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Abstract 

The biodiversity of bacterial communities in the Polar atmosphere is understudied, and as a 

result, the degree to which these communities influence macroecological patterns of 

biodiversity is poorly understood. This study aimed to investigate the bacterial biodiversity of 

the atmosphere by testing the hypothesis that bacteria are ubiquitous and present in polar air as 

heterogeneous communities. The study found bacterial DNA in all samples collected from both 

Poles, and whilst a degree of heterogeneity was observed in Arctic bacterial communities, there 

was an unexpectedly high level of sequence in the Antarctic.  

Currently, there is no consensus as to the most appropriate bioaerosol sampling method, and 

the degree to which sampling methodology impacts the results of bioaerosol studies is still 

unknown. This variability was assessed by testing the hypothesis that bacterial community 

profiles in Polar air samples are not influenced by sampling methodology. However, the 

findings suggest that choice of bioaerosol sampling methodology can have a strong impact on 

the biodiversity observed.  

The high level of sequence diversity in Antarctic air samples led to an investigation of technical 

variation as a result of their low biomass; and from this, it was found that the lower limit of 

biomass for a successful community description using an Illumina MiSeq approach was 1x106 

CFU per mL-1, and that the lower limit at which this concentration of bacteria could be 

extracted using the most commonly used commercial DNA extraction kit was 1x107 CFU per 

mL-1.  

Antarctic bioaerosol samples were found to have considerably lower biomass than these limits, 

suggesting that the results obtained were, in part due to technical variation as a result of their 

low biomass. The choice of bioinformatics pipeline was also investigated for low biomass 

samples, and found to have no effect on the final outcome. Overall, the study showed that the 



Polar atmosphere contains very low biomass and that the pattern of biodiversity in this low 

biomass environment was both variable and not linked to physical or chemical environmental 

parameters. Hence, the atmosphere may act as a barrier to dispersal both into and out of the 

Polar regions. 
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Chapter 1 - Introduction 

1.1. Microbial ecology review 

1.1.1. History 

During the mid-seventeenth century, the first microscope was developed enabling the first cell 

to be described in 1665 by English scientist Robert Hooke (4), shortly followed by the 

discovery of the first bacteria, protozoa, algae, and fungi by Antoni van Leeuwenhoek (5). This 

progress eventually led to the disproval of the theory of spontaneous generation, first by 

Lazzaro Spallanzani who showed that chicken broth could be sterilised by heating (6) and 

finitely by Louis Pasteur in 1860 who’s experiments proved that without exposure to 

exogenous spores and dust, sterile nutrient broths would remain without bacterial growth (7). 

This evidence lead to the development of germ theory and the first indirect nod to the 

atmosphere as an environment harbouring microscopic life. Robert Koch then implicitly 

proved germ theory through his work with Anthrax in 1876 (8), and the first published research 

articles specifically focused on microbes residing in the atmosphere began to emerge soon after 

this discovery (9, 10). 

The term ecology was first stated in 1866 by Ernst Haeckel (11) who defined it as “the study 

of all those complex interactions referred to by Darwin as the conditions of the struggle for 

existence". Microbial ecology is the study of how microorganisms interact with their 

environment. Whilst the majority of early microbiological research in the late nineteenth 

century focused on medical application, one scientist, Sergei Winogradsky, began investigating 

the relationship between microbes and their environment, discovering lithotrophs and 

researching their use of inorganic compounds in the production of energy. Winogradsky could 

perhaps be considered the first true microbial ecologist, working alongside Louis Pasteur to 

initialise and establish the field (12). The implications relating microbial biodiversity to 
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agriculture, human health, climate change, and even life on other planets are considerable, and 

as such a great deal of environments have had a significant number of biodiversity surveys 

ranging from inside homes to Antarctica and outer space (13-16). 

1.1.2.  Biodiversity 

At the core of investigations into the structure and function of microbial communities is 

biodiversity. Biodiversity is a measure of ‘important ecological processes such as resource 

partitioning, competition, succession, and community productivity and is also an indicator of 

community stability’ (17). The biodiversity of microbes was first studied in the 1960’s (18). 

At present, the biodiversity of a microbial community is measured by two components: species 

richness (the number of species in a community) and species evenness (how species are 

distributed within a community). The biodiversity of microbial ecosystems is directly related 

to biotic interactions between species such as competition for resources and abiotic 

environmental conditions such as temperature (19), pH (20), humidity (21), and UV radiation 

(22). Temporal and spatial variation has a considerable impact on the measured biodiversity of 

an ecosystem (23-27). The relationship between microbes and their environment has led to the 

concept of microbial biogeography gaining significant interest over the past decade (28-34).  

1.1.3. Molecular microbial ecology 

Until the advent of molecular techniques, microbial ecology studies were limited to the use of 

culture dependent techniques. These traditional culture dependent studies were relatively slow 

due to their reliance on phenotypic identification and also fail to describe the full bacterial 

biodiversity of environments, as it has been shown that <1% of environmental bacteria are 

cultivable, with the remaining >99% present in a viable nonculturable (VBNC) state (35, 36). 

Modern studies employ an omics-centric approach, focusing more on genotypic identification 

of microbes. Genomics began developing after the discovery of DNA by Miescher in 1869, 
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which he then named Nuclein (37). Further developments such as the discovery of DNA’s role 

in inheritance (38), that DNA composition is species specific (39), and the double helix 

structure of DNA (40), all led on to the development of first generation sequencing methods 

such as the dideoxy technique developed in 1977 by Frederick Sanger (41). The principles 

underpinning these pioneering techniques are very similar to those of modern next generation 

sequencing (NGS) technologies. 

Woese proposed that life could be classified into a sequence based tree, however acknowledged 

that there must first be a suitable phylogenetic marker by which to differentiate groups (42). 

Bacterial rRNA genes were identified as a suitable target to fulfil this role, as they were present 

kingdom wide, and were highly conserved, but represented enough variation to differentiate 

between species (43). Specifically, 16S rRNA was presented as the ideal target marker 

sequence because of its ubiquitous presence in bacteria due to the critical function it has in 

coding for the small subunit rRNA (44). 16S rRNA is approximately 1500bp in length and is 

now understood to be made up of ten conserved regions separating nine hypervariable regions 

(1) (figure 1.1).  

The conserved regions of the gene are ideal for performing alignments when investigating 

phylogenetic relationships between bacteria. One of the main drawbacks of using the 16S gene 

for molecular ecology comes from the fact that the number of genes present varies from species 

to species, for example Escherichia coli (E.coli) strains are known to have seven copies of the 

gene (45) whereas some bacteria are known to have just one (46). This fact means caution must 

be taken when drawing quantitative inferences on bacterial communities studied utilising the 

16S rRNA gene, although some inference may be drawn from relative abundances. An 

additional drawback of this gene as a genetic marker is the decreased depth of taxonomic 

resolution due to its relatively short length.  
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Figure 1.1. Secondary structure of 16S rRNA isolated from E.coli. Hypervariable regions in 

bold. (1) 
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The success of the gene as a universal marker cannot be understated, the original tree of life 

published using 16S rRNA contained just 10 phyla (43), however the most recent tree of life 

published based on the gene contained a proposed 92 phyla (2) (Figure 1.2). The importance 

of sequencing poorly described environments for difficult to culture microbes is clear (47). The 

tree highlights the fact that a number of phyla still do not have well characterised 

representatives, due to the selection against the characterisation of environmental microbes in 

favour of a bias toward medicinal, agricultural, and industrially relevant microbes (48). As the 

societal need for novel bioproducts continues to increase, efforts to cultivate microbial life we 

know is there only through genomic screening will only increase. As fields such as 

biotechnology continue to develop, our eye will turn more to these uncharacterised microbes 

and environments (49, 50). 
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Figure 1.2. The most recent tree of life, containing 92 bacterial phyla, 26 archael phyla, and 5 

Eukaryotic super groups. Major lineages are coloured arbitrarily. Well characterised lineages 

are italicised. Lineages lacking isolated representatives are non-italicised and accompanied 

by a red dot (2) 
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The considerable progress in describing the diversity of microbial life in numerous 

environments can be partly attributed to the recent development of high throughput sequencing 

technologies (also referred to as next generation sequencing technologies (NGS), massively 

parallel sequencing, and second generation sequencing technologies). Moving on from first 

generation sanger sequencing where only one forward and reverse read of a single fragment 

could be sequenced at a time, the development of these platforms allowing millions of 

fragments to be sequenced in a single run, has considerably reduced the cost of sequencing 

whilst more than tripling the throughput (51). This feat has been achieved through innovations 

such as the use of barcoded primer sets, which span the short hypervariable regions of the 16S 

rRNA gene, allow vastly increased sample coverage and also allows for the multiplexing of 

samples on an individual sequencing run (52, 53).  

There are a range of sequencing instruments available, such as Illumina MiSeq, or the Ion 

Torrent PGM. Each technology has its own advantages and disadvantages, for example 

differing error rates, run times, number of reads, read length, and yield per run, all of which 

affect the cost of the experiment. There are a lot of studies comparing the different technologies 

(54-56). The chemistries of each technology are quite similar and continue to be developed. 

The most recent Illumina MiSeq reagent kit’s v3 chemistry has the capability to generate up to 

25 million reads per run, and output 15 Gigabases when using a 2x300bp output. The accuracy 

of these instruments varies, for example the v3 Illumina chemistry gives an inferred based call 

accuracy of 99.9% (Q score >30) to more than 70% of bases when using the 2x300bp output.  

One issue known to occur on the Illumina sequencing platform is cross talk between samples 

in different lanes, which could impart a degree of contamination in output data files, and is 

thought to be responsible for up to 2% of reads in particular sets of data (57). The process of 

sequencing also imparts a natural bias toward samples with higher concentrations of DNA, 

which means samples with lower concentrations often lose out and fail to gain sufficient 
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coverage, one means by which this can be accounted for is by normalising samples to a set 

concentration during library preparation (15, 58). 

In its raw format, NGS data consists of the assigned sequencing read and associated quality 

information. Processing the data manually would be a near impossible, labour and time 

intensive task. Transforming the data from its raw form to a high quality and interpretable state 

is more the realm of statistics and computational sciences than microbial ecology, and requires 

running a series of transformations on the data through bioinformatic pipelines. A number of 

pipelines are available for processing 16S NGS data, however the most commonly used 

pipelines are Quantitative Insights Into Microbial Ecology (QIIME) (59) and Mothur (60); 

when discussing QIIME, unless specified otherwise the version referred to is QIIME 2 (61). 

Mothur is a pipeline developed and maintained by the Schloss work group, who regularly 

produce literature pertaining to the quality of the data that can be attained as well as helpful 

tutorials (https://www.Mothur.org/wiki/MiSeq_SOP). QIIME on the other hand is a pipeline 

based on the implementation of several well used individually developed tools. The majority 

of 16S amplicon bioinformatic pipelines are made up of similar steps (figure 1.3), differentiated 

by the implementation of different methods to perform each step. The developers of each 

pipeline also provide recommended workflows and SOPs.  
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Figure 1.3. Flowchart depicting a typical 16S analysis pipeline from NGS output to data 

visualisation. (QC = Quality control, OTU = Operational Taxonomic Unit, ASV = Amplicon 

Sequence Variant). 

Once raw reads have been demultiplexed, they can be read into a chosen analysis pipeline. A 

metadata file is first required in order to provide file names, sample ID’s and additional 

environmental data. This is then followed by stringent QC based upon the quality profile of the 

sequences output by the NGS instrument utilised. The method of quality filtering utilised by 

Mothur is carried out in multiple steps. First forward and reverse reads are combined to form 

contigs, with the stipulation that where a disagreement occurs between the forward and reverse 

read and both disputing bases have Q scores of <25 the contig will be removed. Following this 

step, any base-calls which were ambiguous are removed and any contigs which are too long 

are removed. Sequences are then combined into a file containing just unique sequences and 

abundance data and aligned against a 16S database, any non-aligned sequences are removed. 

Sequences are then pre-clustered with the parameter of 1 different base pair per 100 before 

chimeras are removed with the implementation of VSEARCH (62). Undesirable taxa are then 
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filtered such as Archaea, chloroplasts, and mitochondria as whilst they may have matched a 

database, they are not targeted using a 16S primer set. Finally, OTUs are randomly clustered 

at a dissimilarity cut-off level of 0.03.  

The previous version of QIIME, QIIME v1 quality filtered Illumina data by removing reads 

with more than 1 ambiguous base-call, and reads where the high-quality region of the sequence 

is less than 75 bases long, where high-quality region is defined a stretch of bases containing no 

more than 1 quality score less than 1e-5.  QIIME v1 then utilised software such as UCLUST 

(63) to cluster sequences into OTUs and check for chimeric sequence utilising a reference 

based method, although de novo chimera checking was available through Chimera Slayer (64). 

The closed- and –open reference method of OTU assignment used by QIIME v1, where 

sequences are first matched to a reference base and unmatched sequences are then clustered de 

novo, has recently been shown to potentially produced too many OTUs and exaggerated 

diversity estimates (65).  

QIIME v2 offers two options for quality filtering and identification of true sequence variants, 

DADA2 which has been shown to produce more real variants and fewer spurious sequences 

than both the QIIME v1 workflow and Mothur (66) and Deblur which has been shown to have 

a higher stability (i.e., obtaining the same sOTU (sub-OTU) across different samples) and 

better resolution of mock communities than DADA2 (67). DADA2 first requires the 

inspections of the quality profiles of both the forward and reverse reads to trim low quality 

bases, a data specific parametric error model is then learned, identical reads are combined along 

with abundance data, and the error model is applied to the dereplicated data, before spurious 

reads are further reduced by merging overlapping reads. Finally all sequences which can be 

exactly reconstructed as bimeras from the most abundant sequences are identified and 

removed. The output of the DADA2 pipeline is referred to as an Amplicon Sequence Variant 

(ASV). As oppose to a traditional OTU used in QIIME v1 and Mothur, where OTUs are binned 
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together at a set dissimilarity threshold, improvements to the methodologies both at a 

sequencing and bioinformatics level allow ASVs to be resolved to a single nucleotide base, 

offering greater phylogenetic resolution. As well as this, by not randomly binning, as is done 

with OTU clustering, the results are reproducible (68). Deblur first applies quality filtering 

based on quality scores as described by Bokulich et al (69) before sequences are truncated at a 

specified length based on quality information. Deblur uses sub-OTUs as an exact sequence 

output similar to DADA2’s ASVs. The output of both options in QIIME is a feature table 

populated by unique sequences and their abundance data on a per sample basis.  

After clustering sequences into OTUs or assigning them as ASVs, the representative sequences 

are then assigned taxonomy. Taxonomy assignment is carried out through comparing the 

sequence to a reference database. There are four regularly used and well populated taxonomic 

databases. These are the Ribosomal Database Project (RDP) which contains the largest 

collection of aligned and fully annotated rRNA gene sequences from bacteria, archaea and 

fungi (70), Greengenes containing bacterial and archaeal sequences (71), SILVA containing 

eukaryotic, bacterial, and archaeal sequences (72), and the NCBI database (73). There are 

known classification inconsistencies in microbial nomenclature due to the requirements of the 

classifying researcher (74). This means that the choice of user deposited database can impact 

results (75). SILVA and RDP classify only to genus level, whereas NCBI and Greengenes give 

classifications at species level where possible. It has been shown that the accuracy of 

taxonomic classification improves when a Naïve Bayes Classifier is trained to the region of the 

target sequences (76).  

Pipelines often include methods by which to perform a multiple sequence alignment on the 

quality-filtered reads. QIIME v1 performed this task with the implementation of PyNast (77) 

whereas QIIME v2 uses MAFFT (78). Mothur implements its own alignment method, briefly 

the general approach is to i) find the closest template for each candidate using kmer searching, 
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blastn, or suffix tree searching; ii) to make a pairwise alignment between the candidate and de-

gapped template sequences using the Needleman-Wunsch, Gotoh, or blastn algorithms; and iii) 

to re-insert gaps to the candidate and template pairwise alignments using the NAST algorithm 

so that the candidate sequence alignment is compatible with the original template alignment. 

When aligning multiple sequences, it is often preferential to mask the alignment prior to 

phylogenetic analyses to remove any highly variable positions that add noise to a phylogenetic 

tree (79). In order to produce a phylogenetic tree from the aligned sequences, typically a 

distance matrix is produced. Mothur generates a distance matrix and then performs the task of 

producing a phylogenetic tree by implementing the clearcut program (80). In QIIME, the 

production of a rooted and an unrooted phylogenetic tree is carried out by the FastTree program 

(81). As oppose to a distance matrix, FastTree stores sequence profiles and utilises neighbour-

joining using heuristics to identify candidate joins. This method is preferential when working 

with large datasets as it greatly reduces the amount of computing power and time required. 

Once the raw data has been quality filtered, taxonomic assignments made, and phylogenies 

inferred, the data is ready for analysis. The simplest measure of diversity is to implement the 

observed OTUs index, which is a count of the number of OTUs present in each sample. It is 

commonplace in microbial ecology to assess biodiversity by using a compound diversity index. 

Compound diversity indices encapsulate both the richness and evenness of a microbial sample. 

There are an enumerable number of ways to assess both aspects of diversity, and as such there 

are an infinite number of candidate indices, all of which must focus more upon one of the two 

aspects, meaning there is no single perfect diversity indices to use (82), as such it is prudent to 

use a selection of different indices to better describe both aspects of biodiversity.  

Both QIIME and Mothur offer a sizeable range of similar options where alpha (within 

community) and beta (between communities) diversity measurements are concerned. One of 

the most common alpha diversity indices within microbial ecology literature is the Shannon 
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Index (figure 1.4 (i)), a non-parametric measure of species richness and evenness. However, 

despite its popularity, the Shannon index is not without issue. The index is prone to increasing 

error as the proportion of undescribed species within an environment rises, and as the true 

richness of a community is never truly known, the use of this index can never truly be without 

bias (83). Additionally, it would take more than 100,000 species within a sample to gain a H 

value of more than 5, making the result difficult to interpret (84). The Shannon index tends to 

better express species richness. As previously mentioned, it would be prudent to compliment 

the use of this index, with one of the indices which is more centred around dominance (the 

inverse of evenness). One of the most used of these indices is the Simpson index of diversity 

(Figure 1.4 (ii)) (85). The Simpson index of diversity describes the probability that the next 

species drawn from a population is the same as the first. Another means by which communities’ 

diversity can be measured is in its taxonomy.  

In order to measure a communities’ diversity based upon taxonomy, a phylogenetic tree must 

be available. The most commonly used phylogenetic index is Faith’s phylogenetic diversity 

(86), where the branch lengths of the phylogenetic tree are summed and expressed. Beta 

diversity metrics describe the distance between communities by multiple pairwise 

comparisons. As well as those described, there are a number of different options to choose 

from, however whilst the choice of diversity indices utilised can directly influence results, data 

mining to attain the most significant results is bad practice (87). 

Often, the range of reads in quality filtered data sets is large, and so in order to fairly assess 

diversity between samples with different depths, samples can be rarefied. The choice at which 

depth to rarefy samples to should be made based on rarefaction curves computed based upon 

the number of OTUs observed or diversity estimate. Data is typically rarefied at the depth all 

samples asymptote on a rarefaction curve. Whilst rarefying is common practice in microbiome 

studies, the wastefulness of discarding reads and the effect this has on the ability to detect 
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differences between populations is now being questioned, with suggestions rarefying should 

be stopped altogether and replaced with new methods based upon normalisation using 

statistical mixture models (88).  
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Figure 1.4. i) Shannon Index (s = number of OTUs, Pi = proportion of total community 

represented by OTU i). ii) Simpson Index of diversity (Pi = the proportion of the total 

community represented by OTU i) (3). 

There are many issues facing modern microbial ecology. Sampling regime, sample storage, 

DNA extraction method, DNA extraction location, choice of sequencing technology, 

sequencing depth, choice of primer set, and choice of bioinformatic pipeline can impart bias 

on biodiversity data (54, 89, 90).  

The issue of contamination in microbial ecology studies has long went ignored by the vast 

majority, however recent studies have shown that, despite it being commonplace to employ 

strict sterile technique in molecular laboratories, random and reagent contamination is 

common, with varying contaminant taxa present in commercially available kits used on mass 

(91-94). The issue of contamination is more pressing for studies involving low biomass 

samples, as the less concentrated contaminant ‘noise’ is drowned out by high concentration 

samples. Our understanding of contamination continues to improve, however the issue remains 

ignored by the majority of biodiversity studies, with most publications failing to state the use 

of control samples or alternatively verifying their presence but neglecting to explain how they 

were utilised (95-97). Whilst there remains no consensus on how to deal with contaminant 

sequences, studies will continue to exclude this information in an attempt to safeguard the 
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validity of their results. At present there are only three methods by which to exclude potential 

contaminants from data where negative controls have been run:  

1) The removal of taxa previously described as potential contaminants (91-94).  

2) The removal of potential contaminants based on an ad-hoc approach, by applying an 

arbitrary cut off based on the relative abundance of taxa present in negative controls 

such as 5% or 10% (15, 58, 98) or  

3) The removal of taxa identified by a chosen statistical model (99).  

Statistical models have been developed based on assumptions, such as reagent contaminants 

appearing to present a strong inverse correlation with sample DNA concentration after library 

preparation (92), and total sample DNA is a mixture of contaminating DNA in a uniform 

concentration and true sample DNA present in a varying concentration across samples (99). 

An algorithm to remove potential taxa present due to Illumina cross talk has also been 

suggested (57), but is not routinely implemented. Each of these approaches requires a different 

set of assumptions, for example removing taxa previously described as contaminants in 

commercial kits does not account for the possibility that these taxa are a true feature of the 

sampled environment. Ultimately, contamination is a consistent artefact of modern microbial 

ecology studies based on NGS sequencing and there remains no consensus on the correct 

approach to remove potential contaminants. As such it is the role of the researcher to account 

for and address these on a per study basis during data analysis and interpretation. 

1.2. Aerobiology review 

The atmosphere forms part of the biosphere and surrounds and interacts with every habitat and 

organism on Earth, either directly or indirectly (100). It is essential to life. However, life in the 

atmosphere itself is challenging as organisms must cope with extreme psychrophilic and 

oligotrophic conditions. Although recent methodological developments in both the collection 
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and analysis of aerial samples have accelerated our understanding of microorganisms 

inhabiting the atmosphere, many questions still remain. Here, I present a brief overview of 

aerobiological studies to date, describe the atmosphere as a habitat for microorganisms, review 

what is known about bioaerosols with regards to dispersal, diversity and atmospheric processes, 

and discuss the relevance of these organisms in atmospheric function.  

1.2.1. History 

The discipline of aerobiology was first founded in the 1930’s by Meier during his expeditions 

with Charles Lindbergh and was defined as the passive transport of biological particles through 

the atmosphere and its effect on living systems and the environment (101). But it wasn’t until 

the mid 20th century when medical research about microorganisms began to increase that 

research into aerobiology gained momentum with studies proving that tuberculosis (TB), 

influenza and streptococcal infections all required aerial transfer (102-104). The number of 

aerobiological studies has increased decade by decade since the founding of the discipline 

(figure 1.5), with methodologies changing throughout the course of this time. 
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Figure 1.5. Total number of aerobiological studies for each decade since the term was 

invented, as per the total number of document results per decade based on a Scopus search of 

the term ‘aerobiology’. 

Early aerobiological studies employed basic passive techniques such as plate fall assays 

for the collection of airborne microorganisms or bioaerosols. Such techniques are still very 

much in use today, as they result in a microbial culture which can be subjected to physiological 

investigations, unlike many of the molecular based methods, which may only generate DNA 

sequence data. This was followed by development of active sampling techniques in the early 

20th century, using simple impactor and impinger designs. These early designs led to the Hirst 

spore trap and Anderson air sampler developed during the 1950’s and derivatives of these, such 

as the multi-phase Anderson sampler, were developed shortly after (105-108). Modern 

techniques have not diverged greatly from these founding methods in terms of the basic 

principle, besides the inevitable improvements that come with technological advancement in 

manufacturing precision and effectiveness of the equipment. Typical of many microbiological 

studies, early aerobiological techniques relied solely on culture dependent methodologies, 
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restricting observations to the relatively small culturable fraction of the atmospheric biota, 

which lead to the belief that the atmosphere had significantly lower levels of diversity, a belief 

that has changed following the development of microscopy and molecular techniques.  

1.2.2. The atmospheric habitat 

As an environment for microbial life, the atmosphere can be regarded as harsh as any on Earth 

with the lowest temperatures, highest ultra violet-radiation and extreme oligotrophic 

conditions. The structure of the atmosphere has been described in detail elsewhere, but in 

summary (adapted from 109), it can be divided into five main layers. The first is the 

Troposphere which is the layer at ground level extending up to 14.5 km, it is the densest layer 

of the atmosphere containing the majority of the Earth’s life. It also contains over 99 % of the 

water vapour in the atmosphere and is where almost all familiar weather conditions occur. The 

second layer is the Stratosphere which begins directly after the Troposphere and extends up to 

50 km, the Stratosphere contains the ozone layer. Above that comes the Mesosphere which 

extends further up to 85 km and temperatures in this layer reach lows of -100 °C, lower than 

any temperature ever recorded on the surface of the Earth. This is the highest atmospheric layer 

in which microscopic life has been found to date (110). Above the Mesosphere comes the 

Thermosphere and then the Exosphere, respectively, which extend beyond 600 km above the 

Earth’s surface. 

The majority of the atmosphere consists of dry air, which provides an almost inhospitable 

environment for microbial life. Clouds are a combination of condensed water droplets and ice 

crystals; they provide an important refuge for bioaerosols as they contain liquid water and 

levels of organic acids and alcohols comparable to fresh water lakes (111). 
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1.2.3. Bioaerosols 

Microorganisms found in the atmosphere are commonly referred to as bioaerosols; the term 

bioaerosol refers to all living components of the atmosphere. There are multiple types of 

bioaerosol found in the atmosphere including bacteria, archaea, algae, fungi, viruses, smaller 

eukaryotes and pollen and these can be viable, dead, dormant or a combination of the three. 

Indeed, it has been estimated that a bacterial biomass of 40-1800 Gg is aerosolised annually 

(112). 

1.2.3.1. Aerosolisation 

Microorganisms enter the atmosphere from exposed terrestrial and marine surfaces. In 

terrestrial locations, bioaerosols are released from plant, soil and other surfaces when drying 

reduces bonding forces and this loosely bonded material is disturbed by strong air movements 

(113). Studies have shown vertical bacterial fluxes in terrestrial locations supporting this theory 

(114). Marine bioaerosol formation is also directly related to air movement, as the majority of 

marine aerosols are released by either evaporation or a bubble bursting processes (115). 

Theories regarding the aerosolisation of microbes are supported in the literature by findings 

which show direct relationships between the microbiota of the atmosphere and nearby surface 

level sources. However, contradictory studies also exist which show the potential for long-

range atmospheric transport (116). 

1.2.3.2. Dispersal 

Once aerosolized, there are two main mechanisms by which bacteria are transported through 

the atmosphere: free-floating and attached to larger particles. Free floating particles in the 

atmosphere are unlikely to come into contact with other organisms frequently, but particle-

associated bacteria living in close quarters and subjected to stress whilst suspended in the 

atmosphere might be subjected to increased horizontal gene flow (117). It is this hypothetical 
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horizontal gene transfer and the abundance of bacteria within the atmosphere that has drawn 

attention to the environment as a potential source of new antibiotics (50). Whilst airborne, it is 

estimated that bacteria have a residence time of between 2.2 and 188.1 days (118). Average 

generation times of bioaerosols have been measured to be between 3.6 and 19.5 days, a 

generation time comparable to that of many marine organisms (111, 112). Bioaerosols have 

been shown to undergo cross continental transport in plumes of desert dust in Asia (116) and 

across the Pacific Ocean with organisms of Asian origin detected in North America (119). 

Bacteria from the atmosphere can be deposited by two key mechanisms: dry deposition and 

wet deposition. Dry deposition is the process of bioaerosols adhering to plants, water and other 

ground surfaces with which they come into contact (113), while wet deposition describes the 

process by which bioaerosols are deposited through precipitation (rain, snow and hail) (120). 

1.2.3.3. Atmospheric microbial processes 

Despite the long-held belief that the atmosphere acts solely as a reservoir or conduit for 

microbial life, there are compelling arguments that life in the atmosphere should also be 

considered a functioning ecosystem. Suspended microbes have been shown to be both 

metabolically active and capable of reproduction (121), performing multiple functions in the 

such as ice nucleation (122), cloud formation (123), the degradation of organic carbon based 

compounds (124), nitrogen processing (125), sulphur oxidation and reduction (120), and 

photosynthesis (126). It is likely that the atmosphere works as both a conduit and a functioning 

ecosystem based on this evidence (28), however, further investigation is required before this 

can be proven definitively. 

The majority of metabolic activities in the atmosphere take place within clouds. Bacterial 

concentrations in cloud water have been described within the range of 103-105 bacteria ml-1 

(127). The majority of cloud condensation nuclei (CNN) and ice nuclei (IN) bacteria such as 



 40 

Pseudomonas syringae, Pseudomonas fluorescens and Psychrobacter sp. are psychrophilic. 

Bioaerosols, like standard aerosols (e.g. mineral dust, sea salt) aid the formation of clouds, by 

acting as both CCN in suitable warm conditions where relative humidity conditions exceed 

saturation, and IN at temperatures of -2°C and lower (128); CCN- and IN-associated bacteria 

also play a role in the initiation of precipitation events (128). The role of CCN and IN bacteria 

in precipitation has been touted bioprecipitation, a mechanism describing a feedback cycle 

which enables the wide dispersal of bacteria by wet deposition (129). These psychrophilic ice 

nucleators have been shown to respond significantly to environmental triggers such as changes 

in humidity and are ubiquitously present in abundances of 4-490 L-1 (127). 

1.2.4. Atmospheric biodiversity 

Whilst the atmospheric environment is relatively extreme, thriving diverse bacterial 

communities have also been found in other challenging environments such as hot springs and 

deserts (28). Microorganisms within the atmosphere are diverse, with airborne microbial 

communities above both terrestrial and marine environments having been shown to contain 

more than 100 genera of bacteria, a level of generic diversity comparable with that of soil and 

marine environments (130-132). One recent study by Barberán et al. (133), collated over 1000 

sampling events, found more than 110,000 different species of airborne bacteria in the USA 

alone, with more than 55,000 species of fungi. This diversity stems from a multitude of 

adaptions to atmospheric life such as cell pigmentation (134), spore-forming ability (135), 

cryopreservation (136) and DNA repair mechanisms (137). 

Bacterial populations can be seen to decrease in number by as much as half with increasing 

altitude, however the following viable bacteria and fungi have been found in the Stratosphere 

at altitudes as high as 77 km: Mycobacterium luteum, Micrococcus albus, Aspergillus niger, 
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Penicillium notatum, Circinella muscae, Papulaspora anomala, (110), Bacillus simplex, 

Staphylococcus pasteuri and Engyodontium album (138). 

The majority of these diverse bioaerosol communities are largely comprised of four main 

bacterial groups which are the Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, 

an observation consistent in both marine and terrestrial environments (24, 131). At the genus 

level, however, there is more variation, dependent upon environmental conditions, such as 

proximity to agricultural sites and weather (132). Variation is also directly influenced by 

season, however seasonal influence varies by location (139, 140). Concentrations of bacteria 

in the atmosphere generally range from 104 to 106 cells m-3 (141), however, these concentrations 

are known to vary significantly across all four calendar seasons and can also be affected by 

weather (wind direction, wind speed, temperature, fog etc.) (112, 139). 

1.2.5. Polar aerobiology 

The aerosolisation of microbes from cold environments such as the polar regions propels 

psychrophilic organisms directly into the atmosphere. Psychrophilic bacteria are better suited 

than most bacteria to atmospheric life as they are already adapted to survive the freezing 

temperatures of higher altitudes. Bacteria collected from clouds have been shown to be capable 

of growing and reproducing at 0 °C suggesting the existence of psychrophilic bioaerosols 

(111). With cloud temperatures often well below 0 °C, any bacterial species residing there, 

such as the recently discovered novel bacteria Deinococcus aethius and Bacillus 

stratosphericus (127), should be considered psychrophilic. Psychrophilic bacteria not only 

reside in the atmosphere but also play a key role in atmospheric processes, for example the 

psychrophilic plant pathogen Pseudomonas syringae is involved in ice nucleation in clouds. 
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1.2.5.1. Arctic 

Aerobiological studies in the Arctic date back to the coining of aerobiology as discipline, with 

Meier and Lindbergh collecting aerial samples in flight above the Region (101); this work was 

followed up by Polunin et al. in the late 1940’s (142), though studies of this nature are sparse. 

The most recent terrestrial study of bioaerosols in the Arctic was carried out by Harding et al. 

(143) on Ward Hunt Island. This study reported the communities in the air to have significant 

similarities with communities found in studies of the surrounding Arctic Ocean, drawing the 

conclusion that local sources contribute a large proportion of communities; the study also found 

organisms not normally associated with the high Canadian Arctic, from other sources and 

locations in the Arctic as well as some organisms associated with the Antarctic, supporting the 

theory of long distance atmospheric dispersal. These findings are consistent with those of 

previous studies that have stated the dominant groups of bacteria in cold ecosystems to be 

Proteobacteria (Alpha-, Beta- and Gamma-Proteobacteria), Firmicutes, Bacteroidetes, 

Cyanobacteria and Actinobacteria (144, 145). 

1.2.5.2. Antarctic 

Some of the first ecology-based aerobiological studies took place in the Antarctic in the early 

1900’s, however despite a significant sampling effort by Marshall et al. (146-148) there have 

only been 12 Antarctic aerobiology studies published since 1996. However, critically the 

transfer of biological material into Antarctica by atmospheric transport has been demonstrated 

(149, 150). Despite these findings, the small range of studies means that little is still known 

about the viability, duration of suspension and process of colonization and establishment of 

these organisms (151). Bacterial genera that are common in both aerial and Antarctic literature 

are Staphylococcus, Bacillus, Corynebacterium, Micrococcus, Streptococcus, Neisseria and 

Pseudomonas. Commonly encountered fungal genera include Penicillium, Aspergillus, 
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Cladosporium, Alternaria, Aureobasidium, Botryotrichum, Botrytis, Geotrichum, 

Staphylotrichum, Paecilomyces and Rhizopus (16). 

Bacterial atmospheric residence times in the Antarctic are predicted to be longer than in 

other environments which implies that long range transport is more likely in the region (118). 

Evidence currently suggests there is an endemic population of bioaerosols in the atmosphere 

which are in part, but not entirely, related to the surrounding maritime and terrestrial conditions 

(152). These results are further supplemented by findings suggesting other characteristics of 

the Antarctic such as sea ice area may have a negligible impact on local biodiversity of 

atmospheric microbes (153). Along with long range atmospheric transport, one of the other 

key inputs of airborne microbes into the Antarctic atmosphere is human activity. The results of 

aerial studies taken from research stations such as Halley V Research Station, Concordia and 

Rothera Point have suggested the potential for input from human-derived sources whilst marine 

input into terrestrial samples is low, the most striking comparison across the majority of 

Antarctic studies, however, is that the biodiversity is markedly different (152-155). Although 

contradictory studies exist, another feature of aerial input into the region is that it might be 

directly affected by seasonality, which has potentially been correlated to an increase of 

keratinous material in summer regions due to increased bird and seal activity (148). 

1.2.6. Biogeography, Microbiome interactions, and Human health 

Microbial dispersal in the atmosphere has been considered ubiquitous in line with the 

hypothesis that “Everything is everywhere but the environment selects” (156). Initially, a 

significant amount of evidence supported this theory, where organisms with similar phylotypes 

were shown to be present in similar but geographically separated environments (157). 

However, recent developments in modern technologies and an increase in the number of studies 

of microbial communities across significant spatial and temporal scales, has led to the concept 



 44 

of significant microbial biogeography, which would be in direct conflict with Baas Becking’s 

theory and refers to patterns in the spatial distribution of microbial life from local to continental 

scales shaped by processes such as dispersal, speciation and extinction (33). Studies have since 

provided evidence for microbial endemism at local scales in Antarctica, for example, in 

isolated Antarctic habitats (153, 158, 159).  

The atmosphere is key to microbial biogeography, particularly in the cold biosphere, as 

dispersal provides one of the main exogenous inputs into geographically isolated environments 

such as the polar regions, however factors such as dispersal, colonization and survival rates 

during atmospheric transport are poorly understood (23, 151). Little attention has been given 

to microbial diversity patterns in the atmosphere as the environment has been disregarded as a 

conduit rather than a habitat (28). Whilst recent studies have begun addressing these issues in 

the atmosphere, showing for example that marine bioaerosol communities can be distinct from 

those found in adjacent terrestrial locations (133, 160). Whether microbial biogeography in the 

atmosphere exists at all is still open to question and requires further research (34). Patterns in 

diversity have been observed in the atmosphere with genera such as Polaribacter sp. and 

Psychrobacter sp. being observed in both Arctic and Antarctic studies (143, 153) and the 

discovery that bioaerosols over urban environments contain typically higher diversities than 

those seen in remote locations (161). 

Whilst clear patterns are beginning to emerge regarding the atmospheric dispersal of 

microorganisms and the viability of a number of organisms over extended periods of time in 

the atmosphere even under the pressures of the environment (113), studies still consistently fail 

to consider the viability of these source colonists upon arrival in their new environments (33). 

These colonists have the potential to interact with the microbiomes of the environments in 

which they are deposited both positively and negatively, for example bacteria suspended and 

deposited in low nutrient locations can provide nutrients by recycling, a mechanism which can 
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benefit the ecosystem (162), transversely this situation can also disrupt ecosystems causing 

events such as algal blooms to occur which can be devastating to the native community (163). 

Migrating bioaerosols pose a significant pathogenic threat to agriculture due to the 

heterogeneity of modern day crops (164). Human pathogens such as Mycoplasma pneumonia, 

Mycobacterium tuberculosis, Corynebacterium diphtheria, Bordetella pertussis and influenza 

virus also utilise the atmosphere as a conduit to spread from host to host. Incidences of both 

influenza and meningococcal meningitis have been described associated with long range 

transport during dust storms (165, 166) highlighting the relevance of the atmosphere in the 

spread of human disease. Today, there is a much wider range of techniques used in 

aerobiological studies which rely on either the impaction, impingement, membrane filtration, 

cyclonic or plate fall mechanisms (Table 1.1).  

 

1.3. Aims and hypotheses 

This study aimed to characterise the biodiversity of bacterial communities residing within the 

previously understudied Arctic and Antarctic atmosphere, using standard modern molecular 

techniques. Commonly used bioaerosol sampling devices were used to collect aerosolised 

bacteria at Svalbard, a Norwegian island within the Arctic, and on a ship which 

circumnavigated the oceans surrounding the Antarctic, stopping at a range of sub-Antarctic 

islands throughout the cruise. The spatial patterns of alpha diversity, beta diversity, and 

taxonomy, revealed by these sampling regimes were used to investigate the hypothesis that: 

i) bacteria are ubiquitously present in the polar atmosphere as heterogeneous 

communities, due to the harsh selection pressures they face and the isolation of the 

environments relative to temperate regions 
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As there is no consensus on sample collection methodology for bioaerosols, a secondary aim 

of this study was to investigate the amount of variability imparted on bioaerosol communities 

by sampling methodology. Multiple sampling devices, utilising a range of sampling 

mechanisms, were employed in polar environments, to address the following expectation: 

ii) Bacterial community profiles are not influenced by sampling methodology 

Whilst addressing the initial aims, the high variability of datasets generated from similar 

samples, directed the study toward the proportion of variation in low biomass bioaerosol data 

that could be attributed to differences in sample processing and analysis methodologies. The 

most commonly used method of DNA extraction for bioaerosols was assessed by extracting 

DNA from membrane filters containing a known concentration of bacterial cells. The results 

of this study were used to explore the hypothesis: 

iii) The Qiagen Powersoil DNA extraction kit is highly efficient at extracting bacterial 

DNA from samples over a range of bacterial concentrations at which bioaerosol 

samples would be expected to fall within (104 to 106 cells per m3 of air (141)) 

Multiple kit negatives were extracted in order to determine whether kit negative community 

profiles were consistent as previously described within the literature. DNA extractions of 

known constitution and kit negatives were used to investigate the reproducibility of 16S 

amplicon profiles sequenced using Illumina MiSeq, in order to gauge the lowest biomass at 

which a sample can be successfully extracted and sequenced, addressing the hypothesis that:  

iv) Illumina MiSeq is a suitable molecular tool for the investigation of low biomass air 

sample biodiversity 
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Table 1.1 Summary of the available aerobiological sampling techniques 

Mechanism Example of 
sampler 

Flow rates 
(L min-1) 

Collection media Pros Contras Analysis techniques 

Impaction SAS SUPER 
100/180/DUO360 

<530 Contact plates, petri 
dishes, dry vessel, 
membrane filters 
(cellulose nitrate, 
cellulose acetate and 
PTFE) 

- High flow rate/short sampling 
- Portable 
- Multiple collection media 
- Multiple downstream analysis 

options 

- High cost 
- Desiccation 
- High flow rate 

collection bias 

- Microscopy 
- Molecular 
- Culture 

Membrane 
filtration 

Sartorius MD8 ~30 Membrane filters 
(cellulose nitrate, 
cellulose acetate and 
PTFE) 

- Long sample periods 
- Multiple downstream analysis 

options 
- Wide range of filters 
- Easy sample storage 
- Duration does not affect 

viability 
- Low cost 

- Not portable 
- Low flow rate / long 

sampling durations 
- Self assembly 

- Microscopy 
- Molecular 
- Culture 

Impingement SKC Biosampler ~30 H2O, PBS, mineral oil - No desiccation 
- Portable 
- Viable samples 
- Multiple downstream analysis 

options 
- Multiple collection media 

- High cost 
- Poor in cold 

environments 

- Microscopy 
- Molecular 
- Culture 

Drop plates N/A N/A Agar plate - Very low cost 
- Wide variety of sampling 

media 
- Viability shown 

- Low proportion of 
microbes shown 

- Few analysis options 

- Culture 
- Limited microscopy 
- Limited molecular 

Cyclonic (wet 
and dry) 

Bertin Coriolis µ <300 H2O, PBS, dry vessel 
wall 

- Very high flow rate/short 
sample period 

- Increased viability (wet) 
- Portable 

- Very high cost 
- Desiccation (dry) 

- Microscopy 
- Molecular 
- Culture 

N/A, not available; PTFE, polytetrafluoroethylene; PBS, phosphate-buffered saline
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Chapter 2 - Methodology 

2.1 Sample collection 

Samples were collected in Newcastle upon Tyne using a membrane filtration setup (Figure 1.6) 

as follows. A Welch WOB-L vacuum pump (Welch, Mt. Prospect, IL, USA) connected by 

tubing to a Sartorius filtration unit (Göttingen, Germany) containing a 47 mm × 0.2 µm pore 

size cellulose nitrate membrane filter (GE Healthcare Life Sciences, Chicago, IL, USA) was 

ran for a duration between 3-12 hours at a flow rate of 20 L m-1. Once collected, samples were 

placed in sterile 50ml falcon tubes and stored at -80°C for downstream analysis. Prior to sample 

collection, the flow rate of the vacuum pump was calibrated. This was done by placing the 

tubing attached to the vacuum pump working at maximum flow rate into an inversed 2L 

measuring cylinder and submerging the measuring cylinder into a beaker of water, the time 

taken to uptake 1.5L of water was then measured in triplicate and this value was taken as the 

maximum flowrate of the vacuum pump (figure 1.7). 

Samples were collected in the Arctic using 3 sampling methods. The first was the 

aforementioned membrane filtration setup (figure 1.6). The second was passive accumulation 

onto agar plates; here, R2A agar plates (Sigma-Aldrich, St. Louis, MO, USA) were placed open 

for 15 minutes (figure 1.8), prior to being incubated for a duration of 10 days at room 

temperature. The third method utilised was active impaction onto gelatine filters contained 

within a portable AirPort MD8 (Sartorius, Göttingen, Germany) (figure 1.9). 

Samples were collected during the Antarctic Circumnavigation Expedition (ACE) cruise using 

a membrane filtration apparatus (figure 1.6) as well as two cyclonic impingement devices 

(figures 1.10 and 1.11). The first of the cyclonic impingement devices was the Bertin Coriolis 

µ (Bertin Technologies, Montigny-le-Bretonneux, France), the collection cones were filled 

with sterile DNase and RNase free H2O (Thermo Fisher Scientific), and the sampler ran at a 
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flow rate of 300 L m-1 for a duration of 50 to 60 minutes. Once sample collection was complete, 

the collection cones were wrapped in sterile zip lock bags and stored at -80°C for downstream 

analysis. The second cyclonic impingement device was an SKC Biosampler impinger (Eighty 

Four, PA, USA), samples were collected in 20ml of sterile DNase and RNase free H2O, and at 

a flow rate of 12.5L m-1 for opportunistic durations between 2 to 9 hours. Once sample 

collection was complete, the liquid was transferred from the sampler to sterile 50ml falcon 

tubes, which were wrapped in zip lock bags and stored at -80°C for downstream analysis. 

Rainwater samples were also collected opportunistically during the ACE cruise; this was done 

by placing an ethanol sterilised funnel on top of a sterile falcon tube, the precipitation was then 

stored at -80°C for further analysis. All sample types were transported at -80°C from the 

location of collection to Northumbria University, Newcastle upon Tyne, UK. 
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Illustrated sample collection mechanisms. Figure 1.6) membrane filtration setup, Figure 1.7) 

vacuum pump calibration, Figure 1.8) Passive accumulation, Figure 1.9) portable Sartorius 

MD8, Figure 1.10) Coriolis µ Cyclonic impinger, Figure 1.11) SKC BioSampler cyclonic 

impinger 
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2.2 Wet Lab Protocols 

2.2.1 DNA Extraction protocol 

All bacterial DNA extractions were carried out within an Envair Bio2+ class II microbiological 

safety cabinet (Lancashire, GB). Prior to all extractions, the cabinet was exposed to UV for 1 

hour and wiped thoroughly with 10% NaClO in order to reduce the risk of sample 

contamination from prior cabinet use. Barrier pipette tips were used to minimise the risk of 

contamination during pipetting. Equipment was wiped with 70% ethanol prior to being placed 

into the cabinet to reduce the risk of personal contamination. 

Extraction of bacterial DNA for all bioaerosol sample types was carried out using the Qiagen 

PowerSoil kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions. This kit was 

chosen due to its frequent use in prior studies, cost effectiveness, and efficiency. The kit proved 

to be superior or on par with the Qiagen PowerLyzer PowerSoil kit (Qiagen, Hilden, 

Germany)(see appendix III), the Qiagen PowerWater kit (Qiagen, Hilden, Germany) and a non-

kit Proteinase K based method (167). Whilst samples were stored together, extraction batches 

were chosen at random in order to inhibit any potential false patterns appearing within the 

dataset.  

In order to facilitate the use of the Qiagen PowerSoil kit with all types of air sample, samples 

collected on filter papers were first dissected into quarters using an ethanol and flame sterilised 

scalpel and a sterile petri dish. The dissected quarter filter was then placed directly into a 

labelled bead tube for extraction. The remaining filter was stored at -20°C. For water based 

samples stored in falcon tubes and collections cones, samples were transferred to sterile 15ml 

falcon tubes and centrifuged for a duration of 20 minutes at 5000g. Following centrifugation, 

the supernatant was removed leaving 1ml, within which the formed pellet was re-suspended. 

This 1ml was then loaded directly into a labelled bead tube for extraction. Where samples 
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contained more than 15ml liquid, they were combined after centrifugation, and the previous 

steps were repeated.  

The bead tubes in which samples were transferred into contain a buffer which begins dissolving 

humic acids and aids in protecting nucleic acids from degradation. Following on from loading 

the sample, 60µL of solution C1, previously warmed to 60°C to remove precipitate, was added. 

Solution C1 contains Sodium dodecyl sulphate (SDS) and other unnamed disruption agents 

which aid in lysing the cell walls of present bacteria. In addition to this, the high SDS 

concentration helps break down fatty acids and lipids associated with the cell membranes of 

several organisms. Samples were then briefly vortexed, before all samples were secured 

horizontally to a MoBio bead beating vortex adaptor pad (Carlsbad, CA, USA), prior to bead 

beating at maximum speed for 15 minutes. For instances where 24 bead tubes are attached at a 

time, it is suggested that a bead beating duration of 15-20 minutes is optimal; due to the low 

expected bacterial yield, the lower limit of 15 minutes was chosen in order to reduce the 

potential sheering of DNA. Cells are mechanically lysed during the bead beating phase, 

allowing the SDS and other agents to further lyse cell walls and break down membranes. 

Following bead beating, samples were centrifuged at 1000 x g for 30 seconds to form a pellet 

containing the beads and cell debris. 

The entire volume of supernatant containing DNA, cellular proteins and some sample debris 

was then transferred to a sterile eppendorf where 250µL of solution C2 was added before 

samples were vortexed briefly and then incubated for 5 minutes at 4°C. Solution C2 is a highly 

saline solution which precipitates non-DNA organic and inorganic material including humic 

substances, cell debris and proteins. Samples were then centrifuged at 10000 x g for 60 seconds 

to pellet the inhibitor containing precipitate. 600µL of supernatant was then transferred to a 

sterile eppendorf, 200µL of solution C3 was added prior to brief vortexing at high speed and a 
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further 5 minutes incubation at 4°C. Solution C3 is a higher concentration inhibitor removal 

solution, and also increases the ion content of the solution to aid in the salting out of DNA in 

future steps. Following incubation, samples were then centrifuged at 10000 x g for 60 seconds 

at room temperature to pellet any remaining inhibitors, before 750µL of supernatant was 

transferred to a sterile eppendorf. 

1200µL of solution C4 was then added to the supernatant before samples were briefly vortexed 

at high speed to homogenize. Solution C4 contains both isopropanol and guanidine salt; 

together, they facilitate the precipitation of DNA out of solution. 675 µL of this solution was 

then spun at 10000 x g for 60 seconds at room temperature, through a silica membrane 

containing micro spin filter in order to bind the precipitated DNA to the membrane. The 

remaining cellular components here are filtered out as the amount of isopropanol in the solution 

is insufficient to precipitate the remaining proteins out of solution. The entire solution was 

passed through the filter in 3 separate repetitions. 

The liquid containing intracellular debris was discarded. A 500µL volume of Solution C5, an 

ethanol based solution with the purpose of removing any remaining salts from the filter 

membrane, was then loaded onto the silica based filter where the DNA was bound, and this 

was centrifuged at 10000 x g for 30 seconds. The flow through was then discarded, and the 

filter was then centrifuged again at 10000 x g for 60 seconds. The purpose of the second 

centrifugation is to remove any residual ethanol, as any ethanol carryover could inhibit 

downstream molecular analyses. The silica membrane was then carefully removed in order to 

make sure no ethanol is carried over and then placed into a sterile eppendorf. 

The final stage of the extraction is to elute the membrane bound DNA. This was done by 

loading a 50µL volume of solution C6, a salt-free TE buffer solution, directly to the centre of 

the membrane, and centrifuging the membrane at 10000 x g for 30 seconds. The manufacturers 
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protocol at this stage suggests an elution volume of 100µL, however a lower elution volume 

was chosen to increase the concentration of DNA in the final solution. The spin filter was then 

discarded, and the DNA in solution was stored at -20°C for further analysis. At least one kit 

negative was undertaken per batch of extraction. 

2.2.2 Thermo Scientific Nanodrop™ 

A Thermo Scientific Nanodrop™ spectrophotometer (Waltham, MA, USA) was used to gain 

an insight into the quality of DNA extracts. Following the successful loading up of the 

Nanodrop software, 2µL of Molecular Grade Nuclease Free H2O was loaded onto the pedestal 

to initialise the device. 2µL of eluent (solution C6) was then loaded and used as the 

measurement blank. 2µL of each sample was then loaded directly onto the pedestal in triplicate 

and the absorbance of light at 260nm was measured. The output total DNA concentration in 

ng/µL was noted, as well as the A260/280 and A260/230 ratios measuring purity were noted. 

The sampling pedestal and arm were cleaned with sterile lens tissue between each sample 

loading. The ideal A260/280 ration is 1.8, whereas the ideal A260/230 ratio is expected to be 

in the range of 2.0 – 2.2. A low A260/280 ratio may represent residual reagents such as 

guanidine from extraction, whereas a high ratio may represent a poor blank. A high A260/230 

ratio may be indicative of residual biological contaminants such as carbohydrates or reagents 

such as EDTA. 

2.2.3 Concentrating of DNA using a rotational evaporator 

Where samples showed low yields of DNA and/or poor A260/280 or A260/230 ratios, they 

were placed open into a Christ 2-18 CDPlus Rotational vacuum concentrator (Osterode am 

Harz, Germany) in order to evaporate off any residual contaminants, whilst leaving the DNA 

precipitated and in higher concentration due to the lower volume of eluent. The device was 

then set to 60°C and samples were ran for 10 minute intervals to make sure all of the sample 
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did not evaporate. Samples were vortexed at high speed to re-suspend precipitated DNA and 

stored at -20°C for further analyses. 

2.2.4 Polymerase Chain Reaction 

Polymerase chain reaction (PCR) amplification of aerial samples collected and extracted at 

Northumbria University, UK, was carried out in order to ascertain the success of DNA 

extraction methods by confirming the presence of an amplifiable concentration of bacterial 

DNA. All PCR reaction preparations were carried out in a PCR hood, namely the C.B.S 

Scientific Optimiser PCR Workstation (San Diego, CA, USA), in order to reduce the risk of 

contamination. The hood was exposed to UV for at least 60 minutes prior to use and cleansed 

with 10% NaClO. Filter tips were used to prevent pipette based contamination and full PPE 

was worn at all times. Samples and PCR reagents were stored on ice in order to reduce 

degradation. An Eppendorf Mastercycler (Stevenage, UK) was used to conduct PCR reactions. 

The universal 16S rRNA primer set 27F (5’ AGA GTT TGAT CMT GGC TCA G 3’) and 

1492R (5’ TAC GGY TAC CTT GTT ACG ACT T 3’) were utilised at a concentration of 

0.2µM for this reaction, as they span almost the full length of the gene. 
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A New England Biolabs (Hitchin, UK) Taq PCR kit was used. Standard 25µL reactions were 

made as follows: 

2.5µL of 10X TAE Buffer  

0.5µL of dNTPs 

0.5µL Forward Primer 

0.5µL Reverse Primer 

0.125µL Taq DNA Polymerase 

18.375µL Molecular Grade Nuclease Free H2O 

1.5µL MgSo4 

1µL template DNA (added at the end) 

PCR master mix volume was calculated and prepared in a sterile 2ml eppendorf on ice as 

follows: volume of each component of PCR (excluding template DNA) x (number of samples 

to be amplified + 2 controls (both positive and negative) + 2 reactions to account for pipetting 

error). A negative reaction control of Molecular Grade Nuclease Free H2O was used and the 

positive control used was DNA extracted from a subculture of E. coli K12. The master mix 

was then vortexed and pulsed in a centrifuge to gather all components in the bottom of the 

eppendorf, and held on ice. 24µL of vortexed master mix was then aliquoted out into each 

sterile labelled PCR eppendorf. The template DNA was then added to the master mix before 

samples were loaded into the thermocycler and amplified as per the program in table 1.2. 
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Cycle step Temperature Time Cycles 

Initial Denaturation 95°C 30 seconds 1 

Denaturing 

Annealing 

Extension 

95°C 

53°C 

68°C 

30 seconds 

60 seconds 

90 seconds (60 seconds per kb) 

 

30 

Final Extension 72°C 300 seconds 1 

Hold 4°C ∞  

Table 1.2. Standard PCR program for the amplification of the 16S rRNA gene. 

Following amplification, samples were removed from the thermocycler and stored at -20°C for 

downstream molecular analyses. 

2.2.5 Agarose gel electrophoresis of amplified bacterial DNA 

In order to ascertain whether the PCR amplification of samples collected and extracted using a 

range of methodologies at Northumbria University, UK was successful, the amplified product 

was ran on a 1% (w/v) agarose gel. Briefly, 1XTAE solution was prepared by diluting a 50X 

stock solution 20-fold. The gel was then made by combining 0.5g of agarose powder with 50µL 

of 1XTAE solution and boiling by microwave until the powder was fully dissolved. Once 

slightly cooled, 5µL of SYBR Safe DNA gel stain was added (Eugene, OR, USA), the gel was 

poured into a casting tray and placed in a cold room at 4°C to speed up the setting process. The 

gel was then removed from the casting tray, placed in an electrophoresis tank, and submerged 

in 1XTAE. Pipette mixing was then used to combine 10µL of PCR product with 2µL of loading 

dye (Thermo Fisher Scientific, MA, USA), and this was loaded into a well. A 1kb plus DNA 
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ladder was loaded into the first well of each agarose gel in order to ascertain the size of the 

amplified product (figure 1.12). The gel was run at 120V for 45 minutes. Following this, the 

gel was removed from the tank and placed into a Bio-Rad Gel Doc™ XR+ system (Herts, UK), 

where it was visualised under a UV light. Successful amplification was noted where i) 

fragments were the correct length ii) there was no amplification of the negative control and iii) 

the positive control showed strong amplification. 

 

Figure 1.12. 1kb plus DNA ladder used for gel electrophoresis. 

2.2.6 Quantification of double stranded DNA by Qubit 

Due to the poor performance of the Nanodrop™ spectrophotometer for low biomass samples 

containing less than 10ng/µL of DNA, and its inability to differentiate between double stranded 

and non-double stranded DNA, the Qubit™ dsDNA HS Assay was utilised to quantify DNA 

extracts, as it is highly sensitive and can measure a range of sample concentrations from 10 

pg/µl to 100 ng/µl, and is also selective for double stranded DNA, meaning PCR product could 

also be measured. First, one 500µl thin walled PCR tubes was labelled per sample, plus one 
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for the low standard (0 ng/µL in TE buffer) and one for the high end standard (10 ng/µL in TE 

buffer). The Qubit® dsDNA HS Reagent was diluted 1:200 in Qubit® dsDNA HS Buffer to 

make the working solution and vortexed briefly. 190µl of working solution was then added to 

the two PCR tubes labelled for the standards. 10µl of each standard was then pipette into each 

tube and vortexed. 195µl of working solution was added to each sample tube, along with 5µl 

of sample before being vortexed. The samples were then placed in a dark cupboard and 

incubated for 2 minutes. The standards were placed into the Qubit® 2.0 Fluorometer and read, 

before sample readings were taken. All preparations were carried out in a UV and bleach 

treated C.B.S Scientific Optimiser PCR Workstation. 

2.2.7 16S rRNA quantification by Real Time qPCR 

In order to ascertain the presence and total copy number of 16S rRNA genes within the aerial 

samples, a real time quantitative polymerase chain reaction (RT-qPCR) was carried out using 

the Qiagen QuantiNova SYBR Green kit (Hilden, Germany). Sybr Green is a non-specific 

fluorescent dye that intercalates between nucleotide bases and binds all double stranded DNA. 

All work was carried out in a pre-treated C.B.S Scientific Optimiser PCR Workstation and 

filter tips were used throughout.  

The QuantiNova SYBR Green kit contains a Sybr Green master mix, consisting of the Sybr 

Green Dye, a dNTP mix, buffer, and QuantiNova DNA polymerase. QuantiNova DNA 

polymerase is a hot-start polymerase which allows the reaction to be set up at room 

temperature. Hot-start polymerase’ contain a chelating antibody which remains attached until 

the initial denaturation. Primer set BACT1369F (5’ CGG TGA ATA CGT TCY CGG 3’) and 

PROK1492R (5’ GGW TAC CTT GTT ACG ACT T 3’) (168) were chosen; this set was 

chosen due the fact it spanned a 123bp region of the 16S rRNA gene. RT-qPCR reactions were 
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set up in DN-ase, RN-ase, and human DNA free white 8-well 200µL Biorad strip caps 

(Hercules, CA, USA). Reactions were set up as follows to a total reaction volume of 20µL: 

Sybr Green master mix – 10µL 

Forward Primer – 0.6µL (0.3µM) 

Reverse Primer – 0.6µL (0.3µM) 

Template DNA – 5µL 

Molecular Grade Nuclease Free H2O – 3.8µL 

For each preparation, a master mix was made as follows: (the total number of samples x volume 

of each reagent + 6 standards + 1 NTC) x total number of replicates + 2 reaction’ for pipetting 

error. All reagents and DNA was vortexed thoroughly prior to pipetting using a Vortex Genie 

2 (Scientific Industries inc, Bohemia, NY, USA). 

In order to carry out the RT-qPCR, standards were made containing a known quantity of the 

gene of interest. E.coli K12 was grown in LB broth at 37°C for 48 hours. 1ml of growth was 

then aliquoted into a sterile eppendorf and spun at 10000 x g for 1 minute. The supernatant was 

removed and one loop of the cell pellet was streaked onto an LB agar plate which was incubated 

for 48 hours at 37°C. Two filled loops of cells were transferred directly to multiple bead tubes, 

and DNA was extracted as described in chapter 2.2.1.  

The DNA extracts were quantified by Qubit (chapter 2.2.6). The quantified value was then 

used to prepare 6 gDNA standards for the RT-qPCR reaction ranging from 3x101 to 3x106 

copies of the 16S rRNA gene. The calculations required to prepare these standards are shown 

as a working example below. Once the 3x106 standard was prepared, this was then diluted 1:10 
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five times to prepare the remaining standards. The standards and gDNA extract were then 

stored at -20°C for further use. 

Working example of q-PCR standard preparation calculation using E.coli K12 

Total weight of E.coli K12 genome (5.08x10-15g) = Number of base pairs in E.coli K12 

(4639221 bp) x average weight of a nucleotide base pair (x 1.096x10-21) 

Total weight of E.coli K12 genome converted to pg (1x1012) = 5.08x10-3 

Weight of E.coli K12 genome containing 1 copy of 16S rRNA (7.26x10-4pg) = Total weight 

of the E.coli K12 genome (5.08x10-3 pg) / the number of copies of 16S rRNA in the entire 

E.coli K12 genome (7 copies) 

Desired total 

copies of 16S 

rRNA in 

standard 

 Weight of E.coli 

K12 gDNA 

containing 1 copy 

of gene (pg) 

 Required weight 

of E.coli K12 

gDNA to be 

added to 

standard (pg) 

3x106 X 7.26x10-4 = 2178 

3x105 X 7.26x10-4 = 217.8 

3x104 X 7.26x10-4 = 21.78 

3x103 X 7.26x10-4 = 2.178 

3x102 X 7.26x10-4 = 0.218 

3x101 X 7.26x10-4 = 0.022 

Table 1.3. Calculations for the mass of gDNA required for each qPCR standard 
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Required weight 

of gDNA to be 

added to 

standard (pg) 

 Volume of DNA 

to be added to 

reaction (µL) 

 Required 

volume of gDNA 

stock in each 

standard 

(pg/µL) 

2178 / 5 = 435.6 

217.8 / 5 = 43.56 

21.78 / 5 = 4.356 

2.178 / 5 = 0.436 

0.218 / 5 = 0.044 

0.022 / 5 = 0.004 

Table 1.4. Concentration of gDNA required to be added in a volume of 5µL to the sybr green 

reaction 

Dilution of Stock gDNA extract of E.coli K12 to make 100µL of 3x106 standard 

C1V1 = C2V2  

435.6 (pg/µL) x 100 (µL) / 1.5 x 104  (pg/ul) = 2.9µL of E. coli K12 gDNA + 97.1µL H2O 
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Cycle step Temperature Time Cycles 

Initial Denaturation 95°C 120 seconds 1 

2-step cycling 

Denaturing 

 

Combined 

Annealing/Extension 

 

95°C 

 

60°C 

 

5 seconds 

 

10 seconds 

 

 

40 

Hold 4°C ∞  

Table 1.5. Thermocycler conditions for qPCR. 

Once samples were loaded into the thermocycler, the program was setup as shown in table 1.5. 

Cycle threshold (Ct) values were plotted against a log linear scale to create a standard curve. 

An r2 value of >0.98 was used as a cut off for acceptable standards alongside a reaction 

efficiency of 90-110%. A linear regression formula was then implemented by the software to 

plot sample Ct values and assign a total copy number. The melt curve was also analysed to 

check for any non-amplicon specific binding such as primer dimer. 

2.2.8 Illumina MiSeq Sequencing by Synthesis (performed in part by NUomics) 

2.2.8.1 PCR amplification and tagmentaion of bacterial DNA 

The Schloss wet lab SOP was used to prepare samples for sequencing 

(https://github.com/SchlossLab/MiSeq_WetLab_SOP/blob/master/MiSeq_WetLab_SOP.md)

. All amplifications were carried out in a C.B.S Scientific Optimiser PCR Workstation. 
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Barcoded primers 515F (5’ GTG CCA GCM GCC GCG GTA A 3’) and 806R (5’ GGA CTA 

CHV GGG TWT CTA AT 3’) were used to target a 253bp amplicon of the 16S rRNA gene 

(169). PCR reactions were set up in individual wells of a 96 well plate for each sample plus a 

negative PCR control of Molecular Grade Nuclease Free H2O and a ZymoBIOMICS Microbial 

Community Standard (Irvine, CA, USA) positive control as follows: 

  Accuprime DNA polymerase master mix - 17µL 

  Forward Primer - 1µL 

  Reverse Primer - 1µL 

  Template DNA - 1µL 

The barcoded dual index primer set allowed for the multiplexing of samples on the run. 

Following the pipetting of reagents, the 96 well plate was briefly vortexed at high speed, then 

spun down to accumulate reagents and sample in the bottom of each well prior to placing the 

96 well plate into a thermocycler. PCR conditions were as follows: 
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Cycle step Temperature Time Cycles 

Initial Denaturation 95°C 120 seconds 1 

Denaturing 

Annealing 

Extension 

95°C 

55°C 

72°C 

20 seconds 

15 seconds 

300 seconds 

 

30 

Final Extension 72°C 600 seconds 1 

Hold 4°C ∞  

Table 1.6. Thermocycler conditions for standard MiSeq amplicon library amplification. 

2.2.8.2 PCR product clean-up 

Samples were both normalised and cleaned using a SequalPrep Normalisation Kit (Thermo 

Fisher Scientific). The kit normalises to a maximum yield of 25ng where total mechanical 

saturation of amplicon product occurs to the silica walls of each well; the mechanical fixing of 

DNA to the wells of the Sequal plate filters out any excess reactants such as Polymerase or 

dNTPs. 18µL of barcoded PCR amplicon and 18µL of binding buffer was mixed in a well of a 

new sterile SequalPrep™ Normalization plate by vortexing, then centrifuged and incubated for 

60 minutes at room temperature. Following incubation, the liquid was aspirated from the wells 

being careful not to scrape the sides of each well whilst pipetting. 50µL of SequalPrep™ 

Normalization Wash Buffer was then mixed in by pipetting to remove and residual unbound 

non-target biological material. 20µL of SequalPrep™ Normalization Elution Buffer was then 

added to each well and mixed by pipetting to elute the DNA from the silica walls of each wells. 
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Finally, the plate was vortexed briefly at high speed and centrifuged to gather all product in the 

bottom of each well. 

2.2.8.3 Pooling and quality control of normalised PCR amplicon 

Following on from normalisation and clean up, 5µL of product from each sample was 

combined into four separate pools in new wells of a 96 well plate. The Bioanalyzer high 

sensitivity DNA kit (Agilent technologies, UK) was used to assess fragment size in each pool 

in triplicate as follows; 9µL of gel was loaded into the gel loading wells of a Bioanalyzer chip 

and held under pressure for 60 seconds, the pressure was then released and gel was 

subsequently added to the remaining wells. 5µL of high and low standard marker was added to 

all sample wells and the DNA ladder well. 1µL of ladder was added to the ladder well, and 1µL 

of pooled amplicon added to the sample wells. The chip was then vortexed and placed into the 

Bioanalyzer device where fragment size was assessed and recorded. The DNA concentration 

of each library was assessed by Qubit (chapter 2.2.6). The fragment length measurement and 

the concentration measurement was then used to calculate the nM concentration of the library 

using the following equation: 

!"# 	%&	 = 	 !"# 	%( )*
660	 ( -./ 	×12341(3	541(-3%6	/3%(6ℎ	(9:) 

The amplicons were then diluted to 2nM using Molecular Grade Nuclease Free H2O and pooled 

together into a single library. 

2.2.8.4 Sample loading and sequencing on Illumina MiSeq 

The MiSeq V2 Reagent kit (500 cycles) was used to run the pooled library. Prior to loading the 

library into the MiSeq cartridge, 5µL of sequencing library was mixed with 5µL of 0.2N NaOH 

to denature the double stranded DNA into single stranded DNA. This mixture was then diluted 



 68 

with 990µL of HT1 buffer, and this diluted mixture was then further diluted with 300µL of 

HT1 buffer to a final concentration of 5pM. 60µL of the concentrated library was removed, 

and 60µL of 5pM Phi-X was added. The entire 600µL 5pM library was then loaded into the 

cartridge. 3.2µL of sequencing and index primers were then mixed into each well by pipetting. 

The cartridge was loaded into the MiSeq. The flow cell, pre-cleaned with lint-free cloth and 

18.2MΩ water followed by 100% ethanol, was inserted into the loading dock and the 

sequencing run was initiated. 

2.2.9 Picogreen quantification of PCR amplicons 

The Quanti-iT™ Picogreen dsDNA Assay (Invitrogen, Thermo Fisher Scientific, MA, USA), 

was used to quantify sequencing PCR amplicons. 200µL of 1X TE was prepared per sample 

from the provided 20X stock plus an additional 600µL for the DNA standards. 98µL of the 

prepared 1X TE was then added to each sample well of a black, thin walled PCR plate 

(Anachem, Manchester, UK). 600µL of DNA standard was then diluted 1:50 with 12µL of 

DNA and 588µL of 1X TE to make a 200ng/100µL solution. The DNA standard was then 

pipette mixed with 1X TE into the 96 well plate in the following concentrations: 
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Concentration (ng) Volume of 

1XTE (µL) 

Volume of 200ng DNA 

standard (µL) 

200 0 100 

150 25 75 

100 50 50 

50 75 25 

20 90 10 

2 99 1 

Table 1.7. Concentration dilutions for Picogreen standards 

2µL of vortexed sample was then pipette mixed with the 98µL 1XTE. 100µL of 1:200 diluted 

Picogreen dye was added to each well containing sample or standard and pipette mixed 

thoroughly. 100µL of 1XTE and diluted Picogreen dye was also ran in two wells as a negative 

control. The plate was then incubated in the dark for 10 minutes prior to being excited at 485nm 

and 535nm and read on a plate reader. A standard curve was then created using the DNA 

standards, and the equation of the line of best fit was used to calculate sample DNA 

concentration. 

2.2.10 Ampure XP bead cleanup of PCR amplicons 

Ampure XP beads were used at a 1.0:1 ratio with PCR product to size select fragments of a 

similar size to the target amplicon in order to reduce primer dimer and non-target amplicons 

(figure 1.13). 10µL of PCR amplicon was combined in a sterile eppendorf with 10µL of 

vortexed Ampure XP beads and incubated at room temperature for 5 minutes. The eppendorf 
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was then placed on a magnetic stand to separate the bead fixed DNA from the liquid. The 

supernatant was then removed with care not to disturb the magnetised bead pellet. The pellet 

was then washed twice with 20µL 80% Ethanol and left to air dry in a PCR hood. 

DNAse/RNAse free water was then used to resuspend the DNA from the pellet. 

 

 

Figure 1.13. Ampure XP bead ratios for specific size selections 

2.2.11 DAPI staining of filters 

DAPI counts of liquid suspended samples were performed by first pipetting 1ml of sample into 

a sterile eppendorf and incubating with 100µL of 10µg/mL DAPI solution (Sigma-Aldrich, St. 

Louis, MO, USA) for 15 minutes. Once stained, the suspension was filtered onto a 0.2 µm pore 

size, hydrophilic polycarbonate membrane, 25 mm diameter (Merck KGaA, Darmstadt, 

Germany), placed onto a microscope slide containing a drop of immersion oil, and covered 

with a coverslip also containing a drop of immersion oil. The prepared slide was then wrapped 

in aluminium foil prior to viewing on a Nikon fluorescence microscope at 400nm. Negative 

control slides were made using DNA/RNAse free water and counts were subtracted from 

samples. Each slide was then imaged and cell counts were performed using ImageJ (170) to 

calculate a running mean; running means are calculated by plotting mean cell number against 
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total number of counts until the trend line is flat. Running mean values are then used to 

calculate total bacterial load per filter using the following calculations: 

Field of view diameter = Eyepiece field number / total magnification 

Field of view radius = Diameter of field of view / 2 

Field of view area = πr2 (π = pi (3.142), r2 = radius of field of view squared) 

Filter paper radius = Diameter of filter paper / 2 

Filter paper area = πr2 (π = pi (3.142), r2 = radius of filter paper squared) 

Fields of view per filter paper = Filter paper area / Field of view area 

Total bacteria per filter = Fields of view per filter paper x Mean bacteria per field of view 

2.3 Sample analysis 

2.3.1 Sequence processing in QIIME2 and contaminant screening 

Fastq files generated by 16S MiSeq sequencing were processed in QIIME2 version 2019.4 

(61). Samples were imported into QIIME2 as an artefact in un-joined paired end format still 

containing their quality data. Following import, the QIIME2 artefact was screened in order to 

ascertain the number of sequences per sample and the quality of each base call. Samples were 

then truncated at base 247 as the quality of base call dropped considerably thereafter. The 

DADA2 pipeline (66) was then implemented from within QIIME2. Once samples have had the 

low quality base calls removed, DADA2 dereplicates the fastq files to reduce computing time 

whilst retaining the quality data for each dereplicated sequence. DADA2 then calculates per 

sequencing run error rates based on data features and uses these to infer sample composition 

by use of the dada algorithm to remove any substitution errors.  
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Once sequence variants have been inferred for both forward and reverse reads, they’re 

combined, and any reads without a forward and reverse match are removed from the analysis. 

Singletons and chimeras are also removed using the DADA2 pipeline. Additionally, the 

DADA2 pipeline wrapped into QIIME2 removes any phiX reads. Following amplicon 

sequence variant assignment within DADA2, taxonomy was assigned using QIIME2’s Naive 

Bayes classifier pre-trained on a Greengenes 13_8 99% OTUs database, trimmed only to 

include the V4 region of 16S. The taxonomy table and sequence variant tables were then 

uncompressed, formatted and used to screen for potential contaminant sequences as follows. 

Multiple reagent negatives including kit and PCR negatives were sequenced alongside true 

samples and the profiles of each negative control were used to screen true samples for negative 

controls using the following condition: in true samples where the total number of reads 

exceeded the total number of reads within each negative control by 2X for individual taxa, the 

taxa were retained, where the taxa were present at below 2X reads in a true sample vs negative 

control, the taxa were removed. This rule was followed on a per sample basis. 

2.3.2 Biodiversity and statistical analyses in R Studio 

Following decontamination in Microsoft excel, the table of sequence variants and taxonomic 

information was read into R Studio and transformed into a Phyloseq object (171). Taxa with 

sums > 0 were removed as well as any non-bacterial, mitochondrial and chloroplast taxa. 

Samples which summed to fewer then 1000 reads were also removed from analysis. 

2.3.3 Calculating the mean, mode, median, range and standard deviation 

The arithmetic mean was calculated as the sum of all numbers divided by the total numbers 

within the dataset. The mode was calculated as the most common number within the dataset. 

The median of a dataset was calculated by organising all values from high to low and taking 

the central value of the dataset. The range of the data was calculated by subtracting the smallest 
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number within the dataset from the largest. The standard deviation was calculated to measure 

the spread of the data from the arithmetic mean by calculating the mean, subtracting the mean 

from each value and squaring the result, calculating the mean of the squared differences and 

finally taking the square root of the mean. 

2.3.4 Students t-test 

The student’s t-test (172) was used to show significant difference between two groups of 

continuous, normally distributed data, such as 16S rRNA copy number. This statistical test was 

implemented in the R ‘stats’ package (R_Core_Team, 2014). 

2.3.5 Kruskal-Wallis rank sum test 

Means of continuous variables with non-normal distribution were compared using the Kruskal-

Wallis rank sum test (173) employed in the R ‘stats’ package (R_Core_Team, 2014). The test 

converts observations to ranks to normalise different samples sizes and account for abnormal-

distribution. An alpha of < 0.05 was used determine significant differences. 

2.3.6 Assessing sampling depth 

Rarefaction curves were used to ascertain whether sufficient sampling depth had been achieved 

to fully describe per sample species richness by randomly subsampling each community prior 

to diversity analyses. Samples for which the rarefaction curve did not reach asymptote were 

removed. 

2.3.7 Relative abundance 

Following rarefaction, raw sequence variant counts were transformed to relative abundances 

for the purpose of normalisation. This method of normalisation accounted for difference in 
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sampling depth whilst additionally reducing sample wastage (88). The relative abundance of 

an individual taxa within a community was calculated as follows: 

<.61/	431=>	:34	61?1
<.61/	431=>	:34	>1-:/3	×100 

2.3.8 Alpha diversity 

Alpha diversity, or per sample diversity, was calculated using vegan’ package for community 

ecology in R (Oksanen et al., 2015). The alpha diversity metrics observed OTUs and Shannon 

index were calculated for each sample and plotted using the R packing ‘ggplot2’ (Whickham, 

2009). The observed OTUs metric is simply a count of the total number of taxa within a sample 

and is therefore a qualitative measure of community richness. Shannon’s diversity index is a 

quantitative measure of community richness and is influenced most by sample evenness. 

2.3.9 Beta diversity 

Beta diversity, or between sample diversity was calculated using the ‘vegan’ package for 

community ecology in R (Oksanen et al., 2015). The Bray-Curtis dissimilarity index (Bray & 

Curtis, 1957) was used. This index is a quantitative index, making use of abundance data, to 

quantify the compositional dissimilarity between samples. 

2.3.10 PCoA 

Principle co-ordinate analysis (PCoA) was used to better visualise multi-dimensional data such 

as the Bray-Curtis dissimilarity matrix. Values and plots were produced using the Phyloseq 

package in R (171). 
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2.3.11 Heatmaps 

Heat maps of the top 50 most relatively abundant taxa were generated using the Phyloseq 

package in R (171). The weighted Bray-Curtis dissimilarity beta diversity metric plotted as a 

PCoA was used to generate each heat map. 

2.3.12 Differential abundance testing 

Differential abundance testing was carried out using the DeSeq2 package in R (174). DeSeq2 

fits negative binomial generalized linear models between groups and tests for significant 

difference using the Wald test, controlling false discovery rates (FDR) using the Benjamini-

Hochberg method. 

2.3.13 Permanova 

Pairwise permutational analysis of variance (PERMANOVA) was used to check for significant 

dissimilarity between the Bray-Curtis dissimilarity of < 2 multivariate communities. The 

Adonis function of the Vegan package in R was used to carry out this statistical test (Oksanen 

et al., 2015).
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Chapter 3 - Characterisation of Arctic Bacterial Communities in the Air 
above Svalbard 

 
3.1 Introduction 

Microbial dispersal in the atmosphere represents a key biological input, directly influencing 

the gene pool (153). The dispersal rate of bacteria in the atmosphere has been shown to be 

directly linked to weather events, such as dust storms, that lift large amounts of microbial 

matter into the atmosphere (116). There are two mechanisms by which bacteria are transported 

through the atmosphere: free floating and attached to larger airborne objects. Free floating 

bacteria in the atmosphere are unlikely to come into contact with other microorganisms 

frequently; however, bacteria associated with larger airborne particles could be subject to 

increased horizontal gene flow (117). In fact, it is this horizontal gene flow and the abundance 

of bacteria within the atmosphere which has drawn attention to the environment as a potential 

source for new antibiotics (50). 

Whilst several studies have focused on the movement of bacteria through the atmosphere, the 

majority of these studies have failed to consider the viability of these colonists upon arrival in 

their new environments (33). Microbial matter can be transported through the atmosphere 

potentially at a global scale, allowing long distance colonization. A large number of bacteria 

also remain viable for extended periods of time in the atmosphere, even under intense selection 

pressure (113). These viable microorganisms carry out multiple functions whilst suspended in 

the atmosphere; these include cloud formation by ice nucleation (120, 175), nitrogen 

processing (125), the degradation of organic carbon-based compounds (124) and 

photosynthesis (176). Viable colonists have the potential to interact with microbiomes at the 

site of deposition in an antagonistic or synergistic way. For example, suspended nitrifying 

bacteria that are deposited in nutrient poor locations could provide a novel source of nutrients 
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benefitting the ecosystem; conversely, the same mechanism can prove disruptive in other 

circumstances, causing toxic algal blooms, which can be devastating (163). Migrating bacteria 

also pose a potential pathogenic threat to human health, global ecosystem stability (166, 177, 

178) and agriculture due to the homogeneity of modern day crops (164). 

Atmospheric bacterial abundance generally ranges from 104 to 106 cells per m3 (141), but, this 

varies throughout the year (139), and can be affected by weather (wind direction, wind speed, 

temperature, etc.) (112). Bacterial abundance can decrease by as much as half with increasing 

altitude, although viable bacteria have been found in the stratosphere at altitudes as high as 7.7 

km (116, 179). Bacteria found in the atmosphere are diverse. Airborne bacterial assemblages 

in both terrestrial and marine environments contain more than 150 genera of bacteria (130-

132), a level of diversity comparable to other nutrient poor environments such as Antarctic 

snow which has been shown to contain in the region of 250 genera of bacteria (180). Barberán 

et al. (133), collated over 1000 sampling efforts and found more than 110,000 different species 

of airborne bacteria in the USA alone.  

Most bacterial communities in the atmosphere comprise four main phyla: Actinobacteria, 

Bacteroidetes, Firmicutes, and Proteobacteria, a fact that remains consistent in the atmosphere 

surrounding both marine and terrestrial habitats (24, 131). However, aerial microbial diversity 

at genus level is more variable and depends on environmental conditions, such as proximity to 

agricultural sites, meteorological conditions and season (132, 139). 

Patterns of diversity in airborne bacterial communities are central to the emerging field of 

atmospheric biogeography. Indeed, until relatively recently whether microbial biogeography 

existed in the atmosphere at all was contentious (34). However, an increasing number of studies 

have shown the inter-continental dispersal of bacteria across continents separated by both 

political (Europe and Asia) and geographical (North America and Asia) borders (133, 181). 

Furthermore, distinct geographical features give rise to distinct airborne microbial 
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communities, for example marine coastal communities are different to continental terrestrial 

ones (133, 160). Despite these findings, atmospheric biogeography has received little attention 

as the atmosphere is considered a transport route rather than a stable habitat (28). The 

development of aerobiology as a field and improved techniques should help understand 

whether at the ecological level, microbes interact and evolve within the atmosphere, as they do 

in other habitats. 

The Arctic can be defined as the area above the Arctic Circle. The Norwegian Arctic 

archipelago of Svalbard is one of the northernmost inhabited locations in the world at 79° N. 

Svalbard is characterised by its remarkably low human population with only 2185 registered 

Svalbard inhabitants in 2015 (182). This low population density translates into reduced 

anthropogenic environmental alterations such as those linked to agriculture. Thus, the Arctic 

represents an optimal location to study natural patterns of airborne dispersal and its influence 

shaping natural communities. Aerobiological studies in the Arctic date back as far as the late 

1940s (142). Studies of this nature are sparse between these early efforts and the present, with 

very few studies taking advantage of novel molecular techniques.  

To the best of our knowledge, the only recent terrestrial study of bioaerosols (airborne particles 

of biological origin) in the Arctic was carried out by Harding et al (143), on Ward Hunt Island 

located in the Canadian high Arctic. Harding et al. found similarities between air and snow 

communities and those bacterial communities found in the surrounding Arctic Ocean, drawing 

the conclusion that local sources are the largest contributors which influence bacterial 

community assemblages. Their study also found organisms not normally associated with the 

high Canadian Arctic, microbes from other Arctic locations, as well as some Antarctic 

microorganisms, supporting the theory of long distance atmospheric dispersal. These findings 

are consistent with those of previous studies that have stated the dominant groups of bacteria 

in cold ecosystems to be Proteobacteria (alpha, beta, and gamma), Firmicutes, Bacteroidetes, 
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and Actinobacteria (144, 145). However, while aerobiological studies in the Arctic are scarce, 

the number of studies in the Antarctic has increased (150, 153). To this end, a comparative 

analysis of aerobiological data over the Arctic and the Antarctic will allow the study of bipolar 

diversity and potentially, the global atmospheric distribution of microbes. 

Organisms in the Arctic atmosphere are exposed to extremely low temperatures and hurricane 

strength winds, seasonal freeze–thaw cycles, extreme exposure to UV and extremely low levels 

of nutrients. Thus, organisms inhabiting this region are referred to as extremophiles and tend 

to exploit features such as the ability to form spores, which allow them to survive the harsh 

conditions. Similar to those microbes inhabiting the Arctic, organisms surviving in the 

atmosphere also endure extreme temperatures, UV exposure and poor nutrient levels. 

Sampling techniques for terrestrial and aquatic microbial ecology studies are highly variable 

but based on common principles, established and used consistently. In contrast, a wide range 

of techniques are currently available in aerobiology, despite the low number of studies in the 

field. In general, these sampling methods involve impaction, impingement, membrane filtration 

or the drop plate mechanism, the results of which are not directly comparable due to strong 

methodological biases. Furthermore, the strength of the bias is still unknown, due to the lack 

of studies comparing different methodologies, although recent efforts have been made towards 

establishing a standard methodology (151). 

Analytical techniques can also vary considerably among studies, compromising comparability 

even further. To date, most aerobiological studies use colony-forming units (CFU) count per 

unit volume of air sampled to measure the density of cultivable microorganisms in the 

atmosphere. These studies report density changes over space, time and varying environmental 

conditions; however, culture based studies only provide a partial picture of the overall 

microbial diversity (28). Culture dependent studies are also biased towards gram-positive 

bacteria, while molecular based studies show the opposite trend, with a large proportion of 
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gram-negative bacteria populating the aerial environment (23). For this reason, fluorescence 

microscopy is increasingly used for cell counts and taxonomic identification, combined with 

molecular techniques such as high throughput sequencing. Temporal, spatial and 

meteorological variations also lead to differences in the aerial communities identified (25, 161), 

reducing further the ability to describe biogeographical patterns. 

Set against this background, in this study, the influence of different sampling techniques, 

sampling location and total sample volume on the identification of aerial bacterial communities 

in the Arctic was explored in order to test the following hypotheses, based on culture dependent 

and independent analytical methods, thus presenting a preliminary picture of the microbial 

community in the air over Svalbard. 

i) Bacterial communities are ubiquitous in the atmosphere around Svalbard can be 

accepted 

ii) Bacterial communities in the air above Svalbard are homogeneous 

iii) sampling methodology does not impact the seen biodiversity of Arctic bioaerosol 

communities 

3.2 Methodology 

3.2.1 Site Description 

Airborne microbial samples were collected in July 2015 above Svalbard (Figure 1.14). 

Svalbard is home to a relatively small human population and plays host to very few mammals. 

The majority of the human population of Svalbard resides in Longyearbyen; implying that, 

were samples subject to human influence, it would most likely occur here. The west coast of 

Svalbard is influenced by the Atlantic Ocean and is affected by warmer currents than the East 

Coast, oriented towards the Barents Sea. 
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Figure 1.14. Svalbard location and sampling sites (map adapted with courtesy of the © 

Norwegian Polar Institute (http://www.npolar.no/no/). 

Samples were collected between 6 and 23 July 2015 above both marine and terrestrial locations 

using a range of techniques (Table 1.8). Marine samples were collected aboard the research 

ship (Viking Explorer) and aboard a zodiac. The terrestrial sites were on the roof of The 

University Center in Svalbard (UNIS (78°13′ N, 15°39′ E)) located in central Longyearbyen, 

Mine (Gruve) 7, Deltaneset, Gipsdalen and Bjørndalen; these locations were chosen to 

represent a large terrestrial geographic range. The marine sites were located in the surrounding 

fjords at Billefjorden, Isfjorden, Sassenfjorden and Adventfjorden bay (Figure 1.14). 

 

Sample 
Location Environment Sampling 

Mechanism Date Flow Rate 
(L m−1) Duration (min) 

Bjørndalen Terrestrial Drop plates 13 July 2015 - 15 
Deltaneset Terrestrial Impaction onto media 13 July 2015 50 20 

  Drop plates 13 July 2015 - 15 
Gipsdalen Terrestrial Impaction onto media 13 July 2015 50 20 

  Drop plates 13 July 2015 - 15 
Longyearbyen Terrestrial Impaction onto media 16 July 2015 30, 50 20, 40, 60, 80 

  Membrane filtration 06, 19, 21–23 July 
2015 ~20 30, 60, 120, 300, 3 

days 
Mine (Gruve) 

7 Terrestrial Impaction onto media 13 July 2015 50 20 

  Drop plates 13 July 2015 - 15 
Adventfjorden Marine Impaction onto media 17 July 2015 50 20 

Billefjorden Marine Impaction onto media 17 July 2015 50 20 
Isfjorden Marine Membrane filtration 11 July 2015 ~20 480 

Sassenfjorden Marine Impaction onto media 17 July 2015 50 20 

Table 1.8. Summary of sample locations and regimes 
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3.2.2 Meteorological data 

Seven-day back trajectory models were calculated for sampling days where sequencing was 

carried out at air mass arrival heights of 10 m, 500 m and 1500 m (Figure 1.15) using 

National Oceanic and Atmospheric Administration (NOAA) Hysplit Model (183) and the 

Global Data Assimilation System (GDAS1) archived data file. In general, pockets of air at all 

altitudes arrived from a northerly (Arctic Ocean) direction, however high altitude air pockets 

at 1500 m were more easterly influenced than the lower altitudes. On 6 July, the low altitude 

air masses (10 m, 500 m) were easterly. Temperatures averaged 8°C across all sampling days 

with only one precipitation event totalling 0.1 mm occurring on 17 July. Wind speed varied 

between 10 and 22 kmh-1 and humidity averaged 67% (Table 1.9). 
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Figure 1.15. Back trajectory models were calculated using the NOAA Hysplit Model. Three 

arrival heights were used 10 m (transect marked by triangles), 500 m (transect marked with 

squares) and 1500 m (transects marked with circles). Sampling location is marked by a black 

star. 
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 06 July 
2015 

11 July 
2015 

13 July 
2015 

16 July 
2015 

17 July 
2015 

19 July 
2015 

21 July 
2015 

22 July 
2015 

23 July 
2015 

21–23 July 
2015 

(Average) 

Average across All 
Sampling Days 

Average 
temperature (°C) 8 10 8 6 8 8 10 8 6 8 8 

Total 
precipitation 

(mm) 
0 0 0 0 0.1 0 0 0 0 0 0 

Average wind 
speed (kmh-1) 13 20 10 20 14 22 18 12 12 14 16 

Average 
humidity (%) 63 75 90 57 68 59 65 68 61 65 67 

Pressure (hPa) 1025 1022 1019 1009 1013 1015 1015 1013 1006 1012 1016 

Table 1.9. Meteorological conditions on sampling days at Svalbard airport (The Weather 

Company (Atlanta, GA, USA)) 

3.2.3 Culture dependent 

Drop plates containing R2A media (Sigma-Aldrich, St. Louis, MO, USA) were placed open at 

Gipsdalen, Mine (Gruve) 7, Deltaneset and Bjørndalen for 15 min; plates were incubated for 

10 days at room temperature; following incubation the plates had colony counts and distinct 

colony counts taken. 

Additionally, a portable AirPort MD8 (Sartorius, Göttingen, Germany), comprising a 

disposable gelatine filter membrane, was used to compare sampling efficiency and cultivability 

at two flow rates and different sampling volumes. Sampling sites were chosen to compare with 

terrestrial plate drop sites but also to assess for the differences at marine sites. Terrestrial 

samples were collected at Mine (Gruve) 7, Deltaneset, Gipsdalen and central Longyearbyen 

(UNIS roof) and marine samples at Billefjorden, Sassenfjorden and Adventfjorden, 

respectively. The sampler was used at respective flow rates and durations ranging 30–50 L m−1 

and 20–80 L m−1 on 13, 15, 16 and 17 July 2015. The gelatine filters collected at all sites were 

placed directly onto the surface of R2A agar plates (Sigma-Aldrich, St. Louis, MO, USA). 

These plates were then incubated at room temperature for 10 days. Total CFU and distinct 

colony numbers were counted. 
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3.2.4 Culture independent 

As gelatine filters are not amenable to culture independent techniques (due to the presence of 

gelatine), airborne bacteria from both terrestrial and marine sites were collected via membrane 

filtration. A Welch WOB-L vacuum pump (Welch, Mt. Prospect, IL, USA) was set up at a flow 

rate of ~20 L m−1 connected to Sartorius filtration unit (Göttingen, Germany) containing a 47 

mm 0.2 µm pore size cellulose nitrate membrane filter (GE Healthcare Life Sciences, Chicago, 

IL, USA). 

A marine sample was collected at Isfjorden on the 11 July 2015 with a respective sample 

duration and volume of 8 h and ~9600 L and the terrestrial sample was taken in central 

Longeyearbyen (UNIS roof) at the following dates, durations and volumes, respectively: 6 July 

2015 for 30 (600 L), 60 (1200 L), 120 (2400 L) and 300 (6000 L) min; 19 July 2015 for 30 

(600 L), 60 (1200 L), 120 (2400 L) and 300 (6000 L) min; and 21–24 July 2015 for three days 

(~86,000 L) continuously (Table 1.8). 

The cellulose nitrate membrane filters were sent to MrDNA (MrDRNA, Shallowater, TX, 

USA) for extraction and sequencing. DNA was extracted from samples using the MoBio 

PowerSoil kit (MoBio, Vancouver, BC, Canada) following the manufacturer’s protocol with 

an additional 1 min of bead beating to account for the filter paper. Extracted samples were then 

amplified using 16S rRNA universal primers 27Fmod (AGRGTTTGATCMTGGCTCAG) and 

519Rmodbio (GWATTACCGCGGCKGCTG) and barcodes were attached at the 5′ end. A 28-

cycle PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, Germantown, MD, USA) was 

carried out under the following conditions: 94 °C for 3 min, followed by 28 cycles of 94 °C for 

30 s, 53 °C for 40 s and 72 °C for 1 min, after which a final elongation step at 72 °C for 5 min 

was performed. After amplification, PCR products were checked in by running a 2% agarose 

gel in 1X TAE buffer to determine amplification success.  
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Samples were then pooled based on their molecular weight and DNA concentrations, purified 

and Illumina DNA libraries were prepared. Paired end sequencing of the V4 region was then 

performed on a MiSeq following the manufacturer’s guidelines. The resultant data were 

analysed using QIIME v1.9.1 (59). The 776,315 raw sequence reads were quality trimmed and 

checked for chimeras using USEARCH 6.1 (63), clustered at an identity threshold of 97% and 

assigned to Operational Taxonomic Units (OTUs) using UCLUST (63) and the Greengenes 

reference database (71) was used to assign taxonomy. Sequences were then aligned using 

PyNAST (77) and a phylogenetic tree was built using FastTree (81). 

3.2.5 Statistical analysis 

Statistical analyses were performed using PAST (184) to test for differences in means, 

medians, variances and distributions and MS Excel (2013) to calculate correlation coefficients, 

the coefficient of variance and produce graphs of the analyses; statistical tests were carried out 

at an assumed significance of alpha: 0.05. When calculating diversity indices, to avoid 

statistical bias due to differences in sequencing depth all samples were normalised to a depth 

of 26,190 reads. Rarefaction curves, diversity indices (Shannon and Simpsons reciprocal), 

Bray–Curtis OTU and unweighted UniFrac phylogenetic distance metrics, and PCoAs were 

produced using QIIME (59). 

3.3 Results 
3.3.1 Culture Dependent 

Viable bacteria were found in all of the samples. Clear differences were apparent in the mean 

CFUs from the two culture dependent methods used (Figure 1.16). A Kruskal–Wallis test for 

equal medians of CFUs and morphologically distinct CFUs was undertaken to assess the drop 

plate replicates, the result did not show significant differences (Kruskal–Wallis plate fall CFU: 

p = 0.095, plate fall morphologically distinct CFUs: p = 0.123). 
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Figure 1.16. Mean colony-forming units (CFU) and morphologically distinct CFU counts for 

drop plate and Sartorius MD8 data 

Comparing the differences in drop plate and MD8 results for the locations where data were 

available for both methods, the MD8 showed much higher CFU yields, although this difference 

is not obvious when looking at the number of morphologically distinct CFUs i.e. CFUs of 

different appearance (Figure 1.16). Statistical analyses show a significant difference of mean 

CFUs sampled at the same location using different methods (p < 0.05); no differences in 

variances, medians or coefficient of variations, but a significant difference in equality of 

distributions (Kolmogov–Smirnov: p < 0.05). For the morphologically distinct CFUs, however, 

there were no significant differences for any of the mentioned parameters. When looking at the 

overall variance and efficiency of both culture dependent methods, only considering the MD8 

samples collected at 50 L m−1 for 20 min i.e., 1000 L sampling volume (Figure 1.17), there 

were obvious differences in the mean CFUs, but not for morphologically distinct CFUs.  
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An independent t-test comparing the two methods showed a significant difference in the mean 

CFUs from drop plate and MD8 samples (p < 0.001), no significant differences in variances, 

but with significant differences in coefficients of variation (p < 0.005), medians (Mann–

Whitney U p ≤ 0.001) and distributions (p < 0.001). Looking at the statistical analysis of the 

morphologically distinct CFUs, there was no significant difference in the means from drop 

plates and the MD8 (p > 0.05), with no significant differences in variances, medians, 

distributions, or coefficients of variation. These results show that there is a significant 

difference between the two methods, the MD8 yielding a larger number of CFUs. 

 

Figure 1.17. Mean CFUs and mean morphologically distinct CFUs for drop plates and 1000 

L MD8 samples 

Comparing MD8 results for terrestrial and marine samples, the mean CFUs were lower at 

marine sites than terrestrial sites (Figure 1.18). Statistical analysis showed no significant 

difference in CFUs for marine and terrestrial sites (p = 0.070). This also held for the 

morphologically distinct CFUs, there was no significant difference for either of the mentioned 

parameters between terrestrial and marine sites. 
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To account for the variable scales across the samples, the normalised coefficient of variation 

was used, and this showed the highest variation in the CFUs in the drop plate and MD8 

samples collected at UNIS. In the MD8 marine sample the variability of morphologically 

distinct CFUs was the highest. The CFUs at the terrestrial sites varied the least (Figure 1.19). 

At UNIS, where volume and flow rate were varied, a clear trend of increasing CFUs with 

increasing volume was evident (Figure 1.20). The 30 L m−1 flow rate sample, however, had 

slightly higher CFUs, despite lower volume. There was a clear correlation between CFUs and 

the sampled volume of air (R² = 0.933, Figure 1.20A), not including the 30 L m−1 sample, and 

still a very high positive correlation of (R² = 0.906) when this sample was included. For the 

morphologically distinct CFUs, there was a slight negative correlation (R² = −0.256) in 

number of CFUs with increasing volume (Figure 1.20B), leaving out the exceptional value of 

30 L m−1 showed a considerable negative correlation (R² = −0.640). 

 

Figure 1.18. Counts of total (black) and morphologically distinct (grey) CFUs in each sample 

separated by environment (terrestrial and marine) 
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Figure 1.19. Normalised coefficient of variation (a ratio of mean and standard deviation 

without unit, to compare different scales, here normalised to account for small sample size) 

 

Figure 1.20. MD8 samples with increasing sample volume at UNIS 
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Figure 1.21. (A) CFUs sampled against total volume of air (excluding 30 L m−1 sample). (B) 

CFUs sampled against total volume of air (all samples) 
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3.3.2 Culture Independent 
3.3.2.1 Bacterial diversity 

Targeted amplicon sequencing of the 16S rRNA V4 region resulted in 776,315 total reads 

across the 10 samples, which were then quality filtered and checked for chimeras leaving 

685,583 reads. The range of reads per sample ranged from 32,651 (recorded in the 60 min 

sample from 6 July) to 145,488 reads (recorded in the 30 min sample collected on 19 July). 

Samples were then rarefied to 26,190 reads (lower than the smallest sample); rarefied samples 

averaged 5015 OTUs (range 4143–6402). Rarefaction curves for all of the normalised samples 

did not reach asymptote suggesting the full extent of the diversity present was not reached for 

all samples (Figure 1.22A).  

The Shannon diversity index, a proxy for richness and evenness, was similar in all samples 

(Figure 1.22B). The results showed that all samples shared similar levels of diversity (Shannon 

index range 7.66–9.28); the most diverse sample based on the Shannon index was the 30 min 

sample taken on Day 2 whilst the least diverse sample based on this metric was the 60 min 

sample on Day 1. The dominance Simpsons reciprocal index showed a larger difference in the 

degree of diversity between samples, showing the marine sample to be the most diverse with a 

Simpsons reciprocal value of 114.13 whilst the lowest diversity was seen again in the Day 1 

60 min sample with a value of 20.35 (Figure 1.22C). 
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Figure 1.22. α-Diversity measures: (A) Rarefaction curves for observed species; (B) Shannon 

index; and (C) Simpsons reciprocal index 

The differences in OTU diversity between the communities was measured using the Bray–

Curtis dissimilarity index (Figure 1.23A) and an un-weighted UniFrac was used to estimate the 

phylogenetic distance between different communities (Figure 1.23B), the variation across all 

PCoA axis was low. Both metrics showed no distinct pattern between sampling days; however, 

sampling location did have an effect and different sampling durations showed minor clustering 

between the 60 and 120 min durations on Day 1. All samples reported differing levels of 

richness and evenness (Figure 1.23A) and showed considerable phylogenetic distances with 

the greatest distance in the three-day sample (Figure 1.23B). 
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Figure 1.23. Jackknifed β-diversity metrics: (A) Bray–Curtis Index; and (B) Unweighted 

UniFrac 

3.1.1.1 Taxonomy 

Twelve phyla in total were detected within the samples: Proteobacteria, Firmicutes and 

Actinobacteria were present in all of the samples at differing but high relative abundances and 

were the visibly dominant phyla (Figure 1.24); Bacteroidetes, Chloroflexi and Cyanobacteria 

were also present in all samples; and Cyanobacteria and Bacteroidetes were present in 

sporadically large relative abundances, however, in general, these three phyla were present at 

<1% (Figure 1.24). 
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Figure 1.24. Phyla level relative abundances (%) of bacteria in all culture independent 

samples 

Proteobacteria, Firmicutes and Actinobacteria represented ~99% of the Day 1 sample set in 

which there were 10 phyla present in total (Figure 1.24). Proteobacteria showed the largest 

total and range of relative abundance on this sampling day. On Day 2, there were 12 phyla 

present. Proteobacteria, Firmicutes and Actinobacteria remained the three key phyla at a total 

average relative abundance of 75%. The decrease in relative abundance from Day 1 was 

mirrored in the 60 and 300 min duration samples by an increase in the average relative 

abundance of Bacteroidetes. The three-day sample contained 10 phyla as for Day 1, but showed 

similar phyla and relative abundances to the 60 min sample on Day 2. Acidobacteria were 

present at 6% in this sample, but they were present at <1% relative abundance in all other 

samples. The marine sample collected at Isfjorden contained 10 distinct phyla, the same 

number present in the Day 1 and three-day sample. 

There were 196 genera in total, 58 of which were present in all samples. The marine sample 

taken at Isfjorden contained the highest number of distinct genera with 148, whilst the 
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terrestrial 120 min sample on Day 2 contained the lowest number of genera at 100. On Day 1, 

the average number of genera present was 190 whilst on Day 2 the number dropped to 113. In 

the three-day sample at UNIS there were 130 genera, more than in any of the other eight 

samples collected at that location. Pseudomonas, Staphylococcus, Propionibacterium, Delftia 

and Corynebacterium spp. made up the five most relatively abundant genera. Pseudomonas 

was the most common and relatively abundant genera representing 18% of the full sample set, 

however, they were only the most abundant genera in the Day 1, 30 min sample. Pseudomonas, 

Acinetobacter, Corynebacterium, Staphylococcus, Deltia, Cloacibacterium, Arthrobacter, 

Sphingomonas, Alcanivorax, Comamonas, Streptomyces and Brevibacterium spp. were all 

regularly present in the top 10 most abundant genera in each sample (Table 1.10). Members of 

the order Lactobacillales and Alcaligenes were both present in all four Day 1 samples but just 

one Day 2 samples whilst Microbacterium, a genus of the Microbacteriaceae family and a 

member of the Intrasporangiaceae family were present in all four Day 2 samples but just one 

Day 1 sample. There were 15 genera specific to Day 1 and 17 specific to Day 2. The three-day 

sample recorded six genera specific to that sample. The marine sample recorded the highest 

number of sample specific genera with 17. 
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UNIS Day 1, 30 min UNIS Day 1, 60 min UNIS Day 1, 120 min UNIS Day 1, 300 min 
OTU assignment Relative abundance OTU assignment Relative abundance OTU assignment Relative abundance OTU assignment Relative abundance 

Pseudomonas 38% Pseudomonadaceae 39% Pseudomonadaceae 31% Corynebacterium 17% 
Acinetobacter 13% Corynebacterium 22% Staphylococcus 22% Unassigned 16% 

Bacillales 10% Pseudomonas 13% Unassigned 12% Acinetobacter 14% 
Corynebacterium 9% Unassigned 8% Streptophyta 9% Gaiellaceae 14% 
Staphylococcus 8% Micrococcus 7% Bacillales 9% Pseudomonadaceae 9% 

Pseudomonadaceae 8% Bacillales 3% Pseudomonas 6% Pseudomonadaceae 9% 
Delftia 7% Gammaproteobacteria 2% Pseudomonadaceae 3% Staphylococcus 7% 

Propionibacterium 5% Gaiellaceae 2% Burkholderiales 3% Bacillales 5% 
Unassigned 0% Nocardioidaceae 1% Acetobacteraceae 2% Acetobacteraceae 3% 

Cloacibacterium 0% Acinetobacter 0% Sphingomonas 1% Alcaligenaceae 2% 
UNIS Day 2, 30 min UNIS Day 2, 60 min UNIS Day 2, 120 min UNIS Day 2, 300 min 

OTU assignment Relative abundance OTU assignment Relative abundance OTU assignment Relative abundance OTU assignment Relative abundance 
Unassigned 49% Oxalobacteraceae 27% Oxalobacteraceae 26% Comamonadaceae 36% 

Corynebacterium 18% Acinetobacter 15% Staphylococcus 20% Candidate division TM7 24% 
Alcaligenaceae 7% Arthrobacter 14% Arthrobacter 11% Alcanivorax 6% 
Staphylococcus 6% Corynebacterium 11% Brevibacterium 10% Bacillaceae 5% 

Arthrobacter 2% Alcaligenaceae 11% Candidate division TM7 9% Enterococcus 3% 
Comamonadaceae 2% Nocardioidaceae 4% iii1-15 8% Gaiellaceae 3% 

Acinetobacter 2% Unassigned 3% Corynebacterium 4% Brevibacterium 3% 
Candidate division TM7 1% Streptomyces 3% Comamonadaceae 3% Comamonas 3% 

Gaiellaceae 1% Staphylococcus 2% Weeksellaceae 3% Staphylococcus 2% 
Pseudomonas 1% Cloacibacterium 2% Comamonas 1% Acidovorax 2% 

Isfjorden, 8 h UNIS, 3 Day 
OTU assignment Relative abundance OTU assignment Relative abundance 

Oxalobacteraceae 39% Oxalobacteraceae 22% 
Bacteroides 10% Alcanivorax 14% 

iii1-15 6% Burkholderiales 7% 
Delftia 5% Corynebacterium 6% 

Burkholderia 4% oc28 6% 
Achromobacter 4% Candidatus Aquiluna 5% 

Caulobacteraceae 3% Bacillaceae 5% 
Comamonadaceae 3% Microbacteriaceae 5% 
Staphylococcaceae 2% Streptomyces 4% 

Burkholderiales 2% iii1-15 4% 

Table 1.10. Top 10 most abundant OTUs in each sample labelled at their highest resolution
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3.4 Discussion 
3.4.1 Culture dependent 

All culture dependent samples recorded growth, showing that viable microbes are common in 

the atmosphere, at both terrestrial and marine locations, around Svalbard. The number of viable 

bacteria measured in the air was considerably lower than the number measured in other 

environments (e.g., surface ice, and cryoconite holes) tested using the same media on Svalbard 

where the number of CFU can be tenfold higher (185). These results suggest that the 

atmosphere represents an extremely selective environment, although it is worth noting that only 

0.2%–2% of the culturable bacteria in the atmosphere are typically recovered by culture 

dependent studies (186, 187). Generally, marine studies tend to present more CFUs than 

terrestrial samples (188). Despite this there were no significant differences between these two 

environments; however, by normalising coefficients of variations in the sample a clear 

difference was visible between the two environments. In our case, the highest number of viable 

bacteria was in the samples taken at UNIS, consistent with the diversity of activity in that 

location. 

The number of cultivable bacteria increased with the increase in sample volume when using 

the MD8. This contradicts previous studies which showed no effect of sample volume on total 

CFU counts (189). In addition, decreasing the flow rate from 50 L m−1 to 30 L m−1 increased 

the number of cultivable bacteria recovered, possibly due to the decreased impact stress placed 

on captured bacteria (190).  

Whilst culture dependent studies provide useful information about the proportion of viable 

bacteria in the atmosphere, it is generally considered that only around 1% of the total bacteria 

present in the atmosphere are culturable (191). Dormancy may represent an important survival 

mechanism for bacteria in the atmosphere; therefore, a considerably larger proportion of viable 

non-culturable bacteria (VBNC) would also be expected and may have been overlooked in 

previous studies based on culture techniques alone. The reliance on CFU counts and inability 
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to describe VBNC bacteria limits the value of culture dependent techniques from an ecological 

perspective. 

3.4.2 Culture independent 

Culture independent studies using sequencing can provide more information about the diversity 

and taxonomic composition within an environment. Despite the ability of culture independent 

studies to generate useful information, they also have major drawbacks, as they contain little 

information about the viability of the bacteria in the environment. Thus, combining both culture 

dependent and culture independent methods, provides a better insight into both the structure 

and viability of bacterial communities. 

Previous research on bacteria in the atmosphere outside the Arctic has linked temporal and 

spatial variation to changes in the diversity and abundance (26). Despite these factors impacting 

bacterial communities in other Arctic ecosystems such as soil (27), there are no studies to date 

which investigate these patterns in the atmosphere in this region. Temporal variation (sampling 

day) did appear to have an effect on community structure, as the composition of the dominant 

Day 1 phyla was clearly different to that on the other three sampling days. Spatial variation 

(marine and terrestrial) also appeared to have an effect, although this was less pronounced than 

the temporal variation, as the dominant phyla present in both the marine and terrestrial samples 

was consistent. Our results suggest that day of sampling (temporal) is more important than 

location (spatial) with regards to sample diversity most likely due to changes in meteorological 

conditions such as wind direction which appeared to produce distinct communities at the 

phylum level (Figure 1.24).  

Duration also appeared to have an effect on the taxonomy of the communities, because whilst 

the dominant groups of phyla remained constant, the relative abundances varied considerably 

with changing duration. Although this variation could relate to confounding factors such as the 

time of day the samples were taken and the duration of sampling. The phylum level patterns 
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seen in the 3-day sample collected were similar to those seen in a single 3-day sample collected 

in 2017, suggesting a stable phylum-level community (see appendix I). 

3.4.3 Diversity 

Samples did not cluster into distinct groups based on OTU or phylogenetic relationships, 

showing no direct link between diversity and sampling duration, location or day (Figure 

1.23A,B). On Day 1, 60 and 120 min samples clustered based on both relationships, likely due 

to the samples sharing similar relative abundances of Delftia, Ralstonia and Pseudomonas. A 

higher Simpson reciprocal value was seen on the third sampling day (76.61) taken at UNIS, 

suggesting that sampling for a longer duration increases the diversity of bacteria captured. The 

marine sample was considerably more diverse than the terrestrial samples when taking into 

account dominance (Figure 1.22C), further supporting the idea that the distinct geographical 

features of marine coastal locations when compared to terrestrial ones give rise to more varied 

communities (133, 160). Meteorological conditions such as wind speed, humidity and pressure 

are known to directly impact community structure (112); however, during our study, these 

conditions remained relatively constant, which could explain the similar levels of diversity of 

the samples shown by the Shannon index (Figure 1.22B). 

3.4.4 Taxonomy 

A maximum of 12 phyla were found in air samples from Svalbard; however, the number of 

phyla varied among samples. The pattern found on Day 1 was the most distinct with three phyla 

dominating the day. The distinctiveness of the pattern on Day 1 was likely due to easterly winds 

from a low altitude air mass leading up to and during this sampling occasion. During the other 

sampling days, the predominant wind had a main westerly component. The 12 phyla could be 

separated into two groups: the primary phyla Proteobacteria, Firmicutes and Actinobacteria; 

and the remaining phyla that were present in sporadic relative abundances. This pattern is 

consistent with previous studies in cold ecosystems (24, 131, 144, 145), and of bioaerosols in 

a range of environments (139, 153, 161, 192); Bacteroidetes could be considered a primary 
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phyla, as they were present in considerable relative abundance in all of the samples apart from 

on Day 1, suggesting their source is to the east of Svalbard due to the back trajectory of the 

prevailing wind direction. The primary phyla are probably well adapted to atmospheric life, 

e.g., Firmicutes are well known for their ability to form spores in low nutrient conditions (193). 

Actinobacteria have a higher GC content than other bacteria (194), which is a useful defence 

against the increased UV exposure faced by bioaerosols, and Proteobacteria are known to fill 

a multitude of niches due to the metabolic diversity of the group (195).  

The number of phyla occurring in the air above Svalbard is considerably lower than that 

described for urban environments, with studies reporting the number of distinct phyla present 

to be as high as 38 (192), likely due to differences in the environments. It is notable that 

Deinococcus were not present in any of the samples, a group of bacteria normally associated 

with atmospheric studies, both in the Arctic and elsewhere (26, 143). Bacilli sp. were 

responsible for a large proportion of the Firmicutes present in the sample, the source of which 

in the terrestrial samples was likely the surrounding soil (25). There also appeared to be a 

relationship between the Actinobacteria and the Pseudomonadales whereby as the relative 

abundance of one increased, the other decreased as has been found previously (196). 

Interestingly there was a spike of Acidobacteria in the three-day sample which could suggest 

this phylum is best adapted to survive the threat of desiccation caused by sampling for longer 

periods. 

At the genus level, the patterns were much less distinct. Of the 196 genera, only 58 were present 

in all samples. The five most relatively abundant genera (Pseudomonas, Staphylococcus, 

Propionibacterium, Delftia and Corynebacterium spp.) are all either polar associated or 

ubiquitous. Delftia spp. have been described at multiple Arctic locations including Svalbard 

and Greenland where they are associated with surface ice (197, 198) whilst Propionibacterium 

spp. are typically associated with marine sediment in the Arctic Ocean (199, 200). 
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Pseudomonas spp. are ubiquitous and present in almost all polar studies, however, on Svalbard 

they are mainly described in fjords (201), indeed, a new psychrophilic species of Pseudomonas 

was recently described from the same region (202). Corynebacterium spp. have previously 

been found in soils from the Canadian high Arctic (203). Staphylococcus sp. were frequently 

present, but are not routinely described in environmental Arctic studies and could be human or 

animal associated. Acinetobacter spp. are also commonly found in the top 10 most relatively 

abundant bacteria in all the locations. Acinetobacter spp. have been found in glacial snow and 

ice in mountainous locations outside the Artic (204), however, are mainly associated with 

marine environments such as fjords in Svalbard (201). Alcanivorax spp. and members of the 

Oxalobacteraceae family were also common, they appeared on the days dominated by easterly 

winds and did not appear on the day dominated by westerly winds (205, 206). Members of the 

Oxalobacteraceae family have also been described in Arctic soils (207).  

Polaribacter sp., a bacterium associated with polar sea ice, was present in the marine sample 

suggesting that the Arctic Ocean provides a source of bacteria to the atmosphere. Many of the 

regularly occurring marine psychrotrophs, included in the Pseudomonas, Acinetobacter, 

Alcanivorax, Psychorbacter genera and members of the Oxalobacteraceae family are 

associated with the degradation of hydrocarbons in the Arctic (208), which are abundant in 

Svalbard fjords. The number of distinct phyla recovered on Svalbard (12) was higher than the 

number recovered over Ward Hunt Island (WHI) in the Canadian high Arctic (143) where six 

distinct phyla were found. Several of the 14 genera described in the air on Ward Hunt Island 

(WHI) were also present on Svalbard, including Cytophagales, Lactobacillus, Staphylococcus, 

Janthinobacterium, Pseudomonas and Polaromonas, which were mentioned but excluded as a 

chimeric sequence in that study. Bipolar comparisons also give an insight into both long-range 

transport and biogeography. Thus,  Pearce, Hughes (153) described the presence of 
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Acidovorax, Acinetobacter, Cloacibacterium, Pseudomonas and Sphingomonas at Halley 

station in Antarctica, all of which were present at varying relative abundances in Svalbard air. 

3.5 Concluding remarks 

Abundant viable bacteria from a reduced range of bacterial phyla were found in the air above 

Svalbard, therefore the hypothesis that bacterial communities are ubiquitous in the atmosphere 

around Svalbard can be accepted. The communities described were fairly homogeneous across 

sites, suggesting a distinct aerial community above Svalbard, thus the statement bacterial 

communities in the air above Svalbard are homogeneous can be partially accepted. Airborne 

bacterial abundance was lower than that described from other Arctic environments, such as soil 

or the ice surface. The most relatively abundant taxa were polar associated, suggesting that the 

largest input into the atmosphere on Svalbard was of local origin. The overall diversity of the 

phyla present in the air above Svalbard was less diverse than in other locations such as urban 

environments, but was similar to that described previously in the Arctic on WHI. The key phyla 

remained consistent across studies. Bacterial community biodiversity was impacted by 

sampling regime, therefore the hypothesis that sampling methodology does not impact the seen 

biodiversity of Arctic bioaerosol communities must be rejected. 

Further studies using metatranscriptomics would provide a deeper insight into the ecological 

role and metabolic activity of airborne bacteria, and potentially their ability to sustain activity, 

colonize and alter the environment at their final destination. Future studies investigating the 

biodiversity of the airborne microbes present in the Arctic will provide an insight as to whether 

an indigenous community is truly present. 
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Chapter 4 - Microbial biodiversity of the air around Antarctica 

 
4.1 Introduction 

Knowledge of the structure and function of microbial communities on continental Antarctica 

has rapidly increased in recent decades, with studies focusing on environments such as 

subglacial lakes (209), dry valleys (152, 210), and surface snow (211). Despite this, the 

understanding of bacterial dispersal into the continent, and of endemic microbial communities 

is limited, due in part to a low number of aerobiological studies in the region (151). The impact 

of changing environmental conditions on the biodiversity of Antarctic bacterial communities 

is not well published, despite the relevance of this information with regards to climate change; 

although some studies have found significant relationships between environmental variables, 

such as air temperature, and the diversity of bacterial communities (212).  

Despite the remoteness of the Antarctic continent, several potential dispersal pathways for 

microbial transport exist. The surrounding Oceans provide the most obvious long distance 

route for bacteria into the continent, but there is little evidence of marine associated bacterial 

taxa in the Antarctic atmosphere despite the relative vicinity of the sampling sites to the 

surrounding seas (152, 153). The Antarctic circumpolar current (ACC), where the cool water 

of the Antarctic sea meets the warmer waters of the Pacific, Atlantic, and Indian oceans is 

thought to form a barrier for marine dispersal into the region. The westerly winds, located 

between -30°S and -60°S, move aerosolised material towards the Antarctic continent from 

Africa and South America. The ability for these air masses to facilitate the intercontinental 

transport of microbes has previously been suggested, with evidence showing the presence of 

bacteria endemic to South America in ancient Antarctic ice sheets (213). The Antarctic 

circumpolar vortex, a bi-product of the ACC, due to the mixing of cold and warm air masses 
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at -60°S, is thought to act as a physical barrier to incoming aerosolised particles, limiting 

dispersal to the region (214). 

There are some 1030 bacteria and archaea residing in oceans across the globe (215). 

Microorganisms use bubble bursting as a transfer mechanisms between marine and aerial 

environments; it has been suggests that microbes possess the ability to manipulate the duration 

of a bubble to enhance their own dispersal (216), therefore some degree of relationship between 

marine and aerial bacterial communities is likely. Global studies of marine bacteria have found 

a markedly similar biodiversity worldwide, describing ocean prokaryotic communities to be 

dominated by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Thaumarchaeota 

and Deltaproteobacteria, with Gammaproteobacteria being the most relatively abundant of 

the core phyla; Actinobacteria were the only phyla to differ significantly in relative abundance 

between oceans, being more abundant in the Pacific Ocean (217).  One study of the Southern 

Atlantic Ocean found a total of 30 phyla; samples were dominated by Proteobacteria, mainly 

of the Gammaproteobacteria class representing close to 50% of all samples collected (218).  

The landing of aerosolised dust, and the aerosolisation of dust by air movement means there is 

an intimate relationship between local microbiomes and airborne bacteria. Antarctic 

microbiomes are now known to be diverse. Perhaps the most commonly studied terrestrial 

ecosystems in the cryosphere are Antarctic soils. Antarctic soil communities are relatively 

heterogeneous with the Actinobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, 

Gemmatimonadetes, Deinococcus-Thermus, and Cyanobacteria phyla observed frequently, 

but at varying site dependent relative abundances (219). Studies of soils in maritime regions of 

the continent have found Acidobacteria, Bacteroidetes, Gemmatimonadetes, Proteobacteria, 

Actinobacteria, candidate division AD3, Chloroflexi, Firmicutes and Cyanobacteria to be the 

dominant phyla, and also found that the alpha diversity of the soil communities was positively 

related to air temperature (212).  



 106 

Antarctic surface snow communities are dominated by Proteobacteria, mainly of the alpha, 

beta, and gamma classes; Fusobacteria, Firmicutes, Armatimonadetes, and Actinobacteria 

were also dominant phyla in continental Antarctic samples, whilst Bacteroidetes were present 

in sub-Antarctic Island samples (211). Within the atmosphere, Proteobacteria, Bacteroidetes, 

Firmicutes, and Actinobacteria have been shown to be the dominant phyla in Antarctic air over 

the McMurdo dry valley (214). Proteobacteria were mostly represented by the Alpha-, Beta-, 

and Gammaproteobacteria classes whilst Firmicutes were mainly Bacilli and Clostridia (152). 

The aim of this study was to investigate the spatial variability of airborne bacterial communities 

within the atmosphere above the oceans surrounding continental Antarctica, in order to assess 

whether the following hypotheses were acceptable: 

i) Bacteria are ubiquitous in the atmosphere surrounding the Antarctic 

ii) Aerosolised bacterial assemblages in the air surrounding the Antarctic are 

homogeneous, due to the extreme selectivity and remoteness of the environment  

iii) Local sources contribute considerably to the composition of bioaerosol samples 

around the Antarctic 

iv) Marine bioaerosol communities differ from terrestrial communities 

compositionally 

v) Airborne bacterial communities present above or below -60°S will harbour distinct 

patterns of biodiversity 
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4.2 Methodologies 

4.2.1 Sample and metadata collection 

Air samples were collected across the 3 oceans surrounding the Antarctic continent, aboard the 

R/V Akademik Tryoshnikov over an 85-day period between December 22nd 2016 and March 

16th 2017, whilst the ship circumnavigated the Antarctic continent. Leg 1 departed Cape Town, 

South Africa where the ship sailed through the Indian Ocean towards Hobart, Australia; during 

leg 2, the ship navigated the Pacific Ocean, travelling from Hobart, to Punta Arenas, Chile; 

finally, during leg 3, the ship travelled from Punta Arenas, back to Cape Town via the Atlantic 

Ocean. During the course of the circumnavigation, the ship travelled both inside the region 

contained by the Antarctic Circumpolar Current (ACC) and outside; air samples were also 

collected at the sub-Antarctic islands of Kerguelen, Marion, Crozet, Heard, Bouvet, Siple and 

South Georgia (Figure 1.25).  

A total of 75 successfully amplified and sequenced samples, comprised of 71 marine and 4 

terrestrial, were collected via a membrane filtration apparatus set up as described in chapter 2.1 

and in earlier studies (220). Samples 12 (Kerguelen), 56 (Siple), 73, and 47 (both South 

Georgia) were all collected on land. 4 rainwater samples were also collected, on days 12 (r01), 

15 (r02), 17 (r03), and 27 (r04) using a sterilised filter funnel as described in chapter 2.1. 
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Figure 1.25. Antarctic circumnavigation expedition sampling regime. Red marker = Leg 1, 

Indian Ocean; Green marker = Leg 2, Pacific Ocean; Orange marker = Leg 3, Atlantic Ocean. 

Image courtesy of Google Earth. 

Marine samples were collected aboard the Akademik Tryoshnikov, the sampling unit was set 

up on top of the monkey island to reduce the influence of sea spray and potential human 

bacterial sources; similarly, for terrestrial samples the filtration unit was positioned at a height 

of 1.5m to reduce the impact of local turbulence. The target sampling duration was 12 hours, 

however sampling duration range was 108 varying between 1 and 109 hours, dependent on 
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circumstance. GPS co-ordinates and weather data (table 1.11) was collected continuously 

throughout the voyage by the Vaisala weather station aboard the ship. Once collected, samples 

were stored in the ships on board -80°C freezer. Samples were removed from the ship at 

Bremerhaven, Germany and placed directly into a freezer van for transport back to the British 

Antarctic Survey, UK. Samples were then transported at -20°C to Northumbria University, UK 

where they were stored at -20°C until processing.  

Variable Average Unit 

Latitude Median Decimal 
degrees 

Longitude Median Decimal 
degrees 

Average wind 
direction 

Mode Degrees 

Average wind speed Mean Ms-1 

Minimum wind speed Mean Ms-1 

Maximum wind speed Mean Ms-1 

Cloud level Mean Metre 

Sky coverage Mean Octants 

Relative humidity Mean % 

Temperature Mean Degrees C 

Dew point Mean Degrees C 

Pressure Mean Millibars 

Solar radiance Mean NA 

UV Mean NA 

Table 1.11. Weather variables collected by onboard weather station 

4.2.2 DNA extraction 

DNA extraction was performed on samples using the Qiagen PowerSoil kit (Qiagen, Hilden, 

Germany) as described within chapter 2.2.1. 
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4.2.3 Targeted amplicon sequencing 

PCR amplification of the V4 region was carried out as described within the methods chapter, 

the amplified product was then sequenced on an Illumina MiSeq as described in chapter 2.2.8 

with the following alterations. PCR was instead performed at 40 in order to increase 

amplification in low biomass samples; the DNA concentration of each PCR product was 

individually quantified using the quant-it Picogreen dsDNA assay kit (Thermo Fisher 

Scientific, MA, USA) and this quantification was used to normalise the library by dilution 

using a Hamilton robotics microlab star (Birmingham, UK). Finally, samples were cleaned up 

individually using Ampure XP beads to remove primer dimer and non-target length amplicons 

prior to pooling. 

4.2.4 Sequence processing and analysis 

Fastq files generated by 16S Illumina MiSeq were processed into an OTU and taxonomy table 

in QIIME2, then screened for contaminants using Microsoft Excel (2013) as described in 

chapter 2.3.1. The OTU table, taxonomy table and metadata files were then read into R studio 

(R_Core_Team, 2014) and converted into a Phyloseq object (171) for statistical analyses. 

Sequences were agglomerated at the taxonomic rank of class due to a lack of comparable 

studies within the region of sampling. Sequences with no class level taxonomy were 

disregarded from the analysis along with samples with incomplete metadata and samples with 

fewer than 1000 total reads. Diversity metrics, differential abundance testing, core microbiome, 

and statistical analyses were carried out as described in chapter 2.3. For analyses, samples were 

stratified by both leg of expedition and whether they were collected after crossing the Antarctic 

circumpolar current -60°S as far as -74°S (post-ACC) or before crossing the ACC from -38°S 

to -60°S (pre-ACC). 
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4.3 Results 

4.3.1 Sampling depth 

A total of 1,068,464 reads were retained across the 75 samples. The range of reads was 95,719, 

with the smallest and largest samples containing 1278 and 96,997 reads respectively. The mean 

number of reads was 14,246 with a standard deviation of 19,619. Sufficient sampling depth 

was achieved for all amplicon libraries (Figure 1.26) as shown by each curve reaching 

asymptote when samples were rarefied to 1000 reads (lower than the smallest sample). 

 

Figure 1.26. Rarefaction curves showing sufficient sampling depth for class level at 1000 

reads 
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4.3.2 Alpha diversity 

Class level comparison of the observed OTUs alpha diversity metric by Pairwise Wilcoxon 

Rank Sum Test with Bonferroni correction showed no significant difference (p=1) between 

each expedition leg, with the median values for legs 1, 2, and 3 being 9, 8, 8 respectively (figure 

1.27). Furthermore, there was no significant pairwise difference between each expedition leg 

for the Shannon index values (p=1), for which the respective median values were 1.48, 1.34, 

and 1.43 (figure 1.27). Temperature was significantly lower during the course of leg 2, than 

during leg 1 or 3 (figure 1.28). Univariate linear regression analysis for all test variables 

revealed no positive relationship between any of the test variables and either observed OTUs 

or Shannon Index. The strongest positive relationship was between temperature and Observed 

OTUs however this relationship was not significant (p=0.09) and the model only described 3% 

of the variance in the dataset (figure 1.29). 

4.3.3 Beta diversity 

Principle coordinate analysis of the weighted Bray-Curtis dissimilarity of the communities 

showed no clear distinction between clusters of each expedition leg (figure 1.30). There was 

no significant difference between the weighted Bray-Curtis dissimilarity based on expedition 

leg (pairwise PERMANOVA P value = 1). Terrestrial and marine samples did not cluster 

independently (PERMANOVA P value = 0.90). Marine samples collected upon approach or 

departure from corresponding terrestrial sites did not cluster closely to their corresponding 

terrestrial sample. 
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Figure 1.27. Boxplots showing alpha diversity metrics. Samples grouped by expedition leg (1-3). A) Observed OTUs for each leg. B) Shannon 

Index for each leg 
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Figure 1.28. Boxplot showing average temperature during sampling for all expedition legs 
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Figure 1.29. Univariate linear regression analysis of number of Observed OTUs against temperature 
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Figure 1.30. Principle Coordinate Analysis displaying the Bray-Curtis dissimilarity between samples. Samples are coloured by expedition leg 

and shaped by sampling environment. Leg 1 (red), Leg 2 (green), and Leg 3 (blue) are shown alongside 95% confidence ellipse 

s01

s02

s03

s04

s05

s06

s07

s08

s09

s10

s11

s12

s13

s14

s15

s16

s17s18

s19

s20
s21

s22

s23

s24

s25

s26

s27

s28

s29

s30

s31
s32

s33

s34

s35

s36

s37

s38

s39

s40

s41

s42

s43

s44

s45
s46

s47

s48

s49
s50

s51

s52

s53

s54

s55

s56
s57

s58

s59

s60

s61

s62

s63

s64

s65

s66

s67

s68

s69

s70

s71

s72

s73

s74

s75

−0.4

0.0

0.4

−0.4 0.0 0.4
Axis.1   [24.8%]

Ax
is.

2 
  [

14
.3

%
]

Environment
Marine

Terrestrial

Leg
a

a

a

1

2

3

Weighted Bray PCoA



 117 

4.3.4 Taxonomy 

45 phyla were present in total. Of the 10 most abundant phyla, Proteobacteria appeared most 

frequently throughout the 3 expedition legs (figure 1.31), however their relative abundance 

varied considerably. Firmicutes, Actinobacteria and Bacteroides then followed as the most 

prevalent phyla. The remaining most abundant phyla appeared more sporadically varying 

relative abundances. There were a total of 114 classes represented across all samples. 

Gammaproteobacteria were the dominant member of the Proteobacteria phylum on the 

majority of sampling occasions (figure 1.32). Clostridia are the dominant class within the 

Firmicute phylum being present on over half of the sampling occasions. The Actinobacteria 

class was also present frequently and on all legs of the expedition, with relative abundances 

frequently varying from below 10% up to above 95% of the sample. 

Of the top 50 bacterial classes present across all sampling days, none were present on all 

sampling days. Gammproteobacteria were present the most frequently and at the highest 

average abundances as shown in figure 1.33, followed by Bacilli, Clostridia, and 

Actinobacteria. The remaining classes which made up the top 50 most abundant group 

appeared and disappeared, with no clear visible pattern across the longitudinal transects. 
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Figure 1.31. Stacked bar showing the relative abundance of the top 10 most abundant phyla  
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Figure 1.32. Stacked bar showing the relative abundance of the top 10 most abundant classes 
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Figure 1.33. Heat map showing the relative abundance of the top 50 most abundant bacterial classes in longitudinal order, faceted by leg of 

expedition
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4.3.5 Differential abundance 

There were no differentially abundant classes identified between leg 1 and leg 2 of the 

expedition. Five classes were identified as being differentially abundant (p=<0.05) between leg 

1 and leg 3 (Figure 1.34A), all of which were at a higher relative abundance in leg 1, these 

classes were Acidobacteria-6, Anaerolineae, Planctomycetia, Chloracidobacteria, and 

Spartobacteria. There were 6 total classes of significantly differentially abundant bacteria 

identified when comparing leg 2 vs leg 3 (Figure 1.34B), which were Deltaproteobacteria, 

Spirochaetes, Thermoleophilia, Chloracidobacteria, Cloacamonae, and Spartobacteria. 

4.3.6 Core microbiome 

The core microbiome, as defined as any taxa present at a relative abundance > 0.01% in at least 

80% of samples, was identified for each sampling leg and the expedition as a whole. During 

leg 1, Actinobacteria, Clostridia, and Gammaproteobacteria were identified with 

Gammaproteobacteria holding the highest relative abundance (figure 1.35A). Leg 2 had the 

largest number of classes making up the core microbiome, with the addition of Bacilli to the 

core microbiome shown in leg 1 (Figure 1.35B). Leg 3 had the lowest number of core classes 

(2), which were Actinobacteria and Gammaproteobacteria (Figure 1.35C). Looking at the 

expedition as a whole, Actinobacteria, Clostridia, and Gammaproteobacteria made up the core 

microbiome; Clostridia and Gammaproteobacteria relative abundance increased during the 

course of the expedition, whilst Actinobacteria were least relatively abundant during leg 2. No 

genera were identified as core community members during any of the 3 expedition legs, nor 

when looking at the expedition as a whole. This remained the case when the core microbiome 

threshold was dropped from 80% to 50%. 



 122 

 

Figure 1.34. Boxplots showing the differentially abundant taxa as identified by DeSeq2 

between A) Legs 1 and 3 and B) Legs 2 and 3 
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Figure 1.35. Box plots showing the relative abundance of the core microbiome for each of the 3 

expedition legs A) Leg 1, B) Leg 2, C) Leg 3, and D) the entire expedition 
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4.3.7 Antarctic circumpolar current 

Samples taken above -60°S (pre-ACC) and below -60°S (post-ACC) showed no significant 

difference in Observed OTUs (Figure 1.36A) where p = 0.47 and median values were 8 (post-

ACC) and 9 (pre-ACC) and Shannon Index (Figure 1.36B) where p = 0.28 and median values 

were 1.3 (post-ACC) and 1.55 (pre-ACC). Additionally, there was no significant difference in 

the Bray-Curtis beta diversity metric between pre and post-ACC (PERMANOVA p = 0.83). 

There were 3 significantly differentially abundant taxa when comparing within the Antarctic 

vortex (post-ACC) and outside the Antarctic vortex (pre-ACC), which were Anaerolineae, 

Phycisphaerae, and Synergistia, all appearing at significantly higher relative abundances pre-

ACC (Fig 1.37). 

The core microbiomes of both groups contained 3 classes. Both pre-ACC and post-ACC 

contained Actinobacteria and Gammaproteobacteria as core members; within the Antarctic 

vortex (post-ACC), Bacilli was also a core member (fig 1.38A), whilst outside of the ACC 

(pre-ACC) Bacilli were replaced by Clostridia (fig 1.38B). No genera were identified as core 

community members at either condition. This remained the case when the core microbiome 

threshold was dropped from 80% to 50%. 
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Figure 1.36. Boxplots showing alpha diversity metrics. A) Observed OTUs and B) Shannon Index for pre-acc and post-acc 
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Figure 1.37. Boxplot showing the differentially abundant taxa as identified by DeSeq2 between post and pre acc 



 127 

 

 

 

Figure 1.38. Box plots showing the relative abundance of the core microbiome for A) post acc and B) pre acc 
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4.3.8 Precipitation samples 

Four rain samples contained a total of 2,054,649 reads, with the smallest sample containing 

322,973 and the largest 718,468. Sufficient sampling depth was achieved for rain amplicon 

libraries, as shown by each curve reaching asymptote when samples were rarefied to 300,000 

reads (lower than the smallest sample) (figure 1.39). Observed OTUs were 1266, 133, 277, and 

217 for rain samples 1-4 respectively, whilst the Shannon Index was 2.86, 0.85, 1.29, and 1.04. 

99.7% of the inter sample diversity was explained over two principle components when 

exploring beta diversity emphasising the similarity of the samples (figure 1.40). The 

composition of the 10 most abundant phyla, showed all 4 rain samples to be dominated by 

Proteobacteria (1.41). At class level, the Proteobacteria were comprised primarily of 

Betaproteobacteria, followed by Gamma- and Alpha- Proteobacteria (1.42). 

 

Figure 1.39. Rarefaction curve for rain samples 
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Figure 1.40. Principle Coordinate Analysis displaying the Bray-Curtis dissimilarity between rain samples  
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Figure 1.41. Stacked bar showing the relative abundance of the top 10 most abundant phyla for rain samples 
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Figure 1.42. Stacked bar showing the relative abundance of the top 10 most abundant classes for rain samples 
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4.4 Discussion 

Understanding the macroecological patterns within the Antarctic has long been of scientific 

importance, due to the ability of the region to act as a baseline for environmental studies 

because of a lack of human activity in the region and the remoteness of the continent (151). 

Terrestrial studies in the region have shown a clear relationship between local sources such as 

penguin colonies or dry valley soils and the bacterial communities residing in the adjacent air 

(214, 221).  

Bioaerosols are known to influence local bacterial communities within the region. One study 

of lake Untersee revealed that aerosol deposits influenced microbial community development 

in glacier ice and cryoconite holes, therefore influencing the microbial mats of the subglacial 

lake (222). The relationship between local communities and bioaerosols highlights the 

importance of understanding the transfer of bacteria into and out of the Antarctic continent, 

and therefore their large scale spatial distribution around the region, if we are to truly 

understand the bacterial community dynamics. 

All 75 air samples amplified and contained reads following quality filtering, showing bacteria 

to be ubiquitous in the atmosphere surrounding the Antarctic at both marine and terrestrial 

sites. All sample rarefaction curves reached asymptote showing the full class level diversity 

was collected at all sample sites. When comparing alpha diversity by leg of expedition, the 

number of observed OTUs and Shannon diversity showed no significant difference; in fact, 

median values for both alpha diversity metrics were similar for all legs of the expedition. 

Temperature difference is often touted one of the key limiting factors preventing colonisation 

by long range transported bacteria (151).  

Previous studies of other Antarctic environments have found air temperature to be a significant 

influence on the alpha diversity of bacterial communities (212); however, despite a 
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significantly lower temperature during leg 2 of the expedition, no significant difference in alpha 

diversity was noted, additionally, when not stratifying samples by expedition leg, there was no 

significantly positive relationship between alpha diversity and temperature; therefore 

suggesting that temperature is not an influencing factor on the class level alpha diversity of 

bacterial communities residing in the atmosphere surrounding the Antarctic. None of the other 

environmental parameters tested showed a positive relationship with sample alpha diversity 

either suggesting that none of the variables are singularly responsible for community 

biodiversity. 

Samples did not cluster by leg of expedition, and there was no significant difference in Bray-

Curtis beta diversity between expedition legs. There was also no clustering of marine or 

terrestrial sites; clustering of terrestrial samples was not expected due to their geographic 

separation, however marine samples collected near to the sites of terrestrial samples also did 

not cluster tightly, suggesting that there is little interchange of bacteria between the sub-

Antarctic islands of French Southern and Antarctic Lands, Siple, and South Georgia and their 

surrounding maritime environment. 

45 phyla were recorded in total across all samples, a similar number of phyla to studies found 

on the continent (222), however a number considerably higher than that of bioaerosol studies 

in the Arctic (220). Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the 

dominant phyla, appearing on most sampling days. The majority of phyla appeared 

sporadically and at low relative abundances. This pattern is shared with a range of both 

Antarctic environments (211, 219, 222) and environments across the globe (24, 139, 217, 219, 

220). 

At class level, Gammaproteobacteria were the dominant taxa. Gammaproteobacteria are 

known to be ubiquitous it global waters (217), and have been shown to be dominant in the 
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Southern Ocean (218), which could provide a source for the Gammaproteobacteria in marine 

samples. The presence of Gammaproteobacteria in bioaerosol samples in the Antarctic region 

has also been shown to be directly associated with vicinity to penguin colonies at both up and 

down wind locations, with penguin faeces shown to be the primary source of the bacteria (221). 

Sample 33, collected on January 27th 2017 during Leg 2 of the expedition close to the Adelie 

coast of continental Antarctica, was dominated by Gammaproteobacteria (figure 1.32), >99% 

of the Gammaproteobacteria representation was of the genus Psychrobacter, which has 

previously been described in penguin faeces (223).  

Clostridia and Bacilli were the next most prevalent bacterial classes, appearing less frequently 

and less abundantly than Gammaproteobacteria, but still in the majority of samples. Bacilli 

and Clostridia are both spore-forming classes of the Firmicute phylum (193), making them 

hardier and more suited to life in the challenging environment that is the atmosphere, 

explaining their frequent presence in samples. Clostridia and Bacilli were the most abundant 

members of the Firmicute phylum in all samples, which matches findings on continental 

Antarctica at the McMurdo Dry Valleys (152). 

Spartobacterium were more relatively abundant in samples leg 2 than in leg 3, and in leg 3 than 

in leg 1. Aquatic Spartobacteria have been shown to be negatively correlated with water 

salinity (224), which could be a contributing factor to this pattern, as the class was most 

differentially abundant in samples collected whilst sailing through the lowest saline waters off 

the coast of Antarctica. Chloracidobacteria, a class previously described in maritime Antarctic 

soils (212), were significantly more relatively abundant during legs 1 and 2 than during leg 3. 

Thermoleophilia were significantly more abundant during leg 2 than they were during leg 3; 

members of this class have the ability to form endospores making them suitable to life in the 

atmosphere, and have previously been described in Eastern Antarctic soils explaining their 

prevalence during leg 2 of the expedition (221). 



 135 

The core microbiome, that is the classes of bacteria which were present in at least 80% of all 

samples, of the entire expedition, contained Actinobacteria, Gammaproteobacteria, and 

Clostridia. These classes of bacteria are almost ubiquitous across Antarctic environments, 

found in snow, soil and subglacial lakes (209, 211, 219). Actinobacteria were at their lowest 

during leg 2, whilst Clostridia and Gammaproteobacteria relative abundance increased 

throughout the entire expedition longitudinally. Leg 3 contained the simplest core community 

containing only Gammaproteobacteria and Actinobacteria, whilst leg 2 was the most complex 

with Actinobacteria, Bacilli, Clostridia, and Gammaproteobacteria. The increased number of 

core microbiome classes during leg 2 are likely due to the fact the closer vicinity to continental 

Antarctica and as such an increased number of source environments such as soils and Penguin 

faeces. Actinobacteria, Bacilli, and Clostridia all possess the ability to spore-form (225-227), 

making them ideally suited to the extreme UV and desiccating challenges of atmospheric life. 

Despite the apparent core microbiome at class level, there were no genus level taxa which were 

present in more than 40% of all samples, showing extreme diversity in the consistent classes. 

Previous findings suggest that the Antarctic Circumpolar Current/Vortex acts as a major 

biogeographical boundary (228), however there was no evidence of this when separating 

samples by pre and post polar vortex, with no significant difference in either alpha or beta 

diversity.  There were 3 taxa which were significantly more abundant outside of the polar 

vortex. Anaerolineae, which are widespread typically thermophilic, anaerobic, wastewater 

associated taxa, Phycisphaerae a marine bacterial class and the highly diverse Synergistia class 

which contains anaerobic wastewater genera along with a plethora or healthy and pathogenic 

human associated taxa. These 3 classes provide evidence for a small degree of selectivity by 

the polar vortex, however the equal dispersal of the remaining 111 classes suggests limited 

dispersal limitation. The core microbiome of both inside and outside of the polar vortex 

contains only 3 of the 114 classes, namely Actinobacteria, Gammaproteobacteria which were 
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part of both communities with Bacilli and Clostridia completing inside and outside of the 

vortex respectively. Whilst Bacilli and Clostridia were part of both inside and outside of the 

vortex communities, the difference in prevalence’s suggest some degree of selectivity between 

the two regions. 

Rainwater samples were dominated by Betaproteobacteria, similar to rain samples of marine 

and European origin collected in the Austrian alps, however the number of observed OTUs and 

Shannon index values were considerably higher showing the bacterial communities in 

rainwater collected above the Indian and Pacific Ocean to be more rich and even, however the 

Austrian study may have under sampled the environment due to a lack of saturation on their 

rarefaction curves (229). Alpha-, Beta-, and Gamma- Proteobacteria, were present at high 

abundance in all rain samples, and present frequently in air samples too, and as such rain may 

provide one general source for these bacteria into the aerial environment, however there was 

no distinct pattern when comparing the rain and air samples from the same day, or the air 

samples for the day following a rain event. The third most relatively abundant ASV identified 

in all rain samples was an uncultured member of the Pseudomonas genera, a National Centre 

for Biotechnology Information (NCBI) BLAST (basic local alignment search tool) search 

showed the sequence for this taxa matched closest to Pseudomonas fluorescens strain ESR7, a 

known IN active bacteria (230). The relative abundance of this sequence was highest on day 

12 (r01), and cloud cover was measured at 7 Octants, the relative abundance decreased on day 

15 (r02), where cloud cover reduced to 5 Octants, whilst the relative abundance of the sequence 

was lowest on day 27 (r04), where cloud cover was lowest at 3 Octants; this suggests that 

Pseudomonas fluorescens has an intimiate role with cloud cover over the oceans surrounding 

Antarctica. 
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4.5 Concluding remarks 

i) This bioaerosol sampling regime, covering the largest longitudinal sampling range 

to date in the region, has revealed the great extent to which bacteria inhabit the 

atmosphere surrounding the Antarctic continent, with bacterial DNA present in all 

samples, meaning the hypothesis that bacteria are ubiquitous in the air surrounding 

the Antarctic can be accepted.  

ii) Class level analysis appeared to show homogeneous bacterial communities around 

the Antarctic, however the lack of core microbiome at genus level showed there to 

be unprecedented levels of diversity in the atmosphere surround Antarctica. Based 

upon these findings, the hypothesis that bacterial communities surrounding the 

Antarctic are homogeneous must be rejected. 

iii) The dominant phyla were similar to those previously identified at a wide range of 

Antarctic locations. The core microbiome in the atmosphere above the oceans 

surrounding the Antarctic was made up of two hardy, spore forming classes 

Actinobacteria, Clostridia, and Gammaproteobacteria with the latter likely 

attributed in part to local animal faeces. The links between local sources and 

bioaerosol studies allow the hypothesis that local sources contribute considerably 

to bioaerosol communities around the Antarctic to be partially accepted, however 

the lack of core community at genus level inhibits the full acceptance of this 

hypothesis.  

iv) There was no significant difference when comparing the biodiversity of marine 

samples against terrestrial samples, therefore the hypothesis that marine bioaerosol 

communities differ from terrestrial communities must be rejected. 

v) The biodiversity of samples collected before and after crossing the Antarctic 

Circumpolar Current were not significantly different, suggesting the extent to which 
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the current had previously been touted as a limiter to dispersal could have been 

overestimated. Therefore, the hypothesis that bacterial communities collected 

above or below -60°S would harbour distinct biodiversity patterns must be rejected. 
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Chapter 5 - Detection limits of low biomass bioaerosol samples 

5.1  Introduction 

To date, there are no studies informing best practice when carrying out next generation 

sequencing (NGS) based studies of low biomass samples stored on membrane filters. The 

affordability and turnaround times of NGS technologies has allowed the bacterial community 

profiles of many previously understudied low biomass environments to be explored, providing 

more ecological insight than has previously been available for both environmental (152, 211, 

231) and clinical studies (232-234). New findings facilitated by NGS technologies can prove 

to be integral to our understanding of ecosystem succession or microbiome-host interactions, 

even acting as a guide for further research. Therefore, it is imperative to validate NGS data in 

order to give an accurate characterisation of the target microbial community.  

PCR is extremely sensitive and has the ability to amplify from a single or very small number 

of molecules (235), for that reason it is challenging to attain a completely blank negative 

control. Contaminating bacterial DNA can be introduced to samples from a range of exogenous 

sources during sample collection, DNA extraction, and library preparation. Whilst precautions 

can be taken during sample collection, it is unlikely that a sample is completely independent 

of bacterial DNA from its surroundings. The environment specific streamlined extraction 

protocol of commercially available DNA extraction kits allows for the high throughput of 

samples, which when combined with their relative affordability, means they are by far the most 

commonly used method in the literature. It has also been shown the choice of DNA extraction 

kit can have a significant impact on DNA yield and bacterial DNA composition, therefore if 

the study is to be cross-compared to previous work, choice of DNA extraction kit is extremely 

important (236). Whilst there are many positive aspects of commercially available DNA 

extraction kits, contaminating bacterial DNA is known to be present in all commonly used kits 

(94). During library preparation, contaminating bacterial DNA can occur in PCR reagents such 



 140 

as lab grade molecular water (237) or Taq polymerase (238). Exogenous contamination prior 

to library loading is not the only method by which new taxa can be introduced into samples. 

Cross talk between samples during sequencing is known to account for up to 2% of all reads 

in a sample (57), and chimeric sequences could also account for misleading taxa, with 

taxonomic databases potentially made up of as much as 46% chimeric sequences (239, 240). 

Variability in the accuracy of NGS results can be attributed to differences in library preparation 

protocol. Choice of Taq polymerase, the number of rounds of PCR amplification, choice of 

primer set, and 16S target region can all be attributed to differences in the community profile 

of 16S sequencing results (241, 242). 

Contamination provides the biggest challenge to the validity of low biomass studies, in extreme 

cases, findings where studies have not properly controlled for contamination have been 

questioned (232, 243). Guidelines have been suggested in order to attempt to address the issue. 

One example of minimum standard guidelines put forward is the recent ‘RIDE’ guidelines 

which suggest reporting methodology (R), including negative controls (I), determine the level 

of contamination prior to analysis via controls (D), and exploring the impact of potential 

contaminants in downstream analysis (E) (244).  

There is currently no consensus on how to effectively remove as much contaminating DNA 

from a sample set as possible. Prior to sequencing, extracting numerous negative controls and 

strenuous sterile technique are core to the reduction of contaminant DNA in low biomass 

samples; beyond this, additional steps may be taken such as the addition of a dsDNAse 

treatment to lab reagents prior to the addition of sample DNA, which has been shown to reduce 

contaminating reads generated during PCR by as much as 99% (245). Downstream, the use of 

prevalence patterns of taxa in true and negative samples, and DNA concentration correlations 

between taxa can be used to screen samples for potential contaminants (246), however these 

patterns are not common to all sample types and methods of identifying the contaminating taxa 
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rely on a minimum of 5-6 negative controls (as defined by Benjamin Callahan during 

communication). Source tracker is another potential way to remove contaminating sequences 

based on negative controls which represent potential sources for contamination (247), however 

this approach performs poorly when the experimental environment is poorly understood (248). 

Lists of contaminant genera are gradually being compiled within the literature (94, 244), 

however these lists must be treated with caution, as what may be a contaminant for one study 

may well be a true feature of a community in another, meaning these lists can be used to make 

an informed decision with regards to potential contaminants on a study by study basis. The 

biomass of a sample is known to impact the proportion of the true community which can be 

observed, due to the increased prevalence of contaminants as samples biomass decreases (94, 

248). The number of observable taxa is has also been shown to increase with decreasing sample 

concentration (248). 

Here, the efficiency of the Qiagen Powersoil kit (Hilden, Germany) at extracting bacterial DNA 

from membrane filters, as well as how the input biomass, number of rounds of PCR, and the 

addition of Arcticzyme impacted on the variability of community profiles obtained by MiSeq 

sequencing was investigated. Along with this, the reproducibility of reagent negatives was 

explored, in order to ascertain whether their profiles were as consistent as had previously been 

suggested, as well as how using kit negatives to screen for contaminants impacts community 

profile. The overarching aim of these investigations was to inform a best practice protocol for 

the sequencing of low biomass samples stored on membrane filters, by addressing the 

following hypotheses: 

i) The Qiagen Powersoil kit efficiently and reproducibly extracts bacterial DNA 

stored on membrane filters within the concentration range of typical bioaerosol 

samples 
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ii) Sequenced kit negative controls provide reproducible and homogeneous 

community profiles 

iii) Illumina MiSeq is a suitable instrument for the detection of low biomass airborne 

bacterial communities 

iv) The unprecedented sequence level biodiversity of Antarctic air samples was due in 

part to technical variation as a result of their low biomass 

 
5.2 Methodologies 

5.2.1 Preparation of samples 

Bacillus subtilis (NCTC 8236) was spread onto Nutrient Agar and incubated for 24 hours at 

37°C. Colonies were then added to sterile 1X phosphate buffered saline (PBS) (Thermo Fisher 

Scientific, MA, USA). The suspension was adjusted to 0.5 McFarland units containing an 

approximate cell suspension of 1–1.5 × 108 CFU/mL-1 when measuring an absorbance of 0.132 

at OD600nm. A serial dilution was then performed down to 102 CFU/mL-1. 4mL of each dilution 

was filtered onto a  47 mm × 0.2 µm pore size cellulose nitrate membrane filter (GE Healthcare 

Life Sciences, Chicago, IL, USA). DAPI counts were performed as described in chapter 2.2.11 

in order to give enumerate the total bacterial load in each dilution. DNA extraction was carried 

out on ¼ of each filter in triplicate for all dilutions using a Qiagen Powersoil kit (Qiagen, 

Hilden, Germany) in an Envair Bio2+ class II microbiological safety cabinet (Lancashire, GB) 

as described in chapter 2.2.1, in order to generate a dilution series of B.Subtillis samples. 

5.2.2 Library preparation 

DNA extracts were quantified by Qubit (Invitrogen, Thermo Fisher Scientific, MA, USA) 

amplified at both 30 and 40 cycles as described in chapter 2.2.8. PCR product was cleaned up 

using Ampure XP beads at a ratio of 0.8, then quantified by Picogreen (Invitrogen, Thermo 

Fisher Scientific, MA, USA) and normalised into pools as described in sections 2.2.9. Library 
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preparation was then repeated with the additional step taken of cleaning reagents pre-PCR 

using ArcticZyme dsDNase (Tromsø, Norway) as follows; 0.5µL of enzyme, 0.5µL of 1mM 

DTT, 1µL forward primer, 1µL reverse primer, and 17µL of DNA polymerase mastermix per 

sample were pipette mixed and incubated at 37°C for 15 minutes to allow digestion of double 

stranded DNA, before the mixture was incubated at 60°C for 15 minutes to fully inactivate the 

enzyme. Libraries were loaded and sequenced on an Illumina MiSeq as described in chapter 

2.2.8. 

5.2.3 Sequence processing and analysis 

Fastq files generated by 16S Illumina MiSeq were processed into an OTU and taxonomy table 

in QIIME2 (61), then screened for contaminants using Microsoft Excel (2013) as described in 

chapter 2.3.1. The OTU table, taxonomy table and metadata files were then read into R studio 

(R_Core_Team, 2014) and converted into a Phyloseq object (171) for statistical analyses. 

Diversity analyses were carried out using Vegan (249). Graphics were produced using 

Microsoft Excel (2013) and ggplot2 (250). 

5.2.4 Antarctic air sample biomass 

The biomass of a subset of samples from the ACE cruise (see chapter 4) was investigated using 

qPCR as described in chapter 2.2.7 in order to consider the validity of Antarctic samples in 

comparison with the known B.Subtillis samples processed during this experiment. 

5.3 Results 

5.3.1 Standard preparation and expected DNA extraction yields 

A running mean of 104 cells per field of view was calculated for the third serial dilution of the 

0.5 McFarland unit stock (figure 1.43), by DAPI counts taken from florescence microscopy 

imaging (fig 1.44). This value was then used to calculate the CFU per mL-1 of the dilution to 
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be 7.28 x 107. This dilution was used as the high standard for the study as it was considerably 

higher biomass than the environmental samples being investigated. 

 

Figure 1.43. Running mean line plot showing counts taken from dilution 3 

 

Figure 1.44. 630X magnification image of DAPI stained B. subtilis cells 
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The mass of DNA in a single B. subtilis cell was calculated as 4.3E-15g as follows: 

6710%	 =
(. *+,-./.*	genome	size	(bp	(4146839))

Average	molecular	weight	of	DNA	basepair	 618gmol
 

4.3M − 15%	 = 6710%	P	Avogadro′s	Constant	(6.02214086	×	1023	mol − 1) 

The mass of a single B. subtilis cell was then multiplied by the total number of B. subtilis cells 

in each extraction to give the total DNA input (ng) per extraction. This value was then divided 

by 4 to give the expected DNA per ¼ filter, assuming the equal distribution of B. subtilis cells 

on each filter (table 1.12). 

Cells CFU 
 per mL-1 

Total DNA 
 input (ng) 

Expected 
DNA  

per 1/4 
filter  (ng) 

7.3E+07 1.2E+03 3.1E+02 

7.3E+06 1.2E+02 3.1E+01 

7.3E+05 1.2E+01 3.1E+00 

7.3E+04 1.2E+00 3.1E-01 

7.3E+03 1.2E-01 3.1E-02 

Table 1.12. CFU per mL-1, total calculated DNA input (ng), and DNA per ¼ filter based on 

the assumption of equal dispersal across each filter for all 5 dilutions 

5.3.2 Assessment of the DNA extraction efficiency based upon percentage 

recovery 

The total extracted DNA yield per ¼ of each filter was then measured by qubit, and this value 

was compared to the expected maximum yield to calculate the DNA percentage recovery, 

based upon the assumption that the cells were equally distributed across each filter ¼ (table 

1.13). Average DNA percentage recovery was 4% for samples at a starting concentration of 

7.3E+07 and 12% at a starting concentration of 7.3E+06, % recovery could not be calculated 

for lower starting concentrations as the DNA extracts were below the qubit limit of detection 
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of 0.2ng. Percentage DNA recovery was then used to estimate the true representative number 

of B. subtilis genomes for each extraction (table 1.13). 

DNA per  
1/4 filter 

(ng) 

% 
recovery 

Estimated 
extract 

CFU per 
mL-1 

1.6E+01 5 3.7E+06 

8.8E+00 3 2.1E+06 

9.6E+00 3 2.3E+06 

5.0E+00 16 1.2E+06 

3.3E+00 11 7.8E+05 

2.8E+00 9 6.6E+05 

Table 1.13. DNA concentration values per quarter filter as measured by qubit, total 

percentage recovery of DNA per ¼ filter, and representative CFU per mL-1 based upon 

extraction efficiency and starting CFU per mL-1. Filter quarters with an expected DNA 

concentration 3.1ng or below were below the qubit limit of detection. 

5.3.3 Comparison of the proportion of samples representing target and non-

target read 

At an estimated post extraction yield of 2.7E+06 CFU per mL-1, 98% and 97% of all reads for 

30 and 40 PCR cycle MiSeq runs respectively were comprised of the target sequence, with a 

standard deviation of 1% (figure 1.45). For the following dilution, which represented an 

estimated post extraction yield of 8.8E+05 CFU per mL-1, the proportion of total reads 

comprised of the target sequence dropped to 58% for 30 cycle PCR and 33% for 40 cycle PCR. 

The estimated post extraction yield for each following dilution was non-calculable due to DNA 

concentrations below the qubits limit of detection, however the average percentage of target 

community represented dropped to 34%, 9%, an 8% for sequential dilutions when amplified at 

30 cycles and 35%, 9%, 7% when amplified for 40. 
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Figure 1.45. Clustered column chart showing the total % reads assigned to B. subtilis for each 

starting concentration. 

When splitting the data into individual replicates, a higher degree of variability of the 

percentage at which target sequence is represented can be seen when dropping below an 

estimated average input of 2.7E+06 CFU per mL-1. The highest concentration sample from the 

second highest batch of dilutions, contained a similar estimated input of cells to the highest 

dilution which was represented by a target sequence representation of 87%, however, for the 

other two samples at this dilution, which contained 43-82% less estimated input cells, the 

percentage of target reads dropped to 62% and 24% for samples amplified at 30 cycles and 

24% and 23% for 40 cycle samples (figure 1.46). 
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Figure 1.46. Clustered column chart showing the total percentage of reads assigned to the 

target taxa for each individual replicate. 

5.3.4 Target and non-target community composition and diversity metrics 

38 non-target bacterial classes (reads belonging to any bacteria other than B.subtilis) were 

represented in samples amplified for 30 cycles, whilst there were 88 for 40 PCR cycle samples 

(figure 1.47). In total, 98.51% of all reads in the sample with the highest concentration of input 

B. Subtilis DNA belonged to target reads. Non-target contaminant reads were dominated by 

Gammaproteobacteria for all samples, which was the only non-target class at a relative 

abundance of >1% in the highest concentration sample, this class was present at varying 

relative abundances in all samples and controls for both 30 and 40 cycle sample sets.  

Bacilli was also a prominent non-target class member of the top 20 most relatively abundant 

classes when sample replicates were combined, however when replicates were viewed 

independently, Bacilli were less prevalent in both 30 and 40 cycle sample sets. Clostridia and 

Deltaproteobacteria were also consistently present in joined replicate samples, however again 
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were less prevalent when samples were viewed independently. The relative abundance of the 

target sequence was higher for the 30 cycle PCR library than 40 cycle in samples at a starting 

concentration of 7.3E+07 and 7.3E+06, however there was no clear difference for the lower 

concentration samples. The lower the concentration of starting bacteria, the higher the relative 

abundance of non-target reads. 

Whilst there was only a single target ASV input into each sample (B. subtilis), a total of 362 

unique amplicon sequence variants (ASVs) were present when 30 cycle PCR was undertaken, 

whilst 1268 unique ASVs were present for 40 cycle PCR (figure 1.48). The dominant non-

target ASV was a member of the Enterobacteriaceae family unclassified at genus level; the 

relative abundance of this ASV almost mirrored the relative abundance of non-target 

Gammaproteobacteria (figure 1.48). When viewing samples independently, the proportion of 

Enterobacteriaceae ASVs reduced slightly at 40 cycles, this reduction was mirrored by an 

increase in the remaining 1248 low relative abundance ASVs (figure 1.48). The ASVs which 

did not make the top 20 most relatively abundant, comprising the other category, were present 

at a higher abundance in all samples when PCR was carried out at 40 cycles. 

When investigating sample alpha diversity (figure 1.49) at 30 cycles of PCR, observed ASVs 

were lowest in the sample beginning at a starting concentration of 7.3E+07 with a median of 

6, and highest in the following dilution (7.3E+06) with a median number of observed ASVs of 

21. The number of ASVs observed in negative controls was varied, but remained near or below 

25 for all. At 40 PCR cycles, the highest concentration sample again saw the lowest number of 

observed ASVs, with a median of 21, and again the second dilution saw the highest number of 

observed ASVs with a median of 132. In negative controls, the value was again variable but 

higher than at 30 cycles, and whilst the general pattern of samples with higher or lower numbers 

of ASVs observed remained consistent, kit negative 7 and 8, as well as the facility sequencing 
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negative differed considerably from their 30 cycle counterparts, with the facility negative 

containing more than 300 observable ASV.
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Figure 1.47. Stacked bar charts showing the relative abundances of the top 20 most abundant bacterial classes for B. subtilis dilutions and 

negative controls. A) 30 cycle PCR with sample replicates combined. B) 40 cycle PCR with sample replicates combined. C) 30 cycle PCR with 

individual replicates. D) 40 cycle PCR with individual replicates 
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Figure 1.48. Stacked bar charts showing the relative abundances of the top 20 most abundant bacterial ASVs for B. subtilis dilutions and 

negative controls. A) 30 cycle PCR with sample replicates combined. B) 40 cycle PCR with sample replicates combined. C) 30 cycle PCR with 

individual replicates. D) 40 cycle PCR with individual replicates 
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Figure 1.49. Box and whisker plot showing the observed ASV alpha diversity metric for samples and negative controls 
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30 cycle samples which had a B. subtilis relative abundance of ~50% and above clustered 

tightly, whilst the two samples which contained 20-40% B. subtilis clustered tightly away from 

the high abundance samples. The low abundance samples and kit negatives clustered from left 

to right, with a noticeable shift in the beta diversity of the communities in relation to the 

Enterobacteriaceae ASV, along with a number of lower abundance community members 

(figure 1.50). The pattern was generally similar for 40 cycle samples, however the second 

dilution clustered away from the highest concentration sample. 

The addition of Arcticzyme to reagents prior to PCR amplification did not remove any 

contaminants, and instead appeared to reduce the relative abundance of the target sequence, 

suggesting technical inefficiencies both in the catalysis of the breakdown of contaminant DNA 

in reagents and in the inactivation of the enzyme. 
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Figure 1.50. Heat map, organised by Bray-Curtis PCoA ordination, displaying the 50 most relatively abundant genera for each sample, faceted 

by number of PCR cycles 
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5.3.5 Impact of de-contaminating dataset on community profile 

Following contaminant removal as per the method described in chapter 2.3.1, 30 cycle B. 

subtilis relative abundance in the highest concentration sample increased from 98.49% to 

99.85%. Relative abundance in the second dilution increased from 57.81% 68.07%. The 

highest concentration 40 cycle sample target reads % rose from 96.79% to 99.58%. The largest 

increase following contaminant removal was from 34.90% to 63.70% in samples which had a 

starting concentration of B. subtilis 7.3E+05, which equated to an estimated CFU per mL-1 of 

<6.6E+05.  

Looking at samples individually, the relative abundance of target reads increased from 48.78% 

to 89.93% for one of the 30 cycles 7.3E+05 samples (figure 1.51). The highest % increase in 

target sequence reads was seen in the lowest abundance samples (figure 1.52), however 

following this increase samples with 7.3E+04 and 7.3E+03 inputs had <30% target reads for 

both 30 and 40 cycle datasets. 
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Figure 1.51. Stacked bar charts showing the relative abundances of the top 20 most abundant bacterial ASVs for B. subtilis dilutions following 

removal of ASVs present in relative abundances less than 50% higher in samples than in negative controls. A) 30 cycle PCR with sample 

replicates combined. B) 40 cycle PCR with sample replicates combined. C) 30 cycle PCR with individual replicates. D) 40 cycle PCR with 

individual replicates
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5.3.6 Biomass of Antarctic air samples from chapter 4 

Average 16S copy number for kit negative, marine and terrestrial samples collected during the 

ACE cruise (see chapter 4), was generated by 16S qPCR on 5 µls of DNA extract. Raw copy 

number was transformed to copy number per mL-1 by multiplying the values by 200. This value 

was then divided by the average number of 16S copies per bacterial cell of 4.2 (46), to give an 

estimated average CFU per mL-1, or bacteria per quarter filter, for each environment (figure 

1.53). There was no significant difference in copy number when performing pairwise Wilcoxon 

rank sum tests with Bonferroni correction between kit negative controls and marine samples 

(adj p = 1) or terrestrial samples (adj p = 1). There was also no significant difference between 

marine and terrestrial samples (adj p = 0.45). 

 

 

Figure 1.52. Clustered column chart showing % increase in target sequence reads per starting 

concentration following the removal of ASVs present in relative abundances less than 50% 

higher in samples than in negative controls 
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Figure 1.53. Bar plot showing the estimated mean CFU per mL-1 of samples collected during 

the ACE cruise
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5.4 Discussion 

It is known that choice of DNA extraction method influences community composition (236), 

and consequently it is important to consider the DNA extraction method of cross-comparable 

studies prior to undertaking an investigation. Whilst there are commercially available kits 

designed for a range of different sampling environments such as soil, water or stool, lesser 

investigated environments do not have specific kits. Qiagen kits are relatively similar, save 

their sample loading bead tubes. For example, the Qiagen Powerwater kit contains a large 

loading tube capable of containing a whole 47mm membrane filter, whilst the Qiagen 

Powersoil kit contains a small loading tube in order to fit 0.2g of soil inside.  

Numerous aerobiological studies cite the Qiagen/MoBio Powersoil kit as their extraction 

method (25, 196, 251-256), despite the fact the bead tube is not designed to have a filter paper 

loaded. This is likely due to the ability to compare to previous studies, rather than the kits 

suitability to the sample form, as most aerobiological samples are stored either as liquid or on 

membrane filters. The original studies which chose to use this kit may have done so 

opportunistically, as they may have already had the kit available due to previous soil studies. 

Regardless, this kit remains the most consistently used in the literature for this type of sample. 

The majority of these studies dissect and load a 1cm2 punch of filter into the bead tube. This 

method of DNA extraction from membrane filters was not optimal, with measurable extraction 

efficiencies ranging from 3 to 16% of total input cells, this was suitable for samples with a 

starting bacterial load of 7.3E+07, as the concentration of DNA retained for extracts at this cell 

concentration was enough to provide a true community when sequenced, however below this 

input concentration, the method was not efficient enough to extract a high enough DNA 

concentration to reveal the true community using MiSeq sequencing.  

Of the two concentration samples which could be quantified, DNA extraction efficiency 

appeared to increase with decreasing starting DNA concentration, indicating potential 
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saturation of the spin column. The amount of DNA recovered from each replicate was also 

different, which suggests the bacteria were not evenly distributed on the membrane filter, not 

taking this into consideration could cause an underestimation of biodiversity in a sample if a 

quarter of a filter was chosen which contained considerably less DNA that the rest of the filter. 

Previous studies provide different information on the minimum input biomass required to 

reveal the true community of a sample. Our input DNA ranged from 7.3E+07, however due to 

extraction efficiency the true concentration of cells going into each PCR reaction, and therefore 

being sequenced, were around ten-fold less than this. This means that whilst we found that 

7.3E+07 cells were required on a membrane filter to reveal a true community following DNA 

extraction, the number of cells required to be loaded into a PCR during library preparation to 

reveal the majority of the true community by MiSeq was actually in the region of 2-4E+06.  

When the number of cells dropped an order of magnitude below this, each time the percentage 

of reads matching the true community dropped roughly 40-60%. Below E+03, less than 10% 

of the sequenced community were represented by target reads, with 90%+ of the sample 

constituents being exogenous contaminants. These numbers are consistent with the findings 

from samples sequenced at Imperial College London (ICL) by Salter, Cox (94).  Found that all 

samples above an estimated cell input of 1E+04 CFU per mL-1 returned community profiles 

above 70% accuracy, whilst samples below this input threshold all represented <50% target 

sequences. Brandt and Albertsen (257) reported that 92% of target reads were represented in a 

sample containing a 1E+01 sample of Shigella, however as E. coli was present at varying 

abundances in the controls for this study (9.9-76.7%). Whilst the authors used low read number 

and sample to control contamination to explain the prevalence of the taxa in negative controls, 

however, it is known that Escherichia and Shigella are hard to resolve using standard NGS 

technologies (258), over the short conserved fragment of 16S gene sequenced, could mean that 

their reported target sequence % is over inflated due to misinterpretation of data, however their 
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data may also be a true representation of their sequencing facility, as facility to facility variation 

is known (94).  

Low concentration DNA may not be amplified until later cycles of PCR, as it is less likely to 

come into contact with a Taq polymerase enzyme. Increasing the number of PCR cycles is one 

method which could increase the yield of low abundance target DNA, however this can also 

increase the number of spurious reads through polymerase errors and further amplify 

contaminant DNA (241). Despite this, some studies have shown that increasing PCR cycle 

number does not compromise the integrity of NGS data (259). Reducing the number of PCR 

cycles is one potential option to reduce the amount of spurious sequences in a sample and 

increase the proportion of target DNA, however as shown by Salter, Cox (94), sequencing low 

biomass samples at 20 cycles means samples have very few reads, less than 50 in this case, 

which nullifies the biological relevance of the data.  

Due to previously experiencing low read counts in low biomass samples sequenced at the 

facility, the difference in community profiles at different input biomasses using both 30 and 40 

cycle PCR were compared. Both cycle numbers gave sufficient numbers of reads for analysis, 

and the % of reads hitting the target sequence was comparable at all input levels excluding the 

3.7E+06 sample, where more than 20% reduction in sequence reads was seen at 40 cycles when 

compared with 30, which could possibly be attributed to pipetting error or inefficient 

amplification. Standard deviations were smaller for all 40 cycle samples as oppose to 30 cycle 

samples, this reduction in data variation is likely to all representative members of the sample 

community undergoing sufficient amplification due to the extended number of cycles. 

Of the 38 non-target bacterial classes which were present, six bacterial classes were present in 

relative abundances >1% in the control samples and all but the highest B. subtilis sample (figure 

1.48A); these classes were Gammaproteobacteria, Bacilli, Clostridia, Bacteroidia, 
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Actinobacteria, and Deltaproteobacteria. These classes of bacteria were consistent with those 

reported by Salter, Cox (94), and as with the target sequence %, the class level patterns matched 

most closely with the contaminant profiles from samples processed at the ICL, despite use of 

a different DNA extraction kit. Despite similar bacterial classes between the studies, the 

relative abundance of the classes is noticeably different, with Gammaproteobacteria being by 

far the most relatively abundant taxa in our study, whilst Actinobacteria was the most abundant 

contaminant in that study, further emphasising the variation in contaminant profiles for samples 

sequenced at different facilities. This difference in contaminant profile at class level could be 

due to either differences in the wider lab contaminants at the different sequencing faculties or 

kit based contaminants between the Qiagen Powersoil kit used here and the FastDNA SPIN kit 

for soil used in that study, as choice of extraction kit is known to influence community structure 

(236).  

Previous studies have shown a decrease in biomass to correlate directly with the observed OTU 

alpha diversity metric, showing the number of OTUs to increase as the biomass of a sample 

decreases (248), however whilst the lowest number of observed ASVs was in the highest 

concentration sample, this was not the pattern observed, as the number of ASVs remained 

consistently low in low biomass samples, including negative controls. An increased number of 

ASVs based on number of PCR cycles was observed, with 362 present at 30 cycles and 1268 

at 40, showing that increasing the number of PCR cycles can inflate sample diversity. At ASV 

level, around 12-30% of the samples were made up of ‘other’ low abundance ASVs, a pattern 

again comparable with previous findings (94), however the profiles of the dominant 

contaminating ASVs were not as similar to previous studies, with an unclassified member of 

the Enterobactereiaceae family constituting a considerable proportion of non-target reads in all 

samples, with the remaining taxa much more sporadic than has previously been shown.  
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This pattern becomes only more complex when the sample replicates are viewed individually 

as oppose to stacked, at ASV level, only the unclassified member of the Enterobactereiaceae 

family was consistent in all samples, including the facility PCR negative, suggesting that the 

origin of this contaminating sequence was not during extraction but library preparation. The 

remaining top 20 most abundant ASVs were present sporadically, with Enterococci, 

Staphylococci, and Geobacter appearing the next most frequently observed. Enterococcus and 

Staphylococcus are both common human associated bacteria and so it is possible that this was 

their source, however this could also be an artefact of the fact that taxonomic databases were 

predominantly curated based on human associated taxa, whilst Geobacter, an anaerobic 

environmental genus, is difficult to pinpoint, and to the best of our knowledge has not 

previously been described in contaminant studies, suggesting this may be lab specific and 

related to work previously carried out in the lab where extraction was carried out.  

The lack of consistency at ASV level in negative controls, as well as sample replicates, renders 

using standard contaminant removal methods like decontam (246), which relies on increased 

prevalence of a taxa in control samples when compared to true samples to identify 

contaminants, sub optimal for low biomass samples. As decontam was not appropriate for this 

dataset, nor was source tracker, a stringent ad-hoc contaminant screening was performed 

comparing taxa found in control samples to those found in true samples as described in chapter 

2.3.1, in order to see if contaminant removal using negatives could improve the proportion of 

target sequences in each sample. This method proved effective for the high biomass samples, 

eradicating all but 0.15% of non-target reads from the samples, and whilst in general the 

proportion of non-target reads was reduced at all dilutions, by as much as 175% for one 

replicate at a starting concentration of 3.7E+04, the total % of the sample which was comprised 

of non-target reads still remained too high, meaning sample integrity and therefore data validity 

was still low.  
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Whilst contaminant screening was not effective enough to improve the majority of samples to 

a valid standard, one 3.7E+06 replicate went from ~75% to >98% target reads and one 3.7E+05 

sample went from <70% to >90% target reads, showing that if the community profiles of the 

negative controls match closely to that of non-target taxa in a sample, sample integrity can 

greatly be increased, for this reason considering % change in community following 

contaminant removal could provide insight into how well de-contaminated a sample has been, 

however this must be viewed with regards to total read number. 

As shown here and in previous studies (94, 248, 257), the amount of cells added to the PCR 

reaction during library preparation influences the proportion of sequencing reads which match 

the true community structure of the sample which has been extracted. Therefore, when working 

with samples expected to contain a low bacterial biomass, it is imperative that an estimate of 

bacterial concentration is attained prior to data analysis in order to ascertain the validity of the 

community structure. Previously, the microbiome of the Antarctic atmosphere has been 

investigated, however found considerable variation at ASV level in the data, in fact no genera 

were present in more than 40% of samples showing an unprecedented level of inter sample 

variability in the Antarctic atmosphere (152, 260), leading us to investigate whether the 

variation could be artificial due to technical issues (see chapter 4).  

Using qPCR data, the CFU per mL-1 of the marine samples was estimated to be between the 

region of 2-3E+04 and terrestrial samples to be in the region of 3E+04; taking into account the 

data from this study for the same concentration range, this would suggest that this input 

biomass is insufficient to generate data showing a true community profile, and whilst negative 

controls were sequenced and decontamination using these controls was undertaken, the 

proportion of the decontaminated samples which could be counted as a true representation of 

the sampling environment could be between 18-90%. Whilst the biomass of Antarctic air is 

currently unknown, airborne bacterial concentrations are typically known to be in the range of 
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104 to 106 cells per m3 (141); the higher range is typically found within the built environment 

where humans contribute considerably to the airborne biomass, how remote and harsh the 

Antarctic environment is likely puts the aerial biomass at the lower end of this scale. Therefore, 

by sampling for 12 hours using a membrane filtration apparatus as suggested by Pearce, 

Alekhina (151), a collecting an estimated volume of 14400L, equating to 14.4m3 of air, an 

estimated total of 1.44E+05 to 1.44E+07 bacteria would be collected onto a membrane filter, 

and so ¼ of each filter may contain as little as 3.6E+03 to 3.6E+05 bacteria, considerably low 

the required input found here to derive a true community profile by MiSeq.  

The Coriolis Micro (Bertin, Montigny-le-Bretonneux, France) (see chapter 2.1), which collects 

at a maximum flow rate of 300L/min for up to 1 hour, would comparatively collect 1.8E+05 to 

1.8E+07 bacteria in liquid, dependent on the biomass of the environment. Whilst the biomass 

collected with this device would be similar to a sample taken over a longer period of time at a 

lower flow rate, the short sampling duration relies upon the assumption of a consistent bacterial 

load in the atmosphere at all times. The estimated bacterial yields for both sampling methods 

being below the required biomass input into a successful MiSeq run, explains the similar 

variability of the resultant datasets (Coriolis data not shown, see appendix IV). 

5.5 Concluding remarks 

The most commonly used, and therefore most cross-comparable method of DNA extraction 

bioaerosol samples stored on membrane filters was not optimal for low biomass samples, and 

as a result this method of DNA extraction for samples with a biomass lower than 3.7E+07 is 

not recommended. Furthermore, there was considerably more variation between kit negatives 

than has been previously described in studies, variable kit negatives reduce the resolving power 

between contaminating sequences and true sequences; this variability highlights the importance 

of sequencing multiple negative controls in order to reduce as much of the contaminating 
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signature in sample as possible, and the inappropriateness of particular contaminant removal 

procedures for low biomass data.  

The findings of this study highlight the difficulty of using modern NGS technologies to 

investigate low biomass samples stored on membrane filters. Our results reiterate those of 

previous studies which found that 1E+06 was the lower limit at which Illumina MiSeq 

produced a reliable community profile independent of contaminant screening. The results of 

this investigation mean the first three hypotheses laid out within the introduction of the chapter 

must be rejected, whilst the hypothesis that the unprecedented sequence level biodiversity of 

Antarctic air samples was due in part to technical variation as a result of their low biomass, can 

be accepted. 

When working with low biomass datasets, the following recommendations should be 

considered: 

i) When using the Qiagen Powersoil kit (Hilden, Germany), for DNA extraction from 

low biomass samples on membrane filters, quantify as many samples as possible 

prior to sequencing 

ii) Running a dilution series of a known control community within the expected sample 

concentration range alongside samples to assess the accuracy of the sequencing data  

iii) Running as many sequencing negative controls as possible alongside samples in 

order to identify as many contaminating DNA sequences as possible  

iv) Assessing the data validity of the data and choose an appropriate decontamination 

method for the dataset 
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Chapter 6 - Bioinformatics based variation in low biomass air sample 

analysis 

6.1 Introduction 

Culture-independent microbiome studies typically involve the use of the 16S rRNA marker 

gene to identify the community structure of a target environment, the analysis and 

interpretation of this datatype requires both molecular and computational tools (261). These 

are necessary to accurately characterise large datasets, however the most widely used of these 

profiling tools show a large degree of variability (262). Two of the most widely used 

bioinformatics tools are Mothur (263) and Quantitative Insights Into Microbial Ecology 

(QIIME) 2 (61). Mothur is a manually curated pipeline updated, optimised and validated by 

the Schloss lab whilst QIIME 2 represents a curation of the best and most current microbiome 

analysis tools. QIIME 2 places greater emphasis on data reproducibility than the previously 

version QIIME 1, and has now been shown to provide better sequence annotation (264). Few 

studies have compared the differences in datasets between the two frequently used pipelines 

(265), finding higher variability in the less common taxa, which impacted on beta diversity. To 

the best of our knowledge, no studies have compared the variability when working with low 

biomass samples. 

The most common OTU picking strategy in recent years has been to combine sequences de 

novo into bins at a 97% pairwise similarity threshold (266); however, this method is inherently 

variable, as the representative OTU to which samples are binned varies each time data is put 

through the analysis pipeline. More recently, due to improvements in sequencing technologies 

and the improved ability of bioinformatics pipelines to identify and remove low quality reads, 

the use of exact sequence variants, referred to as amplicon sequence variants (ASVs) or sub-

OTUs, has been suggested as the gold standard (67, 68); the main advantage constructing exact 

sequence variants over OTUs, is that the resultant datasets are reproducible, as sequences do 
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not have to be randomly binned. Naturally, assigning reads as exact sequence variants will 

increase the number of unique taxa which are represented in a dataset. Closed reference OTU 

picking is the least frequently reported OTU picking method, likely due to its limited 

application; closed reference OTU picking involves assigning OTUs based on an already 

curated reference taxonomy database and discarding unmatched sequences; this method is a 

necessity when comparing multiple hypervariable regions, and can also be useful if the study 

environment is well described and you trust the reference database to be comprehensive, 

however in poorly described environments, this method of OTU picking has the potential to 

considerably waste valuable data. Choice of taxonomic database is also known to impart a level 

of variation on datasets, and can impact results to some extent (75). Greengenes (71) and the 

Ribosomal Database Project (RDP) (70) are two of the more commonly used reference 

databases. QIIME 2 uses Greengenes as its default classifier, however this database has not 

been updated since 2013, whilst Mothur recommends RDP, with the most recent version 

included in the Mothur MiSeq sop being version 16 which was curated in 2016.  

The aim of this study was to compare the imparted variance in bacterial community 

composition of low biomass Antarctic air samples when analysed using Mothur and QIIME 2. 

Using these two pipelines, the difference in the resultant microbiome based on choice of 

taxonomic database and OTU picking strategy was also investigated. The following hypotheses 

were considered: 

i) Choice of analysis pipeline does not impact on the biodiversity of a dataset 

ii) Choice of OTU picking strategy does not impact on the biodiversity of a dataset 

iii) Choice of taxonomic database does not impact on the biodiversity of a dataset 
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6.2 Methodologies 

6.2.1 Sample processing and analysis 

Bacterial DNA was extracted from samples collected during the ACE cruise (chapter 4). Fastq 

files were generated by sequencing the V4 region of the bacterial 16S rRNA gene by Illumina 

MiSeq (chapter 2.2.8). Fastq files were processed into an OTU and taxonomy table using one 

of 4 variations of the standard QIIME 2 (61) or Mothur (263) pipelines (see below), then 

screened for contaminants in Microsoft excel (2013) as described in chapter 2.3.1. The 

Phyloseq (171), Ape (267), Vegan (249), and GGplot2 (250) packages in R, as well as MS 

Excel (2013) were used to carry out diversity and statistical analyses and to produce graphics. 

The following 4 pipeline alterations were compared: 

A) Samples were processed as per the Mothur MiSeq SOP 

(https://Mothur.Mothur.org/wiki/MiSeq_SOP), binning OTUs de novo, and assigning 

taxonomy using the RDP 2013 taxonomic database. The SOP first clusters sequences, 

and then assigns taxonomy to clusters. 

B) Samples were processed as per the Mothur MiSeq SOP 

(https://Mothur.Mothur.org/wiki/MiSeq_SOP), binning OTUs de novo, and assigning 

taxonomy using the RDP 2016 taxonomic database. The SOP first clusters sequences, 

and then assigns taxonomy to clusters. 

C) Samples were processed in Mothur, using a phylotypic (closed reference) OTU 

assignment approach. Sequences were classified using the RDP 2016 taxonomic 

database first and then clustered into OTUs based on taxonomic classification. 

D) Samples were processed in QIIME 2, as described in chapter ?. Unique sequences are 

stored as amplicon sequence variants (ASVs) as oppose to OTUs, and ASVs were 

classified using the Greengenes 2013 taxonomic database. 
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6.3 Results 

6.3.1 Raw reads and sampling depth 

Of the 84 total samples collected by membrane filtration, 75 were retained for samples 

processed using the QIIME 2 analysis pipeline with the Greengenes 2013 taxonomic database 

following denoising and decontamination, equating to 89% of samples (figure 1.55C), all of 

these samples reached asymptote by 1,000 reads (figure 1.54D). This pipeline retained the 

highest number of reads at 1,061,145 (figure 1.55A), as well as the highest mean reads per 

sample with 14,148 (figure 1.55B). The closed reference pipeline in Mothur using the RDP 

2016 taxonomic database provided the lowest sample retention, with 56 samples (figure 

1.55C), along with the lowest total reads and mean reads, which were 628,890 and 11,230 

respectively (Figure 1.55A & 1.55B). Comparing the RDP 2013 and RDP 2016 database for 

taxonomic assignment, the number of samples retained was identical with 60, whilst total and 

mean reads were near identical (figure 1.55). All amplified samples processed using the RDP 

taxonomic database and the Mothur pipeline reached asymptote on their relevant rarefaction 

curve (figure 1.54). 
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Figure 1.54. Rarefaction curves for samples processed using A) Mothur RDP 2013 B) Mothur RDP 2016 C) Mothur RDP 2016 closed reference 

OTU picking D) QIIME 2 ASV Greengenes 2013 
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Figure 1.55. Bar charts showing A) Total sequence reads retained, B) mean, minimum, maximum total sequence reads retained for samples, and 

C) the % of samples retained 
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6.3.2 Alpha and beta diversity 

Alpha diversity measures were markedly similar independent of analysis pipeline. Using 

Mothur with the RDP 2016 taxonomic database provided the highest number of observable 

OTUs (figure 1.56) with a median value of 28. This was closely followed by samples processed 

in Mothur using the RDP 2013 taxonomic database which had a median observed OTUs value 

of 27. Using the RDP 2016 database but a closed reference OTU assigning strategy reduced 

the median observable OTUs down to 21. Whilst the QIIME 2 pipeline assigning ASVs instead 

of OTUs, whilst using the Greengenes 2013 taxonomy provided the lowest median number of 

observable OTUs with 20. There was no significant difference between the mean number of 

observable OTUs based on analysis pipeline when tested using the non-parametric Kruskall-

Wallis test at a significance level of 0.05 (p=0.75). There was a more pronounced difference in 

alpha diversity when viewing the Shannon index values which is more influenced by sample 

evenness (figure 1.57). The QIIME 2 pipeline had the highest median Shannon diversity value 

of 2.13, suggesting that this pipeline provides the most even community. The standard Mothur 

pipelines using the RDP 2013 and RDP 2016 taxonomies both had the same median Shannon 

diversity value of 1.97. The closed reference Mothur pipeline had the lowest Shannon diversity 

index value of 1.84 showing it to have the least evenly distributed communities. There was no 

significant difference between the mean Shannon diversity index values based on analysis 

pipeline when tested using the non-parametric Kruskall-Wallis test at a significance level of 

0.05 (p=0.17). The amount of variation in community dissimilarity varied based upon analysis 

pipeline (figure 1.58). The first two principle components described very little of the variation 

in each dataset for all 4 pipelines with 10.2% of the variance described for the Mothur RDP 

2013 and Mothur RDP 2016 pipelines, 11% for the Mothur closed reference RDP 2016 

pipeline, and only 7.7% for the QIIME 2 Greengenes 2013 pipeline. Sample clustering was 

almost identical for the RDP 2013 and 2016 pipelines, whilst samples clustered considerably 
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less tightly when processed using the closed reference pipeline. Samples processed in QIIME 

2 clustered in a similar pattern to those processed in Mothur using RDP 2013 and 2016, 

however the clustering was less tight
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Figure 1.56. Observed OTUs alpha diversity metric for membrane filtration samples processed using A) Mothur RDP 2013 B) Mothur RDP 

2016 C) Mothur RDP 2016 closed reference OTU picking D) QIIME 2 ASV Greengenes 2013 
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Figure 1.57. Shannon index alpha diversity metric for membrane filtration samples processed using A) Mothur RDP 2013 B) Mothur RDP 2016 

C) Mothur RDP 2016 closed reference OTU picking D) QIIME 2 ASV Greengenes 2013
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Figure 1.58. PCoA showing Bray-Curtis beta diversity for membrane filtration samples processed using A) Mothur RDP 2013 B) Mothur RDP 

2016 C) Mothur RDP 2016 closed reference OTU picking D) QIIME 2 ASV Greengenes 2013. Samples coloured by marine or terrestria
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6.3.3 Taxonomy assignment 

The number of taxa produced by each method varied. The QIIME 2 pipeline, which grouped 

reads as ASVs at a 100% similarity threshold produced the most individual taxa as a result with 

4456, whilst the closed reference 97% OTU picking pipeline processed in Mothur which 

discarded any reads not matched to a previously existing sequence in the RDP 2016 database 

produced the fewest unique taxa with 816. The standard Mothur pipeline which combined open 

reference and de novo OTU picking strategies, produced a very similar number of unique taxa 

when using either the older RDP 2013 taxonomy or more recent RDP 2016 taxonomy, with 

only 5 more taxa identified using the more recent database. Despite producing the most unique 

taxa, Greengenes 2013 identified the lowest % of taxa at genus level of the compared methods 

with 59.61% (table 1.14). Despite revealing a lower proportion of the total taxa at genus level, 

this pipeline still identified 2656 unique genera, the most of any of the pipelines. The RDP 

2016 closed reference pipeline identified the highest % of samples to genus level. At class 

level, the QIIME 2 pipeline performed best, identifying 99.78% of all unique taxa, considerably 

higher than the two standard RDP based pipelines, whilst the closed reference RDP pipeline 

performed a close second best identifying 98.87% of retained reads at class level. 

The top 10 most abundant taxa identified for the RDP 2013 and RDP 2016 Mothur pipelines 

shared similar taxonomic profiles, with the only difference that an unclassified member of the 

Firmicute phylum was present in samples classified using RDP 2013 and not in samples 

classified using RDP 2016, where it had been replaced by Prevotella (figure 1.59). When using 

closed reference OTU picking, the profile of the 10 most abundant taxa was markedly different 

in samples when compared to the RDP 2016 pipeline, despite the same taxonomic database 

being used to classify OTUs, with only Acinetobacter, Aeromonas, Arcobacter, and 

Pseudoalteromonas shared between the two sample sets. The different naming strategies of the 

RDP and Greengenes taxonomies makes the taxa difficult to compare between the two, 
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however some taxa are clearly present using both methods, as an ASV belonging to the 

Aeromonadaceae family which was not identified at Genus level was present at a relative 

abundance of near 10%, whilst Aeromonas, a member of the Aeromonadaceae family were 

present in all 3 RDP based datasets*. Despite the differences in taxonomy, half of the top 10 

most abundant taxa produced in QIIME 2 using the Greengenes 2013 taxonomy match those 

produced in Mothur using the RDP 2013 and RDP 2016 taxonomies, with Arcobacter, 

Acinetobacter, Pseudoalteromonas, Aeromonas*, and an unclassified member of the 

Bacteroidales order shared between the taxonomic profiles of the 3 analysis pipelines. The 

unclassified member of the Bacteroidales order was the most relatively abundant member of 

the top 10 most abundant taxa for the Mothur RDP 2013 and RDP 2016 pipelines, Bacteroides 

was the most relatively abundant taxa for the closed reference pipeline, whilst Psychrobacter 

was the most relatively abundant taxa for the QIIME 2 pipeline. 

 

Level 

Mothur 
RDP13 
OTU 

picking 

Mothur 
RDP16 
OTU 

picking 

Mothur 
RDP16 
Closed 

reference 
OTU 

picking 

QIIME 2 
Greengenes 
2013 ASVs 

 

Unique taxa 

 

2493 

 

2488 

 

816 

 

4456 

 

Classes 
identified 

 

86.93% 

 

86.89% 

 

98.87% 

 

99.78% 

 

Genera 
identified 

 

63.85% 

 

63.74% 

 

88.89% 

 

59.61% 

Table 1.14. Total number of unique taxa per analysis pipeline, and the proportion of those taxa which 
were identified at class and/or genus level 
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Figure 1.59. Bar plots showing the relative abundance of the top 10 most abundant taxa in all samples for membrane filtration samples processed 

using A) Mothur RDP 2013 B) Mothur RDP 2016 C) Mothur RDP 2016 closed reference OTU picking D) QIIME 2 ASV Greengenes 2013
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6.4 Discussion 

Choice of bioinformatics pipeline, OTU/ASV assignment strategy, and taxonomic database 

had an impact on the interpretation of a low biomass dataset. This supports previous assertions 

that different bioinformatics tools impart variability when analysing 16S NGS data (262). The 

primary aim of all microbiome studies is to collect and analyse a full dataset containing as little 

error as possible. The number of samples retained following the correction of sequencing 

errors, removal of chimeric sequences, removal of non-target sequences and removal of 

samples below 1000 reads, was highest for the QIIME 2 pipeline, with 75 of 84 samples 

retained, whilst the Mothur based pipelines retained 56-60 samples.  

The difficulties amplifying low biomass samples, mean some degree of sample loss is expected 

due to low read number. As sample loss is already expected, it is important that the method by 

which samples are denoised or quality filtered, is highly efficient, in order to retain as many 

successfully sequenced samples as possible, therefore, when working with low biomass air 

samples, QIIME 2, which wraps DADA2 for sample denoising, was the most appropriate 

pipeline. 

There was no significant difference in the richness of samples between the 4 compared 

pipelines. A significantly larger sample richness (total number of genera) has previously been 

reported when comparing QIIME to Mothur, however this study compared QIIME version 1, 

which still processed samples into OTUs and also compared preterm gut samples (268), as 

oppose to QIIME 2 and low biomass air samples. There was a lower richness when comparing 

QIIME 2 to Mothur, with the Mothur pipeline having a median value of 28 when compared to 

that of 20 when using QIIME 2. Another study, comparing bacterial communities in dairy cow 

rumen found no significant difference in richness when comparing the two pipelines, however 

this study used the SILVA database as oppose to Greengenes, citing the fact SILVA had been 

more recently updated than Greengenes as a potential reason for the lack of a significant 
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difference (265). Here, the richness of samples processed using the same pipeline (Mothur), 

but a 2013 vs 2016 RDP taxonomic database, was highly similar, with median observable 

OTUs being 27 and 28 respectively, suggesting that how recently a taxonomic database has 

been updated has a small impact on community richness.  

Despite having the lowest observed OTUs value, the samples processed through the QIIME 2 

pipeline had the highest Shannon diversity index, which acts as a proxy for sample evenness. 

There was no significant difference between the community evenness of samples processed 

using any of the four pipelines suggesting choice of pipeline, including choice of taxonomic 

database and OTU assigning method does not impact this community feature for low biomass 

air samples. The choice of analysis pipeline had an impact on how tightly samples clustered 

and the amount of variation between communities; samples were noticeably more dissimilar 

when processed in QIIME 2 than when processed in Mothur using de novo clustering, with less 

of the total sample dissimilarity described by two axis and less tight clusters, potentially due to 

the fact sequences were clustered at 100% as oppose to 97%. Despite some difference in how 

closely samples clustered, the core cluster of the de novo Mothur samples and QIIME 2 samples 

were similar sized. The closed reference pipeline had the least tight clustering, and no obvious 

core cluster, suggesting the taxa responsible for the similarities of the QIIME 2 and de novo 

Mothur samples were not part of the RDP 2016 taxonomic database, emphasising the 

limitations of using closed reference OTU picking for poorly described environments. 

Plummer, Twin (268) found 10.27% and 28.92% of reads were unclassified at genus level 

when comparing QIIME and Mothur respectively, for preterm gut samples. 36% of sequences 

processed using Mothur and 40% processed using QIIME 2 were unclassified at genus level. 

This reduction in genus level taxonomic identification could be due in part to the disparity in 

research volume between the two environments, with many more studies focusing on the 

preterm gut microbiota meaning the taxonomy databases are biased towards bacteria with 
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clinical relevance than environmental. The high discrepancy in taxa identified at genus level 

between samples processed by closed reference OTU picking and de novo OTU picking in 

Mothur, followed by taxonomic assignment with the RDP 2016 database, as well as the lower 

number of unique taxa and total reads, suggests that a high proportion of diversity is being 

discarded by closed reference OTU picking due to the lack of representative taxa from the 

sampled environment in the RDP 2016 database, emphasising the unsuitability of closed 

reference OTU picking for low biomass air samples collected in the Antarctic; this data also 

explains the differences in sample beta diversity between the two pipelines.  

Class level analyses are often carried out in poorly annotated environments, due to the lower 

number of genus level calls making it difficult to make meaningful biological statements at 

that taxonomic rank. QIIME 2 and Greengenes performed best at identifying taxa at class level, 

identifying 99.78% off all unique taxa at this rank. Comparatively, the de novo methods in 

Mothur using either RDP taxonomic database did not surpass 87% identification at class level, 

showing QIIME 2 to perform better when investigating class level patterns in low biomass 

Antarctic air samples. Whilst there were some consistent taxa present independent of pipeline, 

the most relatively abundant taxa were different for ASV, de novo OTU, and closed reference 

OTU pipelines. Overall there was a noticeable difference in the top 10 most abundant taxa for 

all air samples when using different bioinformatics pipelines. 

6.5 Concluding remarks 

When working with low biomass air samples, choice of bioinformatics pipeline can 

considerably impact the number of samples discarded prior to analysis following quality 

filtering/denoising, with QIIME 2 the least severe, meaning the hypothesis that choice of 

pipeline does not influence the biodiversity of a dataset must be rejected. All sample amplicon 

libraries were sampled at sufficient depth independent of pipeline. There was no significant 

difference in the alpha diversity of samples when processed using any of the four pipelines, 
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specifically with regards to sample richness and evenness; notably, this remained the case when 

comparing a previous version of the RDP taxonomic database to the most recently updated, the 

hypothesis that choice of taxonomic database does not impact the biodiversity of a dataset can 

therefore be rejected. Sample beta diversity was most impacted by choice of OTU picking/ASV 

assignment strategy, with closed reference OTU picking increasing the dissimilarity between 

samples, due to the removal taxa unclassified in the RDP 2016 database; as a result, the 

hypothesis that OTU picking strategy does not impact the biodiversity of a dataset is rejected. 

The QIIME 2 pipeline performed best when annotating samples at class level. The large 

discrepancy between the % of taxa identified at genus level by closed reference OTU picking 

when compared with de novo or ASVs, emphasises the lack of representative sequences in the 

RDP and Greengenes taxonomic databases for the sampled environment. 
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Chapter 7 - Discussion and recommendations  

Aerial bacterial communities are understudied in both the Arctic and Antarctic. This study 

began by characterising the biodiversity of Arctic bacterial bioaerosols on Svalbard. Bacteria 

were found to be ubiquitous and their communities to be homogeneous. Prior to this study, 

Arctic air bacterial communities had only been investigated by a single molecular study, in 

which samples were collected in the Canadian high Arctic (143); that study found fewer phyla 

than described here on Svalbard (chapter 3), but shared the Cytophagales, Lactobacillus, 

Staphylococcus, Janthinobacterium, Pseudomonas and Polaromonas genera. Following the 

publication of the Svalbard work, one further study of bioaerosols in the Arctic has been 

undertaken in Greenland (269), widening the range at which bioaerosol communities have been 

described in the Arctic. Bacterial communities above Greenland were dominated by the same 

phyla as on Svalbard and in the Canadian high Arctic; these are Proteobacteria, Firmicutes, 

Bacteroidetes, Actinobacteria, Acidobacteria and Cyanobacteria. The results of this work 

point towards the potential existence of an indigenous community of bioaerosols above the 

Arctic, however future studies over a larger spatial and temporal range are required to confirm 

whether this is truly the case. 

Bacterial DNA was found to be ubiquitous in the air surrounding the Antarctic, as in the Arctic. 

Acidovorax, Acinetobacter, Cloacibacterium, Pseudomonas and Sphingomonas were present 

in samples collected on Svalbard, and have also been described in the Antarctic at Halley 

station (153), suggesting the potential for long range atmospheric transport and region specific 

biogeography. Acinetobacter, Cloacibacterium, Pseudomonas, and Spingomonas were present 

in at least one of the samples collected above the oceans surrounding the Antarctic, adding 

weight to unique bi-polar airborne bacterial communities, however Acidovorax were not 

present in any of the samples collected during the ACE cruise (chapter 5). There were 45 phyla 

detected across the 75 samples collected around Antarctica, considerably more than the 12 
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which were detected in the Arctic; Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, 

and Acidobacteria, the dominant phyla present in the Arctic samples were present in overall 

high abundance in the Antarctic samples, however at much more variable relative abundances. 

Additionally, the classes which primarily constitute the Proteobacteria phyla in Arctic air are 

Alpha-, Beta-, and Gamma- Proteobacteria, which was reflected in the class level constitution 

of Antarctic Proteobacteria too.  

A core microbiome was present at class level around the Antarctic, consisting of 

Actinobacteria, Gammaproteobacteria, and Clostridia, classes which are ubiquitous in 

Antarctic environments, however when investigated at sequence level, a core microbiome was 

not present, and no taxa were present in more than 40% of samples, a more extreme level of 

diversity than has previously been described in the Antarctic atmosphere (152, 260). There was 

no significant difference in the alpha or beta diversity of communities above the oceans 

surrounding the Antarctic, independent of whether samples were collected above or below the 

latitude of the polar vortex, if samples were collected at sea or on land, or when comparing 

samples based on environmental variables.  

The results of the investigation show bacterial DNA to be ubiquitous in the atmosphere in both 

the Arctic and Antarctic, however whilst bacterial communities were fairly homogeneous in 

the Arctic, extreme sequence level diversity was observed in the air surrounding the Antarctic. 

Therefore, the hypothesis that bacterial communities residing in the air in the polar regions are 

ubiquitous can be accepted, however the hypothesis that these communities harbour 

homogeneous patterns of biodiversity due to the extreme selectivity and remoteness of the 

environment must be rejected. 

Precipitation samples were highly homogenous, and dominated by Proteobacteria, largely of 

the Betaproteobacteria class, a pattern shared with rainwater collected from temperate regions 
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(229). Rainwater samples were higher biomass than air samples and as such could provide a 

significant input of bacteria into the Antarctic via long range atmospheric dispersal. This 

sampling regime was the first of its kind at this scale, and the first study to sample bioaerosols 

on certain sub-Antarctic islands. As such, further studies investigating the bacterial 

communities within the air surrounding the Antarctic must be carried out to confirm the validity 

of the findings of this study. Additionally, comparing the bioaerosol sample profiles collected 

during the cruise with seawater and soil samples attained by other research groups could 

provide a greater insight into the relationship between the aerial environment and the adjoining 

medium. 

The unprecedented sequence level variability of datasets belonging samples collected whilst 

investigating the biodiversity of the air surrounding the Antarctic, directed the study towards 

potential technical variation, in order to assess the hypothesis that the unprecedented sequence 

level biodiversity of Antarctic air samples was due in part to technical variation as a result of 

their low biomass. Multiple efforts were made to improve library preparation, with sample 

concentration by speed-vac (chapter 2.2.3), the addition of multiple rounds of per sample 

Ampure XP bead clean up (chapter 2.2.10), per sample Picogreen normalisation (chapter 

2.2.9), per sample concentration of DNA, and 20, 30, and 40 cycle PCR preparation steps to 

the standard Schloss wet lab sequencing protocol employed by NU-OMICS (chapter 2.2.8), as 

well as a final pre-sequencing run using a MiSeq Nanorun kit to maximise sample 

normalisation based on expected sample reads. Despite these protocol alterations, continued 

variation in datasets with regard to normalisation and taxonomic profile suggested that the issue 

was with sample DNA, not sequencing protocol. This was assessed by preparing a dilution 

series of B. subtilis, which acted as a representative hardy bacterium with spore forming 

capabilities, making it suitable for atmospheric life, onto membrane filters at concentrations 

similar to and below those found in the atmosphere. This simple model sample was then used 
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to assess the efficiency of DNA extraction using the most common method in the literature, 

and then to assess the lower true sample detection limit of the Illumina MiSeq protocol 

previously optimised for low biomass samples. It was found that despite its wide use in 

bioaerosol studies (25, 196, 251-256, 270), the Qiagen Powersoil kit was sub-optimal at 

extracting DNA from membrane filters, extracting between 3-16% of measurable DNA, and 

also the efficiency of the extraction appeared to increase for decreasing sample biomass where 

DNA was measurable. Furthermore, sample negative controls were not consistent as was 

previously thought (94), making the identification of contaminating taxa more difficult for low 

biomass samples. The sequencing of these samples, showed an estimated DNA yield 

representative of 1x106 CFU per mL-1 to be the lower limit at which Illumina MiSeq can 

produce a reliably true signal of a sample when using the library preparation method previously 

described, meaning an initial biomass in the range of 1x107 CFU per mL-1 must be present to 

perform DNA extraction with the Qiagen Powersoil kit and attain a true community profile. 

Following these findings, the biomass of samples collected during the ACE cruise was explored 

by qPCR, and found to be considerably lower than the limit of detection for Illumina MiSeq, 

and as a result the hypothesis that the unprecedented sequence level biodiversity of Antarctic 

air samples was due in part to technical variation as a result of their low biomass must be 

accepted. Therefore, for future low biomass air studies, with an expected CFU per mL-1 below 

1x107, a more efficient, cleaner, method of DNA extraction should be developed and utilised. 

Gene specific investigation of biodiversity using qPCR, or culture dependent studies could be 

utilised to provide a less detailed, but more valid description of bioaerosol biodiversity in low 

biomass environments. 

In order to further understand the causes of variation in low biomass datasets, the impact 

bioinformatics pipeline can have on the analysis of low biomass air samples was investigated 

by comparing two commonly used pipelines (QIIME 2 and Mothur), as well as different OTU 
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picking strategies and different taxonomic databases. This study showed that choice of pipeline 

can influence the number of retained samples and taxonomic profile of a low biomass dataset, 

however choice of pipeline did not have a significant impact on sample alpha diversity. Closed 

reference OTU picking increased the difference in beta diversity, greatly reducing the number 

of closely clustered samples when compared to de novo OTU picking or ASV assignment, 

showing OTU picking strategy can considerably impact beta diversity when investigating 

understudied environments. By comparing the results generated when using the latest 2016 

RDP database to an older version of the same database curated in 2013, this study also 

emphasised that how recently a taxonomic database has been updated, does not greatly 

influence the results of a study, despite this being one of the main reasons cited in online 

bioinformatics discussions for choosing one database over another.  

The impact of sample biomass and bioinformatics approach on aerobiological datasets 

presented above suggests some caution must be taken with regards to the validity of the patterns 

observed in the Antarctic dataset, as it is likely that due to the observed biomass within 

Antarctic air samples, a significant and unidentifiable proportion of the data could potentially 

be a contaminant, despite considerable efforts taken both when in the lab processing and whilst 

undertaking analysis of the samples to reduce the impact. Despite this, whilst this dataset 

remains novel and until disproven by further experimental fieldwork in the Antarctic region, it 

remains the best to date insight into bacterial communities residing in the lower atmosphere 

above the Southern Ocean and above terrestrial sub-Antarctic island sites. 

Data generated from low biomass air samples using modern molecular techniques can be 

subject to considerable technical variation, both in the lab and during analysis. Therefore, 

based upon the findings of this research, it is suggested that when undertaking a low biomass 

study of air samples, researchers consider undertaking the following steps: 
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i) Only use the Qiagen Powersoil kit for DNA extraction when sample biomass is 

expected to be above 1x107 CFU per mL-1 and provide some sample quantification 

data for verification 

ii) Only us Illumina MiSeq on sample which have an expected estimated DNA yield 

representative of 1x106 CFU per mL-1 

iii) Run a dilution series of a mock community at a concentration range similar to that 

expected in samples, from DNA extraction through to sequencing, alongside 

samples, in order to assess the validity of NGS results 

iv) Extract as many kit negative controls as possible alongside samples, and carry these 

through sequencing in order to identify as high a number of contaminating DNA 

sequences as possible 

v) Use negative controls to remove as many contaminating sequences as possible, 

using the most appropriate decontamination method for the dataset, and then assess 

the validity of the dataset following decontamination 

vi) Carefully consider the most appropriate bioinformatics strategy for the dataset, with 

regards to how well described an environment is, what studies are most useful to 

compare with, and what aspect of biodiversity is of interest 
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Appendices  

Appendix I - Svalbard air sample collected in July 2017 over a 3-day period 

An air sample was collected on Svalbard as described in chapter 3. DNA extraction and 

Illumina MiSeq sequencing was carried out as described in chapter 4. Following 

decontamination, and the removal of none-bacterial taxa, the sample had 5763 reads. The 

Shannon index for the sample was 3.09, whilst the Simpson index was 0.85. The amplified 

sample was sampled in sufficient depth as shown by the rarefaction curve reaching asymptote. 

There were 9 phyla present, similar to the number of phyla present in the 3-day sample 

collected in 2015, where there were 10. The top 10 taxa were notably different to those from 

seen in the 3-day 2015 sample. qPCR revealed the sample DNA extract contained an estimated 

101667 CFU per mL-1 of bacteria, whilst the relevant kit negative contained 231 CFU per mL-

1. 
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Rarefaction curve for 3-day July 2017 sample collect on Svalbard 
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Graph of the relative abundance of all phyla for 3-day July 2017 sample collect on Svalbard 
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Graph of the relative abundance of the top 10 most abundant taxa for 3-day July 2017 sample collect on Svalbar
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Appendix III – Qiagen Powersoil vs Qiagen Powersoil Powerlyzer comparison qPCR data 

	

Standard curve for qPCR assay comparing the two kits. 

	

Melt curves for the qPCR assay comparing the two kits. 
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 16S rRNA 
copies per mL 

Approximate CFU 
per mL-1 

Powersoil kit 
negative 

43591 10379 

Powersoil 
sample 

69764 16611 

Powerlyzer kit 
negative 

33001 7857 

Powersoil 
sample 

70273 16732 

Average biomass of extracts using Powersoil vs Powerlyzer for a 3H air sample collected at 

Northumbria University. 
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Appendix IV - Coriolis U data for Antarctic air samples 

27 of 34 Coriolis U samples were retained following denoising, contaminant screening, 

removal of non-target taxa and removal of low read samples. The 27 samples contained a 

sum of 426678 reads, with 15803 on average. The smallest sample had 1245 reads whilst the 

largest sample contained 83967. The median observed OTUs for all samples was 31, whilst 

the median Shannon index was 1.97. No core community was present at sequence level, with 

no taxa present in more than 50% of all samples. The mean estimated cells per Coriolis 

sample was 3.3E+04 CFU per mL-1 based on qPCR data for 11 Coriolis samples. 

 

Rarefaction curves for Coriolis data 
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Observed OTUs for Coriolis data 
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Shannon index for Coriolis data 
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Relative abundance of the top 10 most abundant phyla in Coriolis samples. *Sample_N_Coriolis does not equate to Sample_N for membrane 

filtration samples. 
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Relative abundance of the top 10 most abundant classes in Coriolis samples. *Sample_N_Coriolis does not equate to Sample_N for membrane 

filtration sample 
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