marker 1: PASSED

Query 7 – Marker 2: PASSED

Evaluation of F_Operator: F_Dice Query 8 – Marker 1: PASSED

Query 8 – Marker 2: PASSED

Query 9 – Marker 1: PASSED

Query 9 – Marker 2: PASSED

Query 10 – Marker 1: PASSED

Query 9 – Marker 2: PASSED

F_Operators overall Result: PASSED

Table 7.8 Summary of the outcome of the F_Operators evaluation of correctness

7.6.3 Operators’ Performance Evaluation

7.6.3.1 Evaluation Set-up

As previously mentioned there are existing related works in benchmarking SPARQL

query performance. A selection of these works (Bizer & Schultz, 2009) (Schmidt,

Hornung, Lausen, & Pinkel, 2009) (Schmidt, Meier, & Lausen, 2010) (Buil-Aranda,

Arenas, & Corcho, 2011) is used in the evaluation of the test results in the Analysis of

the test results section.

The tests are performed under Window 7 Professional machine, Intel Core i7-

4800MQ, 2,70 GHz CPU, and 16GB RAM. Data was stored and run from the same

156

machine where the Eclipse IDE Environment was running. The storage was a 750 GB

Western Digital SATA III hard drive, with 16 MB Cache. The Java engines were

executed from Eclipse, with JDK1.7.0_79 version.

All the RDF data used in these experiments was in form of N3 serialization of the

RDF format.

7.6.3.2 Design and Completion of Operators’ Tests

Federated Operators were designed to include a selected number of operators,

modifiers and filters specific to the SPARQL querying language. The selection is

defined to reduce the complexity and to improve the performance of the operators. The

needed SPARQL characteristics in the development of the operators were summarized

in Table 6.1, in Chapter 6.

In order to be able to analyse some of the characteristics that influence the

performance of the operators, each query was tested twice based on the required output

criteria as:

 a: the query requests that the output is visualised, so only one SELECT is

used.

 b: the query requests that the output is materialised, so the CONSTRUCT is

used.

The SPARQL characteristics included in a query are relevant in terms of

performance. In order to successfully evaluate the selected query set against related

benchmarks, the used SPARQL characteristics per query are summarised in Table 7.9.

As the query set is designed for the specified domain, all the queries include the

DISTINCT and GROUP modifiers in order to sustain the correctness of the query

output and eliminate duplicate solutions.

Table 7.9 presents an overview of the characteristics of each query, and the type of

dimensions and members that they operate over.

157

Charact

eristic

Select

Op.

Construct

Op.

Group

Mod.

Distinct

Mod.

Bind

Op.

Values

Op.

IRI

Op.

Agg.

Funct.

Substr

operator

Topo

Dim.

Info

Dim.

Q1a X X X X X

Q1b X X X X X X X X X

Q2a X X X X X

Q2b X X X X X X X X X

Q3a X X X X X

Q3b X X X X X X X X X

Q4a X X X X

Q4b X X X X X X X X

Q5a X X X X

Q5b X X X X X X X X

Q6a X X X X

Q6b X X X X X X X X

Q7a X X X X

Q7b X X X X X X X X

Q8a X X X X X

Q8b X X X X X X X X X

Q9a X X X X X

Q9b X X X X X X X X X

Q10a X X X X X X

Q10b X X X X X X X X X X

Table 7.9 SPARQL and IGOLAP characteristics per query

This evaluation considers only the SPARQL query language features required by the

use case provided. As different benchmarks included different SPARQL characteristics

in the queries they use, there is no full match available between this set of queries and

the one in the benchmarks available.

The testing of the performance of the operators was designed as follows:

1. Each query (versions a and b are tested as two distinct queries) has a

designated test.

2. There are five input data sizes defined for each of the tests: 10k triplets, 50k

triples, 150k triplets, 250k triplets and 500k triples with a storage size to up

to 15MB each.

158

3. Each test runs 1000 times. The results are used to calculate the mean, the

standard deviation and the standard error of each test.

By designing and conducting the tests in this manner, it gives the possibility of

making comparisons among all federated operators, between two operator requests

(visualisation or materialisation) and among operators performing over topological

dimensions and member and over informational ones.

7.6.4 Analysis of the test results

7.6.4.1 Overview of the results

All the test results discussed in this section are made available in Appendix C.

After obtaining a stable standard deviation and a standard error under 3%, it was

concluded that the mean is representative for the performance behaviour of the

F_Operators.

The results of the tests are quantified by maximum number of Queries per Second

(QpS).

An initial assessment can be realised from the overall maximum number of QpS for

each query and set size combination, as illustrated in Figure 7.1 and Figure 7.2.

As previously discussed, the results of the queries are discussed on different group of

queries:

 Queries requesting materialisation compared with ones those do not

 Performance of each F_Operator, by analysing the impact of topological and

informational dimensions

159

1. Visualising requests vs. materialising requests

Figure 7.1 Queries overview of achieved QpS 1

The queries materialising the results, and consequently using the CONSTRUCT

SPARQL operators, perform consistently worse than the ones without using it.

This is due to the load of the CONSTRUCT SPARQL operator and the additional

required modifiers: BIND and IRI over the obtained query.

Figure 7.2 Queries overview of achieved QpS 2

Considering that the materialised outputs are further used in other aggregations,

gives the possibility of operating on a smaller, pre-aggregated set of data, which can be

now be visualised or further aggregated. In terms of performance on a larger volume of

data or complex aggregations, the materialised outputs can be used to operate on

0,0000

1000,0000

2000,0000

3000,0000

4000,0000

5000,0000

6000,0000

7000,0000

8000,0000

9000,0000

10000,0000

Performed QpS for queries set

10k 50k 150k 250k 500k

160

reduced (pre-aggregated) datasets (or in steps) and as such optimise the performance of

complex requests.

a. Materialising queries

When analysing the construct queries separately, it is observed that all the queries

have a linear decrease of performance with the increase in the dataset size as presented

in Figure 7.3.

Figure 7.3 Performance across CONSTRUCT queries

The lowest performance was recorded for queries Q4 and Q5 which require the

F_Drill operator. The reason behind this low performance is due to the need for

calculating a high number of intermediate responses and at the same time using the

BIND and IRI modifiers.

In Table 7.10 the obtained set QpS averages are summarised while including and

excluding the low performing queries from the set.

Average QpS including Q4
and Q5

Average QpS excluding Q4
and Q5

10k triplets 224.2412463 280.0744499

50k triplets 343.132418 428.9111868

150k triplets 35.42128614 44.27609649

250k triplets 26.0193352 32.52382192

500k triplets 24.29259183 30.36563213
Table 7.10 Average QpS obtained for materialisation requests

161

The performance of the F_Drill operator (as are all other operators) is detailed in the

following paragraphs of this section.

b. Visualising queries

Figure 7.4 illustrates the performance across queries that do not materialise the

output. While overall same tendency is registered with regards to decreasing

performance with the increase of the dataset size, a distinct pattern is identified here.

Figure 7.4 Performance across SELECT queries

The lower performance indices in this group are reported for the Q8, Q9 and Q10.

All these queries use the F_Dice operator. The F_Dice operator uses the VALUES

SPARQL operator in selecting the members needed for the dice operation.

This shows that while the retrieval of intermediate matches in conjunction with the

CONSTRUCT, BIND and IRI trigger a high performance decrease, the second most

costly SPARQL used operator is the VALUES operator, included in SPARQL 1.1.

(W3C Working Group, 2013).

Table 7.11 summarises the obtained average performance between visualising query

requests.

162

Average QpS including Q8
to Q10

Average QpS excluding Q8
to Q10

10k 4029.967941 5301.952384

50k 3715.395297 4815.86297

150k 3502.979242 4631.163187

250k 1547.21483 2069.053102

500k 1486.523758 1977.083618
Table 7.11 Average QpS obtained for visualisation requests

2. Federated Operators performance

a) F_Roll_up

All the queries that are using the F_Roll_up operator have a consistent behaviour.

This reflects that the navigation through the topological or informational dimensions is

irrelevant for the performance of the query.

Figure 7.5 F_ROLL_UP visualisation requests

163

Figure 7.6 F_ROLL_UP materialisation requests

Figure 7.4 and Figure 7.3 show that inside the groups of queries requesting

visualisation and respectively materialisation, the F_Roll_up has an average

performance in both cases. F_Roll_up supports the usage of SPARQL aggregation

functions. This makes us conclude that the usage of SPARQL aggregated functions

(SUM, MIN, etc) has a lower impact on the performance than use of the VALUES

operator.

b) F_Slice performance

The F_Slice operator queries register the best performance results, both when

requesting a materialisation or visualisation only of the outputs.

Figure 7.7 F_Slice materialisation queries

The descending pattern of the performance, when the size of the input dataset is

increased, it is maintained across the querys using the F_Slice operator. Even in this

164

case the topological and informational dimensions do not have an impact on the

performance of the operator.

Figure 7.8 F_Slice visualisation queries

c) F_Dice performance

In the case of the F_Dice operator it was identified that this has the lowest

performance across visualising operators. This reflects that the use of the VALUES

operator it is what mostly affects the performance across SPARQL operators, except for

the CONSTRUCT case. Combined with the CONSTRUCT operators, IRI and BIND

modifiers show a dramatic downsize of the performance, while the VALUES operator

performs better.

Figure 7.9 F_Dice materialisation queries

165

Nevertheless, as showed in Figure 7.9 and Figure 7.10, there is no difference

between the handling topological or informational members.

Figure 7.10 F_Dice visualisation queries

d) F_Drill performance

Due to the fact that RDF is organising the data based on a Graph Data Model and as

a consequence the SPARQL querying language is based on Statement Patterns (SP)

which allows it to match individual triples to the Graph Pattern of the data, the way in

which the graph pattern is described highly influences the query performance.

This highlights the fact that the complexity of a query is not only related to a higher

number of SPARQL operators and complex filters but also by the order of execution in

a query. The reason for this is that the more intermediate results are generated during

the execution, the slower the response time of the query becomes.

The later can be exemplified through the F_Drill operator, which has the worst

performance throughout the introduced operators. Initially, the Statement Pattern of the

SELECT, and as a consequence also the CONSTRUCT operator for the ?subject

?predicate ?object pattern was implemented as:

?Household igolap:topoDConnectedTo ?topoM .

Where the ?Household was the subject with an unknown value and ?topoM was the

object whose value was calculated in one of the previous statements. This would trigger

the initial mapping of all available values to ?Household as intermediate results which

would then be validated against the matching the igolap:topoDConnectedTo as the

166

predicated of the statement and the previously identified values for ?topoM as the

object of the statement.

By changing the above Statement Pattern in the F_Drill operator to the statement

introduced below, it was mapped the igolap:topoDConnectedTo as the predicated of

the statement to the ?topoM subject, which is known at this point and as such

substantially reducing the number of the matching values for the unknown object of the

statement ?Household.

?topoM igolap:topoDConnectedTo ?Household.

The percent of optimisation on mean, standard deviation and standard error values

through this change only is identified for both SELECT and CONSTRUCT in Table

7.12 and respectively Table 7.13 below. The response times in this case are represented

in milliseconds and they represent the response time over a 10k triplets dataset.

Initial Q5a (ms) Optimised Q5a (ms) Improvement percent

Mean 0,1907 0,1639 14,05%

Standard Deviation 0,0634 0,0501 20,98%

Standard Error 0,0020 0,0016 21,00%
Table 7.12 Improvement on Query 5 SELECT through SP Optimisation

Initial Q5b (ms) Optimised Q5b (ms) Improvement percent

Mean 3305,495 2819,0893 14,72%

Standard Deviation 67,6434 65,3753 3,35%

Standard Error 2,139 2,0683 3,31%
Table 7.13 Improvement on Query 5 CONSTRUCT through SP Optimisation

After optimisations the tests were retaken for the F_Drill operators and the results

obtained are visualised in the below graphics:

167

Figure 7.11 F_Drill visualisation requests

Figure 7.12 F_Drill materialisation requests

Even after the optimisations the materialisation option of the F_Drill operators has

lower outcomes when used in conjunction with the CONSTRUCT SPARQL operator.

When the SPARQL CONSTRUCTOR is not used, the BIND and IRI join of operators

are implemented. But the visualising option of the F_Dice still uses the VALUES

modifier. Due to this, the F_Drill operator performs better than the F_Dice one.

7.6.4.2 Correlation with existing benchmarks (performance

aspects)

(Etcheverry & Vaisman, 2012) does not provide any queries evaluation for the

introduced vocabulary, as well as no version of visualisation only for the OLAP

operators. As a consequence, available relevant benchmarks were selected as reference

in this evaluation. (Bizer & Schultz, 2009) address the performance of SPARQL

engines in a prototypical e-commerce scenario. This benchmark do not address

168

language specific issues, but provides relevant references of expected performance for

different complexity e-commerce queries.

The benchmark introduced by (Schmidt, Hornung, Lausen, & Pinkel, 2009),

considers additionally to the set of SPARQL specific characteristics in the queries

dataset, the performance of in-memory engines. The results of this benchmark are

consistent with the results obtained in this work. These results conclude that the

performance of the F_Operators is relative to the SPARQL characteristics used.

Furthermore, as shown in (Bizer & Schultz, 2009), available querying engines can

respond differently on the same SPARQL operators. The same benchmark includes only

one query in their evaluation containing the CONSTRUCT operator, additionally this

query does not contain any other modifiers and constraints. This leaves the comparison

between the outcomes of this benchmark for the Query 8b (Table 7.14 Comparision

between Q8b and Query 12 from (Bizer & Schultz, 2009)). Furthermore the introduced

benchmark tests against different native SPARQL engines, while the research tests with

an in-memory engine. Nevertheless both of the tested engines are Apache Jena

implementations. As shown in table below, the pattern of the query supports a good

performance time in comparison with the referenced one.

Query Querying Engine Results (QpS)

Query 12

 (Bizer & Schultz, 2009)

JenaTDB 53

Q8b ARQ 123

Table 7.14 Comparision between Q8b and Query 12 from (Bizer & Schultz, 2009)

ARQ –in memory engines (Schmidt, Hornung, Lausen, & Pinkel, 2009) reports on a

million triplets dataset, an average performance of across the included tests of queries as

901.73s, and geometric mean performance of 179.42s. The time out operator (time out

time set to 30 minutes) was penalized with 3600s, value that was used to calculate the

reported averages.

While still reasonably diverse, the set of queries introduced in this work achieves a

mean performance of under 286.96s on a 500k triplets and a geometrical mean of

0.0321404s on the same dataset size. In this experiment the low performer(s) is not

169

penalized and the actual performance result of 4115.53s is used in the calculation of the

mean.

When referencing to the benchmarks previously introduced, it is shown that the

selection of the SPARQL characteristics used in the F_Operators has produced good

performance results considering the in-memory engine usage and capability of the

SPARQL language.

7.7 Overview of the evaluations

In regards to requirements extracted from (Grey, 1993) which guided the design of this

evaluation, the outcome can be summarised as follows:

 Relevance: The evaluation is relevant to the OLAP for the Semantic Web

domain, and the queries described reflect BI queries from pre-existing

project. Evaluation against the results of other existing benchmarks is made

only on the common characteristics. Correctness of the outputs is provided in

this evaluation against the expected outcomes.

 Portability: It is about technical implementation such as libraries,

implementation programming language and querying engines.

 Scalability: The experiments cover ranges of 10k to 500k triplets input

datasets

 Understability: It is addressed through deep descriptions of the queries as

well as analysis of their outcomes in terms of possible optimisation factors.

It can be observed that the performance of the F_Operators is not influenced by the

type of the dimensions (informational or topological) on which they operate.

While performing between the performance-boundaries of their complexity factors,

according to the presented benchmarks, the F_Operators are successfully providing

OLAP functionality over semantic web data with a lower complexity SPARQL queries.

Nevertheless the same tests have to be performed across a broader range of available

170

querying engines, as these have different performance rates across SPARQL

characteristics (Bizer & Schultz, 2009).

Nonetheless, the correctness markers extracted from the expected outcome for the

introduced queries were all passed. This shows that the F_Operators achieve a 100%

accuracy in regards with their outcome.

All of these conclusions reflect on the capability of the underlying IGOLAP

Vocabulary introduced in this work.

7.8 Summary

In this chapter an evaluation of the proposed framework including both IGOLAP

Vocabulary and F_Operators was provided. Various aspects of evaluation design and

results analysis have been discussed this chapter.

171

Chapter 8 – Conclusion and future work

172

8.1 Introduction

The target of this chapter is to summarize in the component sections how the

research questions were addressed, what future areas of research were identified and

what is the research contribution.

8.2 Research questions coverage

The main research question was identified in Chapter1 as follows:

 Q0 – How can we address Semantic Web data in order to provide OLAP

capabilities across distributed SWDBs?

In order to answer the main research question, a set of relevant questions have been

asked and addressed.

 Q1 – What do we understand by OLAP over SW data?

The answer to this question is delivered in Chapter 2 – Research Background.

This chapter contains an introduction into the Semantic Web main concepts,

and a discussion of the current research background regarding OLAP in

conjunction with the Semantic Web.

 Q2 – Why are the current Vocabularies and modelling approaches not

suitable to appropriately model SW data for OLAP?

The benefits of OLAP capabilities over SW data are illustrated in Chapter 2

and the limitations of existing work in this field was presented in the last

subsection of the same chapter: Difficulty in providing OLAP systems over

Semantic Web Data. Chapter 4 – presented the proposed integrated approach

solution, including a well-defined vocabulary and a set of OLAP operators

designed for SW data. Furthermore Chapter 5 – IGOLAP Vocabulary

Development introduces the missing capabilities of existing vocabularies and

delivers a new vocabulary – IGOLAP – as a solution.

 Q3 – How can we perform OLAP over the SW’s modelled data?

173

The limitations of performing OLAP on SW have been discussed, beginning

in Chapter 2, and an overview of the solution to these limitations was

presented in Chapter 3. The details regarding architecture and implementation

of the IGOLAP vocabulary and Federated Operators, were presented in

details in Chapter 5 – IGOLAP Vocabulary Development and Chapter 6 –

Materialisation of Integrated OLAP Operators for SW Databases respectively.

 Q4 – How will these new set of operators and vocabulary help improve the

communication and OLAP capabilities across shared SWDBs?

The targeted improvement was introduced in Chapter 1 and was restated and

exemplified in Chapter 4 – by presenting real-world case studies. The

evaluation of both the vocabulary and operators is provided in Chapter 7 –

Evaluation .

By providing answers to these questions, the main research problem was addressed

and a complete solution to model and aggregate Semantic Web data by using OLAP

operators is achieved.

8.3 Overview of the research contribution

This research contributes to the domain of Semantic Web. It provides an integrated

approach to model SW data beyond the borders of statistical data and enhance BI

potentials and OLAP capability through the delivery of a specific vocabulary (IGOLAP)

and operators (F_Operators).

Investigation of the research literature has not discovered another available approach

that delivers an integrated solution for collective querying over multidimensional

semantic web databases. This research makes contributions to the following fields:

 Semantic Web data modelling for BI

Through the introduction of the Integrated Graph OLAP (IGOLAP)

vocabulary for multidimensional data representation, this work contributes to

the field of BI specific modelling of the Semantic Web data. The modelling

approach targets support for OLAP operators, while considering the graph

characteristics of the Semantic Web data. The main characteristics handled by

174

this vocabulary refers to the informational and topological structures specific

to the graph network and as such contained by the Semantic Web data. The

relevance of both topological and informational dimensions in graph

networks was introduced by the presented related works. Nevertheless this

was not previously connected to and applied specifically to Semantic Web

data. This aspect was successfully delivered through the IGOLAP

Vocabulary. Through the successful introduction and validation of the

approach from this work in one comprehensive vocabulary and set of

operators, OLAP capabilities were enhanced for the Semantic Web domain.

 Data analytics for BI

The materialization of a semantic OLAP database capability and delivery of

automatically built OLAP operators for SW data provides the necessary

support to perform BI data analytics over Semantic Web data.

The proposed operators are able to provide analytics, in form of different

types of aggregations, over both topological and informational dimensions. It

was identified that nowadays web data is most likely to be available in

topological and mixed topological and informational structures. By

introducing these operators it is possible to analyse the web data in

conjunction with its statistical counterpart, in order to provide a broader

overview and understanding of the semantics of data.

 Data integration in the Semantic Web

The data generation of new Semantic Web data is produced through the

materialisation of the observations generated by the introduced set of

operators. These observations are obtained after applying automatically

generated SPARQL queries which are applied on the data modelled to the

IGOLAP Vocabulary. As a consequence, the generated data conforms with

the IGOLAP Vocabulary and allows the publication and reuse of Semantic

Web data for further OLAP operations. The obtained Semantic Web data

once published with the vocabulary, gives the possibility of integration with

other available Semantic Web data, thus enabling further interrogation.

175

8.4 Foreseen related areas of research

Throughout the evaluation of the current work related areas of research which could

improve and extend the research conducted were identified. The main three such

research topics are:

1. An evaluation over a more diverse set of Semantic Web data, with a broader

mix of both topological and informational dimensions should be conducted,

covering both the IGOLAP Vocabulary and F_Operators.

2. A benchmark which includes the performance of the operators across

different querying engines and scaled up datasets would provide an even

more comprehensive illustration and reference of the constructed work.

3. The optimisation of performance of SPARQL querying language can trigger

the improvement of the F_Operators making use of it.

8.5 Reflections

The DEHEMS project (EU 7th Framework Programme, 2008), which is also the first

case study of this research work, provided the context of the current work. While set in

a traditional BI set-up, early in the project it was observed that the information provided

through the semantics of the data is very relevant for deep understanding and analysis of

the obtained data. Semantic Web technologies provided the means to describe data,

behaviours and relationships, which are very helpful in the reasoning process. By

making use of these technologies it would be possible to support standard BI reports

with answers to semantics related questions. Additionally it was observed that most of

the effort in integrating the OLAP capabilities into the Semantic Web reflected

statistical data approaches. These were sustained through a vocabulary designed to

model the statistical data in a multidimensional manner. Nevertheless the structure of

the Sematic Web is that of an information network graph, where the different edges

between the graph nodes relects the relationship between different concepts and thus

describes a domain specific data topology.

Additionally, OLAP approaches over graph data delivered the first distinction

between the informational and topological dimensions of the information network

176

graphs. These approaches did not provided any direct applicability to the Semantic

Web, nor did they provide a vocabulary to model Semantic Web data for this purpose.

Consequently, there was no usage of the standard querying language for the Semantic

Web in the description of the generic operators, nor an available implementation and

validation of those.

By understanding the benefits that go beyond the usage of these concepts in the

context of the Semantic Web, it was possible to provide the missing support and

functionality through a defined vocabulary and specifically designed OLAP operators

for the newly identified Semantic Web characteristics of the data.

 The Semantic Web is starting to become a presence in the Enterprise world. The

adoptation of the Semantic Web in the Enterprise IT solutions shows that the conducted

research in this area managed to build up an effective set of supporting technologies and

approaches. One of the challenges still to be overcome, in order to be fully included in

Enterprise solutions, is the gain of trust in BI capabilities. While some results were

achieved, there is still work that needs to be done and now is the right time for focusing

on these aspects.

177

References

Agrawal, R., Gupta, A., & Sarawagi, S. (1997). Modeling multidimensional databases. In

Proceedings 13th International Conference on Data Engineering (pp. 232-243). IEEE.

ArticulateSoftware. (n.d.). Suggested Upper Merged Ontology (SUMO). Retrieved 2010, from

http://www.articulatesoftware.com/

Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H. R., & Allahbakhsh, M. (2012). A

framework and a language for on-line analytical processing on graphs. In Web

Information Systems Engineering-WISE 2012 (pp. 213-227). Springer Berlin Heidelberg.

Berlanga, R., Romero Moral, O., Simitsis, A., Nebot, V., Pedersen, T. B., Gamazo, A., &

Aramburu, A. (2012). Semantic web technologies for business intelligence. In Business

Intelligence Applications and the Web: Models, Systems and Technologies, 310-339.

Berners-Lee, T. (1998, February). Relational Databases on the Semantic Web. Retrieved from

http://www.w3.org/DesignIssues/RDB-RDF.html

Berners-Lee, T. (2006, January). Design Issues. Retrieved from

http://www.w3.org/DesignIssues/LinkedData.html

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., . . . Sheets, D.

(2006). Tabulator: Exploring and analyzing linked data on the semantic web.

Proceedings of the 3rd International Semantic Web User Interaction Workshop.

Berners-Lee, T., Hendler, J., & Lasssila, O. (2001). “The Semantic Web”. Scientific American

Magazine.

Bizer, C., & Schultz, A. (2009). The Berlin SPARQL Benchmark. International Journal on

Semantic Web & Information, 5(2).

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data – the story so far. Int. J. Semantic

Web Inf. Syst, 5(3), 1–22.

Braunschweig, K., Eberius, J., Thiele, M., & Lehner, W. (2012). The State of Open Data Limits of

Current Open Data Platforms Categories and Subject Descriptors. Conference

Proceedings Eorld Wide Web Conference.

Buil-Aranda, C., Arenas, M., & Corcho, O. (2011). Semantics and optimization of the SPARQL

1.1 federation extension. In S. B. Heidelberg (Ed.), The Semanic Web: Research and

Applications (pp. 1-15).

Chao, K.-M., Shah, N., Farmer, R., & Matei, A. (2012). Energy Management System for

Domestic Electrical Appliances. International Journal of Applied Logistics (IJAL), 3(4),

48-60.

178

Chao, K.-M., Shah, N., Farmer, R., Matei, A., Chen, D.-Y., Schuster-James, H., & Tedd, R. (2010).

A profile based energy management system for domestic electrical appliances. In IEEE

7th International Conference on e-Business Engineering (ICEBE) (pp. 415-420). IEEE.

Chao, K.-M., Shah, N., Matei, A., Zlamaniec, T., Li, W., Lo, C.-C., & Li, Y. (2011). Intelligent

interactive system for collaborative green computing. In 15th International Conference

on Computer Supported Cooperative Work in Design (CSCWD) (pp. 690-697). IEEE.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology.

ACM Sigmod record, 26(1), 65-74.

Chaudhuri, S., & Dayal, U. (1997). Data warehousing and OLAP for decision support. In ACM

Sigmod Record (pp. 507-508). ACM.

Chen, C., Yan, X., Zhu, F., Han, J., & Yu, P. S. (2008). Graph OLAP: Towards online analytical

processing on graphs. In Eighth IEEE International Conference on Data Mining, 2008.

ICDM'08. (pp. 103-112). IEEE.

Chen, C., Yan, X., Zhu, F., Han, J., & Yu, P. S. (2009). Graph OLAP: a multi-dimensional

framework for graph data analysis. Knowledge and Information Systems, 21(1), 41-63.

Codd, E. F. (1993). Beyond decision support. Computerworld, 27(30), 87-89.

Cook, T. D., & Reichardt, C. S. (1979). Qualitative and quantitative methods in evaluation

research (1 ed.). Sage publications Beverly Hills, CA.

d’Aquin, M., & Noy, N. F. (2012). Where to publish and find ontologies? A survey of ontology

libraries. Web Semantics: Science, Services and Agents on the World Wide Web, 11, 96

- 111.

Elio, R., Hoover, J., Nikolaidis, I., Salavatipour, M., Stewart, L., & Wong, K. (2011). About

Computing Science Research Methodology. Retrieved from

http://webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf

Etcheverry, L., & Vaisman, A. (2012). QB4OLAP: a new vocabulary for OLAP cubes on the

semantic web. Proceedings of COLD.

Etcheverry, L., & Vaisman, A. A. (2011). QB4OLAP: a Vocabulary for Business Intelligence over

the Semantic Web . Retrieved from http://publishing-multidimensional-

data.googlecode.com/git-

history/6db60dff91cf4571432f6bf0b31b339579d63795/index.html

Etcheverry, L., & Vaisman, A. A. (2012). Enhancing OLAP analysis with web cubes. In The

Semantic Web: Research and Applications (pp. 469-483). Heraklion: Springer Berlin

Heidelberg.

Etcheverry, L., & Vaisman, A. A. (n.d.). Open Cube Vocabulary. Retrieved 2013, from

http://purl.org/olap#

179

EU 7th Framework Programme. (2008). DEHEMS The Digital Environment Home Energy

Management System. Retrieved 2010, from http://www.dehems.eu/

Fonseca, F., & Martin, J. (2007). Learning the differences between ontologies and conceptual

schemas through ontology-driven information systems. Journal of the Association for

Information Systems - Special Issue on Ontologies in the context of IS, 8(2), 129-142.

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction (7 ed.).

Longman Publishing.

Greene, J. C., & Caracelli, V. J. (1997). Advances in Mixed-Method Evaluation: The Challenges

and Benefits of Integrating Diverse Paradigms. New Directions for Evaluation, 74.

Grey, J. (1993). The Benchmark Handbook for Database and Transaction Systems. Morgan

Kaufmann.

Guarino, N. (1998). Formal ontology in information systems: Proceedings of the first

international conference (FOIS'98), June 6-8, Trento, Italy. IOS press.

Heath, T. (2008). The Linking Open Data Project - Bootstrapping the Web of Data. Amsterdam:

CATCH Programme and E-Culture Project Meeting on Metadata Interoperability.

Horrocks Ian, K. O. (2006). The even more irresistible SROIQ. Proceedings of the 10th

International Conference on the Principles of Knowledge Representation and

Reasoning.

Hyland, B., Atemezing, G., & Villazón-Terrazas, B. (2014). Best Pratices for publishing Linked

Data. Retrieved from World Wide Web Consortium: https://www.w3.org/TR/ld-bp/

Inmon, W. H. (2005). Building the data warehouse. John wiley & sons.

Jick, T. D. (1979). Mixing qualitative and quantitative methods:Triangulation in action.

Administrative science quarterly, 602-611.

Kämpgen, B., & Harth, A. (2011). Transforming statistical linked data for use in OLAP systems.

Graz: Proceedings of the 7th international conference on Semantic systems.

Kämpgen, B., O’Riain, S., & Harth, A. (2012). Interacting with statistical linked data via OLAP

operations. In The Semantic Web: ESWC 2012 Satellite Events (pp. 87-101). Springer

Berlin Heidelberg.

Kaplan, B., & Duchon, D. (1988). Combining qualitative and quantitative approaches in

information systems research: A case study. MIS quarterly, 12, 571-586.

Kaplan, B., & Maxwell, J. A. (2005). Qualitative research methods for evaluating computer

information systems. In Evaluating the organizational impact of healthcare

information systems (pp. 30-55). Springer New York.

180

Klyne, G., & Carroll, J. (2004). Resource Description Framework (RDF): Concepts and Abstract

Syntax - W3C Recommendation. Retrieved from http://www.w3.org/TR/rdf-concepts/

Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.

Krötzsch, M., Maier, F., Krisnadhi, A. A., & Hitzler, P. (2011). A Better Uncle For OWL -- Nominal

Schemas for Integrating Rules and Ontologies. Hyderabad: WWW 2011 – Session:

Query and Ontology Languages.

Le, W., Duan, S., Kementsietsidis, A., Li, F., & Wang, M. (2011). Rewriting queries on SPARQL

views. In Proceedings of the 20th international conference on World wide web (pp.

655-664). ACM.

Linked Data community. (n.d.). Linked Data - Connect Distributed Data across the Web.

Retrieved from http://linkeddata.org/

Miles, A., & Bechhofer, S. (2009). SKOS Simple Knowledge Organization System Namespace

Document. Retrieved from http://www.w3.org/2009/08/skos-reference/skos.html

Morbidoni, C., Polleres, A., Tummarello, G., & Le Phuoc, D. (2007). Semantic web pipes.

Rapport technique, DERI, 71, 108-112.

Motik, B. (2010). Representing and Querying Validity Time in RDF and OWL: A Logic-based

Approach},. In Proceedings of the 9th International Semantic Web Conference on The

Semantic Web - Volume Part I (pp. 550-565). Shanghai: Springer-Verlag.

Motik, B., Patel-Schneider, P. F., & Grau, B. C. (2012). OWL 2 Web Ontology Language Direct

Semantics. Retrieved 2013, from https://www.w3.org/TR/owl2-direct-semantics/

N. Shadbolt, e. a. (2006). The Semantic Web Revised. IEEE Intelligent Systems, 21, 96-101.

Noy, N. F., & Mcguinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your

First Ontology. Standford University, Medical Informatics. Standford.

OLAP Council. (1997). The OLAP glossary. Retrieved 2013, from http://www.olapcouncil.org

Olive, A. (2004). On the Role of Conceptual Schemas in Information Systems Development. In

Reliable Software Technologies-Ada-Europe 2004 (pp. 16-34). Barcelona: Springer

Berlin Heidelberg.

OPEN GOVERNMENT PARTNERSHIP. (2011). OPEN GOVERNMENT PARTNERSHIP. Retrieved

2012, from http://www.opengovpartnership.org/about

Orsi, G., & Andreas, P. (2011). Optimizing query answering under ontological constraints. Proc.

PVLDB-2011.

OWL Working Group. (2012). OWL Semantic Web Standards. Retrieved 2013, from

http://www.w3.org/2001/sw/wiki/OWL

181

Parundekar, R., Knoblock, C. A., & Ambite, J. L. (2010). Linking and Building Ontologies of

Linked Data. In Proceedings of the 9th International Semantic Web Conference on The

Semantic Web - Volume Part I (pp. 598--614). Springer-Verlag.

Patton, M. Q. (1990). Qualitative evaluation and research methods . SAGE Publications, inc.

Perez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and Complexity of SPARQL. In ACM

Transactions on Database Systems (TODS) (Vol. 34, p. 16). ACM.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2008). Linking

Data to Ontologies. In S. Spaccapietra (Ed.), Journal on Data Semantics X (Vol. 4900,

pp. 133-173). Springer Berlin Heidelberg.

Qu, Q., Zhu, F., Yan, X., Han, J., Philip, S. Y., & Li, H. (2011). Efficient topological OLAP on

information networks. In Database Systems for Advanced Applications (pp. 389-403).

Springer.

Rohloff, K., Dean, M., Emmons, I., Ryder, D., & Sumner, J. (2007). An Evaluation of Triple-Store

Technologies for Large Data Stores. In On the Move to Meaningful Internet Systems

2007: OTM 2007 Workshops (pp. 1105-1114). Springer Berlin Heidelberg.

Schmidt, M., Hornung, T., Lausen, G., & Pinkel, C. (2009). SP2 Bench: A SPARQL Performance

Benchmark. In IEEE 25th International Conference on Data Engineering, 2009. ICDE '09

(pp. 222-233). Shanghai: IEEE.

Schmidt, M., Meier, M., & Lausen, G. (2010). Foundations of SPARQL query optimization. In

Proceedings of the 13th International Conference on Database Theory (pp. 4-33). ACM.

Shah, N., Chao, K.-M., Zlamaniec, T., & Matei, A. (2011). Ontology for Home Energy

Management Domain. In Proceedings of DICTAP (2) (pp. 337-347). Springer Berlin

Heidelberg.

Statstical Data and Metadata Exchange SDMX. (n.d.). SDMX 2.1 Technical Specification .

Retrieved 2012, from http://sdmx.org/?page_id=10

Studer, R., Simperl, E., & Kämpgen, B. (2011). Linked Data & Ontologies. Riga, Latvia: STI

Summit 2011. Retrieved from http://www.sti-

international.org/sites/default/files/Summit%202011/6.%20studer_LDO_v4revRudi.pd

f

Tennison, J., & TSO. (2011). The RDF Data Cube Vocabulary. Retrieved 2012, from

http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/

The Apache Software Foundation. (2011). Apache Jena. Retrieved from

https://jena.apache.org/

Tutorial Point. (n.d.). Data Warehousing Tutorial. Retrieved 2013, from

http://www.tutorialspoint.com/dwh/dwh_olap.htm

182

Uschold, M. (2011). Making the case for ontology. Applied Ontology, 6(4), 377-385.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications.

KNOWLEDGE ENGINEERING REVIEW, 11, 93-136.

Uschold, M., & Gruninger, M. (2004). Ontologies and semantics for seamless connectivity. ACM

SIGMod Record, 33(4), 58-64.

Vaisman, A., & Zimányi, E. (2014). Data Warehouses and the Semantic Web. In Data

Warehouse Systems (pp. 539-576). pringer Berlin Heidelberg.

Vassiliadis, P. (1998). Modeling multidimensional databases, cubes and cube operations. In

Proceedings of Tenth International Conference on Scientific and Statistical Database

Management, 1998 (pp. 53-62). IEEE.

Vassiliadis, P., & Sellis, T. (1999). A survey of logical models for OLAP databases. ACM Sigmod

Record, 28(4), 64-69.

Voigt, M., Mitschick, A., & Schulz, J. (2012). Yet Another Triple Store Benchmark? Practical

Experiences with Real-World Data. In SDA (pp. 85-94). Citeseer.

W3C. (2004, February 10). OWL Web Ontology Language. Retrieved 2012, from

http://www.w3.org/TR/2004/REC-owl-guide-20040210/#inverseOf

W3C Consortium. (2010, January). Semantic Web. Retrieved from

http://www.w3.org/standards/semanticweb/

W3C OWL Working Group . (2012). OWL 2 Web Ontology Language. Retrieved 2013, from

http://www.w3.org/TR/owl2-overview/

W3C Semantic Web. (2004). OWL Web Ontology Language. Retrieved 2012, from

http://www.w3.org/TR/2004/REC-owl-features-20040210/

W3C Semantic Web. (2008). Semantic Web Education and Outreach (SWEO) Interest Group.

Retrieved from http://www.w3.org/blog/SWEO/

W3C Semantic Web. (2009). W3C Semantic Web Frequently Asked Questions. Retrieved from

http://www.w3.org/2001/sw/SW-FAQ

W3C SWEO. (n.d.). Linking Open Data. Retrieved 2013, from

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData#P

roject_Description

W3C Working Group. (2008). SPARQL Query Language for RDF. Retrieved 2011, from

http://www.w3.org/TR/rdf-sparql-query/

W3C Working Group. (2012). R2RML: RDB to RDF Mapping Language. Retrieved 2013, from

http://www.w3.org/TR/r2rml/

183

W3C Working Group. (2013). SPARQL 1.1 Overview. Retrieved 2013, from

http://www.w3.org/TR/sparql11-overview/

Wenzel, K. (2011). Ontology-Driven Application Architectures with KOMMA,. Bonn: 7th

International Workshop on. Retrieved from http://iswc2011.semanticweb.org/

Zhao, P., Li, X., Xin, D., & Han, J. (2011). Graph cube: on warehousing and OLAP

multidimensional networks. In Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data (pp. 853-864). ACM.

184

APPENDIX A - Vocabularies

The RDF Data Cube Vocabulary

(Working draft used at the bases of this research original repository only with the up-to dated
versions, version can’t be retrieved anymore: http://purl.org/linked-data/cube#
Location of the retrievable version 0.1 of the vocabulary: http://people.aifb.kit.edu/bka/ssb-

benchmark/ssb/olap4ld/cube.ttl)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix scovo: <http://purl.org/NET/scovo#> .

@prefix void: <http://rdfs.org/ns/void#> .

@prefix qb: <http://purl.org/linked-data/cube#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

<http://purl.org/linked-data/cube>

 a owl:Ontology;

 owl:versionInfo "0.1";

 rdfs:label "The data cube vocabulary";

 rdfs:comment "This vocabulary allows multi-dimensional data, such as statistics, to

be published in RDF. It is based on the core information model from SDMX (and thus

also DDI).";

 dcterms:created "2010-07-12"^^xsd:date;

 dcterms:modified "2010-11-27"^^xsd:date;

 dcterms:title "Vocabulary for multi-dimensional (e.g. statistical) data publishing";

 dcterms:license <http://www.opendatacommons.org/licenses/pddl/1.0/> ;

 dcterms:contributor [foaf:mbox "richard@cyganiak.de"],

 [foaf:mbox "jeni@jenitennison.com"],

 [foaf:mbox "arofan.gregory@earthlink.net"],

 [foaf:mbox "ian@epimorphics.com"],

 [foaf:mbox "dave@epimorphics.com"];

 .

--- DataSets ---------------------------

qb:DataSet a rdfs:Class, owl:Class;

 rdfs:label "Data set"@en;

 rdfs:comment "Represents a collection of observations, possibly organized into

various slices, conforming to some common dimensional structure."@en;

 rdfs:subClassOf qb:Attachable;

 owl:equivalentClass scovo:Dataset;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Observations ---------------------------

qb:Observation a rdfs:Class, owl:Class;

 rdfs:label "Observation"@en;

 rdfs:comment "A single observation in the cube, may have one or more associated

measured values"@en;

 rdfs:subClassOf qb:Attachable;

 owl:equivalentClass scovo:Item;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:dataSet a rdf:Property, owl:ObjectProperty;

 rdfs:label "data set"@en;

 rdfs:comment "indicates the data set of which this observation is a part"@en;

 rdfs:domain qb:Observation;

 rdfs:range qb:DataSet;

 owl:equivalentProperty scovo:dataset;

http://purl.org/linked-data/cube
http://people.aifb.kit.edu/bka/ssb-benchmark/ssb/olap4ld/cube.ttl
http://people.aifb.kit.edu/bka/ssb-benchmark/ssb/olap4ld/cube.ttl

185

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:observation a rdf:Property, owl:ObjectProperty;

 rdfs:label "observation"@en;

 rdfs:comment "indicates a observation contained within this slice of the data

set"@en;

 rdfs:domain qb:Slice;

 rdfs:range qb:Observation;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Slices ---------------------------

qb:Slice a rdfs:Class, owl:Class;

 rdfs:label "Slice"@en;

 rdfs:comment "Denotes a subset of a DataSet defined by fixing a subset of the

dimensional values, component properties on the Slice"@en;

 rdfs:subClassOf qb:Attachable;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:slice a rdf:Property, owl:ObjectProperty;

 rdfs:label "slice"@en;

 rdfs:comment "Indicates a subset of a DataSet defined by fixing a subset of the

dimensional values"@en;

 rdfs:domain qb:DataSet;

 rdfs:range qb:Slice;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:subSlice a rdf:Property, owl:ObjectProperty;

 rdfs:label "sub slice"@en;

 rdfs:comment "Indicates a narrower slice which has additional fixed dimensional

values, for example a time-series slice might a subSlice of a slice which spans both

time and geographic area"@en;

 rdfs:domain qb:Slice;

 rdfs:range qb:Slice;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Dimensions, Attributes, Measures ---------------------------

qb:Attachable a rdfs:Class, owl:Class;

 rdfs:label "Attachable (abstract)"@en;

 rdfs:comment "Abstract superclass for everything that can have attributes and

dimensions"@en;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:ComponentProperty a rdfs:Class, owl:Class;

 rdfs:label "Component property (abstract)"@en;

 rdfs:subClassOf rdf:Property;

 rdfs:comment "Abstract super-property of all properties representing dimensions,

attributes or measures"@en;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:DimensionProperty a rdfs:Class, owl:Class;

 rdfs:label "Dimension property"@en;

 rdfs:comment "The class of components which represent the dimensions of the

cube"@en;

 rdfs:subClassOf qb:ComponentProperty;

 rdfs:subClassOf qb:CodedProperty;

 owl:disjointWith qb:MeasureProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:AttributeProperty a rdfs:Class, owl:Class;

 rdfs:label "Attribute property"@en;

 rdfs:comment "The class of components which represent attributes of observations in

the cube, e.g. unit of measurement"@en;

 rdfs:subClassOf qb:ComponentProperty;

 owl:disjointWith qb:MeasureProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

186

 .

qb:MeasureProperty a rdfs:Class, owl:Class;

 rdfs:label "Measure property"@en;

 rdfs:comment "The class of components which represent the measured value of the

phenomenon being observed"@en;

 rdfs:subClassOf qb:ComponentProperty;

 owl:disjointWith qb:AttributeProperty;

 owl:disjointWith qb:DimensionProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:CodedProperty a rdfs:Class, owl:Class;

 rdfs:label "Coded property"@en;

 rdfs:subClassOf qb:ComponentProperty;

 rdfs:comment "Superclass of all coded ComponentProperties"@en;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Reusable general purpose component properties ---------------------------

qb:measureType a qb:DimensionProperty, rdf:Property;

 rdfs:label "measure type"@en;

 rdfs:comment "Generic measure dimension, the value of this dimension indicates which

measure (from the set of measures in the DSD) is being given by the obsValue (or

other primary measure)"@en;

 rdfs:range qb:MeasureProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Data Structure Definitions ---------------------------

qb:DataStructureDefinition a rdfs:Class, owl:Class;

 rdfs:label "Data structure definition"@en;

 rdfs:comment "Defines the structure of a DataSet or slice"@en;

 rdfs:subClassOf qb:ComponentSet ;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:structure a rdf:Property, owl:ObjectProperty;

 rdfs:label "structure"@en;

 rdfs:comment "indicates the structure to which this data set conforms"@en;

 rdfs:domain qb:DataSet;

 rdfs:range qb:DataStructureDefinition;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:component a rdf:Property, owl:ObjectProperty;

 rdfs:label "component specification"@en;

 rdfs:comment "indicates a component specification which is included in the structure

of the dataset"@en;

 rdfs:domain qb:DataStructureDefinition;

 rdfs:range qb:ComponentSpecification;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Component specifications - for qualifying component use in a DSD -----------------

qb:ComponentSpecification a rdfs:Class, owl:Class ;

 rdfs:label "Component specification"@en;

 rdfs:comment """Used to define properties of a component (attribute, dimension etc)

which are specific to its usage in a DSD."""@en;

 rdfs:subClassOf qb:ComponentSet ;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:ComponentSet a rdfs:Class, owl:Class;

 rdfs:label "Component set"@en;

 rdfs:comment "Abstract class of things which reference one or more

ComponentProperties"@en;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:ComponentSpecification rdfs:subClassOf qb:ComponentSet .

187

qb:SliceKey rdfs:subClassOf qb:ComponentSet .

qb:componentProperty a rdf:Property, owl:ObjectProperty;

 rdfs:label "component"@en;

 rdfs:comment "indicates a ComponentProperty (i.e. attribute/dimension) expected on a

DataSet, or a dimension fixed in a SliceKey"@en;

 rdfs:domain qb:ComponentSet;

 rdfs:range qb:ComponentProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:order a rdf:Property, owl:DatatypeProperty;

 rdfs:label "order"@en;

 rdfs:comment """indicates a priority order for the components of sets with this

structure, used to guide presentations - lower order numbers come before higher

numbers, un-numbered components come last"""@en;

 rdfs:domain qb:ComponentSpecification;

 rdfs:range xsd:int;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:componentRequired a rdf:Property, owl:DatatypeProperty;

 rdfs:label "component required"@en;

 rdfs:comment """Indicates whether a component property is required (true) or

optional (false) in the context of a DSD or MSD"""@en;

 rdfs:domain qb:ComponentSpecification;

 rdfs:range xsd:boolean;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:componentAttachment a rdf:Property;

 rdfs:label "component attachment"@en;

 rdfs:comment """Indicates the level at which the component property should be

attached, this might an qb:DataSet, qb:Slice or qb:Observation, or a

qb:MeasureProperty."""@en;

 rdfs:domain qb:ComponentSpecification;

 rdfs:range rdfs:Class;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:dimension a rdf:Property, owl:ObjectProperty;

 rdfs:label "dimension"@en;

 rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a dimension"@en;

 rdfs:subPropertyOf qb:componentProperty;

 rdfs:range qb:DimensionProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:measure a rdf:Property, owl:ObjectProperty;

 rdfs:label "measure"@en;

 rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a measure"@en;

 rdfs:subPropertyOf qb:componentProperty;

 rdfs:range qb:MeasureProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:attribute a rdf:Property, owl:ObjectProperty;

 rdfs:label "attribute"@en;

 rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a attribute"@en;

 rdfs:subPropertyOf qb:componentProperty;

 rdfs:range qb:AttributeProperty;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:measureDimension a rdf:Property, owl:ObjectProperty;

 rdfs:label "measure dimension"@en;

 rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a measure dimension"@en;

 rdfs:subPropertyOf qb:componentProperty;

 rdfs:range qb:DimensionProperty;

188

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Slice definitions ---------------------------

qb:SliceKey a rdfs:Class, owl:Class;

 rdfs:label "Slice key"@en;

 rdfs:comment "Denotes a subset of the component properties of a DataSet which are

fixed in the corresponding slices"@en;

 rdfs:subClassOf qb:ComponentSet ;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:sliceStructure a rdf:Property, owl:ObjectProperty;

 rdfs:label "slice structure"@en;

 rdfs:comment "indicates the sub-key corresponding to this slice"@en;

 rdfs:domain qb:Slice;

 rdfs:range qb:SliceKey;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:sliceKey a rdf:Property, owl:ObjectProperty;

 rdfs:label "slice key"@en;

 rdfs:comment "indicates a slice key which is used for slices in this dataset"@en;

 rdfs:domain qb:DataSet;

 rdfs:range qb:SliceKey;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

--- Concepts ---------------------------

qb:concept a rdf:Property, owl:ObjectProperty;

 rdfs:label "concept"@en;

 rdfs:comment "gives the concept which is being measured or indicated by a

ComponentProperty"@en;

 rdfs:domain qb:ComponentProperty;

 rdfs:range skos:Concept;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

qb:codeList a rdf:Property, owl:ObjectProperty;

 rdfs:label "code list"@en;

 rdfs:comment "gives the code list associated with a CodedProperty"@en;

 rdfs:domain qb:CodedProperty;

 rdfs:range skos:ConceptScheme;

 rdfs:isDefinedBy <http://purl.org/linked-data/cube>;

 .

189

The QB4OLAP Vocabulary

(working draft used at the bases of this research original repository: http://purl.org/olap#
 only with the up-to dated versions, this version can’t be retrieved from here:
http://purl.org/qb4olap/cubes#

Location of the location of the used version and all versions between, on the versioning control
system, publicly available at: https://code.google.com/p/publishing-multidimensional-

data/source/browse/rdf/)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix scovo: <http://purl.org/NET/scovo#> .

@prefix void: <http://rdfs.org/ns/void#> .

@prefix qb: <http://purl.org/linked-data/cube#> .

@prefix qb4o: <http://purl.org/olap#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

<http://purl.org/olap>

a owl:Ontology;

owl:versionInfo "0.1";

rdfs:label "The QB4OLAP cube vocabulary";

rdfs:comment "This vocabulary allows to publish and operate with OLAP cubes in RDF";

dcterms:created "2012-12-06"^^xsd:date;

dcterms:modified "2012-12-06"^^xsd:date;

dcterms:title "Vocabulary for publishing OLAP data cubes";

dcterms:license <http://www.opendatacommons.org/licenses/pddl/1.0/> ;

dcterms:contributor [foaf:mbox "lorenae@fing.edu.uy"],

[foaf:mbox "avaisman@ulb.ac.be"];

.

--- Levels and Level members ---------------------------

qb4o:LevelProperty a rdfs:Class, owl:Class;

rdfs:label "Level property"@en;

rdfs:comment "The class of components which represent the levels of a dimension"@en;

rdfs:subClassOf qb:ComponentProperty;

rdfs:subClassOf qb:CodedProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:LevelMember a rdfs:Class, owl:Class;

rdfs:label "Level member"@en;

rdfs:comment "The class of components which represent the members of a level"@en;

rdfs:subClassOf skos:Concept;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:level a rdf:Property, owl:ObjectProperty;

rdfs:label "level"@en;

rdfs:comment "An alternative to qb:componentProperty which makes explicit that the

component is a level"@en;

rdfs:subPropertyOf qb:componentProperty;

rdfs:range qb4o:LevelProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:inDimension a rdf:Property, owl:ObjectProperty;

rdfs:label "level in dimension"@en;

rdfs:comment "Indicates to which dimension the level belongs"@en;

rdfs:range qb4o:LevelProperty;

rdfs:domain qb:DimensionProperty;

http://purl.org/olap
http://purl.org/qb4olap/cubes
https://code.google.com/p/publishing-multidimensional-data/source/browse/rdf/
https://code.google.com/p/publishing-multidimensional-data/source/browse/rdf/

190

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:inLevel a rdf:Property, owl:ObjectProperty;

rdfs:label "level member in level"@en;

rdfs:comment "Indicates to which level the level member belongs"@en;

rdfs:range qb4o:LevelMember;

rdfs:domain qb4o:LevelProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:parentLevel a rdf:Property, owl:ObjectProperty;

rdfs:label "is parent of"@en;

rdfs:comment "Indicates which is the parent level of each level"@en;

rdfs:range qb4o:LevelProperty;

rdfs:domain qb4o:LevelProperty;

rdfs:isDefinedBy <http://purl.org/olap>;

.

--- Aggregate Functions ---------------------------

qb4o:AggregateFunction a rdfs:Class, owl:Class;

rdfs:label "Aggregate function"@en;

rdfs:comment "The class of components which represent aggregate functions that are

applied to compute measure aggregate values"@en;

rdfs:isDefinedBy <http://purl.org/olap>;

.

qb4o:sum a qb4o:AggregateFunction;

rdfs:label "SUM"@en;

rdfs:comment "Returns the numeric value obtained by adding a set of numeric values."@en;

owl:sameAs dbpedia:Summation;

.

qb4o:avg a qb4o:AggregateFunction;

rdfs:label "AVG"@en;

rdfs:comment "Returns the arithmetic mean of a set of numeric values."@en;

owl:sameAs dbpedia:Average;

.

qb4o:count a qb4o:AggregateFunction;

rdfs:label "COUNT"@en;

rdfs:comment "Returns the number of elements in a set of elements (the cardinality of

the set)."@en;

owl:sameAs dbpedia:Counting;

.

qb4o:min a qb4o:AggregateFunction;

rdfs:label "MIN"@en;

rdfs:comment "Returns the minimum element in a set of elements, where a partial order is

defined."@en;

owl:sameAs dbpedia:Min;

.

qb4o:max a qb4o:AggregateFunction;

rdfs:label "MAX"@en;

rdfs:comment "Returns the maximum element in a set of elements, where a partial order is

defined."@en;

owl:sameAs dbpedia:Max;

.

qb4o:hasAggregateFunction a rdf:Property, owl:ObjectProperty;

rdfs:label "has aggregate function"@en;

rdfs:comment "Indicates which aggregate function has to be applied to obtain measure

aggregate values, for a certain measure in a cube"@en;

rdfs:range qb:ComponentSpecification;

rdfs:domain qb4o:AggregateFunction;

rdfs:isDefinedBy <http://purl.org/olap>;

.

191

APPENDIX B – Operators’

implementation and sample datasets

Source code of Operators

F_Roll_up validate() method:

public static boolean validate(String db_name, HashMap<String, String> aggLevelDim, String measure, String
measureConstraint, Model schemasModel, Model dataModel) {
Iterator<String> it = aggLevelDim.keySet().iterator();
if (it.hasNext()) {
 rLevel = it.next();
 rDim = aggLevelDim.get(rLevel);
 try {
 // retrieve the dimension type of requested to be rolled-up
 String queryDimensionType = prefix + NL + "SELECT ?dimensionType WHERE {" + db_name + ":"+ rDim
+ " a ?dimensionType .}";
 Query queryDimension = QueryFactory.create(queryDimensionType);
 QueryExecution qExe = QueryExecutionFactory.create(queryDimension, schemasModel);
 ResultSet dimType = qExe.execSelect();
 QuerySolution dType = dimType.next();
 dimensionType = dType.get("dimensionType").toString();
 // verify if the dimension is a InfoDimension from the IGOLAP Vocabulary and retrieve its child levels
 if (dimensionType.equalsIgnoreCase(DB1_Vocabulary.igolap + "InfoDimension")) {
 String queryString = prefix + NL + "SELECT ?childLevel WHERE {" + db_name + ":" + rLevel + "
a qb4o:LevelProperty; qb4o:inDimension " + db_name + ":" + rDim + ";igolap:childLevel ?childLevel .}";
 Query query = QueryFactory.create(queryString);
 QueryExecution qe = QueryExecutionFactory.create(query, schemasModel);
 ResultSet results = qe.execSelect();
 while (results.hasNext()) {
 QuerySolution qs = results.next();
 String c = qs.get("childLevel").toString();
 levelChildren.add(c);
 }
 if (levelChildren.isEmpty() || levelChildren == null) {
 System.out.println("The requiered level doesn't have child levels!");
 return false;}
 } else {
 // verify if the dimension is a TopoDimension from the IGOLAP Vocabulary and retrieve its connected dom
 if (dimensionType.equalsIgnoreCase(DB1_Vocabulary.igolap + "TopoDimension")) {
 String queryString = prefix + NL + "SELECT DISTINCT ?topoConnected WHERE
{?topoConnected" + " a igolap:TopoDimension; igolap:topoDConnectedTo " + db_name + ":" + rDim + " .}";
 Query query = QueryFactory.create(queryString);
 QueryExecution qe = QueryExecutionFactory.create(query, schemasModel);
 ResultSet results = qe.execSelect();
 boolean areConnected = false;
 while (results.hasNext()) {
 QuerySolution qs = results.next();
 String c = qs.get("topoConnected").toString().replaceAll(Vocabulary.db1, "");
 if (c.equalsIgnoreCase(rLevel)) { areConnected = true; }
 }
 if (!areConnected) { return areConnected; }

192

 }
 }
 // validate that child and measure is in the dataset
 String selectTopoString = prefix + NL + "SELECT DISTINCT ?TopoDims " + "WHERE {?ds a
qb:DataStructureDefinition;" + "?p ?o . ?o igolap:TopoDimension ?TopoDims" + " }";
 Query selectTopoComp = QueryFactory.create(selectTopoString);
 QueryExecution retrieveTopoComp = QueryExecutionFactory.create(selectTopoComp, dataModel);
 ResultSet topoRes = retrieveTopoComp.execSelect();
 while (topoRes.hasNext()) {
 QuerySolution qs = topoRes.next();
 topos.add(qs.get("TopoDims").toString());
 }
 String selectInfoLevelString = prefix + NL + "SELECT DISTINCT ?InfoLvls " + "WHERE {?ds
a qb:DataStructureDefinition;" + "?p ?o . ?o qb4o:level ?InfoLvls" + " }";
 Query selectInfoComp = QueryFactory.create(selectInfoLevelString);
 QueryExecution retrieveInfoComp = QueryExecutionFactory.create(selectInfoComp, dataModel);
 ResultSet infoRes = retrieveInfoComp.execSelect();
 while (infoRes.hasNext()) {
 QuerySolution qs = infoRes.next();
 infoLevels.add(qs.get("InfoLvls").toString());
 }
 // validate that dimension, level, measures critarias are fullfiled
 if (dimensionType.equalsIgnoreCase(DB1_Vocabulary.igolap + "InfoDimension")) {
 for (int i = 0; i < infoLevels.size(); i++) {
 for (int j = 0; j < levelChildren.size(); j++) {
 if (infoLevels.get(i).equalsIgnoreCase(
 levelChildren.get(j))) {
 rIMember = true;
 }
 }
 }
 } else if (dimensionType.equalsIgnoreCase(DB1_Vocabulary.igolap + "TopoDimension")) {
 for (int i = 0; i < topos.size(); i++) {
 if (topos.get(i).equalsIgnoreCase(DB1_Vocabulary.db1 + rDim)) {
 rTMember = true;
 }
 }
 }
 String selectMeasureString = prefix + NL + "SELECT ?measure " + "WHERE {?ds a
qb:DataStructureDefinition;" + "?p ?o . ?o qb4o:measure ?measure }";
 Query selectMeasureComp = QueryFactory.create(selectMeasureString);
 QueryExecution retrieveMeasureComp = QueryExecutionFactory.create(selectMeasureComp, dataModel);
 ResultSet measureRes = retrieveMeasureComp.execSelect();
 boolean measure_valid = false;
 while (measureRes.hasNext()) {
 QuerySolution qs = measureRes.next();
 String found_measure = qs.get("measure").toString();
 measures.add(found_measure);
 if (found_measure.equalsIgnoreCase(DB1_Vocabulary.db1 + measure)) {
 measure_valid = true;}
 }
 String measureConsString = prefix + NL + "SELECT ?measureAgg "+ "WHERE {?measureAgg a
qb4o:AggregateFunction }";
 Query selectMeasureCostr = QueryFactory.create(measureConsString);
 QueryExecution retrieveMeasureCostr = QueryExecutionFactory.create(selectMeasureCostr,
schemasModel);
 ResultSet constrains = retrieveMeasureCostr.execSelect();
 boolean exist_constrain = false;

193

 while (constrains.hasNext()) {
 QuerySolution qs = constrains.next();
 String found_measure = qs.get("measureAgg").toString();
 if (found_measure.equalsIgnoreCase(DB1_Vocabulary.qb4o + measureConstraint)) {
 exist_constrain = true; }
 }
 if ((measure_valid) && (exist_constrain)&& ((rIMember) || (rTMember))) {
 return true;
 } else { return false;}
} catch (Exception e) {
 e.printStackTrace();
 System.out.println("Dimensions retrieval exception!");
 return false;}
} else { System.out.println("No given roll-up target!");

return false;
}}

The entire source code for all F_Operators is available under:

https://www.dropbox.com/l/sh/7u5x9cuyk7mQcoj1TYU2Qo

Sample Datasets

Schemas, dimensions, levels and members definitions of DB1

based on IGOLAP Vocabulary

#-Dimensions and Levels definitions of DB1

based of extended IGOLAP Vocabulary -

db1:hasMaxIncome a owl:DatatypeProperty;

rdfs:label "Miaximum range income" ;

rdfs:domain db1:Income ;

rdfs:range xsd:integer .

db1:hasMinIncome a owl:DatatypeProperty;

rdfs:label "Minimum range income";

rdfs:domain db1:Income ;

rdfs:range xsd:string .

db1:noInhabitants a qb:MeasureProperty ;

rdfs:label "Inhabitants number"@en .

db1:Location a igolap:InfoDimension .

db1:City a qb4o:LevelProperty ;

qb4o:inDimension db1:Location ;

qb4o:parentLevel db1:County .

db1:Country a qb4o:LevelProperty ;

qb4o:inDimension db1:Location ;

igolap:childLevel db1:Region .

db1:County a qb4o:LevelProperty ;

qb4o:inDimension db1:Location ;

qb4o:parentLevel db1:Region ;

igolap:childLevel db1:City .

db1:Day a qb4o:LevelProperty, xsd:date ;

qb4o:inDimension db1:Time ;

qb4o:parentLevel db1:Month ;

igolap:childLevel db1:Day .

db1:Household a igolap:TopoDimension ;

igolap:topoDConnectedTo db1:Income .

db1:Time a igolap:InfoDimension ;

rdfs:label "dimension of years "@en.

db1:Year a qb4o:LevelProperty,xsd:gYear;

qb4o:inDimension db1:Time ;

https://www.dropbox.com/l/sh/7u5x9cuyk7mQcoj1TYU2Qo

194

igolap:childLevel db1:Month .

db1:Month a qb4o:LevelProperty,

xsd:gYearMonth ;

qb4o:inDimension db1:Time ;

qb4o:parentLevel db1:Year ;

igolap:childLevel db1:Day .

db1:Region a qb4o:LevelProperty ;

qb4o:inDimension db1:Location ;

qb4o:parentLevel db1:Country ;

igolap:childLevel db1:County .

db1:Appliance a igolap:TopoDimension ;

rdfs:label "Appliance dimension"@en;

igolap:topoDConnectedTo db1:Household.

db1:Income a igolap:TopoDimension ;

igolap:topoDConnectedTo db1:Appliance,

db1:Household .

--- Sample members for the levels of

dimension Location ---

l:uk a igolap:Member ;

rdfs:label "United Kingdom"@en ;

qb4o:inLevel db1:Country ;

igolap:childLevel l:rWestMid ;

igolap:childLevel l:rSouthWest ;

igolap:childLevel l:rNorthEast .

l:rWestMid a igolap:Member;

rdfs:label "West Midlands Region"@en ;

qb4o:inLevel db1:Region;

igolap:childLevel l:cWestMid ;

qb4o:parentLevel l:uk .

l:cWestMid a igolap:Member;

rdfs:label "West Midlands"@en ;

qb4o:inLevel db1:County ;

igolap:childLevel l:birm ;

qb4o:parentLevel l:rWestMid .

l:birm a igolap:Member;

rdfs:label "Birmingham"@en ;

qb4o:inLevel db1:City ;

qb4o:parentLevel l:cWestMid .

l:rSouthWest a igolap:Member;

rdfs:label "South West Region"@en ;

qb4o:inLevel db1:Region ;

igolap:childLevel l:cBrist ;

qb4o:parentLevel l:uk .

l:cBrist a igolap:Member;

rdfs:label "Bristol Area"@en ;

qb4o:inLevel db1:County ;

igolap:childLevel l:bris ;

qb4o:parentLevel l:rSouthWest .

l:bris a igolap:Member;

rdfs:label "Bristol"@en ;

qb4o:inLevel db1:City ;

qb4o:parentLevel l:cBrist .

l:rNorthEast a igolap:Member;

rdfs:label "North East Region"@en ;

qb4o:inLevel db1:Region;

igolap:childLevel l:cGreaterManc ;

qb4o:parentLevel l:uk .

l:cGreaterManc a igolap:Member;

rdfs:label "Greater Manchester"@en ;

qb4o:inLevel db1:County ;

igolap:childLevel l:manc ;

qb4o:parentLevel l:rNorthEast .

l:manc a igolap:Member;

rdfs:label "Manchester"@en ;

qb4o:inLevel db1:City ;

qb4o:parentLevel l:cGreaterManc .

--- Sample members of levels in

dimension Time ---

t:D01M01Y2011 a igolap:Member ;

rdfs:label "1st of January 2011@en";

qb4o:inLevel db1:Day ;

qb4o:parentLevel t:M01Y2011 ;

rdfs:value "2011-01-01"^^xsd:date .

t:D01M02Y2011 a igolap:Member ;

rdfs:label "1st of February 2011@en";

qb4o:inLevel db1:Day ;

qb4o:parentLevel t:M02Y2011 ;

rdfs:value "2011-02-01"^^xsd:date .

t:D01M03Y2011 a igolap:Member ;

rdfs:label "1st of March 2011@en" ;

qb4o:inLevel db1:Day ;

qb4o:parentLevel t:M03Y2011 ;

rdfs:value "2011-03-01"^^xsd:date .

[..]

t:M03Y2011 a igolap:Member ;

rdfs:label "March 2011@en" ;

qb4o:inLevel db1:Month ;

qb4o:parentLevel t:Y2011 ;

igolap:childLevel t:D01M03Y2011,

t:D02M03Y2011, t:D03M03Y2011,

t:D04M03Y2011, t:D05M03Y2011,

t:D06M03Y2011, t:D07M03Y2011,

t:D08M03Y2011, t:D09M03Y2011,

t:D10M03Y2011, t:D11M03Y2011,

t:D12M03Y2011, t:D13M03Y2011,

t:D14M03Y2011, t:D15M03Y2011,

t:D16M03Y2011, t:D17M03Y2011,

t:D18M03Y2011, t:D19M03Y2011,

t:D20M03Y2011, t:D21M03Y2011,

t:D22M03Y2011, t:D23M03Y2011,

t:D24M03Y2011, t:D25M03Y2011,

t:D26M03Y2011, t:D27M03Y2011,

t:D28M03Y2011, t:D29M03Y2011,

t:D30M03Y2011, t:D31M03Y2011 ;

rdfs:value "2011-03"^^xsd:gYearMonth.

[..]

t:Y2011 a igolap:Member ;

rdfs:label "2011@en" ;

qb4o:inLevel db1:Year ;

igolap:childLevel t:M01Y2011, t:M02Y2011,

t:M03Y2011, t:M04Y2011, t:M05Y2011,

t:M06Y2011, t:M07Y2011, t:M08Y2011,

t:M09Y2011, t:M10Y2011, t:M11Y2011,

t:M12Y2011 ;

rdfs:value "2011"^^xsd:gYear .

--- Sample members of TopoDimension

Household and Income triplets ---

topo:hh106 a igolap:Member ;

rdfs:label "106"@en ;

igolap:ofDimension db1:Household ;

igolap:topoDConnectedTo topo:ukIrang3.

topo:hh119 a igolap:Member ;

rdfs:label "119"@en ;

igolap:ofDimension db1:Household ;

igolap:topoDConnectedTo topo:ukIrang2.

195

topo:hh154 a igolap:Member ;

rdfs:label "116"@en ;

igolap:ofDimension db1:Household ;

igolap:topoDConnectedTo topo:ukIrang8.

[..]

topo:ukIrang2 a igolap:Member ;

rdfs:label "Income range between 10000 and

20000"@en ;

igolap:ofDimension db1:Income ;

db1:hasMaxIncome "20000"^^xsd:integer;

db1:hasMinIncome "10000"^^xsd:integer.

topo:ukIrang3 a igolap:Member ;

rdfs:label "Income range between 20000 and

30000"@en ;

igolap:ofDimension db1:Income ;

db1:hasMaxIncome "30000"^^xsd:integer;

db1:hasMinIncome "20000"^^xsd:integer.

topo:ukIrang8 a igolap:Member ;

rdfs:label "Income range between 70000 and

80000"@en ;

igolap:ofDimension db1:Income ;

db1:hasMaxIncome "80000"^^xsd:integer;

db1:hasMinIncome "70000"^^xsd:integer.

Dataset containing observations for F_Roll_up exemplification

ds:o1 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D08M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "4.01"^^xsd:decimal .

ds:o2 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D09M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "6.73"^^xsd:decimal .

ds:o3 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D19M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "4.94"^^xsd:decimal .

ds:o4 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D22M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "9.30"^^xsd:decimal .

ds:o5 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D17M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "3.85"^^xsd:decimal .

ds:o6 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D04M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "4.83"^^xsd:decimal .

ds:o7 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D18M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.44"^^xsd:decimal .

ds:o8 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D05M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "8.84"^^xsd:decimal .

ds:o9 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D15M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.44"^^xsd:decimal .

ds:o10 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D06M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "16.22"^^xsd:decimal .

ds:o11 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D16M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.03"^^xsd:decimal .

ds:o12 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D07M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.84"^^xsd:decimal .

ds:o13 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D13M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.60"^^xsd:decimal .

ds:o14 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D14M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "8.21"^^xsd:decimal .

ds:o15 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D01M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.21"^^xsd:decimal .

ds:o16 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D02M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.19"^^xsd:decimal .

196

ds:o17 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D11M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "6.05"^^xsd:decimal .

ds:o18 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D03M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.08"^^xsd:decimal .

ds:o19 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D12M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.20"^^xsd:decimal .

ds:o20 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D21M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "6.19"^^xsd:decimal .

ds:o21 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D20M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "3.92"^^xsd:decimal .

ds:o22 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D10M02Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "8.90"^^xsd:decimal .

ds:o23 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D19M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "15.33"^^xsd:decimal .

ds:o24 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D17M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "14.93"^^xsd:decimal .

ds:o25 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D18M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "13.06"^^xsd:decimal .

ds:o26 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D15M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "14.94"^^xsd:decimal .

ds:o27 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D16M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.59"^^xsd:decimal .

ds:o28 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D13M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "11.34"^^xsd:decimal .

ds:o29 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D14M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.22"^^xsd:decimal .

ds:o30 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D11M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "9.78"^^xsd:decimal .

ds:o31 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D12M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.82"^^xsd:decimal .

ds:o32 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D21M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "15.93"^^xsd:decimal .

ds:o33 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D20M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "7.91"^^xsd:decimal .

ds:o34 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D08M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "14.12"^^xsd:decimal .

ds:o35 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D09M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "9.64"^^xsd:decimal .

ds:o36 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D04M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "10.77"^^xsd:decimal .

ds:o37 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D22M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.91"^^xsd:decimal .

197

ds:o38 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D05M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.55"^^xsd:decimal .

ds:o39 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D23M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.13"^^xsd:decimal .

ds:o40 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D06M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "12.34"^^xsd:decimal .

ds:o41 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D24M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "16.03"^^xsd:decimal .

ds:o42 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D25M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "18.47"^^xsd:decimal .

ds:o43 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D07M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "17.53"^^xsd:decimal .

ds:o44 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D26M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "13.15"^^xsd:decimal .

ds:o45 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D27M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "14.02"^^xsd:decimal .

ds:o46 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D01M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "20.08"^^xsd:decimal .

ds:o47 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D28M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "16.83"^^xsd:decimal .

ds:o48 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D02M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "20.35"^^xsd:decimal .

ds:o49 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D03M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "14.80"^^xsd:decimal .

ds:o50 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D10M02Y2011;

db1:City l:birm;

db1:Household topo:hh119;

db1:eCons "19.06"^^xsd:decimal .

ds:o51 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D08M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "11.50"^^xsd:decimal .

ds:o52 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D09M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "10.25"^^xsd:decimal .

ds:o53 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D04M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "8.86"^^xsd:decimal .

ds:o54 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D05M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "11.16"^^xsd:decimal .

ds:o55 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D06M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "12.02"^^xsd:decimal .

ds:o56 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D25M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "10.96"^^xsd:decimal .

ds:o57 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D07M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "10.81"^^xsd:decimal .

ds:o58 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D26M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

198

db1:eCons "9.46"^^xsd:decimal .

ds:o59 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D13M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "14.88"^^xsd:decimal .

ds:o60 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D27M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "6.64"^^xsd:decimal .

ds:o61 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D14M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "9.02"^^xsd:decimal .

ds:o62 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D01M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "8.83"^^xsd:decimal .

ds:o63 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D28M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "5.65"^^xsd:decimal .

ds:o64 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D02M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "13.67"^^xsd:decimal .

ds:o65 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D11M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "10.14"^^xsd:decimal .

ds:o66 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D03M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "9.80"^^xsd:decimal .

ds:o67 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D12M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "9.87"^^xsd:decimal .

ds:o68 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D10M02Y2011;

db1:City l:birm;

db1:Household topo:hh154;

db1:eCons "11.98"^^xsd:decimal .

ds:o69 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D04M03Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "4.83"^^xsd:decimal .

ds:o70 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D18M03Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.44"^^xsd:decimal .

ds:o80 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D05M03Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "8.84"^^xsd:decimal .

ds:o90 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D15M03Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.44"^^xsd:decimal .

ds:o100 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D06M03Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "16.22"^^xsd:decimal .

ds:o110 a qb:Observation;

qb:dataSet ds:dataSet-uk;

db1:Day t:D16M03Y2011;

db1:City l:birm;

db1:Household topo:hh106;

db1:eCons "5.03

185

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

ds:MonthlyHhECons a qb:DataStructureDefinition;

[..]

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

APPENDIX C – Results of the evaluation

Evaluation of correctness of all F_Operators

The evaluation of correctness it is perfomed against all defined markers for all

operators. The evaluation and its results are provided for each operator below.

1. Evaluation of F_Operator: F_Roll_up:

Query 1 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs.

output dataset:

Query 1 – Marker 2 – Marker Status: PASSED

Output values sample for Query 1:

Validated against recoded entries for month February of household “2” and the

measure’s value mathematically proved as arithmetic sum.

Query 1 – Marker 3

Output from the exemplification of the queries contains only 3 distinct months:

| Month_label | City_label | Household_label | eCons |

===

| "March 2011@en" | "Birmingham"@en | "106"@en | 45.80 |

| "March 2011@en" | "Birmingham"@en | "2"@en | 185.90 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 395.63 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 185.50 |

| "February 2011@en" | "Birmingham"@en | "2"@en | 231.07 |

| "April 2011@en" | "Birmingham"@en | "119"@en | 31.30 |

For each month it was checked that exists minimum 1 day from the specified

Month for the specified household.

Query 2 – Marker 1 – Marker Status: PASSED

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

"February 2011@en" | "2"@en | "Birmingham"@en | 231.07

186

ds:DailyIncomeECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Income];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:AVG].

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:COUNT].

Data structure from the input dataset vs output dataset:

Query 2 – Marker 2 – Marker Status: PASSED

Output values sample for Query 2:
|"Income range 60000 to 70000"@en|"Birmingham"@en|"11th of March 2011@en"| 13.66 |

For each income range and day, over all the values of the consumption of

households belonging to it was calculated the arithmetic mean.

Query 2 – Marker 3 Marker Status: PASSED

Checked by comparing the query’s output with the all income range groups of

household and the days that these had measures recorded on the sample dataset.

Query 3 – Marker 1 Marker Status: PASSED

Data structure from the input dataset vs

output dataset:

Query 3 – Marker 2 – Marker Status: PASSED

For the output of the query over the sample data (7 entries), it was manually

counted the entries in the initial datasets:
--

| Month_label | City_label | Household_label | eCons |

==

| "March 2011@en" | "Birmingham"@en | "106"@en | 6 |

| "March 2011@en" | "Birmingham"@en | "2"@en | 17 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 22 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 28 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 18 |

| "February 2011@en" | "Birmingham"@en | "2"@en | 15 |

| "April 2011@en" | "Birmingham"@en | "119"@en | 15 |

--

Query 3 – Marker 3 – Marker Status: PASSED

For each month it was checked that exists minimum 1 day from the specified

Month for the specified household.

Evaluation Result for F_Roll_up: PASSED

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

187

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

ds:DailyIncomeECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Income];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:AVG].

2. Evaluation of F_Operator: F_Drill:

Query 4 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs

output dataset:

Query 4 – Marker 2 – Marker Status: PASSED

Output values sample for Query 4:

Validated against recoded entries for month February of household “2” that there is

minimum a day entry in the output and the values of the measure reflects existing

data on that level.

Query 5 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs output dataset:

Query 5 – Marker 2 – Marker Status: PASSED

Output values sample for Query 5:
| "2"@en | "17th of March 2011@en" | "Birmingham"@en | 12.89 |

The values of the measure reflects existing data on that dimension.

Evaluation Result for F_Drill: PASSED

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

| "2nd of February 2011@en" | "Birmingham"@en | "2"@en | 16.67 |

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Day];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure

db1:eCons].

188

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons]

.

ds:DailyIncomeECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Income];

qb:Component [qb4o:measure db1:eCons].

3. Evaluation of F_Operator: F_Slice:

Query 6 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs

output dataset:

Query 6 – Marker 2 – Marker Status: PASSED

Output values sample for Query 6:

Validated that all the retrieved values are only for the requested month level in Time

dimension - February.

Query 7 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs output dataset:

Query 7 – Marker 2 – Marker Status: PASSED

Output values sample for Query 7:

| requested_Household | City_label | Month_label | eCons |

===

| "119"@en | "Birmingham"@en | "February 2011@en" | 395.63 |

| "119"@en | "Birmingham"@en | "April 2011@en" | 31.30 |

Validated that all the retrieved member are only the requested: specific household.

Evaluation Result for F_Slice: PASSED

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure

db1:eCons].

| requested_Month | City_label | Household_label | eCons |

===

| "February 2011@en" | "Birmingham"@en | "2"@en | 231.07 |

| "February 2011@en" | "Birmingham"@en | "119"@en | 395.63 |

| "February 2011@en" | "Birmingham"@en | "106"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | "154"@en | 185.50 |

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

189

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [qb4o:measure db1:eCons]

.

ds:DailyIncomeECons a

qb:DataStructureDefinition;

qb:Component [igolap:TopoDimension

db1:Income];

qb:Component [qb4o:measure db1:eCons]

.

4. Evaluation of F_Operator: F_Dice:

Query 8 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs

output dataset:

Query 8 – Marker 2 – Marker Status: PASSED

Output values sample for Query 1:

Validated against recoded entries that all outcomes are as requested per members:
{“Month”,"t:M02Y2011"}, {“Month”,"t:M03Y2011"}, {“City”,"l:birm"}

Query 9 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs output dataset:

Query 9 – Marker 2 – Marker Status: PASSED

Output values sample for Query 9:

| Household_label | eCons |

============================

| "2"@en | 185.90 |

| "2"@en | 231.07 |

| "106"@en | 140.02 |

| "106"@en | 45.80 |

For each members returned it is checked that are as requested by input parameters:
{“Household”," topo:hh2"},{“Household”," topo:hh119"},{“Household”," topo:hh106"}

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

| Month_label | City_label | eCons |

===

| "February 2011@en" | "Birmingham"@en | 140.02 |

| "February 2011@en" | "Birmingham"@en | 185.50 |

| "February 2011@en" | "Birmingham"@en | 231.07 |

| "February 2011@en" | "Birmingham"@en | 395.63 |

| "March 2011@en" | "Birmingham"@en | 185.90 |

| "March 2011@en" | "Birmingham"@en | 45.80 |

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons].

190

ds:MonthlyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

Query 10 – Marker 1 – Marker Status: PASSED

Data structure from the input dataset vs

output dataset:

Query 10 – Marker 2 – Marker Status: PASSED

Output from query 10:

| Month_label | Household_label | City_label | eCons |

===

| "February 2011@en" | "2"@en | "Birmingham"@en | 231.07 |

| "March 2011@en" | "2"@en | "Birmingham"@en | 185.90 |

| "February 2011@en" | "106"@en | "Birmingham"@en | 140.02 |

| "March 2011@en" | "106"@en | "Birmingham"@en | 45.80 |

| "February 2011@en" | "119"@en | "Birmingham"@en | 395.63 |

The output is checked that all members belong to the input parameter members:
{“Month”,"t:M02Y2011"}, {“Month”,"t:M03Y2011"}, {“City”,"l:birm"}

{“Month”,"t:M02Y2011"}, {“Month”,"t:M03Y2011"}, {“City”,"l:birm"}

Evaluation Result for F_Dice: PASSED

ds:DailyHhECons a

qb:DataStructureDefinition;

qb:Component [qb4o:level db1:Month];

qb:Component [qb4o:level db1:City];

qb:Component [igolap:TopoDimension

db1:Household];

qb:Component [qb4o:measure db1:eCons;

qb4o:hasAggregateFunction qb4o:SUM].

191

Additional evaluation results

In thise section of Appendix C are provided additional results of the queries performed, in summarised tables and figures.

1. Mean, standard deviation and standard error values from 1000 calls of each from the 10 queries summariesd in Tables 1 and 2.

Q1a Q1b Q2a Q2b Q3a Q3b Q4a Q4b Q5a Q5b

10k

triplets

Mean 0.00022 0.02839 0.00022 0.03740 0.00027 0.02862 0.00011 0.68393 0.00016 2.81909

STDEV 0.00018 0.00626 0.00018 0.01056 0.00042 0.00627 0.00004 0.02276 0.00005 0.06623

Standard Error 0.00001 0.00020 0.00001 0.00033 0.00001 0.00020 0.00000 0.00072 0.00000 0.00209

50k

triplets

MEAN 0.00024 0.12013 0.00023 0.11766 0.00023 0.11548 0.00017 36.48009 0.00017 137.48772

STDEV 0.00012 0.00710 0.00012 0.00718 0.00011 0.00823 0.00005 4.58260 0.00005 1.25042

Standard Error 0.00000 0.00022 0.00000 0.00023 0.00000 0.00026 0.00000 0.32650 0.00000 0.32286

150k

triplets

Mean 0.00028 0.45830 0.00028 0.61250 0.00027 0.36983 0.00016 302.33809 0.00032 1278.90939

STDEV 0.00014 0.01580 0.00014 0.04165 0.00014 0.03508 0.00001 0.63105 0.00002 0.00000

Standard Error 0.00000 0.00050 0.00000 0.01317 0.00000 0.01109 0.00000 0.19955 0.00001 0.00000
Table 1 - Mean, Standard deviation and Standard Error for Q1 to Q5 on 10k, 50k and 150k triplets datasets

Q6a Q6b Q7a Q7b Q8a Q8b Q9a Q9b Q10a Q10b

10k

triplets

Mean 0.00022 0.00421 0.00021 0.00309 0.00095 0.00333 0.00081 0.00133 0.00111 0.00190

STDEV 0.00007 0.00153 0.00006 0.00079 0.00090 0.00224 0.00073 0.00071 0.00117 0.00148

Standard Error 0.00000 0.00005 0.00000 0.00002 0.00003 0.00007 0.00002 0.00002 0.00004 0.00005

50k

triplets

MEAN 0.00022 0.01372 0.00022 0.00101 0.00089 0.00101 0.00087 0.00219 0.00085 0.00112

STDEV 0.00005 0.00285 0.00005 0.00052 0.00088 0.00052 0.00050 0.00060 0.00063 0.00074

Standard Error 0.00000 0.00009 0.00000 0.00002 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002

150k

triplets

Mean 0.00015 0.06272 0.00017 0.03904 0.00085 0.00570 0.00080 0.02121 0.00509 0.01196

STDEV 0.00000 0.03583 0.00001 0.00324 0.00062 0.00064 0.00037 0.00579 0.00063 0.00266

Standard Error 0.00000 0.01133 0.00000 0.00102 0.00002 0.00020 0.00001 0.00183 0.00020 0.00084
Table 2 - Mean, Standard deviation and Standard Error for Q1 to Q5 on 10k, 50k and 150k triplets datasets

192

2. Mean, standard deviation and standard error of the F_Drill operator over topological dimension, with visualisation only - Q5a –

and additionally with materialisation - Q5b .

Q5a - initial Q5a - optimised Q5b - initial Q5b - optimised

Millisec. Millisec. Millisec. Millisec.

Mean 0.19076 0.16390 3305.49504 2819.08939

STDEV 0.06342 0.05013 67.64348 65.37533

Standard Error 0.00200 0.00158 2.13907 2.06838
Table 3 - Collected results tests on Query 5a and 5 b before and after SP Optimisation on a set of 65k triplets

3. Average number of query per second for all the queries in five different triplets datasets sizes, Table 6 and Table 7:

Number of performed queries per second

Q1a Q1b Q2a Q2b Q3a Q3b Q4a Q4b Q5a Q5b

N
o
.

o
f

tr
ip

le
ts

 i
n
 s

et
 10k 4484.4538 35.2259 4577.3706 26.7345 3722.7220 34.9394 8958.3586 1.4621 6101.1833 0.3547

50k 4198.6616 8.3245 4277.1689 8.4989 4436.2689 8.6595 5864.4078 0.0274 5799.0586 0.0073

150k 3549.0079 2.1819 3533.5356 1.6326 3645.3706 2.7039 6102.5870 0.0033 3116.9111 0.00078

250k 1373.7150 1.0598 1322.6096 0.5980 1024.0026 0.8662 2777.8935 0.0022 2594.3432 0.00052

500k 1383.1086 0.6508 1410.5486 0.3912 1061.1802 0.5242 2199.5521 0.00061 2483.7253 0.00024
Table 6 – Means for collected results for Queries Q1 to Q5 for all input data sizes

Number of performed queries per second

Q6a Q6b Q7a Q7b Q8a Q8b Q9a Q9b Q10a Q10b

N
o

.
o

f

tr
ip

le
ts

 i
n

 s
et

 10k 4582.6708 237.5930 4686.9077 323.8678 1048.4379 300.4064 1239.9385 754.2522 897.6364 527.5763

50k 4569.8371 72.8850 4565.6379 989.9032 1119.5005 989.9032 1147.2851 456.7742 1176.1265 896.3411

150k 6575.7600 15.9429 5894.9699 25.6153 1170.7500 175.4067 1244.3399 47.1407 196.5601 83.5844

250k 2757.5100 14.5715 2633.2975 26.8990 238.0476 166.5820 482.8678 25.6997 267.8611 23.9140

500k 2673.4322 6.9348 2628.0380 25.5906 234.8807 166.3398 502.2266 21.4849 288.5449 21.0085
Table 7 – Means for collected results for Queries Q6 to Q10 for all input data sizes

193

4. Overview of performance of all queries over all triplets datasets, with focus on query (Fig. 1) and focus on dataset size (Fig. 2)

Figure 1 - Overall comparison between performed queries on QpS results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Q1a Q1b Q2a Q2b Q3a Q3b Q4a Q4b Q5a Q5b Q6a Q6b Q7a Q7b Q8a Q8b Q9a Q9b Q10a Q10b

N
u

m
b

er
 o

f
q

u
er

ie
s

Triplests dataset size

Number of performed QpS

10k 50k 150k 250k 500k

194

Figure 2 - Overall comparison between the performances of the queries based on the results per dataset size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10k 50k 150k 250k 500k

N
u

m
b

e
r

o
f

q
u

e
ri

e
s

Triplets dataset size

QpS for each dataset size

Q1a Q1b Q2a Q2b Q3a Q3b Q4a Q4b Q5a Q5b Q6a Q6b Q7a Q7b Q8a Q8b Q9a Q9b Q10a Q10b

195

5. Visualised performance of each query using F_Roll_up operator and performing over all datasets

4484
4199

3549

1374 1383

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q1a

35,22593

8,32446

2,18200 1,05988 0,65081

0

5

10

15

20

25

30

35

40

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q1b

4577
4277

3534

1323 1411

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q2a

26,73

8,50

1,63 0,60 0,39
0

5

10

15

20

25

30

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q2b

196

3723

4436

3645

1024 1061

0

1000

2000

3000

4000

5000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q3a

35

9

3
1 1

0

5

10

15

20

25

30

35

40

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q3b

197

Figure 3 - Performance of all F_Roll_up queries

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10k 50k 150k 250k 500k

N
u

m
b

er
 o

f
q

u
er

ie
s

Triplets dataset size

F_Roll_up Overall QpS

Q1a Q2a Q3a Q1b Q2b Q3b

198

6. Visualised performance of each query using F_Drill operator and performing over all datasets

8958

5864 6103

2778
2200

0

2000

4000

6000

8000

10000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q4a

1,46214

0,02741 0,00331 0,00225 0,00062

0,50

0,00

0,50

1,00

1,50

2,00

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q4b

6101 5799

3117
2594 2484

0

1000

2000

3000

4000

5000

6000

7000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q5a

0,35472

0,00727 0,00078 0,00053 0,00024

0,10

0,00

0,10

0,20

0,30

0,40

10k 50k 150k 250k 500k

Q
P

S
DATASETS SIZE

Q5b

199

Figure 4 - Performance of all F_Drill queries

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10k 50k 150k 250k 500k

N
u

m
b

er
 o

f
q

u
er

ie
s

Triplets datasets size

F_Drill overall QpS

Q4a Q5a Q4b Q5b

200

7. Visualised performance of each query using F_Slice operator and performing over all datasets

4583 4570

6576

2758 2673

0

1000

2000

3000

4000

5000

6000

7000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q6a
238

73

16 15 7

0

50

100

150

200

250

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q6b

4687 4566

5895

2633 2628

0

1000

2000

3000

4000

5000

6000

7000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q7a

324

990

26 27 26

0

200

400

600

800

1000

1200

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q7b

201

Figure 5 - Performance of all F_Slice queries

0

1000

2000

3000

4000

5000

6000

7000

10k 50k 150k 250k 500k

N
u

m
b

er
 o

f
q

u
er

ie
s

Triplets datasets size

F_Slice Overview QpS

Q6a Q6b Q7a Q7b

202

8. Visualised performance of each query using F_Slice operator and performing over all datasets

1048 1120 1171

238 235

0

200

400

600

800

1000

1200

1400

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q8a

300

990

175 167 166

0

200

400

600

800

1000

1200

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q8b

1240
1147

1244

483 502

0

200

400

600

800

1000

1200

1400

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q9a
754

457

47 26 21

0

100

200

300

400

500

600

700

800

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q9b

203

898

1176

197
268 289

0

200

400

600

800

1000

1200

1400

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q10a

528

896

84
24 21

0

200

400

600

800

1000

10k 50k 150k 250k 500k

Q
P

S

DATASETS SIZE

Q10b

204

Figure 6 - Performance of all F_Dice queries

0

200

400

600

800

1000

1200

1400

Q8a Q9a Q10a Q8b Q9b Q10b

N
u

m
b

er
 o

f
q

u
er

ie
s

Queries

F_Dice Overview of all Queries

10k 50k 150k 250k 500k

	Thesis cover
	Thesis A-Matei_final_Redacted

