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Abstract A learning-based nonlinear model predic-

tive control (LBNMPC) method is proposed in this

paper for general nonlinear systems under system

uncertainties and subject to state and input constraints.

The proposed LBNMPC strategy decouples the

robustness and performance requirements by employ-

ing an additional learned model and introducing it into

the MPC framework along with the nominal model.

The nominal model helps to ensure the closed-loop

system’s safety and stability, and the learned model

aims to improve the tracking behaviors. As a core of

the learned model construction, an online parameter

estimator is designed to deal with system uncertain-

ties. This estimation process effectively evaluates both

the current and historical effects of uncertainties,

leading to superior estimating performance compared

with conventional methods. By constructing an invari-

ant terminal constraint set, we prove that the

LBNMPC is recursively feasible and robustly asymp-

totically stable. Numerical verifications for a two-link

manipulator are conducted to validate the effective-

ness and robustness of the proposed control scheme.

Keywords Nonlinear model predictive control �
Learning-based control � Adaptive control � Parameter

estimation

1 Introduction

Model predictive control (MPC) technique has

received extensive attention over the recent decades

[1–3], given its optimizing ability with respect to user-

defined cost functions and its constraint handling

ability regarding state and input constraints. Balancing

the robustness and performance requirements is a

challenging task in the design of advanced MPC

schemes [4]. Though robust MPC methods [5], such as

the min–max MPC [6] and tube-based MPC [7], can

ensure robustness and constraint handling require-

ments, these methods usually over-prioritize robust-

ness properties, causing performance degradation and

conservativeness. Several control strategies for uncer-

tain systems have been investigated recently [8–11].

Considering the efficiency and capability against

uncertainties [12–14], adaptive MPC methods were

proposed to reduce system conservativeness and

improve the closed-loop performance in [15–17].

Moreover, a learning-based MPC (LBMPC) was

proposed in [18] for linear systems. LBMPC combines

the advantages of both the adaptive control and robust

MPC, making it possible to improve performance

under system uncertainties while guaranteeing robust-

ness and safety requirements. The main principle of

LBMPC is to minimize a cost function by using two

parallel models: i) the learned model, which is

modified online for performance enhancement pur-

poses; ii) the nominal model, which is employed to
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ensure safety and stability [19]. This strategy, to some

extent, decouples and balances the robustness and the

performance of the closed-loop system. Given these

merits, LBMPC has been employed in various prac-

tical applications [20–22].

However, existing LBMPC schemes [18–22] are

only designed for linear nominal models. Moreover,

only conventional certainty-equivalence (CE)-based

adaptive control [23] or statistic-based estimation

methods [24] were employed in the existing LBMPC

frameworks. It is well understood that adaptive

controllers synthesized through the CE principle

cannot guarantee the convergence of parameter esti-

mation errors to zero unless reference signals addi-

tionally satisfy the strong persistent-excitation (PE)

conditions [25]. Therefore, the CE-based adaptive law

may lead to poor transient performance and fail to

estimate the true values of unknown parameters.

Recently, the concurrent-learning adaptive control

(CLAC) method was proposed to address the draw-

backs of CE-based adaptive controllers [26]. State in a

nutshell, this design innovatively uses specially

selected and online recorded data concurrently with

instantaneously incoming measurements for adapta-

tion. Thus, the CLAC strategy can effectively estimate

the unknown parameters based on both the current and

historical effects, resulting in superior estimation

performance under relaxed excitation conditions.

However, how to embed the CLAC technique into

the MPC framework (especially for discrete models) is

still an open problem.

Motivated by these facts, a learning-based nonlin-

ear MPC (LBNMPC) scheme with a concurrent-

learning estimator is proposed in this paper for

uncertain nonlinear systems, subject to input and state

constraints. To meet the robustness and performance

requirements of the closed-loop system simultane-

ously, an additional learned model enriched by the

learning-based uncertainty estimator is introduced

into the MPC framework. The main contributions

are in order:

(1) In contrast to existing LBMPC schemes [18, 22]

that only consider linear nominal models, this

work deals with nonlinear nominal models, and

the stability and robustness of the closed-loop

system can still be strictly guaranteed by

utilizing robust MPC theory. The terminal

penalty and inequality constraints force the

system states in a terminal region, and the

recursive feasibility of the system guarantees

the asymptotic stability of the closed-loop

system.

(2) A novel concurrent-learning estimator is

designed in a discrete-time form and introduced

into the LBNMPC. By employing both instan-

taneous and historical state data (the historical

state data are recorded online), this estimator

ensures superior estimation performance com-

pared with conventional methods. It guarantees

the exponential convergence of parameter esti-

mation errors, subject to the satisfaction of a

relaxed excitation condition.

The remainder of this paper is organized as follows.

Section 2 establishes the main framework of our

LBNMPC algorithm. Section 3 analyzes the recursive

feasibility and stability of the LBNMPC. Section 4

presents the adaptive estimation procedure with sta-

bility analysis. In Sect. 5, numerical simulations are

illustrated to show the advantages of LBNMPC.

Finally, the paper ends with some conclusions in

Sect. 6.

Notations. R� a signifies a set of numbers that their

real parts are greater than a. The operation jjxjj2Q means

jjxjj2Q ¼ xTQx, where Q is a positive-definite matrix.

The operator X�Y ¼ fxþ yjx 2 X; y 2 Yg
denotes the Minkowski sum, where x and y are

elements in the sets X and Y, respectively. The

operator X�Y means

X�Y ¼ fz 2 Rn : z�Y � Xg[27]. We also denote

intðFÞ as the interior of the set F . Also, kminð�Þ and

kmaxð�Þ denote the minimum and maximum eigenval-

ues of corresponding matrices.

1.1 Definitions

A function - : R� 0 ! R� 0 is type-K if it is contin-

uous, strictly increasing, and -ð0Þ ¼ 0. Moreover, the

function - belongs to class K1 if -ðsÞ ! 1 for s !
1 [27]. Furthermore, a function b : R� 0 � R� 0 !
R� 0 is a KL function if b ; tð Þ is type-K for t� 0, b s;ð Þ
is nonincreasing for s� 0, and b s; tð Þ ! 0 as t ! 1.

Finally, a set is a C-set if it is compact and convex, and

it is a PC-set once it contains the origin.

123

J. Xie et al.



1.2 LBNMPC strategy

As the main contribution of this work, a LBNMPC

framework is developed in this section for general

nonlinear systems under system uncertainties. The

LBNMPC scheme aims to minimize the quadratic

objective function consisting of a stage cost and a

terminal cost, subject to nonlinear dynamics, state

constraints, input constraints, and a terminal inequal-

ity constraint.

1.3 Problem statement

A LBMPC method was proposed in Ref. [18] to

improve the system performance while ensuring

robustness. It considers a linear nominal model and a

learned model with uncertainties. The linear nominal

model is used to guarantee the stability of the system.

An identification tool is employed for the learned

model to improve performance. The LBMPC was

implemented in heating, ventilation, and air-condi-

tioning systems in Ref. [20] and the real-time control

of quadrotor helicopters in Refs. [19, 21], and [22].

However, all these elegant results are built on linear

nominal models. Considering that many practical

systems have strong nonlinear properties, this paper

aims to address the optimal control problem for

nonlinear systems subject to multiple constraints and

system uncertainties. The main challenge comes from

how to make a balance between adaptability and

robustness while strictly guaranteeing the closed-loop

stability. Motivated by these facts, a LBNMPC

scheme with a high-performance learning estimator

is proposed in this paper to solve optimal control

problems for uncertain nonlinear systems under con-

straints. Firstly, the optimal control problem is

formulated as follows.

Consider a discrete-time nonlinear system as

follows

xþ ¼ f ðx; uÞ þ wðx; uÞ ð1Þ

where x 2 Rn is the state vector, u 2 Rm is the control

input vector, and xþ 2 Rn denotes the successor state

of x. Besides, f ð�Þ denotes the nominal model of the

system which is assumed to be twice continuously

differentiable, and wð�Þ is the uncertainty dynamics of

the system.

Without loss of generality, we assume the system’s

equilibrium ðxe; ueÞ is the origin. The system in (1) is

subject to the state and control constraints: x 2 X and

u 2 U. Here X � Rn and U � Rm are PC-sets.

Besides, the uncertainty dynamics is assumed to be

bounded for x 2 X and u 2 U. Thus there exists a C-

set W such that wðx; uÞ 2 W when x 2 X and u 2 U.

The LBNMPC is constructed to handle the stabi-

lization issue of (1). As mentioned in introduction, a

nominal model and a learned model are employed for

controller design. The nominal model of (1) is

described by

�xþ ¼ f ð�x; �uÞ ð2Þ

where x and u are the state and input of the nominal

model. The learned model is defined by

x̂þ ¼ f ðx̂; ûÞ þ ŵðx̂; ûÞ ð3Þ

where x̂ and û are the induced state and control input

based on the learned model, and ŵ denotes the

estimation of w.

In our LBNMPC, an iterative optimization proce-

dure is required to obtain the control sequence via

optimizing a finite-horizon quadratic cost function,

which is defined as follows with an initial state x0 and a

desired state xe

VNðx; k; u; x0; xeÞ,Vf ðxðNÞ; xeÞ þ
XN	1

k¼0

lðxðkÞ

	 xe; uðkÞÞ ð4Þ

where N is the prediction horizon, lðx; uÞ is the stage

cost defined by lðx; uÞ, jjxjj2Q þ jjujj2R with Q and R

are positive-definite weight matrices. Besides, we

denote

uðx; k; x0; xeÞ,fuðx; 0; x0; xeÞ; uðx; 1; x0; xeÞ; . . .; uðx;N
	 1; x0; xeÞg

as the control sequence for the whole prediction

horizon. Moreover, Vf ð�Þ is the terminal cost function

depicted as

Vf ðx; xeÞ ¼ jjx	 xejj2P ð5Þ

where P is the terminal penalty matrix. We also define

a terminal constraint set by

xðNÞ 2 X ð6Þ

123

Learning-based nonlinear model predictive control with accurate uncertainty compensation



It is designed to draw the states at the end of the

finite prediction horizon to a neighborhood of the

origin [28]. The construction process of this terminal

constraint set X is described in detail in the following

subsection.

1.4 Construction of terminal constraint set

In Ref. [29], a novel robust MPC was proposed for a

linear system with additive uncertainties to track

changing targets. This controller has the ability to steer

the uncertain system to a neighborhood of the target.

Reference [30] designed MPC method for constrained

systems with detailed stability and optimality analysis.

Reference [31] introduced a robust MPC approach to

guarantee the feasibility and robustness of linear

systems under bounded disturbances and various

constraints. Reference [32] presented a maximal

output admissible set for linear MPC methods. Ref-

erence [33] proved the asymptotic closed-loop stabil-

ity of the nonlinear MPC. These results provide

fundamental design principles for the construction of

terminal constraints and showcase how to ensure

stability and feasibility of robust MPC controllers

under disturbances and constraints.

Specifically, the terminal constraint set aims to

block the move at the end of the prediction horizon and

restrict the inherent behavior of the finite-horizon

control. It is critical in providing stability, safety,

robustness, and feasibility of MPC [34]. The terminal

penalty matrix P and the terminal constraint set X can

be determined off-line. To this end, we consider the

Jacobian linearization of the nominal dynamics at the

equilibrium ðxe; ueÞ:

xþ ¼ Axþ Bu ð7Þ

where A ¼ ðof=oxÞðxe; ueÞ and B ¼ ðof=ouÞðxe; ueÞ.
Assuming this linearized system is controllable,

then there exists a local linear feedback controller u ¼
Kðx	 xeÞ 2 U such that A
 ¼ Aþ BK is asymptoti-

cally stable, where K is the feedback gain (K is a

positive-definite matrix). Then, the terminal penalty

matrix P and the matrix K can be determined by

solving the following equation [28]

ðA
ÞTPA
 	 P ¼ 	ðQ
 þ sIÞ ð8Þ

where Q
 ¼ Qþ KTRK, and s is a user-defined

positive constant.

To guarantee the stability of the system, the

invariant terminal constraint set X is designed as

XðxÞ ¼ fxjVf ðx; xeÞ� ag ð9Þ

where a is a constant and computed by the method

proposed in Ref. [28].

Remark 1 Note that the local linear feedback con-

troller is only applied to calculate the terminal penalty

matrix P and the terminal constraint set X off-line and

ensure the system asymptotic stability [33]. It is not

directly employed to the actual control system.

Besides, it should be emphasized that the terminal

constraint set X chosen by the linear feedback control

is invariant for the nonlinear system under the MPC

control law.

1.5 LBNMPC Strategy

The LBNMPC strategy proposed in this paper inspires

from the tube MPC, a type of robust MPC, which can

ensure the nonlinear system’s real trajectory lies in a

tube that surrounds the nominal trajectory. The width

of the tube is restricted in a set C, and the constraints

set X are shrunk by the width of the tube. Thereby, the

nominal trajectory lies in X�C and the real trajectory

lies in X. Similarly, for LBNMPC, the nominal and

real trajectories lie in X�C and X, respectively.

Given the nominal model in (2) and learned model

in (3), our LBNMPC is formulated as:

VNðx̂; k; ~u; x0; xeÞ,Vf ðx̂ðNÞ; xeÞ þ
XN	1

k¼0

lðx̂ðkÞ

	 xe; ~uðkÞÞ ð10Þ

x̂ ¼ x; x ¼ x ð11Þ

xþ ¼ f ðx; ~uÞ ð12Þ

x̂þ ¼ f ðx̂; ~uÞ þ ŵðx̂; ~uÞ ð13Þ

x 2 X�C; ~u 2 U�KC ð14Þ

xðNÞ 2 X ð15Þ

where ~u is the control sequence and the first element of

it (i.e., ~u) is applied to both the nominal model and

learned model. The set C is defined asC0 ¼ f0g, Ck ¼
�k	1

j¼0 ðAþ BKÞ jW [18]. Also, xðNÞ 2 X denotes the

terminal constraints and X is an invariant set restricted
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by the local linear feedback controller [35]. In

addition, Eq. (11) indicates that, after the optimal

control input is applied to the system, the observed

state x should be fed to both the nominal state x and the

learned state x̂ to construct the subsequent optimiza-

tion problem.

Remark 2 The terminal invariant set denotes a set

that for all x 2 X, there exists a control u 2 U such that

xþ 2 X [36, 37]. Therefore, all trajectories of the

system always stay in X if they are starting from X.

The solution of the above problem is denoted as

/ðk; x; ~uÞ with the initial state x0 and the control

sequence ~u. The state constraint xðkÞ 2 X�C, control

constraint ~uðkÞ 2 U�KC, and terminal inequality

constraint /ðN; x; ~uÞ 2 X lead to the control set

UNðx; xeÞ as follows

UNðx; xeÞ,f~uj~uðkÞ 2 U�KC; xðkÞ 2 X�C; 8k
2 f0; 1; � � � ;N 	 1g;/ðN; x; ~uÞ
2 Xg

ð16Þ

The optimal control problem PNðx; k; x0; xeÞ is

defined by

PNðx; k; x0; xeÞ : V0
NðxÞ ¼ minfVNðx̂; k; ~u; x0; xeÞj~u

2 UNð�x; xeÞg
ð17Þ

The initial solution of PNðx; k; x0; xeÞ is

~u0ðx; k; x0; xeÞ, ~u0ð0; x; k; x0; xeÞ; ~u0ð1; x; k; x0; xeÞ;
�

� � � ; ~u0ðN 	 1; x; k; x0; xeÞ
�

ð18Þ

And the associated state sequence is

x0ðx; k; x0; xeÞ, x0ð0; x; k; x0; xeÞ; x0ð1; x; k; x0; xeÞ;
�

� � � ; x0ðN 	 1; x; k; x0; xeÞ
�

ð19Þ

Then, the first element ~u0ð0; x; k; x0; xeÞ is applied to

the LBNMPC. At the next sampling instant, this

procedure operates repeatedly for the successor state.

Remark 3 The difference between the LBNMPC and

other MPC methods is that the LBNMPC is formu-

lated based on two models (nonlinear nominal and

learned models) simultaneously, which makes it

possible for dealing with uncertainties while preserv-

ing the properties of robust MPC.

Remark 4 Note that in the LBNMPC, the cost

function is constructed by the states of the learned

model, while the constraints are imposed on the

nominal model. This design ensures robustness when

the learned model does not match the true dynamics.

Remark 5 An important characteristic of LBNMPC

is that the system safety, stability, and robustness are

only related to the state, input, and terminal constraints

based on the nominal model. Therefore, the safety &

robustness requirement (guaranteed by the nominal

model) and the performance enhancement (provided

by the learned model) can be decoupled. As a result,

the LBNMPC can make a trade-off between the

system’s robustness and performance.

2 Stability analysis

In this section, the conditions for guaranteeing the

stability of LBNMPC are presented in detail. It is

noteworthy that the stability and robustness of the

LBNMPC scheme are independent to the system

uncertainties and the learning tools that are involved in

the learned model. Some necessary definitions are

given as follows for the subsequent stability analysis.

Definition 1 [38], Asymptotically Stable: The sys-

tem is said to be asymptotically stable (AS) about xe on

F � Rn, if there exists a type-K function - such that

for xk 2 F , the condition jxk 	 xej �- jxk 	 xej ; kð Þ
holds for k� 0.

Definition 2 [39], Robustly Asymptotically Stable:

The system is said to be robustly asymptotically

stable (RAS) about xe on intðFÞ with respect to

measurement error (additive disturbance) ek, if there

exists a KL function b and for each e[ 0 and compact

set ‘ � intðFÞ, there exists d[ 0 such that for all the

measurement errors ek satisfying i)maxk jjekjj\d; ii)

xk 2 ‘ and jjxk 	 xejj � b jjxk 	 xejj; kð Þ þ e for all

k� 0.

Remark 6 The main difference between AS and RAS

is that the RAS considers the measurement error

(additive disturbance), and it guarantees the asymp-

totic stability of system with respect to the

disturbance.
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Definition 3 [40], Persistent Excitation: A bounded

signal gð�Þ: R ! Rn�m is said to be persistent exciting

(PE) if there exist positive constants a and c such that

for arbitrary t� 0, one has
R tþc
t gðsÞgTðsÞds� aI.

Definition 4 [41], Finite Excitation: A bounded

signal gð�Þ: R ! Rn�m is said to be finite exciting (FE)

if there exist positive constants a and c such that in

time interval ½t; t þ c�, one has
R tþc
t gðsÞgTðsÞds� aI.

Remark 7 The main difference between PE and FE is

that PE requires the signal to be excited over the whole

time, while FE just requires the signal to be excited

over a finite-time interval. PE means the satisfaction of

FE over the whole time. The PE condition is much

stronger than the FE condition from the standpoint of

practical engineering.

2.1 Stability of open-loop system

The trajectory generated by (12) with feasible solu-

tions can satisfy the terminal inequality constraint in

(15) and ensure the boundedness of the objective

function in (10). Therefore, feasibility at each time

step should be analyzed. We assume that the feasible

point is pn; the system state and input predicted by the

nominal model are denoted as

xðx; k; x0; xe; pnÞ 2 X� C,

uðx; k; x0; xe; pnÞ 2 U�KC, respectively. By introduc-

ing the uncertain modeling error (denoted as dn 2 W)

into the nominal model, xþ ¼ f ðx; uÞ þ dn should be

considered for stability analysis. For the next feasible

point pnþ1, we have xðx; k; x0; xe; pnþ1Þ ¼
xðx; k; x0; xe; pnÞ þ dnþ1 and

uðx; k; x0; xe; pnþ1Þ ¼ uðx; k; x0; xe; pnÞ þ Kdnþ1,

dnþ1 2 W. Thus,

xðx; k; x0; xe; pnþ1Þ 2 X�ðC�WÞ �W, which

implies xðx; k; x0; xe; pnþ1Þ 2 X� C. Similarly, we

have uðx; k; x0; xe; pnþ1Þ 2 U�KC. As a result, for

the next feasible point pnþ1, the associated state and

input are still feasible.

Lemma 1 Considering a set of states XN satisfying

(20) that leads to at least one control sequence ~u

meeting the state, control, and terminal constraints.

Then, for the nominal system, the feasibility of the

open-loop optimal control problem at k = 0 implies its

feasibility for all k[ 0.

x 2 XN,fxjUN 6¼ ;g ð20Þ

Proof Under the condition that there exists an optimal

control sequence ~u
ðx; k; x0; xeÞ for the optimal control

problem PNðx; k; x0; xeÞ with the associated state

sequence x
ðx; k; x0; xeÞ 2 XN at ½k; k þ N�, the state

x
ðx; k þ N; x0; xeÞ belongs to the terminal constraint

setX due to the system feasibility. For the next optimal

control problem PNðx; k þ r; x0; xeÞ (r[ 0 is a small

sampling step), the initial state satisfies x0ðx; kþ
r; x0; xeÞ ¼ x
ðx; k þ r; x0; xeÞ. Then, a candidate con-

trol sequence ~uðx; k þ r; x0; xeÞ under the local linear

feedback controller for the problem PNðx; k þ
r; x0; xeÞ at ½k þ r; k þ rþ N� can be chosen as.

~uðx; k þ r; x0; xeÞ

¼
~u
ðx; k; x0; xeÞ for ½k þ r; k þ N�
Kx0ðx; k þ r; x0; xeÞ forðk þ N; k þ rþ N�

�

ð21Þ

Note that the terminal constraints set X is an

invariant set restricted by the local linear feedback

controller. Therefore, the initial state x0ðx; xþ
r; x0; xeÞ ¼ x
ðx; k þ N; x0; xeÞ 2 X indicates that

x0ðx; k þ rþ N; x0; xeÞ 2 X [42–44]. This completes

the proof.

To sum up, for each prediction horizon of the

optimal control problem in (10)–(15) with feasible

solutions, the terminal penalty Vf ðx̂ðNÞ; xeÞ considered

in (10) and the terminal constraints in (15) can force

the states at the end of the prediction horizon lie within

a terminal region.

2.2 Stability of closed-loop system

We choose the cost function VNðx̂; k; x0; xeÞ as the

Lyapunov function to analyze the closed-loop stabil-

ity. Note that the cost function is related to the learned

states at each prediction horizon. After solving the

optimal control problem for each prediction horizon,

the state x0ðx; k þ 1; x0; xeÞ for next prediction horizon

can be acquired by the real system model based on the

solution of ~u
ðx; k; x0; xeÞ. Then, we consider the

following assumptions.

Assumption 1 [45]:

a)f ð�Þ is Lipschitz continuous in X�U, lð�Þ and

Vf ð�Þ are continuous. b)X � X, X is closed and
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compact. c) u ¼ kf ðxÞ 2 U, 8x 2 X. d)f ðx; kf ðxÞÞ 2 X,

8x 2 X.

Assumption 2 [42]: For the stage cost lð�Þ and the

terminal cost Vf ð�Þ, there exist K1 functions al and af
satisfying

lðx; ~uÞ� alðjxjÞ; 8x 2 XN ; ~u 2 U ð22Þ

Vf ðxÞ� af ðjxjÞ; 8x 2 X ð23Þ

where x 2 XN,fxjUN 6¼ ;g since the set UN satisfies

the state constraint, input constraint, and terminal

constraint.

Lemma 2 [45, 46]: If the cost function satisfies the

following condition: There exists a u ¼ kf ðxÞ 2 U

such that Vf ðf ðx; kf ðxÞÞ; xeÞ þ lðx	
xe; kf ðxÞÞ�Vf ðx; xeÞ for all x 2 XðxeÞ. Then, the

closed-loop system is AS.

Based on all these preliminaries, we propose the

following theorem.

Theorem 1 The cost function V0
Nð�Þ satisfies.

V0
Nðxþ; kþ; x0; xeÞ�V0

Nðx; k; x0; xeÞ 	 lðx
	 xe; kNðx; k; x0; xeÞÞ ð24Þ

and the closed-system system is AS.

Proof The solution of PNðx; k; x0; xeÞ is.

~u0ðx; k; x0; xeÞ, ~u0ð0; x; k; x0; xeÞ; ~u0ð1; x; k; x0; xeÞ;
�

� � � ; ~u0ðN 	 1; x; k; x0; xeÞ
�

ð25Þ

The associated state sequence is

x0ðx; k; x0; xeÞ, x0ð0; x; k; x0; xeÞ; x0ð1; x; k; x0; xeÞ;
�

� � � ; x0ðN; x; k; x0; xeÞ
�

ð26Þ

and the first element ~u0ð0; x; k; x0; xeÞ is applied to

the LBNMPC, and we denote xþ ¼ x0ð1; x; k; x0; xeÞ.
Let ~u denote the following control sequence

~uðx; k; x0; xeÞ, ~u0ð1; x; k; x0; xeÞ; ~u0ð2; x; k; x0; xeÞ;
�

� � � ; kf ðx0ðN; x; k; x0; xeÞÞ
�

ð27Þ

which is feasible for PNðx; k; x0; xeÞ but not neces-

sarily optimal. Then, it follows that

V0
Nðxþ; kþ; ~u; x0; xeÞ ¼ V0

Nðx; k; x0; xeÞ
	 lðx	 xe; kNðx; k; x0; xeÞÞ
	 Vf ðx0ðN; x; k; x0; xeÞÞ
þ l f x0ðN; x; k; x0; xeÞ;

��

kf ðx0ðN; x; k; x0; xeÞÞ
��

þ Vf f x0ðN; x; k; x0; xeÞ;
��

kf ðx0ðN; x; k; x0; xeÞÞ
��

ð28Þ

Considering that V0
Nðxþ; kþ; x0; xeÞ ¼ V0

Nðxþ; kþ;
u; x0; xeÞ�V0

Nðx; k; ~u; x0; xeÞ, it can be obtained from

(28) that

V0
Nðxþ; kþ; x0; xeÞ�V0

Nðx; k; x0; xeÞ 	 lðx
	 xe; kNðx; k; x0; xeÞÞ ð29Þ

Therefore, the cost function is nonincreasing, and

the closed-loop system is AS.

[18, 42, 45]. If there exists an additive disturbance

w 2 W, then the asymptotic stability condition for the

closed-loop system is modified as: There exists a u ¼
kf ðxÞ 2 U such that

Vf ðf ðx; kf ðxÞÞ;w; xeÞ þ lðx	 xe; kf ðxÞÞ
�Vf ðx;w; xeÞ þ d; 8w 2 W

ð30Þ

for all x 2 XðxeÞ, where d 2 ð0;1Þ. Then, the

LBNMPC is RAS with

V0
Nðxþ; kþ;w; x0; xeÞ�V0

Nðx; k;w; x0; xeÞ
	 lðx	 xe; kNðx; k; x0; xeÞÞ þ d; 8w 2 W

ð231Þ

Therefore, the LBNMPC is RAS when i) Assump-

tion 1 and Assumption 2 are satisfied; ii) the system

uncertainty is bounded; iii) the terminal cost and the

terminal invariant set force the state within the

neighborhood of origin at the end of each prediction

horizon; iv) the closed-loop system is feasible.

3 Concurrent-learning estimator

From Section III, the robustly asymptotic stability has

been guaranteed with the nonlinear nominal model.

However, the performance of LBNMPC requires the

accurate estimation of the unmodeled dynamics. Some
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examples to this end are given in [20, 47, 48]. In this

section, a novel concurrent-learning-based estimation

strategy is proposed and its convergence property is

proved.

3.1 Estimator development

We aim to develop an estimator to compensate the

uncertain dynamics: wðx; uÞ. In many applications,

wðx; uÞ satisfies an affine representation, i.e., there

exists a regressor matrix zðx; uÞ 2 Rn�p and an

unknown constant vector / 2 Rp, such that

wðx; uÞ ¼ zðx; uÞ/. And here p is the total number of

unknown parameters. In fact, when wðx; uÞ cannot

satisfy the affine representation, a single-layer neural

network can be employed to reconstruct wðx; uÞ.
Specifically, based on the Weierstrass approximation

theorem [49], wðx; uÞ can be reconstructed by a very

similar form with the affine representation:

wðx; uÞ ¼ zðx; uÞ/þ e ð32Þ

But now zðx; uÞ 2 Rn�p is a set of basis functions,

/ 2 Rp is a governed vector which contains the

weights of corresponding basis functions, and e is the

reconstruction error. It has been well-understood that,

by properly choosing a large enough set of basis

functions, the reconstruction error e is bounded in X�
U and can be arbitrarily small and negligible. Based

on these facts, we assume the uncertain dynamics in

our paper satisfies wðx; uÞ ¼ zðx; uÞ/, and no matter

zðx; uÞ is a regressor matrix or a set of user-defined

basis functions. And the objective of the estimator is to

evaluate the true value of /.

Based on wðx; uÞ ¼ zðx; uÞ/, Eq. (1) can be rewrit-

ten as follows

xþ ¼ f ðx; uÞ þ zðx; uÞ/ ð33Þ

Then, we design the following filtered variables:

xþf ¼ 	lf xf þ x ð34Þ

zþf ¼ 	lf zf þ z ð35Þ

fþf ¼ 	lf ff þ f ð36Þ

where lf is the estimator coefficient satisfying

0\lf\1. Thus xþf , zþf and fþf are bounded variables

when xf, zf, and ff are bounded. Substituting (34)–(36)

into (1) yields

ðxþf Þ
þ 	 fþf 	 zþf / ¼ 	lf xþf 	 ff 	 zf/

� �
ð37Þ

We denote y ¼ xþf 	 ff 	 zf/, and then (37)

indicates

yþ ¼ 	lf y ð38Þ

Since y is an exponentially vanishing term which

converges to zero quickly, we have xþf 	 ff 	 zf/  0.

Then, the estimation of / (denoted by /̂) can be

divided into two terms

/̂ ¼ /̂1 þ /̂2 ð39Þ

And the successors of /̂1 and /̂2 are designed as

/̂þ
1 	 /̂1 ¼ 	 kI

kZ
ðzTf zf /̂1 	 zTf bÞ ð40Þ

/̂þ
2 	 /̂2 ¼ 	 kI

kZ

Xq

i¼1

zTf ðtiÞzf ðtiÞ
 !

/̂2

þ kI
kZ

Xq

i¼1

zTf ðtiÞbðtiÞ ð41Þ

where kI is a user-defined positive constant,

b ¼ xþf 	 ff , kZ ¼ 1 þ kmaxðuÞ, and u ¼ 1=kZðzTf zf þPq
i¼1 z

T
f ðtiÞzf ðtiÞÞ is employed for ease of notation.

Besides, ti denotes a set of past time indexes with

0� ti\t, i ¼ 1; 2; :::; q, and here q is a constant which

denotes the total number of historical data points.

Based on (40) and (41), the estimator /̂ follows:

/̂þ 	 /̂ ¼ 	 kI
kZ

zTf zf /̂	 kI
kZ

Xq

i¼1

zTf ðtiÞzf ðtiÞ
 !

/̂

þ kI
kZ

zTf bþ kI
kZ

Xq

i¼1

zTf ðtiÞbðtiÞ

ð42Þ

Equation (42) shows that not only real-time data

but past measurements are concurrently introduced

into the estimator, and the motivation of this design

will be explained in the convergence analysis.

3.2 Convergence analysis

Theorem 2 Consider the nonlinear system with

uncertain dynamics as in (1), design the learning-

based estimator as in (42). Then the estimation error
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~/ ¼ /̂	 / is bounded. Moreover, if kminðuÞ[ 0, ~/
exponentially converges to zero.

Proof Based on the fact that b ¼ xþf 	 ff ¼ zf/, we

have.

/̂þ
1 	 /̂1 ¼	 kIðzTf zf /̂1 	 zTf bÞ ¼ 	kIz

T
f ðzf /̂1 	 zf/Þ

¼ 	kIz
T
f zf

~/

ð43Þ

/̂þ
2 	 /̂2 ¼ 	 kI

kZ

Xq

i¼1

zTf ðtiÞzf ðtiÞ
 !

/̂2

þ kI
kZ

Xq

i¼1

zTf ðtiÞbðtiÞ

¼ 	 kI
kZ

Xq

i¼1

zTf ðtiÞzf ðtiÞ
 !

~/2 ð44Þ

Therefore, one has

/̂þ 	 /̂ ¼ 	kIu ~/ ð45Þ

Then, consider the following storage function:

V ¼ ð1=kIÞ ~/T ~/ ð46Þ

The successor value of V is Vþ ¼ ð ~/þÞT ~/þ=kI .
Accordingly,

Vþ 	 V ¼ ð/̂þ 	 /ÞTð/̂þ 	 /Þ 	 ð/̂	 /ÞTð/̂	 /Þ
¼ ð/̂þ 	 /ÞTð/̂	 /Þ 	 ð/̂	 /ÞTð/̂	 /Þ
þ ð/̂þ 	 /ÞTð/̂þ 	 /̂Þ

¼ ð/̂þ 	 /̂ÞT ~/þ ð/̂þ 	 /̂ÞTð/̂þ 	 /̂Þ þ ~/Tð/̂þ 	 /̂Þ
¼ ~/Tðu2 	 2uÞ ~/

ð47Þ

Since u is positive-definite and kmaxðuÞ\1, we

have u2 	 2u� 0. On this basis, Eq. (47) indicates

Vþ 	 V � 0. So the estimation error ~/ is bounded.

Furthermore, if kminðuÞ[ 0, then it is obvious that

Vþ 	 V � 	 a ~/T ~/, where a is a positive constant.

Thus, ~/ could exponentially converge to zero. The

proof is complete.

Remark 8 Unlike the conventional CLAC that relies

on the accurate approximation of immeasurable vari-

ables (i.e., the variable xþ in this paper), the proposed

estimator adopts filtered states and regressor matrices

in (34)–(36) and therefore circumvents the variable

approximation requirements.

In summary, the detailed design procedure of the

LBNMPC is described in this subsection. The detailed

implementation procedure of the LBNMPC scheme is

presented in Table 1, and the optimal control problem

can be solved by the solver MOSEK [50]. For a better

understanding of the proposed controller, the archi-

tecture of the LBNMPC is illustrated in Fig. 1 as well.

Remark 9 In Theorem 2, we show that the estimation

error ~/ can exponentially converge to zero, subject to

the satisfaction that kminðuÞ[ 0. Recall the definition

of FE conditions, this requirement can be guaranteed if

zf satisfies a FE condition. To ensure u is full rank if zf
satisfies a FE condition, a simplest way is to add all

incoming data of zf into u until rankðuÞ ¼ p (there-

fore, kminðuÞ[ 0). A more sophisticated method is to

design a selection algorithm, and some examples are

shown in [26, 33]. Moreover, without the past

measurements
Pq

i¼1 z
T
f ðtiÞzf ðtiÞ and

Pq
i¼1 z

T
f ðtiÞbðtiÞ,

one can only ensure lim
t!1

zf ~/ ¼ 0 from (47). Under this

condition, zf is required to satisfy the PE condition as

in Definition 3 to ensure the convergence of ~/. Note

that this is a common requirement in conventional

estimator/identifier designs. However, PE conditions

are quite strong from the standpoint of practical

engineering. In this paper, we relax the PE condition to

the FE condition by employing past measurements.

4 Applications to the control of a two-link

manipulator

In this section, the effectiveness of the proposed

LBNMPC scheme is validated via numerical simula-

tions. A typical two-link robot manipulator model [51]

is considered as follows

_x1 ¼ x2

Mðx1; x2Þ _x2 þ Vðx1; x2Þ þ Fðx1; x2Þð Þx2 þ Cðx1; x2Þ ¼ u

(

ð48Þ

where x1 ¼ ½ q1 q2 �T and x2 ¼ ½ q3 q4 �T denote the

position and velocity vectors, respectively.

Besides,u ¼ ½ u1 u2 �T is the control torque vector,

and
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M ¼ p1 þ 2p3 cosðq2Þ p2 þ p3 cosðq2Þ
p2 þ p3 cosðq2Þ p2

	 

F ¼ p4 0

0 p5

	 

C ¼ p6 tanhðq3Þ

p7 tanhðq4Þ

	 

V

¼ 	p3 sinðq2Þq4 	p3 sinðq2Þðq3 þ q4Þ
p3 sinðq2Þq3 0

	 


Table 1 Architecture of LBNMPC

Fig. 1 The architecture of

the LBNMPC with

uncertainty learning
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where the parameters p1; p2; p3; p4; p5; p6; p7 are set to

3.473, 0.196, 0.242, 5.3, 1.1, 8.45, and 2.35, respec-

tively. The continuous-time system in (48) is dis-

cretized using Euler approximation as

x1ðk þ 1Þ ¼ Tsx2ðkÞ þ x1ðkÞ
x2ðk þ 1Þ ¼ Tsf ðkÞ þ TsgðkÞuðkÞ þ x2ðkÞ

�
ð49Þ

where Ts is the sampling period,

f ðkÞ ¼ 	M	1½ðV þ FÞx2ðkÞ þ C�, gðkÞ ¼ 	M	1.

In this simulation case, we assume that the param-

eters p5 and p7 are unknown for controller design and

thus they need to be estimated by the proposed

learning procedure. The initial guesses of them are

p̂5ð0Þ ¼ 0:6 and p̂7ð0Þ ¼ 1:8. The parameter kf in the

filtered regressor is selected as kf ¼ 0:2. The predic-

tion horizon is set toN = 7, and the weighting matrices

Q and R are chosen as Q ¼ 3000 � I4�4 and R ¼ I2�2.

The constant a is computed as a ¼ 1:34. Through the

Jacobian linearization of the nominal system at the

origin, the matrices A and B are calculated by (7) as

A ¼

0 0 1 0

0 0 0 1

0 0 	4:62 2:59

0 0 10:32 	23:39

2

664

3

775 B =

0 0

0 0

0:34 	0:75

	0:75 6:78

2

664

3

775

The terminal penalty matrix P and the local linear

feedback gain K are calculated by (8) as

(a) Tracking errors by LBNMPC without 
uncertainty learning

(b) Tracking errors by LBNMPC with 
uncertainty learning

Fig. 3 Tracking errors by LBNMPC with/without uncertainty learning

(a) Tracking trajectories by LBNMPC without 
uncertainty learning

(b) Tracking trajectories by LBNMPC with 
uncertainty learning

Fig. 2 Tracking performance by LBNMPC with/without uncertainty learning
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P ¼

307:70 0:73 6:86 0:76

0:73 300:39 0:72 0:34

6:86 0:72 6:49 0:72

0:76 0:34 0:72 0:33

2

664

3

775K

¼ 173:20 	1:02 163:89 	0:60

1:02 173:20 1:46 169:98

	 


The set U is selected as U ¼ ½	5; 5�. The set W is

chosen via the algorithm in [52] that exploits W based

on the Taylor reminder theorem with a ‘‘safety-

margin’’ [18]. Then, the set C can be calculated by its

definition (C0 ¼ f0g, Ck ¼ �k	1
j¼0 ðAþ BKÞ jW[18]).

Therefore, the constraint in (14) can be determined,

which ensures the closed-loop system’s safety. This

reflects the main characteristic of LBNMPC that

decouples the system’s safety and the performance

enhancement. The desired trajectory is

xd ¼ ½0:5 sinð0:5kÞ; 0:5 cosð0:5kÞ; 0:25 cosð0:5kÞ;-
, and the initial state is x0 ¼ ½0:5; 0:2; 0:05; 0:1�T .

Under these conditions, the simulation results under

LBNMPC without the estimation procedure are pre-

sented in Fig. 2a, while the results with the uncertainty

learning method are shown in Fig. 2b. The thin solid

lines in Fig. 2 represent the reference trajectories. It

can be observed that the system states can successfully

track the desired trajectories in both cases. Moreover,

it can be seen from Fig. 3 that the LBNMPC leads to

(a) Estimation results (b) Estimation errors

Fig. 4 Uncertainty estimation results

Fig. 6 The cost function variations

Fig. 5 Results for the control torque performance
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(a) Tracking performance under case 1 (b) Tracking errors under case 1

(c) Tracking performance under case 2 (d) Tracking errors under case 2

Fig. 7 Tracking performance by LBNMPC under disturbances

Fig. 8 Tracking performance under xd ¼ ½ 0 0 0 0 �T
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superior performance than that of the one without

parameter estimation.

The uncertainty learning performance for the

unknown parameters p5, p7 is presented in Fig. 4a.

The solid lines in Fig. 4a depict the real values of p5,

p7, and the dashed lines denote the estimated values

p̂5, p̂7. It can be seen from Fig. 4a that the estimated

parameters can converge to their real values. The

estimation errors (~p5 and ~p7) in Fig. 4b show that the

proposed uncertainty learning scheme can ensure the

estimation errors converge to zero.

The optimal control sequence is presented in Fig. 5.

The control sequence in Fig. 5 satisfies the input

constraints formulated in (14). The cost function

variations are presented in Fig. 6. The cost function

decreases gradually and finally converges to zero,

reflecting the asymptotic stability of the LBNMPC

approach.

In addition to the unknown parameters, the robust-

ness of the LBNMPC is verified under external

disturbances on velocity measurements. Two differ-

ence cases are considered here: i) Case 1: the velocity

measurements are polluted by a zero-mean Gaussian

noise with a standard deviation as 1.0 9 10–3; ii).

Case 2: the velocity measurements are polluted by a

zero-mean Gaussian noise with a standard deviation as

3.0 9 10–3. The simulation results are shown in

Fig. 7. Figures 7a and 7c show the tracking

Fig. 9 Comparative tracking trajectories under various MPC controllers

Fig. 10 The values of cost function under different MPC

controllers
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trajectories under case 1 and case 2, respectively. The

thin solid lines are the desired trajectories. Figures 7b

and 7d show the corresponding tracking errors. It can

be seen that the position states can precisely track the

reference trajectories with good performance even

under polluted velocity measurements. All these

results show that the proposed LBNMPC approach

can maintain good performance under disturbances.

To evaluate the properties of the proposed

LBNMPC in detail, we also consider a stabilization

case by setting xd ¼ ½ 0 0 0 0 �T . The results are

given in Fig. 8. One can see that all the states can

converge to the origin under the proposed controller.

Figure 8b illustrates the tracking errors and the

terminal region X. It shows that the closed-loop

system satisfies the constraints in (15), validating the

stability and convergence properties of our LBNMPC.

Moreover, two different MPC approaches are also

employed for comparison: i) the adaptive model

predictive control (AMPC) with the proposed estima-

tion procedure, and ii) the nonlinear model predictive

control (NMPC) without uncertainty compensation.

The comparative results of tracking trajectories and

cost functions are presented in Figs. 9 and 10,

respectively. It can be observed that both the

LBNMPC and AMPC have good performance in

tracking the desired trajectories, while the NMPC

leads to larger tracking errors. Moreover, it can be seen

from Fig. 10 that the proposed LBNMPC controller

leads to a less cost than the AMPC and NMPC.

To sum up, the proposed LBNMPC is capable of

achieving good performance, subject to uncertainties,

disturbances, and various constraints.

5 Conclusion

A LBNMPC method was proposed in this paper to

solve the optimal control problems of nonlinear

systems subject to multiple constraints and system

uncertainties. The control strategy was based on two

models, i.e., the nonlinear nominal model and the

learned model. The nominal model guarantees the

stability and robustness of the LBNMPC, while the

learned model improves the control performance via a

novel concurrent-learning estimator. The key feature

of our estimator is that it includes not only real-time

data but also past measurements into the estimating

framework, achieving precise estimation under a

relaxed excitation condition. We showed that our

LBNMPC could decouple the robustness and perfor-

mance and ensure the feasibility, stability, and

convergence of the closed-loop system. Extensive

simulations and comparative analyses illustrated that

LBNMPC could lead to superior tracking performance

and robustness compared with other methods.
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