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Abstract

Computational pathology is the study of algorithms and approaches that

facilitate the process of diagnosis and prognosis of primarily from digital

pathology. The automated methods presented in computational pathology

decrease the inter and intra-observability in diagnosis and make the workflow of

pathologists more efficient. Digital slide scanners have enabled the digitization

of tissue slides and generating whole slide images (WSIs), allowing them to

be viewed on a computer screen rather than through a microscope. Digital

pathology images present an opportunity for development of new algorithms

to automatically analyse the tissue characteristics.

In this thesis, we first focus on the development of automated approaches

for detection and segmentation of nuclei. In this regard, for nuclear detection,

each nucleus is considered as a Gaussian shape where the mean of Gaussian

determines the centroids of nuclei. We investigate the application of mixture

density networks for detection of nuclei in the histology images.

We also propose a convolutional neural network (CNN) for instance seg-

mentation of nuclei. The CNN uses the nuclei spatial information as the target

to separate the clustered nuclei. Pixels of each nucleus are replaced with the

spatial information of that nucleus. The CNN also utilises dense blocks to

reduce number of parameters and positional information at different layer of

the network to better learn the spatial information embedded in ground truth.

Two chapters of this thesis are dedicated to dealing with lack of annotations

in computational pathology. To this end, we propose a method named as

NuClick to generate high quality segmentations for glands and nuclei. NuClick

is an interactive CNN based method, that requires minimum user interaction

for collecting annotations. We show that one click inside a nucleus can be

xvi



enough to delineate its boundaries. Moreover, for glands that are more complex

and larger objects a squiggle can extract their precise outline.

In another chapter, we propose Self-Path, a method for semi-supervised

learning and domain alignment. The main contribution of this chapter is

proposing self-supervised tasks that are specific to histology domain and can

be extremely helpful when there are not enough annotations for training deep

models. One of these self-supervised tasks is predicting the magnification puzzle

which is the first domain specific self-supervised task shown to be helpful for

domain alignment and semi-supervised learning for classification of histology

images.

Nuclear localization allows further exploration of digital biomarkers and

can serve as a fundamental route to predicting patient outcome. In chapter 6,

by focusing on the challenge of weak labels for whole slide images (WSIs) and

also utilising the nuclear localisation techniques, we explore the morphological

features from patches that are selected by the model and we observe that these

features are associated with patient survival.
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Chapter 1

Introduction

1.1 Cancer

Cancer is a term for a large group of diseases caused when abnormal cells

divide rapidly and uncontrollably and can then spread to other tissue and

organs (cancer metastasis). In human body millions of cells divide and grow to

replace old or dead cells. When cancer develops, cells become more and more

abnormal and they do not die, new cells form and grow without stopping which

may form masses called tumours. Cancer is the second leading cause of death

globally [1]. There were roughly 18 million cancer cases around the world in

2018, of these 9.5 million cases were in men and 8.5 million in women. Lung

and breast cancers are the most common cancers worldwide Lung. prostate,

colorectal, stomach and liver cancer are the most common types of cancer in

men, while breast, colorectal, lung, cervical and thyroid cancer are the most

common among women [2]. If cancer is diagnosed at the earliest stage, there

would be the highest chance for a cure. Cancer severity and progression is

mainly determined by stage and grade. The cancer grade indicates the level

of abnormality of cells and tissue when they are viewed under microscope,

whereas cancer’s stage explains how large the primary tumor is and how far

the cancer has spread in the patient’s body [3].

As is the case with other medical conditions, there are many signs and

symptoms that may indicate the presence of cancer. These may be observed

directly, through imaging technologies, or confirmed by lab tests. A biopsy

(removal of tissue for microscopic evaluation) is preferred to establish or rule

out a diagnosis of cancer. Tissue samples can be easily retrieved from a tumor

near the body’s surface. If the mass is inaccessible, an imaging exam that

enables a tumor to be located precisely and visualized may be ordered before

the biopsy is performed [4].

The histological type is determined by microscopic examination of suspected

tissue that has been excised by biopsy or surgical resection. If the histological
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type is different from what is usually found in the tissue being examined, it can

mean the cancer has spread to that area from some primary site. Metastasis

can occur by direct extension, via the blood stream or the lymphatic system,

or by seeding or implantation of cancer cells [5].

After obtaining the tissue specimen, it is preserved by freezing or paraffin

embedding. The frozen or paraffin embedded tissue blocked are then sliced to

the section of 3-5µm thickness using microtome (a tool to slice tissue blocks to

thin slices). Tissue slices are then mounted on glass slide. These tissue slides

are colorless and their components are not distinguishable under microscope.

Therefore, they are stained with special chemical markers to highlight different

tissue structures. Hematoxylin and Eosin (H&E) are the most common stains

which are used in routine pathology practices. Hematoxylin binds with nucleic

acids (DNA, RNA) and dyes dense nuclei as dark blue or violet, whereas Eosin

dyes cytoplasmic substance as pink, including proteins, nutrients and muscles

(connective) tissues. Immunohistochemistry (IHC) is another staining protocol

that uses specific antibodies to highlight the presence of hormone receptors

such as estrogen (ER), progestrone (PR) and human epidermal growth factor

receptor. After staining, the tissue slides are visually examined by an expert

pathologist under the optical microscope to determine if the specimen contains

any sort of abnormality or malignancy.

1.2 Histological Analysis

Visual examination of morphological features, quantifying the density of tumour

rich areas, analysing spatial arrangement and structure of tumour cells, under

the microscope or via digital images in histological sections of a tissue, is the

basis for disease diagnosis or disease prognosis. After determining cancer grade

or stage, the essential treatment options can be selected. Range of cancers

are studied in this thesis, but two of the most extensively studied types are

Lung cancer and Oral Squamous Cell Carcinoma. In the next two subsections,

we provide general overview of these cancer types and provide some common

histological characteristics.

1.2.1 Oral Squamous Cell Carcinoma (OSCC)

Oral cancer is where a tumour develops in a part of the mouth. It may be

on the surface of the tongue, the inside of the cheeks, the roof of the mouth

(palate), the lips or gums, in the glands that produce saliva, the tonsils at

the back of the mouth, and the part of the throat connecting the mouth to

windpipe (pharynx). Over 350,000 people worldwide will be diagnosed with

oral cancer this year. It will cause over 170,000 deaths, killing roughly one
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person every 3 minutes [2].

This cancer is categorised by the type of cancerous cells where squamous

cell carcinoma (SCC) is the most common type of mouth cancer, accounting for

9 out of 10 cases. SCC is the cancer starting in the squamous cells. Squamous

cells are the flat, skin like cells covering the inside of the mouth, nose, larynx

and throat. It has a significant recurrence rate and frequently metastasizes to

cervical lymph nodes.

1.2.1.1 OSCC metastasis to lymph node

In patients diagnosed with tumors at an advanced stage, there is a high

probability of metastasis to surrounding tissues, particularly cervical lymph

node and distant metastasis. The OSCC has high risk of second malignancy

during the patient’s lifetime. Lymph node metastatic tumors occur in about

40% of patients with oral cancer [6]. The presence of neck lymph node metastasis

(NLNM) is universally accepted as the main factor reducing survival in patients

with squamous cell carcinoma (SCC) of the oral and oropharyngeal mucosa [7].

An example of histolgy image of SCC metastasis to the lymph node is shown

in figure 1.1.

75 m

Normal Region

Tumour Region

Figure 1.1: Image region from cervical lymph node indicating the normal and
oral cancer metastasis region.

1.2.2 Lung Cancer

Lung Cancer is the most common type of cancer worldwide. It remains one of

the leading causes of death in several countries including the UK. It is the 3rd

most common cancer in the UK, accounting for 13% of all new cancer cases

(2017). There are two types of lung cancer: Non-small cell cancer (NSCLC)

and small cell lung cancer (SCLC). NSCLC accounts for nearly 90% of lung
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cancer diagnoses and develops in the slower rate compared to SCLC. There are

three main types of NSCLC: Lung Adenocarcinoma (LUAD), Lung Squamous

cell (LUSC) and Large-cell undifferentiated carcinoma. The main histological

differences between these categories are cell origin and the morphology of

epithelial tumour cell. Adenocarcinoma are found in the peripheral part of

lung and in glands that secret mucus. Presence of glandular structure in the

tissue can indicate the adenocarcinoma (adeno means gland). Squamous cell

cancer is found in the central part of lung. Squamous cell lung cancer accounts

for around 30% of all non-small cell lung cancers and is commonly associated

with smoking. Large-cell undifferentiated carcinoma can be found anywhere in

the lung. This type of cancer grows and spreads very quickly [8].

Adenocarcinoma is histologically categorized into one of the following

histology growth patterns: lepidic, acinar, Papillary, micropapillary, solid and

invasive mucinous. Figure 1.2 shows different patterns in the LUAD. Due the

the heterogeneity of tumour in LUAD, it is not trivial to distinguish between

these patterns, moreover several patterns may appear in a tissue where the

predominant pattern has the clinical relevance. Studies showed that these

patterns are clinically significant and are associated with patient survival

[9]. Differentiating between different types of lung cancer helps for patient

management and planning treatment.

1.3 Digital Pathology

Visual examination of tissue under microscope is a vital element of diagnostic

medicine and it is a mechanism to investigate pathogenesis and the genetic

processes such as cancer. Tissue preparation and processing to view under

microscope has become increasingly automated which increased the speed at

which the pathology labs can generate tissue slides.

Advances in digitization of glass slides in pathology happened much later

than the digital transformation witnessed in radiology [11]. Digital technologies

have enabled the digitization of these slides, allowing them to be viewed on a

computer screen rather than through a microscope. Digital images present an

opportunity for the development of new algorithms to automatically analyse

the tissue characteristics. and allow more precise diagnoses [12].

In pathology, digital images can be used to make initial diagnoses by

automated algorithms, offer second opinions for telepathology, quality assurance

(e.g. re-review and proficiency testing), archiving and sharing, web accessibility,

annotations, automated image analysis education and conferencing, research,

marketing and business purposes, and tracking.
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Figure 1.2: Tumour growth patterns in LUAD [10]. Lepidic growth pattern
shows that tumor cells appeared to replace normal cells on alveolar walls. Acinar
shows malignant glands invading a fibrous stroma, papillary adenocarcinoma
consists of cuboidal tumor cells growing along fibrovascular cores in a papillary
configuration. Micropapillary growth pattern shows small papillary clusters in
airspace without fibrovascular cores, Solid is a sheet of nested cells, Invasive
mucinous adenocarcinoma shows glandular structures filled with abundant
mucin invading with an Acinar pattern. Mixtures of these patterns can appear
in the tissue.
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1.3.1 Whole Slide Images

Digital images at pathology slides are often referred to as whole slide images

(WSIs). These images are mainly of giga-pixel size where they need roughly 50

GB memory for storing on computer. Image size of 50,000 × 50,000 is quite

common. These images are typically stored in a pyramid format, where each

level of the pyramid represents a different magnification level (Fig. 1.3). The

highest magnification level is often 40× and the other magnification levels are

presented in lower resolution with down-scaling factor of 2n (40×, 20×, 10×
etc.). Due to their large size, different compression approaches are used to

compress these images such as JPEG2000 and JPEG. Even with compression,

loading the whole WSI into a CPU or a GPU memory is impossible because of

their limited memory capacity, therefor processing these images is challenging

and mainly small images extracted from these images are used for analysis.

Reading and loading these giga-pixel images requires specific libraries and

software, like Openslide [13].

1.3.2 Computational Pathology Algorithms

Computation pathology is a discipline that uses computational models to

analyse and process relevant data (pathology images and associated data) to

assist human expert. These models aim to facilitate and improve diagnosis

and patient treatment.

Computational pathology (CPath) algorithms that deal with imaging data

can be categorised into the following main groups. 1) pre-processing, 2) object

detection, 3) feature extraction, 4) cancer detection/diagnosis/grading, and 5)

predicting patient outcome. Pre-processing algorithms in digital pathology fall

into two main categories: 1) algorithms that enhance the quality of data by

removing artefacts such as ink markers, tissue folding and out-of-focus regions.

These artefacts can affect further analysis such as cancer detection by degrading

the performance or introducing bias, therefore it is necessary to control the

quality of data before any further processing. 2) Images that are captured

by different scanners or at different labs can show large variations in the

appearance. Optics, data acquisition algorithms and data acquisition devices

can affect the color of generated image. Performance of CPath algorithms may

be negatively affected by the presence of stain variation. Therefore, algorithms

have been developed to standardise the stain appearance between digital images

before subsequent analysis [14].

WSIs contain various objects where localising and delineating the bound-

aries of these objects can be helpful for performing measurements such as

counting, determining the size, area, etc. Manual delineation and quantifica-

tion of thousands of objects in WSIs is labour intensive and infeasible. CPath
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algorithms facilitate and speed up the process of segmentation, quantification

and localization of objects in WSIs, and subsequently enable the pathologists

to quantitatively assess the WSIs for accurate decision. Moreover, segmenta-

tion of important objects such as nuclei and glands inside the images enable

exploration of morphological features. Features that can be used for training

models for cancer diagnosis or predicting patient outcome. Predicting cancer

type, grade or stage is enabled through Cpath models that learn relationship

between the input data and output. These models learn a mapping which can

objectively predict the target of interest. They utilize the features engineered

by human or they can accept raw input (via deep learning). Predicting pro-

gnosis is viable through survival models which is more complicated compared

to previous tasks. The main goal in predicting the prognosis is finding features

that affect the patient outcome.

10x

20x

40x

2mm

85 m

29 m

203 m

Figure 1.3: Example of whole slide image of head and neck tissue and its
different magnification levels.
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1.4 Deep Learning in Digital Pathology

Deep learning is a category of artificial intelligence (AI) which consists of

processing layers of neural networks to learn representations of data with

multiple levels of abstraction. It allows that the models learn suitable and

specific features from the data and related to the task at hand. Deep learning

models require very little engineering by hand in terms of both feature and

model engineering. These methods have dramatically improved the state-of-

the-art in speech recognition, visual object recognition, object detection and

many other domains such as drug discovery and genomics. These methods

are computationally expensive and data-hungry in nature but provided with

enough data and a capable hardware, they can learn useful representations

from large data sets by using the back-propagation algorithm. By back-

propagation, model changes it internal parameters that are used for computing

the feature/representation in each layer from the representation in the previous

layer.

Owing to their powerful performance, deep networks have been extensively

utilized in the pathology domain for a variety of tasks. Deep models have

shown promising results for extracting clinical/biological structures in tissue.

Various forms of convolutional networks have been proposed for segmenting

and detecting nuclei and gland. In this thesis, we investigate this methods and

we propose two methods for nuclear localization (detection and segmentation

of nuclei) and gland segmentation in H&E images.

Predicting patient outcome is a topic of high interest in the area of pathology

where deep models could stratify patients into the poor and good prognosis

groups. In other words, deep features that are automatically extracted from

networks can be utilized for survival analysis. Detecting cancer, predicting

cancer sub-type, mutation, gene alteration and even detecting primary site of

tumour [15] are other successful applications of deep leaning in computational

pathology.

Despite its tremendous success in mapping the input to output, utilizing

deep learning models have some challenges and obstacles. Three main challenges

are:

• Due to their large number of parameters, they require huge amount of

data to avoid over-fitting and learning the useful representations of data.

And at the moment, deep learning lacks a mechanism to learn from

abstract information.

• They are computationally expensive and require powerful processing

hardware like GPUs. Deep models often consist of millions of parameters

where powerful resources should be supplied for handling millions of
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calculations required for tuning these parameters.

• Deep learning is opaque: unlike hand crafted feature that are understand-

able and interpretable, deep features most of the time are not easy to

interpret. Deep models learn features via finding pattern and correlation

from data that is often unnoticed to human. The transparency issue is

important in medical domain where it is important to know how the

system makes decision [16].

1.4.1 Digital Pathology Challenges

Employment of AI in digital pathology has brought impressive results. However

there are some obstacles that limit the ready usage of AI for digital pathology.

In the following, few of these challenges are mentioned:

Lack of Labelled Data

With the benefits that digital pathology provides, more and more hospitals

and centers are going toward using WSI scanners. Despite the rapid rise

in data generation, there is not enough annotation for processing of these

WSIs. This is important from two aspects of model development and model

evaluation. Powerful models like deep learning are highly data hungry and

their performance boost is achieved when they are fed with large amount of

data. To evaluate the generalizability and true performance, large annotated

data sets are required which reflect the variability in the data distribution.

Semi-supervised learning, domain adaptation, unsupervised learning, one/few

shot learning are some approaches that to some extent may compensate for

the lack of labelled data. However, still their performance can not match the

fully supervised approaches. Crowd sourcing and active learning can be used

for collecting annotations but the former introduce noise and the latter still

needs enough annotation.

High Dimension

Digital pathology deals with large WSIs. As mentioned in Section 1.3.1, these

type of images often consist of millions of pixels. Deep convolutional net-

works operate on much smaller images. Down-sampling the WSIs will destroy

important details such as nuclei and risk high information loss. Therefore,

tiling WSIs is a solution to process these large images. More precisely, each

WSI is divided into smaller patches and then each patch is fed to the model

separately, Fig. 1.4 shows a WSI and the patches that can be extracted. The

prediction scores/probabilities of all patches are then aggregated to determine
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the WSI level prediction. Losing contextual information is the main challenge

in patch-wise processing of WSIs.

One patch

Figure 1.4: Dividing WSI into patches for subsequent processing: WSIs are
inherently large images which make their processing challenging, therefore a
straightforward remedy is extracting patches from them.

Computational Cost

Training deep models on the ordinary computers with Central Processing Unit

(CPU) is inevitably sluggish and hence impractical. Graphical Processing Units

(GPUs) through their specialized circuit enable the fast processing of pixel-

based data [17]. Pathology labs are already under immense financial pressure

to adopt WSI technology, and acquiring and storing gigapixel histopathological

scans is a formidable challenge to the adoption of digital pathology.
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Interpretability

Despite their impressive success in computer vision and scene recognition, deep

models still suffer from a major drawback, which is the lack of interpretability.

These models are sometimes called ’black box’ due to their unknown decision

making process. Researchers have proposed creative ways of explaining deep

model results [18]. However, there is no established way of understanding

the decisions made by them when working with histopathology images. In-

terpretability and transparency are important in the medical community, as

experts involved in the diagnostic field usually need to justify the underlying

reasons for specific decision. This is really important for deployment of deep

learning algorithms in clinical practice and obtaining regulatory approvals.

Adversarial attacks

Deep neural networks can be fooled by small imperceptible variations in the

image [19]. Adversarial attack is a small manipulation of input that cause

the model to make a mistake[20]. Adversarial attacks are of course worrisome

in medical domain, where their existence provoke us to pay more attention

to noise and artefacts and more importantly to the system security. Does a

noise, artifact or tissue contamination lead to an incorrect diagnosis? Can

an attacker with financial incentives adversarially manipulate medical data?

Designing robust AI models insensitive to adversarial attacks is challenging

and there are many avenue to explore [21].

1.5 Aims and Objectives

This thesis aims to propose tools and algorithms based on deep learning to

quantitatively assess pathology image tiles and WSIs. More specifically, we

first propose methods for detecting and segmenting nuclei in pathology images,

then we develop algorithms to facilitate collection of dense annotations from

histopathology images. We also explore the effect of self supervision tasks to

tackle the problem of label scarcity and finally we develop a deep model to

predict survival for patients with lung cancer.

1.5.1 Main Contributions

• We propose a method based on mixture density distributions capable

of detecting nuclei in images with high accuracy. We show how we can

formulate mixture density networks for the task of nuclear detection.

• We develop a fully convolutional network which uses spatial and positional

information for nuclear segmentation. This network utilises dense blocks
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and light structure to precisely extract nuclear shapes.

• We propose NuClick, an approach for interactively segmenting nuclei and

glands in histopathology images. NuClick is a generalizable approach that

takes minimum human interaction and results in superior performance.

• We investigate self-supervision for learning from limited budget of an-

notations. Moreover, we investigate the effect of proposed domain specific

self supervision tasks in the context of domain adaptation.

• We investigate the prognostic value of morphological features obtained

from representative patches of WSIs. We show that multiple instance

learning can be used to deal with weak labels and extracting representative

patches.

1.6 Thesis Organization

Chapter 2: Nuclear Localisation in Histopathology Images

Nuclei localisation is an important task in the histology domain as it is a main

step toward further analysis such as cell counting, study of cell connections, etc.

This is a challenging task due to complex texture of histology image, variation

in shape, and touching cells. One of the main hurdles in nuclear instance

segmentation is overlapping nuclei where a smart algorithm is needed to separate

each nucleus To tackle these hurdles, many approaches have been proposed in

the literature where deep learning methods stand on top in terms of performance.

Hence, in this chapter, we tackle the problem of nuclear localisation from two

perspectives: 1) nuclear detection and 2)nuclear segmentation. For nuclear

detection, we propose a novel framework for nuclei detection based on Mixture

Density Networks (MDNs). These networks are suitable to map a single input

to several possible outputs and we utilize this property to detect multiple seeds

in a single image patch. A new modified form of a cost function is proposed

for training and handling patches with missing nuclei. The probability maps

of the nuclei in the individual patches are next combined to generate the

final image-wide result. The experimental results show the state-of-the-art

performance on complex colorectal adenocarcinoma dataset.

For nuclear segmentation, we introduce a proposal-free deep learning based

framework to address these challenges. To this end, we propose a spatially-

aware network (SpaNet) to capture spatial information in a multi-scale manner.

A dual-head variation of the SpaNet is first utilized to predict the pixel-wise

segmentation and centroid detection maps of nuclei. Based on these outputs, a

single-head SpaNet predicts the positional information related to each nucleus

instance. Spectral clustering method is applied on the output of the last
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SpaNet, which utilizes the nuclear mask and the Gaussian-like detection map

for determining the connected components and associated cluster identifiers,

respectively. The output of the clustering method is the final nuclear instance

segmentation mask. We applied our method on a publicly available multi-

organ data set, MonuSeg, and achieved state-of-the-art performance for nuclear

segmentation.

Chapter 3: A Deep Learning Framework for Interactive Seg-

mentation of Microscopic Images

Deep learning based models generally require large amount of labeled data for

precise and reliable prediction. However, collecting labeled data is expensive

because it often requires expert knowledge, particularly in medical imaging

domain where labels are the result of a time-consuming analysis made by one

or more human experts. As nuclei, cells and glands are fundamental objects for

downstream analysis in computational pathology/cytology, in this chapter we

propose NuClick, a CNN-based approach to speed up collecting annotations for

these objects requiring minimum interaction from the annotator. We show that

for nuclei and cells in histology and cytology images, one click inside each object

is enough for NuClick to yield a precise annotation. For multicellular structures

such as glands, we propose a novel approach to provide the NuClick with a

squiggle as a guiding signal, enabling it to segment the glandular boundaries.

These supervisory signals are fed to the network as auxiliary inputs along with

RGB channels. With detailed experiments, we show that NuClick is applicable

to a wide range of object scales, robust against variations in the user input,

adaptable to new domains, and delivers reliable annotations. As exemplar

outputs of our framework, we released two datasets: 1) a dataset of lymphocyte

annotations within IHC images, and 2) a dataset of segmented WBCs in blood

smear images.

Chapter 4: Self-Path: Self-supervision for Classification of Patho-

logy Images with Limited Annotations

While high-resolution pathology images lend themselves well to ‘data hungry’

deep learning algorithms, obtaining exhaustive annotations on these images

is a major challenge. In this chapter, we propose a self-supervised CNN

approach to leverage unlabeled data for learning generalizable and domain

invariant representations in pathology images. The proposed approach, which

we term as Self-Path, is a multi-task learning approach where the main task

is tissue classification and pretext tasks are a variety of self-supervised tasks

with labels inherent to the input data. We introduce novel domain specific

self-supervision tasks that leverage contextual, multi-resolution and semantic
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features in pathology images for semi-supervised learning and domain adapt-

ation. We investigate the effectiveness of Self-Path on 3 different pathology

datasets. Our results show that Self-Path with the domain-specific pretext

tasks achieves state-of-the-art performance for semi-supervised learning when

small amounts of labeled data are available. Further, we show that Self-Path

improves domain adaptation for classification of histology image patches when

there is no labeled data available for the target domain. This approach can

potentially be employed for other applications in computational pathology,

where annotation budget is often limited or large amount of unlabeled image

data is available.

Chapter 5: Representative Patch Morphology Features for Pre-

dicting Lung Cancer Survival

In this chapter, we perform morphological analysis on the most discriminant

patches obtained from WSIs. The patches are selected using attention block of

attention-based multiple instance learning method. We apply segmentation

method proposed in Chapter 3 to segment nuclei in the patches, and then we

extract 68 morphological features. These features are used in the Cox model to

predict the risk score. We show that this risk score is prognostically important

for predicting patient outcome.

Chapter 6: Conclusions

A summary of the thesis with some potential future directions for each of the

proposed methods are presented in this chapter.
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Chapter 2

Nuclear Localization in

Histopathology Images

2.1 Introduction

Currently many downstream analysis in digital pathology are dependant on

the location of nuclei and their shapes in the pathology images. For example,

their positions can be served as nodes of graph and their distance as edges for

graph analysis of tumour landscape. Overall, precise localizing the nucleus in

histology images is a main step for successive pathological assessment including

the determination of various biomarkers, determining progesterone and estrogen

receptor status (Ki-67 index), quantification of tumor immune infiltrates,

counting and global/local morphological analysis [22–25]. Unfortunately, robust

cell localisation is a challenging task due to nucleus clutters, large variation in

shape and texture, nuclear pleomorphism, touching cells and poor image quality

[26]. In addition, microscopy images often have very high resolution, which

further pose a challenge on the computational resources. The evaluation of any

irregularities in the appearance, morphology, and spatial organization of cell

nuclei is one of the key aspects of cancer diagnosis and grading. Whole-slide

histology images typically contain several hundreds of thousands of nuclei

where manual detection of nucleus for further diagnostic assessment imposes

a high workload on pathologists. These assessments are usually performed

by visual estimation, which is labour-intensive and time-consuming, and may

lead to high inter-and intra-observer variability. The ongoing of digitization

in pathology has greatly contributed to the fields of pathology research and

clinical practise, therefore computer assisted method can assist for automation

of many assessment by processing digital images, which increases the reliability

of quantitative assessments. In computer vision, object detection is defined

as fitting a tight bounding box around object. Fast-RCNN [27] and YOLO

[28] are two successful approaches for this task. These models are trained
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based on the bounding box information (top left coordinates, width and height

of bounding box), and they are vastly applied on the natural images. Cell

nuclei localisation on histopathology slides requires identification of millions of

densely packed small objects per image. This is in contrast to these earlier deep

learning works in which usually a few dominant objects are annotated. Due to

the large numbers of objects detected per image, the performance of region

proposal based detectors is sub-optimal on cell detection in histology images

[29]. Further, obtaining annotation of thousands of nuclei bounding boxes

is impractical due to the common case of weak nuclei boundaries and high

workload of pathologists. To this end, these problems are usually formulated

as predicting the (x;y) coordinates of the objects’ center supervised by point

labels. In next section we go through some of the methods that are specifaclly

designed for nuclear detection and segmentation.

Segmentation of nuclei carries more information about nucleus, where

having segmentation, localization of nucleus can be obtained by extracting

the centroids of segmented nucleus. However, in many cases obtaining dense

prediction for training models or model evaluation is not as easy as just

providing position of nucleus. So there should be models to address detection

problem when segmentation dataset is not available or it is hard to obtain. In

this chapter we first go through a detection model and then we elaborate on a

segmentation approach.

2.2 Related Work

2.2.1 Detection

Parvin et al. [30] introduced the iterative voting methods which use oriented

kernels to localize cell centers, where the voting direction and areas were

updated in each iteration. Radial voting-based methods are presented for

automatic cell detection on histopathology images. Qi et al [31] utilize a

single path voting mechanism that is followed by clustering step. Similarly,

Hafiane et al [32] detect the nuclei by clustering the segmented centers using

an iterative voting algorithm. [31] utilizes single-path voting followed by mean-

shift clustering and a paper by [32] that nucleus centers are detected from

segmented nuclei clusters using iterative voting algorithm. Several other cell

localization and segmentation methods using concave point based touching cell

splitting are reported in [33] and [34], where the performances heavily rely on

concave point detection.

Multiscale Laplacian-of-Gaussian (LOG) [35] and construction of concave

vertex graph [33] can also be found in the literature. An approach to handle

touching cells is marker-based watershed algorithm which has been used widely
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in [22, 36–38]. However, due to the large variations in microscopy modality,

nucleus morphology, and the inhomogeneous background, it remains to be a

challenging topic for these non-learning methods. Data-driven methods utilizing

hand-crafted features have also been extensively applied for cell detection due

to their promising performance. Interested readers are referred to [39] for

more details about methods which rely on hand crafted features and classic

supervised methods.

Deep learning has shown an outstanding performance in computer vision

analysis of both natural and biomedical images. Deep learning methods

extract the appropriate features from an image without the need for laborious

feature engineering and parameter tunning. Ciresan et al. [40] applied a deep

neural network (DNN) as a pixel classifier to differentiate between mitotic

and non-mitotic nuclei in breast cancer histopathology images. Xie et al. [41]

proposed a structured regression convolution neural network (CNN) for nuclei

detection wherein the gaussian distribution is fitted on the nucleus center to

construct the probability map which is considered as an image mask, then a

weighted mean squared loss is minimized via pixel-wise back-propagation. Xu

et al. [42] proposed a stacked sparse autoencoder strategy to learn high level

features from patches of breast histopathology images and then classify these

patches as nuclear or non-nuclear. Su et al. [43] present a cell detection and

segmentation algorithm using the sparse reconstruction with trivial templates

and a stacked denoising autoencoder (sDAE) trained with structured labels and

discriminative losses. Sirinukunwattana et al. [44] proposed a locality sensitive

deep learning approach for nuclei detection in the H&E stained colorectal

adenocarcinoma histology images. In this approach, a spatially constrained

CNN is first employed to generate a probability map for a given input image

using local information. Then the centroids of nuclei are detected by identifying

local maximum intensities.

2.2.2 Segmentation

Previous methods are mainly based on region-proposal networks, like Mask-

RCNN [45] and PA-Net [46], or encoder-decoder neural structures particularly

U-Net model [47]. Since U-Net was not well established for separating close

object in complex histology images, various methods have been introduced

in the literature which concentrates on the following 4 aspects: i) modifying

the network architecture to extract richer information (like CIA-Net[48]), ii)

introducing auxiliary outputs to the network, the auxiliary output can be the

nucleus contour or bounding box (like DCAN [49], BES-Net [50]), iii) some

methods proposed CNNs that predicts distance map (or other geometrical

mappings) of nuclei instances (like DR-Net [51]), and iv) taking into account
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different combinations of above-mentioned variations to make their deep learn-

ing platform more robust for detecting individual objects [52]. Despite these

advancements, these models lack spatial awareness which can improve instance-

wise segmentation of clustered nuclei, especially in advanced stages of the

tumor.

In the following, first, we introduce our approach for nucleus detection

based on Mixture Density Networks (MDN) introduced by Bishop [53] for

solving inverse problems, where we have multiple targets for an individual input.

MDN learns the distribution of nucleus within an image hypothesizing that

each nuclei has a Gaussian distribution with a maximum value on its center.

Here we formalize the concept of MDN for cell detection problem. Due to

MDN’s flexibility to localize nucleus, we show that it has a better performance

when compared with the other cell detection algorithms on a challenging colon

cancer dataset.

Next we discuss our approach for nucleus instance segmentation (Spa-Net)

in details. We show that not only can we achieve competitive results for

nuclear instance segmentation, but also our approach is more efficient in terms

of number of parameters.

Our contributions are as follows:

• We define the problem of nuclei detection as mapping a single input

image patch into the probability density function (pdf) of the nuclei

center, from which the observed locations have been sampled. The pdf is

modeled as a Gaussian Mixture Model (GMM) and its parameters are

learned via a back-propagation. In addition, a Bernoulli distribution is

trained whose parameter predicts if the local patch contains any nucleus

and thus the fit of the GMM is liable.

• We modified mixture density loss function in order to be well adjusted

to the problem, to this end, instead of taking one target variable for

each input variable, it can take multiple target variables by separating

the summation term in loss function for each image, and also a binary

posterior is applied on loss function to remove the images with no nucleus.

• we show that the proposed method is able to process the input image with

sparsely annotated data whereas the previous methods do not consider

those regions or they result in poor performance with weak annotations.

• we demonstrate the capability of algorithm to learn the distribution of

nuclei center from the training data without the need to define fixed

variance size for all nucleus as some methods do [41, 44].

• We propose a deep learning based proposal-free framework for nuclei
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instance segmentation having low computational cost and simple post-

processing.

• We propose a spatially-aware network architecture, which is equipped

with a novel multi-scale dense convolutional unit.

• We propose to incorporate a nuclei detection map for estimating the

number of clusters per nuclei clump.

• Our method achieves state-of-the-art results on a well-known publicly

available multi-organ data set.

2.3 Nuclear Detection using Mixture Density Net-

works

2.3.1 Mixture Density Networks

For a general task of supervised learning our goal is to model a conditional

distribution p(t|x) (for image patch x and nucleus center t), which is considered

Gaussian for many problems and a least square energy function is often obtained

using maximum likelihood. These assumptions can lead to a poor performance

in many application having plausible non-Gaussian distributions. One of such

applications is one to many mapping where one input corresponds to several

outputs. The assumption of having a Gaussian distribution forces the model to

predict only one output discarding other target values at best. Moreover, The

network prediction is the average of all target values which is incorrect [53].

Mixture Density Networks (MDN) simply combines mixture models with

neural networks. In other words, each input is mapped to a mixture model

distribution where the neural network estimate the parameters of mixture

model. To address limitations of uni modal distributions and increase the

degree of model flexibility, we can consider a general framework for modeling

the conditional probability distribution by modeling it as a mixture density

represented as a linear combination of kernel functions:

p(t|x) =

K∑
k=1

αk(x)φk(t|x) (2.1)

where K is the number of components in the mixture and αis are mixing

coefficients. We assume that kernel functions φ(t|x) are isotropic Gaussian:

φk(t|x) =
1

(2π)c/2σck(x)
exp

{
−‖t− µk(x)‖2

2σ2k(x)

}
(2.2)

19



where µk(x) and σk
2(x) are the mean and the variance of the kth Gaussian,

respectively, and c is the dimension of target variable. The GMM parameters

can be derived from the MDN as:

αk(x) =
exp(zαk (x))
K∑
l=1

exp(zαl (x))

(2.3)

µk(x) = zµk (x) (2.4)

σk(x) = exp(zσk (x)) (2.5)

where zαk (x), zµk (x) and zσk (x) are the activations of the output layer of MDN

corresponding to weight, mean and variance of kth Gaussian in the GMM,

given the input x, respectively. Softmax function in Eq. (2.3) ensures that

weights of GMM sum to one and are positive values. Eq. (2.5) constraints the

standard deviations to be positive.

Here, the parameters of the mixture model are considered to be functions

of input image patch x. This can be achieved by using a conventional neural

network as a function that takes x as input. These layers are then combined

with other fully connected layers to from the Mixture Density Network (MDN),

(see Fig.2.1). Building the MDN increases the number of parameters from c

output to (c+ 2)×K, where c remains to be dimension of the output and K

is the number of mixtures we are using in the model.

To define the error function, the standard negative logarithm of the max-

imum likelihood is used. Therefore the original loss function for the network

is:

E = −
N∑
n=1

ln p(tn|xn) = −
N∑
n=1

ln

(
K∑
k=1

αk(xn)φ(tn|xn)

)
(2.6)

where summation over n applies to all dataset. In the next section, we modify

this cost function so that it becomes more suitable to handle image patches

with multiple and/or missing nuclei.

2.3.2 Extending MDN for Nuclei Detection

For nuclei detection, deep learning approaches are either provided with small

patches each containing one nuclei [42, 44] or designed as pixel wise structured

logistic regression [41, 54].

Here, we formulate the cell detection as the problem of mapping one to

many outputs, as each input vector (image) can have multiple variables defined

as the locations (coordinates) of the nucleus. In other words, each input image
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is considered to have a Gaussian mixture distribution where at the nuclei

centroids the probability of each Gaussian is maximum. Formally, given image

set X form domain D, our goal is to find set of:

D = {(x1, y11), ..., (x1, yn1).
....(xi, y1i), ..., (xi, yni)}

where ni shows nth nucleus in image xi.

As x has multiple output, using Eq. (3.1) as objective function, each image

should be passed ni times to the network with different labels at each forward-

pass. To tackle this issue and adjust the MDN for nuclei detection, we modify

the Eq. (3.1) to take one input (image patch) and all of its corresponding target

coordinates of the nuclei during training at just one forward pass. To this end,

the GMM is calculated ni times for each image and summation of GMMs are

used to construct the objective function as shown in 2.7

E(W ) = −
I∑
i=1

Ni∑
n=1

ln

{
K∑
k=1

αk(xi, w)N(tni|µk(xi, w), σ2k(xi, w))

}
(2.7)

where I is the number of the training images, Ni is the number of nuclei within

each image and tni is the coordinate of nth nucleus centroid within the image

patch i.

The network always predicts fixed number of parameters for all inputs.

According to the values of weight coefficients, it is predicted if the nucleus

exists in the certain location. The predicted mean of each Gaussian is used to

locate nucleus. However for some input data, the predicted parameters can not

be used due to unavailability of target variable. In other words, there should

be a flexibility in the model to estimates the existence of targets. For nucleus

detection, it means that Eq. (2.7) can only be used when all input patches

contain nuclei (when we have at least one target variable for each image),

whereas there are many patches with no nucleus. To address this problem, we

add a Bernoulli variable e(xi) to our loss function to ignore mixture parameters

for patches with no nuclei, therefore final loss function is:

E(W ) = −yi[
I∑
i=1

Ni∑
n=1

ln

{
K∑
k=1

αk(xi, w)N(tni|µk(xi, w), σ2k(xi, w))

}
]

− ln[e(xi)
yi(1− e(xi))1−yi ]

(2.8)

Where ei is a Bernoulli variable that specifies the probability of the patch

containing any nucleus. yi ∈ [0, 1] is the label for each patch (for empty patch,

y = 0). And if yi = 0, only second part of 2.8 is back-propagated to the

network.
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2.3.2.1 Pointset for each nuclei

If the points lies inside the nucleus, it is considered true. However, the datasets

are provided with one label for each nucleus indicating an approximate centroid

location of that nucleus. To this end, during training of the network, we use a

dilated point set located within 6 pixels from the nucleus center. This makes

the network more robust against the variations in the locations of centroid

which are not precise. We sample 10 points from a Gaussian distribution with

the mean on nucleus centroid.

Conventionally, the detection using small patches generally assumes that

in each patch lies one cell, hence mean square loss is sufficient to estimate one

point in that patches [42, 55]. In this chapter, however, we use a different

strategy: we train a neural network that decides the number and locations

of cells on its own using the proposed MDN. To this end, the generated , σ,

and α correspond to the nuclei position, its uncertainty, and significance of the

detected location (the larger the weight, the more prominent the detection).

2.3.2.2 Network Architecture

The overall architecture of MDN comprising of a backbone and an MLP

(multi layer perceptron) after that, where backbone can be any off-the-shelf

CNN architecture. Here, we considered various off-the-shelf CNN backbones

because of their capability to deal directly with raw images, without the need

of prepossessing and an explicit features extraction process. The network is

trained to capture the important aspects of the input data. By optimizing the

dense representation of the input data in the feature maps, the performance of

the fully connected part (MDN) is improved. In Fig. 2.1, the overall architecture

of backbone is depicted where the image size of 50 × 50 is used as input to

the model.

2.3.3 Experimental Results

2.3.3.1 Experimental Details

To optimize the network weights, an Adam optimizer with learning rate of

0.001 have been used. All models have been trained for 300 epochs with batch

size of 256.

2.3.3.1.1 Backbone

Resnet [56] with 18 layers is utilized. We did not use very deep Resnet

architecture as its training requires huge amount of data. Two fully connected

layers are added after average-pooling to construct the whole architecture of

MDN (See Fig. 2.1).
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To provide an appropriate input size to the network, the original images

were cropped to patches of size 50×50. The network architecture consists of 2

fully connected layers (256 and ((c+ 2)×K) + 1), respectively). We set the

number of mixtures to 100, therefore the MDN should predict 401 values (for

each mixture 400 values and 1 value for the Bernoulli distribution). After

acquiring network predictions, the patches with no nucleus having the low value

of e are ignored (threshold for e is set to 0.5). We choose the most significant

Gaussians by applying a threshold of 0.001 on the mixture coefficients (αi).

Afterward, the probability maps are generated using αi,s, σi,s and µi,s. Finally

to extract the centroids of the nuclei within the remaining patches, local

maxima are sought.

2.3.3.2 Dataset

For our experiments, we use the Colorectal cancer (CRC) dataset provided by

[44]. It involves 100 H&E images of colorectal adenocarcinomas of size 500×500

which are cropped from CRC whole slide images. The total number of 29756

nuclei were annotated for detection purpose. The whole-slide images were

obtained using an Omnyx VL120scanner All the images are obtained at 20X

magnification. This dataset is randomly divided into two halves for training

and testing. The cell detection on this dataset is challenging due to touching

cells, blurred (or weak) cell boundaries and inhomogeneous background noise.

2.3.3.3 Metrics

Recall, precision and F1 scores are considered to evaluate the performance of

nuclear detection. Similar to previous works, a circle radius of 6 pixels from

each annotated nucleus is determined as the region of ground truth. True

positives are the predicted locations that fall inside the ground truth circles.

False positives are the predicted nuclei that are not inside the ground truth

circle and false negatives are the nuclei that are not predicted by the model.

2.3.3.4 Results

In this section we investigate the performance of our proposed model on

CRC dataset. For the quantitative evaluation we use the same two-fold cross

validation explained in [44]. We have compared MDN with three deep models

and two conventional approaches. The three deep models are SC-CNN [44]:

which predicts the location and probability of each nucleus inside a small

patch by using a shallow network. The probability and coordinates of nucleus

are used to construct a Gaussian map for each nucleus. The ground-truth

for this model is also a Gussain-like map for each nucleus. SR-CNN [41]:

which is mostly similar to SC-CNN, however, they use a large patch size and
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regress multiple nuclei location. More precisely, using nuclear locations, a

2D Gaussian is constructed for each nucleus where center of Gaussians are

locations of nuclei and their radius (variance) is a predefined value (8 pixels).

Similar to segmentation approaches, an encoder decoder model is used to

predict the probability map for nuclei by using L1 loss. SSAE [42]: consists

of two sparse autoencoder layers followed by a softmax classifier which is

trained to distinguish between nuclear and non-nuclear patches. If classified

as a nucleus, all pixels inside the output patch are assigned the value of 1, or

0 otherwise. Two conventional models are: LIPSyM [57]: that assigns high

response values near the center of symmetric nuclei which is used for detection.

Finally, CRImage [58] where images are thresholded and then morphological

operations, distance transform and watershed is applied.

The final results are shown in Table 2.3. The algorithm has low false

negatives which leads to higher recall compared to other methods. In other

word, high recall highlights its performance in detecting relatively more cells

compared to its counterparts. Overall the F1 score is high, which shows a good

detection performance in the proposed MDN based framework. Fig. 5.3 shows

the probability maps and the centroid locations along with the ground truth

circles overlaid on the original images. As shown, the network could learn the

locations of complex nuclei such as epithelial as well as congested area where

lymphocyte nuclei lie.

The broader view of the two challenging images and their corresponding

probability maps are depicted in Fig. 2.3. For detecting nuclei on the large

images, we first extract patches from those large images then these patches are

fed to the network to predict the location and uncertainty of nuclear locations,

then we construct the heat-map for each patch, finally heat-maps are stitched

together to construct the final heat map for large images. We use local maxima

to localize each nucleus. For visual assessment, the annotated centroids (yellow

circles) and predicted locations (red dots) are also shown in Fig. 2.3.

Due to its probabilistic output, one advantage of the proposed method is its

ability to handle images with weak and sparse annotations. We demonstrate

this through the following procedure. Firstly we equally divide the dataset into

training and validation sets and then remove 30% of the available annotations

from the training set and compare the results with SR-CNN. The quantitative

results in Table 2.2, obtained using this sparsely annotated data, show that the

proposed method can achieve a better performance. Our model improved the

F1 score by 3% and 2% compared to SC-CNN and SR-CNN, respectively.
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Figure 2.3: The original images on the left most column and their corresponding
MDN outputs. For better visualization of congested lymphocyte nuclei (first
row) and complex tumor epithelial, regions of interest are enlarged in the green
boxes. The right most column shows the ground truth specified in yellow circles
with detected nuclei as red dot.

Table 2.1: Comparison of precision, recall and F1 scores with other approaches.

Method Precision Recall F1 score

Proposed 0.788 0.882 0.832
SC-CNN [44] 0.781 0.823 0.802
SR-CNN [41] 0.790 0.834 0.811
SSAE [42] 0.617 0.644 0.630
LIPSyM [57] 0.725 0.517 0.604
CRImage [58] 0.657 0.461 0.542

Table 2.2: Comparison of precision, recall and F1 scores using weakly annotated
data.

Method Precision Recall F1 score

Proposed 0.67 0.75 0.71
SR-CNN [41] 0.59 0.63 0.60

2.3.4 Discussion

In this section, we evaluate the MDN performance under variations of para-

meters.

2.3.4.1 Effect of Backbone

We experimented with various networks to see their effectiveness in localizing

nuclei. We have considered ResNet18, Resnet50, Resnet101, DenseNet121 [59],

Densenet169, VGG16 and VGG19 [60]. For fair comparison, the same values of

hyper-parameters were considered in all models. The input size for all models

is 50 × 50. We observed that large models with high number of parameters do
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Table 2.3: Comparison of precision, recall and F1 scores with other approaches.

Backbone Precision Recall F1 score

Resnet18 0.788 0.882 0.832
Resnet50 0.776 0.892 0.829
Resnet101 0.755 0.754 0.754
DenseNet121 0.624 0.828 0.711
VGG16 0.684 0.804 0.739
VGG19 0.676 0.793 0.729

not converge well and some times the model predict same µi,s for all nuclei.

In table 2.3 we have shown the results for these backbones where Resnet18

depicts better performance compared to other models. For all these models

number of densities (m) is set to 100.

2.3.4.2 Effect of number of components in the mixture

We also did another experiment to obtain the optimal value of K (number of

Gaussian densities in GMM). To this end, we varied the value of K from 40 to

200 and increased the value by steps of 20. In CRC dataset some patches of 50

50 contains roughly 50 nuclei. Therefor we set the minimum value to 40 for

this experiments. Our experiments showed that having low or very large value

of K degrades the performance. Fig. 2.4 shows the the model performance

(F1-score) with resnet18 backbone for different values of K. When values of K

is low, the network does not have enough flexibility to locate different nuclei at

different places. And when the value is too large the network struggle to learn

the correct locations and sometime all densities converge to the same point.

2.4 Nuclear Instance Segmentation using a Proposal-

Free Spatially Aware Deep Learning Framework

2.4.1 Methods

Our proposed method consists of predicting spatial information of each nucleus

through a spatial aware CNN, and then clustering that information to construct

instance-level segmentation. To achieve a reasonable spatial prediction and to

estimate the number of clusters in nuclei clumps, we additionally incorporated a

dual-head network for nuclei mask segmentation (semantic level) and detection

maps. In this section, we firstly describe the network architecture, which is

used throughout our framework. Afterward, details of employing the proposed

CNN for instance segmentation will be discussed.
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Figure 2.4: F1 score value for different number of components in the mixture:
K = 100 could achieve best performance.

2.4.1.1 Spatially Aware Neural Network

An essential step in our proposed nuclear instance segmentation framework is

predicting the positional information of each nuclei using CNNs. Conventional

CNNs cannot capture positional details due to the nature of kernels. Convolu-

tional kernels in common CNN architectures extract local features. Hence they

give no intuition about the relative position of objects (detected features) in

the image. To address this issue, we propose spatial information aware CNN

capable of capturing positional information in all layers. By providing the

network with positional information (x and y image coordinates) in the input

and keeping that information available to all convolutional kernels, spatial

awareness is guaranteed. Details about the positional information in the input

and structuring element of the network are discussed in the following sections.

2.4.1.2 Structuring Blocks

Preserving spatial information throughout the network is feasible using our

proposed multi-scale dense unit (MSDU). MSDU is a densely connected build-

ing block inspired by [59]. Unlike the ordinary dense unit, our proposed

MSDU benefits from the multi-scale convolutional block (MSB) [61]. Fig. 2.5

demonstrates the configuration of a single MSB composed of four parallel con-

volutional blocks (convolution layer followed by batch-normalization and ReLU

layers) with varying kernel size. Having the flexibility to stack convolutional

blocks with varying kernel (dilation) rates allows us to obtain multi-resolution

feature maps, leading to better performance. MSB Blocks are configured with
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a specific number of channels (F ), kernel sizes (k), and dilation rates (d). Each

MSB block has a 1 × 1 and a 3 × 3 convolutional block in its terminals to

reduce the number of processed and generated feature maps.

As depicted in Fig. 2.5, concatenation layers in the MSDU aggregate the

output feature maps from their preceding MSBs. The feature aggregation

property of MSDUs enables the proposed instance detection network in Fig.

2.6 to preserve the positional information (which were passed to the network’s

input) at all convolutional blocks throughout its path, making it a spatial

aware network. An MSDU has four configuring parameters: growth rate (g),

which indicates the number of feature maps generated by every MSB inside

the MSDU. K and D vectors show the kernels’ sizes and dilation rates of MSB

blocks, and b denotes the number of MSB and concatenation pair repetitions.

It has been shown that restricting the number of extracted features in each

convolutional blocks (setting small growth rates) and aggregating the feature

maps instead, result in better performance while reducing the computational

costs [59].

Other two structuring blocks are Down Transitioning Block (DTB) and

Up Transitioning Block (UTB) which down-sample and up-sample their input

feature by the scale of 2, respectively. The structure of a DTB is shown in Fig.

2.5, which comprises a 1× 1 convolutional block that generates [p× C] feature

maps (X). The parameter C is the number of input feature maps to the DTB,

and 0 < p < 1 is the reducing rate. DTB also consists of a 2 × 2 average

pooling layer with a stride of 2, which will down-sample the size of feature

maps in half (Xp). UTB comprises a 2× 2× [p× C] transposed convolution

layer followed by batch-normalization and ReLU layers.

2.4.1.2.1 Spa-Net Architecture

The proposed spatial aware network for nuclei instance segmentation, SpaNet,

is illustrated in Fig. 2.6. The main structure in SpaNet is MSDU, which is

equipped with a feature aggregation property that enables positional informa-

tion flows throughout the network. Feature maps in SpaNet are down-sampled

three times by DTBs in the encoding path and are up-sampled accordingly by

UTBs in the decoding path. Skip connections will make the feature maps in

the decoding path more spatially enriched and facilitate gradient flow during

training [47]. More importantly, there are some points in the network that we

lose direct access to the positional information (after DTB and UTB units)

where feature aggregation is not applied. As a workaround, we appropriately

scaled the network input and added it in these layers via concatenation layers.

As shown in Fig. 2.6, configuring parameters of each MSDU is different,

except for the growth rate (g). Other parameters are tuned based on the
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MSDU position in the network. An advantage of the SpaNet is capturing

small-to-large structures in all levels by appropriately setting the MSDUs’

parameters. At the first level of the SpaNet where feature maps and nuclei

regions are relatively large, MSDU kernel sizes and dilation rates are set to

K = [3, 3, 5, 7] and D = [1, 4, 6, 8], therefore MSB convolutional kernels would

have receptive field of [3× 3, 9× 9, 25× 25, 49× 49] over their input feature

maps. Whereas, in the final level of the encoding path where feature maps are

down-sampled by a factor of 8 and are in their smallest state, MSDU kernel

sizes and dilation rates are to K = [3, 5, 3, 3] and D = [1, 1, 4, 6] resulting in

receptive field sizes of [3× 3, 5× 5, 9× 9, 13× 13] for MSB. This means that

the convolutional kernels in our proposed MSDUs can extract relevant features

starting from the scale of local structures size to the scale of nucleus size.

We set the parameters of MSDUs heuristically based on the nuclei diameter

analysis on the available data set.

2.4.1.3 Proposal-Free Instance Segmentation

2.4.1.3.1 Segmentation and Centroid Detection

For predicting mask and position of each nucleus, a dual-head network with

similar architecture to SpaNet is utilized (Fig. 2.7). One head predicts the

mask of nuclei, and another head predicts the centroids. The ground truth

for predicting the centroids is built by considering each nucleus as a Gaussian-

Shaped function where the maximum of Gaussian occurs at the center of the

nucleus. The function [62] for constructing GT for each nucleus centroid on

images, Gn, is:
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Figure 2.7: Overview of the Segmentation-Detection model based on Spa-Net
architecture. For both heads, the Sigmoid activation function is utilized in the
last convolutional layer.

Gn(x, y) =

{
1

1+β‖(cnx,cny)−(x,y)‖ if ‖(cnx, cny)− (x, y)‖ ≤ r
0 elsewhere,

(2.9)
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where (cnx, cny) and (x, y) are the coordinate of nuclei centroid and all

possible coordinates of image pixels, respectively. In our experimentation β

and r are, 0.01 and 8 respectively. Input to this network is RGB image, and

we used smooth Jaccard and mean squared loss functions to minimize error for

predicting mask and detection map, respectively. Images are first processed by

this network, then the segmentation mask is attached to the RGB-HSV-XY

channels to serve as the input of instance-wise network.

2.4.1.3.2 Instance Segmentation

An important part of instance segmentation is providing a ground truth (GT)

that can reflect the separation between nuclei. To this end, we propose to use

a GT tensor, Ph×w×6, that encompasses spatial information of all nuclei in the

image. In P, all pixels related to the nth nucleus, are assigned with the same

feature vector of spatial information, pn. This vector is in the form of [63]:

pn = (cnx/w, cny/h, lnx/w, lny/h, rnx/w, rny/h), where (cnx, cny), (lnx, lny), and

(rnx, rny) are the coordinates of the center, left top, and bottom right of the nth

nucleus’ bounding box, respectively. All the values are normalized by the width

and height of bounding box, (w, h). A smoothed L1 objective function that

also ignores the background region in loss computation has been incorporated

for the network optimization [63]. It is expected that the network predicts

similar values for pixels belonging to the same nucleus. Note that the input to

SpaNet for predicting nuclei spatial information has nine channels. The first

six are made by concatenating RGB and HSV color channels, since nuclei are

sometimes more distinguishable in HSV color space. The remaining 3 channels

are, predicted segmentation map (achieved in the previous step), Mseg, and

spatial coordinate maps of pixels, (Mx,My). These last three channels inject

the positional information to the SpaNet.

2.4.1.3.3 Post-Processing

After predicting the spatial information of nuclei instances via SpaNet, we

cluster them to attain the final instance segmentation. Directly clustering

the predicted maps might fail due to the large spatial domain (number of

pixels) and a high number of nuclei (number of clusters) in them. Therefore,

we propose to apply the clustering algorithm on nuclei clumps separately. To

identify these clumps, we firstly use a threshold the segmentation maps (section

2.4.1.3.1) with a value of 0.3 and remove objects with an area smaller than

5 pixels to generate the nuclei masks. Connected components (CC) in the

generated mask indicate isolated nuclei or nuclei clumps. By estimating the

number of candidate nuclei (clusters) in a CC, we can start the clustering

procedure. The number of clusters per CC is determined by counting the
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number of local maxima in the intersection of that CC with the predicted

detection map (section 2.4.1.3.1). Similar to [63] we use spectral clustering

algorithm for it’s effectiveness compared to other models by selecting Radial

Basis Function kernel (RBF) as the affinity function. An example of network

output has been shown in Fig. 2.8, the first row shows the raw prediction

of segmentation and location of nuclei, and the second row shows the the

prediction of 6 channels of positional information.

Original Image Segmentation map Centroid Detection Map

𝑐𝑥 𝑐𝑦 𝑙𝑥 𝑙𝑦 𝑟𝑥 𝑟𝑦

Figure 2.8: The first row shows sample outputs of the Spa-Net for Segmentation-
Detection model. The second row illustrates sample outputs from the Spa-Net
model which predicts positional information.

2.4.2 Results and Discussion

2.4.2.0.1 Dataset

The dataset consists of 30 H&E images (16 for training and 14 for test set)

from seven different tissues. Images were obtained from The Cancer Genome

Atlas (TCGA) where 1000×1000 patches were extracted from Whole Slide

Images (WSIs) at 40 × magnification [64]. Only one WSI per patient was used

and these images come from 18 different hospitals, which introduced another

source of appearance variation due to the differences in the staining practices

across labs. These seven tissues are kidney, stomach, liver, bladder, colorectal,

prostate, and liver. Out of 14 test images, eight belongs to the same tissue

type as the training set (seen organs) and six images are from different tissue

types (unseen organs). The tissue types that are common between training and

validation are: breast, liver, kidney and prostate. And the tissue types that are

not provided for training are: bladder, colon and stomach. More than 21,000

nuclei are annotated in this dataset. The annotations consist of epithelial and

stromal nuclei.
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2.4.2.1 Evaluation metrics

For evaluating our result we have used F1-score and Aggregated Jaccard Index

(AJI). F1 score is a commonly used evaluation metric which is defined as:

F1 =
2TP

2TP + FP + FN

Where TP is the count of true positives and indicates the number of pixels that

are corectly classified as the foreground. FP is the number of false positives

and in the segmentation scenario it shows the number pixels background pixels

that are classified as forground by the model. False negative (FN) pixels are

foreground pixels that the model considered them as background (the model

fails to predict those). F1-score is the same as Dice similarity. the metric

does not consider the detection quality of segmentation (e.g. if objects are

separated or not) and is considered for evaluating the performance of semantic

segmentation. For evaluating the instance segmentation performance, detection

of each object should be considered. We have used AJI for this purpose. AJI

is based on Jaccard index :

Jacc(A,B) =
|A ∩B|
|A ∪B|

let A be the set of ground truth pixels, and B the set of predicted pixels.

For calculating, Jaccard index between individual nuclei in the prediction

mask and the ground truth are computed. More formally, it has two main

step: 1) for each nucleus in GT (Gi), Jaccard index between that nucleus

and all nuclei in the prediction mask is computed. therefore a nucleus (Si)

in prediction mask that gives highest value of Jaccard can be obtained 2) we

compute an aggregated intersection cardinality numerator and and aggregated

union cardinality denominator for all ground truth and segmented nuclei. After

associating a segmented nucleus Si to each nucleus Gi in the ground truth, we

add the contributions to the aggregated jaccard index by adding pixel count of

Gi ∩ Si to AJIs numerator and Gi ∪ Si to the denominator. Pixel counts of

all unclaimed nuclei segmented nuclei (false positives) are also added to the

denomiator.

2.4.2.1.1 Networks Setup

To attain generalization and robust predictions, we followed stochastic weight

averaging approach proposed in [65]. Cycling learning rate (αi) is adopted at

each iteration i as follows: αi = (1−ti)α1+tiα2, where ti = (mod(i−1, c)+1)/c,

initial learning rate and final learning rate for each cycle are set to α1 = 0.01

and α2 = 0.0001, respectively, and cycling length is c = 20 epochs. Overall the

network is trained for 100 epochs and the average of weights at the end of all
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Table 2.4: Results of different methods on the nuclei instance segmentation
test sets.

Method
AJI (%) F1-score (%)

Seen Organ Unseen Organ Seen Organ Unseen Organ
CNN3 [64] 51.54 49.89 82.26 83.22

DR [51] 55.91 56.01 - -
DCAN[49] 60.82 54.49 82.65 82.14

PA-Net [46] 60.11 56.08 81.56 83.36
Mask-RCNN [45] 59.78 55.31 81.07 82.91

BES-Net [50] 59.06 58.23 81.18 79.52
CIA-Net [48] 61.29 63.06 82.44 84.58

Spa-Net (ours) 62.39 63.40 82.81 84.51

cycles are computed for test time prediction.

All networks in the proposed framework have been trained using the same

strategy, and stochastic gradient descent has been used as an optimizer to

minimize objective functions. The input patch size for all networks is 256×256.

Networks for segmentation-detection and instance predictions are trained with

a batch size of 2 and 4, respectively.

2.4.2.2 Augmentations

We used variety augmentation techniques to increase the model robustness

against variation in appearance and shape of objects. To this end, we categorize

augmentations in two parts. First category is appearance augmentation which

are channel shift, contrast adjustment, applying illumination gradient and

scaling intensity range. Shape augmentations are flipping horizontally and

vertically, rotating image up to 40, zooming out and zooming in, shearing

image, elastic deformation. These augmentations were applied randomly during

training for all models.

2.4.2.2.1 Results and comparative analysis

Performance of the proposed model is compared against several deep learning

based methods as reported in Table 2.4. Except the baseline method (CNN3)

[64] which categories the image pixels into three classes using a CNN-based

classifier, other methods in Table 2.4 (DR-Net [51], DCAN [49], BES-Net [50],

and CIA-Net [48]) took a dense prediction approach and used encoder-decoder

like CNN.

As deduced from the results in Table 2.4, our proposed method based on

SpaNet outperforms other state-of-the-art methods. Achieving AJI of 62.39%

and F1-score of 82.81% shows an improvement of 1.10% for AJI and 0.37% for

F1-score metrics compared to the best performing method in the literature.

The superiority of the proposed method performance can be observed in both
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seen and unseen organs. Fig. 2.9 demonstrate the qualitative results of our

method applied on all tissue types in test set.

The proposed framework offers several benefits. First, owing to the multi-

scale and feature aggregation properties of MSDUs, using SpaNet architecture

in this framework leads to more accurate instances’ positional information. The

performance of the current framework using off-the-shelf network architectures

has also been shown in the Fig. 2.10 and Fig. 2.11. In Fig. 2.10, we have shown

the effect of different network architectures where the network structure is

replaced with SegNet [66], DeepLab [67], and U-Net [47], but all other details

including labels and hyper-parameters are similar. We observe that Spa-Ne

can achieve better performance on both seen and unseen test dataset when

having growth rate of 43 (g = 32). As we increase the growth rate up to 48

the performance also improves.

Figure 2.10: Comparison of AJI values resulted form using different networks
in the proposed instance segmentation framework. These architectures are
used for both segmentation-detection model and the positional information
prediction network.

In Fig. 2.11, we have shown the effect of number of parameters in different

models and plotted it against the Smoothed L1 loss. This plot shows that

Spa-Net by increasing the number of parameters in Spa-Net the value of L1

loss is reduced. Moreover, it is inferred from this figure that, using Spa-Net

with growth rate of 32 not only has fewer parameters compared to other

deep structures, but also could achieve better performance (lower l1 loss).

Our proposed model incorporates much less number of parameters (∼21M)

in comparison with other models (∼31M for U-Net and ∼40M for CIA-Net);

therefore it has a better chance to generalize on unseen data. This is an

important behavior in the current application with such a small data set.
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Remarkably , SpaNet models with growth rates greater than 32 outperformed

other architectures in the current instance segmentation framework. However,

performance of Spa-Net @40 (AJI=62.39 on seen organs and AJI=63.40 on

unseen organs) and Spa-Net @48 (AJI=62.41 on seen organs and AJI=63.36 on

unseen organs) are very similar. In the current research we selected the growth

rate parameter equal to g = 40 due to the less number of network parameters

and better performance on the images from unseen organs.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of parameters #107

0.36
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Spa-Net (g=16)

Spa-Net (g=24)

Spa-Net (g=32)

Spa-Net (g=40)
Spa-Net (g=48)

U-Net

DeepLabV3

SegNet

Figure 2.11: Smoothed L1 loss values for different network architectures used
for positional information prediction (reported on the test set from the seen
organs).

We also conducted an experiment to see the effectiveness of using a network

with tree head (prediction detection, semantic segmentation and instance

segmentation). To this end, we used the architecture shown in Fig. 2.12 as the

triple head network. This network is compared with the model that predicts

positional information and segmentation-detection in separate networks (the

network that predicts segmentation-detection is shown in Fig. 2.7). We have

observe (Fig. 2.7) that using two separate networks can actually give better

performance.
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Figure 2.12: Overview of a triple head network for concurrent prediction of
nuclear segmentation map, centroid detection map, and instance positional
information.

Figure 2.13: Comparison of AJI values resulted form using triple-head Spa-Net
or two separate Spa-Nets (as described in the main manuscript) for prediction
of segmentation map, detection map, and positional information. In both
cases, growth rate is set to g = 40. Based on this experiment, the two separate
Spa-Nets approach has been selected as the best performing model.

2.5 Summary

In this chapter, we proposed two methods for nuclear localization. First, we

used a probabilistic approach for detecting nucleus. MDN has been used in

literature for one to many regression tasks. Here, we proposed a framework for

employing MDN for nuclei detection. The features learned using a CNN taking

images as input. Then, the MDN learns the distribution of nucleus within the

image patch using a mixture of Gaussian. Our method is capable of utilizing

weak annotated data while preserving a good performance. Finally, we showed
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that the proposed method can detect nucleus in colorectal histology images with

a higher F1 score when compared to other approaches. For nuclear detection,

we considered isotropic Gaussian, whereas for elongated or stromal cells non-

isotropic Gaussian might be a better option. This is especially important if we

want to consider our approach as a rough segmentation method.

As the second approach for nuclear localisation, we presented a proposal-

free framework (Spa-Net) for nuclear instance segmentation of histology images.

Prediction of segmentation map, detection map, and spatial information of

nuclei were aggregated in a principled manner to obtain final instance-level

segmentation. To have a precise prediction, we proposed a spatial aware

network which preserves the positional information throughout the network

by incorporating a novel multi-scale dense unit. We showed that Spa-Net can

achieve state-of-the-art performance on a multi-organ publicly available data

set.
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Chapter 3

An Interactive Framework for

Segmentation of Nuclei and

Glands

3.1 Introduction

Automated analysis of microscopic images heavily relies on classification or

segmentation of objects in the image. Starting from a robust and precise seg-

mentation algorithm, downstream analysis subsequently will be more accurate

and reliable. Deep learning (DL) approaches nowadays have state-of-the-art

performance in nearly all computer vision tasks [68]. In medical images or more

specifically in computational pathology (CP), DL plays an important role for

tackling wide range of tasks. Despite their success, DL methods have a major

problem-their data hungry nature. If they are not provided with sufficient

data, they can easily over-fit on the training data, leading to poor performance

on the new unseen data. In computational pathology, most models are trained

on datasets that are acquired from just a small sample size of whole data

distribution. These models would fail if they are applied on a new distribution

(e.g new tissue types or different center that data is coming from). Hence, one

needs to collect annotation from new distribution and then add it to training

set to overcome false predictions.

Obtaining annotation as a target for training deep supervised models is

time consuming, labour-intensive and sometimes involves expert knowledge.

Particularly, for segmentation task where dense annotation is required. It is

worth mentioning that in terms of performance, semi-supervised and weakly

supervised methods are still far behind fully supervised methods [69]. There-

fore, if one needs to build a robust and applicable segmentation algorithm,

supervised methods are priority. In CP, fully automatic approaches which do

not require user interactions have been extensively applied on histology images
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for segmentation of different objects (e.g. cells, nuclei, glands, etc.) where DL

models have shown state-of-the-art performance [70, 71].

Semi-automatic (interactive) segmentation approaches which require the

user to provide an input to the system bring several advantages over fully

automated approaches: 1) due to the supervisory signal as a prior to the model,

interactive models lead to better performance; 2) possible mistakes can be

recovered by user interactions; 3) interactive models are less sensitive to domain

shift since the supervisory signal can compensate for variations in domains,

in other words, interactive models are more generalizable; and 4) selective

attribute of interactive models gives the flexibility to the user to choose the

arbitrary instances of objects in the visual field (e.g selecting one nucleus for

segmentation out of hundreds of nuclei in the ROI).

Due to generalizability power, these models can also serve as annotation tool

to facilitate and speed up the annotation collection. Then these annotations

can be used to train a fully automatic method for extracting the relevant

feature for the task in hand. For example delineating boundaries of all nuclei,

glands or any object of interest is highly labour intensive and time consuming.

To be more specific, considering that annotation of one nucleus takes 10s,

a visual field containing 100 nuclei takes 17 minutes to be annotated. To

this end, among interactive models, approaches that require minimum user

interaction are of high importance, as it not only minimizes the user effort but

also speed up the process.

In this paper, by concentrating on keeping user interactions as minimum as

possible , we propose a unified CNN-based framework for interactive annotation

of important microscopic object in three different levels (nuclei, cells, and

glands). Our model accepts minimum user interaction which is suitable for

collecting annotation in histology domain.

3.2 Related Works

3.2.1 Weakly Supervised Signals for Segmentation

Numerous methods have been proposed in the literature that utilise weak

labels as supervisory signals. In these methods, supervisory signal serves as an

incomplete (weak) ground truth segmentation in the model output. Therefore,

a desirable weakly supervised model would be a model that generalizes well on

the partial supervisory signals and outputs a more complete segmentation of the

desired object. These methods are not considered as interactive segmentation

methods and are particularly useful when access to full image segmentation

labels is limited.

For instance, [72] and [73] introduced weakly supervised nucleus segmenta-
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Figure 3.1: NuClick interactive segmentation of objects in histopatholo-
gical images with different levels of complexity: nuclei (first row), cells (second
row), and glands (third row). Solid stroke line around each object outlines
the ground truth boundary for that object, overlaid transparent mask is the
predicted segmentation region by NuClick, and points or squiggles indicate the
provided guiding signal for interactive segmentation.
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tion models which are trained based on nuclei centroid points instead of full

segmentation masks. Several other works used image-level labels [74–77], boxes

[78], noisy web labels [79, 80], point-clicks ([81–84]), and squiggles ([85, 86] as

weak labels to supervise their segmentation models. Our model is analogous to

methods proposed by [81] and [85] with the difference that we used points and

squiggles as auxiliary guiding signals in the input of our model. Our model is

fully supervised and we will show how this additional information can be used

to further improve accuracy of segmentation networks on histology images.

3.2.2 Interactive segmentation

Interactive segmentation of objects has been studied for over a decade now. In

many works [87–98] object segmentation is formulated as energy minimization

on a graph defined over objects. In a recent unsupervised approach proposed

by [99], the annotator clicks on four extreme points (left-most, right-most,

top and bottom pixels), then an edge detection algorithm is applied to the

whole image to extract boundaries, afterwards the shortest path between two

neighboring extreme points is chosen as boundary of the object. Area within

the boundaries is considered as foreground and the region outside the extreme

points is considered as background for the appearance model. Grabcut [90]

and Graphcut [100] are classic interactive segmentation models, which segment

objects by gradually updating the appearance model. These models require the

user to mark in both background and foreground regions. Although they use

extensive guiding signals, they would fail if the object has blurred or complex

boundaries.

In recent years, CNN models have been extensively used for interactive

segmentation [99, 101–108]. A well-known example is DEXTRE [104] which

utilizes extreme points as an auxiliary input to the network. First, the annotator

clicks four points on the extreme positions of objects then a heat map (Gaussian

map for each point where points are at the centers of Gaussians) channel is

created form these clicks which is attached to the input and serves as guiding

signal.

There are methods in the literature that require the user to draw a bounding

box around the desired object. [97] proposed a method for interactive medical

images segmentation where an object of interest is selected by drawing a

bounding box around it. Then a deep network is applied on a cropped

image to obtain segmentation. They also have a refinement step based on

Grabcut that takes squiggles from the user to highlight the foreground and

background regions. This model is applicable to single object (an organ)

segmentation in CT/MRI images where this organ has similar appearance and

shape in all images. However, this approach is not practical for segmentation
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of multiple objects (like nuclei) or amorphous objects (like glands) in histology

domain. Some methods combined bounding box annotations with Graph

Convolutional Network (GCN) to achieve interactive segmentation [105–107].

In these methods the selected bounding box is cropped from the image and fed

to a GCN to predict polygon/spline around object. The polygon surrounds the

object then can be adjusted in an iterative manner by refining the deep model.

Also, there are some hybrid methods which are based on the level sets [109].

[110] and [108] embedded the level set optimization strategy in deep network

to achieve precise boundary prediction from coarse annotations.

For some objects such as nuclei, manual selection of four extreme points or

drawing a bounding box is still time-consuming, considering that an image of

size 512×512 can contain more that 200 nuclei. Moreover, extreme points for

objects like glands are not providing sufficient guidance to delineate boundaries

due to complex shape and unclear edges of such objects. In this paper,

we propose to use a single click or a squiggle as the guiding signal to keep

simplicity in user interactions while providing enough information. Similar

to our approach is a work by [111], where the annotator needs to place two

pairs of click points inside and outside of the object of interest. However, their

method is limited to segmenting a single predefined object, like prostate organ

in CT images unlike the multiple objects (nuclei, cell, and glands) in histology

images, as is the case in this study, that mutate greatly in appearance for

different cases, organs, sampling/staining methods, and diseases.

3.2.3 Interactive full image segmentation

Several methods have been proposed to interactively segment all objects within

the visual field. [112] introduced Fluid Annotation, an intuitive human-machine

interface for annotating the class label and delineating every object and back-

ground region in an image. An interactive version of Mask-RCNN [45] was

proposed by [103] which accepts bounding box annotations and incorporates

a pixel-wise loss allowing regions to compete on the common image canvas.

Other older works that also segment full image are proposed by [113–116].

Our method is different from these approaches as these are designed to

segment all objects in natural scenes, requiring the user to label the background

region and missing instances may interfere with the segmentation of desired

objects. Besides, these approaches require high degree of user interaction for

each object instance (minimum of selecting 4 extreme points). However, in

interactive segmentation of nuclei/cells from microscopy images, selecting four

points for each object is very cumbersome. On the other hand, all above-

mentioned methods are sensitive to the correct selection of extreme points

which also can be very confusing for the user when he/she aims to mark a
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cancerous gland in histology image with complex shape and vague boundaries.

Furthermore, another problem with a full image segmentation method like

[103] is that it uses Mask-RCNN backbone for RoI feature extraction which

has difficulty in detecting objects with small sizes such as nuclei.

In this paper, we propose NuClick1 that uses only one point for delineating

nuclei and cells and a squiggle for outlining glands. For nucleus and cell

segmentation, proving a dot inside nucleus and cell is fast, easy, and does

not require much effort from user compared to recent methods which rely on

bounding boxes around objects. For glands, drawing a squiggle inside the

glands is not only much easier and user friendly for annotator but also gives

more precise annotations compared to other methods. Our method is suitable

for single object to full image segmentation and is applicable to a wide range

of object scales, i.e. small nuclei to large glands. To avoid interference of

neighboring objects in segmentation of desired object, a hybrid weighted loss

function is incorporated in NuClick training.

This chapter is complementary to our previous paper [117], where we

showed results of the preliminary version of NuClick and its application to

nuclei, whereas here we extend its application to glands and cells. As a result

of the current framework, we release two datasets of lymphocyte segmentation

in Immunohistochemistry (IHC) images and segmentation mask of white blood

cells (WBC) in blood sample images.

A summary of our contributions is as follows:

• We propose the first interactive deep learning framework to facilitate and

speed up collecting reproducible and reliable annotation in the field of

computational pathology.

• We propose a deep network model using guiding signals and multi-scale

blocks for precise segmentation of microscopic objects in a range of scales.

• We propose a method based on morphological skeleton for extracting

guiding signals from gland masks, capable of identifying holes in objects.

• We Incorporate a weighted hybrid loss function in the training process

which helps to avoid interference of neighboring objects when segmenting

the desired object.

• Performing various experiments to show the effectiveness and generaliz-

ability of the NuClick.

• We release two datasets of lymphocyte dense annotations in IHC images

and touching white blood cells (WBCs) in blood sample images.

1Code is available at: https://github.com/navidstuv/NuClick
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3.3 Methodology

3.3.1 NuClick framework overview

Unlike previous methods that use a bounding box or at least four points

[89, 99, 104, 118, 119] for interactive segmentation, in our proposed interactive

segmentation framework only one click inside the desired object is sufficient.

We will show that our framework is easily applicable for segmenting different

objects in different levels of complexity. We present a framework that is

applicable for collecting segmentation for nuclei which are smallest visible

objects in histology images, then cells which consist of nucleus and cytoplasm,

and glands which are a group of cells. Within the current framework the

minimum human interaction is utilized to segments desired object with high

accuracy. The user input for nucleus and cell segmentation is as small as one

click and for glands a simple squiggle would suffice.

NuClick is a supervised framework based on convolutional neural networks

which uses an encoder-decoder network architecture design. In the training

phase, image patches and guiding signals are fed into the network, therefore it

can learn where to delineate objects when an specific guiding signal appears in

the input. In the test phase, based on the user-input annotations (clicks or

squiggles), image patches and guiding signal maps are generated to be fed into

the network. Outputs of all patches are then gathered in a post-processing

step to make the final instance segmentation map. We will explain in details

all aspects of this framework in the following subsections.

3.3.2 Model architecture & loss

Efficiency of using encoder-decoder design paradigm for segmentation models

has been extensively investigated in the literature and it has been shown that

UNet design paradigm works the best for various medical (natural) image

segmentation tasks [120, 121]. Therefore, similar to [117], an encoder-decoder

architecture with multi-scale and residual blocks has been used for NuClick

models, as depicted in Fig. 3.2.

As our goal is to propose a unified network architecture that segments

various objects (nuclei, cells and glands), it must be capable of recognizing

objects with different scales. In order to segment both small and large objects,

the network must be able to capture features on various scales. Therefore, we

incorporate multi-scale convolutional blocks [61] throughout the network (with

specific design configurations related to the network level). Unlike other network

designs e.g. DeepLab v3 [67] that only use multi-scale atrous convolutions

in the last low-resolution layer of the encoding path, we use them in three

different levels both in encoding and decoding paths. By doing this, NuClick
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network is able to extract relatable semantic multi-scale features from the

low-resolution feature maps and generate fine segmentation by extending the

receptive fields of its convolution layers in high-resolution feature maps in the

decoder part. Parameters configuration for residual and multi-scale blocks is

shown on each item in the Fig. 3.2

Furthermore, using residual blocks instead of plain convolutional layers

enables us to design a deeper network without risk of gradient vanishing effect

([56]). In comparison to [117], the network depth has been further increased to

better deal with more complex objects like glands.

The loss function used to train NuClick is a combination of soft dice loss

and weighted cross entropy. The dice loss helps to control the class imbalance

and the weighted cross entropy part penalizes the loss if in the prediction map

other objects rather than the desired object were present.

L = 1−
(∑

i
pigi + ε

)/(∑
i
pi +

∑
i
gi + ε

)
− 1
n

n∑
i=1

wi(gi log pi + (1− gi) log(1− pi))
(3.1)

where n is the number of pixels in the image spatial domain, pi, gi, and wi are

values of the prediction map, the ground-truths mask G, and the weight map

W at pixel i, respectively and ε is a small number. Considering that G has

value of 1 for the desired (included) objects and 0 otherwise, its complement G̃

has value of 1 for the undesired (excluded) objects in the image and 0 otherwise.

The adaptive weight map is then defined as: W = α2G + αG̃ + 1 ,where α is

the adaptive factor that is defined based on areas of the included and excluded

objects as follows: α = max
{∑

G̃
/∑

G, 1
}

. This weighting scheme puts

more emphasis on the object to make sure it would be completely segmented by

the network while avoiding false segmentation of touching undesired objects.

3.3.3 Guiding Signals

3.3.3.1 Guiding signal for nuclei/cells

When annotator clicks inside a nucleus, a map to guide the segmentation is

created, where the clicked position is set to one and the rest of pixels are set

to zero which we call it inclusion map. In most scenarios, when more than

one nucleus are clicked by the annotator (if he/she wants to have all nuclei

annotated), another map is also created where positions of all nuclei except

the desired nucleus/cell are set to one and the rest of pixels are set to zero,

which is called exclusion map. When only one nucleus is clicked exclusion map

is a zero map. Inclusion and exclusion maps are concatenated to RGB images

to have 5 channels as the input to the network as illustrated in Fig. 3.2. The
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same procedure is used for creating guiding signals of cells. However, we took

some considerations into the training phase of the NuClick in order to make it

robust against guiding signal variations. In the following paragraphs, we will

describe these techniques for both training and testing phases.

3.3.3.1.1 Training

To construct inclusion map for training, a point inside a nucleus/cell is randomly

chosen. It has been taking into account that the sampled point has at least 2

pixels distance from the object boundaries. The exclusion map on the other

hand is generated based on the centroid location of the rest of nuclei within

the patch. Thereby, guiding signals for each patch are continuously changing

during the training. Therefore the network sees variations of guiding signals in

the input for each specific nuclei and will be more robust against human errors

during the test. In other words the network learns to work with click points

anywhere inside the desired nuclei so there is no need of clicking in the exact

centroid position of the nuclei.

3.3.3.1.2 Test

At inference time, guiding signals are simply generated based on the clicked

positions by the user. For each desired click point on image patch, an inclusion

map and an exclusion map are generated. The exclusion map have values if user

clicks on more than one nuclei/cells, otherwise it is zero. Size of information

maps for nuclei and cells segmentation tasks are set to 128× 128 and 256× 256,

respectively. For test time augmentations we can disturb the position of clicked

points by 2 pixels in random direction. The importance of exclusion map is in

cluttered areas where nuclei are packed together. If the user clicks on all nuclei

within these areas, instances will be separated clearly. In the experimental

section we will show the effect of using exclusion maps.

3.3.3.2 Guiding signal for glands

Unlike nuclei or cells, since glands are larger and more complex objects, single

point does not provide strong supervisory signal to the network. Therefore,

we should chose another type of guiding signal which is informative enough to

guide the network and simple enough for annotator during inference. Instead

of points, we propose to use squiggles. More precisely, the user provides a

squiggle inside the desired gland which determines the extent and connectivity

of it.
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3.3.3.2.1 Training

Considering M as the desired ground truth (GT) mask in the output, an

inclusion signal map is randomly generated as follows: First we apply a

Euclidean distance transform function D(x) on the mask to obtain distances

of each pixel inside the mask to the closest point on the object boundaries:

Di,j(M) =

{√
(i− ib)2 + (j− jb)2|(i, j) ∈M

}
(3.2)

where ib and jb are the closest pixel position on the object boundary to the

desired pixel position (i, j). Afterwards, we select a random threshold (τ) to

apply on the distance map for generating a new mask of the object which

indicates a region inside the original mask.

M i,j =

{
1 if Di,j > τ

0 otherwise

The threshold is chosen based on the mean (µ) and standard deviation (σ)

of outputs of distance function, where the interval for choosing τ is [0, µ+ σ].

Finally, to obtain the proper guiding signal for glands, the morphological

skeleton [122] of the new mask M is constructed. Note that we could have

used the morphological skeleton of the original mask as the guiding signal

(which does not change throughout the training phase) but that may cause the

network to overfit towards learning specific shapes of skeleton and prevents it

from adjusting well with annotator input. Therefore, by changing the shape

of the mask, we change the guiding signal map during training. An example

D(M): Dist. Trans. ഥሺ߬ۻ ൌ 22ሻ ഥሺ߬ۻ ൌ 44ሻ ഥሺ߬ۻ ൌ 66ሻۻഥሺ߬ ൌ 0ሻ:ۻ

Figure 3.3: Generating supervisory signal (inclusion map) for the NuClick
while training on gland dataset. The left image is the GT mask of a sample
gland and D(M) is the distance transformation of that mask. By changing
the threshold value (τ), the guiding signal (skeleton of the new mask M which
is specified by green color) is also changing.

of constructing map for a gland is depicted in the Fig. 3.3. In this figure,

the left hand side image represents the GT of the desired gland on which its

corresponding skeleton is overlaid with green color. If we use this same mask

for training the network, the guiding signal would remain the exact same for

all training epochs. However, based on our proposed mask changing technique,
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we first calculate the distance transformation of the GT, D(M), and then

apply a threshold of τ on it to construct a new mask of M . As you can see

in Fig. 3.3, by changing the the threshold value, appearance of the new mask

is changing which results in different morphological skeletons as well (note

the change of overlaid green colored lines with different τ values). This will

make the NuClick network robust against the huge variation of guiding signals

provided by the user during the test phase. The exclusion map for gland is

constructed similar to nuclei/cells i.e., except one pixel from each excluding

object all other pixels are set to zero.

3.3.3.2.2 Test

When running inference, the user can draw squiggles inside the glandular

objects. Then patches of 512×512 are extracted from image based on the

bounding box of the squiggle. If the bounding box height or width is smaller

than 512, it is relaxed until height and width are 512. And if the bounding box

is larger than 512 then image and corresponding squiggle maps are down-scaled

to 512×512.

3.3.4 Post-processing

After marking the desired objects by the user, image patches, inclusion and

exclusion maps are generated and fed into the network to predict an output

segmentation for each patch. Location of each patch is stored in the first step,

so it can be used later to build the final instance segmentation map.

The first step in post-processing is converting the prediction map into an

initial segmentation mask by applying a threshold of 0.5. Then small objects

(objects with area less than 50 pixels) are removed. Moreover, for removing

extra objects except desired nucleus/cell/gland inside the mask, morphological

reconstruction operator is used. To do so, the inclusion map plays the role of

marker and initial segmentation is considered as the mask in morphological

reconstruction.

3.4 Setups and Validation Experiments

3.4.1 Datasets

3.4.1.0.1 Gland datasets

Gland Segmentation dataset [70] (GlaS) and GRAG datasets [123, 124] are

used for gland segmentation. GlaS dataset consists of 165 tiles, 85 of which

for training and 80 for test. Test images of GlaS dataset are also split into to

TestA and TestB. TestA was released to the participants of the GlaS challenge
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one month before the submission deadline, whereas Test B was released on

the final day of the challenge. Within GRAG dataset, there are a total of 213

images which is split into 173 training images and 40 test images with different

cancer grades. Both of these datasets are extracted from Hematoxylin and

Eosin (H&E) WSIs.

3.4.1.0.2 Nuclei dataset

MonuSeg ([71]) and CPM ([52]) datasets which contain 30 and 32 H&E images

,respectively, have been used for our experiments. 16 images of each of these

datasets are used for training.

3.4.1.0.3 Cell dataset

A dataset of 2689 images consisting of touching white blood cells (WBCs) were

synthetically generated for cell segmentation experiments. To this end, we

used a set of 11000 manually segmented non-touching WBCs (WBC library).

Selected cells are from one of the main five category of WBCs: Neutrophils,

Lymphocytes, Eosinophils, Monocytes, or Basophils.

The original patches of WBCs were extracted from scans of peripheral

blood samples captured by CELLNAMA LSO5 slide scanner equipped with oil

immersion 100x objective lens. However, the synthesized images are designed

to mimic the appearance of bone marrow samples. In other words, synthesized

images should contain several (10 to 30) touching WBCs. Therefore, for

generating each image a random number of cells are selected from different

categories of WBC library and then they are added to a microscopic image

canvas which contains only red blood cells. During the image generation each

added cell is well blended into the image so its boundary looks seamless and

natural. This would make the problem of touching object segmentation as hard

as real images. It is worth mentioning that each WBC is augmented (deformed,

resize, and rotate) before being added to the canvas. Having more than 11000

WBCs and performing cell augmentation during the image generation would

guarantee that the network does not overfit on a specific WBC shape. For all

datasets 20% of training images are considered as validation set.

3.4.2 Implementation Details

For our experiments, we used a work station equipped with an Intel Core i9

CPU, 128GB of RAM and two GeForce GTX 1080 Ti GPUs. All experiments

were done in Keras framework with Tensorflow backend. For all applications,

NuClick is trained for 200 epochs. Adam optimizer with learning rate of

3× 10−3 and weight decay of of 5× 10−5 was used to train the models. Batch

size for nuclei, cell and gland was set to 256, 64 and 16 respectively. We used
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Table 3.1: Comparison of the proposed network architecture with other models:
MonuSeg dataset have been used for these experiments.

AJI Dice PQ Haus.

Unet 0.762 0.821 0.774 8.73
FCN 0.741 0.798 0.756 9.5
Segnet 0.785 0.846 0.794 8.33
NuClick W/O MS block 0.798 0.860 0.808 6.11
NuClick + 1 MS block 0.817 0.889 0.820 5.51
NuClick + 2 MS blocks 0.830 0.905 0.829 4.93
NuClick + 3 MS blocks 0.834 0.912 0.838 4.05
NuClick + 4 MS blocks 0.835 0.914 0.838 4.05

multiple augmentations as follows: random horizontal and vertical flip, bright-

ness adjustment, contrast adjustment, sharpness adjustment, hue/saturation

adjustment, color channels shuffling and adding Gaussian noise [61].

3.4.3 Metrics

For our validation study, we use metrics that have been reported in the literature

for cell and gland instance segmentation. For nuclei and cells we have used

AJI (Aggregated Jaccard Index) proposed by [64]: an instance based metric

which calculates Jaccard index for each instance and then aggregates them,

Dice coefficient: A similar metric to IoU (Intersection over Union), Hausdorff

distance [70]: the distance between two polygons which is calculated per object,

Detection Quality (DQ): is equivalent to F 1 − Score divided by 2, SQ: is

summing up IoUs for all true positive values over number of true positives and

PQ: DQ×SQ [125]. For AJI, Dice, the true and false values are based on the

pixel value but for DQ true and false values are based on the value of IoU. The

prediction is considered true positive if IoU is higher than 0.5.

For gland segmentation, we use F1-score, DiceObj, and Hausdorff distance

[70]. The true positives in F1-score are based on the thresholded IoU. DiceObj

is average of dice values over all objects and Hausdorff distance here is the

same as the one used for nuclei.

3.4.4 Network Selection

In this section, we investigate the effect of multi-scale blocks on NuClick network

and compare its performance with other popular architectures. Ablating various

choices of components in NuClick network architecture have been shown in

Table 3.1. We tested our architecture with up to 4 multi-scale (MS) blocks

and we observed that adding more that 3 MS blocks does not contribute

significantly to the performance. It can be observed that our architecture

outperforms three other popular methods (UNet by [47], SegNet by [66], and
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Table 3.2: Performance of different interactive segmentation methods for nuclear
segmentation on validation set of the MonuSeg dataset

Method AJI Dice SQ PQ Haus.

Watershed 0.189 0.402 0.694 0.280 125
Region Growing 0.162 0.373 0.659 0.241 95
Active Contour 0.284 0.581 0.742 0.394 67
iFCN 0.806 0.878 0.798 0.782 7.6
LD 0.821 0.898 0.815 0.807 5.8
NuClick 0.834 0.912 0.839 0.838 4.05

FCN by [29]). When we use no MS block, our model is still better than all

baseline models which shows the positive effect of using residual blocks. We opt

to use 3 MS blocks in the final NuClick architecture because it is suggesting a

competitive performance while having smaller network size.

3.4.5 Validation Experiments

Performance of NuClick framework for interactive segmentation of nuclei, cells,

and glands are reported in Tables 3.2 to 3.4, respectively. For nuclei and

cells, centroid of the GT masks were used to create inclusion and exclusion

maps, whereas for gland segmentation, morphological skeleton of the GT

masks were utilized. For comparison purposes, performance of other supervised

and unsupervised interactive segmentation methods are included as well. In

Tables 3.2 and 3.3, reported methods are Region Growing [126]: iteratively

determines if the neighbouring pixels of an initial seed point should belong to

the initial region or not (in this experiment, the seed point is GT mask centroid

and the process for each nuclei/cell is repeated 30 iterations), Active Contour

[127]: which iteratively evolves the level set of an initial region based on internal

and external forces (the initial contour in this experiment is a circle with radius

3 pixels positioned at the GT mask centroid), marker controlled watershed

[128] that is based on watershed algorithm in which number and segmentation

output depends on initial seed points (in this experiment, unlike [128] that

generates seed points automatically, we used GT mask centroids as seed points),

interactive Fully Convolutional Network–iFCN [102]: a supervised DL based

method that transfers user clicks into distance maps that are concatenated to

RGB channels to be fed into a fully convolutional neural network (FCN), and

Latent Diversity–LD [98]: which uses two CNNs to generate final segmentation.

The first model takes the image and distance transform of two dots (inside and

outside of object) to generate several diverse initial segmentation maps and

the second model selects the best segmentation among them.

In Table 3.4, reported methods are Grabcut by [90]: which updates appear-

ance model within the bounding box provided by the user, Deep GrabCut by
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Table 3.3: Performance of different interactive segmentation methods for cell
segmentation on test set of the WBC dataset

AJI Dice SQ PQ Haus.

Watershed 0.153 0.351 0.431 0.148 86
Region Growing 0.145 0.322 0.414 0.129 71
Active Contour 0.219 0.491 0.522 0.198 50
iFCN 0.938 0.971 0.944 0.944 9.51
LD 0.943 0.978 0.949 0.949 8.33
NuClick 0.954 0.983 0.958 0.958 7.45

Table 3.4: Performance of different interactive segmentation methods for gland
segmentation on test sets of the GLaS dataset

TestA TestB

F1 DiceObj Haus. F1 DiceObj Haus.

Grabcut 0.462 0.431 290 0.447 0.412 312
Deep Gabcut 0.886 0.827 51 0.853 0.810 57
DEXTRE 0.911 0.841 43 0.904 0.829 49
Mask-RCNN 0.944 0.875 35 0.919 0.856 41
BIFseg 0.958 0.889 28 0.921 0.864 38
NuClick 1.000 0.956 15 1.000 0.951 21

[101]: which converts the bounding box provided by the user into a distance

map that is concatenated to RGB image as the input of a deep learning model,

DEXTRE [104]: a supervised deep learning based method which is mentioned

in the Section 3.2.2 and accepts four extreme points of glands as input (extreme

points are extracted based on each object GT mask), and a Mask-RCNN based

approach proposed by [103]: where the bounding box is also used as the input

to the Mask-RCNN. [103] also added a instance-aware loss measured at the

pixel level to the Mask-RCNN loss. We also compared our method for gland

segmentation with BIFseg [97] that needs user to crop the object of interest by

drawing bounding box around it. The cropped region is then resized and fed

into a resolution-preserving CNN to predict the output segmentation. [97] also

used a refinement step which is not included in our implementation.

For GrabCut, Deep GrabCut, BIFseg, and Mask-RCNN approaches the

bounding box for each object is selected based on its GT mask. For iFCN and

LD methods, positive point (point inside the object) is selected according to

the centroid of each nucleus and negative click is a random point outside the

desired object.

Based on Table 3.2, NuClick achieved AJI score of 0.834, Dice value

of 0.912, and PQ value of 0.838 which outperformed all other methods for

nuclear segmentation on MonuSeg dataset. Performance gap between NuClick

and other unsupervised methods is very high (for example in comparison
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with Watershed method, NuClick achieves a 0.645 higher AJI). Extreme low

evaluation values achieved by unsupervised metrics indicate that they are not

suitable for intricate task of nuclear segmentation, even if they are fed with

GT markers. There is also iFCN ([102]), a deep learning based method in

Table 3.2 that is trained based on the clicked dots inside and outside of objects.

However, NuClick performs better than iFCN for all AJI, Dice, and PQ metrics

by margin of 2.8%, 3.4%, and 5.6%, respectively, which is a considerable boost.

For the other CNN based method in Table 3.2, LD method, NuClick advantage

over all metrics is also evident.

The same performance trend can be seen for both cell and gland segmenta-

tion tasks in Tables 3.3 and 3.4. For the cell segmentation task, NuClick was

able to segment touching WBCs from synthesized dense blood smear images

quite perfectly. Our proposed method achieves AJI, Dice, and PQ values of

0.954, 0.983, and 0.958, respectively, which indicates remarkable performance

of the NuClick in cell segmentation.

Validation results of our algorithm on two test sets from GlaS dataset (testA

and testB) are reported in Table 3.4 alongside the results of 4 supervised deep

learning based algorithms and an unsupervised method (Grabcut). Markers

used for Grabcut are the same as ones that we used for NuClick. Based on

Table 3.4 our proposed method is able to outperform all other methods for

gland segmentation in both testA and testB datasets by a large margine. For

testB, NuClick achieves F1-score of 1.0, Dice similarity coefficient of 0.951, and

Hausdorff distance of 21, which compared to the best performing supervised

method (BIFseg) shows 7.9%, 8.7%, and 17 pixels improvement, respectively.

The F1-score value of 1.0 achieved for NuClick framework in gland segmentation

experiment expresses that all of desired objects in all images are segmented well

enough. As expected, unsupervised methods, like Grabcut, perform much worse

in comparison to supervised method for gland segmentation. Quantitatively,

our proposed framework shows 55.3% and 53.9% improvement compared to

Grabcut in terms of F1-score and Dice similarity coefficients. The reason for

the advantage of NuClick over other methods mainly lies in its squiggle-based

guiding signal which is able to efficiently mark the extent of big, complex, and

hollow objects. It is further discussed in Section 3.5.

Methods like DEXTRE, BIFseg, and Mask-RCNN are not evaluated for

interactive nucleus/cell segmentation, because they may be cumbersome to

apply in this case. These methods need four click points on the boundaries

of nucleus/cell (or drawing a bounding box for each of them) which is still

labour-intensive as there may be a large number of nuclei/cells within an image.

Segmentation quality for three samples are depicted in Fig. 3.1. In this

figure, the first, second, and third rows belong to a sample drawn from MoNuSeg,

WBC, and GLaS validation sets. The left column of Fig. 3.1 shows original
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images and images on the right column contains GT boundaries, segmentation

mask, and guiding signals (markers) overlaid on them. Guiding signals for

nuclei and cell segmentation are simple clicks inside each object (indicated by

diamond-shape points on the images) while for glands (the third row) guiding

signals are squiggles. In all exemplars, extent of the prediction masks (indicated

by overlaid transparent colored region) are very close to the GT boundaries

(indicated by solid strokes around each object).

3.5 Discussions

In order to gain better insights into the performance and capabilities of the

NuClick, we designed several evaluation experiments. In this section we will

discuss different evaluation experiments for NuClick. First we will assess

the generalizability of the proposed framework, then we will discuss how it

can adapt to new domains without further training, after that the reliability

of NuClick output segmentation is studied. Moreover, sensitivity of output

segmentation to variations in the guiding signals is also addressed in the

following subsections.

3.5.1 Generalization study

To show the generalizability of the NuClick across an unseen datasets, we

designed an experiment in which NuClick is trained on the training set of a

specific dataset and then evaluated on the validation set of another dataset

but within the same domain. Availability of different labeled nuclei and gland

datasets allow us to better show the generalizability of our proposed framework

across different dataset and different tasks.

To assess the generalizability upon nuclei segmentation, two experiments

were done. In one experiment, NuClick was trained on training set of MoNuSeg

dataset and then evaluated on the validation set of CPM dataset. In another

experiment this process was done contrariwise where CPM training set was

used for training the NuClick and MoNuSeg testing set was used for the

evaluation. Evaluation results of this study are reported in the first two rows

of Table 3.5. From this table we can conclude that NuClick can generalize

well across datasets because it gains high values for evaluation metrics when

predicting images from dataset that was not included in its training. For

example, when NuClick is trained on the MoNuSeg training set, Dice and

SQ evaluation metrics resulted for CPM validation set are 0.908 and 0.821,

respectively, which are very close to the values reported for evaluating the

MoNuSeg validation set using the same model i.e., Dice of 0.912 and SQ of

0.839 in Table 3.2. This closeness for two different datasets using the same
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Table 3.5: Results of generalization study across different datasets for interactive
nuclei and gland segmentation

Train Test Dice SQ DiceObj Haus.

Nuclei
MoNuSeg CPM 0.908 0.821 - -
CPM MoNuSeg 0.892 0.811 - -

Gland
GLaS CRAG - - 0.932 31
CRAG GLaSA - - 0.944 28
CRAG GLaSB - - 0.938 30

model supports our claim about generalizability of the NuClick.

Similarly, to test the generalizability of the NuClick when working on gland

segmentation task, it has been trained on one gland dataset and tested on

validation images from another gland dataset. As GlaS test set is divided

into TestA and TestB, when NuClick is trained on CRAG, it has been test

on testA and testB of GlaS (named as GlaSA and GlaSB in Table 3.5). High

values of DiceObj metric and low values for Hasdroff distances also supports

the generalizability of NuClick framework for gland segmentation task as well.

To provide visual evidence for this claim, we illustrated two nuclear seg-

mentation samples from CPM validation set (resulted using a model trained on

MoNuSeg dataset) and two gland segmentation samples from CRAG validation

set (resulted using a model trained on GLaS dataset) in Fig. 3.4. In all cases

NuClick was able to successfully segment the desired objects with high accuracy.

In all images of Fig. 3.4 different overlaid colors corresponds to different object

instances, solid stroke lines indicate GT boundaries, transparent color masks

show the predicted segmentation region, and other point or squiggle markers

representing guiding signals for interactive segmentation.

3.5.2 Domain adaptation study

To assess the performance of the NuClick on unseen samples from different

data domains, we trained it on MoNuSeg dataset which contains labeled nuclei

from histopathological images and then used the trained model to segment

nuclei in cytology and immunohistochemistry (IHC) samples.

In the cytology case, a dataset of 42 FoVs were captured from 10 different

Pap Smear samples using CELLNAMA LSO5 slide scanner and 20x objective

lens. These samples contain overlapping cervical cells, inflammatory cells,

mucus, blood cells and debris. Our desired objects from these images are nuclei

of cervical cells. All nuclei from cervical cells in the available dataset of Pap

Smear images were manually segmented with the help of a cytotechnologist.

Having the GT segmentation for nuclei, we can use their centroid to apply the

NuClick on them (perform pseudo-interactive segmentation) and also evaluate

the results quantitatively, as reported in Table 3.6. High values of evaluation
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Table 3.6: Performance of the NuClick framework on segmenting nuclei in
images from an unseen domain (Pap Smear)

Method AJI Dice SQ DQ PQ

NuClick 0.934 0.965 0.933 0.997 0.931

metrics reported in Table 3.6 shows how well NuClick can perform on images

from a new unseen domain like Pap Smear samples. Some visual examples are

also provided in Fig. 3.5 to support this claim. As illustrated in the first row of

Fig. 3.5, NuClick was able to segment touching nuclei (in very dense cervical

cell groups) from Pap Smear samples with high precision. It is able to handle

nuclei with different sizes and various background appearances.

For the IHC images, we utilized NuClick to delineate lymphocytes. The

dataset we have used for this section is a set of 441 patches with size of

256× 256 extracted from LYON19 dataset. LYON19 is scientific challenge on

lymphocyte detection from images of IHC samples. In this dataset samples

are taken from breast, colon or prostate organs and are then stained with an

antibody against CD3 or CD8 [129] (membrane of lymphocyte would appear

brownish in the resulting staining). However, for LYON19 challenge organizers

did not release any instance segmentation/detection GTs alongside the image

ROIs. Therefore, we can not assess the performance of NuClick segmentation

on this dataset quantitatively. However, the quality of segmentation is very

desirable based on the depicted results for two random cases in the second

row of Fig. 3.5. Example augmentations in Fig. 3.5 are achieved by clicks of

a non-expert user inside lymphocytes (based on his imperfect assumptions).

As it is shown in Fig. 3.5, NuClick is able to adequately segment touching

nuclei even in extremely cluttered areas of images from an unseen domain.

These resulting instance masks were actually used to train an automatic nuclei

instance segmentation network, SpaNet [130], which helped us achieve the

first rank in LYON19 challenge. In other words, we approached the problem

lymphocyte detection as an instance segmentation problem by taking advantage

of our own generated nuclei instance segmentation masks [117]. It also approves

the reliability of the NuClick generated prediction masks, which is discussed in

more details in the following subsection.

3.5.3 Segmentation Reliability Study

The important part of an interactive method for collecting segmentation is to

see how the generated segmentation maps are reliable. To check the reliability

of generated masks, we use them for training segmentation models. Then we

can compare the performance of models trained on generated mask with the

performance of models trained on the GTs. This experiment has been done for
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Table 3.7: Results of segmentation reliability experiments.

Result on MoNuSeg test set Result on CPM test set
GT NuClickCPM GT NuClickMoNuSeg

Dice SQ Dice SQ Dice SQ Dice SQ

Unet 0.825 0.510 0.824 0.503 0.862 0.596 0.854 0.584
SegNet 0.849 0.531 0.842 0.527 0.889 0.644 0.881 0.632
FCN8 0.808 0.453 0.818 0.459 0.848 0.609 0.836 0.603

Table 3.8: Effect of disturbing click positions by amount of σ on NuClick
outputs for nuclei and cells segmentation.

Nuclei Cells (WBCs)

σ AJI Dice PQ. AJI Dice PQ.

1 0.834 0.912 0.838 0.954 0.983 0.958
3 0.834 0.911 0.837 0.954 0.983 0.958
5 0.832 0.911 0.835 0.953 0.983 0.957
10 0.821 0.903 0.822 0.953 0.982 0.957
20 - - - 0.950 0.979 0.955
50 - - - 0.935 0.961 0.943

nuclear segmentation task, where we trained three well-known segmentation

networks (U-Net [47], SegNet [66], and FCN8 [29]) with GT and NuClick

generated masks separately and evaluated the trained models on the validation

set. Results of these experiments are reported in Table 3.7. Note that when we

are evaluating the segmentation on MoNuSeg dataset, the NuClick model that

generated the masks is trained on the CPM dataset. Therefore, in that case

NuClick framework did not see any of MoNuSeg images during its training.

As shown in Table 3.7 there is a negligible difference between the metrics

achieved by models trained on GT masks and the ones that trained on NuClick

generated masks. Even for one instance, when testing on MoNuSeg dataset,

Dice and SQ values resulted from FCN8 model trained on annotations of

NuClickCPM are 0.01 and 0.006 (insignificantly) higher than the model trained

on GT annotations, respectively. This might be due to more uniformity of

the NuClick generated annotations, which eliminate the negative effect of

inter annotator variations present in GT annotations. Therefore, the dense

annotations generated by NuClick are reliable enough for using in practice. If

we consider the cost of manual annotation, it is more efficient to use annotations

obtained from NuClick to train models.

3.5.4 Sensitivity to Guiding Signals

Performance of an interactive segmentation algorithm highly depends on quality

of the user input markers. In other words, an ideal interactive segmentation
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Figure 3.6: Example results of the NuClick, highlighting the variations in the
user input. First and second rows show the predictions of the NuClick at differ-
ent positions of clicks inside objects. The third and fourth rows demonstrate
the predictions of the NuClick in presence of various shapes of squiggles. Solid
stroke line around each object outlines the ground truth boundary for that
object, overlaid transparent mask is the predicted segmentation region by the
NuClick, and points or squiggles indicate the guiding signal for interactive
segmentation. (Best viewed in color, zoom in to clearly see boundaries)
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Figure 3.7: Extreme cases for nuclei and glands: clumped nuclei in H&E and
IHC images (a-d) and irregular glands/tumor regions in cancerous colon and
prostate images (e-h) are shown. In all images, solid stroke line around each
object outlines the ground truth boundary for that object (except for d and
e where the ground truth masks are unavailable), overlaid transparent mask
is the predicted segmentation region by the NuClick, and points or squiggles
indicate the provided guiding signal for interactive segmentation. (Best viewed
in color, zoom in to clearly see boundaries)
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tool must be robust against errors in the input annotations as much as possible.

For instance, in nucleus or cell segmentation, an ideal segmentation tools should

perform well to delineate boundaries of nuclei as long as user clicks fall inside

the nuclei region i.e., the clicked point does not need to be located exactly at

the center of the desired nuclei.

To assess the sensitivity of NuClick to the variations in the guiding signal,

we design an experiment for nuclei and cell segmentation applications in which

location of the guiding point in the inclusion map is perturbed by adding value

of σ to the location of centroids. We repeat this experiment for different values

of σ for both nuclei and cell segmentation applications and report the results

in Table 3.8. For nuclear segmentation, jittering the location up to 10 pixels

is investigated. It has been shown that disturbing the click position from the

centroid up to 5 pixels does not considerably degrade the segmentation results.

However, when the jittering amount is equal to σ = 10, all evaluation metrics

drop by 1% or more. This reduction in metrics does not necessarily imply

that NuClick is sensitive to click positions, because this fall in performance

may be due to the fact that radius of some nuclei is less than 10 pixels and

jittering the click position by 10 pixels cause it to fall outside the nuclei region

therefore confusing the NuClick in correctly segmenting the desired small

nucleus. However, even reduced metrics are still reliable in comparison with

the resulted metrics from other methods as reported in Table 3.2.

The same trend can be seen for cell segmentation task in Table 3.8. However,

for cells in our dataset we were able to increase the jittering range (up to 50

pixels) because in the WBC dataset, white blood cells have a diameter of at

least 80 pixels. As one can see, the segmentation results are very robust against

the applied distortion to the click position. Changing the click location by 50

pixels makes considerable drop in the performance which can be due to the

same reason as we discussed for the nuclei i.e., amount of jittering is bigger

than the average radius of some small cells.

Unfortunately, we can not quantitatively analyze the sensitivity of the

NuClick to the squiggle changes, because its related changes are not easily

measurable/paramtereizable. However, for two examples of histology images we

showed the effect of changing the guiding squiggles on the resulting segmentation

in Fig. 3.6. In this figure, the effect of changing the click position for two

examples of nuclei segmentation and two examples of cell segmentation are also

visualized. It is obvious from exemplars in Fig. 3.6 that NuClick successfully

works with different shapes of squiggles as the guiding signal. Squiggles can be

short in the middle or adjacent regions of the desired gland, or they can be

long enough to cover the main diameter of the gland. They can be continuous

curves covering all section and indentation of the gland geometry, or separated

discrete lines that indicate different sections of a big gland. They can even have
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arbitrary numerical or letters shape like the example in the last row of Fig. 3.6.

In all cases, it is obvious that NuClick is quite robust against variations in

the guiding signals which is due to the techniques that we have incorporated

during training of the NuClick (randomizing the inclusion map).

It is worth mentioning that we have conducted experiments with training

NuClick for gland segmentation using extreme points and polygons as guiding

signals. Even with a considerable number of points on gland boundary or

polygons with large number of vertices (filled or hollow), the network failed to

converge during the training phase. However, we observed that even simple or

small squiggles are able to provide enough guiding information for the model

to converge fast.

We have also conducted another experiment to assess the sensitivity of

NuClick on the exclusion maps. In other words, we want to see if eliminating

the exclusion map has any effect on NuClick segmentation performance. To

this end, we evaluate the performance of NuClick for nuclei segmentation on

MoNuSeg dataset in the absence of exclusion map. Therefore in this situation

the input to the network would have 4 channels (RGB plus inclusion map).

The network is trained from scratch on the MoNuSeg training set with the new

considerations and then evaluated on the MoNuSeg validation set. Results of

this experiment are reported in Table 3.9. Based on Table 3.9, performance of

the NuClick significantly drops when exclusion map is missing. That is because

there are a lot of overlapping nuclei in this dataset and without having the

exclusion map, the network has no clue of the neighboring nuclei when dealing

with a nucleus that belongs to a nuclei clump.

3.5.5 Extreme Cases

To investigate the effectiveness of NuClick when dealing with extreme cases,

output of NuClick for images with challenging objects (high grade cancer

in different tissue types) are shown in Fig. 3.7. For example in Fig. 3.7a-c

touching nuclei with unclear edges from patches of cancerous samples have been

successfully segmented by NuClick. Additionally, Fig. 3.7d shows promising

segmentation of densely clustered blood cells in a blurred IHC image from

another domain (extracted from LYON19 dataset ([129])).

In Fig. 3.7e-f, images of glands with irregular shapes and their overlaid

predictions are shown. As long as the squiggle covers the extend of gland, we

can achieve a good segmentation. A noteworthy property of NuClick framework

is its capability to segment objects with holes in them. In Fig. 3.7e-f, although

margins of glands are very unclear and some glands have holes in their shape,

NuClick can successfully recognizing boundaries of each gland. Further, if

the squiggle encompass the hole, it will be excluded from final segmentation
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Table 3.9: Performance of the NuClick on the MonuSeg dataset with and
without exclusion map

AJI Dice SQ DQ PQ

NuClick with ex. map 0.834 0.912 0.839 0.999 0.838
NuClick without ex. map 0.815 0.894 0.801 0.972 0.778

whereas if the squiggle covers part of holes in the middle of glands, they will

be included in the segmentation. For instance, in Fig. 3.7g, a complex and

relatively large gland is well delineated by the NuClick. Note that this gland

contains a hole region which belongs to the gland and it is correctly segmented

as part of the gland because the guiding signal covers that part. This is a

powerful and very useful property that methods based on extreme points or

bounding box like [104] and [97] do not offer.

We also show a cancerous prostate image (extracted from PANDA dataset

([131])) in Fig. 3.7h where the tumor regions are outlined by NuClick. Overall,

these predictions shows the capability of NuClick in providing reasonable

annotation in scenarios that are even challenging for humans to annotate. Note

that for images in Fig. 3.7d,h the ground truth segmentation masks are not

available, therefore they are not shown.

3.5.6 User Correction

In some cases, the output of models might not be correct, therefore there should

be a possibility that user can modify wrong predictions. This is a matter of

implementation of the interface in most cases, Hence, when the output is not

as good as expected, the user can modify the supervisory signal by extending

squiggles, changing the shape of squiggles or move the position of clicks. After

the modification has been applied, the new modified supervisory signal is fed

to the network to obtain new segmentation. This process is also briefly shown

in Fig. 3.8.

3.6 Summary

In this chapter, we have presented NuClick, a CNN-based framework for

interactive segmentation of objects in histology images. We proposed a simple

and robust way to provide input from the user which minimizes human effort for

obtaining dense annotations of nuclei, cell and glands in histology. We showed

that our method is generizable enough to be used across different datasets

and it can be used even for annotating objects from completely different data

distributions. Applicability of NuClick has been shown across 6 datasets, where

NuClick obtained state-of-the art performance in all scenarios. NuClick can
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Figure 3.8: Segmentation process for gland: left image shows the initial marking
and the initial results generated by the model. Since the strokes do not reflect
the extend of glands, segmentation masks are not desirable. Therefore as shown
in the right image user can add more strokes or modify the previous ones to
achieve a good segmentation result.

also be used for segmenting other objects like nerves and vessels which are less

complex and less heterogeneous compared to glands. We believe that NuClick

can be used as a useful plug-in for whole slide annotation programs like ASAP

[132] or Qupath [133] to ease the labeling process of the large-scale datasets.

NuClick utilizes a fixed inference for prediction. One potential future direction

can be considering the user feedback for upgrading gradient. In other words,

the model upgrades itself as user annotates images and he/she is happy with

annotation. NuClick has been developed for segmenting patches , the next

step can be developing a platform for interacting with WSIs.
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Chapter 4

Self-supervision for

Classification of Pathology

Images with Limited

Annotations

4.1 Introduction

The recent surge in the area of computational pathology can be attributed to

the increasing ubiquity of digital slide scanners and the consequent rapid rise in

the amount of raw pixel data acquired by scanning of histology slides into digital

whole-slide images (WSIs). These developments make the area of computational

pathology ripe ground for deep neural network (DNN) models. In recent years,

there have been notable successes in training DNNs for pathology image analysis

and automated diagnosis of disease in the histopathology domain [134]. The

performance and generalizability of most DNNs is, however, highly dependent

on the availability of large and diverse amounts of annotated data. Although

the use of digital slide scanners have made large amounts of raw data available,

development of DNN based algorithms remains bottlenecked by the need for

extensive annotations on diverse datasets.

In pathology, annotation burden can pose a large problem – even more so

when compared to natural scene images. WSIs are by nature high resolution

images (sometimes with slide dimensions as large as 200,000 × 150,000 pixels)

– this hinders exhaustive annotations. For even simple use cases like detecting

tumor regions or isolated tumor cells in WSIs, pathologists annotating the

data need to look at regions of the tissue at multiple levels of magnification.

So, even simple labeling of regions of interest can be quite demanding. This

issue is compounded by the fact that the whole image can only be annotated
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part by part owing to its large size. Further, the annotation effort requires

expert domain knowledge and significant investment on the part of specialized

pathologists. Overall, compared to annotating natural images, pathology

images need experienced annotators whereas annotating natural images can be

done by anyone, thresholds for meaningful performance in pathology is much

higher than working with natural images and there are many complex cases

in pathology where one expert can not make a decision. To overcome these

challenges, when training DNNs on new pathology image datasets, it would be

desirable to pursue one or both of the following strategies: (a) labeling small

amounts of the new dataset and making use of the larger pool of the unlabeled

data, and/or (b) using existing labeled datasets which closely match the new

dataset.

For strategy (a), semi-supervised deep learning approaches that learn with

small amounts of labeled data and leverage larger pools of unlabeled data

to boost performance can be employed. These approaches have been widely

demonstrated in the computer vision community for natural scene images.

Particularly popular techniques include Mean Teacher [135] and Virtual Ad-

versarial Training (VAT) [136]. Recently, these approaches have also been

applied to the area of computational pathology to address tasks such as clus-

tering [137], segmentation [138] and image retrieval [139]. However, due to the

high dimensionality of the images, the multi-scale nature of the problem, the

requirement of contextual information and texture-like nature of sub-patches ex-

tracted from slides, the direct translation of popular semi-supervised algorithms

into pathology classification tasks is not feasible.

For strategy (b), domain adaptation approaches that transfer knowledge

from existing resources for related tasks to the classification task-at-hand

can be employed. However, due to variations in tissue, tumor types, and

stain appearance during image acquisition, different pathology image datasets

appear quite distinct from one another. In addition, for some rare tissue or

tumor types, there may be no annotated datasets available for such knowledge

transfer. Hence, direct translation of existing domain adaptation algorithms

which work for natural vision images may not be possible. Yet, unlabeled data

for related tasks are largely available and are less prone to bias [140]. Hence,

when dealing with limited annotations, such unlabeled data can be used to

capture the shared knowledge or to learn representations that can improve

model performance.

To address the dual challenges of low annotations and domain adaptation in

histopathology, it is possible to use unlabeled data in a self-supervised manner.

In this setup, the model is supervised by labels that come inherently from

the data itself without any additional manual annotations. These labels can

represent distinct morphological, geometrical and contextual content of the
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images. Models trained on these ‘free’ labels can learn representations that can

improve performance for a variety of tasks such as classification, segmentation

and detection [141]. Self-supervision tasks can be used together with the

main supervised task in a multi-task setup to improve performance for semi-

supervised learning and domain adaptation [142]. However, self-supervised

tasks proposed in the literature so far are mainly based on characteristics of

natural scene images, which are very different from histology images. For

instance, common self-supervision tasks focus on predicting the degree of

rotation, flipping, and/or the relative position of objects. While these are

meaningful concepts for natural scene images, they do not carry much relevance

for histopathology images. Specifically, while the degree of rotation could help

to also learn semantic information present in a natural image, it would not make

sense for pathology images because they have no sense of global orientation

[143].

In this chapter, we propose the Self-Path1 framework to leverage self-

supervised tasks customized to the requirements of the histopathology domain,

and enhance DNN training in scenarios with limited or no annotated data for

the task at hand. Our main contributions are summarized as follows:

• We introduce a generic and flexible self-supervision based framework,

Self-Path, for classification of pathology images in the context of limited

or no annotations.

• We propose 3 novel pathology pathology specific self-supervision tasks,

namely, prediction of magnification level, solving the magnification jigsaw

puzzle and prediction of the Hematoxylin channel, aimed at utilizing

contextual, multi-resolution and semantic features in histopathology

images.

• We conduct a detailed investigation on the effect of various self-supervision

tasks for semi-supervised learning and domain adaptation for three data-

sets.

• We demonstrate that Self-Path achieves state-of-the art performance in

limited annotation regime (when 1-2% of the whole dataset is annot-

ated) or even when no annotations are available (in the case of domain

adaptation).

4.1.1 Related Work

Semi-supervised Learning: Semi-supervised deep learning approaches are

widely studied in the computer vision literature [144]. Popular methods utilize

1Code as available at: https://github.com/navidstuv/selfpath/tree/upload
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forms of pseudo labelling and consistency regularization, and utilize small

amounts of labeled data alongside larger pools of unlabeled data for learning.

Pseudo-labeling approaches [145] use available labels to train a model and

impute labels on the unlabeled samples which are in turn used in training.

MixMatch extends pseudo-labeling by adding temperate sharpening along

with the mix-up augmentation [146] . Consistency-based methods regular-

ize the model by ensuring stable outputs for various augmentations of the

same sample. These can be done by enforcing consensus between temporal

ensembles of network outputs like in Pi-Model [147], or between perturbed

images fed to a network and its EMA averaged counterpart like in Mean

Teacher[135]. Virtual adversarial training(VAT) [136] generates the perturbed

images in an adversarial fashion to smooth the margin in the direction of max-

imum vulnerability. These methods ensure generalizability against significant

image perturbations, move the margin away from high-density regions, and

enable strong performance on benchmark natural scene image tasks with low

annotation budgets.

However, semi-supervised learning has not been sufficiently explored in

pathology image analysis. At the time of this writing, only 6 papers investigate

semi-supervised learning for the histopathology domain. In [138], Li et. al

proposed an EM-based approach for semi-supervised segmentation of histology

images. [137] proposed a cluster based semi-supervised approach to identify

high-density regions in the data space which were then used by supervised

SVM in finding the decision boundary. Jaiswal et al. [148] used pseudo-labels

for improving the network performance for metastasis detection of breast

cancer. Su et al. [149] employed global and local consistency losses for mean

teacher approach for nuclear classification. Shaw et. al [150] also proposed

to use pseudo-labels of unlabeled images for fine-tuning the model iteratively

to improve performance for colorectal image classification. Deep multiple

instance learning and contrastive predictive coding were used together in [151]

to overcome the scarcity of labeled data for breast cancer classification. Yet,

there is scope for improvement to close the gap between fully supervised

baselines and semi-supervised methods employing just a few labeled pathology

images.

Domain Adaptation: Domain adaptation methods focus on adapting

models trained on a source dataset to perform well on a target dataset. Leading-

edge techniques mainly use adversarial training for aligning the feature dis-

tributions of different domains. Popular domain-adversarial learning-based

methods[152, 153] use a domain discriminator to classify the domain of images.

These methods play a minimax game where the discriminator is trained to distin-

guish the features from the source or target sample, while the feature generator

is trained to confuse the discriminator. [154] employed adversarial learning
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and minimized Wassertein distance between domains to learn domain-invariant

features. Image-translation methods minimize the discrepancy between the

two domains at an image-level [155]. In pathology, Ren et al. [156] employed

adversarial training for domain adaptation across acquisition devices (scanners)

in a prostate cancer image classification task. [157] used CycleGAN to translate

across domains for a cell/nuclei detection task. [158] introduced a measure

for evaluating distance between domains to enhance the ability to identify

out-of-distribution samples in a tumor classification task. Yet, most practical

domain adaptation techniques require labeling of target domain data, and the

applicability of state-of-the-art unsupervised domain adaptation approaches

for histopathology is yet to be widely established.

Self-Supervision: Self-supervision employs pretext tasks (based on an-

notations that are inherent to the input data) to learn representations that can

enhance performance for the downstream task [141]. Autoencoders [159] are

the simplest self-supervised task, where the goal is to minimize reconstruction

error and the proxy labels are the values of image pixels. Other self-supervised

tasks in the literature are image generation [141], inpainting [160], colorizing

grayscale images [161], predicting rotation [162], solving jigsaw puzzle [163],

and contrastive predictive coding [164]. Perhaps the main difference between

contrastive learning approaches and methods like ours is that while our method

caters to a specific use case domain and the task at hand is to come up with

self-supervision tasks, the contrastive learning approaches offer the advantage

of a more generic framework for learning representations potentially at the

cost of losing performance in a very specific use case domain (such as his-

topathology). Although the classical self-supervision approaches requires no

additional annotations, it is also possible to leverage small amounts of labeled

data within a self-supervision framework. For example, S4L [142] showed that

the pretext task (e.g., rotation, self-supervised exemplar [165]) can benefit from

small amount of labeled data alongside larger unlabeled data. Moreover, some

works [166, 167] demonstrated the effect of self supervised tasks for domain

adaptation, where in [167] the effect of various self-supervised tasks have been

shown for domain alignment. Particularly, solving jigsaw puzzle [167] has been

proved to be a beneficial pretext task for domain generalization.

As there is no large labeled dataset akin to ImageNet for pretraining in the

pathology domain, self supervised learning offers potential to obtain pre-trained

model that preserves the useful information about data in itself. Although one

recent study [168] explored self-supervised similarity learning for pathology

image retrieval, much of the self-supervision literature is focused on computer

vision applications. A key challenge in applying self-supervision to pathology-

specific applications is to define the pretext task that will be most beneficial.

As such, systematic analysis and derivation of pretext tasks customized for a
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range of histopathology applications would be desirable.

4.2 Problem Formulation

We now define the problem of semi-supervised learning and domain adaptation

for pathology image classification. Consider a whole slide image (WSI) that

is comprised of a number of disjoint or overlapping ‘patches’. We denote an

input image or ‘patch’ as x and its associated class label as y.

4.2.0.0.1 Semi-supervised Learning

We consider a set of nl limited labeled images SL = {(xli, yi)}ni=1l, and a set of

ml >> nl unlabeled images SU = {(xui )}mi=1l. The semi-supervised framework

seeks to leverage the large pool of unlabeled images in SU to enhance the

generalizability of learning with fewer labeled images in SL. Generally, in the

semi-supervised setting, both SL and SU are from the same distribution.

4.2.0.0.2 Domain Adaptation

We define a source domain S comprising a set of ηs labeled images Ds =

{xsi , ysi }
ηs
i=1. Likewise, we have a target domain T comprising a set of ηt

unlabeled images Dt = {xti}
ηt
i=1. Both source and target domains have the same

labels. Further, source and target domains have related task characteristics,

but their data distributions are distinct.

4.3 Methods

Our proposed Self-Path framework is depicted in Figure 4.1. To address la-

bel scarcity for the main classification task (main task), Self-Path leverages

self-supervision and informs the supervised learning for the main task with

the self-supervised learning for pretext tasks. Further, our proposed frame-

work employs a multi-task learning approach to learn class-discriminative

and domain-invariant features that would generalize with limited annotated

data. Specifically, Self-Path (a) can leverage one or more pathology-specific

or pathology-agnostic pretext tasks, (b) is amenable to adversarial or non-

adversarial training, and (c) allows flexibility to incorporate semi-supervised,

generative learning and/or domain adaptation approaches. We now formally

describe the multi-task learning objective and detail the pretext tasks that are

used along with the main task.
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4.3.1 Multi-task Learning

Our proposed approach trains the model using the main and pretext tasks in

conjunction. The framework comprises a shared encoder which learns features

that are common to both the pretext task and the main task. Each task usually

has a separate head connected to the shared encoder and learning for all tasks

is optimized simultaneously. Formally,

argmin
θc,θe, θp1 ,..θpk

1
nl

nl∑
i
Lc(F

θc
c (F θee (xli)), yi)

+ 1
nl

K∑
k=1

αpk
nl∑
i
Lpk(F

θpk
pk (F θee (xli)), r

l
ik)

+ 1
nu

K∑
k=1

αpk
nu∑
i
Lpk(F

θpk
pk (F θee (xui )), ruik)

, (4.1)

where K is the number of pretext tasks, r is the label for pretext task; Lc and

Lpk are the losses for the main and pretext tasks, respectively; Fe, is the shared

encoder, Fc is the function for main task and Fpk is the function of kth pretext

task; θc, θe and θpn are parameters of main task classifier, shared encoder and

pretext tasks, respectively; αpk indicates weights for different tasks; and nl and

nu indicate the number of labeled and unlabeled images, respectively. When

this model is used for semi-supervised learning, the labeled and unlabeled

images come from the same domain. When used for domain adaptation, the

labeled images come from source domain and unlabeled images come from the

target domain.

4.3.2 Self-Supervision

The self-supervision utilizes one or more pretext tasks to leverage information

in the unlabeled images and improve performance for the main task. Our setup

employs both pathology-specific and pathology-agnostic self-supervised tasks.

Every pretext task pk is defined by a transformation function gk applied to

input x, and an implicit label rk for the transformed input x̃ = gk(x). Then,

the objective function Lpk is the objective for learning the self-supervised

classification task that maps x̃ to rk.

4.3.3 Pathology-specific Pretext tasks for Self-supervision

Histopathology images can vary in shape, morphology and arrangement of the

nuclei across tissue types and disease conditions. Learning these features or

semantic representations of these features can enable generalizable classification

models that can more effectively transfer knowledge across domains. Therefore,

we design pathology-specific pretext tasks that cater to morphology, context

and shapes of nuclei as detailed below :
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4.3.3.1 Magnification Prediction

Histopathology images are often generated and viewed at various standard

magnification levels. Considering an image of fixed size, higher magnifications

provide more details but less context, whereas lower magnifications allow less

details but more context of tissue region. Pathologists assessing an image tend

to infer important semantic information by iterating between detail and context

– i.e., by zooming in and out on WSIs or by looking at different magnification

levels 2. In other words, magnification levels are implicitly correlated with

important semantic information. Therefore, to enable the classification model

to learn semantic information, we set up a pretext task focused on estimating

magnification level of the image. Specifically, the pretext task focuses on

classifying the input image to 1 of 4 magnification levels (40×, 20×, 10× and

5×). We extract images or patches from WSIs at these magnification levels

Figure 4.2 (A). If a magnification level is not available, we obtain the patches

by (bi-linear) resizing patches from other magnification levels that are available.

For example, to obtain 128 × 128 patches at 5×, we extract patches of 1024

× 1024 at 40× and down-sample by factor of 4. We then feed the extracted

images to the network, which learns by minimizing a cross-entropy objective

function.

4.3.3.2 Solving Magnification Puzzle (JigMag)

A basic problem in pattern recognition is the jigsaw task of retrieving an

original image from its shuffled parts [169]. Convolutional neural networks

(CNNs) have been employed to solve the jigsaw puzzle [140]. To solve the

jigsaw puzzle, it is known that the network should learn the global semantic

representation of images. This is achieved by concentrating on the differences

between tiles and their positions while avoiding low level statistics [140]. In

histopathology, objects are smaller compared to natural scene images, and there

is no specific ordering among the objects. For example, the relative positions

of different parts of dog in a natural scene image is consistent, however we do

not have a similar concept in histopathology. Therefore, solving the jigsaw

puzzle is by itself not sufficient for learning useful semantic representations in

histopathology.

Instead, we propose to create a puzzle to reflect the magnification and

context characteristics of histopathology images. Conceptually, classification

can be enhanced by having the network implicitly learn object size and as-

sociated contextual information. Hence, we propose a pretext task focused

2Magnification levels and their corresponding resolutions vary for each scanner. However
by observing one particular magnification of an image, other magnifications can be perceived
easily for the same scanner.
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on solving this magnification and context puzzle. In this puzzle, an image

consists of image tiles with various magnifications and the network is tasked

with predicting their arrangement. This set up caters also to the need to

classify images containing objects with varying shapes and sizes.

Specifically, we define v as a vector of image orders in a 2×2 grid where

each grid includes a specific magnification. For example v = [0, 1, 2, 3]

defines that image with magnification 5× is on top left corner, 10× is on top

right and so on. We consider 24 different orders of magnification. To construct

our proposed jigsaw puzzle, we first extract patches of size 512 × 512 at 40×
magnification then each part of the puzzle is constructed by down-sampling and

or center-cropping to the size of 64 × 64, where each reflects specific context

and resolution of the the original extracted patch. This pretext task employs a

cross entropy loss function.

4.3.3.3 Hematoxylin Channel Prediction

Commonly, histopathology images are stained with Hematoxylin and Eosin

(H&E). In H&E images, hematoxylin turns the palish color of nuclei to blue

and eosin changes the color of other contents to pink. Color deconvolution

methods have been applied to specifically identify cell nuclei in H&E images.

Therefore by extracting hematoxylin channel, one can locate the nuclei and their

approximate shape. Pathologists often use the location, shape and morphology

of nuclei in the hematoxylin channel to diagnose or classify histopathology

images (especially for malignant features).

Therefore, one way to enhance learning of useful representations is to enable

the classifier to identify the nuclei and their associated characteristics. We

choose to define a pretext task focused on predicting the hematoxylin channel

from H&E. We use the approach in [170] to extract the hematoxylin channel

in our images and define the ground truth for the self-supervision task. We

scale the values of hematoxylin channel in the range [0,1] and employ a mean

absolute loss for optimizing this task.

4.3.4 Pathology-agnostic Self-supervision Tasks

The literature has investigated various pretext tasks like rotation prediction,

flipping, image reconstruction [141, 162]. These were however, not tailored

for pathology data. Here, we systematically study and benchmark efficacy

of these pretext tasks for semi-supervised learning and domain adaptation in

histopathology applications.
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4.3.4.1 Prediction of Image Rotation

For predicting rotation, the input image is rotated with degrees of 0◦, 90◦, 180◦

and 270◦ corresponding to the labels 0, 1, 2 and 3, respectively [162].

4.3.4.2 Prediction of Image Flipping

The label assigned to the horizontal flipping of image is 1 and 0 if not flipped.

4.3.4.3 Image Reconstruction with Autoencoder

For reconstructing the image, a convolutional decoder is used on top of the

feature extractor [159], similar to one for predicting hematoxylin channel

however 3 channels is considered for output.

4.3.4.4 Real vs Fake Prediction (Generative)

The generative learning literature has shown that predicting whether an image

is real or fake can help to learn useful representations for classification [171].

Therefore, we introduce a generative pretext task focused on real vs. fake

prediction. To learn this pretext task, we train a generative network in an

adversarial fashion by using unlabeled samples. While one could use a shared

encoder to extract features, we found that it is easier to employ a simpler

encoder/discriminator similar to the generative adversarial network (GAN) in

[171].

Formally, real images are drawn from distribution Dreal, and the generative

function learns the distribution Dgen where the goal is to align this two

distributions (Dgen ∼ Dreal). The generator G(.) takes predefined noise

variables z from a uniform distribution Dnoise. The objective function is

defined as:

Ldis = −Ex∼ Dreal
[log[1− FDis(Fe(x))]]

−Ex∼ Dgen [log[FDis(Fe(x))]]

Lgen = ‖Ex∼Dreal
[Fe(x)]− Ez∼Dnoise [Fe(G(z))]‖1

, (4.2)

where Lgen and Ldis are the generator and discriminator losses, respectively.

Fe(x) is the feature from intermediate layer of feature extractor (last layer

before fully connected layers) and FDis(Fe(x)) is the output of the discriminator

(fake/real head).
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4.3.4.5 Domain Prediction

In order to learn useful representations to facilitate domain adaptation, it is

useful to have a network learn the common features between source and target

domains. Therefore, we introduce a pretext task to predict if the image belongs

to source or target domain, and employ it in combination with other pretext

tasks for the domain adaptation experiments.

For this pretext task, we employ a domain adversarial neural network

(DANN) [153]. DANN includes a minimax game where discriminator Hd

(domain prediction head) is trained to distinguish between the source and

target domain, and the feature extractor is simultaneously trained to confuse

the discriminator. Therefore, to extract the common or domain-invariant

features, the parameters of feature extractor θe (shared encoder in the multi-

task setup) are learned by maximizing the loss of domain discriminator Ld,

while parameters of the domain discriminator are learned by minimizing the loss

of domain discriminator. Parameters of the main task Fc are also minimized

to ensure good performance on the main task. Formally:

argminmax
θc,θe θd

1
ηs

ηs∑
i=0

Lc(F
θc
c (F θee (xsi )), yi) +

− αd
ηs+ηt

(
ηs+ηt∑
i=1

Ld(F
θd
d (F θee (xi)), di)

, (4.3)

where di is the domain label for xi and αd is a coefficient for discriminator

loss. In practice, we apply domain confusion using the Gradient Reversal Layer

(GRL), where the gradients of Ld with respect to the gradients of feature

extractor parameters θe (∂Ld
∂θe

) are reversed during back-propagation.

4.4 Experiments

4.4.1 Datasets

4.4.1.1 Camelyon16

We used the Camelyon 16 challenge dataset [15] that contains 399 H&E stained

WSIs obtained on patients with breast cancer metastasis in the lymph nodes.

The WSIs were acquired from 2 different centers, namely: Radboud University

Medical Center (RUMC) and University Medical Center Utrecht (UMCU).

RUMC images were generated by a digital slide scanner (Pannoramic 250 Flash

; 3DHISTECH) with a 20× objective lens (0.243 µm × 0.243 µm) and UMCU

images were produced using a digital slide scanner (NanoZoomer-XR Digital

slide scanner C12000-01; Hamamatsu Photonics) with a 40× objective lens

(0.226µm × 0.226 µm). The tumor regions are exhaustively annotated by

pathologists. We used the official training and testing splits comprising 270
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and 129 WSIs, respectively. We randomly sampled 34 WSIs of the training set

for validation. For our experiments, we randomly extracted patches from both

normal and tumor regions (Table 4.1).

4.4.1.2 LNM-OSCC

LNM-OSCC is an in-house dataset comprising 217 H&E WSIs obtained on

patients with Oral Squamous Cell Carcinoma (OSCC). Of these 217 patients,

140 have metastases in the cervical lymph nodes and 77 do not manifest

metastases in the cervical lymph nodes. The WSIs were acquired from 2

hospitals using 2 different scanners – (a) 98 WSIs scanned with 40× objective

lens using IntelliSite Ultra Fast Scanner (0.25 µm/pixel) at University Hospital

Conventry and Warwickshire (UHCW), and (b) 119 WSIs scanned at the

School of Medical Dentistry in Sheffield University by Aperio/Leica CS2 with

20× objective lens ( 0.2467 µm/pixel). The training set comprises 100 WSIs,

the validation set 14 WSIs and testing set 103 WSIs. For those cases in the

training and validation sets that have metastases, a sampling of the tumor and

normal regions were delineated with bounding box annotations by pathologists.

For the testing set, the tumor regions were exhaustively annotated at the

pixel-level.

4.4.1.3 Kather

This dataset contains 107,180 image patches from H&E stained WSIs comprising

human colorectal cancer (CRC) and normal tissue. For this dataset, only

patches were available (no WSIs).The dataset covers 9 tissue classes: Adipose

(ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC),

smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated

stroma (STR), colorectal adenocarcinoma epithelium (TUM). We used the

official data splits comprising 100k patches for training and 7180 patches for

testing. We randomly sampled 20k patches of the training set for validation.

4.4.2 Data Summary

Figure 4.3 shows some illustrative examples of the different datasets used in

our study. The overall data statistics are shown in Table 4.1. For Camleyon16

and LNM-OSCC datasets, we extracted patches from the WSIs, and patches

are distributed equally for each class. For our main task the patch extraction

size is 128 × 128 at 10×. The Kather dataset patches are sized 224 × 224 and

we resized to 128 × 128 for our experiments.

[!t]
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Table 4.1: Number of WSIs and patches in each dataset.

Train Validation Test

—
Camelyon16

WSIs 236 34 129
patches 67054 15586 16562

LNM-OSCC
WSIs 100 14 103
patches 55416 7224 14472

Kather patches 79994 20006 7180

4.4.3 Experimental Setup

4.4.3.1 Networks

We chose Resnet50 [56] as the feature extraction backbone for all our experi-

ments. The classifier head consists of adaptive average pooling which is followed

by fully connected layer and softmax. The decoder head for reconstructing

image and predicting hematoxylin channel is similar to the UNet decoder [47]

(Table A.3) without using any skip connections. While using the real vs fake

pretext task for image generation, we utilize the architecture presented in [171]

(Table A.2) and find that this simpler feature extractor allows easy and robust

convergence for the image generator.

4.4.3.2 Implementation Details

When Resnet50 is used as the shared encoder, we trained the network for 200

epochs. Our experiments used batch size 64, Adam optimizer, and learning

rate of 10−3. We fed batches of labeled and unlabeled images to the network

separately. Therefore an epoch is defined as one full step through all the

unlabeled images. Since our self-supervised experiments utilize fewer labeled

images than unlabeled images, the labeled images are repeated in an epoch.

Experiments related to real vs fake prediction used number of epochs and

batch size of 500 and 32, respectively; and employed Adam optimizer with

learning rate of 3× 10−4. For training model in multitask setup, we separately

input batches of images for each task to the network and then sum their losses

with their corresponding weights. Finally we back-propagate the whole loss

through the network.

4.4.4 Results of Semi-Supervised Experiments

Here, we compare the effect of different self-supervision tasks for semi-supervised

learning. We compare our models against the popular semi-supervised bench-

marks, namely Mean Teacher [135] and VAT [136]. We also compare with

teacher-student chain [150] (TSchain). TSchain is a recent semi-supervised

approach for histopathology domain, that predicts the pseudo-labels for the
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unlabeled data and then uses all images for iteratively retraining the model.

For performance evaluations, we follow the typical protocol of varying the

annotation budget for the training set while maintaining a fixed validation set,

and reporting AUCs (average across 3 seeds) on the test set.

4.4.4.1 Results for LNM-OSCC Dataset

We report performance of each of the self-supervised tasks on LNM-OSCC

dataset in Table 4.2. We have evaluated the model performance in terms

of AUROC (Area Under the Receiver Operating Characteristic) for different

annotation budgets (1%, 4%, 5%, 10% and 20% of the available WSIs). The

semi-supervised approaches train on a combination of the labeled and unlabeled

WSIs. The supervised baseline is only trained on labeled images without

utilizing any unlabeled images.

We observe from Table 4.2 that at very low annotation budgets, patho-

logy specific self-supervised tasks outperform the baselines and the pathology

agnostic self-supervised tasks. For instance, at annotation budgets of 1%

(1 labeled WSI, 134 labeled patches) and 4% (4 labeled WSIs, 1120 labeled

patches), JigMag task has the best performance. At annotation budgets of 1%

and 2%, Hematoxylin and magnification tasks outperform pathology agnostic

tasks and generative tasks. When annotation budget increases to 10%, we ob-

serve that the generative task performs much better (AUC 95.4%), suggesting

that the generated images can help the classifier to boost the performance.

Overall, our LNM-OSCC experiments suggest that for limited annotation

budgets, pathology specific pretext tasks are helpful for enhancing the model

performance, with JigMag outperforming other approaches.

4.4.4.2 Results for Camelyon16 Dataset

We report performance of each of the self-supervised tasks on Camelyon16

dataset in Table 4.3. We have evaluated the model performance in terms

of AUROC (Area Under the Receiver Operating Characteristic) for different

annotation budgets (1%, 2%, 5%, 10% and 20% of the available WSIs). The

semi-supervised approaches train on a combination of the labeled and unlabeled

WSIs. The supervised baseline is only trained on labeled images without

utilizing any unlabeled images.

Similar to LNM-OSCC dataset, pathology specific tasks outperform other

semi supervised methods. In particular, the JigMag task improves the per-

formance over the supervised baseline by 13.4%, 11.8% and 6.2% at 1% (2

WSIs), 2% (4 WSIs) and 5% (8 WSIs) annotation budgets, respectively. At 1%

annotation budget, only magnification and JigMag outperform mean teacher

and supervised baseline. Unlike LNM-OSCC, the generative model cannot
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Table 4.4: Kather Results for Different Annotation Budgets. Annotation
budget is defined as the percentage of available WSIs that are labeled. The
number of patches associated with each budget are indicated in the parentheses.
The supervised upper bound performance when using all labeled data is 99.4%.

Labeled WSIs (No. Patches) 0.1%(100) 1%(800)
AUROC(%) AUROC(%)

Baselines
supervised baseline 87.5 ± 2.0 92.5 ± 1.2
mean teacher [135] 89.1 ± 1.5 93.9 ± 0.3
VAT [136] 88.5 ± 1.4 92.6 ± 0.4
TS chain [150] 88.9 ± 0.3 93.5 ± 0.2

Self-supervised tasks
generative 88.4 ± 3.5 92.3 ± 2.6
rotation 87.4 ± 1.6 93.3 ± 0.4
flipping 88.6 ± 0.8 93.0 ± 0.9
autoencoder 89.3 ± 1.3 94.3 ± 1.2
hematoxylin 90.3 ± 0.7 95.1 ± 0.5
Best self-supervised 90.3 ± 0.7 95.1 ± 0.5

achieve highest AUROC for any annotation budget, but it’s performance is

competitive with mean teacher and VAT. Similar to LNM-OSCC, JigMag could

achieve highest performance overall, and the main boost is obtained at very

low annotation budgets.

4.4.4.3 Results for Kather Dataset

We report performance of each of the self-supervised tasks on Kather dataset

in Table 4.4. Since there are 9 classes in the Kather dataset, Macro AUROC is

used for evaluation of classification performance. Unlike the other 2 datasets,

only patches were available for this dataset, therefore the annotation budget

only reflects the proportion of the overall patches that is labeled. Further, we

observe that at 2% annotation budget, the performance of supervised baseline

is still high (Macro AUC of 98%). Hence using semi-supervised approaches

would not add much benefit. Hence, we focus on the very low annotation

budget regime where some degradation of Macro-AUC can be observed for

supervised model – i.e., annotation budgets of 0.1%(100 labeled) and at 1%

(800 labeled images). Moreover, as this dataset does not include WSIs, we

were unable to extract large patches or patches at different magnificationsand

hence could not evaluate JigMag and magnification self-supervised tasks on

this dataset.

From Table 4.4, we observe that at 0.1% annotation budget, predicting

hematoxylin channel as a self-supervised task improves the performance by

2.8% and 1.2% compared to the baseline and mean teacher, respectively. At

1% annotation budget, we see that the various self-supervised tasks can again
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Table 4.5: AUROC results for domain adaptation

Cam16→LNM-OSCC LNM-OSCC→Cam16
Baselines

supervised baseline 79.53 ± 0.2 63.73 ± 0.5
DANN 89.23 ± 1.5 71.15 ± 0.6
WDGRL 89.64 ± 2.6 72.65 ± 2.2

Pathology-Agnostic Self-supervised Tasks
rotation 86.14 ± 3.4 66.91 ± 4.1
flipping 82.14 ± 3.6 65.95 ± 4.4
autoencoder 89.90 ± 2.8 71.62 ± 2.6
generative 91.54 ± 3.5 74.14 ± 2.7

Pathology-Specific Self-supervised Tasks
magnification 89.69 ± 3.6 73.62 ± 4.1
JigMag 92.34 ± 4.4 74.51 ± 3.6
hematoxylin 90.47 ± 4.5 73.24 ± 3.8
mag+hem+JigMag 92.85 ± 3.6 74.95 ± 3.5

improve performance compared to the baseline. Predicting hematoxylin channel

can also give the superior performance, suggesting that the prediction of rough

nuclear segmentations can be helpful for semi-supervised learning.

4.4.5 Domain Adaptation Experiments

We conduct two domain transfer experiments, (i) Camelyon16 to LNM-OSCC

(Cam16→LNM-OSCC) and (ii) LNM-OSCC to Camelyon16 (LNM-OSCC→Cam16).

In both cases, we do unsupervised domain transfer, where the source is the

labeled set and the target set is completely unlabeled.

We evaluate our approach against the naive supervised baseline, and two

other domain adaptation methods WDGRL [154] and DANN [153]. The

supervised baseline employs Resnet50 and is trained with source domain data

only. WDGRL trains a domain critic network to estimate the Wasserstein

distance between the source and target feature representations. The feature

extractor network will then be optimized to minimize the estimated Wasserstein

distance in an adversarial manner. By iterative adversarial training, WDGRL

learns feature representations invariant to the covariate shift between domains.

DANN is a domain prediction approach based on the GRL unit and was

mentioned in Section 4.3.4.

We report the results obtained with Self-Path (using different pretext tasks)

and the comparisons with the supervised and domain adaptation baselines in

Table 4.5. We observe that the pathology-specific pretext tasks can help the

model outperform the baseline by a large margin. For Cam16→LNM-OSCC,

the pathology-specific pretext tasks provide more than 10% boost in AUROC

over the supervised baseline. The combination of all pathology specific pretext
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tasks achieves the best performance. Amongst the individual pretext tasks,

JigMag achieves the best performance (∼2% better than DANN and WDGRL).

Further, we note that the pathology agnostic generative model also performs

well – with 1.9% higher AUROC than WDGRL and 11% higher AUROC over

the supervised baseline. This suggests that the images from the generator

can contribute to learning useful domain-invariant features as well. We see

similar trends for LNM-OSCC→Cam16 – where again combining pathology

specific tasks has the best performance and JigMag provides the second best

performance. We highlight that we have used domain prediction with GRL

layer in all non-generative methods as it improves the performance. Generative

models, owing to adversarial training can still achieve very high performance,

even without GRL. The fully supervised non-domain adapted AUROC values

for LNM-OSCC and Cam16 are 98.2 and 95.3, respectively.

4.4.5.1 WSI Analysis

While the results thus far are reported at the patch level, it is also useful to

consider the WSI-level performance. For the Cam16→LNM-OSCC domain

adaptation task, we now report the WSI-level results for the top two best

performing Self-Path settings i.e., combination of all pathology specific pretext

tasks and JigMag pretext task. We also provide comparisons with the super-

vised baseline (source only), WDGRL, and the pathology agnostic generative

pretext task.

In order to quantify WSI-level performance, we aggregate patches belonging

to a WSI and construct a WSI-level heat map based on the patch level

predictions. For heat map generation, there are two steps. First, we extract

patches of 128 × 128 at 10× magnification with overlap of 50% from tissue

regions of WSIs. Second, we aggregate the prediction of each patch together

to build the final heat map of WSIs. We then post-process these heat maps

to obtain the WSI-level prediction. The post-processing steps are uniform

for all models in this section, and as follows: we extract 10 morphological

and geometrical features from objects within binarized heat map at three

thresholds of 0.25, 0.5 and 0.9. Then we calculate the mean, stddev, minimum

and maximum of object features for each WSI. Therefore, in total we use 120

features for constructing feature vectors. Afterwards, we employ the random

forest algorithm for classification of the features. Finally, we evaluate the

model on the test set of LNM-OSCC.

The results are shown in Table 4.6. The supervised baseline has WSI-level

AUROC of 75.2% whereas Self-Path with JigMag pretext task and Self-Path

with the combination of all pathology specific pretext tasks each improve the

performance by 16.4%. Further, we note that Self-Path with JigMag improves
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Table 4.6: Cam16 → LNM-OSCC domain adaptation results on the WSI-level.
The upper bound performance using all labels for target domain in supervised
fashion is 93.3%.

AUROC(% ) Average Precision(%)

supervised baseline (source only) 75.2 81.7
WDGRL 85.8 91.6
generative 90.4 95.2
JigMag 91.6 96.7
mag+JigMag+hem 91.6 96.3

performance over WDGRL by 2% at the patch-level and a ∼6% improvement

at the WSI-level. This suggests that the magnification puzzle and the pretext

tasks that can help learn from various image resolutions in a self-supervised

manner enable strong performance boost at WSI-level (beyond patch-level).

These improvements are also evident in the WSIs overlaid with the heat-

maps, as visualized in Figure 4.4. This figure shows that the supervised baseline

(source only) model (middle column) has many false negatives and often misses

tumor regions. However, WDGRL, Self-Path with JigMag, and Self-Path with

generative pretext task can all increase true positives while decreasing false

negatives. We note that WDGRL and Self-Path with generative pretext task

do not perform as well as Self-Path with JigMag - mainly because they suffer

larger number of false positives at the patch-level classification.

4.5 Discussion

In this section we describe sensitivity analyses and discuss the model perform-

ance by changing the values of loss weights, decreasing the annotation budget

and combing all pathology specific tasks. Moreover, we conduct an experiment

to show the usefulness of transfer learning using our proposed self-supervised

tasks.

4.5.1 Effect of Loss Weight for Each Task

We consider the task of training with 1% of annotation budget on Camelyon16

dataset. To understand the effect of loss weights for each pretext task, we

experiment with different values of α and show the results in Table 4.7. Overall,

assigning more weights on each task shows better performance. More precisely,

when α is set to 1, maximum value of AUROC is obtained. Therefore we

can conclude when we are using only one pretext task, the pretext task and

the main task should have similar weight to be effective for semi-supervised

learning. The optimum value of α may change when we use all tasks together

which we investigate in the next section.
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Figure 4.4: Three WSI samples and their overlaid heatmaps. from top to
bottom, first row: the overlaid ground-truth mask, second row: overlaid heat
map of model predictions when it is trained using only Camlelyon16 data,
third row: Overlaid heatmap of WDGRL predictions, fourth row depicts the
overlaid predictions of Self-path using generative task and the last row shows
the heatmaps generated Self-path using JigMag task. the The circle indicates
a region which is missed using the supervised baseline (source only) model and
green arrows point to the false positive regions generated by WDGRL where
using generative task and JigMag task eliminate those regions. Black arrow
also shows regions that are misclassified by generative model but are correctly
classified as normal regions by Jig-Mag. (Best viewed in color, zoom in to see
more details)
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Table 4.7: AUROC performance of pathology specific tasks with different
values of α on Camelyon16 dataset.

α magnification JigMag hematoxylin

1 77.5 ± 3.1 81.7 ± 3.8 72.8 ± 4.6
0.8 77.1 ± 2.8 81.5 ± 3.4 71.3 ± 2.4
0.6 76.4 ± 4.0 78.8 ± 2.6 70.2 ± 3.5
0.5 74.6 ± 3.4 78.4 ± 2.4 70.3 ± 4.6
0.2 72.5 ± 3.7 74.1 ± 4.6 69.5 ± 4.4

Table 4.8: Using all pathology specific tasks for semi-supervised learning on
Camelyon16 dataset. αmag, αJigMag and αhem indicate the loss coefficient for
magnification, JigMag and hematoxylin tasks, respectively.

αmag αJigMag αhem 1% 2%

1 1 1 79.1 ± 4.5 83.5 ± 5.1
0.25 0.5 0.25 83.2 ± 4.3 86.3 ± 5.3
0.5 0.25 0.25 80.2 ± 2.5 85.4 ± 3.1
0.25 0.25 0.5 79.6 ± 2.7 84.3 ± 5.5
0.25 0.25 0.25 80.3 ± 3.4 85.5 ± 1.8

4.5.2 Combining tasks

We now evaluate the effect of the loss weights (α’s) when combining all

pathology specific tasks. We consider the task of training with 1% and 2%

of annotation budget on Camelyon16 dataset, and experiment with different

combinations of loss coefficients. The results, in Table 4.8, suggest that

assigning high weights (similar to main task) to all pretext tasks can degrade

the performance. For example, if all tasks are given α = 1, overall the weights

for pretext tasks would be 3× more than the main task which would cause

drop in performance. However by assigning smaller weight values for each

task, we can achieve better performance. Particularly, best performance is

obtained when more weight is assigned to JigMag task and lower weights to

Hematoxylin and magnification tasks. This is in line with previous experiments

which showed that JigMag had better performance as compared to other tasks.

We can, therefore, recommend that a good strategy can be to start with heavy

weight to JigMag for computational pathology tasks before combining it with

other self-supervision tasks.

4.5.3 Performance at Very Low Annotation Budget

In Section 4.4.4, we evaluated the performance of self-supervised tasks with

different annotation budgets. we observed, despite high boost in performance

by applying self-supervised tasks, the supervised baseline also gives reasonable

results (e.g., 73.4% on LNM-OSCC for 134 patches). To assess performance

at even lower annotation budget, we further decreased number of patches
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Table 4.9: AUROC results for very low budget of annotation:here only 25
image patches are used in each class.

Camelyon16 LNM-OSCC
Baselines

supervised baseline 55.3 ± 5.1 54.8 ± 8.1
mean Teacher 65.4 ± 4.8 60.4 ± 5.4
VAT 64.3 ± 6.4 58.6 ± 6.5
TS chain 62.4 ± 10.6 59.4 ± 7.7

Pathology-Agnostic Self-supervised Tasks
rotation 62.6 ± 4.6 58.7 ± 4.6
flipping 65.7 ± 9.3 58.9 ± 5.3
autoencoder 65.1 ± 6.4 59.6 ± 4.3
generative 64.2 ± 5.7 60.1 ± 10.3

Pathology-Specific Self-supervised Tasks
magnification 65.3 ± 7.5 62.2 ± 6.7
JigMag 66.2 ± 6.4 63.5 ± 7.9
hematoxylin 64.2 ± 7.4 62.4 ± 4.6
mag+hem+JigMag 66.5 ± 5.5 64.1 ± 5.5

annotated (while maintaining the same number of WSIs) to 50 for LNM-OSCC

and Camelyon datasets. As shown in Table 4.9, Self-Path with pathology-

specific pretext tasks can improve the AUC by about 10% over the supervised

baseline. Again, the JigMag pretext task is the best performing pretext task.

Moreover, we also note that combining all pathology specific tasks (with

loss weights 0.25, 0.25 and 0.5 for hematoxylin, magnification and JigMag

respectively) can result in even better performance.

4.5.4 Transfer Learning

We finally investigate the usefulness of the representations learned by Self-

Path for related tasks. For this, we conduct a transfer learning experiment

using Camelyon16 dataset. We first train Self-Path with each self-supervised

pretext task on the entire dataset, and then fine-tune the backbone (the model

excluding the final linear layer/decoder) for the main task. We compare the

performance against the naive method of training the network from scratch

with random weight initializations (Scratch). The results for different pretext

tasks at varying annotation budgets are shown in Table 4.10. We can see

that the representations learned by Self-Path with transfer learning enable

performance improvement over ‘Scratch’ in each case. Again, Self-Path with

JigMag achieves the best performance. The improvements with fine-tuning

is largest in the low annotation regime, and drops off when more annotated

data are available. These results suggest that the pretext tasks in Self-Path

enable learning of useful representations. Overall, with annotation budget of

over 20%, fine-tuning gives the same result as training from scratch. This
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Table 4.10: Results of transfer learning of self-supervised tasks with different
budget of annotations using Camelyon16 dataset.

1% 2% 5% 10% 20%

Scratch 68.3 74.5 81.2 88.4 92.1
magnification 72.6 77.4 84.8 89.9 92.2
JigMag 73.3 79.4 85.8 90.4 92.7
hematoxylin 72.9 79.5 85.9 88.6 92.3

phenomenon is also shown by [172].

4.6 Summary

In this chapter, we proposed Self-Path – a generic framework based on self-

supervision tasks for histopathology image classification – to address the

challenge of limited annotations in the area of computational pathology. We

introduced 3 novel self-supervision tasks to cater to the contextual, multi-

resolution and semantic features in pathology images. We showed that such

pathology specific self-supervision tasks can improve the classification perform-

ance for both semi-supervised learning and domain adaptation. Moreover, we

thoroughly investigated general self-supervised approaches such as generative

models within this pipeline and showed that using the pathology-specific tasks,

despite being simple and easy to implement, can improve performance over

generic self-supervision in many scenarios involving limited annotation budget

or domain shift. In particular, we note that the JigMag self-supervision can

be extremely helpful when the amount of labeled data is very small. Unlike

baseline methods that are highly dependent on hyperparameters values, our

method can achieve good performance without exhaustive hyperparameter

tuning. Self-Path can be applied to other problems in computational patho-

logy, where annotation budget is often limited or large amounts of unlabeled

image data are available. Other future directions include employing other

self-supervision tasks (such as predicting the Eosin channel or a combination of

Hematoxylin and Eosin after estimating the two channels, rather than keeping

them fixed), increasing the number of magnification levels, adding the magni-

fication as extra augmentation to supervised baseline, increasing the JigMag

grids to incorporate wider and more complex puzzles for the network to solve

and a deeper investigation into other domain adaptation tasks. It is also worth

mentioning that most of semi-supervised learning approaches (specially the

ones proposed in this paper) are useful when the budget of annotation is very

low. They can not contribute when we have large annotation budgets. There-

fore designing methods that can push the margin even while having enough

annotation can be an interesting future direction. For detailed discussion of
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current semi-supervised learning approaches interested readers are referred to

[173].
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Chapter 5

Predicting Non-Small Cell

Lung Cancer Survival

5.1 Introduction

Lung cancer is the most common cancer related mortality worldwide. Non-

small-cell lung cancer (NSCLC) accounts of 80% of all lung cancer types. Two

major NSCLC types are Adenocarcinoma (ADC) (40%) and Squamous cell

Carcinoma (SCC) (25-30%).

The five-year survival rate of lung cancer is 17.7%, which is lower than

that of many other leading cancers, such as colon cancer (64.4%) and breast

cancer (89.7%) [174]. Accurate survival analysis is necessary for personalized

treatment management and prognosis. Therefore, predicting clinical outcome

of lung cancer is an active field in today’s cancer research. Histopathology

images serve as the gold standard for diagnosis of lung cancer and are primarily

evaluated by pathologists or doctor. Most of current pathology diagnosis is

still based on subjective opinions of pathologists and the varying abilities of

doctors could result in large interpretation errors or bias. Pathologists make

diagnostic decisions based on cellular and inter-cellular level morphology, and

thus accurate cell localization/segmentation is a prerequisite step for lung

cancer survival analysis [174]. It has been shown that there exists connection

between lung tumour morphology and prognosis [175]. Emergence of Whole

slide Images (WSIs) have brought many opportunities and challenges for

analysis of tumour micro-environment. One main opportunity is allowing the

Computer Aided Diagnosis (CAD) systems to be applied on them for fast and

more precise diagnosis. One main challenge is the large size of these images

where one needs to chunk them into small image patches to be able to process

them by machine learning models.

Wang et. al [176] extracted 3 groups of geometry, texture and pixel intensity

statistics features from images and then the Cox proportional hazards model
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was used to select 166 image features that are correlated with patient survival

outcome . Yao et al. [177] extracted features from three cell subtypes (tumor,

lymphocyte, stromal) and developed a survival model for two subtypes of

NSCLC: ADC and SCC. Yu et al. [178] showed that textural and morphological

features extracted from tumor nuclei and tumour cytoplasm of each image

patch can predict survival for bot ADC and SCC. They used CellProfiler [179]

for segmatiation and extracting features. In [180], radimoic and pathomic

features are combining for predicting recurrence in early stage lung cancer.

Cheng et. al [181] showed that there is a correlation between patient survival

and topological features.They have used a deep auto-encoder to cluster cell

patches into different types and then construct a graph for each patch to extract

topological features.

Deep learning based-approaches learn feature representations in an end to

end manner. Early neural network models have been applied to the problem

of survival analysis which models the nonlinear survival data [182–186]. These

models have not outperformed standard methods for survival analysis, since

the neural networks were not developed as they are today. Yousefi et. al

[187] showed for the first time that performance on high-dimensional data of a

Cox neural network can have competitive performance for survival analysis.

Katzman et al. [188] showed that Cox proportional hazards deep neural network

can have state-of-the-art performance on low-dimensional data. Inspired by

[188], various methods have been developed in computational pathology to

predict risk for histology image or genetic data.

WSIS approach [189] extracts hundreds of patches from each WSI by

adaptive sampling and then group these images into different clusters. Then

an aggregation model is trained to make patient-level predictions based on

cluster-level Deep Convolutional Survival (DeepConvSurv) output, Yao et. al

[190] combined genome modality with DeepConvSurv for survival prediction

using multi-modality data Yao et. al [191, 192] use multiple instance learning

to encode all patches and different patterns in the WSIs to predict survival

where they have shown their model to be capable of predicting risk score for

two datasets of lung and brain. Multiple instance learning is a proper choice

for predicting survival based on the WSIs because one label is only provided for

a WSI or a collection of WSIs belonging to a patient. Therefore by presenting

the WSIs as a bag of instances (image patches/features), this problem can be

solved by using multiple instance learning approaches. This is discussed in

detail in the following sections.

Most approaches rely on exhaustive annotations of ROIs to extract features

or to train deep models which is not often possible. The success of these

approaches mainly depends on the selection of representative patches and

integration of patch prediction to come up with the final output. Manual
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annotations of regions of interest and/or selecting the representative patches

of WSIs is challenging and is not an optimal approach. Extensive and time-

consuming manual annotations in clinical practice is an uphill task. Moreover,

most deep learning based approaches are based on deep features which are

hard to interpret. Therefore, to address the deficiencies of current models,

recent approaches for analysis of WSIs rely on the success of weakly supervised

learning particularly multiple instance learning [193]. In this chapter by concen-

trating on the explainability and reducing the need for manual annotation, we

propose attention based multiple instance learning to extract the representative

patches from WSIs and then investigate the morphological features of these

representative patches for their potential association with patient survival.

In the following, we will first cover basics of survival analysis in Section 5.2;

afterwards, the details of our framework including multiple instance learning,

segmentation, Cox model are explained in Section 5.4. Finally, we discuss the

results in Section 5.7.

5.2 Survival Data

Survival analysis is concerned with predicting the time until an event occurs,

such as onset of a disease, tumor recurrence, death after some treatment

intervention, etc. Survival data has three components: 1) Time T from the

beginning of follow-up of an individual until an event occurs, 2) Event E which

is a designated experience of interest that may happen to an individual (death,

recurrence, relapse, etc.), and 3) Patient data x whose association we are trying

to explore with patient survival. In survival data, all observations do not

always start at zero; in other words, we do no need exact starting points and

end points. Starting point of the study determine the starting point of survival

time for all subject (all the durations are relative,). If the event (e.g. death)

is observed, the time interval T is associated with the elapsed time between

the starting point of study (the time in which the data was collected) and the

time that event occurs, and the event indicator is E = 1. If the event is not

observed the time interval T corresponds to the elapsed time between the start

of study and the last contact with the patient (end of study, patient died due

to reason the are not related to study, patient withdraw from study, etc.), and

the event indicator is E = 0.

There are different types of censoring, but the most common one is right

censoring where we only have the information about the patient up to a certain

time and the information after that time is unknown.

Event or censorship is an important issue which needs to be taken into

account for modeling survival data. Moreover, probability of survival for each

patient decreases as we move toward the end of study. Therefore, standard
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statistical methods such as linear regression are not suitable for survival time

data. Cox proportional hazard model (CPH) [194] is the most commonly used

method in survival analysis.

Survival function and hazard are two fundamental functions in survival

analysis. Survival function S(t) = Pr(T > t), gives the probability that a

person survives longer than some specified time t. Hazard function is a measure

of risk at time t, which gives the instantaneous potential per unit for the event

to occur, given that individual has survived up to time. The hazard function

focuses on the failing. A proportional hazards model is a common method

for modeling an individual’s survival given their covariates (x). This model

gives an expression for the hazard at time t for an individual with a given

specification of a a set of explanatory variables denoted by X. X represents a

collection of predictor variables that is being modeled to predict an individual’s

hazard.

h(t,X) = h0(t)e
R(x)

where R(x) is risk function denoting the effects of an individual’s covariates

and h0 is the base hazard function depending on the time. For linear survival

models, the CPH is a proportional hazard model that estimates the risk function

R(x) by a linear function R̂(x) =
p∑
i=1

βixi. And the goal is to find the weights β

to optimize the Cox partial likelihood. The partial likelihood is the product of

the probability at each event time Ti that the event has occurred to individual

i, given survival up to this time. The Cox partial likelihood is defined as:

Lc(β) =
∏

i:Ei=1

exp(R̂(xi))∑
j∈<(Ti)

exp(R̂(xj))
(5.1)

where Ti, xi and Ei represent the event time, covariates and the event indicator

for the ith observation. The risk set <(Ti) = {i : Ti ≥ t} is the set of patients

still at risk of failure at time t and the product is defined over the set of patients

with Ei = 1.

In non-linear survival models, the risk function R̂(t) is the output of neural

network and the input is either covariates or the raw input (image). The loss

function for the model is defined as the negative log likelihood of Eq. (5.1):

l(θ) := −
∑
i:Ei=1

R̂(xi)− log
∑

j∈<(Ti)

eR̂(xj)

 (5.2)

In this chapter, we consider both linear and non-linear models and we

observe that linear models using morphological features as survival covariates

are prognostically important. Based on our experiments on NSCLC dataset

from TCGA repository, deep neural network in a weakly supervised manner
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Table 5.1: Clinical features for Lung cohort of TCGA and log rank test p-value
for disease specific survival (DSS).

Categorical Clinical Features Count Percentage DSS p-value
Number of patients 778 100% -

Gender
Female 309 40%

0.83
Male 469 60%

TNM Stage

Stage 1 419 52% 3e-9
Stage 2 211 28% 0.02
Stage 3 111 16% 1e04
Stage 4 25 3% 6e-5

Not Reported 12 1% -

Cancer Type
LUAD 396 50%

0.08
LUSC 382 50%

Patient Status
Alive 518 60%

-
Dead 260 40%

Continuous Clinical Features Mean STDDEV Median
Age (year) 66.54 9.45 68 0.8

Survival (month) 31.77 31.80 21.76 -

with negative log of Cox partial likelihood do not perform well. In the next

section we describe the dataset details.

5.3 Dataset

We have obtained our lung dataset from The Cancer Genome Atlas (TCGA)

repository. There are 1054 lung diagnostic WSIs belonging to 924 patients in

this repository. We have removed images with artefacts such as pen marking,

blured and folding. Images with very small tissue regions and lost associated

disease specific survival time or event indicator are also not considered in our

study. Overall, we are left with 778 cases and 824 WSIs. The disease-specific

survival (DSS) time is the elapsed time between the beginning of an individual

follow up and an individual death or the last follow-up in case of censored data.

In TCGA cohort, most of the patients were diagnosed between 1992 and 2013,

and the average age and median age of patients are 66.54 years and 68 years,

respectively, with standard deviation of 9.45. The minimum and maximum

age in this cohort are 33 and 88 years. Number of male patient (469) is more

than female patients (309). The distribution of TNM-stage of cases is slightly

skewed toward lower stage with 52% cases of stage I. The two NSCLC subtypes

are alsmost equally distributed. 40% of patients died during the study where

23% of the number of deaths are disease specific (E = 1). The average and

median of DSS time of all patients is 31.77 and 21.76 months, respectively.

The details of patients statistics are reported in Table 5.1.
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5.4 Method

In our framework we encode the extracted patches from WSIs using an off-the-

shelf deep network, then encoded images (features) for each WSI form a bag

which is processed by an attention-based Multiple Instance Learning (MIL)

approach. MIL is trained to classify the bags to distinguish between cancer

subtype of WSIs. After the model learned the underlying representation of

data, attention weights are used to select the top k patches to extract the

morphological features. Afterwards, the morphological features are used in a

Cox proportional hazard (CPH) model to predict the risk score. The risk value

obtained from our pipeline is called representative patch morphology (RPM)

score and we show that RPM score is prognosticator of clinical outcome of

NSCLC. We go through the details of our pipeline for predicting outcome for

patients with NSCLC. Overview of our pipeline is shown in Fig. 5.1.

5.4.1 Image Patch Encoding

Each WSI contains thousands of small 224 × 224 patches, where considering

all these information at once for processing is cumbersome and will need high

memory and computational resources. Random extraction of patches is not

a good solution as we might lose some important information. Therefore, we

extract all patches from WSIs at 20× magnifiction (0.5µm per pixel), then

we encode all images patches belonging to tissue regions by using ResNet18

[56] to reduce the input dimension. Image ResNet18 is pre-trained on Imagnet

and the features are taken from last convolutional layer after applying global

average pooling. Each 224 × 224 patch is transformed to a vector of length

512. This amount of dimension reduction enables us to represent all tissue

region patches of WSI to the model as is described in the next section.

5.4.2 Attention-based Multiple Instance Learning

MIL is a weakly supervised learning approach where a single label is assigned

to the bag of instances [195]. And the label of the bag is positive (Y = 1) if at

least one instance in the bag is positive. Since exhaustive annotations of WSIs

is not possible at large scale, MIL has been recently utilized in computational

pathology to predict a label for a WSI, where a WSI is considered as a bag

of instances (e.g. bag of image patches or bag of features). In MIL, one

important challenge is finding key instances. Key instances are the instances

that contribute more to predict the label for a bag. Key instances are of

high importance as they can help to interpret the final decision and may give

more insight about the underlying relation between a diagnosis and tumour

micro-environment.
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Figure 5.1: Schematic overview of our framework.
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One approach to MIL is training a classifier on instances where each

instance has the label of its corresponding bag, and then aggregate the scores

by permutation-invariant operators such as maximum, mean, etc. Another

approach is to map instances to a low-dimensional embedding and then classify

them by a bag-level classifier. The latter approach is preferred because it learns

the joint representations of bag instances and introduce less bias compared to

instance-level approach where individual instance does not have precise label.

Moreover, in the context of neural networks, embedding-based approaches can

be trained end to end.

Aggregation of output scores for each instance or aggregation of embedding

is referred to as pooling. Attention based MIL pooling is of high interest

because of being trainable and the interpretability it offers. More precisely, let

H = {h1, h2, ..., hk} be the embedding of bag of instances X = {x1, x2, ..., xk}.
The embedding set is obtained by a neural network, and the MIL pooling is

a weighted average of embeddings where weights are determined by a neural

network:

z =
K∑
k=1

αkhk

αk =
exp(wT tanh(V hTk ))

K∑
j=1

exp(wT tanh(V hTj ))

(5.3)

where w ∈ L×1 and V ∈ L×M are parameters. Hyperbolic tanh(.) introduce

non-linearity to the attention function. Since the weights are normalized, their

value can show the contribution of each instance/embedding to the generation

final output. Therefore, ideally high attention should be assigned to instance

that are likely to be positive inside bag. In our pipeline attention plays an

important role because it helps us to select the most representative patches

in the WSI and therefore we can apply further analysis on those patches

rather than on all the patches belonging to a WSI (these patches should be

potentially tumour patches). Therefore, we build attention-based MIL where

we try different labels and loss functions to train the model. Afterwards, the

model with highest performance is used to select the representative patches.

More precisely, we consider following experiments: 1) we train MIL with the

negative log of Cox partial likelihood as loss function where the survival time

and event values are used as labels, 2) we binarize the survival times by using

their median value as threshold and cross entropy loss is used as loss function.

for this experiment only observed events are considered for training (E = 1),

3) We consider the cancer stage as target variable where cross-entropy is used

as objective function, and 4) we use the cancer subtype (ACC and ADC) as

the label and train a MIL to distinguish between these two. Cross entropy is

also used for this experiment.

MIL is used for binary classification where a bag is considered positive
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when at least one sample in a bag is positive, and a bag is considered negative

when all instances in a bag are negative. The definition of MIL may not hold

for our classification and segmentation tasks where we are classifying cancer

subtypes, because defining positive or negative instances are opaque. For such

tasks the network looks for particular pattern in the bag which are indicative of

the whole bag label. One may argue that our approach is aggregation learning

or attention learning, however since we use the framework and the model that

has been used for MIL, we stick to the MIL name.

In our experiments, training MIL to predict risk using Cox partial likelihood,

binarized survival and prediction of stage did not give good performance. For

risk prediction, we have used concordance index as evaluation metric, and Area

Under the Receiver Operating Characteristic (AUROC) is used for the other

three experiments. The Receiver Operator Characteristic (ROC) curve is an

evaluation metric for binary classification problems. It is a probability curve

that plots the true positive rate (TPR) against false positive rate (FPR) at

various threshold values. In clinical studies, the concordance index gives the

probability that a randomly selected patient who experienced an event (e.g.

a disease or condition) had a higher risk score than a patient who had not

experienced the event. It is equal to AUROC and ranges from 0.5 to 1. Fig. 5.2

shows the classification performance for binary survival prediction and cancer

subtyping. As we could achieve the best performance for cancer-subtyping,

therefore we conclude that the attention weights can be used for further analysis.

We expect that the representative patches highlight the tumour regions and the

specific characteristics of ACC and ADC that separate them from each other. In

figure, we have shown two random WSIs and their attention weights overlaid on

them. We can observe from this figure that patches with highest attention are

mostly belong to tumour region and therefore we can use them for predicting

survivals in the next steps. For 3 fold cross validation experiment, the MIL

that we have used could achieve concordance index of 0.54 for predicting risk

and AUC of 90%, 62%, 58% for cancer subtyping, binarized survival prediction

and stage prediction ,respectively. As we later will see, cancer stage is a good

predictor of patient outcome, therefore if we can predict patients stage, we can

stratify them into poor and good prognosis cohorts. By predicting stage we did

not achieve a satisfactory performance. The AUC for stage prediction is 55%.

5.5 Segmentation

After finding the most representative patches within WSIs, we segment the

nuclei to extract morphological features. These morphological features serve

as covariates for Cox model. In chapter 2 we have introduced SpaNet, a

method for nuclear instance segmentation. Here we compare different nuclear
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a b

Figure 5.2: The classification performance of MIL models for a) cancer subtyp-
ing and b) survival prediction

Table 5.2: Comparative performance of different models on PanNuke dataset.

Dice Panoptic Quality

HoVerNet 0.8368 0.6596
Micronet 0.8028 0.6053
DIST 0.7523 0.5346
Mask-RCNN 0.6936 0.5528
SpaNet 0.8412 0.6604

segmentation methods on a broader dataset, PanNuke [196, 197] and then

apply the best model on selected patches. PanNuke is a dataset of nuclear

segmentation of 19 different tissue types where 7000 nuclei belong to the

lung tissue. Therefor, it is a good choice for training segmentation models to

achieve high generalizability. We compare SpaNet with HoVerNet [198], DIST

[51], Mask-RCNN and MicroNet [199]. In Table 5.2, we have reported the

performance of these models in terms of panoptic quality and Dice. As shown

in the table, SpaNet and HoVerNet have the best performance where SpaNet is

marginally better than HoVerNet with dice index of 0.8412 and PQ of 0.6604.

Therefore, we have used SpaNet to segment the patches for further analysis.

We have also shown in Fig. 5.4 some visual results of SpaNet on some random

representative patches.

5.6 Morphological Features of Nuclei

We extracted overall 68 features for each case. All of these features are based

on the results of nucleus segmentation. These features are extracted from each

nucleus within a patch: area, area of bounding box, eccentricity, diameter of

an equivalent circle that encompasses the nucleus, extent, length of major axis,

length of minor axis, orientation of nucleus, perimeter and solidity. Statistics

of Gray-Level Co-occurance Matrices (GLCMs) of each patch is also considered
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Figure 5.4: Visual segmentation output of Spa-net on 4 random representative
patches.

in our feature vector. The GLCM calculates how often a pixel with gray-level

value i accrues either horizontally, vertically, or diagonally to adjacent pixels

with the value j. Here 4 directions are considered for calculating GLCM.

These directions are horizontal (0), vertical (90), bottom left to top right (-45)

and top left to bottom right (-135) where pixel offset is 1 in all case. we

have derived contrast, correlation, energy, and homogeneity statistics from

GLCM. Moreover, minimum and maximum intensities of each nucleus are also

considered.

To construct the feature vector for each case, we compute the average,

minimum, maximum and standard deviations of the values of nucleus based

features for each patch. Consequently, the obtained values are averaged over

100 selected patches for each case, which overall sum up to 68 features. We

standardize (scale between 0 and 1) the features before using them for Cox

model. These features are then used in Cox proportional hazard model as

described in Section 5.2. We find the coefficients (β) and the importance of

each covariates based on the value of coefficients. Therefore, the risk score from

Cox model is used as the final score for patient stratification and exploring its

prognostic value.

5.7 Results and Discussion

In this section we are going to find the importance of features in predicting

survival and investigate if the risk score predicted by model can stratify patients

into two groups of high risk and low risk. To accomplish the first task, Cox’s

proportional hazard model is often a good choice, because its coefficients can
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be interpreted in terms of hazard ratio, which often provides valuable insight.

Moreover, the value of coefficients can be used to determine the importance

of each feature. However, simple Cox model has a major drawback. When

number of predictors increase, it might fail, because it internally tries to invert

a matrix that become non-singular due to correlation among features. The

penalized Cox models can address this issue. Ridge and Lasso penalty solve

the mathematical problem of fitting a Cox model. The Lasso penalty is a good

option if we want to select a subset of features that are predictive and ignore

the remaining features.

Lasso is not a good choice for high dimensional data where number of

features is more than number of samples, because it can not choose more

features than number of sample. Moreover, if the features are correlated, the

Lasso penalty randomly chooses one feature. The Elastic-net penalty solves

this issues by combing weighted Lasso and Ridge penalty terms:

arg min
β

l(θ) + α

r p∑
j=1

|βj |+
1− r

2

p∑
j=1

β2j

 (5.4)

where l(θ) is the negative log of partial likelihood described in Eq. (5.1) and

α is a hyper-parameter that controls the amount of shrinkage and r is the

relative weights of Lasso and Ridge penalties. we set r to 0.9 and for choosing

the optimum value of α, 10 fold cross-validation is used on the training set of

each initial folds. Initial folds are the folds that we used for MIL. Importance

of features based on their coefficients in the best model are shown in Fig. 5.5 .

Each fold indicate different ordering for feature importance. However some

features that have non-zero coefficients are common in all three folds. Feature

12, 38 and 15 are the common features. Feature 12 belongs to the statistics

of nuclear bounding box area and it indicates the standard deviations of

the bounding box area. Feature 15 and feature 38 are minimum of nuclei

eccentricity values and maximum of nuclei orientation degrees, respectively.

5.7.1 Patient Stratification

For computing the final score - -RPM score- - and stratifying patients into the

low risk and high risk, the Cox models mentioned in the previous section are

used. More precisely, for each fold, best hyper-parameter and coefficients are

selected based on cross-validation, and the risk score is calculated. The best

threshold for stratifying patients into low risk and high risk is selected based on

the training sets. The cut-off threshold is a value that may best differentiate

between the survival probability of low and high risk patients.

For each fold, this threshold is computed separately and applied on the

corresponding test set. Then the values of RPM score for each test set are
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Fold 1 Fold 2 Fold 3

Figure 5.5: Model coefficients, value of each feature coefficient are shown which
is indicative of feature importance. As initially we considered 3 folds, here 3
models are considered for obtaining best hyper parameters and coefficients.

Table 5.3: Univariate analysis for different feature, p-values using the log-rank
test are reported.

Clinical Feature β HR (95% CI fo HR) p-value

cancer type -0.239 0.787 (0.583-1.063) 0.11
gender -0.053 0.948 (0.701-1.283) 0.731
age -0.009 0.991 (0.976-1.007) 0.265
stage 0.532 1.702 (1.461-1.983) 8.77e-12
model score (RPM) 0.949 2.584 (2.158-3.094) <2e-16

concatenated to each other to form the RPM score for whole dataset.

5.7.2 Univariate Analysis

We explore the prognostic significance of each predictor independent to others.

Kaplan Meier curve is used to visualize the difference between the survival

probability for each predictor. Fig. 5.6 presents the survival curve along with

log-rank test based p-values for disease specific survival of TCGA cohort.

Kaplan Meier curve for stage as clinical parameter shows that it is associated

with disease-free survival of lung patients (p < 0.0001). However, there is no

association between survival and other clinical parameters like cancer type,

age and gender. Kaplan-Meier curve for RPM score shows a clear separation

between low and high risk patients and proves its prognostic value based on

p-value (p < 0.0001). Table Table 5.3 shows the univariate Cox analysis for

the RPM model scoring, which has a significant p-value=0.0003. It shows that

at a given time instant, an increment of one unit for RPM score increase the

risk of dying 2.584 times more.
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a b

c d

e

Figure 5.6: Kapalan Meier curves along with log-rank test based p-values for
disease specific survival using different variables. a-d Kaplan Meier curves for
variable available in TCGA and e. Kaplan Meier curve for the score that we
obtained using our pipeline.
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Figure 5.7: Multivariate analysis of the RPM-scoring in the presence of available
variables in lung TCGA cohort for disease specific survival

5.7.3 Multivariate Analysis

Fig. 5.7 shows the multivariate analysis using the proposed RPM scoring and

the clinicopathological variables whose information is available for lung TCGA

cohort for disease specific survival. The score obtained from our pipeline is

significant indicator of patient survival (p < 0001, HR=2.74 95%CI 2.27-3.30).

It means that at a given time, for a patient with an increment of one unit for

RPM score, the risk of dying is 2.584 more than a patient with one unit less

RPM score. Similar to uni-variate analysis, cancer stage is also prognostic

(p < 0.001, HR=1.69, 95%CI 1.44-1.98) in the presence of other variables.

Age and gender do not show any significance in our analysis. However, unlike

univariate analysis, cancer type is also a prognostic factor adjusting for other

variables (p = 0.021 HR=0.69, 95%CI 0.50-0.95). Overall, these results show

that the morphological features extracted from representative patches could

be used in a Cox model for predicting a prognostic score.

115



5.8 Summary

In this chapter, we presented a pipeline for extracting features from represent-

ative patches of WSIs, without accessing tumour annotations. We have used

attention-based multiple instance learning to select the most representative

patches based on their attention values. Multiple instance learning model was

trained with different target labels. We observed that in our experimental

setup, distinguishing between the NSCLC subtype have the best performance.

Therefore this model was chosen for patch selection.

We extracted 68 different morphological features from top 100 patches of

each WSI. And their average values were used to optimize the coefficients of

Cox proportional hazard model. We showed that three features are potentially

highly correlated with patient survival. Moreover, the RPM scoring (the risk

score obtained from Cox model) is a prognostic score in both univariate and

multivariate analysis.
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Chapter 6

Conclusions and Future

Directions

In this chapter, we summarize the methods presented in this thesis and discuss

some of the possible future directions for further exploration of the concepts.

In this thesis, we proposed a set of automated methods for analysis of his-

tology images aimed to address some of the major challenges in computational

pathology. We presented methods for segmentation and detection of nuclei

in histology images where these methods were used for extracting a set of

morphological features. We showed that these features are prognostically signi-

ficant and are worth further exploring for their clinical significance. Moreover,

throughout this thesis, we proposed a set of methods for utilizing minimum

annotation for classification of histology images.

The proposed methods include: 1) an algorithm for nuclear detection, 2)

an algorithm for instance segmentation of nuclei in histology images, 3) an

interactive method for gland and nuclear segmentation, 4) domain-specific self-

supervision approaches to deal with limited budget of annotations in histology,

and 5) a framework based on multiple instance learning to extract highly

attended patches where these patches are used for morphological analysis.

Throughout this thesis, we have conducted experiments on both image

patches and WSIs. The first 3 chapters are mainly concerned with localization

of nuclei in histology images. The localization approaches are mainly the basis

for further analysis of nuclear morphometry. Although deep learning end-to-

end approaches showed promising results in various tasks such as regression,

classification, detection, predicting survival and etc, their explainability is

limited and in most cases it is hard to interpret their decision. Therefore,

investigation of the features extracted from objects such as nuclei and glands can

shed some light on the underlying behaviour of the tumour micro-environment.

One main challenge in histology image analysis is the scarcity of labels or weakly

annotated dataset. In this thesis, we tried to overcome these challenges from
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two perspectives: 1) Develop a method that can generate robust and trustable

annotations 2) Develop a method that utilize limited budget of annotations

while having good performance.

Below we summarize each of the methods presented in this thesis and we

discuss potential future directions.

6.1 Mixture Density Networks for Nuclear Detec-

tion

In Chapter 2, we showed an application of mixture density networks for nuclear

detection. Mixture density networks are suitable to map a single input to

several possible outputs and we utilize this property to detect multiple nuclei in

a single image patch. A new modified form of a cost function based on mixture

densities is proposed for training the deep model. We have used the mixture of

Gaussian distributions where the centroids of nuclei are the means of Gaussian

distributions. The model predicts the centroids and the uncertainty of nuclear

locations where the local maxima is used to detect the final location of nuclei.

This approach might not perform well when the number of nuclei in a single

patch increases. Since the loss function consists of multiple distributions, all

densities might converge to a single point. One remedy would be decreasing

the number of mixtures in the loss function. To do so, we can split the image

into smaller grids and then apply loss for each region separately. This idea

would be similar to how YOLO algorithm formulates the problem but in the

context of mixture density networks.

Another possible future direction is applying Expectation Maximization

(EM) algorithm after we find the nuclear location. This can potentially give

better localization. To this end, the initial cluster centroids can be set by

using mixture density networks and EM is used to refine the locations and

even segmenting the nuclei.

6.2 Nuclear Instance Segmentation

We proposed a method for nuclear instance segmentation. We have used multi-

scale blocks in our model to capture information at different scales. Positional

information are fed into the model at different layers for predicting better

segmentation results. In our pipeline, first the pixel-wise segmentation and

centroid detection maps of nuclei are predicted with the dual-head variation

of our proposed network. Afterwards, based on these outputs, a spatial

information related to each nucleus instance is predicted using single head

model. To separate the nuclei in ground truth, we replace pixels belonging to

each nucleus with its spatial information (x/y coordinates of centroids, top left
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coordinates of bounding box, etc.). To construct the final output, we apply a

clustering algorithm on the predicted spatial map. For future work, we will

consider the classes of nuclei as well, to this end one head can be added to

determine classes of nuclei. Moreover, one may add other components to the

model for its better performance in an end-to-end manner. To this end, we can

increase the depth of network and add auxiliary loss function like dice loss.

6.3 Interactive Segmentation of Glands and Nuclei

Deep learning based models as the best performing models require huge amount

of labeled data for precise and reliable prediction. However, collecting labeled

data is expensive because it necessarily involves expert knowledge. Perhaps

this is best demonstrated by medical tasks in which labels are the result of

a time-consuming analysis made by multiple human experts. As nuclei, cells

and glands are fundamental objects for downstream analysis in histology, in

this chapter, we proposed a simple CNN-based approach to speed up collecting

annotations for these objects which requests for minimum interaction from the

annotator. We showed that for nuclei and cells as small objects, one click inside

each object is enough for NuClick to yield a precise annotation. For glands as

large objects, we proposed a novel approach to provide NuClick with a squiggle

as a guiding signal, enabling it to outline the exact gland boundaries. These

supervisory signals are fed to the network as auxiliary inputs along with RGB

channels. With detailed experiments, we show that NuClick is generalizable,

robust against variations in the user input, adaptable to new domains, and

delivers reliable annotations.

One possible extension of this work would be making the framework prob-

abilistic. More precisely, we can learn a distribution over segmentations given

an input. For example, a variational autoencoder can be utilized to produce

several segmentation hypotheses. Therefore, when user clicks on the object,

several segmentation hypotheses would be shown to him/her and then he/she

selects the one that best fits the object of interest.

6.4 Self-supervision for Classification of Pathology

Images with Limited Annotations

In Chapter 5, we investigated self-supervised pretext tasks for classification of

histology images in the presence of limited budget of annotations. We proposed

3 domain-specific self-supervised tasks and we showed that they can improve

performance of annotations when the budget of annotations is very low. These

self-supervised tasks are trained simultaneously with the main task where their
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backbone is shared, therefore the backbone learns the representations that

generalize well.

This approach can be applied to other problems such as segmentation in

computational pathology, where annotation budget is often limited or large

amount of labeled image data is not available. Another future direction could

be employing other self-supervision tasks such as predicting the Eosin channel

or a combination of Hematoxylin and Eosin after estimating the two channels,

rather than keeping them fixed, and increasing the JigMag grids to incorporate

wider and complex puzzles for the network to solve.

6.5 Morphological Features of Representative Patches

to Predict NSCLC Survival

Most approaches in survival analysis rely on extracting patches from ROIs

delineated by experts. Annotating these ROIs is time consuming and infeasible

when use WSIs at large scale. In this chapter we have utilized attention-based

multiple instance learning, which takes all the patches from WSIs in the form

of a bag and assign a label to this bag. Attention block in the model assigns

more weight to the patches that contribute more to to determining the class of

whole bag. We observe that determining the sub-class of lung images achieve

better performance than predicting stage, survival. Therefore the MIL was

trained using lung sub-types (ACC, SCC) and afterwards we select the top k

patches with highest weights (which mostly belong to tumour class). Then

morphological analysis was performed on these patches and it has been shown

that the features obtained from these selective patches are predictive of survival.

One possible extension to this work can be extracting other types of features

such as texture and contextual features and see their prognostic value in our

setting. Moreover, for our future work we will conduct this approach on the

external test cohort to assess the generalizibility of our algorithm.

6.6 Concluding Remarks

In this thesis, we have presented set of works ranging from localization of nuclei

to predicting the survival using those localization techniques. Tackling the

challenge of limited annotation budget is another path that has been explored

where we proposed techniques to overcome the challenges related to scarcity of

annotations.

The results presented in Chapter 5 are preliminary and requires more

extensive experiments on external and large cohorts. Interpretibility and trans-

parency of the algorithm’s decision are two objectives that deep models still
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struggle with. There is plenty of room to explore features that are under-

standable by humans for disease diagnosis and prognosis. Such features should

be assessed by experts for their potential use in clinical practise. Therefore,

detailed investigation into the work presented in Chapter 5 and other sim-

ilar approaches is required to understand the tumour micro-enviroment by

exploring the usefulness of handcrafted features for predicting patient outcome.
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Appendix A

Self-Path

A.1 Network Architecture

The performance on classification tasks was evaluated using supervised learning.

ResNet50 was chosen since it has overall good performance while having lower

number of parameters. The AUC-ROC performances can be seen in Table A.1.

ResNet50 was used as the backbone architecture in all the self-supervision

experiments except when the generative real vs fake prediction had to be used.

While using the real vs fake auxiliary task for image generation, we utilize the

architecture presented in Table A.2 and find that this simpler feature extractor

allows easy and robust convergence for the image generator.

A.2 Hyper-Parameters

The hyper-parameters when using the various network architectures for training

are shown in Table A.4 and Table A.5. Table A.4 is the hyper-parameter setting

when using ResNet50 as the backbone and Table A.5 are the settings used

when the generative real vs fake sub-task is used.

Table A.1: Performance of different baseline models on the three datasets. The
evaluation was done using only the supervised loss and keeping the labeling
budget at one percent.

Kather Camleyon16 LNM-OSCC
Labeled patches 800 600 134

Resnet50 0.9137 0.6467 0.7387
Resnet101 0.9015 0.6515 0.7314
Densenet121 0.9014 0.6514 0.7265
InceptionV3 0.8914 0.6618 0.7264
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Table A.2: Network architecture while using the generative real vs fake subtask.
Conv.T stands for transposed convolution.

Generator

latent space (100)
dense 4×4×512 batchnorm ReLU

5×5 Conv.T 512 batchnorm ReLU stride=2
5×5 Conv.T 256 batchnorm ReLU stride=2
5×5 Conv.T 128 batchnorm ReLU stride=2
5×5 Conv.T 128 batchnorm ReLU stride=2
5×5 Conv.T 3 weightnorm Tanh stride=2

Discriminator

128×128×3 images
dropout, p = 0.2

3×3 conv. weightnorm 96 lReLU
3×3 conv. weightnorm 96 lReLU

3×3 conv. weightnorm lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 128 lReLU
3×3 conv. weightnorm 128 lReLU

3×3 conv. weightnorm 128 lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 192 lReLU
3×3 conv. weightnorm 192 lReLU

3×3 conv. weightnorm 192 lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 192 lReLU
3×3 conv. weightnorm 192 lReLU
3×3 conv. weightnorm 192 lReLU

Adaptive maxpool
weightnorm dense 2

Table A.3: Network architecture for hematoxylin/decoder tasks

Decoder

Resnet50 backbone
1×1 Conv.T 512 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 512 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 256 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 256 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 128 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 65 ReLU stride=1

1×1 Conv.T Number of classes stride=1
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Table A.4: Hyper-parameters of model when Resnet 50 is used as feature
extractor

Hyperparameters Values

Batch size 64
Epoch 200
Optimizer ADAM (α = 3 ∗ 10−3 , β1 = 0.9)

Table A.5: Hyper-parameters for real vs fake prediction subtask

Hyperparameters Values

Batch size 32
Epoch 500
Leaky ReLU slope 0.2
Exp. moving average decay 0.999
Optimizer ADAM (α = 3 ∗ 10−4 , β1 = 0.5)
Weight initialization Isotropic gaussian (µ = 0, σ = 0.05)
Bias initialization Constant (0)
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