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Much categorization behavior can be explained by family resemblance: New items are classified by
comparison with previously learned exemplars. However, categorization behavior also shows a variety of
dimensional biases, where the underlying space has so-called “separable” dimensions: Ease of learning
categories depends on how the stimuli align with the separable dimensions of the space. For example, if a set
of objects of various sizes and colors can be accurately categorized using a single separable dimension
(e.g., size), then category learning will be fast, while if the category is determined by both dimensions,
learning will be slow. To capture these dimensional biases, almost all models of categorization supplement
family resemblance with either rule-based systems or selective attention to separable dimensions. But these
models do not explain how separable dimensions initially arise; they are presumed to be unexplained
psychological primitives. We develop, instead, a pure family resemblance version of the Rational Model of
Categorization (RMC), which we term the Rational Exclusively Family RESemblance Hierarchy
(REFRESH), which does not presuppose any separable dimensions in the space of stimuli. REFRESH
infers how the stimuli are clustered and uses a hierarchical prior to learn expectations about the variability of
clusters across categories. We first demonstrate the dimensional alignment of natural-category features and
then show how through a lifetime of categorization experience REFRESH will learn prior expectations that
clusters of stimuli will align with separable dimensions. REFRESH captures the key dimensional biases and
also explains their stimulus-dependence and how they are learned and develop.
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Categorization is central to the ability to encode knowledge, make
inferences, and use language; and mastering huge numbers of
flexible and complex categories is surely fundamental to human
intelligence. How are categories represented and learned? Initially,
researchers attempted to describe human categorization with logical
combinations of rules: Objects were category members if and only if
they satisfied a set of rigid constraints and objects that did not satisfy
these constraints were left outside the category (Bourne, 1970;
Bruner et al., 1956; Hull, 1920; Katz & Postal, 1964; Neisser &

Weene, 1962). For example, a bus needs to have, among other
things, wheels and space for passengers; anything not satisfying
these criteria is not a bus. Category learning is then a matter of
hypothesizing and testing logical combinations of rules (Shepard
et al., 1961).

Though attractively simple, these rule-based descriptions of human
category representations are too restrictive, as Wittgenstein (1953)
argued. Even the apparently innocuous category of games turns out
to have astonishing variety: card games, board games, word games,
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playground games, competitive versus cooperative games, individ-
ual and team games, and there is no rule that separates games from
nongames. Moreover, the category has no clear boundary—for
example, there is no sharp distinction between games and sports,
or between games and pastimes (Sudoku, crosswords, solitaire); and
the category continually grows and changes, and now includes the
huge variety of computer games. Instead, games have a certain
family resemblance—they appear similar to other games. Empirical
evidence supports this intuition: the all-or-none nature of the
simple rule-based categories was shown to be a poor fit to people’s
representations, as participants instead have graded category repre-
sentations in which objects have a better or worse claim to category
membership (Rosch, 1973).
As a result, family resemblance is a critical element of many

modern models of categorization: Exemplar models (Medin &
Schaffer, 1978; Nosofsky, 1986), prototype models (Reed, 1972),
and models based on multiple prototypes (Anderson, 1991; Love
et al., 2004; Rosseel, 2002; Vanpaemel & Storms, 2008) all employ
this kind of graded category representation. In these models, category
judgments of new objects are based on their resemblance or similarity
to the category representations; categories can have graded bound-
aries and can extend and change in the light of new instances.
But despite its overall success, family resemblance alone has also

been viewed as insufficient. Some properties of the items to be
categorized appear to play a special role: They seem to serve as
underlying dimensions in terms of which the stimuli are represented.
For example, what appear to be natural dimensions of a perceptual
stimulus, such as size and color, significantly affect learning in ways
that go beyond family resemblance. Explanations of these effects
have either returned to rule-based models, or augmented family
resemblance models with additional mechanisms like dimensional
attention. We term these effects dimensional biases.
One classic dimensional bias is what is known as the condensation

versus filtration effect: People learn categories that can be separated
along a single dimension (e.g., color) more easily than they can learn
categories that can only be separated by a combination of dimensions
(e.g., Kruschke, 1993). Because family resemblance in this task
predicts that the categories that require a combination of dimensions
to separate should be learned at least as fast as the categories that can
be separated by a single dimension, this result is taken as evidence that
separable dimensions play a key role in category representations. A
second demonstration is the classic result of Shepard et al. (1961):
Category structures that can be described by simpler rules are easier to
learn. Underlying dimensions seem to have no special role in family
resemblance accounts; thus, dimensional biases are typically taken as
a challenge to pure family resemblance accounts.
These empirical demonstrations appear to show effects both of

family resemblance and of rules/dimensions, and also complex
dependencies on the stimuli used. Hence, modern models of cate-
gorization have distinct mechanisms to capture each. The models
that begin with family resemblance, such as the prototype and
exemplar models of categorization (Medin & Schaffer, 1978;
Nosofsky, 1986; Reed, 1972), also include psychological distance
calculations and attentional mechanisms that are sensitive to sepa-
rable dimensions, in order to explain dimensional biases. From the
opposite starting point, modern rule-based models use separable
dimensions as psychological primitives; they average a large num-
ber of rule-based structures or quickly switch between rules, to
achieve the graded category structure considered the hallmark of

family resemblance models (Feldman, 2000, 2006; Goodman et al.,
2008; Goodwin & Johnson-Laird, 2013; Navarro, 2006; Nosofsky,
Palmeri, et al., 1994; Shepard, 1987; Vigo, 2009). Finally, models
using hybrid representations have two separate systems to produce
rule-based and family resemblance behavior (Ashby et al., 1998).

These accounts capture the classic dimensional biases by design,
but they are limited in a fundamental way. Categorization models
mainly leave unaddressed the difficult problem of how these
separable dimensions are actually learned, while the handful of
models that do learn these dimensions (e.g., Colunga & Smith,
2005) are not able to capture all of the classic dimensional biases.

Here we take a very different, and potentially more unified
approach. We model separable dimensions not as representational
primitives. Instead, we model dimensional biases as the result of
learning about the structure of the environment. In particular, we aim
to show that the structure of many real-world categories aligns with
the separable dimensions of the psychological space of stimuli. But
the statistical properties of stimulus dimensions and their distribution
across natural categories are not uniform throughout psychological
space, which results in stimulus-dependence and related contextual
effects, as outlined below. Specifically, we propose a Rational Model
of Categorization (RMC), based exclusively on family resemblance,
but one that is capable of capturing the complex and context-
dependent structures found in real-world categories. In this model,
context-dependent separable dimensions are a consequence of learn-
ing real-world categories, and thus, they are not presupposed.

In the following, first we outline the challenge of capturing human
categorization performance with a pure family resemblance model.
To do so, we describe the classic dimensional biases, why these biases
depend strongly on the stimuli used, and the evidence that these biases
are learned. Next, we review current models of categorization and
discuss where they succeed andwhere they fall short in producing and
learning dimensional biases. To illustrate our argument, we develop a
computational-level model that is a pure family resemblance version
of the RMC (Anderson, 1991), augmented with a hierarchical prior.
We call this the Rational Exclusively FamilyRESemblanceHierarchy
(REFRESH). The RMC works by inferring which objects should be
clustered together. Crucially, REFRESH learns more than the specific
clusters of stimuli that it observed, but also the types of cluster
structures observed across categories in the environment. That is, it
learns what sort of clusters should be expected: What cluster covar-
iances tend to occur across categories. Next, we analyze the statistics
of natural-category features, showing that the dispersion of these
categories tends to align with features that researchers have found to
be separable, such as shape and color. After the experience with
categories with these types of statistics, REFRESH produces classic
dimensional biases, as well as the stimulus dependence of these
effects—all seven types of dimensional bias effects we describe
below and in Table 1. Finally, we discuss the limitations of, and
possible extensions to, our approach.

Dimensional Biases

There are several classic empirical demonstrations of dimensional
biases, which are summarized in Table 1. Family resemblance
models have at their heart the notion of similarity, which is
commonly operationalized as the distance between stimuli in a
mental space. However, for some dimensions, distance in a mental
space is inadequate to explain similarity judgments because
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similarity judgments can violate the triangle inequality: The prop-
erty that the greatest similarity or shortest distance is a straight line
within the mental space. For example, assume that there are three
stimuli, A, B, and C that have particular values on two separable
dimensions as in Figure 1. If the stimuli have the following psy-
chological distances, d(A, B)= 10, d(A,C)= 1, and d(C, B)= 1, then
they cannot be represented within this space: The direct distance
d(A, B) implies that A and B are far apart, while the path through
stimulus C, d(A, C) + d(C, B) = 2, implies that A and B are close
together. These triangle inequality violations occur if stimuli are
aligned with the separable dimensions of the space as in Figure 1: If

stimulus C matches both A and B on different separable dimensions
while stimulus B mismatches A on both separable dimensions. This
classic dimensional bias has been shown for a number of pairs of
dimensions and is a strong argument against pure family resemblance
models in which similarity is based on distance in a psychological
space (Dunn, 1983; Soto&Wasserman, 2010; Tversky&Gati, 1982).

Another classic dimensional bias is the difference between filtra-
tion and condensation categories. Filtration categories, or categories
that can be separated using one dimension, are easier to learn than
condensation categories, or categories that require two dimensions
to separate (Garner, 1974; Gottwald & Garner, 1972, 1975;
Kemler & Smith, 1978). A nice demonstration of the relative
ease of learning filtration and condensation category structures
was given by Kruschke (1993), who compared accuracy of learning
the category structures shown in Figure 2. For these category
structures, pure family resemblance models would predict the
condensation categories are easier to learn because the two catego-
ries in the condensation condition are further apart than they are in
the filtration condition. Despite this, participants found the filtration
categories easier to learn.

The third classic dimensional bias comes from the category
learning experiments of Shepard et al. (1961, abbreviated here as
SHJ). This work introduced six canonical category structures, shown
in Figure 3, which comprise all the possible ways to divide the eight
binary dimensional stimuli into two equal-sized classes, ignoring the
mapping of the dimensions of the category structure onto the physical
dimensions of the stimuli and the mapping of labels to categories.
They collected same-different identification judgments for all pairs of
stimuli, and family resemblance predicted a certain ordering of ease-
of-learning: Type I categories should be easiest, then Types III–V,
then Type II, and finally TypeVI. However, participants learned Type
II more quickly than Types III–V, which was evidence for the
importance of separable dimensions in category representation:
The Type II advantage occurred because one dimension can be
ignored during learning, while Types III–V required participants to

Table 1
Summary of Dimensional Biases in Perceptual Similarity and Categorization

Type Effect name Effect description Example citation(s)

The classic dimensional
biases

Violations of the triangle
inequality

Similarities for some dimensions violate the requirements
of the metric space used for family resemblance

Tversky and Gati (1982)

Condensation vs.
filtration

Dimension-aligned categories are easier to learn than
misaligned categories

Garner (1974) and Kruschke
(1993)

SHJ Type II advantage Exclusive-or categories are easier to learn than family
resemblance predicts

Shepard et al. (1961)

Stimulus dependence of
dimensional biases

Separable vs. integral
dimensions

Pairwise nature of separable or integral dimensions;
filtration advantage and SHJ Type II advantage disappear
with integral dimensions; biconditional discrimination is
easier for integral dimensions

Gottwald and Garner (1975),
Nosofsky and Palmeri (1996),
and Soto et al. (2015)

SHJ Type II advantage
dependencies

SHJ Type II advantage only for some separable dimensions Love and Markman (2003) and
Kurtz et al. (2012)

Learning dimensional
biases and their
stimulus dependence

Dimensional
development

Dimensional generalization develops; young children can
learn simple categories like adults but only older children
show an adult-like advantage for exclusive-or categories

Smith (1989) and Minda et al.
(2008)

Dimensional learning Categorization training increases perceptual
discrimination; integral dimensions can be trained to be
separable dimensions

Goldstone (1994) and Soto and
Ashby (2015)

Figure 1
Example of Stimuli That Can Violate the Triangle Inequality

Note. A, B, and C are stimuli within a psychological space defined by
separable dimensions on the horizontal and vertical axes. If the distance
between A and B, d(A, B), exceeds the combined distance d(A, C) + d(C, B)
then it is not possible to represent the stimuli within this two-dimensional
space.
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use all three dimensions to categorize the stimuli. The SHJ results are
an example of an even more complex dimensional bias than that
displayed in the filtration and condensation experiments. The filtra-
tion category structures could be perfectly divided along a single
separable dimension, but the Type II categories required two separa-
ble dimensions to divide without error.

Dimensional Biases Are Stimulus Dependent

While models generally treat separable dimensions as inter-
changeable, people’s degree of dimensional bias does depend on
how the category structure is mapped to the physical dimensions of
the stimuli. An obvious starting point for demonstrating this is the
distinction between separable and integral dimensions (Garner,
1974). Size and color are an example of a pair of separable
dimensions, because one dimension can be easily ignored when
making judgments about the other. Integral dimensions, such as the
hue and saturation of color, however, cause interference when
making a judgment based on only one of the dimensions. This
distinction between separable and integral dimensions applies to
pairs of dimensions rather than to single dimensions. For example,
hue and size are separable, but hue and saturation are integral.
Further complicating the picture, the separable-integral distinction
appears to be continuous rather than binary: Many pairs of dimen-
sions seem to lie in-between these extremes (Soto & Wasserman,
2010; Tversky & Gati, 1982).

The classic dimensional biases depend on whether the dimensions
are separable or integral. The advantage of filtration categories over
condensation categories is found with separable dimensions and
reverses when integral dimensions are used (Gottwald & Garner,
1975). The SHJ results also depend on whether the dimensions are
separable and integral. The Type II problem is easier to learn than
Type IV for separable dimensions but is not easier to learn for
integral dimensions (Nosofsky & Palmeri, 1996). In both of these
examples, using integral dimensions removes the dimensional bias,
and the experiments using integral dimensions are instead well
described by pure family resemblance. An additional difference
between separable and integral dimensions was found by Soto et al.
(2015), who showed that in biconditional discrimination (shown in
Figure 16A, and which is essentially the same as learning only the
upper half of the Type II problem in Figure 3), the correct responses
were learned more quickly with integral dimensions than with
separable dimensions.

Other work has shown that one of the classic dimensional biases
is not found for all sets of separable dimensions. Love andMarkman
(2003) investigated the SHJ Type II and Type IV category structures
using various mappings of the category dimensions to the physical
dimensions of shape, size, and color. All pairs of these physical
dimensions are separable, but only when Type II problems were
mapped so that size and color were relevant, and shape was
irrelevant for classification was the Type II problem reliably easier
to learn than the Type IV problem. Kurtz et al. (2012) also found a
dimensional dependence of the Type II advantage, and in another
experiment demonstrated that there are stimulus dimensions that are
separable but show no Type II advantage whatsoever. In this
experiment, participants were able to quickly learn the single-
dimensional Type I problem while not showing any Type II
advantage. These complex dependencies of the Type II advantage
on the stimulus dimensions have yet to be completely explained.

Existing models of categorization, as reviewed below, can make
allowances for qualitative and sometimes quantitative distinctions
between integral and separable stimuli. They can account for the
differences between separable and integral dimensions in conden-
sation versus filtration and SHJ tasks, and some models can also
account for the finer-grained details in stimulus dependence, such as
the SHJ Type II problem being easier to learn than Type IV for some

Figure 2
The Four Category Structures From Kruschke (1993)

Note. The vertical and horizontal dimensions specify the height of a
rectangle and the vertical position of a line within that rectangle, respectively.
Each circle that is the same color belongs to the same category, and the
vertical or horizontal distance between neighboring circles that differ on one
dimension is assumed to be one unit. Adapted with permission from
Kruschke (1993, p. 13).

Figure 3
The Six Shepard et al. (1961) Category Structures

Note. The three lines map onto three stimulus dimensions, such as the
shape, color, and size of the stimulus if the dimensions are separable. Each
circle that is the same color belongs to the same category, and the vertical and
horizontal distances between neighboring circles are assumed to be one unit.
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sets of separable dimensions but not others. But these models do not
generally explain how these dependencies are learned.

The Role of Learning in Dimensional Biases

One strand of evidence showing that dimensional biases are
learned over development comes from free classification studies.
In these experiments, participants are asked to group stimuli
together as they see fit, and are usually allowed to use as many
groups as they would like. This type of task allows for the size of the
dimensional bias to be directly assessed: Do participants group
together objects that match on dimensions but have low family
resemblance, or do they group together objects that mismatch on
dimensions but have high family resemblance? Examples of differ-
ent types of grouping that reflect pure family resemblance (i.e.,
overall similarity), pure dimensional matching (i.e., one-dimen-
sional identity), and both family resemblance and dimensional
matching (i.e., one-dimensional similarity) are shown in Figure 4.
With separable dimensions such as size and color, adults’ free

classifications show larger dimensional biases than those of children
(Smith & Kemler, 1978). This developmental transition appears to
be gradual. Children will group the stimuli according to family
resemblance, but as the age of the participants increases the dimen-
sional match becomes more and more important. Adults almost
always produce dimensional matching (Smith, 1989). Other
research has shown that for adults, an integral dimension can be
trained to be more separable (Soto & Ashby, 2015). For example,
color experts showmore separability with color dimensions (Burns &
Shepp, 1988) and participants trained on hue and saturation aligned
categories show behavior that suggests that these dimensions become
separated through training (Goldstone, 1994).
Dimensional biases in the SHJ task also increase during devel-

opment. For Type I problems, 3-year-old children struggled, but
5- and 8-year-old children accomplished this task as well as adults
do (Minda et al., 2008), which demonstrates that the 3-year olds
were not able to use single-dimensional matches. The deficit in
Type I problems was not a result of 3-year-old children not
understanding the task: they were as good as adults at the Type
IV problems. Echoing the dissociation between Type II and Type I
performance found byKurtz et al. (2012) in adults, 3-, 5-, and 8-year
olds were all worse than adults at learning Type II categories, despite

showing equivalent performance on other category structures
(Minda et al., 2008). This suggests that the ability to use single-
dimensional matches is learned and precedes the ability to use
matches of conjunctions of dimensions, which develops later.

These developmental trajectories suggest that learning plays a
role in dimensional development. Similar effects such as the shape
bias for extending words to novel objects with the same shape have
been explained as reflecting the structure of real-world categories
(Samuelson & Smith, 1999). For example, some artifacts, like bowls
or pencils, are categories that vary widely in color or material but
typically vary less in their shape (Rosch et al., 1976). In addition,
shape bias training studies have shown that children trained on
named categories organized by shape were able to learn nouns faster
outside of the laboratory than children not given this training (Smith
et al., 2002) While this is a different dimensional bias than those
considered above, it does suggest the possibility that the develop-
mental changes in dimensional biases are the result of learning.

Review of Models of Categorization

Here we briefly review a variety of existing models of categori-
zation that all apply to incremental category learning experiments,
grouping them into rule-based, family resemblance, and hybrid
models. The RMC and hierarchical rational models are also re-
viewed, but in more depth as they form the basis for the new model
we introduce in the next section. For all of these existing models, we
discuss howwell they can account for the classic dimensional biases
and the stimulus dependence of these biases, and to what extent they
can explain the learning of dimensional biases. A summary of the
discussion below is presented in Table 2.

Rule-Based Models

Rule-based models of categorization comprise some of the
earliest descriptions of how categories are constructed (Bourne,
1970; Bruner et al., 1956; Katz & Postal, 1964; Neisser & Weene,
1962). While neglected for a long period of time due to the finding
that category representations are graded (Rosch, 1973), later work
has shown that uncertainty about rules can produce graded repre-
sentations. The seminal work of Shepard (1987) demonstrated that if
there is uncertainty about the extent of all-or-none categories, then

Figure 4
Experiment 2 of Smith (1989)

Note. In a free categorization task, the stimuli marked by dots were grouped by participants. Stimuli that were grouped
together are circled. The three plots show the three critical partitions. Adapted with permission from Smith (1989, p. 137).
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averaging over these possible all-or-none categories will produce
graded generalization. A similar approach has recently been used to
produce graded category structures from rule-based representations:
The all-or-none nature of each individual rule is smoothed out by
averaging over a set of rules (Feldman, 2006; Goodman et al., 2008;
Shepard, 1987; Tenenbaum & Griffiths, 2001b).
RULEX (Nosofsky, Palmeri, et al., 1994; Nosofsky & Palmeri,

1998) is another rule-based approach that starts with rules and later
acquires exceptions: One-dimensional rules first, then conjunctive
rules, and lastly exceptions if they are required. RULEX has been
successful in matching the initial category judgments of participants,
which are more rule-like than family resemblance models with
selective attention predict (Nosofsky, Palmeri, et al., 1994). A
bias toward single-dimensional rules over conjunctions is a straight-
forward route to producing the condensation versus filtration effects.
Rule-based models can also easily produce violations of the triangle
inequality (Tversky & Gati, 1982).
A more recent resurgence in rule-based representations has followed

from the introduction by Feldman (2000) of an expanded set of SHJ
problems that allowed unequal numbers of positive and negative
examples, as well as additional dimensions. Participants’ ease of
learning these concepts was found to correlate well with the minimum
Boolean complexity of the concepts, but further research has demon-
strated that this correlationwas not perfect for the classic SHJ problems.
In particular, Type II and Type III SHJ problems both have the same
Boolean complexity (Kemp, 2012; Mathy & Bradmetz, 2003; Vigo,
2006), so later rule-based models have introduced new complexity
measures (e.g., Feldman, 2006) that can match the empirical learn-
ability advantage of Type II over Type III (Goodman et al., 2008;
Goodwin & Johnson-Laird, 2011; Vigo, 2009).
Despite their advantages in predicting people’s learning of com-

plex category structures, rule-based models do not always produce
the stimulus dependence of dimensional biases and do not explain
the role of learning in acquiring dimensional biases. Some rule-
based models do include mechanisms for increasing or decreasing
the use of rules based on experience (Feldman, 2006; Nosofsky,
Palmeri, et al., 1994) or even for developing new primitives
(Goodman et al., 2008). As a result, rules potentially could explain

the SHJ Type II advantage dependencies and the development of
latent dimensions, but it remains to be seen whether rule-based
models can be modified to do so while explaining other human
data. More importantly, these models cannot pick new dimen-
sions as primitives in a continuous space, meaning that they
cannot perform dimensional learning (Goodman et al., 2008).
Also, effects found with integral dimensions are difficult to
explain with rule-based models as they more naturally describe
effects found with separable dimensions.

Family Resemblance Models

Graded category structures motivated the development of family
resemblance models of categorization (Rosch, 1973). Family resem-
blance can be implemented in a variety of ways, including both the
classic prototype and exemplar models (Medin & Schaffer, 1978;
Nosofsky, 1986; Reed, 1972). Other models interpolate between
prototypes and exemplars by using representations that combine stimuli
within the same category into one or more clusters (Anderson, 1991;
Love et al., 2004; Rosseel, 2002; Vanpaemel & Storms, 2008).
However, classic dimensional biases such as the condensation versus
filtration results and the ordering of the SHJ problems have been used
to argue that family resemblance representations alone are not suffi-
cient to fully describe human categorization behavior. An additional
mechanism is needed to produce dimensional biases, and as a result,
models of family resemblance also have incorporated separable
dimensions into their measures of similarity and distance.

There are two common ways to incorporate separable dimensions
into family resemblance models, both of which have been built into
the calculation of distance between stimuli within the psychological
space. Within many models, the distance between stimulus x and
stimulus y is determined by a weighted Minkowski distance metric,

d =

 X
i

wiðxi − yiÞr
!

1=r

, (1)

wherewi is the weight assigned to each separable or integral dimension
i,
P

iwi = 1, and r is an exponent which determines the distance metric

Table 2
Comparing Categorization Models Ability to Produce the Dimensional Biases in Table 1

Effect type Effect name

Rules
(RULEX,
rational
rules)

Exemplar
(GCM,

ALCOVE)

Hybrid
(ATRIUM,
COVIS)

Rational
model of

categorization

Hierarchical
rational
models REFRESH

The classic dimensional
biases

Violations of the triangle
inequality

✓ ✓ ✓ ✓ ✓

Condensation vs. filtration ✓ ✓ ✓ ✓ ✓ ✓

SHJ Type II advantage ✓ ✓ ✓ ✓ ✓ ✓

Stimulus dependence of
dimensional biases

Separable vs. integral
dimensions

✓ ✓ ✓ ✓

SHJ Type II advantage
dependencies

✓ ✓ ✓ ✓ ✓

Learning dimensional
biases and their
stimulus dependence

Dimensional development ✓ ✓ ✓ ✓ ✓

Dimensional learning ✓

Note. REFRESH = Rational Exclusively Family RESemblance Hierarchy, RULEX (Nosofsky, Palmeri, et al., 1994), GCM (Nosofsky, 1986), ALCOVE
(Kruschke, 1992), ATRIUM (Erickson & Kruschke, 1998), and COVIS (Ashby et al., 1998).
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(Nosofsky, 1986; Torgerson, 1958). Figure 5 shows how this weighted
Minkowski metric changes the distance calculation by showing curves
of equal similarity around a central stimulus, where similarity is a
monotonic transformation of distance. The difference in integral and
separable dimensions is partially produced by changing the exponent
r: A value of r = 2 (i.e., the Euclidean metric) is used for integral
dimensions and a value of r = 1 (i.e., the city-block metric) is used for
separable dimensions. The integral dimensions when r = 2 are not
identifiable from the similarity curves: If the axes were rotated the exact
same similarity curves could also be produced using the rotated axes.
This is no longer the case for separable dimensions when r = 1: The
separable dimensions are those that align with the “corners” of the
similarity curves and are easily identifiable from these curves.
However, despite r = 1 often being used to describe separable

dimensions, it cannot account for violations of the triangle inequal-
ity. In order to do so, values of r < 1 such as r = 1/2 are needed to fit
the data. This can be seen in the bottom row of Figure 5. For both
r = 2 and r = 1 the direct distance (as measured by the number of
shapes) between stimuli A and B is not longer than a detour through
stimulus C. However, for r = 1/2 the direct distance is longer than a
detour through stimulus C, violating the triangle inequality. Because
of this, values of r < 1 mean that the Equation 1 is no longer
interpretable as a distance metric, though it can still be used within
these models to fit data (Nosofsky, 1984). However, even allowing
for values of r < 1, no single value of r can explain why violations
of the triangle inequality occur for stimuli that are easily

distinguishable (Dunn, 1983; Soto & Wasserman, 2010; Tversky &
Gati, 1982), but also that the Euclidean metric is the best fit for
stimuli that are confusable (Nosofsky, 1986).

The second way to incorporate separable dimensions in family
resemblance models is to allow for selective attention to separable
dimensions. This route involves adjusting each weight wi in the
weighted Minkowski metric for the separable dimensions, which in
effect stretches or shrinks the distances in the psychological space
along the separable dimensions, as demonstrated in Figure 6. As the
stretching and shrinking of the psychological space happen along
the separable dimensions, it can be used to effectively separate the
two categories in the filtration conditions, making them easier to
distinguish. For the condensation categories, because stretching or
shrinking can only operate along the separable dimensions, perfor-
mance does not improve as much, and this limitation to stretching or
shrinking has been demonstrated qualitatively as well (McKinley &
Nosofsky, 1996). This explains the learning advantage in the filtra-
tion conditions. The same explanation applies to the SHJ Type II
advantage, as selective attention separates the Type II categories
better than it does the Type IV categories (Nosofsky, 1986). Models
such as ALCOVE are able to learn how to effectively deploy selective
attention during category learning (Kruschke, 1992).

Selective attention can produce some classic dimensional
biases, and can also produce some kinds of stimulus-dependence
of these biases. It can explain, and indeed it predicted that the SHJ
Type II advantage would disappear for integral dimensions

Figure 5
Illustrations of the Effect on Similarities and the Triangle Inequality for Different Values of the Minkowski
Distance Metric Parameter r

Note. The top row shows contour plots depicting the predicted similarity of a central stimulus to stimuli positioned at
each point in the plot. The bottom row compares the distance along both a direct path (A to B) and an indirect path
(though C) in terms of distance units for each value of r. Each distance unit is marked by an “×.” This illustrates why
r < 1 is necessary for violations of the triangle inequality.
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(Nosofsky & Palmeri, 1996). It does so by not allowing the weights
wi to be learned during the task. However, more complex parameter-
izations may be needed to explain the pairwise nature of separable
and integral dimensions, why SHJ Type II performance is sometimes
poor while Type I performance is excellent, and the developmental
trajectory of the relative difficulty of the SHJ problems (Kurtz et al.,
2012; Minda et al., 2008). Importantly, how family resemblance
models learn which dimensions to apply selective attention to is
what is most difficult to explain. Learning the best dimensions to
attend to over the course of an experiment from the set of possible
preferential dimensions has been well modeled (Kruschke, 1992,
1993; Nosofsky, Gluck, et al., 1994), as has the development of
separable dimensions from a latent set of dimensions (Smith, 1989).
What is missing in these models is an explanation of how the set of
latent separable dimensions are learned.

Hybrid Models

Of course, selective attention is not the only route for introducing
dimensional biases into family resemblance models. Another way to
do so is with hybrid models, such as ATRIUM (Erickson &
Kruschke, 1998) and COVIS (Ashby et al., 1998), that combine
the strengths of family resemblance and rule-based models into a
single package. COVIS is an especially well-studied model which
has two systems: A rule-based system and a family resemblance
system that are assumed to be situated in different parts of the brain.
COVIS has been successful in describing dissociations between
learning of category types that depend on different systems, which
we discuss in more detail in the Explaining Evidence for Multiple
Systems with a Single System section below. These hybrid

approaches can explain the classic dimensional biases, and poten-
tially could explain the stimulus-dependence of dimensional biases
by tying the availability of types of rules to different dimensions.
Hybrid models have the potential to explain the differential devel-
opment of SHJ Type I and II problems, if rule primitives are built in
(Minda et al., 2008). However, it is not clear how these models
could be extended to explain the learning of those primitives.

The Rational Model of Categorization

The RMC (Anderson, 1991) casts categorization as inference
about the unobserved aspects of stimuli, such as the category labels
that should be assigned to new, unlabeled stimuli. The RMC is a
mixture model which can interpolate between an exemplar model
and a prototype model—there could be one cluster that describes all
the stimuli within each category, as in a prototype model, or there
could be as many clusters as there are individual stimuli, as in an
exemplar model. Instead of being restricted to a single cluster or a
cluster for each previous stimulus, the mixture model has the
flexibility to choose an intermediate number of clusters.

When determining the category label of a new stimulus, the
statistical model underlying the RMC assumes that every possible
assignment of stimuli to clusters is considered. Computing exact
probabilities using this underlying statistical model is both compu-
tationally intractable and psychologically implausible, so to solve
these issues Anderson (1991) developed a simple approximation as
a core part of the model. This approximation assumed a single
“history”: that every item was assigned to a single cluster, specifi-
cally the cluster that was most likely when that item was first
observed. While this approximation is often accurate, later work
used other tractable approximations which increase accuracy by
representing multiple possible histories (Sanborn et al., 2010). We
focus here on the computational-level model underlying the RMC,
defined by Anderson (1991) and later shown to be equivalent to a
well-known Bayesian nonparametric model in statistics (Neal,
1998), because it is used as a basis for REFRESH. We discuss
approximations both below and in the Appendix.

When a new item is observed, the probability of assigning the new
item to a cluster depends on both the prior probability of each cluster
and the likelihood of each cluster. The prior probability of each cluster
is based on a rich-get-richer process, the Chinese Restaurant Process
(CRP), in which the prior probability is roughly proportional to the
number of items already in the cluster, but with a small probability
reserved for assigning the new item to a new cluster. This allows the
RMC to have the flexibility to always increase the number of clusters as
themixturemodel observesmore items.More formally, assumewe call
the cluster index of the nth stimulus zn, while the vector of the cluster
indices of all previous stimuli is called zn−1. Then the prior is

Pðzn = k j zn−1Þ =
8<
:

Mk
n− 1+α if Mk > 0 ði:e:, k is oldÞ

α
n− 1+α if Mk = 0 ði:e:, k is newÞ,

(2)

where Mk is the number of objects assigned to cluster k, and α is
called the dispersion parameter.1 Using Equation 2, the set of

Figure 6
Illustrations of how Selective Attention Produces the Condensation
Versus Filtration Effect and the SHJ Type II Advantage

Note. The top row shows the key original conditions from these two
experiments, as reproduced from Figures 2 and 3. The bottom row shows
the effect of selective attention, which stretches and shrinks the dimensions
of the psychological space to make stimuli more or less distinguishable.
Selective attention better separates the categories for the filtration and SHJ
Type II categories than it does for the other conditions, producing learnability
advantages for the filtration and SHJ Type II categories.

1 This formulation is often used in statistics (e.g., Neal, 1998), while
Anderson (1991)’s formulation, which used a coupling parameter, can be
recovered by setting α = 1− coupling

coupling .
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assignments zn−1 is defined as a simple sequential stochastic process
(Blackwell & MacQueen, 1973) in which the order of the observa-
tions is unimportant (Aldous, 1985).
In the RMC, the likelihood that a new item belongs to a cluster

depends on how well the features of a new stimulus match those of
the stimuli that are cluster members. The model additionally as-
sumes that the features of the items within a cluster are independent
of one another, so that there are no correlations between features. For
binary features, such as category labels or binary perceptual fea-
tures, a beta-binomial distribution with parameter β is used to model
the likelihood that a binary feature arises from a particular cluster.
However, for continuous perceptual data like in the condensation

versus filtration problems, the likelihood used for the perceptual
features is Gaussian along each dimension, and there is a prior on
both the mean and variance parameters of each Gaussian. More
formally, the mean and variance of the Gaussian distribution for

the kth cluster on the dth dimension are given by μðdÞk and ΣðdÞ
k

respectively, where μðdÞk is the dth element of the vector μk and Σ
ðdÞ
k is

the dth diagonal element of the diagonal matrix Σk. The prior for the
mean was assumed to be Gaussian given the variance, and the prior
for the variance was assumed to be an inverse-χ2 distribution

μðdÞk ∼ N
�
ω,ΣðdÞ

k =λ0
�

ΣðdÞ
k ∼ inverse-χ2ða0, σ20Þ, (3)

where λ0 is the confidence in the prior mean, a0 is the confidence in
the prior variance, σ20 is the prior variance, and ω is the prior mean.
The RMC uses the probability of assigning a new item to each

cluster to come to a category decision, along with the known
category labels of the items already assigned to each cluster.
This computation is a weighted sum, with the known category
labels determining how likely the label is within each cluster, and
each label likelihood is weighted by the probability of assigning the
new item to that cluster. So, essentially the decision rule averages
over the uncertainty of how well a new item fits each cluster, and
how well a category label fits each cluster as well. A more formal
definition of this process is given in the Appendix.
The likelihood distribution for the RMC assumes a fixed basis set

of dimensions, which must align with the separable dimensions to
produce dimensional biases. As a result, the RMC is able to produce
some, though not all, of the classic dimensional biases. The con-
densation versus filtration results can be produced because the
dimensions are aligned with the identifiable dimensions of the
stimuli if the prior distribution for the variances is set to the correct
values, as we demonstrate by matching the ordering of the condi-
tions of the human data (see Figure 12A) with themodel simulations
(see Figure 12B). For this simulation, we used the original approxi-
mation to the model (Anderson, 1991), and found that the following
RMC parameters qualitatively matched the human data: α = 1,
σ20 = 2.25, a0 = 1, λ0 = 1, β = 0.1, and ω equal to the average
value of the stimuli on each dimension.
The ordering of the SHJ problems can also be produced using a

discrete binary likelihood, but the correspondence of the model to
the canonical ordering is parameter dependent and the parameters
that produce this ordering are often not those that produce the
best match to the overall accuracy level of human performance
(Nosofsky, Gluck, et al., 1994; Sanborn et al., 2010), though it has
been successful on occasion (Badham et al., 2017). The RMC for

continuous data is unlikely to be able to produce violations of the
triangle inequality because the probability of being a member of a
cluster is Gaussian which corresponds to a Euclidean distance
metric, as we discuss in the Appendix. Similarly, the RMC also
cannot capture the pairwise nature of separable dimensions or
dimensional learning. Because of its fixed prior, it does not seem
possible for the RMC to produce the SHJ Type II advantage
dependencies or SHJ Type I and II differential development. Finally,
the RMC uses a fixed set of dimensions. So, it will struggle to
explain how dimensional biases develop, and it cannot explain how
new separable dimensions are learned.

Hierarchical Rational Models

Previous work with computational-level Bayesian models has
taken steps in a similar direction to those that we take in REFRESH,
proposing hierarchical priors that can learn how to generalize, using
either the RMC or the notion of consequential regions as a founda-
tion (Shepard, 1987). Consequential regions are all-or-none neigh-
borhoods in a psychological space that correspond to stimuli with a
common outcome or consequence. When observing a new category,
the size of the region along each dimension is uncertain, but there is
prior knowledge of the distribution of sizes along each dimension
that can be used. Navarro (2006) added priors along separable
dimensions and showed that the model provided a computational
account of selective attention, as this model was able to capture the
condensation versus filtration dimensional bias. Austerweil and
Griffiths (2010) extended this approach to allow the model to learn
which kind of hypothesis space best applied to the stimuli: One in
which the consequential regions produced the Euclidean similarity
metrics associated with integral dimensions, or one in which they
produced the city-block similarity metrics associated with separable
dimensions (see also Austerweil et al., 2019). Soto et al. (2014)
augmented this model to allow it to learn latent causes and thus
explain compound generalization along both separable and integral
dimensions.

Another set of models have used the RMC as a foundation. For
example, the model of Kemp et al. (2007) learns the variability
along particular dimensions for categories from experience, as the
RMC does, and also includes the possibility of stimulus dependence
in the types of variability that are learned. Another, developed by
Salakhutdinov et al. (2012) for computer vision using low-level
visual features such as pixels, learns both the variability along
particular dimensions and the stimulus-dependence of the variability
as well.

These models show how a hierarchical Bayesian approach would
be able to produce the dimensional biases and the stimulus-
dependence of dimensional biases, and they should be able to
show the development of latent dimensions that are prespecified
in the model. These hierarchical rational models however have at
most, as in the case of Austerweil and Griffiths (2010), learned from
a small number of prespecified dimensions and have not been
extended to learn separable dimensions that are not prespecified.

The Rational Exclusively Family Resemblance Hierarchy

Our new model is based on the RMC, but without any inbuilt
separable dimensions. In our approach, which we term REFRESH,
we modify the likelihood of the RMC so that it starts purely with
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resemblance, and not dimensions, and equip it with a hierarchical
prior that allows dimensional biases to be emergent properties that
arise from the family resemblance structure of the data. Our model is
a computational-level model, though it has free parameters that we
chose to match human data, and we explore possible algorithmic
factors in a later section. In this section, we first give an intuition of
the key features of the model followed by a more technical
description of these features, and further technical details are given
in the Appendix.
To create a pure family resemblance model, we start with the

RMC, but assume that all the perceptual stimuli used in categoriza-
tion experiments lie within a continuous space, even if the specifi-
cation of the category structures can be done with binary features
(e.g., the SHJ problems in Figure 3). This assumption mirrors that
made by many other models of categorization (Ashby & Townsend,
1986; Kruschke, 1992; Nosofsky, 1986), and removes the necessity
of identifying the separable dimensions of the stimuli in order to
specify their discrete features.
A key step in creating a pure family resemblance model is to

change the likelihood of the RMC. The RMC treats the likelihood of
continuous perceptual stimuli as arising from the product of single-
dimensional Gaussian distributions along each of the separable
dimensions. Instead, our model assumes that the stimuli within a
cluster are samples from a single multivariate Gaussian distribution.
The usefulness of the multivariate Gaussian distribution for our
purposes can be illustrated by comparing it to the weighted Min-
kowski metric in Equation 1. It is straightforward to show that the
weighted Euclidean metric (with r = 2) is a monotonic transforma-
tion of a multivariate Gaussian distribution, one that has a diagonal
covariance matrix, and the weight for a dimension is the inverse of
the variance along that dimension (see Appendix). This means that a
multivariate Gaussian distribution with a diagonal covariance matrix
stretches or shrinks the stimulus space along a set of dimensions, just
as selective attention does. As REFRESH is pitched at Marr’s
computational level (Marr, 1982), it is complementary to an algo-
rithmic account based on selective attention.
What multivariate Gaussian distributions add is that they are not

confined to stretching or shrinking the space along a single pre-
specified set of dimensions. This is because the covariance matrix is
allowed to be nondiagonal, and a nondiagonal covariance matrix is
always diagonal with respect to some rotation of the dimensions of
the space. This essentially means that a multivariate Gaussian
distribution can implement a stretching or shrinking of the space
along any rotation of the dimensions of the space, with that rotation
being the one needed to make the covariance matrix diagonal. So, a
multivariate Gaussian’s covariance matrix encodes both a set of
dimensions as well as the amount of stretching or shrinking along
those dimensions (see Appendix).
Interestingly, for the multivariate Gaussian, the dimensions along

which the stimuli are represented—the dimensions that provide the
coordinates of each stimulus—are irrelevant to the likelihood. The
representing dimensions (i.e., the axes of the space) can be rotated in
an infinite number of ways, and for each possible rotation there is a
new parameterization of the multivariate Gaussian distribution that
gives exactly the same probability to each and every stimulus as the
original multivariate Gaussian did (see Appendix). As a result, the
predictions of REFRESH are independent of the dimensions used to
represent the stimuli, and even independent of whether the repre-
senting dimensions are fixed or are changing. Therefore, a careful

analysis of algorithmic- or implementation-level concerns, as well
as data from neuroscience, will be necessary to motivate the choice
of representing dimensions.

A pure family resemblance version of the RMCwill, of course, be
unable to produce any of the classic dimensional biases because it
does not have any preferred dimensions. To acquire such biases, we
need to equip the model with a hierarchical prior that can learn the
variability of clusters of stimuli across categories. We initially
choose a commonly used multivariate prior for the covariance of
a cluster k, Σk: the multivariate generalization of the inverse-χ2

distribution, the inverse-Wishart (IW) distribution. An IW distribu-
tion is commonly used because, for a fixed number of dimensions, it
is a single conjugate multivariate distribution that assigns a proba-
bility to each possible multivariate covariance matrix with that
number of dimensions. This distribution is parameterized by the
number of dimensions of the stimuli D as well as two free parame-
ters: a multivariate covariance matrix parameter,Φ, and a degrees of
freedom parameter, v. The most probable covariance matrix in the
IW distribution is Φ

v+D+ 1, and visualizations of covariance matrix
samples drawn from IW priors are shown in Figure 7.

Using this prior gives the model flexibility to learn how stimuli
vary across categories, but this prior is still inherently restricted in
ways that do not allow it to produce dimensional biases. With this
prior, the model can learn a particular kind of generalization bias
within the space, so that the expected variability of stimuli in new
categories is similar to what has been experienced in previously
learned categories. However, the predicted similarity metrics will
remain close to Euclidean (as will be demonstrated in the next
section in Figure 11), so the model cannot capture the similarity
metrics associated with separable dimensions.

Thus, in order to explain the dimensional biases, we need a more
flexible formulation of the hierarchical prior. We do this in the same
way that we provide flexibility to the clusters within a category: We
turn this prior into an infinite mixture of different components,
which effectively allows the prior to have multiple modes, with each
mode belonging to a different component. A component is a higher
level analog of a cluster: A cluster has a mean and a covariance
matrix that describe the stimuli that are members of a cluster, while a
component has a covariance parameter that roughly describes the
covariances of the clusters that are members of the component.2

Figure 7 gives a schematic depiction of the hierarchical prior used in
REFRESH. We can think of an item as being drawn from a cluster,
which has a prior that is drawn from the set of components that have
been used in the local context. This set of components used in the
local context have themselves been drawn from a global distribution
over possible components. The covariance parameter of each com-
ponent finally has a prior that has no alignment with the separable
dimensions of the space. This scheme of sharing information across
clusters is a generalization of the unifying model developed in
Griffiths et al. (2007).

More technically, for each component j, we define Φj to be the
covariance parameter of that component and vj to be that compo-
nent’s degrees of freedom. Assuming that a cluster k has been
assigned to component j,

2 To reduce complexity, we assume that there is a single shared prior for
cluster means, though it is possible to extend the model to allow each
component to have a different prior for cluster means.
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μk ∼Nðω, σ2r IÞ
Σk ∼ IWvjðΦjÞ
Φj ∼ IWvt ðIÞ
vj ∼ TNðvt , v2t Þ, (4)

where I is the identity matrix, and σ2r I is a scaled version of the
identity matrix, meaning that both I and σ2r I are isotropic and not
oriented toward any particular direction in the space. Each vj has a
truncated normal (TN) prior that is truncated from below at the
number of dimensions of the stimulus, and has mean and standard
deviation equal to the degrees of freedom of the top-level prior vt.
Comparing Equation 3 with Equation 4, we can see that in addition
to becoming multivariate and hierarchical, we have made the cluster

mean vector μk independent of the cluster covariance matrix Σk. We
made this choice pragmatically as we found that assuming indepen-
dence between means and covariances resulted in a better fit to
human data.

As we did above for the vector of assignments of all items to
clusters, z, we use a nonparametric prior over the vector of assign-
ments of all clusters to components u. For u, we use a hierarchical
CRP prior (Teh et al., 2006), which is an extension of the single-
level CRP prior used for z to two levels. It corresponds to the
intuition that while there are a variety of possible components that
can apply to a cluster, there tends to be only one or a small number of
components that apply within a particular experimental context.
That is, a component that has already been used in an experimental
context is more likely to be used for the next new cluster in the same

Figure 7
Schematic Illustration of the Rational Exclusively Family RESemblance Hierarchy Model

Note. At the lowest level of the model’s hierarchy are experimental contexts, and here the two contexts are the two filtration
category structures of Kruschke (1993, see Figure 2). In each context, the model’s task is to learn the category label (category A
is open circles while category B is filled circles) of each stimulus. The model infers how each category should be partitioned into
clusters, with each of the K clusters (with K a random variable) modeled by a multivariate Gaussian distribution with covariance
parameter Σk. To illustrate the model’s uncertainty for each Σk, a number of sample covariance matrices are shown for each as
iso-probability ellipses. At the next level up in the hierarchy, the model simultaneously learns to describe all of the Σk across
contexts as a mixture of components. It learns the number of components, J (which is also a random variable), their weights, and
the covariance matrix parameter Φj that determines the most likely covariance matrix of component j. Uncertainty about the
covariance matrix for a new cluster (e.g., Σ9) is shown for each component by sample iso-probability ellipses. At the top of the
hierarchy the model has a prior for theΦj covariance parameters, which is on average isotropic. Uncertainty about the covariance
matrix parameter for a new component (e.g., Φ3) is shown by sample iso-probability ellipses.
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experimental context. In the hierarchical CRP, there are two addi-
tional dispersion parameters: αc, which determines the probability of
bringing an existing component into the current context, and αg,
which determines the probability of creating a new component. The
equation that governs these probabilities is described and given in
the Appendix by Equation A9. Finally, for simplicity, we assume
that there is no possibility of a mixed cluster as there is in the RMC,
so that each cluster consists of items from a single category.
We fix a number of the parameters of REFRESH to particular

values for consistency across simulations. The dispersion parameter
for new clusters, α = 10, was set to a relatively high value to
encourage new clusters, while the dispersion parameter for bringing
a component into the current context, αc = 0.001, was set to a
relatively low value so as to encourage only one or a few compo-
nents within an experimental context, which was necessary to fit
empirical results. The dispersion parameter for new components
across experimental contexts, αg = 1, was set to an intermediate
value so as to encourage a small number of components. The
degrees of freedom, vt, which describes how certain we are about
the top-level prior covariance matrix, as well as determining the
mean and variance of the prior on each vj, was set to 30 to reflect
moderate certainty in the initial isotropic prior distribution. The
remaining model parameters were set according to the specifics of
the simulation, as reported below, and summarized in Table A2. In
all of the simulations of the model, results were either calculated
exactly or approximated using particle filters or Gibbs sampling
(depending on the application) using the number of samples that we
believe would accurately reflect the underlying computational
model and not the approximations themselves (see Appendix for
details). We mainly investigate the computational-level model in the
main text, though we consider the impacts of algorithmic-level
approximations on the computational-level model in the Rational
Process Models section below.

Learning From the Statistics of Natural Categories

Some artifacts, like bowls or pencils, are categories of objects that
vary widely in color or material but typically vary less in their shape
(Rosch et al., 1976). However, categories of materials such as gold
or wood often display a characteristic color while being less
constrained as to the shapes and sizes that they take. There are,
of course, categories that are constrained along two dimensions
simultaneously, such as crayons, which have a characteristic shape
and a common material but vary widely in color (Gershkoff-Stowe &
Smith, 2004). These types of regularities have been found in the
nouns that children learn first. An investigation into the statistics of
the first 300 nouns learned by children, found in the MacArthur
Communicative Development Inventory (MCDI; Fenson et al.,
1994), was made by Samuelson and Smith (1999), who asked adults
how these categories were organized. The results showed that solid
objects tend to have a fixed shape and vary along other dimensions,
while nonsolid objects vary in shape but tend to be of fixed material, a
regularity that could drive later generalization of category labels to
new stimuli.
Along these same lines but more generally, Shepard (1987, 1991)

hypothesized a relationship between the variability of the dimen-
sions of categories, or more precisely the variability of the dimen-
sions of consequential regions, which are sets of stimuli that share
the same consequence. The hypothesis was that the natural statistics

of how dimensions vary across categories should determine whether
dimensions are integral or separable. Dimensions with positively
correlated variability should be integral, whereas dimensions with
uncorrelated variability should be separable. For example, catego-
ries that were highly variable along the hue dimension would also be
highly variable along the chroma dimension, while categories with
low variability along the hue dimension would also have low
variability along the chroma dimension. Shepard (1987) showed
that integrating over consequential regions with correlated variabil-
ity produced Euclidean similarity metrics, as is empirically found for
integral dimensions. However, for separable dimensions variability
along these dimensions was hypothesized to be uncorrelated, so for
example, a category highly variable along the hue dimension could
have either high or low variability along a shape dimension.
Uncorrelated variability produced city-block similarity metrics in
Shepard (1987) analysis, as is often empirically found for separable
dimensions.

Both the regularities in the nouns first learned by children and
Shepard (1987, 1991) hypothesis inspired the development of
REFRESH, but to our knowledge the hypothesized correlations
in the variability of categories along separable and integral dimen-
sions have not been investigated empirically. To obtain objective
quantitative evidence for these regularities, we examined the statis-
tics of natural images using a database produced by Rosenthal et al.
(2018) of images from the internet containing salient objects.3

The strength of this method for determining natural-category
variability is that it does not require subjective judgment and it
produces precise values for each image along each dimension,
even for integral dimensions which cannot be isolated by human
participants. The weakness is that these photographs were down-
loaded from the internet, and so have biases related to how they were
produced, such as that people prefer to observe objects from “canon-
ical perspectives” (Palmer et al., 1981). While the canonical visual
size of an object is related to its real-world size (Konkle & Oliva,
2011), photographs taken so that objects are at their canonical visual
sizes will miss an important source of size variability in real-world
experience: As people move toward objects, objects change in size
while remaining fairly constant in shape and color. We therefore
focused on the statistics of the shapes and colors of the salient objects.

Method

The database was initially created by three individuals at Micro-
soft, who looked at 200,000 photographs taken from the internet and
identified 20,840 photographs which contained a salient object (Liu
et al., 2010). Rosenthal et al. (2018) then augmented this database
to investigate the color statistics of natural images by having two
individuals outline the salient object in each image (i.e., the fore-
ground mask) and assign the salient object a category label. These
two tasks were done in separate sessions, with individuals instructed
to choose category labels that would allow them to communicate the
salient object’s identity to another person.

We filtered the images in this database for category labels tested
for in the MCDI to focus on the earliest learned categories.
Restricting category labels to those used for at least four images,
there were 107 category labels tested for in the MCDI. A total of
7,955 images remained, with a median of 18 images per category.

3 Available at https://neicommons.nei.nih.gov/#/objectcolorstatistics
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Six images appeared in both a specific category and in a more
general category (e.g., “plant” and “flower”), and we retained both
labels for each of these six images.
Color was measured for each pixel in the image along three

dimensions: lightness, chroma, and hue in the Commission Inter-
nationale de l'Eclairage (CIE) lightness-chroma-hue (LCh) color
space. The CIE LCh color space is a polar transformation of the CIE
Lab color space that aligns with the dimensions commonly used in
psychological studies (Gravesen, 2015; Meyer & Greenberg, 1980).
However, our values are an approximation as the images are given
as device-dependent red-green-blue (RGB) pixel values which can
only be mapped to a device-independent color space, such as CIE
LCh, with additional information (Wyszecki & Stiles, 1982). For
each of the three color dimensions, the mean value across all
foreground mask pixels was used as a summary measure.
There are many ways in which shape can be characterized, and in

computer vision shape descriptors fall into two main classes:
Contour methods that characterize the boundary of the shape and
region-based methods that characterize the position of all of the
pixels in the shape. While boundary descriptors have been more
commonly used in psychological research (e.g., Op de Beeck et al.,
2003), they are also less robust to the noise found in natural images
than the more general-purpose region-based methods (Zhang & Lu,
2004). We used a region-based approach, Hu moment invariants, as
our shape descriptors: A set of seven orthogonal shape dimensions
that are independent of object translation, scaling, and rotation (Hu,
1962). Image moments are weighted averages of pixel intensities,
with a particularly simple example being the area of the foreground
mask, and Hu moment invariants are a set of arithmetic combina-
tions of image moments designed to have the desirable properties
listed above. We applied these shape descriptors to the binarized
foreground masks.
Because many of the measurements of color and shape were on

incomparable scales, we normalized each of the ten dimensions by
subtracting its overall mean and dividing by its overall standard
deviation. Figure 8 gives examples of the salient objects plotted
along pairs of normalized shape and color dimensions.

Results and Discussion

We expected that pairs of dimensions usually deemed separable
would show covariance structures that were both oriented along the
dimensions and also narrow along only one of the dimensions in the
pair, as illustrated in Figure 7. We also expected that pairs of
dimensions that were deemed integral would show more isotropic
covariance structures. Plots that overlay ellipses illustrating each
category’s covariance structure are shown for each pair of dimen-
sions in the upper triangle of Figure 9. Shape dimensions paired
with color dimensions qualitatively show the anticipated pattern for
separable dimensions, while pairs of color dimensions qualitatively
show the anticipated pattern for integral dimensions.4 We can
quantify these observations by correlating the standard deviations
along the two dimensions in a pair across all of the categories. In
support of Shepard (1987, 1991)’s hypothesis and the assumptions
underlying REFRESH, we found positive correlations between pairs
of color dimensions and near-zero correlations between color
dimensions paired with shape dimensions.
For pairs of shape dimensions, we did not have a strong expecta-

tion as to whether they would be separable or integral. Some shape

dimensions such as the aspect ratio and curvature of a stimulus are
separable, while others, such as radial frequency components, are
integral (Op de Beeck et al., 2003). We did not, however, see any
identifiable dimensions in Figure 8, suggesting that pairs of Hu
moment invariants are perhaps either integral or perhaps are not the
dimensions that are used psychologically. The correlations between
shape dimension standard deviations in Figure 9 were as high or
higher than those for pairs of color dimensions, which by itself
suggests integrality. However, a visual inspection of the ellipses in
Figure 9 for pairs of shape dimensions seemed to show more “long
and thin” ellipses than for pairs of color dimensions, though these
long and thin ellipses were not aligned with the axes as they were for
color dimensions paired with shape dimensions. This suggests that
the psychological dimensions can be approximated as a rotation or
other transformation of Hu moment invariant dimensions. While
determining the psychological shape dimensions is outside the
scope of this work, as a robustness check we performed a principal
component analysis of the shape dimensions and reanalyzed the data
with these shape dimension principal components. In this reanalysis,
we found the same overall pattern of results: Near-zero correlations
between shape principal components paired with color dimensions
and strong positive correlations between pairs of shape principal
components.

Training REFRESH

To see what REFRESH would learn from natural image statis-
tics, we trained REFRESH on a subset of the dimensions reported
in the previous section. We chose the four dimensions of chroma,
hue, Hu3, and Hu4 as the set of dimensions because Figure 9
suggested that they would illustrate strong pairwise differences.
We trained the model on the four physical dimensions and the
category labels of 7,955 images, drawing 1,050 samples via Gibbs
sampling and discarding the first 50 as burn-in, assuming σ2r = 1
as above.

We then evaluated what the model had learned by calculating the
similarity of new items x* to a single previous item x by generalizing
the formula for computing similarity using all-or-none consequential
regions to graded Gaussian clusters (Shepard, 1987; Tenenbaum &
Griffiths, 2001a). Similarity is assumed to be equal to the probability
that x* is in the true cluster C from which x was drawn

pðx� ∈ C j xÞ =
ð
h∈ℋ

pðx� j x, hÞpðh j xÞ, (5)

where h is a cluster and ℋ is the set of clusters under consideration.
The iso-similarity curves that REFRESH produces after training

are shown in the upper triangle of Figure 10. The curves best
resemble the Euclidean metric for pairs of color dimensions and
for pairs of shape dimensions, but appear non-Euclidean for color
dimensions paired with shape dimensions. We fit a Minkowski

4 Hue deserves special consideration because it is a circular dimension,
and so it may only be sensible to consider correlations in a local region of the
space. We restricted the analysis to categories that had a standard deviation
less than that of a uniform distribution (105 of the 107 total categories) and
found the same pattern of correlations in variability between dimensions. We
separately removed the 4% of images with hues that were close to the
boundary (within π/4 of the edges of the 0–2π range) and also found the same
pattern of correlations in variability between dimensions.
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Figure 8
Illustration of the Shape (i.e., The Seven Hu Moment Invariants) and Color Dimensions (i.e., Lightness,
Chroma, and Hue)

Note. Each dimension appears in one of the five panels, and each panel shows how a (normalized) dimension pair
differentiates example images. See the online article for the color version of this figure.
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distance metric to each iso-similarity plot5 and display the iso-
similarity curves of the best-fitting metric in the plots in the lower
triangle along with the exponent r printed in the corner of each plot.
The recovered exponents were close to 2 for pairs of color and pairs
of shape dimensions, but close to 1 for color dimensions paired with
shape dimensions.
Importantly the different metrics are present in the model simul-

taneously: Each iso-similarity plot depicts a two-dimensional “slice”
of the entire four-dimensional iso-similarity space with the remain-
ing variables fixed at their mean values. This provides an interesting
illustration of how REFRESH can match empirically observed
similarity metrics by training on natural image statistics, though
further work will be needed to establish the extent to which these
results are robust to changes in model parameters and the specific
image statistics chosen.
We next investigated what REFRESH would learn from artificial

categories, which allowed us to carefully control the statistics of the
stimuli within a two-dimensional stimulus space. As a caricature of
the variability of natural categories, we assume that there are two
kinds of clusters within this space: One kind that has low variability

on the vertical dimension but with high variability on the horizontal,
while the other category type has low variability on the horizontal
dimension but high variability on the vertical. For the simulations
below, we assumed that for each cluster 30 training data points were
drawn from a Gaussian distribution.

The first column of Figure 11 demonstrates the iso-similarity
curves that the model has before training. For this set of simulations,
we assumed that σ2r = 1.We drew 1,050 samples from themodel via
Gibbs sampling and discarded the first 50 samples as burn-in. The
remaining samples were then used to construct the similarity
between an item in the center of the plot and an item at that position
in the plot. Because the prior over covariance matrices is initially
isotropic, before training the iso-similarity curves are circular,
reflecting no alignment with the separable dimensions of the space.

Figure 9
Pairwise Dimension Variability for Categories of Natural Images

Note. Upper triangle shows equiprobability ellipses for each category for each pair of dimensions.
Lower triangle shows Spearman correlations across categories between the standard deviations along
each pair of dimensions. Stronger correlations are shaded redder. Green boxes surround the plots of
pairs of dimensions usually deemed separable, and these correlations are lower as was hypothesized for
separable dimensions. See the online article for the color version of this figure.

5 We minimized the sum of squared deviations across each point between
REFRESH’s predictions and a transformation of the Minkowski distance
metric d in Equation 1 into similarity: s1exp(−s2d). We found the best fitting
weights,wi, exponent, r, and scaling parameters s1 and s2, which respectively
scaled the range of similarity and how quickly it decreased depending on
distance.
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However, once the model has been trained on categories that align
with the separable dimensions of the space, it then does show an
alignment with these separable dimensions. The second column of
Figure 11 demonstrates how the iso-similarity curves change when
the model has been exposed to data that are drawn from six clusters,
three with a standard deviation on the horizontal dimension ten
times their standard deviation on the vertical dimension, and vice
versa for the other three. Gibbs sampling was initialized with each
training point having its own cluster and own component, and each
cluster was given a different context. After exposure to these
training data, the iso-similarity curves now align with the separable
dimensions of the space, with the city-block-like iso-similarity
curves reflecting an averaging over the two kinds of variability
experienced in the training clusters. This kind of averaging expla-
nation has been advanced by other researchers as a way to produce
iso-similarity curves with comparable properties, but these accounts
assumed that the separable dimensions were prespecified
(Nosofsky, 1986; Shepard, 1987). In contrast, REFRESH’s learned
alignment depends entirely on the variability of the clusters: The
third column of Figure 11 shows how these iso-similarity curves
will be rotated 45 degrees if the training data were generated from
Gaussian distributions that are also rotated 45 degrees. The iso-
similarity curves now appear to be a city-block-like metric that has

been rotated 45 degrees. In addition, the strength of the alignment
depends on the number of training clusters. In the fourth column of
Figure 11, the model has been trained on ten clusters instead of six.
The resulting concavity of the iso-similarity curves is now greater
and they appear to be nonmetric (see Figure 5).

The model trained on natural or artificial stimuli is very slow and
memory-intensive to simulate, so for many of the simulations below
we used an approximation to the trained REFRESH that made the
model tractable in sequential tasks. First, we used a particle filter
(see Appendix), we assumed ω was equal to the mean stimulus, and
we assumed that the covariance of the prior for the cluster means
was σ2r I, where σ2r = 0.1. We approximated asymptotic learning of
the component covariance distributions by assuming that each IW
prior distribution over covariances associated with each component
had collapsed to a single covariance matrix. For simplicity, we
assumed equal prior probability for each of the components.

We used a standard set of possible covariance matrices across
simulations (see Table A1 in the Appendix for the parameterized
covariance matrices). These were inspired by the regularities in
natural image statistics discussed above, but were specifically
chosen to match human behavior across the range of tasks we
simulated. For two-dimensional stimuli, we assumed different
learned covariance matrices depending on whether the pair of
stimuli were separable or integral. The notation we use for all of
our parameterized covariance matrices follows Ψx, where x is
replaced by a series of letters referring to the size of the variances
along Dimension 1, then Dimension 2, and so forth. Specifically, we
used w to refer to a dimension with wide variability, and n to refer to
a dimension with narrow variability. For two-dimensional integral
stimuli, we assumed that the model had been trained on categories
that were isotropic, so for stimuli using a pair of integral dimensions,
we assumed that onlyΨww is available: The variances are wide along
both dimensions. For two-dimensional separable stimuli, we
assumed that there were two possible covariance matrices available:
Ψnw and Ψwn. These reflect the same environmental regularities we
used in the training stimuli above, where categories were assumed to
be aligned with the separable dimensions of the space and singly
narrow: One was narrow along one dimension and the other narrow
along with the other. For both Ψnw and Ψwn, we assumed that the
standard deviation along the narrow dimension was equal to 10% of
the size of the standard deviation along the wide dimension. Even
with these approximations, it is impractical to use a fitting algorithm
to match the empirical data, so we attempted to best match the data
by adjusting by hand the scale parameters that each standard
deviation is divided by, cd, associated with each dimension d
(see Table A1 in the Appendix). Larger values of the scale parame-
ters cd generally result in smaller clusters and in REFRESH learning
categories more quickly. Except where noted, we assumed that these
parameters were equal across dimensions.

For tasks with three-dimensional stimuli, we assumed a larger set
of possible three-dimensional covariance matrices. For integral
stimuli, we assumed that the model had been trained on categories
that were isotropic and for stimuli using a pair of integral dimensions
we assumed that only Ψwww is available. For separable dimensions
we generally assumed that there were a set of singly narrow
components available for each dimension, reflecting training with
categories for which only one of the three dimensions is near-
constant. For these singly narrow covariance matrices describing
such categories, Ψnww, Ψwnw, and Ψwwn, we assumed that the two

Figure 10
The Effect of Natural Image Statistic Training on the Rational
Exclusively Family RESemblance Hierarchy’s Predictions for
Between-Example Similarity

Note. Each plot in the upper triangle shows REFRESH’s resulting simi-
larities between a new example and an example in the center of the plot.
Examples vary along two dimensions with the remaining dimensions held
constant at their mean values. In the contour plots, lighter colors represent
higher similarities, and the lines are iso-similarity curves. Each plot in the
lower triangle shows the best-fitting Minkowski metric for the similarities in
the corresponding plot in the upper triangle, with the best-fitting exponent r
printed in the corner of the plot.
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larger standard deviations were equal, and that the single smaller
standard deviation was 10% of the size of two larger standard
deviations. For the three-dimensional stimuli, we also include a set
of doubly narrow covariances. For these doubly narrow compo-
nents, Ψwnn, Ψnwn, and Ψnnw, we assumed that the two smaller
standard deviations were equal to 30% of the larger standard
deviation. We found it was necessary to use 30% instead of
10%, otherwise the doubly narrow components tend to dominate
the singly narrow components, as the probability of a stimulus
located at the center of a cluster is much higher.6 It is possible that
this reflects a natural regularity, though we did not find any evidence
in our analysis of natural images statistics that category structures
follow this pattern. Alternatively, it is possible that these parameters
have an algorithmic-level justification reflecting attentional capacity
limits. As discussed above, the covariance matrices act to stretch or
shrink the space of stimuli, as selective attention does. Selective
attention is assumed to have a capacity limit that imposes trade-
offs between dimensions, and having the smaller standard deviation
be larger for doubly narrow covariancematrices than for singly narrow
covariance matrices also corresponds to a capacity limit.7 As with the
two-dimensional matrices, we introduced a set of cd parameters in each
simulation to scale the matrices along each dimension.
We ensured consistency between the two-dimensional and three-

dimensional covariance matrices, as we assumed that they result
from exposure to the same real-world categories. The projections of
the first two dimensions of Ψwww, Ψnww, or Ψwnw are equivalent to
Ψww, Ψnw, and Ψwn, respectively. In the two-dimensional simula-
tions, however, we did not include any projections ofΨwnn,Ψnwn, or
Ψnnw as these are not as narrow along their narrowest dimension, so
considering only projections of a narrow with a wide dimension, the
model is much more likely to choose Ψwww, Ψnww, or Ψwnw instead to
describe clusters of stimuli. Ensuring consistency is themost compelling

reason for setting the narrow variances in the doubly narrow compo-
nents to be wider than the narrow variance in the singly narrow
components: otherwise the projection of the two narrow dimensions
from a doubly narrow component would dominate the singly narrow
components for two-dimensional stimuli, and this dominant isotropic
projection would not allow the model to explain dimensional biases.

Explaining Dimensional Biases Using REFRESH

Having developed REFRESH, we now use this model to explain
the classic dimensional biases, how the dimensional biases are
stimulus dependent, and how the dimensional biases can be learned.

Explaining the Classic Dimensional Biases

Violations of the Triangle Inequality

Before training, REFRESH will not violate the triangle inequal-
ity. The iso-similarity curves in the untrained REFRESH are circular
(see first column of Figure 11) and the circular iso-similarity curves
will not violate the triangle inequality (see Figure 5). With training,
with two types of variability we assumed above, REFRESH can

Figure 11
Illustration of Training Examples and Resulting Predicted Similarities Between a New Example and an Example
in the Center of the Plot

Note. Different marker shapes in the training data mark different training contexts, one for each category. In the contour plots,
lighter colors represent higher similarities and the lines are iso-similarity curves.

6 The probability of a stimulus located at the mean of a multivariate
Gaussian distribution is (for a diagonal covariancematrix) proportional to the
inverse of the product of the standard deviations. Assuming that all cd= 1, for
Ψnww, Ψwnw, and Ψwwn this is 10, while for Ψwnn, Ψnwn, and Ψnnw using
smaller standard deviations that are 30% of the larger produces the similar
value of 11.1. If we had made the smaller standard deviations of Ψwnn,Ψnwn,
and Ψnnw 10% of the larger standard deviation, this value would have
increased to the much larger 100.

7 Ensuring equal probability at the mean of the a multivariate Gaussian
distribution requires that in Equation 1 there is a constant ∏iw

1=2
i , rather than

the usual constraint of a constant
P

iwi.
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potentially violate the triangle inequality, but it depends on the
quality and quantity of the training that is given. The trained
REFRESH iso-similarity curves are essentially the average of the
priors learned for the clusters with the two different kinds of
variability in the training data. One type of prior expects high
variance along the vertical dimension and low variance along the
horizontal dimension, while the other type expects high variance
along the horizontal dimension and low variance along the vertical
dimension. With categories showing the variability of the six
clusters example in Figure 11, averaging the prior components
produces an iso-similarity metric that appears city-block, and so
the triangle inequality would not be violated. However, when
trained on additional categories as in the 10 clusters example in
Figure 11, averaging the prior components produces an iso-
similarity metric that appears nonmetric, thus violating the triangle
inequality (see Figure 5).
Empirically, there are dimensions for which similarity judgments

violate the triangle inequality to a greater or lesser extent (Tversky &
Gati, 1982). The perceptual dimensions that showed the strongest
violations of the triangle inequality were those for which different
parts of the stimuli changed shape, while the evidence for violations
of the triangle inequality for squares that varied in size and bright-
ness was mixed, and no violations of the triangle inequality were
observed for squares that varied in hue and chroma. REFRESH
predicts that violations of the triangle inequality should depend on
the number of categories aligned with a single dimension (see
Figure 11).
Interestingly, the trained REFRESH will also produce different

types of iso-similarity curves depending on whether the stimuli are
easily distinguishable or not. The iso-similarity curves produced in
the 10 clusters example of Figure 11 are concave for stimuli far from
the central stimulus and convex for stimuli that are close to the
central stimulus, matching the empirical pattern found across studies
(Nosofsky, 1986; Tversky & Gati, 1982).

Condensation Versus Filtration

Now we turn to the next classic dimensional bias: condensation
versus filtration. The human data show an advantage for the filtration
categories (see Figure 12A), and as discussed above, the RMC does
produce the empirical ordering of the conditions (see Figure 12B).
For REFRESH, we assume that the effect of training with two types
of dimensionally aligned categories, as we assumed for violations of
the triangle inequality, results in two components:Ψnw andΨwn (see
Table A1 in the Appendix for details). Using c1 = c2 = 0.5 to
approximately match the overall level of human accuracy,
REFRESH finds the filtration categories easier to learn than the
condensation categories (see Figure 12C). This is because Ψnw and
Ψwn are helpful if the decision boundary is parallel to one of the
dimensions but are detrimental if the decision boundary cuts across
the dimensions. An even better match of REFRESH to human data
can be found if we assume greater discriminability along the vertical
dimension, with c1 = 0.5 and c2 = 1 (see Figure 12D). More
broadly, we would expect that REFRESH would also reproduce
the qualitative changes shown in categorizing transfer stimuli
that empirically depend on whether the category boundaries are
aligned with the separable dimensions of the space (McKinley &
Nosofsky, 1996).

SHJ Type II Advantage

In experiments with the SHJ types, the classic result is that errors
are lowest for Type I and generally increase across types: Type
I < Type II < Types III–V < Type VI (Nosofsky, Gluck, et al.,
1994; Shepard et al., 1961; see Figure 13A). The classic dimen-
sional bias is shown by the advantage that Type II has over Types
III–V, because based on family resemblance (e.g., pairwise stimulus
confusability) alone it should be worse. Exemplar models produce
the SHJ Type II advantage using selective attention to the separable
dimensions—learning Type II requires attending to only two of the
three stimulus dimensions, so the model devotes more attentional
resources to the relevant dimensions. The trained REFRESH pro-
duces the Type II advantage because its set of covariance matrices
embody similar functional limits on how much a set of dimensions
can be stretched or shrunk. For these three-dimensional SHJ stimuli
we used the trained three-dimensional covariance matrices for
separable stimuli: the singly narrow components Ψnww, Ψwnw,
and Ψwwn, as well as the doubly narrow components Ψwnn, Ψnwn,
and Ψnnw. Looking at the structure of the problems in Figure 3,
intuitively the singly narrow components will be very useful for
speeding learning of Type I problems but will not be particularly
helpful for Type II problems. The Type II advantage instead depends
on the doubly narrow components, as these covariance matrices can
describe the Type II category well as shown in Figure 14A. Using
c1 = c2 = c3 = 2.1 to match the speed of human learning leads
to REFRESH producing a very big Type II advantage (see
Figure 13D), in contrast to the RMC which can only produce a
limited Type II advantage (Nosofsky, Gluck, et al., 1994). This
Type II advantage is actually somewhat too large as there is now
little advantage of Type I over Type II. However, the performance of
Type II can be made to fall between that of Type I and Types III–V
by increasing the relative width of the doubly narrow components to
a larger value (e.g., 60% instead of 30% of the largest standard
deviation).

The influence of REFRESH’s hierarchical prior on components
helps explain the mechanism used to produce the SHJ Type II
advantage. This part of the prior biases the model to use only one or
a few components in each experimental context. This prior could
potentially reflect the structure of the natural environment, though
this is entirely speculative as our natural image analysis does not
speak to this. Alternatively, it could reflect a limit of cognitive
capacity. As can be seen in Figure 14B, when this contextual prior is
removed (which can be done by setting αc = ∞ and keeping the
other parameters constant), then Type III performance is as good or
better than the Type II performance. This is for the same reason that
Boolean complexity evaluates Type II and Type III as equally
difficult: Both can be perfectly captured by two doubly narrow
clusters within each category (Feldman, 2000; Vigo, 2006), as
shown in Figure 14A. The difference between Type II and III is
that the clusters needed for Type II are all from the same component,
while two different components are needed for Type III. The usual
contextual prior distribution (αc = 0.001) penalizes using multiple
components, a mechanism that has been used by some rule-based
models to explain the advantage of Type II over Type III (Goodman
et al., 2008). REFRESH produces the SHJ Type II advantage for the
same reason as rule-based and selective attentional models: that
there is either a bias to using a single kind of rule, or there is a single
way in which selective attention stretches or shrinks all of the
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stimuli. Therefore, it is important that αc be set to a low value for
REFRESH to reproduce the human ordering of SHJ types.

Explaining the Stimulus-Dependence of
Dimensional Biases

Separable Versus Integral Dimensions

As discussed above, a pair of dimensions such as hue and chroma
are integral, but if either hue or chroma are paired with a shape
dimension then the resulting pair are separable dimensions. The
trained REFRESH can capture these different pairwise relation-
ships. For example, assume that the stimulus dimensions are hue,
chroma, and shape in that order and that the experienced categories
only followed a subset of the three-dimensional covariances used
above: Ψwwn and Ψnnw. Figure 15 shows the pairwise iso-similarity
curves that are predicted by REFRESH: They resemble the Euclid-
ean metric for hue paired with chroma at all levels of similarity, but

resemble different metrics depending on the level of similarity for
both hue paired with shape and chroma paired with shape: Euclidean
for high similarity, city-block for intermediate similarity, and an
nonmetric for low similarity. This result is due to Ψwwn, and Ψnnw

both being isotropic when restricted to the first two dimensions, but
being similar in structure to the pair Ψwn and Ψnw when looking at
either the first or second dimension paired with the third dimension.
Indeed, these plots resemble those of Figure 10 for the separable
dimensions in which it appears that there are mixtures of two
components: a narrower component along the shape dimensions
than along the hue or chroma dimensions.

Both the condensation versus filtration effect and the SHJ Type II
advantage depend on whether the dimensions used are separable or
integral. Empirically, the advantage of filtration categories over
condensation categories is reversed for integral dimensions
(Gottwald & Garner, 1975). To match this result with REFRESH,
we assume that only the isotropic trained component covariance,
Ψww, is available and that c1 = c2 = 2. As a result, REFRESH also

Figure 12
Human Data and Model Results for the Condensation Versus Filtration Task (See Figure 2)
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Note. Each block consists of all eight stimuli presented in a random order. (A) Human data from Kruschke (1993), adapted with permission from page 15.
(B) Predictions from theRationalModel of Categorization,whichmatch the human pattern for condensation versusfiltration but showno difference between dimensions.
(C) Predictions from REFRESH assuming covariance components narrow along one or the other dimension, which match the human pattern for condensation versus
filtration but show no difference between dimensions. (D) Predictions from REFRESH assuming covariance components narrow along one or the other dimension,
but with narrower covariances on the vertical dimension. This result matches both the human pattern between condensation versus filtration and also the difference
between dimensions. (E) Predictions from REFRESH assuming an isotropic covariance component, which shows the reverse pattern from the human data.
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produces an advantage for the condensation categories over the
filtration categories (see Figure 12E). Likewise, for the SHJ pro-
blems, when using integral dimensions such as the hue, saturation,
and brightness of color chips, the empirical effect changes
(Nosofsky & Palmeri, 1996): Type II problems become relatively
more difficult to learn (see Figure 13B). This dependence of the
Type II and Type IV ordering has been explained by assuming
that selective attention is easier with separable than integral dimen-
sions (Nosofsky & Palmeri, 1996), and REFRESH produces this
effect for an analogous reason: that there is a single isotropic
covariance component, Ψwww (with c1 = c2 = c3 = 2.5), so it is
not possible to utilize a more advantageous component (see
Figure 13E).
Note that REFRESH makes a distinction between novel dimen-

sions and those that have been trained to be integral. We argue that
while people have experienced many categories with stimuli that

vary along the common integral dimensions such as hue, saturation,
and brightness, these categories do not have the strong differentia-
tion in types of variability seen for separable dimensions. Instead,
we assume that there is a common type of variability that would
result in REFRESH having a strong isotropic prior, like Ψwww, an
assumption which is supported by the isotropic category statistics
we found for color dimensions in Figure 9. Of course, we should
note that our assumption of an isotropic covariance for color is only
a rough approximation, as researchers have found indications of
preferred dimensions in the color space, though not to the extent that
they can be called separable (Burns & Shepp, 1988; Ell et al., 2012;
Foard & Kemler Nelson, 1984; Nosofsky, 1987). It may be that the
color space is better described by the same kinds of covariance
matrices that are used for separable dimensions, but with the narrow
variances being less narrow so that each is more isotropic. Indeed,
from the point of view of REFRESH, the distinction between

Figure 13
Human Data (Top Row) and Model Fits (Bottom Row) to Errors in Three Different Versions of the Shepard et al. (1961) Task
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integral and separable dimensions is not absolute, but rather a matter
of degree.
In contrast to a strong isotropic prior, Soto et al. (2015) argued

that the direction hypothesis explained results with integral dimen-
sions: that for integral dimensions there are effectively a very large
number of available components that are aligned in all possible
dimensions. Using a clever experimental design that ensured that the
psychological distances between stimuli were equivalent for integral
and separable stimuli, they showed that biconditional learning was
faster for integral stimuli (see Figure 16B). However, the authors
noted that exemplar models could potentially explain these results as
a consequence of using a city-block metric for separable dimensions
and a Euclidean metric for integral dimensions, though they criti-
cized this explanation as being a redescription of the generalization
gradients. As REFRESH produces these generalization gradient
differences as a result of training across categories, it also can
produce the integral dimension advantage for biconditional discrim-
ination (see Figure 16C). For this simulation, we assumed that, as in
the discussion of the pairwise relationship between separable and
integral dimensions above, the two available components were
Ψwwn and Ψnnw and also that c1 = c2 = c3 = 1.3. To describe the
combination of a separable dimension with an integral dimension,
the first dimension was paired with the third dimension (which is
equivalent to the second dimension paired with the third dimension),
while to describe the combination of two integral dimensions, the
first two dimensions were paired. The intuition for this result is that
the trained components are aligned with the separable dimensions
and thus are more likely to overlap with stimuli from the other
category than the isotropic components used for integral dimensions

are (see Figure 16A). Compared to integral dimensions, the higher
overlap for separable dimensions reduces performance. This pro-
vides an alternative explanation for the results of Soto et al. (2015)
that is similar to that of an exemplar model but ascribes the
difference in generalization gradients to differences in past training.

SHJ Type II Advantage Dependencies

While SHJ performance depends on whether dimensions are
separable or integral, it also depends on how the Type II category
structure is mapped to the stimulus dimensions. This can be done in
one of three ways, resulting in either the size, shape, or color
dimensions being irrelevant to learning the categories. Comparing
these different mappings, Kurtz et al. (2012) showed in three
experiments that only the size-irrelevant subtype showed a Type
II advantage, while the other types did not. However, in contrast,
using the same dimensions, Love andMarkman (2003) found in two
separate experiments that the shape-irrelevant subtype showed a
Type II advantage, while the other types did not. This mix of
consistency and variability across studies suggests that behavior is
influenced by some subtle aspect of the stimuli or task, and indeed
the work of Mathy and Bradmetz (2011) supports this: finding that
the Type II advantage depends on the materials and the spacing
between stimuli. They replicated the shape-irrelevant subtype
advantage of Love and Markman (2003) for some materials, but
showed that the shape-irrelevant subtype performance depended on
how similar the two values of shape were: the closer the shapes were
to one another, the better the shape-irrelevant subtype performed.
The effect of increased similarity on the irrelevant dimension

Figure 14
Clustering Illustration for SHJ Problems and Model Predictions When the Contextual Prior Is Removed

Note. (A) Illustration of the clustering of Types II and III. Each colored blob is a cluster with different colors associated with
different categories. (B) Model predictions when the contextual prior is present (αc = 0.001) or removed (αc =∞), with errors
averaged over the first 16 blocks. See the online article for the color version of this figure.
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resulting in better Type II performance was later replicated (Mathy
et al., 2013).
The result that performance increases as values along the irrele-

vant dimension become more similar goes against the predictions of
the basic exemplar model. But this finding, along with the finding
that separating out the relevant dimensions improves Type II

performance, arises naturally from REFRESH. As can be seen in
Figure 14A, doubly narrow components will only capture pairs of
stimuli if they are spaced closely enough on the irrelevant dimen-
sion. This in turn can explain why only one Type II subtype shows
an advantage over Type IV: On one of the dimensions the stimuli are
closer than on the other two. To model this, we assumed REFRESH
could use all the singly narrow and doubly narrow covariances, that
the dimensions were size, shape, and color in that order, and that
c1 = 0.7 while c2 = c3 = 2.3. Because the distance is less on the
size dimension, then there is an advantage for the size-irrelevant
subtype (see Figure 17C). To produce an advantage for the shape-
irrelevant subtype, we used all the same parameters except that
c2 = 0.7 while c1 = c3 = 2.3 (see Figure 17D).

The SHJ Type II advantage also depends on the set of separable
dimensions used. In their Experiment 6, Kurtz et al. (2012) used the
dimensions of border color (yellow or white), interior dots (present
or absent), and interior diagonal line (present or absent), rather than
the usual dimensions of size, shape, and color. The results were a
surprising combination of what has been seen with separable and
integral dimensions: Type I performance was excellent as would be
expected for separable dimensions, but there was no Type II
advantage over Type IV (see Figure 13C). When fitting ALCOVE
to these data, Kurtz et al. (2012) found that it could capture either the
fast learning of Type I compared to Types II and IV, or the tie
between Types II and IV, but not both.

To explain these results, we appeal to intuitions about natural-
category statistics. While above we have proposed both singly
narrow and doubly narrow components for the dimensions of
size, shape, and color, the categories experienced along the dimen-
sions of border color, interior dots, and interior diagonal line are
probably different. We can think of examples in which we have
experienced singly narrow categories along these dimensions. For
example, border color can be consistent across a set of web pages on
the same site, interior dots could be consistent among those with a

Figure 16
Human Data and Rational Exclusively Family RESemblance Hierarchy Results for the Biconditional Discrimination Experiment With Both
Separable and Integral Stimuli of Soto et al. (2015)
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separable and integral stimuli. (B) Data from Soto et al. (2015) Experiment 2, which consisted of 15 training blocks with all four stimuli presented in each block.
Adapted with permission from page 172. (C) REFRESH results for this same experiment. See the online article for the color version of this figure.

Figure 15
Illustration of how the Relationships Between Three Variables, Hue,
Saturation, and Size, Can Be Both Separable and Integral in the
Rational Exclusively Family RESemblance Hierarchy

Note. Similarities are between a new example and an example already in
the center of the plot. In the contour plots, lighter colors represent higher
similarities, and the lines are iso-similarity curves. Each plot shows a pair of
dimensions.
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disease, and the presence or absence of a diagonal line on a uniform
can define different kinds of military personnel. However, compared
with size, shape, and color, it is much harder to think of doubly
narrow categories. Experience with singly narrow categories will
produce separable dimensions, and if we use only the singly narrow
covariances, Ψnww, Ψwnw, and Ψwwn, as well as c1 = c2 = c3 = 2.5,
then REFRESH produces both relatively fast learning of Type I as
well as a much reduced Type II advantage (see Figure 13F).

Explaining how Dimensional Biases Can Be Learned

All of the above demonstrations of REFRESH producing the
classic dimensional biases and their stimulus dependence are the
result of learning. Rather than being fixed properties of the catego-
rization system, these results are, we suggest, dependent on the
cognitive system learning the statistical structure of real-world
categories. Here we first focus on two key effects that we reviewed
earlier showing the developmental trajectory of these biases: dimen-
sional learning and the differential development of SHJ Type I and
II. Next, we focus on how categorization training changes dimen-
sional biases, both for dimensions considered integral and also for
novel dimensions defined arbitrarily.

Dimensional Development

Over the course of development, there are changes in how people
decide that two stimuli are the same. Initially distance within the

psychological space is most important, but gradually exact matches
along separable dimensions take precedence. Smith (1989) clearly
demonstrated this developmental trajectory using the stimuli shown
in Figure 4. Participants in this free classification task tended to
group the six stimuli in three different ways: overall similarity, one-
dimensional similarity, and one-dimensional identity. Three- and
4-year olds were most likely to use overall similarity, 5-year olds
were almost as likely to use one-dimensional similarity as overall
similarity, and adults overwhelmingly used one-dimensional iden-
tity (see Figure 18A). This experiment was a particularly nice
demonstration of the developmental trend because the overall
similarity results in this experiment required using both dimensions.
Similar claims made with simpler category structures (e.g., Smith &
Kemler Nelson, 1984) have been criticized because results attributed
to overall similarity can also be produced by a focus on a single
dimension (Thompson, 1994; Wills et al., 2015).

To see how this result arises from REFRESH, we first note the
earlier demonstration of how the covariance components change
with experience with categories that are narrow along a single
dimension (see Figure 11): they begin with an expectation that
categories are isotropic, and the variance of the component will
gradually narrow in response to more and more training. We
assumed that adults used Ψnw and Ψwn, and also assumed that
the other age groups had less experience with categories and so their
variances along the narrow dimension for Ψnw, and Ψwn were not
quite as narrow. In particular, we assumed variance decreased along
the narrow dimension as children grew older and gained more

Figure 17
Human Data and Rational Exclusively Family RESemblance Hierarchy Results for
how the SHJ Type II Advantage Depends on the Mapping and Distance Between
Stimuli
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(D) REFRESH results for the first 128 trials when stimuli are closer to the shape dimension.
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experience: 0.8 for 3-year olds, 0.6 for 4-year olds, 0.5 for 5-year
olds, which were all wider than the 0.1 value used for adults.8 For
simplicity, for all age groups we assumed that the two dimensions
were equally scaled: c1 = c2 = 2.3.
REFRESH automatically infers how the stimuli are clustered, so

we merely report the probability of different partitions of the stimuli
into clusters as the results of the simulation. For this simulation, we
were able to exactly calculate the probability of each of the partitions
because there were only six stimuli in the experiment (see Appendix).
However, as almost all of the different ways of partitioning the
stimuli would be classified as “other” and only a small number would
be classified as either overall similarity, one-dimensional similarity,
or one-dimensional identity, we had to use slightly different param-
eters from the previous simulations to ensure that REFRESH pro-
duced these interesting partitions and not near misses. For this
simulation we changed the chance of creating new clusters and
the variance of the positions of the components: α = 1, σ2r = 100.
Using these values, REFRESH shows a smooth transition from using
overall similarity to cluster the items, to one-dimensional similarity,
and then finally to one-dimensional identity for adults (see
Figure 18B).
The developmental data for the SHJ problems show a similar

picture to the developmental data for free classification. Experiment
1 of Minda et al. (2008) investigated SHJ problems with 3-year olds,
5-year olds, 8-year olds, and adults. For Type I problems, all of the
groups were able to learn the categories fairly quickly, except for the
3-year olds. This result is congruent with the highest proportion of
overall similarity partitions occurring for 3-year olds in the Smith
(1989) data. Interestingly, though 5-year olds and 8-year olds were
much better on Type I problems compared to 3-year olds, they were
similar to 3-year olds in their Type II performance, where adults

performed better. All age groups produced similar accuracy on Type
IV problems, suggesting that motivation and understanding of the
instructions were similar across groups.

This dissociation between the age at which good performance on
Type I and Type II problems is first displayed can be naturally
accounted for by the different component types in REFRESH. Good
performance on Type I problems is driven by the singly narrow
components, while the Type II advantage is driven by the doubly
narrow components. To apply REFRESH to this task, we assumed
that adults were using both the singly narrow and doubly narrow
covariance components and that c1 = c2 = c3 = 1.5. For these adult
parameters, REFRESH showed both fast learning of Type I and a
Type II advantage as a result. For all of the groups of children, we
assumed the same scale parameters as adults but assumed that only
the singly narrow components (i.e., Ψnww, Ψwnw, and Ψwwn) were
available. We also assumed, as in the above simulation of dimen-
sional learning, that the variances along the narrow dimension of the
singly narrow components were not as narrow as they were for
adults. As above, we assumed that it was 0.8 for 3-year olds and 0.5
for 5-year olds. Eight-year olds were not tested above, so here we
assumed their narrow standard deviation value was 0.4. The results
of this simulation (see Figure 19) match the empirical data in
showing that the older children have a marked advantage over
the 3-year olds in learning Type I, despite not having much
advantage over the 3-year olds in learning the other types. Simulated
adults also show the Type II advantage while simulated children do
not. However, REFRESH shows an adult advantage for Type IV
because performance on this type is tied to performance on the other
types through the narrowness in the assumed covariance matrices,
while the data do not show an adult advantage on this type.
REFRESH also shows an advantage of Type II over Type III, while
the adult data, unusually for these kinds of studies, do not. These
potential mismatches could be an interesting avenue for future
empirical and modeling comparisons.

Dimensional Learning

As a complement to these developmental results, Goldstone
(1994) ran a carefully controlled laboratory demonstration of the
effects of categorization training on integral dimensions. In Experi-
ment 4 of that article, participants were given a discrimination task
involving 16 stimuli that factorially varied along a pair of integral
dimensions: saturation and brightness (see Figure 20A). All parti-
cipants made same-different judgments between pairs of stimuli that
were either both the same or were neighbors. Discrimination ability
in this same-different task was measured by the participants’
sensitivity d′ to changes on a dimension, and was compared between
participants who received categorization training and those who did
not. In categorization training, all 16 stimuli were presented 20 times
each, and the labels were assigned in three different ways: for 1D
Saturation training, all stimuli with below-median saturation (Quad-
rants II and III) were given one category label and those with above-
median saturation were given the other (Quadrants I and IV); for 1D
Brightness training, all stimuli with below-median brightness
(Quadrants III and IV) were given one category label and those

Figure 18
The Developmental Trends of Dimensional Learning From Experi-
ment 2 of Smith (1989)
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partitions shown in Figure 4, where bar color indicates the age group. Both the
(A) human data (adapted with permission from page 138) and (B) REFRESH
results show a trend over developmental time ofmoving from clustering objects
according to overall similarity to clustering them by matching a single feature.

8 Similar results can be obtained by assuming that older age groups have
learned about a greater number of categories, as we showed in an earlier
version of this work (Heller et al., 2009).
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with above-median brightness were given the other (Quadrants I and
II); and for 2D Saturation and Brightness training, each quadrant of
stimuli was given a different category label.
This experiment tested the extent to which dimensions would

compete during learning: Whether participants trained on categories
separated along one dimension would improve their discrimination
performance along the “relevant” dimension (which was crossed by
the category boundary) but reduce it along the “irrelevant” dimen-
sion (which was not). This hypothesis follows from the assumption
that the Minkowski metric’s dimensional weights sum to one
(i.e.,

P
iwi = 1 in Equation 1). Another prediction of dimensional

competition was that 2D Saturation and Brightness training would
not improve discrimination performance as much as 1D training
along a relevant dimension.
The results of the experiment, shown in Figure 20B, were that

training gave a bigger boost to discrimination performance (as
measured by d′ vs. the baseline of no categorization training) on
the relevant dimension compared to the irrelevant dimension for
both saturation and brightness. However, there was no competition
effect between relevant and irrelevant dimensions: Training also
improved performance on the irrelevant dimension. Relatedly,
discrimination also improved as a result of 2D Saturation and
Brightness training, and there was only weak evidence (statistically
significant relative to 1D Brightness but not to 1D Saturation) that
training along a single dimension resulted in better discrimination
along the relevant dimension than training along both dimensions
simultaneously. A final empirical observation was higher discrimi-
nability for pairs of stimuli that crossed the boundary than for pairs
of stimuli along the relevant dimension that did not cross the

boundary, though for both types discrimination was better than it
was without training.

We used the untrained version of REFRESH to model these
results,9 assuming, as for the natural images statistic training, that
σ2r = 1. We drew 1,050 samples from the model via Gibbs sampling
and discarded the first 50 samples as burn-in. The remaining samples
were then used to determine the probability that each pair of stimuli
was the same using the similarity expression in Equation 5, aver-
aging over the two possible assignments of the stimuli to x and x*.
The d′ values were calculated by subtracting the normal inverse of
the false alarm rate and from the normal inverse of the hit rate. The
simulation was repeated three times, and as each repetition showed
the same qualitative results, we averaged over them to produce the
model predictions shown in Figure 20C.

REFRESH captures many of the key results, showing increased
discriminability for both the relevant and irrelevant dimensions as a
result of 1D Saturation and 1D Brightness categorization training. In
addition, the discriminability of the relevant dimension increased
more than that of the irrelevant dimension. The intuition for the

Figure 19
TheDevelopmental Trends of Errors for the SHJProblemTypesFromExperiment 1 ofMinda et al. (2008)
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olds, 5-year olds, 8-year olds, and adults. (A) Human data (adapted with permission from page 1523) and
(B) REFRESH results.

9 The untrained version of REFRESH incorrectly casts saturation and
brightness as novel dimensions. However, the prior we use for integral
dimensions in the trained model is effectively the same as for novel
dimensions, except it cannot be influenced by the training data. As a
compromise between these extremes, we modeled these results with more
certainty in the initial isotropic prior: using either vt = 100 or vt = 1,000
instead of vt= 30, because as vt grows larger the prior is less influenced by the
training data. All values of vt produced the same qualitative results, except
that if vt = 1,000 the training advantage for the 2D Brightness and Saturation
condition was not as large as in the 1D conditions.
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boost to the relevant dimension is that REFRESH learns compo-
nents that match the trained category structures: they are narrower
along the dimension on which the boundary is set. Therefore, stimuli
that differ along the relevant dimension, where the expected vari-
ance of clusters is smaller, are considered less likely to be part of the
same cluster and thus less likely to be judged the same. The intuition
for the boost to the irrelevant dimension is that the learned compo-
nent has a smaller expected variability on the irrelevant dimension
than it does prior to training. This explanation also underlies the
prediction that 2D Saturation and Brightness training increases
discriminability along both dimensions, as was observed empiri-
cally. Finally, REFRESH shows a very slightly higher discrimina-
bility for pairs of stimuli that crossed the boundary compared to
pairs of stimuli that did not cross the boundary.
Not all aspects of the empirical data were reproduced by the

model. The overall predicted magnitude of the discriminability
increases was smaller than was observed in the data. We could
increase the predicted d′ values by assuming greater spacing
between neighboring stimuli, but for this to be effective a decrease
in the dispersion parameter α would likely be needed so that the
model does not split each category into many small isotropic
clusters. Next, the model’s increased discriminability following
2D Saturation and Brightness training was higher than that for
either 1D Saturation or 1D Brightness training, a reversal of the
apparent pattern in the data. Finally, there was only a tiny advantage
in discriminability for pairs of stimuli that crossed a boundary,
which was much smaller than that in the empirical data. This was
likely a result of centering the model’s prior in the middle of

stimulus space, which is also where each boundary ran. If future
empirical work shows that the effect can be found for any boundary,
then to match the effect REFRESH would likely have to be
augmented to learn of the positions of components in addition to
their covariances, which we discuss further in the Limitations and
Possible Extensions section.

While the results of Goldstone (1994) are compelling, they do not
include the most commonly used test of whether dimensions are
separable or integral. This is to use the Garner filtering task (Garner,
1974) to measure how variation along an additional dimension
interferes with categorization speed or accuracy, though certainly
there are alternative measures that can be deployed (Blunden et al.,
2015; Garner, 1974; Little et al., 2013; Soto & Ashby, 2015). In this
test, two tasks are compared, using stimuli like those illustrated in
Figure 21B. In the filtering task, participants classify stimuli that
differ along two dimensions according to where they fall along the
target dimension. Performance in the filtering task is subtracted from
performance in the baseline task, in which participants classify
examples of a pair of stimuli that differ along only the target
dimension. A performance advantage in the baseline task is evi-
dence of Garner interference—an effect that indicates a pair of
dimensions are integral dimensions rather than separable.

Soto and Ashby (2015) investigated whether categorization
training reduces Garner interference (Garner, 1974) in their Experi-
ment 1. This task used facial morphs (i.e., pixel-wise averages of
photographs of faces) which, unlike saturation and brightness which
have in a minority of reports behaved like separable dimensions
(Foard & Kemler Nelson, 1984; McKinley & Nosofsky, 1996;

Figure 20
The Effects of Training on Stimulus Discrimination in Experiment 4 of Goldstone (1994)
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Note. (A) Illustration of the type of stimuli used for both categorization training and discrimination. Solid lines are the possible categorization boundaries with
the vertical bound used for 1D Saturation training, the horizontal bound used for 1DBrightness training, and both bounds used for 2D Saturation and Brightness
training. Quadrants of stimuli are numbered I–IV. (B) Human data from the experiment. The upper plot shows discrimination change measured by difference in
d′ for each categorization training condition relative to baseline. The lower plot gives the discrimination change for pairs of stimuli that cross the boundary
(central) versus pairs that do not (peripheral), averaging across the relevant dimensions of the two 1D training conditions. (C) REFRESH simulations for the
same measures as in B. See the online article for the color version of this figure.
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Nosofsky, 1987), are novel dimensions for which there is consistent
evidence that they are initially integral (Folstein et al., 2012;
Goldstone & Steyvers, 2001; Soto & Ashby, 2015). Both the
training and test stimuli were defined in separate 2D facial morph
spaces, with each dimension defined by a percentage contribution of
each of two “anchor” facial photographs. In this study, the dimen-
sions in which the training stimuli and test stimuli were presented
changed: The dimension that was relevant for categorization was
combined with a novel dimension for test. For the purposes of
training and testing REFRESH, we trained and tested in a 3D space
that included the variation of both the training and test stimuli,
assuming that when a dimension was not in use that all values along
that dimension were zero, reflecting zero contribution of that
dimension’s anchor faces to the resulting morph. This is of course
a rough approximation to the psychological representation of faces.
An illustration of the parameter values of the training stimuli is
shown in Figure 21A.
Soto and Ashby (2015) found that categorization training

increased overall performance and reduced Garner interference.
The reduced interference held for both response times and accuracy
as well: The average accuracy interference was 3.3% for participants
without training and 0.2% for participants given categorization
training. As REFRESH does not provide an account of response
times, we only attempted to reproduce the accuracy differences. As
in Soto and Ashby (2015), we trained the untrained REFRESH on
nine blocks, each consisting of all of the stimuli in Figure 21A in the
categorization condition, using the same parameters and simulation
details as for the Goldstone (1994) experiment. We selected 10
samples (choosing every 10th sample after discarding the first 50 of
150 total samples) of the component parameter posterior distribu-
tions and for each sample calculated the modal covariance matrices,
then used these in the particle filter approximation to determine
classification performance. The block-by-block accuracy results are
shown in Figure 21C, demonstrating that before training there was
Garner interference and that training increased performance and
greatly reduced interference. Soto and Ashby (2015) summarized
interference by averaging the classification error rate for eight blocks
of the filtering task and four blocks each of the two possible baseline
tasks, but only for blocks in which the proportion of correct responses
exceeded 75%. Calculating interference in the same way, we find the
same qualitative pattern but with smaller magnitudes compared to the
empirical data, and the results shown in Figure 21C are clearly robust
to other ways of summarizing performance.
The intuition for REFRESH’s reduction of Garner interference is

that categorization training shrunk the expected “size” of clusters.
In the untrained condition, there was a separate cluster for each
stimulus in the baseline task, but in the filtering task at times both
stimuli with the same label were assigned to the same cluster, which
reduced classification accuracy. After training, the reduced cluster
size meant that in the filtering condition each stimulus was more
likely to be assigned to its own cluster which resulted in near-perfect
classification accuracy, as also found in the baseline task (see
Figure 21E). This ceiling performance was a consequence of need-
ing to choose a spacing between neighboring stimuli (doubled from
that in Figure 21B) that allowed performance in the untrained
conditions to eventually exceed the 75% threshold. We also per-
formed a secondary analysis that reduced the distance between
stimuli to 5% of what it was originally to bring the trained condition
off of the ceiling, which resulted in chance-level performance in the

before training condition. In this secondary analysis, there was still
very little Garner interference in the trained condition.

This, however, is not the only way in which REFRESH could
produce the usual empirical patterns in Garner interference. We also
investigated the performance of the trained model on the exact same
experimental design. For this simulation, we assumed that there
were two components for separable dimensions, Ψnww and Ψwwn,
which meant that for the two dimensions along which there was
variability for the testing stimuli, the available components reduced
to Ψnw and Ψwn. For integral dimensions, only the isotropic com-
ponent, Ψwww, was available. For all dimensions cd = 0.3 in this
simulation. The results of this simulation are shown in Figure 21D,
which look very similar to those in Figure 21C. Again, this plot
shows ceiling performance for the separable dimensions, and so in a
secondary analysis we set all cd = 0.03 to bring separable dimen-
sion performance off of the ceiling, which necessitated bringing
integral dimension performance to the floor. This secondary analysis
showed very little Garner interference for separable dimensions.

However, despite the similarity in performance, the reduction in
Garner interference with training for separable dimensions occurs
for a different reason: The shape of the expected covariance matrix is
elongated in our separable dimensions model. As a result, stimuli
with the same label are put into the same cluster in the filtering task
(which is the cause of interference in the modeling above), but the
narrowness of the distribution greatly reduced interference (see
Figure 21F). Interestingly, this second way in which REFRESH
can produce the empirical pattern of Garner interference does not
correspond functionally with a better ability to ignore an irrelevant
separable dimension than an irrelevant integral dimension because
the variances along those dimensions are the same. Instead, it
corresponds to a greater ability to stretch the relevant separable
dimension, which is an alternative hypothesis that would be inter-
esting to explore in future training studies.

The Origin of Dimensional Biases

Like the exemplar and prototype models, REFRESH uses as its
basis the concept of a continuous psychological space. This concept
has been very useful in many theories of similarity and generaliza-
tion, because it provides a natural way to generalize from observed
to novel objects by utilizing their proximity in psychological space.
This continuous space can be seen as reflecting the continuous
parameterizations of aspects of objects such as position and motion,
color, and representations of object kind in the outside world
(Shepard, 1994).

There have been a number of hypotheses about how separable and
integral dimensions are formed in a psychological space. As dis-
cussed above, Shepard’s influential account of similarity and gen-
eralization within a psychological space holds that they are the result
of inferring how likely two stimuli are of the same natural kind,
meaning that they belong to the same consequential region of the
psychological space. Formally, the similarity between two stimuli is
thought to be the probability that the relevant consequential region
that contains one stimulus also contains the second stimulus.
However, the size and shape of the consequential region are
unknown, so generalization requires integrating over all of the
possible consequential regions, weighting each by its prior proba-
bility (Tenenbaum & Griffiths, 2001a). This scheme naturally
produces the kinds of exponential and Gaussian generalization
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Figure 21
The Effects of Training on Garner Interference in Experiment 1 of Soto and Ashby (2015)
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Note. (A) Illustration of the type of stimuli used for categorization training, with a solid line indicating the
categorization boundary. Adapted with permission from page 112. (B) Illustration of the stimuli used in the Garner
filtering task. The filtering task asked participants to classify all four stimuli into groups divided by the solid
boundary, while the two baseline tasks asked only about either the upper or lower pair of stimuli, so that there was
no variation along the novel dimension. Adapted with permission from page 112. (C) REFRESH results for both
before and after training for each of the tasks. A performance advantage for the baseline over the filtering task
indicates Garner interference. (D) REFRESH results for the pretrained model using either components associated
with integral dimensions or those associated with separable dimensions. (E) Cartoon of REFRESH’s clustering and
cluster size for the two categories (red and blue) in the filtering task both before (no boundary lines) and after
training (gray boundary lines). (F) Cartoon of pretrained REFRESH’s clustering and cluster size for the two
categories (red and blue) in the filtering task both for integral (no boundary lines) and separable dimensions (gray
boundary lines). See the online article for the color version of this figure.
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functions seen empirically in the psychological space (Ennis &
Shepard, 1988; Shepard, 1987) and can be adapted to fit human
categorization data quite well (Shanks & Gluck, 1994). To explain
the origin of dimensional biases, Shepard (1991) argued that integral
dimensions were the result of a positive correlation in stimulus
variability along these dimensions, while separable dimensions were
the result of zero correlation in stimulus variability along these
dimensions.
A developmental theory of how separable dimensions are formed

in a psychological space was proposed by Smith and Kemler (1978).
Initially for children, dimensions that are separable for adults are
nonprimary axes, meaning that the stimuli are not perceived as
showing differences along any particular dimension, and any rota-
tion of the axes would provide an equally good description of the
stimuli. As children become older, these adult-separable dimensions
become primary axes, which are accessible to older children with
effort, but they are not immediately available. Finally, adult-
separable dimensions are obligatory axes in that they are available
immediately and without effort and cannot be ignored. Smith and
Kemler (1978) hypothesized that all pairs of dimensions follow this
developmental trajectory, though at different rates and with some
pairs progressing further than others.
REFRESH can be viewed as a formal extension of both of these

ideas. REFRESH uses graded consequential regions instead of the
all-or-none regions introduced by Shepard, but like this theory it
involves uncertainty about the parameters of the region that are
integrated over in order to produce the generalization gradients.
Moreover, Shepard (1987, 1991) hypothesized that separable and
integral dimensions were driven by the same correlations in the
variance of categories along pairs of dimensions that we empirically
observed in natural image statistics (see Figure 9). These statistics
were then used as inspiration for our choice of priors in the
trained model.
When REFRESH is trained on these natural image statistics, it

goes through a similar progression to that hypothesized by Smith
and Kemler (1978). Its initial prior treats the space as having
nonprimary axes in which the similarity gradient can be rotated
without any effect on performance (see Figure 11 with zero clus-
ters), and with a large amount of training this initial prior will be
overwhelmed by the learned components which will behave like
obligatory axes. The intermediate stage of nonprimary axes may
possibly map onto REFRESH with a moderate amount of training:
while there is still an overall isotropic prior over components,
several weakly axis-oriented components have been learned, and
there is uncertainty about which will better describe the observed
stimuli. A difference is that REFRESH does not have a mechanism
for cognitive effort to act to make primary axes separable as it is a
computational-level model, but we revisit this in the Rational
Process Models section below.
What both of these proposals were lacking however was a means

by which to explain which dimensions, out of an infinite set of
possible rotations of the dimensions of the space, would become
separable dimensions. The advantage of using REFRESH’s rich
hierarchical prior is that it allows us to avoid explicitly learning the
preferred axes of the psychological space: the separable dimensions
that are associated with dimensional biases. The infinite number of
possible orthogonal preferred axes presents a substantial learning
challenge. Compounding this problem is evidence that representa-
tions are not necessarily orthogonal, as has been found in the

perception of rectangles (Krantz & Tversky, 1975; Macmillan &
Ornstein, 1998). Our approach allows for nonorthogonal dimen-
sional biases, and removes the need for an additional complex
learning mechanism for determining the preferred axes.

A final empirical hurdle that has previously made it difficult to
design a mechanism for learning the preferred axes is that these axes
depend not only on the distribution of the stimuli, but also on the
structure of categories (Austerweil & Griffiths, 2013; Austerweil
et al., 2019; Schyns et al., 1998). This means that unsupervised
learning based on image statistics, such as Principal Components
Analysis (PCA) which finds the set of orthogonal dimensions that
capture the ways in which the stimuli vary the most, will not by itself
produce a representation that matches human categorization.

Two existing approaches already address, to some extent, dimen-
sional learning using category information. The first, known as
category packing, assumes that people attempt to create categories
that both maximize classification accuracy while at the same time
minimizing overlap with other categories. Because different kinds of
stimuli, such as solid and nonsolid objects, are organized into
categories along different dimensions, new categories that attempt
to minimize overlap with previous categories will also take on the
same kind of local organization (Hidaka & Smith, 2011; see also
Conway &Austerweil, 2017). This model is in some ways similar to
REFRESH, and has the added advantage of predicting shape and
material biases, but it has two major limitations. The first limitation
of this approach is that it has no mechanism for predicting trial-by-
trial category judgments, like those required in the condensation
versus filtration or the SHJ Type II advantage experiments, which is
why we did not review it above. The second limitation is that, like
the hierarchical Bayesian model of categorization proposed by
Kemp et al. (2007), it effectively only learns to generalize along
a single separable dimension for each stimulus rather than learning a
set of separable dimensions. For example, if this model learns that
shape is an important dimension for determining the similarity to a
stimulus and that color is unimportant, it cannot also learn that
sometimes it is important to consider color and disregard shape for
that same stimulus. As a result, even with a mechanism for pre-
dicting trial-by-trial category judgments, it could not fully produce
the classic dimensional biases, as it is necessary for individual
stimuli to display dimensional biases for multiple dimensions, not
just a single dimension.

A second approach, presented in Colunga and Smith (2005), is an
associative learning model based on a Hopfield network that can
learn from experience with past categories how to generalize to new
stimuli differently. Similar to the category packing approach, it can
learn the correlation between category structure and solid and
nonsolid objects, which REFRESH cannot. This model included
a mechanism for translating the similarities of the internal represen-
tation into a judgment of which item of a pair belonged with a
standard, which is insufficient for predicting trial-by-trial category
judgments when the categories consist of more than one item.
Because this model’s representation is opaque, it is unclear whether
it would be able to learn a set of separable dimensions that can take
different weights within the stimulus space, as REFRESH can.
However, it seems less important to directly test this associative
learning model than addressing the more general claim made by
Colunga and Smith (2005; see also Goldstone, 2003; Spratling,
2006; Spratling & Johnson, 2006): that a connectionist model can
learn regularities across categories. Given the success that more
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complex deep networks have had in learning regularities across
categories (Vinyals et al., 2016), we believe that there is almost
certainly some kind of connectionist network that can learn from the
statistics of natural categories as REFRESH can. While we could
have presented a connectionist model in this work, we chose to
develop a Bayesian model because its predictions derive more
clearly from the structure of the environment, rather than the
algorithmic implementation of the model.
Of course, even if dimensional biases are learnable from the

structure of the environment, as we have argued, these biases may
still be innate rather than learned, and come to the fore over
development (e.g., Smith, 1989). This is a certainly a possibility
for some dimensions that we have investigated such as size and
color, as they were likely to have been useful dimensions throughout
human evolution. And it may even explain the dimensional biases of
some artificial stimuli, like “Shepard circles,” which are not gener-
ally present in the natural environment but can appear separable in
the responses produced by Gabor filters (Tijsseling & Gluck, 2002).
But it is unlikely to explain how dimensions can be trained to be
separable using arbitrary dimensions in facial morph spaces (Soto &
Ashby, 2015). Considering all these types of separable dimensions,
it is plausible that at least some separable dimensions are learned
through an individual’s lifetime of experience, rather than being
latently available, and an explanation of how this could work is
REFRESH’s main contribution.

Limitations and Possible Extensions

It is unlikely that any single model can fully explain the com-
plexity and variety of human categorization, which needs to capture
abstract categories like space, number, responsibility, the good, and
so on, and the variety of influences on such categorization, which in
principle are shaped by world-knowledge of just about any kind.
Above, we took a particular approach to categorization, that of a
pure family resemblance model that learns across categories and
asked what aspects of categorization it can capture. To do so, we
used a set of parameters in the trained model that was inspired by
natural image statistics but not derived directly from them. Further
investigating environmental statistics and forging a tighter link to
model parameters is one important avenue for future work. Below,
we look at a broader set of desiderata for a categorization model and
discuss the ways in which REFRESH could be extended or modified
to account for them.

Shape and Material Biases

In our initial discussion of the role of learning in dimensional
biases above, we briefly discussed children’s bias to extend words to
objects of the same shape for solid objects, and to extend words to
objects of the same material for nonsolid objects. We also discussed
how these biases also seem to reflect the structure of categories in
the world.
Training studies with children provide the best evidence that the

stimulus-dependence of dimensional biases is learned. Children
trained on named categories organized by shape were able to
generalize this regularity to other categories. This training had an
effect on later word learning: Trained children learned nouns faster
outside of the laboratory than children not given this training (Smith
et al., 2002). Training on categories organized by shape only helped

with categories organized by shape; children trained in this way also
overgeneralized the shape bias to nonsolid objects, and children who
were trained with categories constant in material showed less
overgeneralization (Samuelson, 2002). Additionally, children can
be trained to generalize differently for animate and inanimate
categories: generalizing along shape alone for inanimate objects
and generalizing along shape and material for animate objects
(Jones & Smith, 2002).

REFRESH, as it is formalized above, cannot produce biases of
this kind, because this dimensional bias does not just depend on the
dimensions chosen or the spacing between stimuli, but also on the
actual values of the stimuli along the chosen dimensions. In studies
of the shape bias, participants are given an object and asked to
choose which of two other objects shares the same label: An object
with the same shape but different material from the target object, or
an object with a different shape but same material. Adults are biased
toward choosing the object with the same shape if the objects share a
complex shape, but are much less likely to do so if the objects are
blobs of material (Soja et al., 1991). However, it is straightforward
to extend REFRESH to explain these effects by allowing compo-
nents to have different means (which are learned) and by assuming
the kinds of category structures found empirically by Samuelson and
Smith (1999): that categories of solid stimuli tend to be consistent in
shape, while categories of nonsolid stimuli tend to be consistent in
material. This kind of extension could potentially also explain the
greater sensitivity to stimuli that cross a learned decision boundary
observed in the experiments of Goldstone (1994), as the components
that allow for greater sensitivity will be more influential closer to
where they were trained.

Feature Learning

REFRESH views categories as a composition of clusters of
objects, and could potentially learn that different components
describe clusters in the same category. How does this compare to
models of feature learning? One very relevant model, presented in
Austerweil and Griffiths (2011), could learn the features of an object
using a nonparametric prior described in terms of pixel values. One
key difference between this model and REFRESH is in their
assumptions regarding the latent structure an object can have: either
clusters or features. An object in REFRESH is assigned to exactly
one cluster, whereas an object in their model is assigned zero or
more features. This results in different expectations about likely
novel objects. For example, REFRESH does not expect a novel
object in which half of the object’s dimensions come from one
cluster and the other half of its dimensions come from another
cluster, while their model would expect such an object.

Some of the empirical results presented by Austerweil and
Griffiths (2011), as support for their model could plausibly be
captured by REFRESH. For example, they effectively distinguished
their model from exemplar and prototype approaches in Experiment 2,
which presented participants with a set of objects that shared a
novel property. Participants were then asked to generalize the novel
property to new examples. The exemplar and prototype models
generalized from the previous examples but were misled by the
noise added to the images. REFRESH could potentially avoid this
trap because it could distinguish between the pixels that are
constant and those that are variable (i.e., the noisy pixels) and
would not rely on the noisy pixels when generalizing.
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Later work by the same authors formulated two schemes
for incorporating category information into their approach
(Austerweil & Griffiths, 2013). One, like the RMC, treats category
labels as equivalent to pixel values and learns a set of features that
can encode both pixel values and category labels. In this scheme, if
certain sensory inputs are correlated enough with a category label, a
single feature will encode them together. Their second scheme for
incorporating category information treats the category of an object
differently from the object’s sensory data. In the second scheme,
there is one central repository of features, and the features for each
category are separately sampled from that repository. In both
schemes, objects are treated differently than in REFRESH because
each object is encoded by zero or more features, and potentially
could have features from multiple categories, whereas REFRESH
encodes each object with a single cluster and so assumes it is
generated from a single category.
Rather than viewing REFRESH and feature learning models as

rival models of categorization, we believe that they describe
different assumptions about how features or clusters are used to
represent the set of possible objects in a category. The models
could potentially be dissociated by forming object sets that adhere
to either the assumptions of REFRESH or the feature learning
model. Both can be sensible assumptions in certain environments,
and we suspect we would find that each model captures human
performance when the objects given to people adhere to the
assumptions of that model. However, we do not believe this is
the best way forward. Instead, it seems most promising to combine
the two approaches, so the features estimated by the feature
learning model serve as inputs to REFRESH. Combining the
two approaches would result in a model able to make predictions
about how previous categorization experience biases the features
that are learned, potentially providing a route to explaining inter-
actions between categorical and perceptual constraints in feature
extraction (Schyns & Murphy, 1994).

Rational Process Models

We presented REFRESH as a computational-level model, as it
describes the statistical problem to be solved (Marr, 1982), though
we also noted that algorithmic-level constraints might be necessary
to justify some of our parameter settings. However, it is reasonable
to expect that the brain, with its limited capacity, would be unable
to implement the statistical model exactly. REFRESH requires the
representation of an enormous number of hypotheses: The repre-
sentation of all possible partitions of objects we have experienced
into clusters, crossed with all possible partitions of clusters into
components. Even representing the possible partitions of a lifetime
of experienced objects into clusters is an impossible task, as just
100 experienced objects would require 4.7 × 10115 possible
partitions to be represented—a number far greater than the number
of atoms in the observable universe. As a consequence, the model
must be approximated for all but the smallest collections of
objects.
For our simulations, we used a set of approximations developed in

computer science and statistics (see Appendix), and we can explore
whether these same approximations might also be used by the brain.
This is the approach of creating rational process models: combine a
rational model with an approximation algorithm that makes sense

for the particular task, fits the behavioral data, and ideally satisfies
known psychological and neural constraints (Griffiths et al., 2012).

Because real-world categories are learned through experience
slowly over time, and people need to make category judgments as
they are learning, it is sensible to focus on algorithms that work well
for data that arrive sequentially. A commonly used set of algorithms
for sequential data are particle filters, which are a family of algo-
rithms that modify a set of samples from a prior distribution so that
they reflect the probabilities of a posterior distribution. Particle
filters have been used successfully in rational process models of
online tasks such as change detection (Brown & Steyvers, 2009),
problem-solving (Yi et al., 2009), sentence parsing (Levy et al.,
2009), and learning (Abbott & Griffiths, 2011; Daw & Courville,
2008), as well as in categorization tasks (Austerweil & Griffiths,
2013; Sanborn et al., 2010). Neurally plausible versions of particle
filters have been developed, providing a potential link to neural data
(Huang & Rao, 2014; Lee & Mumford, 2003; Legenstein &
Maass, 2014).

In categorization tasks, particle filters have been used to explain
how the learned category representation depends on the order in
which the stimuli are presented. Order effects are not predicted by
most Bayesian models of categorization, including REFRESH,
because these models are stationary: they assume categories do
not change over time. However, particle filters can produce order
effects even with stationary models because of the way they update
the prior samples to reflect the posterior. Essentially, when the
posterior is very different from the prior, it is difficult to modify the
prior to match the posterior. The order effects that occur are then
those that result from the algorithm going down a “garden path”:
some hypotheses may seem very plausible based on the initial data,
but when later data greatly change what are the best hypotheses, the
particle filter may not be able to overcome its initial bias in what it
represents. Order effects that were empirically observed in free
categorization (Anderson, 1990) and feature learning (Schyns &
Rodet, 1997) can both be explained in this way (Austerweil &
Griffiths, 2013; Sanborn et al., 2010).

Recent work has used the number of particles to explain the link
between working memory capacity (WMC) and categorization
performance. More particles result in faster learning because the
hypothesis that best explains new data is more likely to already be
represented in the prior, so it will be easier for the particle filter to
“discover” this hypothesis. In experimental studies, WMC has
been linked both to better overall categorization performance
(Lewandowsky, 2011) and to a greater ability to restructure catego-
rization knowledge when participants are asked to focus on different
cues (Sewell & Lewandowsky, 2012). A particle filter implementa-
tion of a different Bayesian model of categorization can explain both
of these effects with a single mechanism: assuming that WMC is
related to the number of particles that an individual has available to
represent the posterior distribution (Lloyd et al., 2019).

Using a particle filter to perform inference in our model could
explain how WMC impacts learning in the SHJ problems. A
reanalysis of the data of Lewandowsky (2011) by Lloyd et al.
(2019) showed that higher WMC results in a larger advantage of
Type II over Type IV. There is some evidence that the ordering can
even reverse: comparisons of older and younger adults show that
older adults, who have worse working memory generally, perform
better on Type IV than Type II problems (Badham et al., 2017;
Rabi & Minda, 2016). We can match this result by decreasing the
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number of particles in REFRESH (see Figure 22): For one hundred
particles Type II is easier than Type IV, but for one particle the
ordering reverses. This provides another interesting link between
WMC and this inferential resource.
Using a particle filter for inference in REFRESH could also

potentially explain empirical effects that seemingly argue against a
family resemblance representation. Across a variety of studies,
participants seem to use a single dimension at a time to make
their categorization judgments, at least early in learning (e.g.,
Nosofsky, Palmeri, et al., 1994; Smith et al., 2014), and the
transitions between using different single dimensions appear to
be sudden (Smith & Ell, 2015). This intuitively looks more like a
search for a correct rule than the operation of a family resem-
blance model, but REFRESH may be able to produce this effect as
a result of using approximate inference. Using only a small
number of samples to represent hypotheses about which prior
component applies to each cluster could lead to only a single
component being represented at times. It could also lead to sudden
transitions as the small number of particles switch the assignment
of a cluster to a different component. Cognitive effort could be
modeled as the amount of additional sampling needed to find
hypotheses that are a priori unlikely yet very useful in a particular
problem, potentially explaining the effort needed to make primary
axes separable.
While using a particle filter for inference in REFRESH could both

make the model more tractable as well as better match human data,
additional constraints may need to be incorporated. For example,
using a particle filter would not impose any kind of capacity limit on
the covariances used in the trained version of REFRESH, which as
discussed above seems to be necessary to fit a range of human data.
It may be that there are additional implementation constraints and
capacities, such as trade-offs in attention between dimensions, that
need to be taken into account in a rational process version of
REFRESH (e.g., Lieder & Griffiths, 2020).

Explaining Evidence for Multiple Systems With
a Single System

An active debate within the field of categorization is whether
category learning is performed by a single system or multiple
systems. In particular, proponents of the dual-system model COVIS
point to 20 years’ worth of empirical results that dissociate the two
systems in this model: an explicit rule-learning system, and an
implicit procedural system (see Ashby & Valentin, 2017, for a
review). REFRESH is a single system model, and here we discuss
how well it might account for these dissociations, though as we
stated at the beginning of the section, we do not expect that
REFRESH will be able to account for every effect in the field.

To dissociate the two systems in COVIS, two types of categoriza-
tion tasks are used: a rule-based (RB) task and an information-
integration (II) task. These tasks are very similar to the condensation
and filtration tasks (see Figure 2) we modeled above. In RB tasks,
participants learn to classify stimuli with two continuous parameters,
such that the classification can be made by looking at only one of the
parameters, like in the filtration task. This task can be performed
perfectly using COVIS’ explicit rule-learning system. In contrast, II
tasks require participants to classify stimuli using both perceptual
dimensions at one time, like in the condensation task. II tasks cannot be
performed perfectly by the explicit rule-learning system and instead
the implicit procedural system is required to do so.

Applying the same manipulation to RB and II tasks often results
in dissociations in performance. For example, when feedback is
removed, II performance suffers a decrement, but RB performance
is unchanged (Ashby et al., 1999). Further work has manipulated
both the proportion of II trials that received feedback and also the
total number of II training trials that participants were given, and
successful learning of the II task was found to depend on the number
of feedback trials that participants received, rather than on the
number of no-feedback trials (Vandist et al., 2009; cf., Ashby &
O’Brien, 2007).

This dissociation could potentially be explained by a
computational-level model such as REFRESH because these exper-
imental manipulations impact the information available to partici-
pants. As the amount of information available via feedback is
reduced, REFRESH will rely more heavily on its priors learned
through experience with other categories. These prior components
are aligned with the separable dimensions used in these studies,
matching the RB task better than the II task. Simply because the II
task is less like the model’s prior, reducing feedback will reduce
performance on this task more. This route could also be used to
explain the same dissociation with a related manipulation: When
feedback is not given on a trial-by-trial basis, but instead summa-
rized at the end of a series of trials so that participants are only aware
of their general performance on a block (Smith et al., 2014).
Summarized feedback does not allow participants to know which
trials were incorrect and so the loss of information would likely
impact the II task more than the RB task in our model, as was found
empirically.

There are, of course, a variety of dissociations found using RB
and II tasks that work in the opposite direction: Learning on the RB
task is affected but learning on the II task is not. Many of these
manipulations are aimed to occupy or deplete cognitive resources in
one way or another, such as giving a concurrent task that engages
working memory (e.g., Zeithamova & Maddox, 2006). Above we

Figure 22
Rational Exclusively Family RESemblance Hierarchy Predictions
for how Errors for the Six Shepard et al. (1961) Problem Types
Depend on Inferential Resources: The Number of Particles Used in
a Particle Filter
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discussed howWMC can be modeled as an inferential resource such
as the number of particles in a particle filter.While we do not attempt
to discuss in detail the results here, relevant to the question of
whether REFRESH could fit these data are analyses of whether
concurrent working memory load reveals a single process or
multiple processes at work. There is no consensus at present
(Ashby, 2014, 2019; Newell et al., 2010; Stephens et al., 2020),
but we note that it has also been shown that an individual’s WMC
helps determine performance on both RB and II tasks
(Lewandowsky et al., 2012).
A strength of COVIS is that it is also able to explain a variety of

other dissociations that occur in specific patient populations that are
beyond the scope of REFRESH (reviewed in Roeder et al., 2017).
These dissociations have been predicted by COVIS because of the
mapping of its two systems onto different areas of the brain. Our
model would likewise need a neural implementation in order to test
whether it can explain these dissociations, which we do not attempt
to specify here. This future work could look to the successful
theories of how COVIS is implemented for inspiration, perhaps
by separately mapping different parts of our single process model to
different regions of the brain.

Conclusions

In almost all accounts of human categorization, separable dimen-
sions are the primitives generated by the perceptual system that the
categorization system can then use in various ways, perhaps using
them to construct rules or perhaps using them to modify distances in
a psychological space. The model we present here, REFRESH, takes
a very different view of separable dimensions.While the dimensions
continue to exist in the psychological space, they no longer have any
special status and are not used as primitives. Taking this novel view
of separable dimensions allowed REFRESH to not only explain the
classic dimensional biases, but also their stimulus-dependence and
how they are learned. While our account argues for the diminished
importance of separable dimensions, it gives them greater purpose:
Dimensional biases are the result of the categorization system
adapting itself to the environment.
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Appendix

Here we explain the link between multivariate Gaussian distribu-
tions and Euclidean similarity metrics, and give further details about
the RMC, REFRESH, and how REFRESH is approximated in our
simulations.

The Link Between the Multivariate Gaussian
Distribution and the Weighted Euclidean Metric

In the multivariate Gaussian distribution, the probability of a
stimulus coming from a cluster is a monotonic transformation of
its Mahalanobis distance from the mean of the cluster: d =
((x − μ)TΣ−1(x − μ))0.5, where x is a vector that describes the
position of a stimulus in the space, μ is the mean of the cluster,
and Σ is the covariance matrix of the cluster. If the covariance matrix
only has diagonal elements, this can be rewritten as the sum d =
(Σi(1/σ2i )(xi − μi)2)0.5, where σ2i is the ith diagonal element of
Σ and xi and μi are the values of these points on the ith dimension.
This is now equal to the weighted Minkowski metric in Equation 1
when r = 2 and wi = 1/σ2i .
However, if the covariance matrix of the multivariate Gaussian

distribution has nondiagonal elements, then there is always a unique
rotation matrix R that will transform the covariance matrix into a
diagonal matrix Λ, with Σ = RΛRT.
Using matrix operations, we can show that the rotation matrix can

be rearranged so that its inverse applies to the dimensions of the
representation of the stimulus x and the mean μ

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − μÞTðRΛRT Þ−1ðx − μÞÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − μÞTðRTÞ−1Λ−1R−1ðx − μÞÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR−1ðx − μÞÞTΛ−1R−1ðx − μÞÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR−1x − R−1μ′ÞTΛ−1ðR−1x − R−1μÞÞ

q
,

where in two dimensions

R−1 =

 
cosðθÞ − sinðθÞ
sinðθÞ cosðθÞ

!
,

and this form can be generalized to additional dimensions.
There are two implications of this that are important for our

purposes. First, this means that the multivariate Gaussian distribu-
tion is a generalization of the weighted Euclidean metric that
encodes not just the weights but also the dimensions (i.e., which
are a rotation of the original representing dimensions) along which
the weights operate. Second, any set of original representing
dimensions is equally good. This is because any rotation of the

dimensions along which the covariance matrix is diagonal can be
applied and the Mahalanobis distance remains unchanged. Essen-
tially the representing dimensions are irrelevant for the probabilities
of the multivariate Gaussian distribution.

A generalization of this point, which is important for REFRESH, is
that the representing dimensions can also be made irrelevant for a
covariance matrix Σ drawn from an inverse-Wishart (IW) distribution.
First, we note that its probability density function depends on Σ and the
covariance parameter Φ only through ∣Σ∣, ∣Φ∣, and tr(ΦΣ−1). ∣Σ∣ = ∣Λ∣
and so is unaffected by rotation, because ∣RΛRT∣ = ∣R‖Λ‖RT∣ and
∣R∣ = ∣RT∣ = 1. Likewise, ∣Φ∣ = ∣RTΦR∣. Because R is an orthogonal
matrix (i.e., RT = R−1) and because of the cyclical property of the matrix
trace, tr(ΦΣ−1) = tr(Φ(RΛRT) −1) = tr(ΦRΛ−1RT) = tr((RTΦR)Λ−1).
That is, we can simply rotate the covariance parameter Φ′ = RTΦR to
allow the IW probability distribution to remain unchanged when
rotating the representing dimensions for Σ.

The above arguments, however, become more complicated if a
category is represented by multiple clusters (i.e., multivariate
Gaussian distributions) as REFRESH can do. Except by design
or exceptional luck, the covariance matrices of the different clusters
will not be aligned, meaning that there is no single rotation of the
axes of the space that can make every covariance matrix diagonal. If
that is the case, then it will no longer be possible to interpret the
category representation as a weighted Euclidean metric, as each
cluster would imply a different weighted Euclidean metric. How-
ever, it remains the case that any set of representing dimensions is
equally valid, as the Mahalanobis distances for each cluster will be
unchanged by any rotation of the axes of the space.

Details of the RMC

In the RMC (Anderson, 1991), the probability of each category
that a new stimulus could belong to, given all of the previous stimuli
and their labels is

Pðln = i j xn, xn−1,ln−1Þ ∝ Pðln = i, xn j xn−1,ln−1Þ, (A1)

where xn is the nth stimulus and ln = i assigns that stimulus to
category label i. The remaining stimuli are collected into the vector
xn−1 and the known labels for these stimuli are collected in the
vector ln−1 . While the right-hand side of Equation A1 is just the
left-hand side rewritten, we show it here to emphasize how the RMC
considers category labels to be dimensions of the stimuli like any
other, in contrast to most other models of categorization and
REFRESH.

When making the judgment about the label of a new stimulus,
every possible assignment of stimuli to clusters is considered

(Appendix continues)
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Pðln = i, xn j xn−1,ln−1Þ
=
X
zn

Pðln = i, xn j zn, xn−1,ln−1ÞPðzn−1 j xn−1, ln−1ÞPðzn j zn−1Þ,

(A2)

where zn is the cluster index of the nth stimulus, zn is a vector of
the cluster indices of all of the stimuli, and zn−1 is a vector of the
cluster indices of all previous stimuli. The CRP prior for the
clusters, P(zn ∣ zn−1), is given in Equation 2.
Inferring the assignments of stimuli to clusters can be done using

essentially the same computation as on the right-hand side of
Equation A2, but involving only the previous stimuli

Pðzn−1 j xn−1,ln−1Þ
∝ Pðln−1, xn−1 j zn−1, xn−2,ln−2ÞPðzn−2 j xn−2,ln−2ÞPðzn−1 j zn−2Þ,

(A3)

which shows how inferring the cluster indices can be done itera-
tively instead of all at once.
As a result of the assumed independence between the features of

the items within a cluster,

Pðln = i, xn j zn, xn−1,ln−1Þ
= Pðln = i j zn,ln−1ÞPðxn j zn, xn−1Þ: (A4)

The probability of the label of the nth stimulus taking value i,
ln = i, then follows a beta-binomial distribution because the cate-
gory labels are discrete features

Pðln = i jln−1, zn−1Þ =
Bi + β
B: + 2β

, (A5)

where Bi is the number of stimuli with label iwithin the same cluster,
B. is the number of stimuli in the cluster, and β is a parameter.
For problems that are described with binary features, like the SHJ

problems, the beta-binomial distribution is used for the likelihood of
the perceptual features of the stimuli as well. However, for contin-
uous stimuli like in the condensation versus filtration problems, the
likelihood used for the perceptual features is Gaussian along each
separable dimension

Pðxn j zn = k, zn−1, xn−1Þ

=
Y
d

ð
μðdÞk

ð
ΣðdÞ
k

N

�
xðdÞn ; μðdÞk ,ΣðdÞ

k

�
P

�
μðdÞk jΣðdÞ

k , zn−1, xn−1

�

× P

�
ΣðdÞ
k j zn−1, xn−1

�
dμðdÞk dΣðdÞ

k , (A6)

where the mean and variance of the Gaussian distribution for the kth
cluster on the dth dimension is given by μðdÞk and ΣðdÞ

k respectively,
and the priors are given in Equation 3.
Finally, we explain here why the RMC for continuous data cannot

produce violations of the triangle inequality, as demonstrated empiri-
cally with direct similarity judgments by Dunn (1983) and Tversky
andGati (1982). Once the priors over parameters are incorporated, the
marginal distribution along each continuous dimension for the RMC
is a Student’s t distribution and the dimensions are independent
(Anderson, 1991). For any pair of dimensions, if the iso-probability
curves were to have concavities, then this would mean that P(x) =
P(x′) where x is closer to the t-distribution mean on both of the

dimensions (or on at least one of the dimensions while remaining
equal on the other) than x′. But this is impossible as P(x) = ∏dP(x

(d)),
P(x′) = ∏dP(x

′(d)), and P(x(d)) > P(x′ (d)) on both dimensions.
(Or P(x(d)) > P(x′ (d)) on one dimension and P(x(d)) = P(x′ (d)) on
the other.) Figure 5 demonstrates that concavities are necessary to
produce violations of the triangle inequality, so if we take the iso-
probability curves as iso-similarity curves, the RMC cannot produce
violations of the triangle inequality. Even in the more complex
similarity function of Equation 5, for the RMC similarity would be
proportional to these probabilities, and thus the iso-similarity curves
would be convex, and the triangle inequality would not be violated.

Details of REFRESH

The MATLAB code used to implement REFRESH is available
here: https://osf.io/fr7nq/.

In our initial formulation of REFRESH’s hierarchical prior we set
the likelihood of a new stimulus given the other stimuli and cluster
assignments to

Pðxn j zn = k, zn−1, xn−1Þ

=
ð
μk

ð
Σk

ð
Φ
Pðxn j μk ,ΣkÞPðμk j zn−1, xn−1ÞPðΣk jΦ, zn−1, xn−1Þ

× PðΦÞdukdΣkdΦ, (A7)

where we assume that the data xn, are distributed according to a
multivariate Gaussian distribution with mean vector μk and covariance
matrix Σk. Each mean μk is independently drawn from a multivariate
Gaussian distribution, μk ∼ N(ω, σ2r I), where σ2r I is an isotropic
covariance matrix, meaning that σ2r I is not oriented toward any
particular direction in the space. For the covariance matrix, the details
are given in the main text. Comparing Equation A7 to Equation A6,
we can see how the RMC likelihood has changed to accommodate
a multivariate Gaussian distribution, the use of multivariate priors on
the mean and covariance of each cluster, the addition of higher level
priors for the priors on the covariance, and the breaking of the
dependence between the mean and covariance of clusters.

In this initial formulation, we can think of the parameter Φ as
providing a learned prior bias toward how clusters are oriented in the
space of stimuli. The prior on Φ is set to be isotropic, meaning that
the model begins with no particular orientation in the space.WhenΦ
is learned from the data, it will then elongate along the dimensions in
the space upon which the experienced clusters have high variance
and contract along the dimensions in the space upon which the
clusters have low variance. However, as we argue in our introduc-
tion of REFRESH above, in order to explain the dimensional biases,
we need a more flexible formulation of the hierarchical prior. We do
this in the same way that we provide flexibility to the clusters within
a category: We turn this prior into an infinite mixture of different
components. More formally, assuming that we know that cluster k is
associated with mixture component j, we replace Equation A7 with

Pðxn j zn = k, uk = j, zn−1, uk−1, xn−1Þ

=
ð
μk

ð
Σk

ð
Φj

ð
vj

Pðxn j μk,ΣkÞPðμk j zn−1, xn−1ÞPðΣk jΦj, zn−1, xn−1Þ

× PðΦj, vj j zn−1, uk−1, xn−1ÞdukdΣkdΦjdvj; (A8)

where Φj is the covariance matrix parameter and vj is the degrees of
freedom of the jth component IW distribution in the mixture.
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The value uk = j is the assignment of cluster k to mixture component
j, which gives Σk an IW prior distribution with matrix parameter Φj

and degrees of freedom vj. As with our first formulation of the
hierarchical prior, we use another IW prior, but with an identity
matrix for the mean parameter, for P(Φj) so as not to bias the Φj

components toward a particular set of dimensions. This isotropic
prior on P(Φj) was given degrees of freedom vt and scale matrix v2t I
so that the modal cluster covariance matrix was close to I. The prior
on vj was a truncated normal distribution that was truncated from
below at the number of dimensions of the stimuli D because an IW
distribution requires vj > D− 1. Themean and standard deviation of
the prior were both set equal to vt so as to bias the value learned from
the data toward vt.
The CRP prior on the assignments z is given in Equation 2, while

the hierarchical CRP prior on the assignments u is a two-stage
elaboration of this process. In the first stage, components were chosen
proportional to the number of clusters in the current context that were
assigned to each component. If a “new” component was chosen to
introduce into the current context, then in the second stage a compo-
nent was chosen proportional to global number of clusters assigned to
each component. If a new component was chosen in this second stage
as well, the cluster was assigned to a completely new component,

Pðuk = j j u−kÞ

=

8><
>:

Cj

nc − 1+ αc
+ αcGj

ðnc − 1+ αcÞðng − 1+ αgÞ if Gj > 0 ði:e:, j is oldÞ
αcαg

ðnc − 1+ αcÞðng − 1+ αgÞ if Gj = 0 ði:e:, j is newÞ,
(A9)

where u−k is all component assignments u except for the kth, nc is the
number of clusters in the current context, Cj is the count of clusters
associated with component j in the current context, ng is the count of all
clusters across contexts, Gj is the count of clusters across all contexts
that are assigned to component j, αc is the dispersion parameter for
the current context, and αg is the global dispersion parameter.
Figure A1 shows a plate diagram of REFRESH. The variables β,

βc, and πm are distributed as GEM(α), GEM(αg), and GEM(αc)
respectively (where GEM stands for Griffiths, Engen, and McClos-
key, Pitman (1996)), which are stick-breaking distributions that are
formulated sequentially in Equations 2 and A9. M is the number of
contexts. Table A1 shows the parameterized covariance matrices
used in the trained REFRESH approximation.

Approximating REFRESH

To simulate REFRESH results, we used four different approx-
imations, choosing the approximation appropriate for each task we
simulated: Exact calculation of partition probabilities from the
approximate trained model, particle filter simulations of incremen-
tal category learning, a Gibbs sampler approximation of component
learning, and finally Gibbs sampling followed by particle filtering.

Exact Partition Probabilities From the Approximate
Trained REFRESH

The first kind of approximation assumed that Φj was fixed for
each component as the result of training on real-world categories,
then the probability of partitioning the stimuli into different catego-
ries was calculated exactly. This approximation was used only for

the simulation for the Smith (1989) experiment as it contained only
six stimuli, so it was tractable to calculate the probabilities of the 203
possible partitions of the stimuli.

Particle Filter Simulations of Incremental Category
Learning Using the Approximate Trained REFRESH

Most of the simulations using the trained version of REFRESH
called for the model to produce the probability of category labels
incrementally as a sequence of stimuli were presented to the model.
For these simulations with the trained REFRESH, we used a particle
filter algorithm with 100 particles. Each particle in the particle filter
contained a complete and fixed assignment of the already-observed
stimuli to clusters, and an assignment of all of these clusters to
components. When a new stimulus was observed, the probability of
its category label was calculated for each particle and the label
probability was averaged over the particles. When category feed-
back was given, the representation was updated by calculating for
each particle the probability of this new stimulus’ assignment to
each cluster within the same category (including a new cluster, using
a component assignment sampled from the prior probabilities over
components). In effect these probabilities were then pooled across
particles, and a new set of 100 particles was sampled with replace-
ment from this pool. Each particle filter simulation was repeated 10
times and the outputs were averaged to produce REFRESH simula-
tion results, which we found to be stable.

Gibbs Sampling of Component Learning in
the Full REFRESH

Finally, Gibbs sampling was used for simulations using the full
REFRESH that investigated how the components were learned and
updated. We sampled the parameters iteratively given both the
training data and the sampled values of the other sets of parameters.

Figure A1
Plate Diagram Description of the Rational Exclusively Family
RESemblance Hierarchy

Note. Variables that are not circled are fixed, variables that appear in unshaded
circles are unobserved, and variables that appear in shaded circles are observed.

(Appendix continues)

EXCLUSIVELY FAMILY RESEMBLANCE 39



First, we iteratively sampled the cluster means μk and cluster
covariances Σk for each cluster k. Before any data were observed,
the prior distributions of the cluster means and covariances were
independent,

μk j uk = j∼Nðω, σ2r IÞ
Σk j uk = j∼ IWvj ðΦjÞ, (A10)

where ωwas fixed to the mean value of the stimuli. However, once a
set of nk observations X are assigned to cluster k, these variables are
no longer independent. In this case, we performed several Gibbs
sampling steps iterating between these two variables alone before
moving to the next cluster,

μk j uk = j,X ∼NðΣ′kðnkΣ−1X̄ + ðσ2r IÞ−1ωÞ,Σ′kÞ
Σk j uk = j,X ∼ IWvj+nk ðΦj + ðX − μkÞðX − μkÞT Þ, (A11)

where Σ′k = ((σ2rI)−1 + nΣ−1
k )−1 and X̄ is the mean of the observa-

tions X.
Next, the cluster membership for each observation ziwas sampled

given the cluster assignments of each other observation z−i and the
cluster means and cluster covariances. The probability of each
assignment was proportional to the prior on each cluster is given
by Equation 2, multiplied by the likelihood of an observation x
being associated with cluster k, which was given by a multivariate
normal distribution with mean μk and covariance Σk. A similar
process was used to sample component membership for each cluster.

The likelihood that a cluster was assigned to a component was
calculated using Equation A10.

Finally, the parameters associated with each component were
sampled.We sampled each component covarianceΦj and degrees of
freedom vj jointly using the Metropolis–Hastings algorithm. Begin-
ning with the current values of a component covariance Φj and
degrees of freedom vj, we iteratively proposed a new value using an
IW proposal distribution for the covariance: IWvt(vt Φj). The mean
of this proposal distribution was scaled up by the degrees of freedom
so that the proposed covariance matrix was on average of a similar
magnitude to the state covariance matrix. New values of vj were
proposed from a normal distribution, N(vj, v2t ), centered on the
current value. The posterior probability of each pair Φj and vj was
proportional to the product of the priors, p(Φj) = IWvt(I) and
p(vj) = TN(vt, v2t ), multiplied by the product of the likelihood given
in Equation A10. In each step of the Metropolis–Hastings algo-
rithm, the acceptance probability was given by the usual Metropolis
rule, which corrected for asymmetries in the proposal distributions.

Gibbs Sampling Then Particle Filtering

For one simulation (see Table A2), in order to observe the effect
of categorization training on later category learning performance,
we first used Gibbs sampling to produce samples of the components
from the full version of REFRESH as a result of training. Then for
each sample, we extracted a set of fixed covariance matrices, one
covariance matrix for each component in that sample, with each
covariance matrix being the mode of the IW distribution associated
with that component. For each sampled set of fixed covariance
matrices, we then ran the particle filter approximation to show the

(Appendix continues)

Table A1
Covariance Matrices Used in the Trained REFRESH Approximation

Dimensions Type Covariance matrices

Two Isotropic Ψww =

0
@
�

1
c1

�
2

0

0
�

1
c2

�
2

1
A

Singly narrow Ψnw =

0
@
�
0.1
c1

�
2

0

0
�

1
c2

�
2

1
A, Ψwn =

0
@
�

1
c1

�
2

0

0
�
0.1
c2

�
2

1
A

Three Isotropic

Ψwww =

0
BBBB@

�
1
c1

�
2

0 0

0
�

1
c2

�
2

0

0 0
�

1
c3

�
2

1
CCCCA

Singly narrow Ψnww =

0
BBBBB@

�
0.1
c1

�
2

0 0

0
�

1
c2

�
2

0

0 0
�

1
c3

�
2

1
CCCCCA, Ψwnw =

0
BBBB@

�
1
c1

�
2

0 0

0
�
0.1
c2

�
2

0

0 0
�

1
c3

�
2

1
CCCCA, Ψwwn =

0
BBBB@

�
1
c1

�
2

0 0

0
�

1
c2

�
2

0

0 0
�
0.1
c3

�
2

1
CCCCA

Doubly narrow Ψwnn =

0
BBBB@

�
1
c1

�
2

0 0

0
�
0.3
c2

�
2

0

0 0
�
0.3
c3

�
2

1
CCCCA, Ψnwn =

0
BBBB@

�
0.3
c1

�
2

0 0

0
�

1
c2

�
2

0

0 0
�
0.3
c3

�
2

1
CCCCA, Ψnnw =

0
BBBB@

�
0.3
c1

�
2

0 0

0
�
0.3
c2

�
2

0

0 0
�

1
c3

�
2

1
CCCCA

Note. REFRESH = Rational Exclusively Family RESemblance Hierarchy.
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effect of the trained components on later category learning
performance, and averaged performance over samples. While it
was necessary to do this for computational tractability, this is a
very approximate procedure as it removed the full version of
REFRESH’s uncertainty about the components in the later cate-
gory learning. Averaging over the predictions from each sample
may not produce the same results as using the full set of samples to
make each prediction.

Discussion of REFRESH Parameter Values

We present a summary of the parameters used in each simulation
of REFRESH in Table A2. We were not able to conduct a formal
sensitivity analysis of how the results REFRESH produces change
depending on different parameter values, due both to the computa-
tional complexity of the model and to the number of results that
would have to be produced. However, here we informally discuss
our observations as to how the simulation results change in response
to changes in the parameters.
As Table A2 shows, cd was the least consistent parameter across

simulations. This parameter scales the standard deviations of the
covariance matrices assumed in the particle filter approximation.
Large values of this parameter can be thought of as shrinking the
psychological space while small values stretch it, and this stretching
or shrinking influences how likely it is that REFRESH produces
large or small clusters of stimuli. Tuning this parameter was
necessary to produce performance of the same level as human
participants. Ideally this parameter would be held constant and
only the values of the stimuli along each dimension would vary,
but stimulus values often vary substantially across experiments, so
we view this parameter as compensating for that variability. An
exception to this general rule is the biconditional discrimination

experiment of Soto et al. (2015) which controlled stimuli values
across integral and separable dimensions, and for this simulation we
held cd constant across integral and separable dimensions.

While the covariances chosen for the particle filter approximation
differ from simulation to simulation, these were chosen for princi-
pled reasons as discussed in the main text in the description of each
simulation.

The parameters αg, vt, and σ2r varied according to the approxima-
tion used. The particle filter approximation used a fixed number of
covariance components, requiring αg = 0, and the Gibbs sampler
approximation inferred the number of covariance components,
requiring αg > 0. Larger values of αg would make it more likely
for the model to infer more (perhaps redundant) components. vt
determines how “strong” the isotropic prior is, with larger values
likely requiring REFRESH to receive more training before produc-
ing separable dimension iso-similarity curves. σ2r determines how
much the mean of each cluster is pulled toward a fixed central value.
σ2r = 1 was used with the Gibbs sampler approximations to allow
components to be formed in response to stimuli across the entire
stimulus space, while σ2r = 0.1 was used with the particle filter
approximation in order to slow the REFRESH’s rate of learning new
categories. One hundred particles were used to approximate
REFRESH as a computational-level model, but a more psychologi-
cally plausible number of particles (see Rational Process Models
section) should slow learning to human levels, and we anticipate that
a consistent value of σ2r could then be used.

α and αc were almost always consistent across simulations.
Smaller values of α would result in smaller numbers of clusters
being inferred, and this relatively high value was important for
ensuring that the Gibbs sampler approximation did not learn one
cluster for all training stimuli and thus one component overall.
Larger values of αc would allow a better chance of multiple

Table A2
Summary of REFRESH Parameter Values

Effect produced Figure ref. α αc αg vt σ2r Approximation Covariances cd

Learning from image statistics Figure 10 10 0.001 1 30 1 Gibbs N/A N/A
Triangle inequality violations Figure 11 10 0.001 1 30 1 Gibbs N/A N/A
Condensation vs. filtration Figure 12C 10 0.001 0 N/A 0.1 Particle filter Ψnw, Ψwn c1 = c2 = 0.5
Condensation vs. filtration Figure 12D 10 0.001 0 N/A 0.1 Particle filter Ψnw, Ψwn c1 = 0.5, c2 = 1
Condensation vs. filtration Figure 12E 10 0.001 0 N/A 0.1 Particle filter Ψww c1 = c2 = 2
SHJ Type II advantage Figure 13D 10 0.001 0 N/A 0.1 Particle filter Ψnww –Ψnnw c1 = c2 = c3 = 2.1
SHJ Type II advantage Figure 13E 10 0.001 0 N/A 0.1 Particle filter Ψwww c1 = c2 = c3 = 2.5
SHJ Type II advantage Figure 13F 10 0.001 0 N/A 0.1 Particle filter Ψnww –Ψwwn c1 = c2 = c3 = 2.5
Biconditional discrimination Figure 16C 10 0.001 0 N/A 0.1 Particle filter Ψwwn, Ψnnw c1 = c2 = c3 = 1.3
SHJ Type II dependencies Figure 17C 10 0.001 0 N/A 0.1 Particle filter Ψnww –Ψnnw c1 = 0.7, c2 = c3 = 2.3
SHJ Type II dependencies Figure 17D 10 0.001 0 N/A 0.1 Particle filter Ψnww –Ψnnw c2 = 0.7, c1 = c3 = 2.3
Dimensional development Figure 18B 1 0.001 0 N/A 100 Exact partition Ψa

nw, Ψa
wn c1 = c2 = 2.3

SHJ development (adults) Figure 19B 10 0.001 0 N/A 0.1 Particle filter Ψnww –Ψnnw c1 = c2 = c3 = 1.5
SHJ development (children) Figure 19B 10 0.001 0 N/A 0.1 Particle filter Ψa

nww − Ψa
wwn c1 = c2 = c3 = 1.5

Training and discrimination Figure 20C 10 0.001 1 30 1 Gibbs N/A N/A
Training and Garner interference Figure 21C 10 0.001 1/0b 30c 1 Gibbs then particle filter N/A N/A
Training and Garner (integral) Figure 21D 10 0.001 0 N/A 0.1 Particle filter Ψwww c1 = c2 = c3 = 0.3
Training and Garner (separable) Figure 21D 10 0.001 0 N/A 0.1 Particle filter Ψnww, Ψwwn c1 = c2 = c3 = 0.3

Note. REFRESH = Rational Exclusively Family RESemblance Hierarchy; N/A = not applicable. Ψnww –Ψnnw refers to the collection Ψnww, Ψwnw, Ψwwn,
Ψnnw, Ψnwn and Ψwnn, while Ψnww –Ψwwn refers to the collection Ψnww, Ψwnw, and Ψwwn.
a The standard deviations equal to 0.1 in these covariance matrices used for adults were replaced with 0.4 for 8-year olds, 0.5 for 5-year olds, 0.6 for 4-year olds,
and 0.8 for 3-year olds. b αg = 1 for the Gibbs sampling stage and αg = 0 for the particle filtering stage. c These values were used for the Gibbs sampling
stage and were N/A for the particle filtering stage.
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components being used in the same context, and we show in the
main text (see Figure 14B) that this would prevent REFRESH from
learning SHJ Type II categories faster than Type III categories.
Unique parameter values for α and σ2r were used in the simulation

of the Smith (1989) experiment. While in all of the other simulations
the trained model was predicting binary responses, in this simulation
it was predicting which of 203 possible responses REFRESH would
make, 198 of which would be marked as the uninteresting “other.”

The standard values of α and σ2r caused almost all predictions to be
“other,” so we used these unique settings to better understand the
developmental trajectory of the REFRESH’s predictions.
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