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ABSTRACT

Different modelling approaches are used to address the same decision problem but can lead to different
estimates of life years gained and quality-adjusted life years. Three common methods are used in health
economics: the partitioned (PSM), the state-transition (STM) and more recently the multi-state model
(MSM). Novel methods were also identified to jointly model progression and survival using a copula
to jointly model survival outcomes and MSMs with transitions estimated simultaneously. Differences
in model predictions may have the propensity to change the conclusions of an economic analysis and
the decisions made on the basis of such analyses.

A simulation study was conducted to identify whether one approach is consistently superior to others
under particular circumstances, or in general. The simulation study suggests that no single method is
satisfactory in all circumstances and that approaches cannot be selected based on observed data
characteristics alone. Case studies using real trial data also indicated that different assumptions could
be made when modelling treatment effects, that PSMs and STMs may be inaccurate to varying degrees

when estimating incremental outcomes and that neither is bias-free.

This thesis demonstrated that it is not possible to determine with certainty a priori which approach to
select, based only on the observed characteristics of the available data; thus, analysts and decision-
makers need be careful when relying on predictions from a single approach. Recommendations are
formulated to improve the transparency of health economic analyses and increase decision-makers’
confidence in the use of those models. Because it is unknown whether ICERS generated using a single
analytic approach are adequate, in some cases, decision-making should consider ICERs from a range
of alternative approaches to account for structural uncertainty. This thesis also highlights the importance

of clinical input in selecting the most appropriate approach for the extrapolation of survival data.
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1 CHAPTER 1I: IMPORTANCE OF CONSISTENT DECISION-
MAKING

The aim of this thesis is to guide the choice of modelling approach for estimating health state sojourn
time for anticancer therapies conditional on the nature of data available and to guide decision-making
based on these models. In particular, this study addresses the following question — “Is it possible to
identify when particular analytical approaches may perform better than others, subject to the nature of

the data available? ” In this chapter, | explain the motivations underpinning the thesis.

1.1  Motivation for this thesis

In the UK, drug reimbursement decisions take into account multiple factors, including the safety,
clinical effectiveness and cost-effectiveness of the technology under assessment (whether the drug
represents good value for money for the health service).* 2

The determination of whether a particular health technology is cost-effective is informed by an
economic evaluation. Broadly speaking, economic evaluation can be defined as the comparative
analysis of two or more competing options in terms of their costs and consequences.® Economic
evaluation may take numerous forms (e.g. cost-effectiveness analysis [CEA], cost-utility analysis
[CUA], cost-benefit analysis [CBA] and cost-consequences analysis [CCA]). In England, CUA is
frequently used for the economic analysis of health care technologies. Whilst it is sometimes possible
to undertake an economic evaluation based on a single study (e.g. a randomised controlled trial [RCT]),
more typically, mathematical models are required to predict long-term outcomes and costs for all

relevant decision options.

For drugs, a decision rule based on the incremental cost-effectiveness ratio (ICER) is employed to help
inform resource allocation decision-making. The ICER represents the ratio of the incremental costs to
incremental health benefits for the new technology versus current practice and provides a basis for
decision-makers to consider the balance of the additional value of a health technology against the
opportunity costs associated with curtailing existing treatments and services to fund the new technology.
In England, the National Institute for Health and Care Excellence (NICE) uses quality-adjusted life
years (QALYS) gained as the common measure for health benefits; this is a measure of both the quantity
and quality of life experienced by patients. In principle, this allows consistent reimbursement
recommendations to be made across all disease areas, thereby promoting the efficient allocation of
healthcare resources. For the majority of drug technologies, NICE typically adopts a decision-making
threshold range of £20,000 to £30,000 per QALY gained, although technologies with higher ICERs
may be recommended under particular circumstances, for example, where the intervention satisfies
NICE's End of Life criteria or where it meets the criteria for being considered as a Highly Specialised
Technology (HST).24
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In order to allow a ‘fair’ comparison between treatments, it is essential that economic evaluations adopt
a robust and consistent approach. When seeking market access/reimbursement in the UK,
pharmaceutical companies and sponsors are required to submit an economic evaluation within the NICE
Single Technology Appraisal (STA) process. To achieve some degree of standardisation, NICE has
published a methods guide to support its Technology Appraisal (TA) process.? However, this guidance
is not a technical document and covers only NICE’s broad principles for undertaking Health

Technology Assessment (HTA).

Owing to ongoing and rapid drug development, often with the same product having multiple licensed
indications, oncology represents an area in which a large number of technologies require appraisal
before they can be routinely commissioned within the NHS. Overall survival (OS) is a key endpoint in
oncology in the advanced/metastatic setting, defined in a trial setting as the time from randomisation
(or study entry for non-randomised studies) to death from any cause. OS is an objective endpoint and
is generally straightforward to measure and record. However, long follow-up durations are typically
required in order for a new technology to demonstrate a survival advantage; such evidence is frequently
lacking. Progression-free survival (PFS), which is usually defined as the time from randomisation to
progression or death (whichever occurs first) has therefore been suggested as a potential surrogate for
OS in advanced cancer; this usually requires much shorter follow-up than OS. In addition, the United
States Food and Drug Administration (FDA)® and the European Medicines Agency (EMA),°® recently
accepted that prolonged PFS and disease-free survival (DFS) could be considered relevant measures of
clinical benefit, and therefore could be used as primary outcome, provided that the magnitude of the
treatment effect outweighs safety concerns. In this case, OS should be reported as a secondary outcome.
The use of PFS as a primary endpoint (or surrogate for OS) is not solely attributable to its practicality.
It should be noted that although PFS is sometimes regarded as a valid surrogate for OS, a review
conducted by the decision support unit (DSU) suggests that the level of evidence available supporting
a relationship between PFS and OS varies considerably by cancer type and is not always consistent,
even within one specific cancer type. Consequently, instances in which OS data are immature due to
not being the primary endpoint, or are contaminated by treatment switching and the use of subsequent
therapies, are becoming increasingly common.® Trials may also be terminated earlier when a significant

difference in PFS is achieved.

Health economic models of anticancer therapies in the advanced/metastatic setting typically share the
same structure, articulated around three health states; (i) progression-free (PF); (ii) progressed disease
(PD), and; (iii) death.® Notwithstanding other health effects which might be included in the model (e.g.
health losses due to adverse events), the time spent in each of the alive health states (sojourn time) is
usually weighted according to the average level of health-related quality of life (HRQoL) associated

with each state to estimate overall QALY's gains.
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Recent methodological research around modelling for anticancer therapies has largely focused on
survival extrapolation, adjusting OS to account for treatment switching and whole disease modelling.®-
15 Whilst this represents an important step, there remain research gaps with respect to selecting the
appropriate analytic approach to estimate health state sojourn time, and by extension, to estimate
QALYs.

A number of approaches, described in Chapter 2, are available and are commonly used in health
economics when estimating the health states sojourn time for anticancer treatments; these include the
general partitioned survival approach and the general state-transition approach (further detail is
available in Chapter 2). It should be noted that for each method, variations exist and a number of other
choices need to be made. These general approaches require different data inputs and involve the use of

different assumptions.

Each approach is subject to inherent limitations and their appropriateness is likely to vary subject to the
amount and nature of data available, as well as other factors related to the decision problem such as
whether there is a need to deviate from the trial (inclusion of a stopping rule for instance), or whether

the downstream treatment pathway should be explicitly modelled.

Whilst taxonomies have been developed to help analysts determine the most appropriate modelling
technique (e.g. Brennan et al*®, Barton et al'’), these are generally broad and do not focus on issues
which are specific to the modelling of anticancer therapies. In particular, the PSM approach is now
widely used in oncology but does not fit neatly onto these taxonomies that assume that IPD are available
and transitions can be estimated. These taxonomies should be updated to reflect modelling approaches

which estimate health state occupancy directly without modelling the underlying disease process.

At present, the choice of analytical approach to estimate the health state sojourn time for anticancer
therapies in the advanced/metastatic setting is largely based on what the modeller considers to be
appropriate for the decision problem at hand and/or references to models developed to inform previous
appraisals in the given disease area.® The availability for individual patient level data also drives the
choice of approach. There is no explicit framework to help the modeller decide whether one particular
approach may be more appropriate in particular cases, for instance when data are less mature or when
the available data indicate some degree of dependence between outcomes (e.g. if longer time of
progression appears to be associated with longer time to death). The choice of model can influence the

conclusion of an analysis.

As a consequence, despite the use of the generally accepted model structure for anticancer therapies,
different modelling approaches are used inconsistently to estimate health state sojourn times and

resulting QALY gains within NICE appraisals of cancer technologies. In addition to factors related to
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the decision problem (inclusion of a stopping rule, modelling the pathway...) that influence the preferred
method, other factors could inform the choice of analytic approach. A recent review conducted by
Woods et al (2017)° 18 found that the choice of analytic approach was rarely justified with respect to
the data, but was instead commonly justified through reference to previous appraisals as precedent. The
review also highlighted some general inconsistencies in analysts’ understanding of the approaches.

The identification of new approaches and the formal exploration of when one particular approach may

fare better than others is therefore valuable and may lead to more consistent decisions.

1.2 Examples of health technology appraisals where the choice of approaches had a

considerable impact on decision-making.

In this section, | describe briefly three examples of NICE appraisals in which the company’s choice of
analytic approach was contested by the Assessment Group (AG)/Evidence Review Group (ERG). The
key approaches employed and described in this section are the partitioned survival model (PSM) and
the state-transition model (STM). These are described in more detail in Chapter 2. The stated rationale
provided by the AG/ERG for preferring an alternative approach is described. The validity of some of

these arguments are discussed in Chapter 2.

e Example 1: NICE TA257 - Assessment of the cost effectiveness of lapatinib or
trastuzumab in combination with an aromatase inhibitor for the first-line treatment of

metastatic hormone receptor positive breast cancer (BC) that over-expresses HER2

In NICE TA257 in BC,* the two pharmaceutical companies each submitted an economic evaluation
(using a PSM structure), which used OS as the primary source of survival information and extrapolated
OS from the trials using standard parametric curves from the Generalised F family of survival functions.
The AG involved in this appraisal used an alternative modelling approach (the STM), calculating the
expected OS from the time in the PF and PD states, resulting in a large variation in projected OS,
compared with the projection from the two companies. The Kaplan-Meier (KMs) plots for PFS and OS
and the numbers of PFS and OS events were not reported in the documentation for this appraisal as they
were marked as confidential. The AG argued that their decision to model OS by combining PFS and
PPS using a STM structure was justified because (i) OS is a result of the combination of patient
experience in two distinct phases (the risk of death is lower in patients who have not progressed and
greater in patients who have progressed) and therefore it was believed by the AG that standard

parametric statistical models cannot accurately represent an outcome measure such as OS; (ii)
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modelling OS over a long time horizon can result in large cumulative errors; (iii) post-progression
survival (PPS) is more stable and there is greater confidence when extrapolating over a long time
horizon, with narrower confidence intervals, and (iv) modelling PFS and OS independently could lead
to some anomalies with negative estimates of PPS when both outcomes are projected independently
from each other. It should be noted that these arguments reflect the view of the AG involved in this

appraisal, some of which | consider to be debatable.

Although the differences in ICERs generated by the companies and the AG are not entirely attributable
to the alternative modelling approaches adopted (PSM vs. STM), the AG’s estimate of the ICER was
approximately three times as high as that reported by the companies. Estimates of life years gained
(LYGs) and QALYs gained are shown in Table 1. When looking at the LY's (discounted), one company
estimated the life years to be 3.40 years for lapatinib+letrozole (LAP+LET) and 2.82 years for LET
alone, leading to an incremental survival gain of 0.58 years. The AG, using an alternative structure
estimated the LY (discounted) to be 2.69 and 2.55 respectively, leading to an incremental LY's of 0.14;
this is approximately one quarter the size of the gain estimated by the company. In contrast, the same
company estimated the LY to be 3.05 years for trastuzumab+anastrozole (TRA+ANA) and 2.66 years
for ANA, leading to an incremental LY of 0.39; compared with 2.70 and 2.22 estimated by the AG,
leading to an incremental LY of 0.48. The incremental LY estimated by the AG was therefore higher
compared with those estimated by one of the company (competitor). The estimate for QALY's were also
very different between the companies and the AG approach.

Table 1 : Comparison of LYs and QALY s estimated by the companies and AG in TA257

TRA+ANA LAP+LET ANA LET

LYGs
Company A (PSM) 3.05 3.40 2.66 2.82
Company B (PSM) NR NR NR NR
AG (STM) 2.70 2.69 2.22 2.55
QALYs

Company A (PSM) 2.14 2.39 1.79 1.92
Company B (PSM) 1.87 171 1.29 1.29
AG (STM) 1.69 157 1.24 1.46

Abbreviations: ANA: anastrozole; LAP: lapatinib; LET: letrozole; NR: not reported; TRA: trastuzumab
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e Example 2: NICE TA472 - Assessment of the cost-effectiveness of obinutuzumab with

bendamustine for treating follicular lymphoma (FL) refractory to rituximab

A more recent example is TA472 in FL.2° The company submitted what is usually referred to as a
cohort-based semi-Markov model (a type of state transition model in which event rates are conditional
on the time at which patients enter an intermediate model state, such as PD). In this type of model, OS
is not taken directly from the trial but is instead estimated as a function of sojourn time in the PF and
PD states. The company justified this approach on the basis of the immaturity of OS in the trial and the
indolent nature of the condition. The probability of dying after progression was taken from the pooled

PPS data across both trial arms.

Despite the data for OS being more immature for the intervention arm, the ERG considered that directly
modelling OS was more appropriate for the following reasons: (i) the evidence used to inform the PPS
could equally be considered immature and subject to uncertainty (as the same number of events are
observed - only the denominator changes); (ii) evidence to inform PFS for the intervention was also
immature (and therefore basing predictions on two immature endpoints for the intervention could
introduce inaccuracy), and (iii) discrepancies between the model’s predictions and the observed data

for OS (especially the for the control arm) in the company’s model.

Consequently, the ERG explored the use of a PSM whereby models were fitted directly to the trial OS
data, with some assumptions on when the hazard of death would be the same between treatment arms.
ICERs were not reported and were marked as confidential. LYGs and QALY reported by both the
company and ERG are shown in Table 2. Whilst estimated survival was similar for the intervention arm
between the ERG and the company (5.80 vs 5.73 LYGs), differences were much larger for the control
arm (4.27 vs. 5.30 LYGs). The ERG further noted that when plotting the predicted vs. observed OS, the
approach taken by the ERG led to similar predictions to the company for the intervention arm, and both
approaches provided a reasonable fit to the observed data. In contrast, for the comparator arm, the ERG
commented that the company’s approach provided a poor fit to the observed OS, but that the ERG
approach (PSM structure) provided a much better fit to the observed data, with the differences in
survival between the comparator and intervention arms being much less pronounced. It should be noted
that the comment from the ERG is unsurprising given that OS in the PSM is fitted directly to the trial

data, and therefore a good visual fit to the observed data is generally expected.

In TA472, most of the differences were attributable to the choice of analytical approach rather than the

approach to parametric extrapolation
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Table 2 : LYs and QALYSs reported by the company and the ERG in TA472

O-benda benda Incremental
LYGs
Company A (STM) 5.80 427 154
AG (PSM) 5.74 530 0.44
QALYs
Company A (STM) 4.23 292 132
AG (PSM) 4.09 3.48 0.62

Abbreviations:; benda: bendamustine; O: obinutuzumab

e Example 3: NICE TA381 - Assessment of the cost-effectiveness of olaparib for the
maintenance treatment of relapsed, platinum-sensitive, BRCA mutation-positive ovarian,
fallopian tube and peritoneal cancer after response to second-line or subsequent
platinum-based chemotherapy

A third example of different analytic approaches used between the company and the ERG is evident in
TA381 (olaparib for patients with ovarian cancer?t). The company used a semi-Markov model whereby
patients move through a series of states, with OS modelled as a function of the time spent in these health
states. The ERG had a number of concerns and argued that a PSM was more appropriate because of
challenges in modelling the pathway, the presence of treatment switching in the trial and discrepancies
between observed and model-predicted OS. The company estimated QALYs to be 2.58 for the
intervention and 1.69 for the comparator arm, leading to an incremental gain of 0.90 QALYs. The
ERG’s most optimistic analysis, across any combination of parametric survival models, suggested an
incremental gain of 0.52 QALYs. The ERG’s analysis suggested that the ICER for olaparib was

considerably higher than the company’s estimate.

These three examples highlight that alternative models can be used to address the same decision
problem, but that each of these analytic approaches are associated with limitations. These different
approaches can lead to very different estimate in terms of LYGs and QALYSs. It is unknown whether
one approach is consistently better than the other approach under particular circumstances, if not under
none or all cases, and therefore the choice is often the responsibility of the analyst. As simply shown in
the three examples, the differences between the approaches have the propensity to change the

conclusions of an economic analysis and the decisions made on the basis of such analyses.

In TA381, most of the differences were attributable to the choice of analytical approach rather than the

approach to parametric extrapolation.
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1.3 Research guestions

The aim of this thesis is to guide the choice of analytic approach to estimate health state sojourn time
for modelling anticancer therapies conditional on the nature of data available and to guide decision-
making based on these models. In particular, this study addresses the following question —“Is it possible
to identify when particular analytical approaches may perform better than others subject to the nature

of the data available (e.g. under different levels of censoring, dependence and follow-up)?”
In order to address this question, the following sub-questions will be explored:

(i) How is health state sojourn time currently estimated in health economic models of
anticancer therapies?

(ii) Are the simplifications made in health economic models of anticancer therapies
appropriate?

(iii) How could the dependence structure between progression and survival outcomes be
included when estimating the health state sojourn time?

(iv) How do the identified approaches perform in terms of prediction subject to the nature
of the data available e.g. under different levels of censoring, dependence between the
time to progression and death following progression and follow-up?

(v) Is it appropriate to rely on predictions obtained from a single analytical approach to

estimate health state sojourn time?

These research questions were developed by me and refined by his supervisory team following use of
the different analytical approaches, both as part of his previous role as an ERG for SCHARR-TAG and

work conducted with pharmaceutical companies

The focus in this thesis is when a model is developed based on data from a RCT only, without explicit
use of external evidence to replace outcomes from the trial, i.e. transitions are estimated within the trial
(and not taken from external sources). It should however be noted that external evidence could be used
to inform the long-term plausibility of predictions. However, this is not the focus in this thesis. In
addition, the focus in this thesis is when individual-patient level data (IPD) are available and when
cohort models are appropriate (e.g. interaction between individuals does not need to be modelled), and
therefore both the PSM and STM could be used. In some cases, the choice of approach could be driven

due to IPD not being available, or the decision problem at hand.
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1.4  Thesis structure

This thesis is structured in five parts and is comprised of ten chapters. The links between chapters and
how the different chapters influence each other is shown in Figure 1. Chapter 1 is the introduction to
the thesis.

Part I is composed of two chapters. The first chapter (Chapter 2) describes the current approaches used
to estimate health state sojourn time in economic models of anticancer therapies, namely the PSM and
the STM approaches. In this chapter, | describe the key strengths and limitations of the approaches,
and highlight whether they have been systematically compared. Chapter 3 provides a theoretical
background on key concepts in survival analysis. In this chapter, | briefly describe the general concept
of survival analysis, censoring, the survivor, hazard and cumulative hazard functions, the Kaplan-Meier
and Nelson-Aalen estimates, the Cox regression model and the concept of competing risks. These
concepts will be briefly explained through reference to a dataset in breast cancer. These two chapters
set the scene and provide the general background to the key terms and concepts used throughout the

thesis.

Part 1l of the thesis is also comprised of two chapters. In Chapter 4, | provide further detail on the
estimation of health state sojourn time using multi-state models (MSMs) — a type of state transition
model which combines transitions under a competing risk framework. This chapter focusses on the
implementation of the MSM using two packages available in R, the msm package and the mstate
package. | describe the key differences between the approaches and how transitions are combined under
a competing risk framework. In Chapter 5, I highlight the simplifications made in health economic (HE)
models of anticancer therapies to estimate health state sojourn time using the STM approach and
demonstrate how this compares with the MSM approach. | then discuss the key assumptions and
implications for the simplifications typically made in health economics when modelling competing

transitions between health states. The findings from Chapters 4 and 5 impact on all subsequent chapters.

Part 111 concerns the joint modelling of progression and survival outcomes and consists of: (a) a
systematic review of methods, conducted across a range of disciplines, to explore the available methods
used to jointly model progression and survival outcomes when estimating the health state sojourn time
(Chapter 6), and (b) a discussion of limitations associated with the use of PPS when developing a model

based on information collected in an RCT only (Chapter 7).

Chapters 6 and 7 influence all of the subsequent chapters. In particular, the review (Chapter 6) identifies
the potential approaches that could be used or combined with existing approaches which are currently
used in health economics to jointly model PFS and OS. Challenges associated with searching the

methodological literature are addressed through the use of iterative searching.
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Figure 1 : Schematic representation of the thesis structure
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Chapter 7 describes some of the limitations associated with the use of PPS when developing a model
based on information collected in an RCT only. In this chapter, | use real datasets to illustrate the
potential biases associated with the use of PPS data estimated only in a subset of patients who have
progressed. | then discuss the merits and limitations of an approach that has been considered to adjust
PPS (i.e. making the time to death following progression conditional on the time to progression) and

show in real datasets whether this approach consistently improve predictions.

In Part 1V, alongside common approaches used in health economics (Chapter 2-5), the range of
methodologies identified in Chapter 6 is applied to a series of simulated datasets (Chapter 8) and real
datasets in Chapter 9. In Chapter 8 (simulation study), hypothetical trial data are generated covering a
wide range of possible scenarios relating to different data characteristics. Methods described in Chapter
2-6 are then applied to test their appropriateness and performance subject to the nature of the data
available (dependence between the time to progression and time to death following progression, level
of censoring and duration of follow-up). Only those methods for jointly modelling PFS and OS
identified from the review in Chapter 6 which could be adopted easily in health economics (i.e. had
already been programmed in a suitable package) were considered in the simulation study. In Chapter 8,
selected methods are applied to simulated single trial arms only to examine their performance in
estimating health state sojourn time and QALYSs. This single trial arms approach was adopted in order
to avoid the potential for spurious conclusions arising from apparently appropriate incremental
outcomes despite the presence of a poor model fit in both treatment groups. Furthermore, when
estimating life years and QALYSs in the intervention group, different modelling assumptions could be
made (using hazard ratio, pooling data...) as less information is available about the treatment effect,

increasing challenges when interpreting results.

Because a single trial arms approach is used in Chapter 8, for completeness, in Chapter 9, an exploratory
analysis is conducted whereby selected methods (the PSM and STM) are applied to two trial arms to
examine their performance in estimating the incremental LYGs and QALYs between competing
options, to support and confirm findings from Chapter 8. In Chapter 9, methods are applied to a series

of case-studies involving real data from trials in gastric cancer.

Part VV (Chapter 10) presents the conclusions of the thesis, with key recommendations and a summary

of findings, a description of the limitations, strengths, and areas for further research.
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PART I: WHAT IS THE PROBLEM?

2 CHAPTER II: APPROACHES CURRENTLY USED IN HEALTH
ECONOMICS TO ESTIMATE HEALTH STATE SOJOURN TIME

2.1 Chapter overview

This chapter highlights the key differences between the partitioned survival model (PSM) and state-
transition model (STM) approaches, as well as the strengths and limitations that are often perceived
with these approaches. The PSM and STM are described in Section 2.3 and 2.4, respectively. In Section
2.5, | discuss whether these approaches have been compared systematically.

2.2 Introduction

Two broad analytic approaches are currently used in health economics (HE) to estimate health state
sojourn time and QALY's when modelling anticancer treatments;

e The partitioned survival approach whereby the OS and PFS curves are used as the primary

sources of time-to-event information, with the sojourn time in the PD state derived as the
difference between the cumulative survivor functions for OS and PFS, and;

e The state-transition approach, whereby OS is estimated indirectly as a function of the time to

progression (TTP), the time to pre-progression death (PrePS) and the time to death following
progression (also referred as PPS). The term state-transition is used here to describe the general
process by which patients move through a series of mutually exclusive and jointly exhaustive
model health states. Different terminologies are commonly used in the literature to describe the
general state-transition process, including: compartmental model; illness-death model, and
progressive three state model. There are two key variations of the state-transition approach
which will be the focus in this thesis:

o The multi-state model (MSM) whereby the competing transitions (transitions from

PF to PD or death) are explicitly modelled and combined under a competing risk
framework. Therefore, the term MSM is used throughout this document to refer to the
STM whereby transitions are combined under a competing risk framework,

o The STM whereby simplifications are made with respect to the competing

transitions (referred hereafter as the Simplified STM). In this variation of the STM,

which is the most commonly used in health economic analysis (as demonstrated in
Chapter 4.5), PFS, the cumulative incidence of the competing events (progression and
pre-progression death) is used directly to represent the combined transitions to
progression or death from the progression-free health state, with additional assumption

made to separate the events.
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It should be noted that whilst the focus of this thesis is around the commonly used three state
advanced/metastatic cancer structure, additional health states could be included, for example to reflect
multiple progression events associated with sequences of treatments. Issues around the choice of
analytic approach are largely similar irrespective of the number of health states included in the model.
Key characteristics, strengths and limitations of the PSM and the STM approaches in the case of the

typical three state cancer model are summarised below in Sections 2.3 and Section 2.4, respectively.

Furthermore, the focus in this thesis is when IPD is available, and therefore both the PSM and STM
could be used. In some cases, the choice between approach could be driven due to IPD not being

available, or the decision problem at hand.

2.3 The partitioned survival approach

As highlighted in a recent review conducted by Woods et al (2017), the PSM is probably the most
commonly used modelling method applied in the economic analysis of advanced/metastatic anticancer
treatments.® Under this approach, PFS and OS are modelled as two independent processes using data
on these outcomes. This approach is intuitively attractive, as it relies directly on the PFS and OS data

from the trial with no (or minimal) assumptions about any potential relationship between PFS and OS.

The PSM originates from the Quality-Adjusted Time Without Symptoms or Toxicity (Q-TWIST)
approach,® which was developed to incorporate quality of life information into survival analysis. The
typical implementation of PSMs involves partitioning overall survival time into time with/without
progression and applying utilities to each alive health state to estimate QALY's gained. Considering the
typical three-state model (PF, PD and death) used in the economic analysis of advanced/metastatic
cancer therapies, the time-to-event curves for OS and PFS are used as primary sources of time-to-event
information to estimate health state occupancy over time. Except in the rare cases in which survival
data are not subject to censoring or Kaplan-Meier functions are complete, PFS and OS are typically
extrapolated using parametric functions. In the PSM, the probability of being in the PF health state at
any time t is given by the cumulative probability of PFS; the probability of being alive at any time t is
given by the cumulative probability of OS, and; the probability of being in the PD state at time t is given
by the difference between the OS and PFS functions. Ignoring discounting, the mean sojourn time in
the PFS state is estimated by integrating the PFS survival function, whilst the mean sojourn time in PD
is estimated as the difference between the area under the curve for the PFS and OS functions (see Figure
2).
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Figure 2 : Estimation of health state occupancy in partitioned survival models
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A key characteristic of the PSM approach, compared with the STM process (described later in Section
2.4), isthat it deals with state occupancy directly rather than estimating transitions between health states.
Therefore, within the PSM, transitions are not explicitly modelled as the proportions of individuals
residing in each model health state at each time-point are estimated directly from the cumulative PFS

and OS survivor functions.

Whilst the simplicity of the PSM approach is often considered attractive, it is associated with several
limitations; these are described below. It should be noted that some of the arguments that have been
made against the PSM approach reflect different point of views, hence some of these may contradict

each other or may be debateable:

e Limitation 1: Difficulties in representing the hazard of death using a single parametric
function. It has been argued that, in some circumstances, OS cannot be represented by a single
standard parametric survivor function.!® This is because OS is a function of the patient
experience in two distinct phases in which the hazard rates would be expected to exhibit
different dynamics (i.e. in PFS the patient is likely to have reduced risk of death, after
progression, the risks are more likely to revert to higher levels of uncontrolled disease
progression). There may also be heterogeneity between groups and outcomes may also be
different between groups. The use of flexible parametric models, mixture-cure models or

response-based models may help to address this problem.
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Limitation 2: Inability to model the underlying process. Related to Limitation 1, the PSM
does not involve modelling the underlying disease process and therefore, the selection of an
appropriate survival function to extrapolate long-term outcomes may be challenging when there
is little information on the expected long-term effects of the intervention.

Limitation 3: Difficulties in extrapolating outcomes when observed data are immature.
Related to Limitation 2, producing a reliable extrapolation is difficult when trial follow-up is
limited and/or when the degree of censoring is substantial. This is particularly important given
that OS data are often immature.?? Within the PSM, extrapolation of the survivor functions is
often based on short-term trends observed in the trial. These trends are then assumed to hold
throughout the extrapolation period.® This may not be appropriate especially when
extrapolating over a long time period. It has been argued that the extrapolation of OS could
prove less reliable and uncertain compared with the extrapolation using intermediate endpoints
(such as modelling OS using PFS and PPS). However, as described in Chapter 7, this is
debateable, and there are a number of issues with the extrapolation of PPS.

Limitation 4: Problems associated with ignoring the dependence structure between PFS
and OS. The dependence structure between PFS and OS is typically not included in health
economics whereby survival models are fitted separately to the available data on PFS and OS.
However, PFS and OS events overlap with one another (PFS is a composite endpoint including
progression and death occurring prior to progression) and events are structurally dependent in
the sense that death cannot be followed by progression.® The lack of consideration of the
structural dependence between PFS and OS may in some instances lead to anomalies, whereby
the cumulative probability of PFS exceeds the cumulative probability of OS at certain time-
points. The independent modelling of PFS and OS could also lead to potentially implausible
scenarios whereby the cumulative PFS probability reaches zero quickly (short tailed) but the
OS function reaches a plateau (long tailed). Ignoring the dependence structure between the
outcomes leads to a disconnect between PFS and OS. Whilst there are methods available in
other fields to incorporate the dependence structure between joint survival endpoints (such as
modelling PFS and OS under a semi-competing risk framework), these are rarely used in health
economic models.

Limitation 5: Lack of transparency around the underlying process. Related to Limitation
2, the PSM deals with health state occupancy. Therefore, transitions are not explicitly modelled.
Therefore, it may be more difficult to understand the underlying process of progression or what
is implied about the relative treatment effects of a new therapy (compared with the STM, which

involves the explicit modelling of the underlying disease process).



2.4  The state-transition model approach

Within the STM, transitions between health states are explicitly modelled and individuals move
between these health states over time. This is different to the PSM, whereby state occupancy is modelled
directly. In the STM, OS is estimated indirectly conditional on the transition intensities (rates). The
relationship between OS and the intermediate health states is made explicit and requires quantification.

With the multi-state model, transition intensities (rates) for progression (1,,), pre-progression mortality

(443) and death following progression (A,3) are explicitly modelled as show in Figure 3.

Figure 3 : Conceptual representation of the multi-state model
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The STM and PSM as currently implemented in health economics are often conceptually represented
using Figure 3. This not correct as the competing transitions are not modelled separately in the version
of the STM as implemented in health economics. A better conceptual representation is Figure 4 as PFS
is typically used directly with progression and pre-progression death events split. Representing the PSM
using Figure 3 (as usually done) is also not appropriate as transitions are not modelled within the PSM.

A better conceptual representation is the one shown above in Figure 2.

Figure 4 : Conceptual representation of the STM as implemented in health economics.
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When transitions are constant (i.e. event rates are assumed to be exponentially distributed), STM is
often called as a (time-homogenous) Markov model. A key property of the Markov model is that it is
“memoryless”, that is, transitions from one state to another depend solely on the patient’s current state
and are independent of their previous transitions.? When the transition intensities vary with time (for
instance, piecewise exponential or other time-varying models), STM is called as time-varying (or non-
time homogeneous) Markov model. The term semi-Markov is often used when one or more transition
intensities depend on the time spent in an intermediate health state or calendar time;® hence, event risk
in an intermediate health state is conditional on when the patient entered that state. It should be noted
that the term Markov model is often used inappropriately in health economics to describe the general
state-transition process, despite most models not being true ‘Markov models’ in that transition

intensities are not constant.®

The STM approach is attractive as it can provide greater flexibility compared with the PSM. In
particular, the STM approach allows a more conceptually valid representation of the modelling of OS
by considering the differences in event hazards between different group of patients who progressed and
did not progress (addressing Limitation 1 of the PSM) but also modelling the general underlying natural
history process (addressing some of Limitations 2 and 5 of the PSM). Secondly, using data from the
intermediate endpoints (TTP/PFS and PPS) could reduce the uncertainty associated with the
extrapolation as more events are recorded in people participating to the transition (addressing Limitation
3 of the PSM). Whilst not commonly done, it can also be easier to introduce the dependence structure
when modelling PFS and OS (addressing Limitation 4 of the PSM) by making PPS conditionally
dependent on TTP (see Chapter 7), although this can also be done with the PSM under a semi-competing
risk framework (see Chapter 6.9). Finally, the STM may be argued to be more transparent (addressing
Limitation 5 of the PSM) compared with the PSM as the relationship between health states is explicitly
stated and transitions between these health states are modelled. This is particularly attractive when there
is the need to use external data, for instance, when data on OS are immature or lacking. However, the
STM approach is also subject to limitations, with some of the advantages described above also being
argued to be disadvantages. As with the PSM, the limitations highlighted below represent some of the
arguments that have been made against the STM, and therefore, reflect different points of view (some

of which may be arguable or may contradict themselves):

e Limitation 1: Greater number of assumptions required. Additional assumptions are

required with the STM due to the additional number of parameters (transitions). For example,
PFS is assumed to be a good surrogate for OS, which may not always be appropriate. Other
assumptions could be that the time to death following progression is same between arms.
Assumptions need be made on how to separate progression and pre-progression death events.

Assumptions are made explicit in the STM, whilst for PSMs, these assumptions are implicit.
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Whilst the explicit statement of assumptions may increase transparency, the number of
assumptions required in the STM, may make the model less transparent.

Limitation 2: The greater number of variables could increase uncertainty when the

extrapolation is already uncertain. The plausibility of the OS projection is dependent on the

robustness and long-term extrapolation of every transition. Combining uncertain transitions
(uncertainty associated with extrapolation) increases uncertainty in the resulting OS. This was
highlighted by the ERG in TA472 (described in Chapter 1.2), where the estimation of OS was
reliant on the extrapolation of immature data for PFS and PPS. In the PSM, OS is a results of
the extrapolation of a single event (death).

Limitation 3: The use of a post-randomisation outcome (PPS). There could be some

selection biases when estimating the transition from the progressed health state to death (PPS),
as this is a post-randomisation measure. For example, for PPS, this becomes problematic if
limited numbers of patients have progressed, and/or if those progressing early are expected to
have different prognoses to those who have not progressed at the end of the clinical study. This
issue is described in further detail in Chapter 7. Furthermore, whilst it is often argued that using
PPS helps with the extrapolation, the same number of events (or fewer) are included in the
estimation of this transition compared with OS, with the only difference relating to the number
of patients included in the denominator (N progressed rather than N randomised). Therefore,
whilst the estimate for PPS may be good for those who participated to this transition, there is
no information on whether this is appropriate for people who did experience this transition in
the trial. Therefore, using PPS may not necessarily make the estimation of OS more reliable,
compared with directly fitting a model to OS data (this is discussed in Chapter 7). Another
related limitation is that patients progress later are more likely to be censored in the PPS dataset.
This would suggest that there is time-dependent bias in the form of informative censoring.
Therefore, the STM may only partly address the limitation with the PSM in representing the
true OS.

Limitation 4: Variation in_implementation. Different approaches/assumptions can also be

used when implementing STMs. As described previously, transitions from progression-free to
progression and pre-progression mortality could be modelled separately under a competing risk
framework (also referred as the MSM). Alternatively, PFS, that is, the cumulative incidence of
progression and pre-progression mortality, could be used together with assumptions on the
contribution of progression and pre-progression mortality to the overall number of PFS events
(referred to here as the Simplified STM approach commonly used in HE). These differences in
implementation could potentially lead to inconsistencies in predictions, as demonstrated in
Chapter 4.5 and 5.4.



o Limitation 5: Impact of interval censoring: PFS may be subject to interval censoring, which

may affect its robustness and therefore impact the estimation for OS in the STM.

e Limitation 6: more difficult to estimate transition in the absence of patient level data.

Although not impossible, it is challenging to implement a STM when IPD are not available (as
PFS and OS are correlated).

2.5 Have the approaches been compared systematically?

There is increasing evidence, or at least recognition, that different analytic approaches may lead to
different estimates of modelled health gains, and therefore different cost-effectiveness results. These
inconsistencies have been highlighted in a number of NICE TAs (described in Section 1.2) including
NICE TA257*° (lapatinib and trastuzumab in combination with an aromatase inhibitor for breast cancer)
NICE TA4722° (obinutuzumab plus bendamustine for follicular lymphoma), and NICE TA381
(olaparib for ovarian cancer).?* These differences have also been highlighted by other researchers
including for example, Williams et al (2017),%* Briggs et al (2015),% Smare et al,*® Batteson et al,?” and

Cranmer et al.®

Whilst these studies have compared estimates in LYGs and QALYSs using the PSM and the STM
(including MSM) approaches,*® 24 2 they did not compare the different approaches systematically and
comparisons were typically limited to single case studies. This makes it difficult to determine whether
one approach is consistently superior to another. For instance, in the examples described in Chapter 1.2,
the use an alternative approach was justified by the AG/ERG based on their perception of limitations

with the approach used by the company.

Furthermore, the comparison in some of these studies could sometimes be deemed unfair due to the
different assumption used.?* 2" 2 As a consequence, it is difficult to understand whether the differences
observed are attributable to differences in model assumptions or implementation. For instance, Williams
et al (2017) compared the PSM with two variations of the STM; the MSM (under a competing risk
framework) using the R package mstate and the Simplified STM as implemented in a NICE cancer
appraisal (TA174) for the first-line treatment of chronic lymphocytic leukaemia (CLL).? The authors
showed some differences in results between the two variations of the STM (the MSM and the Simplified
STM) and the PSM. However, different assumptions were made between the MSM and the Simplified
STM, which makes drawing any comparison problematic. Transitions were assumed to be constant in
the Simplified STM (as this was the assumption used in TA174). In contrast, transitions were assumed
to be time-varying within the MSM. However, the discussion section of the paper acknowledges that

under the same assumptions, predictions were closer between approaches in their case-study.
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Similarly, in the comparison of the STM and PSM in some of the studies highlighted above, the choice
of parametric extrapolation was sometimes questionable? 27 and therefore it is difficult to understand
whether the appropriateness of an approach is primarily driven by the type of approach or the underlying

assumptions (for example, the choice of a parametric survival models used to extrapolate outcomes).

It is possible that one approach may be more appropriate than another depending on the nature of the
data available. Whilst these individual comparisons provide some useful knowledge on the performance
and limitations of particular methods, model choice is not based on knowledge of the performance of a
particular method given the available data, because that information is not available. Perhaps more
importantly, whilst some comparisons between approaches are available (single case studies), the
assessment of the performance of a method is often limited to the fit of the method to the observed
period of a trial. This does not provide any information on whether the long-term extrapolation with
one approach is more suitable than another. This is because data are not observed following the end of
the trial. However, it should be acknowledged that some studies are available and compared the
prediction to earlier cut-off with results from the trial reported at later cut-off, but data were still not
complete.Z It should be noted that a number of other studies are available in the literature and that the
examples described in Chapter 1.2, in addition to the additional studies referenced in this section only
provide a small selection of studies comparing the different approaches. However, whilst the list
provided in this section is far from exhaustive, all the studies identified/known are limited to single case
studies, sometimes, with arguable assumptions to allow a fair comparison. No study providing a
systematic comparison of approaches is known or has been identified following a rapid search of the

literature.

Although no formal systematic review has been conducted, no study providing a systematic comparison
of approaches has been identified following a rapid search of the literature (non-systematic search in
web-based search engines) or was known by the student, his supervisory team or experts consulted
during this thesis. It is reasonable to assume that if such study existed and was available/published, this

would be known and commonly cited.

Consequently, a systematic comparison of the different approaches is required to understand whether a
particular approach may be more appropriate and perhaps superior to predict PFS and OS (over a

lifetime horizon) according to the characteristics of the data.

In the next chapter (Chapter 3), I briefly describe the general concept of survival analysis, censoring,
the survivor, hazard and cumulative hazard functions, the Kaplan-Meier and Nelson-Aalen estimates,
the Cox regression model and the concept of competing risks. These concepts will be explained through
reference to a dataset in breast cancer and are important as they reflect key terms and concepts used

throughout the remainder of this thesis.
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3 CHAPTER Ill: KEY CONCEPTS IN SURVIVAL ANALYSIS USED
THROUGHOUT THIS THESIS

3.1 Chapter overview

This chapter aims to provide some theoretical background and a brief description of some of the key
concepts used in survival analysis that will be used throughout this thesis. These concepts will be
necessary to understand some of the approaches described hereafter. Further description and details on
survival analysis are available in a number of textbooks including Collett D. Modelling Survival Data
in Medical Research, Third Edition. Textbook - Chapman & Hall/CRC Texts in Statistical Science
2014).% In this chapter, key concepts will be demonstrated through reference to data for the comparator
arm from a real trial in breast cancer (CALGB 40502).% 3!

The datasets used is described in Section 3.2. The concepts of survival analysis and censoring are
described in Sections 0 and 3.4, respectively. The concepts of the survivor, hazard and cumulative
hazard functions are described in Section 3.5. Non-parametric estimates of the survivor function (the
Kaplan-Meier and Nelson-Aalen estimate) are described in Section 3.6. In Section 3.7 and Section 3.8,
I describe the Cox proportional hazards model and the concept of parametric models. In Section 3.9, |
briefly describe how parameters are estimated using the maximum likelihood function. Finally, in

Section 3.10 | briefly describe the concept of competing risks.

3.2 Description of the datasets used throughout this thesis

A number of datasets are used in this thesis to either illustrate the key concepts in survival analysis
(Chapter 3), the implementation of key methods (Chapters 4 and 5), the impact of censoring on the
estimation of post-progression survival (Chapter 7) or are used as in case-studies to assess the

performance of methods.

Datasets used in this thesis include:

o Individual patient-level data for the control arm from a published randomised Phase 11 trial of
weekly paclitaxel compared to weekly nanoparticle albumin bound nab-paclitaxel or
Ixabepilone with or without bevacizumab as first-line therapy for locally recurrent or metastatic
breast cancer (CALGB 40502).3! The breast cancer dataset included 275 patients, of whom
217 had a recorded PFS event (195 progression events and 22 deaths prior to progression).®
There were 137 death events overall. This dataset was available through the Project Data

Sphere.

38



Individual patient-level data for the control arm from a published randomised Phase IlI
randomised, placebo-controlled study of docetaxel in combination with zibotentan in patients
with metastatic castration-resistant prostate cancer. The prostate cancer dataset included 470
patients, of whom 401 had a recorded PFS event (340 progression events and 61 deaths prior
to progression).® There were 255 death events overall. This dataset was available through the
Project Data Sphere.

Individual patient-level data from a published randomised Phase 111 trial of darbepoetin alpha
in previously untreated extensive-stage small-cell lung cancer treated with platinum plus
etoposide. The lung cancer dataset included 479 patients, of whom 440 had a recorded PFS
event (313 progression events and 127 deaths prior to progression).®® There were 397 death
events overall. This dataset was available through the Project Data Sphere.

A dataset by the GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research
International Collaboration) group used in a previously meta-analysis to assess the surrogacy
between PFS and OS, including a collection of 20 cancer trials in advanced/recurrent gastric
cancer publicly available in the R package surrosurv (gastadv dataset). The gastric cancer
dataset included information on 4,069 individuals treated with different treatments in gastric
cancer, of whom 3,820 had a recorded PFS event (2914 progression events and 906 deaths prior
to progression). There were 3,635 death events overall.

Table 3 : Summary of characteristics of datasets used throughout this thesis

Breast Prostate Lung Gastric
Available from: Project Data | Project Data | Project Data | Surrosurv
Sphere Sphere Sphere (gastadv dataset)
N 275 470 479 4,069
Number PFS events | 217 401 440 3,820
recorded
* Progressive | 195 340 313 2,914
event
*  Death prior | 5, 61 127 906
progression
Total number of deaths | 137 255 397 3,635
Used in Chapter Chapter 3-5 Chapter 5 Chapter 5 Chapter 7, 9.
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The Kaplan-Meier (KM) estimates (this concept is described in Section 3.6) for PFS, OS, TTP, prePS
and PPS are shown in Figure 5, for the breast cancer dataset, Figure 6 for the prostate cancer dataset,
Figure 7 for the lung cancer dataset and Figure 8 for the Gastric dataset (collection of trials).

The BC dataset is used in (1) Chapter 3 to illustrate the key concept in survival, (2) Chapter 4 when
illustrating the implementation of the multi-state model and (3) Chapter 5 when illustrating the
implementation of the STM. Although the three datasets (breast, prostate and lung) are used within this
thesis, the breast cancer dataset is used when illustrating the implementation of key approaches and
describing key concepts in survival analysis as the breast cancer had a lower number of recorded PFS

and OS events

The Lung and Prostate datasets are only used in Chapter 5 when assessing assumptions regarding the

estimation of the transition for leaving the progression-free health state (combined transition).

The Gastric dataset is used in Chapter 7 when assessing the implication for using PPS in a trial and in

Chapter 9 in case-studies.

Figure 5 : Kaplan Meier Breast cancer dataset
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Figure 6 : Kaplan Meier Prostate cancer dataset
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Figure 7 : Kaplan Meier Lung cancer dataset
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Figure 8 : Kaplan Meier Gastric cancer datasets (collection of trials)
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3.3 What s survival analysis

Survival analysis is described by Collett (2015)?° as “the analysis of data in the form of times from a

well-defined time origin until the occurrence of some particular event or end-point”.
In our context of trials of anticancer treatments;

e The time origin is typically the time of randomisation/recruitment. The time origin could also
be the time at which a particular treatment is initiated or the time at which a particular prior
event occurs.

e The events/endpoints typically include:

o Death — measured in terms of overall survival (OS)
o Progression - measured in terms of time to progression (TTP) or progression-free
survival (PFS). The latter includes death occurring prior to progression.
o Disease recurrence or relapse — measured in terms of disease-free survival (DFS) or
event-free survival (EFS). Depending on the study, this usually includes death as an

event.

o Treatment discontinuation — measured in terms of time to treatment discontinuation

(TTD). This usually includes death as an event.

Time-to-event data are special and cannot be analysed using standard statistical analysis as these are:
(i) frequently censored (the concept of censoring is described Section 3.4); (ii) generally not
symmetrically distributed (e.g. positively skewed).?® This is illustrated in Figure 9 for the outcome of
PFS in the BC dataset.
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Figure 9 : Histogram for time to death from the BC dataset (CALGB 40502)
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3.4 What.is censoring?

The concept of censoring is central to the analysis of survival data. There are different types of
censoring. In this thesis, the focus will be on right-censoring as this is the most common type of

censoring in oncology trials.

Right censoring occurs when the event of interest (e.g. PFS) has not been observed for a particular
individual and therefore the censored survival time is less than the actual, but unknown, survival time.
This is called right censoring because the event occurs to the right of the last known observed time-
point. There are a number of reasons for an event not to be observed within a trial. This could be because
the study ended before the event occurred (also referred as administrative censoring). Alternatively,
individuals in the trial could be lost of follow-up, thus, whilst no event was observed up to the last
contact with the patient, it is unknown if an event happened subsequently as no information is available
from this patient after their last contact. Patients may also experience a separate event (such as death)

which prevents the event of interest (progression) from occurring.

The concept of right censoring is illustrated in Figure 10. On the left-hand side of Figure 10, the true
time to event is presented. However, it can be seen that for Patients 2, 6 and 10, the event occurred after
the end of study follow-up. Therefore, these individuals are said to be censored at the end of the study,

as shown on the right-hand side of Figure 10.
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Figure 10 : Hlustration of right censoring
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In the BC dataset, there were 58 censored PFS observations and 138 censored OS obhservations.

Less common is left censoring. Left censoring occurs when the subject is at risk for the event before
the study start. Another form of censoring is interval censoring. Interval censoring occurs when the

event of interest occurs within a time interval and the precise event time is not known.

Finally, informative censoring occurs when censoring cannot be directly assumed to be independent of
the survival event and censoring provides additional information than the fact that survival time

exceeded a certain time.®* For instance, time to progression could be informatively censored by death.

3.5 The survivor, hazard and cumulative hazard function

Two central concepts of survival analysis are the survivor function and the hazard function. Let us
denote T, the survival time, as a continuous random variable that can take any non-negative value. This
random variable has a probability distribution with an underlying probability density function (PDF)

f(t). The cumulative distribution function (CDF) of T (or cumulative incidence function) is then given

by:
F(t)=P(T <t) = [, f(wdu

with T, the random variable for survival time and t, the actual survival time. This function summarises

the cumulative probability of an event occurring before time ¢.2°

The survival function, S(t), is the probability that the survival time exceeds time t and can be written

as:
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In addition to the PDF, f(t), and the survivor function, S(t), the hazard function h(t) is an important
concept and can be defined as the instantaneous event or hazard rate at time t. It expresses the event
rate at time ¢, conditional on the event not having occurred before t. This is described by Collett et al
(2015)® as the probability that the random variable associated with an individual’s survival time, T,
lies between t and t + &t, conditional on T being greater than or equal to ¢.
. (P(tST<t+6t|T=t)
h(®) = 5ltlz>r§o( st )
The cumulative hazard function (i.e. the cumulative risk of an event occurring by time t) H(t), can be

derived from survivor function S(t) as:
H(t) = [, h(u)du = —log S(t)

The hazard function h(t) can also be estimated from the survivor function S(t) (and vice versa), and

the cumulative hazard function H(t), so that:

_ —dlogS(t) _ dH(t) _ f()
h(t) = e dt S

3.6 Non-parametric estimates of the survival function: the Kaplan-Meier (KM) and Nelson-

Aalen estimates

The survivor function, S(t), is often estimated non-parametrically in the form of the Kaplan-Meier

estimate. The Kaplan-Meir estimate of the survivor function is given by*:

d;

S@) = [Ti:t;<e (1 - _)

ng

With t; denoting the time when at least one event happened, d; the number of events that happened at

time t;, and n; the total individuals at risk (have not yet had an event or been censored) up to time t;.

In brief, a plot of the Kaplan-Meier estimate of the survivor function is a step, in which the estimated
survival probabilities are constant between adjacent event time points and which decrease at each event
time. Survival times are arranged in ascending order and the beginning of each time interval corresponds

to the time at which an event occurred.

Whilst the Kaplan-Meier estimate of the survivor function is commonly used to represent survival data
in clinical studies, an alternative estimate of the survivor function is the Nelson-Aalen estimate (or

Altshuler’s estimate)36 with H(t) the Nelson-Aalen cumulative hazard rate estimator given by:
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~ d;
H(t) = Ztistn_i

And S(t) the survival function
§(t) = e H®

The Kaplan-Meier estimate is an approximation and will always be lower than the Nelson-Aalen
estimate. However, both estimates are very similar, with the Nelson-Aalen estimate performing better

in small samples.

Figure 11 shows the cumulative hazard for OS using the KM survivor function (black line) and Nelson-
Aalen estimates (red dashed line). The cumulative hazard function can be obtained from the KM or
Nelson Aalen estimate from the relationship between the survivor and cumulative hazard function. It
can be seen that the two are very close to each other, with the Nelson-Aalen estimate being slightly
higher than the KM estimate.

Figure 11 : Comparison of the cumulative hazard function from the KM and Nelson Aalen-
estimate in the BC dataset (CALGB 40502)
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3.7 The Cox regression model

Another important concept in survival analysis is the Cox proportional hazards model.®” This is
commonly used to study the effect of covariates on survival time. The Cox model is a semi-parametric
model, which assumes a constant effect of the covariates on the hazard function, and thus, an implication
is that this model is only appropriate when the survivor function for the groups compared (predictor
variable) do not cross, unless time-varying covariates are included.
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The Cox model defines the hazard function of an individual i by
hi(t) = eP¥iny (1)

where hq(t) denotes the baseline hazard function (the hazard function obtained when all covariates are

set to zero); 8 denotes the logarithm of the hazard ratio and x; denotes the value of the covariate

With the Cox model, we are only interested in estimating the hazard ratio (the B-coefficients). The
hazard ratio (HR) is the ratio of the hazard rates for the groups compared according to the explanatory
variable. The HR is commonly used to summarise the effect of a treatment in oncology trials, or the
effect associated with other variables. The g-coefficients (the HR) could be estimated using the method

of maximum likelihood or alternatively a Bayesian framework could be used.

It is important to highlight that the semi-parametric nature of the Cox model means that no assumptions
are made about the form of the baseline hazard. Therefore, the Cox model is interested in estimating
the effect of a covariate, not the baseline hazard. Once the S-coefficients (the effect of the covariates)
have been identified, the baseline hazard function h,(t) and corresponding survivor function can then

be estimated.

Whilst the Cox model provides an important interpretation of survival data, it cannot be used to
extrapolate beyond the observed period of a study without further assumptions about the baseline
hazard. As previously mentioned, an implication of the Cox model is also that the effects of the
covariates are constants; which may not be valid. Therefore, it is important to test this assumption. A
number of methods are available, which are not the focus of this thesis, including inspection of

Schoenfeld residuals and/or log-cumulative hazard plots.

3.8 Parametric survival models

Whilst Cox proportional hazard models may be useful to estimate treatment effects, health economic
models often require the extrapolation of outcomes beyond the study follow-up and therefore, we need
to model the baseline hazard. In the Cox model, no probability distribution is assumed. In contrast,
parametric survival models assume a specific probability distribution for the survival times and thus,

can be used to analyse survival data and also to extrapolate beyond the observed period of a study.

A number of standard parametric models are often considered; these include: the exponential; Weibull;
Gompertz; generalised gamma; gamma, log logistic and log-normal distributions. In addition to the
standard parametric models, flexible parametric models can provide additional flexibility in the

modelling of the shape of the hazard function.® 3°
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Parametric models are often separated into proportional hazard (PH) models and accelerated failure
time models (AFT). In the PH regression model, the effect of covariates is obtained on the hazard
function.®® PH models include the exponential, Weibull, Gompertz and some forms of spline model
(hazard forms) and assumed that the effect of a covariate is constant. In the accelerated failure-time
regression model, the effect of covariates on the logarithm of the survival time is assessed.*® AFT
models include the log-normal, log-logistic, generalised gamma and assume that the effect of a covariate
is increasing (accelerating) or decreasing (decelerating) over time, and therefore is not constant (unless
the AFT parameter is 1). It should be noted that some models can be parameterised as either PH or AFT

(for example, the Weibull distribution and some spline models).

3.9 Maximising the likelihood function

Whilst most statistical packages allow for the simple fitting of standard parametric models to the data,
it is important to understand how coefficients from these models are estimated. Under a frequentist
approach, the parameters of the survival functions are typically estimated by finding the set of values
which maximise the likelihood (the probability of the data given the model and specific parameter
values). Under a Bayesian framework, we derive a posterior distribution for the parameters by
combining the prior with the likelihood. Observations can be censored or not. Therefore, the likelihood
function has two components: one for the observations that are censored (where no event occurred) and
one for the observations that are not censored (where the event occurred). Events and censored times
contribute differently to the calculation of the likelihood. For completely observed events, the
contribution is the whole PDF. However, for right censored events, all we know is that they contribute
at least up to a certain point, and therefore we use the survival function, S(t) for censored time. The
likelihood of the data is then the product of the likelihood across all patients (observations and censored

times). The overall likelihood is
L(O) = [1s;=1f (t:; 6) [15,=0 S(ti; 0)
L(6) = [1s;=1 h(t;; 0)S(t;; 0) [15,=0 S (L5 6)

L(8) = §i=1 h(t;; 0)%S(t;; @) Where §; is the censoring indicator.
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3.10 Competing risks

Another key concept in survival, notably in the analyses of multiple survival data (or endpoints) is the
notion of competing risks. Competing risks occur when the occurrence of one event influences or

hinders the occurrence of another event.

Standard survival analysis censors follow-up at the occurrence of the competing event. Therefore, it is
implicitly assumed that individuals could subsequently experience the later event. This therefore
assumes independence between the event of interest and the competing event (censored individuals are
assumed to have the same survival as those who remain in follow-up), which may not be true. It is

difficult to test for the independence of events.

In contrast, within the competing risk framework, competing events are not deemed independent and
multiple events cannot occur simultaneously. In the presence of competing events, the marginal
probability of each competing events can be estimated from the cumulative incidence function (CIF),

which is derived from the cause-specific hazard. The CIF for an event c at time ¢, can be written as*":
CIFC(tf) = Z;r=1 ic(tf) = Z;’:ls’;(tf’—l) flc(tf/)

Where I.(t;) is the incidence probability of failing from event-type c at time t;, and S(t;_,) the

overall probability of survival at a previous time.
The CIF is equivalent to 1-KM estimator when there is no competing event.

It should be noted that the incidence function of the two competing events is equal to the cumulative
incidence function. Therefore, considering PFS as an example, the incidence function for time to
progression (TTP) and pre-progression mortality (PrePS) will be equal to the cumulative incidence
function (PFS).

This is illustrated in Figure 12 using data on PFS from the BC dataset.

It can be seen that standard approaches and approaches that properly deal with competing risks are
similar when analysing a combined composite endpoint such as PFS, but that a proper competing risk
approach is required when analysing the component parts of PFS to avoid bias. In Figure 12, the red
line represents the incidence function adjusted for competing risks for TTP and PrePS separately in the
left and middle graphs, and is lower than the incidence functions estimated using standard survival
analysis. In the graph on the right, the red line, represent the cumulative incidence function for both

time to progression and time to pre-progression mortality combined, which is the same as PFS.
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Figure 12 : Naive KM and KM allowing for competing risks for the cumulative hazard and the cause-specific hazard in BC dataset (CALGB 40502)*

Time to Progression Time to pre-progression mortality Time to progression or death - PFS
II T
| o — Cause-Specific KM
w© ; 1 : A = = Adjusted for competing risk
= 7] [
I
]
[
I
L
. 2 -
= I
| = [
— = ) = - -
§ =7 p:
g g @
o < 2 @
5 & H
5 s g
E - @ o~ =4
5 = E = T?_E
8 8 5
& ] @
i °
3 °
E =
3 2
E -
o = P
= a o
o
k=
[ =2 =2 _
= (=] k=
T T T T T T T T T T T T T T T T T T T
1] 10 20 30 40 50 =] o 10 20 30 40 50 60 o 10 20 30 40 50 o]
Maorths since randomisation Moriths since randomisation honths sinca randomisation

* dashed line represents the 95% CI

50



It should be noted that within the competing risk framework, there is no longer a direct relationship
between the cumulative incidence, survivor and hazard functions. Therefore, alternative approaches are
required when examining the impact of an explanatory variable (the most common of which is the Fine

and Gray model*?).

Competing risks analysis is a large topic in its own right, and therefore is beyond the scope in this thesis.
However, an understanding of the key principles is required to understand the MSM approach described

in Chapter 4 and how this compares with the direct PFS fit in Chapter 5.

This chapter has provided a brief description of the key concepts used in survival analysis, including
competing risks. In Chapter 4, | describe the MSM approach with a reference to the concepts described

above and through reference to the BC dataset.
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PART II: MODELLING THE PROCESS OF PROGRESSION

4 CHAPTER IV: MODELLING TRANSITIONS USING THE MULTI-
STATE MODEL UNDER THE COMPETING RISK FRAMEWORK

4,1 Chapter overview

In this chapter, | focus on the implementation of the multi-state model (MSM) using two R packages
(as R was the software used in this thesis for the simulation study in Chapter 8): the msm package and
the mstate package. | describe the key differences and how transitions are combined under a

competing risks framework.

Section4.2 introduces this chapter. The implementation of the MSM using the msm package when
transitions are constant is described in Section 4.3. In this section, | describe how to implement the
MSM using this package, and explain how transitions are estimated. | also briefly discuss how the
Markov assumption (when transitions are constant) can be relaxed by using piecewise exponential

models.

Section 4.4 details the implementation of the MSM using the mstate package. In Section 4.4.1, |
describe how transitions are combined under a competing risk framework in the mssample function
(which is part of the mstate package). In Section 4.4.2, | provide a summary of findings following a

review of R code with an example of implementation in Section 4.4.3.

The term MSM will be used thorough this thesis to refer to the multi-state model, with msm used to

refer to the package in R.
4.2  Introduction

As illustrated in Chapter 2 (Figure 3), three transitions are required in the three-state model typically

used in the economic analysis of treatments for advanced/metastatic cancer:

e the transition from progression-free (PF) to progressed disease (PD) (112);
o the transition from PF to death (113), and;

e the transition from PD to death (A23).

The transitions from the PF health state (to PD or death — A1 and A13) are competing, in that the chance
of experiencing one event (transition) is hindered by experiencing another event (transition). Therefore,

transitions must be combined under a competing risk framework. This can be done through the MSM,
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which is an extension of competing risk analysis** 44, Multi-state modelling is widely used in the field
of statistics but is rarely used in health economics. The reason for this is unclear and could be due to
lack of awareness or its complexity compared with standard methods which are currently used.

A number of packages in R software are available to implement MSMs, making this a more attractive
option and subject of research in health economics.** % For instance, the implementation of the MSM
in health economics has been recently described by Williams et al®* in a step-by-step tutorial using the
mstate package developed by Putter et al.** An alternative package to implement MSMs in R - the
msm package - has been developed by Christopher Jackson.* The msm package has been used in at
least three NICE technology appraisals; TA586%, TA5874 and 1D945% as highlighted later in Chapter
5.3.5.

More recently, a user-friendly MSM package has been developed in STATA software.®® It uses the
same principle as the function in the mstate package, and therefore, is not the focus in this chapter.
However, it should be noted that the STATA function is perhaps more flexible and quicker to run and

the decision to focus on R was taken as this was the software used for the simulation study.

In this chapter, | focus on the R packages and describe the implementation of the MSM using both the

msm package® and the mstate package as these have different flexibilities and characteristics.?* >

4.3 Performing multi-state modelling using the msm package when transitions are constant

4.3.1 How are transitions estimated and combined in the msm function?

The msm package is comprised of a number of pre-defined functions; the msm function is used to
estimate the parameters for the MSM. A key characteristic of the msm function, is that it fits the MSM
to the available time-to-event data directly using maximum likelihood estimation, therefore, few steps
are required when implementing this form of model. The transitions (or parameters) are estimated and
combined endogenously within the msm function. This contrasts with the mstate package (described
in Section 4.4) whereby transitions (or parameters) are estimated exogenously from the function and

combined within the function.

The msm package includes a number of options to fit the model to data from processes with arbitrary
observation times (usually panel data on state-occupancy; observations obtained over multiple time
periods®), exactly-observed transition times (usually time-to-event data where the time to transition is
the event), censored states (i.e. information is not known about the state occupancy), or a mixture of
these types of data. Therefore, the msm function is sufficiently flexible to deal with a variety of data

types and interval censoring.
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In the msm function, an initial transition matrix is specified with the parameters (that are unknown)
being estimated by maximum likelihood via optimisation. The msm function is intuitively attractive as

it estimates the parameters of the model directly from the data.

The default of the msm function is that the model is Markov, whereby event rates are assumed to be
constant from start to the end (survival distributions are exponentially distributed) and are independent
of previous transition events (although this can be relaxed, as described in Section 4.3.3). This is very
restrictive; Christopher Jackson (author of the function) acknowledges that such an assumption was
made to accommodate the computation of the likelihood for intermittently-observed processes within
the function.”® Nevertheless, the msm function offers the option to relax this assumption, for example,
by assuming that transitions are different between time intervals, e.g. using piecewise exponential
distributions conditional on time. And therefore, the function is very flexible.

Transition probabilities (which are assumed to follow an exponential distribution [or piecewise]) are
estimated from the likelihood function which varies according to the type of data. The focus in this
section will be on exactly observed transitions times as this reflects the type of data typically available
from oncology trials (i.e. PFS and OS). It should be noted that the option of processes with ‘arbitrary
observation times’ could be relevant, when data allows, as this will be similar to assuming interval
censoring between two time intervals. | also focus here on the case whereby transitions are constant

over time (rather than varying between time intervals).

The contribution of the likelihood for exact transition times*® between states is written as:
Lij = exp (@s(e;)s(e;) Ger = 5D s(t))s(t40) (4.1)

Where S(tj) represent the state an individual at time t, and g5y the instantaneous risk of moving

between state

The expression for the likelihood in Equation (4.1) resembles the expression for the likelihood for
general survival data and is composed of two elements: when transitions are observed or when
transitions are censored. Thus, estimates for the non-competing transition (progression to death) will be
the same within the multi-state model using the msm function or estimated externally from the data
using PPS. Similarly, as shown in Section 3.10, PFS represents the cumulative incidence of the two
competing transitions. Therefore, under the assumption of exponentially distributed event times, the
probability of remaining progression-free in the MSM will be the same as the survival function for PFS.

This is demonstrated in the Section 4.3.2.
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4.3.2 Implementing the multi-state model using the msm function in the BC dataset (CALGB

40502) assuming transition to be constant (Markov model)

The implementation of the MSM using the msm function in the BC dataset is described hereafter using
the option for “exactly-observed transition times” to reflect the type of data available. The
implementation of the model using the msm function in the BC dataset can be summarised in four key

steps, as shown in Figure 13.

Transitions are assumed to be constant throughout the patient’s lifetime and therefore, the model is
assumed to be Markov.

Figure 13 : Summary of key steps for implementing the multi-state using the msm function in the
BC dataset (CALGB 40502) assuming the model to be Markov

Step 1: Prepare the data in terms of state occupancy at each time (this requires some

data manipulation)

Step 2: Specify the multi-state model. This is governed here by a 4x4 transition
intensity matrix. A 4x4 transition matrix is used to represent instantaneous transitions
permitted by the model, (1) progression-free, (2) progression, (3) death following
progression and (4) death without progression. Zero values are imputed when

transitions are not allowed

Step 3: Specify the initial values for the transitions. The initial values can be directly
estimated using the crudeinits.msm function

R

Step 4: Run the msm function. The option exacttimes=TRUE is selected as we assume
the times to transition to be known

Predictions for the state occupancy in PF, PD and time to death using the msm function are shown later

in Figure 24 alongside the predictions from the ms sample function and simplified STMs.

As described in Section 4.3.1, given the calculation of the likelihood function for exactly observed
times, the transitions (leaving pre-progression and progression health state) estimated endogenously
from the MSM using the msm function are expected to be the same as the transitions estimated
externally assuming the survival distributions are exponentially distributed. To confirm this, I compared
the estimate for the transition probabilities estimated endogenously using the msm function and the

transition probabilities estimated externally from the data:
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e The transition probability from the progression health state to death (state [ii] — state [iii]) was
estimated to be 0.05697 using the msm function. The same estimate was obtained when PPS
was estimated externally from the data assuming the survival distribution to be exponentially
distributed,

e Similarly, the probability of remaining progression-free in the MSM was the same as the
inverse of the PFS probability estimated externally from the data assuming the survival to be

exponentially distributed.
4.3.3 Relaxing the Markov assumption

As described in Section4.3.1, the msm function assumes transitions to be constant and therefore the
survival distributions are exponentially distributed (with the simple form assuming the model to be
Markov, with transitions constant over the time horizon). However, it is possible to relax this
assumption by fitting the MSM (using the msm function) to data for different time intervals to allow for
time-varying transition probabilities (using piecewise exponential distributions). In the simple case, one
may assume that the event rates are different between two time periods (e.g. the hazards change after
some defined time-point). However, the msm function accommodates more complex forms, i.e.
assuming transitions vary within more than two time intervals or assuming that only specified
transitions are time-varied. For example, in TA586,% the msm was fitted to three time intervals in order
to account for time-varying probabilities (Chapter 5.3.5). Functions are available within the msm
package to assume directly piecewise exponentials, or constant transitions within a defined number of
intervals. The msm function can also be extended to include the effect of covariates. This can be done
by using the pci option within the msm function (to allow piecewise exponential) or the
piecewise.msm function for more complex forms (when the effect of covariates is of interest). A
key limitation with using piecewise exponential is that the extrapolation beyond the observed period

will be based only on the fit and extrapolation of the last time period, rather than the entire data.

4.4 Themstate package; aflexible alternative to perform multi-state modelling to include any

parametric distributions?

The mstate package was developed by Putter et al*® and was subsequently described in a step-by-step
tutorial for health economic modelling by Williams et al.*® Compared with the msm package,* the
mstate package* uses parameters for the transitions (cumulative hazard) as an input, rather than
fitting the MSM to the data. Parameters for each transition are therefore estimated exogenously from
the MSM, with transitions combined under a competing risk framework within the function. The

mstate package, compared with the msm function, allows any form of survival distribution to be used.
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Two key functions within the mstate package can be used to generate the MSM; (a) the probtrans
function which uses a cohort approach, and (b) the mssample function which uses a simulation
approach. These functions (probtrans and mssample) are used by Williams et al.* in her tutorial.
Williams et al recommends the use of the probtrans function when the Markov property holds and
the mssample function when the Markov property is violated. Nevertheless, whilst Williams et al.?*
%0 suggest the use of the probtrans function when the Markov property holds, following my own
review of the function, | believe that the mssamp1e function is equally appropriate in such situations,
with transitions being constant (the survival distribution is exponentially distributed). This was
confirmed following contact with the author, who suggested that when the Markov assumption holds
(rare assumption), the key benefit of using the probtrans over the mssample function is that it uses
a cohort approach (hence, no simulation is required). In this section, | focus on the implementation of
the MSM using the mssample function as it encompasses both situations whereby the Markov

assumption holds and where it is violated.

A key characteristic of the mssample function is that it uses data on the cumulative hazard for each
cause-specific transition (estimated exogenously from the MSM), with data censored when the
competing event occurs. Thus, considering the typical three-state advanced/metastatic cancer model

structure, the ms sample function uses three inputs;

(i) The cumulative hazard for TTP. For this transition, PFS is censored for PrePS,
(ii) The cumulative hazard for PrePS. For this transition, PFS is censored for progression,
(iii) The cumulative hazard for the PPS.

These transitions (estimated exogenously from the function) are then combined under a competing risk
framework within the mssamp1e function. For this thesis, the R code of the mssamp1e function (the
key function used when generating the multi-state model) was reviewed in detail in order to understand
how the inputs (the cumulative hazard function for each transition) to the function are transformed and
then subsequently combined under a competing risk framework. It should be noted that the mssample
function uses a number of associated pre-defined functions pertaining to the mstate package which
were also reviewed in order to understand how the function works; in particular: the mssamplel,
crsample, Hazsample, NAfix and to.trans2 functions. A description of the how inputs
(cumulative hazard functions) for the competing transitions are combined is described in Section 4.4.1
with findings from the review of the R code highlighted in Section 4.4.2. The implementation of the
MSM using the mssample function in the BC dataset is described in Section 4.4.3.
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441 How are inputs (cumulative hazard) for the competing transitions combined under a

competing risk framework in the mssample function?

The approach used within the mssample function to combine the competing transitions under the

competing risk framework can be summarised in five key steps, as illustrated in Figure 14 for the

outcome of PFS (cumulative incidence of progression and pre-progression mortality events). A

narrative description is provided below.

Figure 14 : lllustration on how transitions are combined under the competing risk framework in

the mssample function
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In brief, the mssample function uses data on the ‘naive’ cumulative hazards (not adjusted for

competing risks) as inputs for the two separate cause-specific transitions (TTP and PrePS), with the

competing risk censored. Transformations are then made inside the mssample function, with

transitions combined under the competing risk framework following five key steps:

59

Step 1: Estimation of the ‘naive’ instantaneous hazards (unadjusted for competing risk)
for progression (h4(t)) and pre-progression mortality (h, (t)). The instantaneous hazard is
approximated by taking the difference between the cumulative hazard at time t and t-1. This is
a discrete time approximation for the differential of the cumulative hazard over the relevant
time interval:

Step 2: Calculation of the instantaneous hazards for the cumulative incidence of events
(any events [progression or pre-progression mortality]). The instantaneous hazard for the
cumulative incidence of events (h;(t)) is calculated by summing the hazard rates for
progression (h, (t)) and pre-progression mortality (h,(t))

Step 3a: Transformation of the instantaneous hazard for the cumulative incidence of
events (PFS) onto a survival function S(t). This is done by multiplying the survival at time
t-1 by the 1 minus the instantaneous hazard at time t, h(t). It should be noted that as described
later in Chapter 4.4.2.1, the mssample function incorrectly uses the instantaneous hazard,
instead of the probability (p(t) ) when calculating the survival function. Doing so, will lead to
the estimate of PFS (which is the cumulative incidence for both events).

Step 3b: Estimation of the cumulative hazard for PFS. The survival function is then
transformed back onto a cumulative hazard function H(t) based on the relationship between
H(t) and S(t) sothat: H(t) = —log[S(t)]

Step 4: Sample the time to any event (progression and pre-progression mortality). The
time to any event (progression or pre-progression mortality) is then sampled from the
cumulative hazard curve to determine the time at which time an event (any) would occur.
Step 5: Define whether the event is progression or pre-progression death. In Step 4, the
time to any event is sampled. However, this could be either a progression event or a pre-
progression mortality event. At the point of failure (the event), the hazard for the two competing
events is compared to determine whether the event is progression or death (to identify which
event is more likely). From the comparison of two hazards (progression and pre-progression
death), the probability for the event to be one or the other is calculated. For instance, if the event
is assumed to occur at time t, and the instantaneous hazard for TTP and prePS are equal at that
time, there will be an equal chance for the event to be either progression or death. If the
instantatenous hazard at time t is lower for TTP (compared with prePS), the probability for the
event to be pre-progression mortality will be higher. However, the event could still be pre-

progression mortality (despite lower hazard).



4.4.2  Findings upon review of the R code of the mssample function

As previously highlighted, for this thesis, in order to understand how the mssample function works
and how competing transitions are combined under a competing risk framework, | reviewed the R code

of the function (and associated functions).

Upon review of the R code, an inconsistency was identified during this process. A further clarification
on how the function worked is also highlighted.

4.42.1 Ratesinthe crsample function appear to be incorrectly treated as probabilities

Upon the review of the R code, an inconsistency was identified in the crsample function (which is
used in the mssample function) in that the instantaneous rates h, are treated as probabilities when

deriving the survival function.

The survival function (ci$s0) is calculated as the cumulative multiplication result (cumprod) of 1

minus the instantaneous hazard (cis$hazsum)

This is not correct as shown in Figure 16, as the instantaneous rates need to be transformed to a
probability first so that p(t) = [1 — (1 — exp (h(t))]. The impact of this error is likely to be minimal
when rates are very small as they become closer to probabilities. However, when the function is applied
to models which use larger time increments, and when event rates are higher, the impact of the error

could become more significant.

It is however possible to correct for this inconsistency simply by slightly amending the R code, so that
instantaneous rates are first transformed onto probabilities prior to deriving the survival function so
that:

p(t) = [1— (1 —exp (h(t))] instead of p(t) = [1 — h(t)]
In the R code,

ci$s0 <- cumprod(l - -ciShazsum) (Original line of code)

needs to be amended to the following: ci$S0 <- cumprod(l - [l-exp(-ciShazsum)])

The presence of this inconsistency can be demonstrated easily by considering the simplest case of the
MSM; the illness-death model, whereby individuals can either be alive or dead (Figure 15). Therefore,
in this case, competing risks are not considered here, as the model includes only a single transition
(from alive to dead).
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Figure 15 : The illness-death model
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The MSM for the simplified illness-death model was run using: (i) the original mssample including
the original crsample functions, and (ii) a corrected version of the crsample and mssample
functions. For the purpose of illustration, the models were run assuming two extreme scenarios: (a) a
very short time increment of one day, and (b) a longer time increment of eight weeks (56 days). The
only transition in this model (death) was informed by a Weibull survival distribution fitted to data on
OS from the BC dataset (described in Chapter 3.2) for illustration. A total of 150,000 patients were
simulated within the mssample function, with the same random seed used to reduce any influence
caused from sampling variation. Figure 16 shows the predictions from the two models (the original and

corrected models) alongside the KM for OS and the direct fit to the data using the Weibull distribution.

In the absence of inconsistency in the mssamp1e function, one would expect the predictions from the
MSM to be identical to the direct Weibull fit irrespective of the time increment used. However, it can
be seen from the left-hand panel in Figure 16 that using the original ms samp1e function, different time
increments provide different predictions, and that smaller time increments lead to predictions which are
closer to the direct fit using the Weibull distribution, as expected. As previously highlighted, this
inconsistency is likely to be attributable to the error made within the crsample function which

incorrectly treats rates as probabilities when deriving the survival function.

The location of the error (transformation of rate onto probabilities) is also hinted given that predictions
from the MSM get closer to the direct Weibull fit when the time increment is small (1 day). In contrast,
following the amendment of the crsample function, it can be seen that predictions using the corrected
version of the mssamp1e function, shown on the right-hand panel of Figure 16 are more stable and, as
expected, the predictions are identical to those derived from the directly fitted Weibull distribution ,

irrespective of the time increment used.

The author of the mssample function was contacted by email on the 19th October 2017 to highlight

this error.
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Figure 16: Predictions for the illness-death model using different time increments prior and after correction
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4.4.2.2 Istime modelled continuously in the mssamp1e function?

Williams et al?* %° describes the MSM as using a continuous-time approach and states that in this type
of model “survival times are treated as continuous variables, rather than being measured in discrete
cycles as is usually the case in decision-analytic modelling”. This statement is misleading as the
mssample function uses direct data on the cumulative hazard over time (discretised), rather than the
parameters of the survival function. In other words, the extrapolation for the transitions is made outside
of the function with data discretised in time intervals defined by the user. The discretised cumulative
hazards are then used in the mssample function to sample the time to events using the Hazsample

function.

Upon reviewing of the R code, as expected, it appears that time is indeed sampled to a discrete value
from the defined interval. The function returns a discretised value, rather than any values between
cycles. For instance, assuming a time horizon of 1,000 days, with data structured in 10-days intervals
(10, 20, 30...1,000), the possible time sampled will be a multiple of 10. In contrast, assuming the same
time horizon of 1,000 days, but this time the data are structured in 1-day intervals, the possible time
sampled could take the value of any integer between 1 to 1,000. Therefore, the use of the term
“continuous time” is potentially misleading as the sampled time cannot take any possible value. Time
is therefore treated in a similar way as in standard health economic cohort models, whereby, time is

measured in discrete time cycles. However, the mssamp1e function uses a simulation approach.

This approach to sampling time (using discretised time intervals) has a number of implications. Whilst
predictions will be the same irrespective of the time increment for a single transition (e.g. time to
progression), this is no longer true when considering consecutive times (e.g. time to death based on
time to progression and time from progression to death). This can be illustrated by considering a simple
three-state model, whereby all patients move to progression prior to death (therefore no patients die in
the pre-progression health state [PFS=TTP]). Data from the BC dataset on PFS (used as a proxy for
TTP) and PPS were used in this example. For the sake of simplicity, all transitions were assumed to be
time-varying, based on Weibull distributions. The MSM was run using the mssample function
(corrected for the inconsistency identified in Section 4.4.2.1), with predictions shown in Figure 17
assuming a time-step of one day and 8 weeks, respectively. For transparency, results are also presented

using the original mssample function (prior correction).
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Figure 17 : lllustration of the impact of using different cycle length on the predictions for the time to events for single and consecutive times
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As anticipated, predictions for PFS are identical irrespective of the time interval used (as this is
estimated from a single time-to-event outcome) using the corrected version of the ms samp1e function.
In contrast, predictions for OS (which are comprised of two consecutive times PFS/TTP+PPS) were
different depending on the time interval used even using the corrected version (and even more so using
the original function). This is because time is treated discretely rather than continuously. Whilst this is
not a limitation of the function, this highlights that consideration needs to be taken when selecting the
cycle length

4.4.3 Implementing the multi-state model using the mssample function in the BC dataset

(CALGB 40502) and comparison with the msm function when the model is Markov

In this section, | describe the implementation of the MSM using the mssample function (part of the
mstate package) in the BC dataset. Given (a) the inconsistency described in Section 4.4.2.1 and (b)
the method used for sampling time to events (Section 4.4.2.2), the corrected version of the mssample
function was used assuming a 1-day cycle length. It should be noted that whilst smaller time increments
may reduce any further potential biases, the computational time is increased significantly. In addition,
150,000 patients were sampled to reduce any influence from sampling variation.

The MSM was run assuming that all transitions (TTP, PrePS and PPS) were constant (survival is
exponentially distributed) - otherwise known as a Markov model. The survival distributions for each
transition were transformed into their cumulative hazard functions and inputted into the mssample
function. Predictions from the mssample function are plotted alongside the predictions from the msm

function (described previously) as this also assumes constant transitions (exponential distribution).

It should be noted that transitions (TTP, PrePS and PPS) could follow alternative parametric time-
varying distributions. The exponential distribution was selected to provide the same distributional
assumption as that used in the msm function. In brief, the implementation of the MSM using the
mssample function (part of the mstate package) is relatively straightforward and follows six key
steps (see Figure 18). It should be noted that the earlier steps described in Figure 18 feed into the

mssample function which is used to combine the transitions (Step 6 in the figure).

The survival functions for the three transitions together with their associated cumulative hazard
functions using the exponential, are presented in Appendix 1. Predictions from the MSM using the
mssample function (mstate package), the msm function and STMs are plotted against the KM plots
of PFS and OS in Figure 24. As expected, when transitions are constant, predictions from the MSM
using the mssample function and msm function are the same. It should be noted that in this example,

the assumption of constant transitions did not fit the data well.
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Figure 18 : Step by step implementation of the multi-state using the mssample function (part of
the mstate package) in the BC dataset (CALGB 40502)

Step 1: Identify in the dataset the cause-specific event not conditional on the
competing risk (0 - did not die or have a progression, 1 - had a recurrence event, 2 -

died without progression)

Step 2: Create 2 new survival outcome variables for each cause-specific event (the
competing event is censored)
e Time to progression (TPP). In the original dataset, there was 217 PFS events
(including progression and pre-progression death). The PFS event was death
in 22 patients. Therefore, TTP is derived based on PFS censoring these 22
events
e Pre-progression mortality (PrePS). This is derived based on PFS censoring
progression for the 195 patients for whom the PFS event was progression

~~

Step 3: Generate a transition matrix describing the possible path and transitions in the
multi-state using the transMat function (pertaining to the mstate package)

~~

Step 4: Prepare the data. This is done using the msprep function pertaining to the
mstate package. This function converts a dataset which is in wide format (one
subject per line, multiple columns indicating time and status for different states) into a
dataset in long format (one line for each transition for which a subject is at risk). This
uses a counting process approach whereby the number and type of events an
individual experience during his or her follow-up are counted

~~

Step 5: Estimate the cumulative hazard function for each cause-specific event (or
transition). Data are discretised in time in time intervals. A time interval of 1 day is
used over a time horizon of 1,000 days

~~

Step 6: Generate predictions from the multi-state using the mssamp1e function. The
function is used alongside (1) the matrix describing the path (step 3) and (2) the
transition probabilities (step 5) between health states (in the form of cumulative
hazard). The mssample function is used to generate the state occupancy assuming
150,000 patients
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45 Summary

In this chapter | described the implementation and key assumptions when constructing an MSM. This
is a powerful tool which allows for the modelling of transitions under a competing risks framework.
Two R packages to perform multi-state modelling were described in this chapter; the msmand mstate
package. As previously described, a function is also available in STATA and uses the same approach
as the mssample function in R. It should be noted that the STATA function (which | have used

separately — not shown here) is more efficient and return predictions more rapidly.

A key strength of the msm package is that parameters are estimated endogenously and the model is
fitted directly to the data with transitions assumed to be constant. The msm package assumes constant
event risks and that the model follows a Markov process. This assumption is rarely considered plausible
in health economics. However, it is possible to relax this assumption by fitting the model using the msm
function assuming that transitions are constant within defined time intervals. This can easily be done
using the msm function using the pci option. However, when fitting the MSM and predicting health
state occupancy over the patient’s lifetime, the long-term extrapolation beyond the observed period of
the trial will be based on the constant hazard observed in the last time interval considered — this
assumption may not be considered appropriate and could lead to inappropriate extrapolations. In
contrast, the mstate package allows for the use of any parametric distributions (standard or flexible).
However, using this package, parameters for the transitions are estimated exogenously from the MSM
and inputs (the cumulative hazard function for each transitions) are combined within the mssample

function.

In addition to accounting for competing risks under a competing risk framework, a key strength with
using the msm and mstate functions is that these are pre-defined functions which are easy to use,
making them transparent and reproducible, which reduces the scope for implementation errors (as
described in Chapter 5). Despite the strengths associated with multi-state modelling and the availability
of packages in R, the approach is rarely used in health economic state-transition models. Instead, a
number of simplifications are typically made in health economics to avoid the explicit modelling of the

competing transitions.

In the next Chapter, I highlight the simplifications made in health economic models of anticancer
therapies to estimate health state sojourn time using the STM approach and demonstrate how this
compares with the MSM approach. | then discuss the key assumptions and implications for the
simplifications typically made in health economics when modelling competing transitions between

health states.
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5 CHAPTER V: WHAT ARE THE IMPLICATIONS FOR THE
SIMPLIFICATIONS MADE IN HEALTH ECONOMICS WHEN
MODELLING COMPETING TRANSITIONS

5.1 Chapter overview

In this chapter, | describe how the STM approach is currently implemented in health economic models
of treatments for advanced/metastatic cancer.

In Section 5.3, | present findings from a review of the implementation of the state transition model in

NICE TAs of cancer interventions in the advanced/metastatic setting published in the last 10 years.

In Section 5.4, | describe the key assumptions made in health economics when modelling the competing

transitions and highlight how this compares with the MSM.

In Section 5.5, | provide a direct comparison of the STM as currently implemented in health economics
and the MSM when transitions are assumed to be constant to illustrate that these approaches provide

similar estimates. A comparison when transitions are time-varying is presented in Section 5.6.

In Section 5.8, | draw conclusions regarding the extent to which the simplifications regarding

competing transitions made in health economic state transition models are appropriate.
5.2  Introduction

Following a rapid review of STMs used in NICE TAs, | highlight the simplifications that are typically
made in current STMs and discuss the key assumptions employed when modelling competing
transitions. | also highlight how this approach compares with the MSM approach described in Chapter
4,

5.3 How are competing transitions combined in NICE TAs of anticancer interventions in the

advanced/metastatic setting?

This section presents results from a rapid review of STMs used in NICE TAs of cancer interventions in
the advanced/metastatic setting published in the last 10 years (May 2009 — May 2019). The review was

subsequently updated for transparency and completeness to include an additional year (until May 2020).
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5.3.1 Review objectives

A review of the implementation of the PSM is available Woods et al (2016). However, no review is
available on how the STM is currently implemented in health economics. Consequently, a rapid review
of STMs used in NICE TAs is presented in this thesis. The primary aim of this rapid review is to identify
how competing transitions in the STM are modelled in health economic analyses, notably how the
transition from TTP (4,,) and PrePS (4,3) are combined.

The secondary objective of the review is to identify the different structural assumptions used within
current three-state STMs.

5.3.2 Initial search and selection strategy

The initial search was conducted on the 5th June 2019. For this thesis, | reviewed all NICE TAs of
interventions for advanced/metastatic cancer completed or ongoing between May 2009- May 2019 (the
last 10 years). Ongoing (“in development™) appraisals were also included to ensure that potential

alternative approaches were not missed.

The review was limited to NICE appraisals: (a) to be reflective of approaches used within the HTA
context; (b) as enough details on the analytical approach and assumptions are typically available from
NICE documentation, and (c) to keep the review manageable. Findings may therefore not be fully

generalisable as alternative implementations may be available in the broader literature.

Only models reported in company submissions were considered within the review as these form the
basis for the economic evaluation in NICE STAs. For NICE Multiple Technology Appraisals (MTAS),
only the method reported by the AG was included. This is because only a summary of the company’s

model is typically published. Inclusion and exclusion criteria for the review are described below.
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Inclusion criteria

Appraisals (completed or ongoing) between May 2009- May 2019

Modelling of an intermediate endpoint (PFS, TTD, EFS, TTP, RFS) and OS

Appraisals for an intervention in the advanced/metastatic setting or mixed population including
a large proportion of people with advanced disease.

Progressive models (i.e. patients are not assumed to regress to a better health state)

Presence of competing transitions, taken from the same source of data.

Exclusion criteria

Appraisals in conditions other than cancer

Early/adjuvant setting (when non-metastatic)

Terminated appraisals or appraisals at scoping stage or prior ACD

Models in which OS is estimated directly (e.g. using a PSM approach)

Appraisals where there was insufficient detail (or lack of clarity) regarding how the competing
transitions were considered

Non-progressive models

Absence of competing risks (for instance, no death in pre-progression)

Competing risks modelled using data from multiple sources (for instance, PFS taken from one

source and the proportion of events which are deaths taken from another source).

5.3.3

Subsequent update

Given the timing of the review, the original search was updated on the 16" June 2020 to include the
most recent year (June 2019 — May 2020).

534

Data extraction and synthesis

A data extraction form was created in Excel with the key characteristics of relevant appraisals

(condition, setting) and details of the modelling approach (for instance health states, structural

assumptions) extracted.

A simplified version of the extraction from is provided in Appendix 2, summarising the key

characteristics of the included appraisals, the approach taken and the assumption used.

Findings are summarised in a narrative form in the main body of this chapter. The methods to

model/combine competing transitions are then categorised in terms of key structural assumptions.
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5.3.5 Results

Figure 19 shows the results of the search. As of the June 2020, there 439 TAs ongoing/in the
development list and 396 NICE TAs published between May 2009 and May 2020. Of these, 29
appraisals met the defined inclusion criteria; 28 in the published list of NICE TAs and 1 appraisal in
the NICE development list. The included appraisals are listed in Table 4. The key reasons for exclusion
were: non-cancer appraisals or non-advanced (n=182), appraisals at the scoping stage, in progress or
terminated (n=473), direct OS modelling (n=135), other (n=16). It should be noted that only one reason
for exclusion is recorded here; therefore, a study could also have been excluded for a different reason

to the main reason recorded here.

Figure 19: Search results for NICE TAs included in the review

Search (June 2020): search (June 2020):
In the published list (n=396) In the development list (n=439)

Total = 3
=835 Excluded (n=806):
Reason for exclusion:
+ Direct modeling (n=135)
,| * Non-cancer (n=171)
* In progress/terminated
(n=473)
* Non advanced (n=11)
= «  Other (n=16)
Included
n=29
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Table 4 : NICE TAs included in the review

Date

Ref Title published

ID945 | Abiraterone for treating newly diagnosed high risk metastatic hormone-naive prostate | TBC
cancer [1D945]

TAG604 | Idelalisib for treating follicular lymphoma refractory to 2 treatments Oct-19

TA593 | Ribociclib with fulvestrant for treating hormone receptor-positive, HER2-negative, | Aug-19
advanced breast cancer

TA586 | Multiple myeloma - lenalidomide (post bortezomib) (part rev TA171) [ID667] Jun-19

TA5B87 | Multiple myeloma (newly diagnosed) - lenalidomide [ID474] Jun-19

TA578 | Durvalumab for treating locally advanced unresectable non-small-cell lung cancer after | May-19
platinum-based chemoradiation

TA563 | Abemaciclib with an aromatase inhibitor for previously untreated, hormone receptor- | Feb-19
positive, HER2-negative, locally advanced or metastatic breast cancer

TA513 | Obinutuzumab for untreated advanced follicular lymphoma Mar-18

TA502 | Ibrutinib for treating relapsed or refractory mantle cell lymphoma Jan-18

TA496 | Ribociclib with an aromatase inhibitor for previously untreated, hormone receptor- | Dec-17
positive, HER2-negative, locally advanced or metastatic breast cancer

TA491 | Ibrutinib for treating Waldenstrom’s macroglobulinaemia Nov-17

TA439 | Cetuximab and panitumumab for previously untreated metastatic colorectal cancer Mar-17

TA472 | Obinutuzumab with bendamustine for treating follicular lymphoma refractory to | Aug-17
rituximab

TA387 | Abiraterone for treating metastatic hormone-relapsed prostate cancer before | Apr-16
chemotherapy is indicated

TA400 | Nivolumab in combination with ipilimumab for treating advanced melanoma Jul-16

TA386 | Ruxolitinib for treating disease-related splenomegaly or symptoms in adults with | Mar-16
myelofibrosis

TA384 | Nivolumab for treating advanced (unresectable or metastatic) melanoma Feb-16

TA380 | Panobinostat for treating multiple myeloma after at least 2 previous treatments Jan-16

TA381 | Olaparib for maintenance treatment of relapsed, platinum-sensitive, BRCA mutation- | Jan-16
positive ovarian, fallopian tube and peritoneal cancer after response to second-line or

TA370 | Bortezomib for previously untreated mantle cell lymphoma Dec-15

TA343 | Obinutuzumab in combination with chlorambucil for untreated chronic lymphocytic | Jun-15
leukaemia

TA263 | Bevacizumab in combination with capecitabine for the first-line treatment of metastatic | Aug-12
breast cancer

TA257 | Lapatinib or trastuzumab in combination with an aromatase inhibitor for the first-line | Jun-12
treatment of metastatic hormone-receptor-positive breast cancer that overexpresses

TA258 | Erlotinib for the first-line treatment of locally advanced or metastatic EGFR-TK | Jun-12
mutation-positive non-small-cell lung cancer

TA243 | Rituximab for the first-line treatment of stage I11-1V follicular lymphoma Jan-12

TA226 | Rituximab for the first-line maintenance treatment of follicular non-Hodgkin's | Jun-11
lymphoma

TA214 | Bevacizumab in combination with a taxane for the first-line treatment of metastatic | Feb-11
breast cancer

TA193 | Rituximab for the treatment of relapsed or refractory chronic lymphocytic leukaemia | Jul-10

TAL174 | Rituximab for the first-line treatment of chronic lymphocytic leukaemia Jul-09
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Consequently, a total of 29 appraisals were included in the review, including 28 TAs from the initial
search in the last 10 years (May 2009-May 2019) and one TA in the most recent year (June 2019- May
2020).

Of the 29 appraisals included in this review, 6 were in breast cancer (BC; TAs 214, 257, 263, 496, 563
and 593),1% 5155 5 were in follicular lymphoma (FL; TAs 226, 243, 472, 513 and 604),2% °65° 3 were in
multiple myeloma (MM; TAs 380, 586, and 587),%:47:%° 3 were in CLL (TAs 174, 193 and 343)%63 2
were in melanoma (TAs 384 and 400)%* % 2 were in mantle cell lymphoma (MCL; TAs 370 and 502),%
672 were in non-small-cell lung cancer (NSCLC; TAs 258 and 578),% ¢° 2 were in prostate cancer (PC;
TAs 387 and 1D945)* 70 one was in myelofibrosis (MF; TA 386),”* one was in ovarian cancer (OC; TA
381),2 one was in colorectal cancer (CC; TA 439),’2 and one was in Waldenstrom’s
macroglobulinaemia (WM), TA 491.7

Fifteen of the included appraisals were conducted in the advanced/metastatic setting, eight related to a
relapsed/refractory population, one was in patients with locally advanced disease only (stage 111) with
the remaining five appraisals including a mixed population in terms of stage or where it was unclear

whether this was the advanced form of the condition.

The majority of models reviewed were centred around 3 key health states (PF, PD and death), with a

proportion of those separating the time on and off treatment.

Evidence on the time to progression or death (PFS) and PPS was taken (mostly) from the same source
(key trial) in 20 appraisals. Separate sources were used for PFS and PPS in 9 appraisals. This was
because a pathway was typically modelled. In one appraisal (TA513%°), the model was based primarily

on the key trial, supplemented by external evidence.
5.3.5.1 Terminology used

Terminologies used to describe the modelling approach were sometimes absent, inconsistent or
inappropriate, with the Markov terminology often used inappropriately, despite the model not being
‘true’ Markov. A range of terminologies were used including; Markov model, semi-Markov model, and

(Markov) state-transition model.
5.3.5.2 Justification for the choice of approach

The key justification provided for the modelling approach compared with the PSM (or an alternative
approach) focused on the modelling of the treatment pathway/natural history or use of external evidence
in 17 appraisals. Fourteen appraisals (ID945,* TA593,% TA578,% TA563,% TA502,6" TA496,%
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TA491,7° TA472,%° TA400,% TA384,% TA381,2 TA370,% TA343,°* TA257%%) made explicit reference
to the immaturity of the data for justifying using an STM compared with a PSM approach. Four
appraisals justified the use of the STM given the structural relationship between PFS and OS (TA586,
TA587,4” TA578% and TA563%). One appraisal, an MTA, justified the use of the STM approach by the
difficulty in representing the hazard of death using a parametric distribution (TA257%%). Seven
appraisals (TA604,%° TA214,%2 TA193,%2 TA174,% TA513,% TA263% and TA258%) did not provide
any clear justification for the choice of modelling approach, with the exception of mentioning that the

selected approach is commonly used in oncology.

The majority of the STMs included in this review used a cohort approach, with 5 models using an
individual based-simulation approach (TA593,%° TA496,°* TA387,/° TA386,* TA243%") and an
additional 3 using the msm package (1D945,% TA586, TA5874"). In the majority of cases, the
intermediate endpoint was PFS. Two models used time to treatment discontinuation (TTD)" " with an

additional appraisal using first subsequent treatment (FST).2
5.3.5.3 Modelling competing transitions

The majority of models reviewed (n=21) modelled a combined endpoint (typically PFS) directly as a
single composite endpoint, accounting for the two competing events. In other words, taking PFS as an
example, instead of explicitly modelling the transitions from progression-free to progressed disease and
from progression-free to death (without progression), the majority of reviewed models used PFS
directly and extrapolated this endpoint beyond the trial duration as a single outcome. PFS was then

divided between the two competing events using a set of structural assumptions.

Three of the models reviewed (TA604,%® TA400,% TA384,%) modelled the two competing risks
separately: TTP - where deaths prior to progression were censored and; PrePS - whereby progression
events other than death were censored. However, it is unclear from the model descriptions provided in
the company submissions (CS) or the ERG reports how the two competing risks were combined and
whether this was done appropriately. An additional model used TTP and estimated a constant rate of
death from a negative binomial model (TA563%). Three appraisals used the msm package in R and
therefore dealt with competing risks (1D945,* TA586,* TA5874"). One appraisal used a discrete event

simulation approach and compared times to the next event (TA3877°).

Amongst the 21 models that modelled a combined endpoint (mostly PFS) as a single endpoint, three

broad approaches were employed to separate the two competing events (using PFS as an example);
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e Approach 1 (n=8): Use of PFS to model the combined transitions for people leaving the PF

state, assuming that a proportion of PFS events are death or progression. The proportion was
assumed to be constant (calculated as number of pre-progression deaths divided by total number
of PFS events) in 5 appraisals (TA593,% TA496,> TA386,"* TA381,2* TA243%). In a further
two appraisals (TA439,2 TA257,%°) this approach appeared to have been employed, but this
was not fully clear. The proportion of pre-progression deaths was assumed to be time-varying
in one appraisal (TA380%) whereby a logistic regression model using the log of time in PFS
was used as a covariate.

e Approach 2 (n=11): Use of PFS to model the combined transitions for people leaving the PF
state, with a constant probability of dying in PFS based on the rate of death in PFS (TA513,%
TA502,7 TA491,® TA472,2° TA263,5' TA258,%° TA226,8 TA214,52 TA193,52 TA174%)
calculated as the number of deaths in PFS divided by the person-years in PFS (total PFS time;

observation and censored time). In one appraisal (TA343%) it was unclear how the constant
probability of dying whilst progression-free was calculated.

e Approach 3 (n=2): Use of PFS to model the combined transitions for people leaving the PF

state; with

o Approach 3a: the probability of dying in PFS at each cycle based on the pre-progression
survival (PrePS) curve in one appraisal (TA370). A parametric function was fitted to
prePS data (PFS censored for progression) to obtain the probability of dying in PFS in
each cycle.

o Approach 3b: the probability of remaining in PFS in each cycle based on TTP in
another appraisal (TA578%). A parametric function was fitted to the KM for TTP to
obtain the probability of remaining in PFS at each cycle. In this appraisal, the company
stated that “the key assumption made was that the TTP distribution was set to the same
as for PFS”. This assumption is likely to be necessary to limit inconsistencies in the
shape between PFS and TTP.

5.3.5.4  Use of multi-state modelling

Three appraisals (1D945, TA586,* TA5874") used a multi-state approach using the msm function
described in Chapter 4.3. The observed time-to-event data were used initially, followed by an MSM in
ID945% and TA587%". The msm was fitted to data for three time intervals in TA586% in order to account
for time-varying probabilities. No appraisals used the mstate/mssample functions described in
Chapter 4.4.
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5.3.5.5 Use of post-progression survival and assumptions about the intervention

The majority of appraisals reviewed used a time-varying distribution to model PFS (or related
intermediate endpoints) or to model the transition between progression and death (PPS). Seven
distributions were generally considered: the exponential, Weibull, Gompertz, Log-Normal, Log-
Logistic, Gamma and Generalised Gamma functions.

Appraisals which allowed time-varying transition in PPS used tunnel states (a series of states that can
be occupied for only one cycle) in all cohort models. Tunnel states allow the probability to be different
for each tunnel state, allowing transition probabilities to change depending on history. Tunnel states
were not required for the individual patient-level simulation models. The use of an exponential
distribution for PPS was justified in 5 appraisals (TA502,5” TA380,%° TA343,5! TA258,%° TA226,%) to

avoid overcomplicating the model by the addition of tunnel states.

For the 15 appraisals which primarily used information from the key pivotal trial (i.e. the model is based
on the trial for the intervention against a relevant comparator with little reference to external evidence),
PPS was pooled across arms in 10 appraisals (TA593,% TA578,% TA513,%° TA472,% TA370,%
TA257,%° TA214,%2 TA193,%2 TA174,% TA380%). The key justification for pooling PPS was the absence
of significant or visual differences in the data between each arms. A different PPS function was used
between the control and intervention arms in 6 appraisals (TA586,% TA587,* TA386,* TA381,%
TA263,°! TA257%) based primarily on evidence from the key trial. One appraisal (TA257) presented
results from two models for different comparisons; one comparison where PPS was pooled and one
comparison where PPS was not pooled. The same PPS was further assumed between treatments in a
further 3 appraisals (TA502,%” TA258,%° TA604°°) because the key trial was either a single trial arms

study or had a different comparator to the one assessed in the pivotal trial.

In all of the included models in this review, PPS was based on survival models fitted directly to the trial
data, without any adjustment (with the exception of general population mortality constraints). In other
words, none of the included models estimated the time to death following progression conditional on
the time to progression. The only models which recognised that PPS estimated from the trial only in the
subset of patients who progressed may not be generalisable to the overall randomised population was
in TA513% and TA380%. In TA513,% the company modelled early and late progressors separately,
using information from the trial to represent early progressors (the first two years) and external evidence
to represent late progressors (beyond two years). Similarly, in TA380, PPS (following lenalidomide)

was separated between early and late progression.
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5.3.5.6  Other assumptions

With the exception of the MSMs that used the msm function, transitions were typically estimated
separately from each other (no common parameters), and therefore, there is an assumption of
conditional independence (parameters for the transitions are estimated independently from each other).

In one appraisal (TA563%), transitions after progression were not explicitly modelled. Instead, a fixed
pay-off (calculated from external data) that represented the outcomes in PPS (costs and QALY's) was
applied at the point of progression. This assumes perfect surrogacy between delta PFS and delta OS.

Finally, the majority of models included background mortality constraints to ensure that the modelled
mortality hazard for people with the disease does not fall below that for people without the disease.
Such assumptions did not impact on the implementation in the model. Background mortality was
typically implemented by taking the maximum between the probability of death for the general

population and the probability of death from hazard from the trial (for logical consistency).
5.3.5.7 Key findings

This rapid review highlights some variation with respect to how competing transitions are considered
in NICE TAs for anticancer therapies in the advanced/metastatic setting. The majority of economic
models included in this review used a cohort approach and modelled the intermediate endpoint (PFS or
an alternative related endpoint) as a single composite endpoint, accounting for the two competing
events. Consequently, instead of explicitly modelling the two competing transitions (progression-free
to progression and progression-free to death) as is done in the MSM approach described in Chapter 4,
the cumulative incidence of events (PFS) was modelled instead for people leaving the progression-free
health state, with a set of structural assumptions being applied to subsequently separate progression

events from pre-progression mortality events.

Three appraisals used multi-state modelling using the msm function and fitted the model for part of the
trial period, or for different time intervals, to account for time-varying hazards. Most of these appraisals
were recent submissions/re-submissions. The review did not identify any appraisals which used the
mstate (mssample) function. Three broad structural assumptions were used to separate the two
competing transitions from the cumulative incidence of events (PFS or related endpoints) in people
leaving the PF health state: (i) assuming a proportion of PFS events are deaths (which could be constant
or time-varying); (ii) assuming a constant probability of dying in PFS calculated from the number of
deaths divided by total person-PFS time, or (iii) assuming a probability of dying in PFS or remaining
in PFS based on the PrePS or TTP curve.
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This rapid review highlights that compared with the MSM approach described in Chapter 4,
simplifications are typically made in health economic models in that not all transitions are explicitly
modelled under a competing risk framework and that there are some inconsistencies in NICE TAs in

terms of how competing transitions are considered.

In Section 5.4, | discuss the key assumptions and simplifications made in health economics to model
the competing transitions and whether these have the propensity to alter decision-making compared

with the formal multi-state framework.

5.4 What are the key assumptions commonly made in health economics when modelling the

competing transitions?

The multi-state approach described in Chapter 4 is rarely used in health economic evaluation. As noted
above, the msm function was used in three recent appraisals (1D945,% TA586,* TA58747). The key
assumption is that transitions are constant within time intervals. The mstate/mssample function,
which uses parametric extrapolation for each transition and combines them under a competing risk
framework, has not been used in any of the appraisals included in this review. However, such functions
could have been used in more recent appraisals or in expanded literature not covered by this review. As
described in Section 5.3, the STM is typically implemented using PFS directly (as a composite endpoint
for the two competing transitions) combined with structural assumptions on how to separate death

events from progression events.

This section focusses on the two key structural assumptions made within the Simplified STM approach
used in in health economic models and compares them against the structural assumptions made within

the multi-state framework.

5.4.1 Assumptions regarding the estimation of the transition for leaving the progression-free

health state (combined transition)

As highlighted in Section 5.3, a key difference between the MSM and the Simplified STM applied in

health economics relates to how the cumulative incidence of event (PFS) is estimated:

¢ Inthe MSM, the cumulative incidence of events for leaving the PF health state is estimated as
a function of the two competing events/transitions (TTP and PrePS) under a competing risk
framework. Therefore, the probability of leaving the PF health state is given by two transitions

and is therefore estimated indirectly from the PFS data.
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e Incontrast, in the Simplified STM applied in health economic models, the cumulative incidence
of events for leaving the PF health state is estimated directly from the PFS curve fitted to the
trial data. Therefore, the probability of leaving the PF health state is given by the PFS data

directly (a single transition).

As described in Section 3.10, standard approaches and approaches that properly deal with competing
risks are similar when analysing a combined composite endpoint such as PFS using a hon-parametric
approach. However, whilst this may be true from a non-parametric point of view during the observed

period of a study, this relationship may no longer hold when:

e the hazard is determined parametrically during the observed period, and when,

e extrapolating beyond the observed period.

This is because during and beyond the observed period, the hazard is determined from a parametric
function and fit to the data and no longer from the data itself directly. The only exception is when the
rate of events is constant (i.e. survival is exponentially distributed). In such cases, using PFS directly to
represent the cumulative incidence of events is the same as modelling the two competing transitions

separately. This is because rates are additive and constant throughout the model duration.

In contrast, when the rate of events (for either PFS or competing transitions) is assumed to be time-
varying, using PFS directly may lead to differences in predictions compared with modelling the two
competing transitions under a competing risk framework. This is because the fit and extrapolation for
PFS estimated from a single dataset (PFS) is not the same as the fit and extrapolation from two separate
datasets (TTP and prePS) which are then combined. These potential differences will be reduced when
the degree of extrapolation is minimal and when the fit of the model to the observed data is good. In
contrast, larger differences will be expected when the parametric function provides a poor fit to the
observed period or when the need for extrapolation beyond the observed period is greater due to the
increase in uncertainty around of the shape of the extrapolation (as PFS will be a combination of the

extrapolated hazards for two separate events).

Despite difficulty to provide a comparison, to illustrate this further, the PFS direct fit is compared
against the estimated PFS under a competing risk framework in this Section. In addition to the BC
dataset described in Chapter 3.2, data for the comparator arm from a trial in prostate cancer and lung
cancer were obtained from the Project Data Sphere.®> 33 74 The prostate cancer trial included 470
patients, of whom 401 had a recorded PFS event (340 progression events and 61 deaths prior to
progression).32 The lung cancer trial included 479 patients, of whom 440 had a recorded PFS event (313

progression events and 127 deaths prior to progression).*
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Eight parametric distributions (exponential, Weibull, Gompertz, Log-Normal, Log-Logistic, Gamma
and Generalised Gamma and a restricted cubic spline (RCS) hazard model with one knot) were
considered for each survival outcomes (PFS, TTP and PrePS). The fit for each parametric distribution
for PFS, TTP and PrePS in the Lung and Prostate cancer dataset is shown in Appendix 3.

The estimated mean PFS using the direct PFS fit and estimated by combining TTP and PrePS under a
competing risk framework is shown in Table 5 for the combination of transitions for each of the three

separate datasets (breast , prostate and lung).

Table 5 : Estimation of mean PFS using direct PFS fit and combination of TTP and PrePS in the

Breast, Lung and Prostate datasets

The values in bold (first row for each dataset) represent the mean PFS predicted using direct PFS (for
instance, the mean PFS using a directly fitted Gompertz model for the BC dataset is 67.21 weeks). The
next rows show PFS estimated as combination of the distribution selected for TTP (column) and presPS
(row) under a competing risk framework, giving 64 possible combinations for each dataset. For
example, in the BC dataset, mean PFS generated assuming TTP follows a log-normal distribution and

PrePS follows a gamma distribution is 84.00 weeks.

|Distribution for PES/TTP
Breast cancer dataset (mean PFS in weeks)
exp weibull gompertz Inorm llogis gamma gengamma | spline

PFS 70.18 66.55 67.21 101.42 84.78 67.02 67.76 75.17
" exp 70.18 67.02 68.69 93.2 78.58 67.34 68.49 72.46
q weibull 68.57 66.46 67.6 81.93 72.36 66.67 67.47 68.65
§ gompertz 67.4 66.05 66.84 75.88 68.99 66.16 66.69 66.4
= Inorm 69.77 66.92 68.41 91.65 77.82 67.22 68.28 71.98
§ llogis 69.02 66.63 67.89 86.28 74.8 66.87 67.78 70.13
3 gamma 68.85 66.56 67.78 84 73.5 66.8 67.66 69.37
B gengamma }67.97 66.26 67.23 78.11 70.26 66.42 67.08 67.28
e spline 68.87 66.56 67.78 85.33 74.26 66.8 67.67 69.79
Prostate cancer dataset (mean PFS in weeks

PFS 44.95 44.09 43.69 69.31 67.03 44.47 43.63 50.64
" exp 44.95 44.45 45.04 58.05 53.85 44.64 44.3 47.01
% weibull 44.34 44,01 44.41 52.61 49.92 44.15 43.9 45.35
E gompertz 43.38 43.27 43.4 47.1 45.95 43.33 43.22 43.39
= Inorm 45.28 44.74 45.39 62.2 57.13 44.95 44,58 48.27
§ llogis 44.86 44.43 44.94 57.45 53.57 44.6 44.3 46.88
3 gamma 44.54 44.16 44.62 54.18 51.06 44.32 44.05 45.86
B gengamma ]43.61 43.42 43.64 48.37 46.84 43.51 43.35 43.81
e spline 44.39 44.06 44.45 53.77 50.84 44.2 43.96 45.7
Lung cancer dataset (mean PES in weeks)

PFS 29.69 29.19 29.29 34.07 35.85 29.21 29.21 30.07
" exp 29.69 29.26 29.31 29.36 28.82 29.02 29.38 29.38
% weibull 29.75 29.24 29.33 29.36 28.83 29 29.39 29.41
E gompertz 29.53 29.33 29.29 29.32 28.76 29.1 29.34 29.24
L Inorm 30.67 29.37 29.8 29.82 29.42 29.06 29.86 30.39
§ llogis 30.39 29.46 29.72 29.77 29.33 29.18 29.8 30.13
3 gamma 29.77 29.23 29.34 29.36 28.82 28.98 29.38 29.41
B gengamma ]29.51 29.26 29.25 29.24 28.66 29.01 29.26 29.15
e spline 29.83 29.36 29.4 29.49 29.01 29.12 29.52 29.64

o
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As expected, the estimated mean PFS is exactly the same when the exponential distribution is used for
the direct PFS fit and when the exponential distribution is used for both TTP and PrePS and combined
under a competing risk framework. This was the case in all three datasets (breast, prostate and lung

cancer).
When looking at each individual dataset, the following could be noted:

e Breast and prostate cancer dataset: The log-normal, log-logistic and spline models had a
longer tails compared with other distributions for both PFS and TTP, and thus led to higher
estimates of TTP and therefore higher PFS. Because of the longer tail, for these distributions,
the reliance on extrapolation beyond the observed period was much greater and therefore the
extrapolation for PrePS has a more significant impact on the estimation of PFS, as shown in
Table 5. While the same TTP is used, different prePS lead to larger variation for PFS.

e Lung cancer dataset: In this dataset, whilst the log-normal and log-logistic distributions had
longer tails compared with other distributions, the tail remained minimal. PrePS was relatively
similar between models up to week 75, by that time, most patients had progressed, limiting any

impact from the use of different PrePS functions.

Although it is difficult to provide a like-for-like comparison, it can be seen from this simple illustration
that when the fit to the transition is poor or the degree of extrapolation required is greater, there is more
scope for the differences between the direct fit and competing risk approach. If transitions were
estimated using a complete dataset with no censoring, no differences are expected in the estimation of
PFS using the direct fit or combining TTP and PrePS. However, this is not possible in practice as data
are incomplete (due to censoring). Consequently, differences in the estimation of PFS between these
two approaches are the results of the selection of the appropriate survival function, rather than the

approach itself.

5.4.2  Assumptions on the estimation on the separation of patients who experienced progression
or death

Because PFS is used directly in the simplified STM (commonly used in HE) to represent the transitions
for people leaving the PF health state, assumptions are required to separate progression to pre-
progression death events. As highlighted in Section 5.3, three broad structural assumptions are used in
the Simplified STM to separate PFS in terms of progression and pre-progression death events. These
key structural assumptions are described in detail below. Whilst the number of PFS event will be the
same irrespective of the approach taken, the estimated number of progression and pre-progression

mortality events differs according to the approach used.
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5.4.2.1 Approach 1: The Simplified STM assuming a proportion of PFS events to be death

or progression

Perhaps, the simplest approach to separate PFS into the two competing events (progression and pre-
progression mortality) is to consider that a proportion of PFS events are (a) progression or (b) death.

The probability that the event is either progression or death could be:

e Constant: calculated from the number of deaths in PFS divided by the total number PFS events
e Time-varying: calculated from a logistic regression model using PFS time as a covariate (on

the log scale) or alternative forms.

The implementation is relatively straightforward. The number of patients leaving the PF health sate is
first calculated at each cycle (based on the difference in PFS between time intervals), with a proportion
of people leaving this health state assumed to be because of death.

The key strength of this approach is its simplicity. However, it is associated with two limitations:

(i) Assuming the probability that PFS events are deaths is constant is an over-simplification and is
only appropriate when the model is Markov (i.e. when all transitions - PFS and the two
competing transitions - are constant),

(ii) Whilst the probability of an event being death or progression could be assumed to be time-
varying, through the use of a logistic regression model (which uses log of PFS time as
covariate), such an approach is also likely to be biased for two reasons. First, the shape that the
logistic model can take is restricted. Perhaps more importantly, the logistic model does not
account for censoring, and therefore any estimates from the logistic regression model are likely

to be different from data after accounting for competing risks.

5.4.2.2 Approach 2: The Simplified STM assuming a constant probability of dying in PFS

based on the number of events divided by the total PFS time

The second approach uses a different set of structural assumptions in that the number of deaths in pre-
progression at a given cycle is calculated from the number of patients who were progression-free in the
previous cycle and a constant probability of dying. This constant probability of dying in PFS is
calculated based on the number of deaths in PFS divided by the total PFS time (sum of PFS time,
including censored observations and events). The number of progression events is then calculated from
the number of people who progress during a given cycle minus the number of pre-progression deaths

calculated above.
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Compared with Approach 1 (outlined above), this approach is perhaps more consistent with the
competing risk framework whereby PFS represents the cumulative incidence of the two competing
events. Within this framework, the probability of death is calculated as the cumulative incidence of any
event at time t multiplied by the cause-specific hazard for each event. However, such an approach is
restrictive and only appropriate if the rate of pre-progression mortality is constant over time.
Furthermore, this is different to properly dealing with competing risks, as PrePS does not affect PFS
with this approach; instead it only influences the contribution of progression and pre-progression death

events.

5.4.2.3 Approach 3: The Simplified STM assuming a probability of dying based on the pre-

progression survival curve (PrePS) or remaining based on TTP

The third approach follows the same principle as the second approach in that the number of deaths in
the PF state is calculated from the number of patients who were progression-free in the previous cycle
and the probability of dying in PFS. However, compared with Approach 2, which assumes a constant
probability of dying in PFS based on the number of deaths in PFS and total PFS time, Approach 3 uses
the hazard from the pre-progression survival function (PrePS). PrePS is the “naive” cause-specific
incidence of pre-progression mortality prior to accounting for the existence of the competing event
defined as the time to pre-progression mortality, with progression events occurring prior to death being

censored.

Typically, PrePS is extrapolated beyond the trial using parametric functions. The probability of dying
is then given by the PrePS hazard during each cycle. If PrePS follows an exponential distribution, the
hazard of death prior to progression will be constant. If PrePS follows any other distribution, the hazard
of dying whilst progression-free will be time-varying. It should be noted that if the exponential
distribution is used and the hazard is constant, this is the same as calculating the hazard based on the
number of death events in PFS and total PFS time under a Poisson distribution. Consequently, under
the assumption of an exponential distribution for PrePS, the hazard of dying in PFS will be the same

for Approaches 2 and 3.

As with Approach 2, the implementation is more consistent with the competing risk framework whereby
PFS represents the cumulative incidence of the two competing events. However, compared with
Approach 2, using PrePS to define the probability of dying whilst progression-free is more flexible and
allows a better reflection of the data allowing the hazard to be time-varying. Nevertheless, as previously
highlighted, this is different to properly dealing with competing risks, as PrePS does not affect PFS with

this approach, but only the contribution of progression and pre-progression death events.
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Furthermore, there is an important limitation with this approach in that PrePS and PFS are extrapolated
independently from each other despite being correlated (PrePS events are a component of PFS events).
Therefore, it is possible for PrePS to be mis-specified in that PrePS becomes greater than PFS (which
is not plausible as PFS includes these deaths). Whilst a constraint could be added to a model to prevent
the number of deaths in pre-progression from being greater than the number of PFS events, such
constraints introduce biases compared with modelling the two competing transitions separately under a

competing risk framework.

Similar to this approach, instead of using PrePS to determine the probability of dying whilst
progression-free, an alternative approach was identified in the review whereby TTP is used to determine
the probability of remaining alive in PFS (TA578). This follows the same principle as above (approach
3), but uses TTP instead of PrePS to estimate the probability of remaining in the progression-free health
state. However, using TTP instead of PrePS required additional strong assumptions, such that the same
distribution had to be used for PFS and TTP to ensure consistency. This is approach is less likely to be

appropriate and therefore is not discussed further within this thesis.

5.4.2.4 Estimation of the percentage of death in patients without progression using the

different methods in the prostate cancer dataset

As highlighted in the previous section, different approaches are currently used to separate progression
and pre-progression deaths from PFS. These different methods could have an impact on the estimation

of OS depending on both the extrapolation for PFS and the number of pre-progression mortality events.

To illustrate this, data from the breast, prostate and lung cancer datasets were used to estimate the

number of pre-progression mortality events using the following methods described above:

- Scenario 1: Assuming a proportion of PFS events are deaths (either constant or time-varying)

- Scenario 2: Using PrePS to estimate the probability of dying in PFS. Eight parametric
distributions are considered (exponential, Weibull, Gompertz, Log-Normal, Log-Logistic,
Gamma and Generalised Gamma, spline hazard model with one knot). As previously
highlighted, the scenario using the exponential distribution is the same as using the number of
deaths in PFS divided by the total PFS time.
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For illustration, PFS is assumed to follow a log-normal distribution. This was selected because the log-
normal distribution was generally associated with a tail in the datasets examined, and therefore any
effect associated with the method to estimate the number of pre-progression death is likely to be clearer.
Results in terms of estimated percentage number of pre-progression deaths over time for the breast,
prostate and lung cancer datasets are presented in Figure 20, Figure 21 and Figure 22, respectively.

Figure 20 : Comparison in the estimation of the number of death not associated with progression

using different simplified approaches used in health economics in the BC dataset (CALGB 40502)
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Figure 21 : Comparison in the estimation of the number of death not associated with progression

using different simplified approaches used in health economics in the prostate cancer dataset
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Figure 22 : Comparison in the estimation of the percentage of death not associated with
progression using different simplified approaches used in health economics in the lung cancer
dataset
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In summary, it can be seen that different approaches could predict very different percentage of pre-
progression deaths. Assuming a constant or time-varying proportion of PFS events are deaths led to
different estimates (Scenario 1 — right-hand side of each figure). Similarly, for Scenario 2 (left-hand
side of each figure), the percentage of estimated death events in people who are progression-free was
very different depending the choice of parametric function used for PrePS. These differences would

have a knock-on impact on the OS estimation.
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5.5 Implementation of the Simplified STM (used in health economics) in the BC dataset and

comparison against the MSM using the mssample function when transitions are constant

(Markov)

Let us consider again the BC dataset, whereby the outcomes are PFS and OS. A Simplified STM was
constructed under each of the three different structural assumptions described above and these were
compared against the MSM (using the mssample function).

For simplicity, a cohort approach is used. It is expected that the choice between the cohort or simulation
approach would not affect conclusions as both approaches would provide very similar predictions (with
differences attributable to sampling variation) under the same assumptions. In addition, in order to
reflect the implementation of the Simplified STM, transitions are assumed to be conditionally
independent i.e. parameters for the transitions are estimated independently from each other. In order to
provide a like-for-like comparison against the MSM, all transitions rates are assumed to be constant
(Markov). A comparison against the MSM when transitions are time-varying is presented in Section
5.6. The Simplified STM was implemented using R. The key steps in implementing the Simplified STM
are summarised in Figure 23. A time horizon of 520 weeks was used assuming a cycle length (time

interval) of 1 day.

As expected, predictions were the same (Figure 24) between all the different implementations of the
Simplified STM and the MSM using the msm or mstate package when the model is assumed to be
Markov (transitions assumed to be constant). Curves are superimposed, and therefore other lines are

obscured.
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Figure 23: Summary of the step-by-step implementation of the Simplified STM (based on the
approach commonly used in health economic models)

Step 1: Estimate the time to progression or death from the progression-free health
state — Fit a parametric function to PFS
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Step 2: Estimate the number of PFS events at the end of each cycle
No. of people in PFS in current cycle minus number of people in PFS in previous
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.

Step 3: Estimate the number of deaths in pre-progression
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(d

Step 4: Estimate the number of progression events:
No. of PFS minus No. pre-progression death

-

Step 5: Estimate the time from progression to death in people who progressed (i.e.
who did not die without progression) — Fit a parametric distribution

.

Step 6: Apply PPS to patients who progressed

-

Step 7: Calculate the health state occupancy
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Figure 24 : Comparison of predictions for PFS and OS assuming transition rates are constant (curves are superimposed) in the BC dataset (CALGB
40502)
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5.6 Health state sojourn time estimated with each approach

Health state sojourn times (time in PF, PD) estimated from the multi-state using msm, the mssample
function, and the three implementations of the simplified STM are summarised in Table 6. As approach
uses different inputs, the uncertainty is captured by bootstrapping the BC dataset rather than the value
of each input parameters. This is to ensure that any differences observed would be attributable to the

approach itself, rather than the differences in input parameters.

Table 6 : Summary of health state sojourn times (BC dataset boostrapped)

simplified simplified
msm msmsample STM1 STM2/3
Time in
PF (in
weeks) point estimate 70.16  70.11 70.16 70.16
LCI 61.60 61.77 61.62 61.62
UClI 79.91  79.93 80.05 80.05
Time in
PD (in
weeks) point estimate 68.14  68.63 68.57 68.63
LCI 56.01 56.57 56.39 56.44
UCl 81.74 8221 82.14 82.20
Total LY
(in
weeks) point estimate 138.30 138.75 138.74 138.79
LCI 122.77 123.33 123.20 123.25
UCl 156.22 156.39 156.66 156.71

In summary, approaches generate the same health state sojourn times.
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5.7 Implications when transitions are time-varying

It is challenging to provide a like-for-like comparison between the current implementation of the
Simplified STM and the MSM given that these approaches uses different input parameters. As described
in Section 5.4, a single extrapolation is used for PFS in simplified STM. In contrast, PFS in the MSM
is a function of the extrapolation of both TTP and PresPS. Different structural assumptions to separate

progression from pre-progression mortality could also be made (Section 5.4.2).

As previously described in Section 5.4.1, differences in predictions between the MSM and the
simplified STM are likely to be larger when: (a) data are less complete; (b) the fit of the model to the

observed data is poor, and/or (c) where the reliance on extrapolation is greater.

Despite the difficulty in comparing the two approaches, | ran the MSM (using the mssamp1le function
from the mstate package) using eight parametric extrapolations (exponential, Weibull, Gompertz,
Log-Normal, Log-Logistic, Gamma and Generalised Gamma and spline hazard model with one knot)
for TTP and PrePS, giving 64 combinations of predicted PFS. PPS was assumed to be constant in all

analyses.
In parallel, I also ran the Simplified STM as currently implemented in HE assuming:

e both PrePS and PFS follow eight possible parametric extrapolations, leading to 64 possible
combinations of functions (referred to as Approach 3 in Section 5.4.2.3).

e PPS was assumed to follow an exponential distribution as in the implementation of the MSM.

As previously discussed, there is an alternative implementation of the STM, assuming a proportion of
PFS events are deaths (Approach 1 in Section 5.4.2.1). Little difference is expected (See Section 5.4.2)
against the implementation the STM selected here given that PFS will be the same, with the only
difference being the number of deaths occurring pre-progression. Therefore, for ease of interpretation,

this is not explored here.

Approaches were applied to the BC dataset as well as the prostate and lung cancer datasets, with results
reported in Appendix 4 (due to the size of the tables). In summary, taking the BC dataset as an example,
the mean OS predicted by the simplified STM ranged from 133.3 weeks to 166.5 weeks in the BC
dataset, depending on the choice of parametric distributions assumed. In contrast, the mean OS
predicted by the MSM using the ms samp1e function ranged from 132.8 to 159.1 weeks. Similarly, the
mean PFS predicted by the Simplified STM ranged from 66.6 weeks to 101.4 weeks, depending on the
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choice of parametric distributions assumed. In contrast, the mean PFS predicted by the MSM using the
mssample function ranged from 65.6 weeks to 93.6 weeks.

Whilst it is difficult to interpret, differences in predictions in LY Gs between the two approaches were
over 5% only when PFS/TTD followed a log-normal or log-logistic distribution. This is because these
distributions were associated with a long tail (Appendix 1 for BC dataset) and the hazard was no longer
based on the data itself but based on the extrapolated hazard. As expected, when the mean LYGs were
calculated for the first 100 weeks only (to avoid the need for extrapolation), predictions between the
MSM and the simplified STM were closer (not shown).

The process was repeated in the prostate and lung cancer datasets. Similar findings were obtained, in
that larger differences (defined as >5%) were seen only for those scenarios where PFS/TTD was
assumed to follow a log-normal or log-logistic distribution, due to the longer tail associated with these

distributions.

It should be noted that it is difficult to make inferences based on a limited number of datasets and that
the MSM and simplified STM use different inputs. Whilst it is challenging to compare predictions
between approaches, this exploratory comparison confirms that some differences are expected between
approaches. However, these differences are likely to be minimal, but could be larger depending on the
parametric function used, the fit of the model to the observed data and the degree to which the model

relies on extrapolation beyond the observed period.
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5.8  Should we be concerned with the simplifications made in the Simplified STM (commonly

used in HE)?

Despite multi-state modelling offering a convenient way to combine competing transitions under a
competing risk framework, simplifications are usually made in health economic applications to avoid
the need to model the competing transitions. The rapid review of NICE cancer appraisals also indicated
that the STM has been implemented inconsistently between appraisals and that different assumptions
could be made regarding how to separate PFS into its two constituent components (progression and pre-
progression deaths). These different implementations can lead to differences in the predicted number

of pre-progression death events, and therefore may also impact on predictions of OS.

As demonstrated in Section 5.4.1, the simplifications made in health economics have few implications
when all transition rates are assumed to be constant. However, the implications are more significant
when transitions rates are time-varying. Whilst it is difficult to directly compare the MSM and the
Simplified STM due to the differences in inputs, larger differences in predictions could occur between
implementation depending on the characteristics of the data and the need for extrapolation, as
demonstrated in the exploratory analysis in the BC dataset in Section 5.6, but also in two separate
datasets in patients with prostate and lung cancer.

This chapter has demonstrated that when transitions are selected appropriately and the fit to the data is
good, it makes little difference whether transitions are modelled under a competing risk framework or
using the assumptions typically made in HE. However, if transitions are selected poorly and do not fit
the data well, differences in predictions are likely to be increased. This is because one approach relies
on the fit and extrapolation of a transition in one dataset (PFS) compared with the fit and extrapolation
in two datasets (TTP and PrePS). Therefore, differences are more likely to be attributable to the choice

of parametric function and extrapolation, rather than the approach itself.

This will be demonstrated in Chapter 8, where the MSM is compared systematically against the STM
in a simulation study, where | attempted to reduce potential biases in interpretation by selecting

parametric functions using a similar process.

Prior to this, in the next chapter, | describe a review of methods to jointly model progression and
survival outcomes in order to identify whether alternative approaches could be used to estimate health

state sojourn time.
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PART Ill: JOINT MODELLING OF PROGRESSION AND SURVIVAL

OUCTOMES

6 CHAPTER VI: THE JOINT MODELLING OF PROGRESSION AND
SURVIVAL OUTCOMES: A REVIEW OF METHODS

6.1 Chapter overview

This chapter aims to summarise methods that can be used to jointly model progression and survival

outcomes.

Section 6.2 introduces this Chapter. Objective of the review are described in Section 6.3. Inclusion and
exclusion criteria for the review are described in Section 6.4. In Section 6.5, | describe the search
strategy, challenges associated with searching the methodological literature and how | addressed those
challenges. In Section 6.6, 6.7, 6.8 | describe the screening process, the framework for the review and

how data were synthesised respectively. Findings from the review are presented in Section 6.9.
6.2 Introduction

As described in Chapter 2, Woods et al.® and Bullement et al.*® two key general approaches are currently
used in health economics (HE) to estimate health state sojourn times and associated quality-adjusted
life years (QALYS); (i) the partitioned survival approach (PSM) and (ii) the state-transition approach
(including the MSM or the “simplified” STM which uses PFS directly). Under these currently used
approaches, progression and survival outcomes are estimated independently from each other; thus, the
current implementation in health economics does not typically consider the dependence structure or
correlation between PFS and OS.

Indeed, in the current implementation of the PSM, OS and PFS are typically modelled as two
independent processes, whereby parametric functions are fitted independently to the OS and PFS data
from the trial, despite PFS events including death occurring before progression. Parameters are

estimated for each outcome separately.

Similarly, within the current implementation of the STM approach, OS is estimated indirectly, as a
result of three possible transitions, with the transitions typically estimated one at a time and often
independently from each other, with the possible exception of PPS which could be estimated as a

function of the time to progression TTP, although this is rarely done. Similarly, the dependence between
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TTP and PrePS is often not considered within the standard STM used in HE; however, it is accounted
for within the MSM framework whereby competing risks are considered.

The dependence is ignored primarily because estimates for each transition are estimated using separate
datasets, rather than through the use of a jointly-fitted model. The impact of ignoring this dependence
structure between progression and survival outcomes in health economic models is unknown.
Consequently, prior to testing the performance of the different methods to estimate health state sojourn
times (Chapter 8), | undertook a systematic review of the literature to identify methods that could be
used to jointly model progression and survival outcomes that could be relevant to health economics.
This review examined methods used within a range of other disciplines including operational research,

statistics, engineering and environmental modelling.

6.3 Objectives for the review

The primary aim of this review is to identify methods that can be used to jointly model progression and
survival outcomes (and associated parameters) when estimating health state sojourn time to improve on

methods currently used in health economics.

A secondary objective was to identify methods that could be used to induce dependence between
transitions in order to generate ‘reflective’ trial data that exhibit different degrees of dependence for use
in the simulation study presented in the next chapters (Chapter 7 and 8). The review followed a
systematic process in that it is reproducible and documented. However, it should be noted that there are
a number of challenges associated with the conduct of a review of methods, which are described further

below.

6.4 Inclusion/exclusion criteria for the review and search

Strict inclusion and exclusion criteria were applied. This is because a large number of citations and

studies were expected. Inclusion and exclusion criteria are described below.
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Inclusion criteria

o Full papers describing a methodology, not already identified (from sources already known or
identified through the searches) to jointly model progression and survival outcomes or related

survival endpoints,

Exclusion criteria

e Conference abstracts or presentations in which sufficient details are not available to replicate
the approach

o Application of a method rather than its development; when the method has been previously
identified

e Methods that do not relate to time-to-event outcomes

o Methods developed to account for the dependence between a longitudinal measurement e.g.
blood pressure) and a time-to-event outcome (e.g. OS)

e Methods that cannot be used to extrapolate time-to-events outcomes (e.g. non-parametric)

e Methods developed to estimate the effect of covariates, rather than the joint prediction of health
state sojourn time

e Methods to deal with competing risks or interval censoring only.

6.5 Search strategy

6.5.1 Method for searching

The methods to systematically search for evidence relating to the effectiveness of clinical interventions
are well established, with searches typically being based on a defined PICO (population, intervention,
comparator, outcome) specification of the research question. The types of studies to search for are
known and therefore key terms can be defined a priori. For this type of systematic review, the aim is

typically to identify all possible studies according to the PICO question given a set of search terms.” 76

In contrast, methods for searching within the methodological literature are less established and are
particularly challenging. This is due to the absence or limited knowledge of the studies that might be
relevant for inclusion in the review. When searching for studies within a methodological review, whilst
the broad concept of the method searched is known, the name of the method may be described using a

variety of terms and therefore it is not possible to search for the method directly.
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The challenges associated with conducting searches for methodological research have been discussed
by Schlosser et al (2006),”” Booth et al (2008),”® Hutton and Ashcroft (1998),”° Edwards et al (1998)°
and Paisley et al.®

Unlike systematic reviews of interventions, there is no gold standard on how to conduct searches for
methodological research. | rapidly searched the literature to identify previous examples of
methodological reviews to provide an understanding of some of the approaches that have been used
when searching for methodological papers.®? I also looked at the methods used in similar PhD theses.'"
8 Whilst the description for the method used to search for the methodological literature is often limited,

these sources® 8 8 ysed an iterative approach.

As part of the process of understanding methods for searching for a methodological review, | talked to
an information specialist (Dr Suzy Paisley, SCHARR, HEDS, University of Sheffield) with expertise in
searching methodological literature. Dr Paisley confirmed that an iterative approach would be the most
appropriate method to conduct the searches for this review. With this approach, the searches are not
fixed and evolve at the same time as the researcher develops a deeper understanding of the topic and
the different methods available. This type of approach for searching, also known as “pearl growing”
has been widely discussed in the literature by Schlosser et al (2006),”” Booth et al (2008),”® Hutton and
Ashcroft (1998),” Edwards et al (1998)2° and Paisley et al.8* An advantage of this approach is that this
i not static, and there can be some variation depending on what the searches are trying to achieve.
Therefore, | considered that using such an approach would provide some flexibility and would allow

the searches to be adapted to meet my needs.
In brief, I adopted the following process:

1. Relevant key papers were identified (‘pearls’) through known sources by myself and my
supervisory team;

2. Key terms under which the key papers are indexed, and key terms used in the title and abstract
were identified:;

3. A keyword search was then conducted in a search database (Web of Science [WoS]) based on
the key terms identified in the ‘pearl’ papers (through keywords used and reference searching).

4. In addition to the keyword searching, citation searching was undertaken with the aim of
identifying papers that cite the identified ‘pearl’ papers. Citation searching is a useful
alternative to subject searching which allows the identification of key papers that include the

identified ‘pearl’ paper in their bibliographies.
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5. The reference lists of the identified ‘pearl’ papers were also searched to identify potentially
relevant published literature.

6. Papers identified through database, citation and reference searching were then screened to
identify potentially relevant papers.

7. The process was repeated twice again until saturation was reached (further detail is available in
Section 6.5.4). These potentially relevant papers were, in turn, assessed and new search terms
were defined based on the keywords used in the papers and reviewing the reference list. Citation
searches are also conducted to identify papers that reference the ‘new’ ‘pearl papers.

8. Validation with experts to ensure that key methods have not been missed.
6.5.2 Identification of the initial ‘pearl’ papers

Five initial ‘pearl’ papers were used. The ‘pearl’ papers were primarily identified through known

sources by myself and my supervisory team. The initial ‘pearls’ are summarised in Table 7.

Table 7 : Initial ‘Pearl’ papers

Author Year Title

Andersen* 2002 Multistate models for event history analysis

Glasziou® 1998 Quality adjusted survival analysis with repeated quality of life measure
Putter*? 2007 Tutorial in biostatistics: competing risks and multi-state models

Estimation of survival probabilities for use in cost-effectiveness
analyses: A comparison of a multi-state modelling survival analysis
Williams?4 2017 approach with partitioned survival and Markov decision-analytic

modelling.

S e Cost-effectiveness analysis in R using a multi-state modelling survival
Williams 2017

analysis framework: A tutorial.

6.5.3 Initial keyword search

A search was initially conducted in the 1SI Web of Knowledge on the 19th February 2018. The search
was subsequently re-run on the 7" June 2020 in the ISl Web of Science core collection (formally Web
of Knowledge) to ensure the review was up to date. The review was limited to peer-reviewed
publications and therefore conference abstracts or grey literature including unpublished or ongoing

research was excluded from the review.
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To keep the review manageable, | searched for keywords included in the title only. This was a pragmatic
decision which was taken due to the large number of citations retrieved when searching across all fields
due to the use of broad terms. The number of citations retrieved by the searches was already high when
searching titles only.

Initial search terms were identified through keywords used to describe the methods in the initial ‘pearl’

papers (described in Section 6.5.2) and papers included in their reference lists.

The first component of the keyword search involved searching for terms related to time-to-event
outcomes. The second component involved searching for terms related to dependence structures. These

search terms are then combined with an AND statement.

This was then combined with an additional filter related to methods in order focus the search on papers
describing the method itself and its assumptions, rather than any applications of that method. Variations
to search terms were used. For instance, to describe the terms ‘dependent’, related (synonym) search

terms such as ‘conditional’ and ‘joint’ were considered.

In addition to keywords related to dependence and outcomes, additional keyword searching was
conducted using terms describing previously identified approaches. This was done to identify potential
papers which compare an alternative method to an approach previously identified. The search strategy
is described in Table 8, with the additional search terms used for the second iterations of the search
highlighted in bold. The search strategy was discussed with an information research specialist prior to

the search being conducted.
6.5.4 Additional search terms (2nd iteration)

Search terms used for the second iteration are presented in Table 8 above highlighted in bold. Whilst
the initial title keyword search was already sensitive, the search was slightly amended to include
additional search terms related to outcomes and dependence. The initial search was then complemented

with a search using more specific keyword terms.

It should be noted that the process can be repeated indefinitely and that this is can be a slow process.
Therefore, a pragmatic approach was employed whereby a maximum of two iterations was considered
to avoid repeating the process indefinitely with diminishing marginal returns. This would allow a large
amount of literature to be captured whilst keeping the review manageable. This was also supported by
the small amount of literature deemed relevant from the second iteration, as shown in the PRISMA
diagram in Figure 25. Petticrew and Roberts (2006) and Schlosser et al (Schlosser 2006) consider
saturation as an indicator for stopping further literature searching. Edwards et al (1998)% further notes
that the marginal returns associated with reviewing additional papers diminish very quickly after a

certain point. Citations were uploaded onto Endnote X8 reference management software.
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Table 8 : Initial and second keyword search

Search | Search term 1st search 2ndsearch

#1 Tl=(event* OR failure* OR survival* OR duration* OR | 801,674 1,691,665
hazard* OR process OR processes OR occurrence)

#2 Tl=(dependenc* OR correlat* OR associat* OR join* OR | 1,903,768 2,540,902
relationship OR conditional* OR linked* OR clustered* OR
connection*)

#3 Tl=(model* OR method* OR approach* OR statistic* ) 4,018,460

#4 #3 AND #2 AND #1 1,850 4,395

#5 TI=(multistate OR “multi-state” OR markov OR “illness | 29,609 44,469
death” OR “partition* survival” OR copula* OR frailt*)

#6 Tl=(compar* OR versus OR alternative*) 1,569,753

#7 #6 AND #5 AND #3 386 475

#8 #7 OR #4 2,234

#9 Tl=(progres* OR PFS) 245,271

#10 Tl=(overall survival OR OS OR death) 214,122

#11 #10 AND #9 AND #2 285

#12 #11 OR #8 2,510

#13 TI=(( multivariate* OR bivariate* OR cluster*) near/0 2,101
(survival* OR risk* OR event* OR failure* OR endpoint* OR
time* OR distribution*))

#14 #13 AND #3 605

#15 #14 OR #7 OR #4 5,392

#16 Tl=(semi competing or semicompeting) 90

#17 TI=(( successive* OR sequential* OR consecutive* OR 346
serial*) near/0 (survival* OR risk* OR event* OR failure* OR
endpoint* OR time* OR distribution*))

#18 #17 OR #16 OR #15 5,823

#19 #18 NOT #12 3,588
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http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=1&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=13&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=2&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=14&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=3&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=4&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=15&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=5&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=16&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=6&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=7&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=17&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=8&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=9&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=10&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=11&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=12&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=18&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=19&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=20&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=25&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=26&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=27&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=28&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes

6.5.5 Citation and reference search

In addition to keyword searching, within each iteration, the references of relevant papers were assessed
to identify further papers. Further, citation searches were conducted to identify papers that cite the paper
that was deemed relevant.

6.5.6 Expert advice

Due to challenges when conducting a review of methods, it is possible that some methods may not have
been identified due to the lack of sensitivity of search terms, different terminology used in different

disciplines or because the searches were restricted to titles.

Expert advice was sought when the review of methods was completed. Key authors of papers who have
published in the area and experts in statistics were emailed a brief outline of the review objectives
together with the list of key methods identified alongside the key publications to check that no relevant
methods had been missed by the search. Experts were asked to validate whether any methods were
missing and suggest further research for inclusion in the review. Experts were identified through the

my supervisory team and authors of the papers identified.

6.6 Screening process

The titles and abstracts of the citations identified from the searches were screened and relevant full-text
papers were obtained according to the inclusion criteria defined in Section 6.4. Papers were screened

by one reviewer (myself).

Given that the focus of the review was on methods that could be used to jointly model progression and
survival outcomes in order to estimate health state sojourn time, | did not aim to incorporate all
applications of these methods to different case studies. However, excluding all applications outright
may exclude methods that had not otherwise been identified. Therefore, | attempted to ensure that a
method only described in an application was not excluded. In addition, whilst the focus is on methods
that could be used to jointly model progression and survival outcomes, the identified methods were
included when deemed relevant if they were used for different purposes. Important modifications of a

method previously identified were also included.

6.7 Framework for the review

In addition to challenges associated with the searches, systematically reviewing methods papers poses

similar challenges, and there is no ‘gold standard’ approach. Therefore, the review needs to be adapted
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to its particular context. Hutton and Ashcroft (1998)"° and Edwards et al (1998)% describe some of the
challenges associated with conducting a review of methods. Edwards et al. (1998)% proposes that the
review of methods must be considered according to an explicit framework and that the process by which
literature is obtained and synthesised should be methodical, transparent and explicit. Hutton and
Ashcroft (1998)" and Edwards et al (1998)% suggest that methods could be assessed in a framework in

terms of validity, practical applicability, reliability, mathematical properties and theoretical arguments.

Consequently, a framework was developed to assess and describe the studies included in this review of
methods (Table 9). The framework includes the questions | tried to answer for each of the method
included in this review. The developed framework is based on criteria set out by Hutton and Ashcroft
(1998)"° and Edwards et al (1998)% and adapted from the frameworks used in previous PhD theses by
Dr Nick Latimer*! and Dr Jon Tosh® when searching for methods for adjusting for treatment switching

and methods for optimisation, respectively.

It should be noted that answers to questions from this framework are typically limited to information
available in the paper identified or additional information provided following discussion with experts.
For instance, for a large number of the methods identified, limited details were available, reducing the
scope for assessment of the method.

The framework focuses on four key elements of the identified methods:

(1) its development/origin;
(i) its theoretical/mathematical properties;
(iii) its application and performance,

(iv) its applicability to health economics.

The ”development/origin” domain concerns whether the method was originally developed to jointly
model PFS and OS and to estimate health state sojourn time, or whether it was originally developed to
account for the dependence between other survival endpoints or other types of data (for example,
longitudinal or binary outcomes). The domain also refers to whether the method is an extension of

another method, how the method has been extended and how it compares with the original method.

102



Table 9 : Framework for the review of methods

Factor

Consideration

Development of the
method

What was the method originally developed for?

Is the method an extension of another method?

Theoretical properties

What are the key assumptions?
What are its mathematical properties?

What are its kev limitations?

Application of the
method for the joint
modelling of PFS and
0s

Has the method been used to jointly model PFS and OS?

Has the method been tested in a simulation study or a real-life
example?

How did the method perform?

Are the authors aware of any limitations relating to its performance?
When the method has not been used for the joint modelling of PFS
and OS, how did it perform when jointly modelling two processes
(similar to PFS and OS)

Applicability to HE

Is the method applicable and sufficiently flexible to be used in health
economic evaluation? If not, why not?
Is an example of implementation provided by the authors?

Is the implementation of the method transparent?

The “theoretical/mathematical properties” domain concerns the key assumptions, mathematical

properties and key limitations associated with the method. It is important to understand the theoretical

properties of the methods in order to assess whether they are suitable for application in health economic

evaluation.

The “application and performance” domain concerns whether the method has been used for the joint

prediction of PFS and OS (or similar outcomes). This also concerns its performance when jointly

modelling PFS and OS and whether the method has been tested in a simulation study or a real-life

example. It should be noted that whilst the review is focussed on methodological papers, applications

relevant to the joint modelling of progression and survival outcomes would have also been included if

there had been any.
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Finally, the “applicability to health economics” domain relates to whether the method is likely to be
adopted for use in health economic evaluation in the near future. Applicability to health economics is
an important domain given that the lack of details or examples on how to implement the method
(example of implementation in a suitable software package such as Excel or R) will likely prevent the
method from being widely adopted in health economics. The importance of the applicability to health
economics is illustrated by the case of the MSM. Despite the method being originally described by
Andersen et al (2002),* and described in a tutorial by Putter et al (2007)*® using the mstate package
and Jackson et al (2011)® using the msm package over a decade ago, only recently has interest increased
in the use of this method as a vehicle for health economic evaluation, spearheaded by the publication
of a tutorial by Williams et al (2017) on how to model PFS and OS using the multi-state framework in
health economics.* Despite the publication of a thorough tutorials on the method and its application in
the context of health economics, this approach is still rarely used. The applicability to health economics
domain also discusses whether the approach is flexible enough to be routinely used, or if its use is likely
to be restricted, for instance, if it is limited to specific parametric distributions or to individuals with

specialist skills (e.g. statistics).

6.8 Data extraction, assessment and synthesis

A template, based on the framework defined in Section 6.7, summarising the relevant details of each
study included in the methods review was completed by myself, which has not been provided as this
contains exactly the same information as provided in the main body of text in this chapter. Indeed, in
the absence of relevant assessment criteria when conducting a review of methods, each method was
judged based on its theoretical properties; in particular, with respect to the main assumptions, how well
the method is described and potential key limitations. The assessment of the theoretical properties of a

method helps in understanding how a method can be used to jointly model PFS and OS.

Details are synthesised directly in a narrative form in the main body of this chapter. Key characteristics
of the methods identified are described as well as their mathematical form. Methods were grouped

where possible according to key characteristics.

6.9 Summary of methods identified within the review to jointly model PFS and OS

This section summarises the results of the systematic review of methods identified in the literature that
could be used to jointly model progression and survival outcomes. The flow diagram depicting the
number of records identified, screened and included is shown in Figure 25. The initial keyword search
yielded 2,510 citations, of which 12 were included following sifting of the titles, abstracts and papers
(Belckacemi et al, 2014;% Dejardin, 2010;%" Fleischer et al, 2009;% Fu et al, 2013;% Krol et al, 2017;%
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Li et al, 2015;° Mazroui et al, 2013;% Meller et al, 2019;% Oakes et al, 1982;* Rondeau et al, 2007;%
Rondeau et al, 2012;% Weber et al, 2019.%7). No further relevant citations were obtained following the
initial screening of the 1,490 citation searches and 212 reference searches.

At the second round of searches, the keyword search yielded 3,588 additional citations, of which one
additional citation was included following sifting of the titles, abstracts and papers (Sildnes et al,
2018%). The citation and reference searches yielded to 526 and 389 citations, respectively; however,
none of these were considered relevant. The citation and reference searches for the paper identified in
Step 4% vyielded to one and 32 citations, respectively; of these, none were considered relevant. |
considered that saturation was achieved given that only one citation was considered relevant in Step 4,

and therefore, no further searches were conducted.

Given the large number of records, the specific reason for exclusion was not explicitly recorded for
each citation. However, the key reason for exclusions were: lack of relevance of the paper (e.g. analysis
of trials); methods related to the modelling of longitudinal and time-to-event data (for which the volume
of literature is very large), methods for meta-analysis or applications of the same method previously
identified.

Some papers included in the review described the same methods (in particular for the frailty and copula
models) but provided additional details. This is one of the challenges of conducting a systematic review
of methods. Consequently, rather than focusing on a description of each individual paper, papers were

grouped according to the methods they describe.

It should be noted that a large number of papers are available describing each of these methods, in
particular for the frailty and copula models. A large number of applications were identified, but were
not formally included. Furthermore, additional papers describing these methods may not have been
identified during this review. Consequently, the included papers may not necessarily reflect the most
comprehensive papers that describe the method, but rather the papers identified during the systematic
review process and considered to be relevant by myself for the description of the method, or that |

considered for the identification of the method (the joint modelling of PFS and OS).

Given the challenges associated with conducting a review of methods, flexibility was required when
including and excluding studies. When describing the methods in this thesis, in addition to the papers
that were formally included during this process (e.g. papers included in Appendix 5), additional papers
that were formally excluded (for instance because the paper described an application of a method
previously identified) were also retrieved informally to provide supplementary information about the

method when necessary.
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Figure 25 : Flow diagram for the review of method
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Approaches identified during this systematic review process were grouped into four categories; these
are described in the next sections:

1. General extensions of the multi-state model to jointly model progression and survival outcomes
(described in Section 6.9.1)

2. Methods to jointly model progression and survival outcomes, inducing the dependence from a
random effect term (frailty) in PH models or its extension using transformation models for AFT
models (described in Section 6.9.2)

3. Methods to jointly model progression and survival outcomes, using a copula model (described
in Section 6.9.3)

4. Semi-competing risk by means of first passage times (described in Section 6.9.4).

Throughout the systematic review process, a number of specific bivariate models were also identified;
however, these were excluded upon further inspection, as they were special cases of more general
copula models (Group 3 above). Similarly, a general approach that has been used for the analysis of
bivariate models, described by Henderson et al (1995), was not included in this review as the general
concept was known (e.g. when including TTP as a covariate when estimating PPS) and consisted of
modelling the conditional distribution of a failure time (e.g. T1) given another failure time (T2) as

covariate.
Identified approaches fall further under two umbrellas:

1. Those where the dependence is included between transitions (under the illness-death model)
2. Those where the dependence between OS and PFS is included by modelling the survival

outcomes under a semi-competing risks model.

As part of the systematic review process, seven experts were contacted to ensure that no additional
relevant approaches were missing. Four of the seven experts contacted as part of the review process
responded. They believed that the list of methods identified during the systematic process was generally
exhaustive. Experts suggested a number of additional papers of interest; however, following inspection,
the majority of the papers suggested related to evidence synthesis (using bivariate models or frailty
models) for the joint modelling of PFS and OS, rather than the joint prediction of progression and
survival outcomes within a single trial (as is the focus in this thesis). These methods (bivariate/frailty
models) are already included in this review but are versatile and are used for a variety of purposes,
therefore, including all possible variations is outside the scope of this thesis. For transparency, the

reasons for the exclusion of papers suggested by the key experts is described below:
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All four experts suggested the addition of further papers for inclusion on the application of the
multi-state model.*> 4% 50.99.100 However, these did not represent new methods (and were already
included) and therefore were not considered further.

An expert suggested that there was an increasing interest in predicting OS based on tumour
imaging data and suggested a paper for potential inclusion.*®* This was not considered further
as this was outside the scope of the review and did not meet the review inclusion criteria.

A paper describing a Bayesian approach for jointly modelling correlated outcomes was also
suggested as a possible approach to use in health economics.’®? However, following
examination of the paper, the proposed approach was similar to a bivariate model and therefore
was not considered further. The authors of this paper were contacted and confirmed that the
approach used was a bivariate joint distribution model.

An expert suggested for inclusion some of work carried out on multi-level mixed effect
parametric survival analysis as a potential approach. However, following examination of some
of the papers found, the approach described used a frailty (random effect) model and was
therefore not considered further as this general approach was already included.

Additional papers on joint modelling in evidence synthesis (NMA) were also highlighted, but
were outside the scope of this review?!-1%

An approach used to jointly model PFS and OS employed in a previous NICE STA (TA561%)
was also suggested by one of the experts for possible inclusion in this review for completeness.
In this appraisal, the company modelled PFS and OS jointly across both arms, assuming
proportionality and the same parametric form between OS and PFS. In other terms, PFS was
included as a covariate when estimating parameters for the parametric function for OS. The key
assumption in this approach is proportionality between PFS and OS. Little detail on the
approach was available or included in TA561.1% No literature was identified describing this
approach, limiting any assessment in this review. The expert further considered this approach
to be crude, and therefore it was not formally included in this review.

Finally, one expert mentioned the use of a non-parametric approach to combine evidence on
time-to-event outcomes and have used a constraint to ensure that PFS is less than OS which has
been applied to an appraisal in lung cancer.” The area under the curve (AUC) was calculated
for PFS and OS, with the correlation between the two endpoints included in the NMA using a
bivariate model. Patients alive after 5 years were then assumed to be remission as the curve
converged in the trials with external evidence used after that time point. Whilst this approach
has been used in a NICE appraisal,'%’ the expert highlighted that this approach is not yet been
published. While the method was unpublished, this was still considered as new methods may

address limitations of currently published methods. However, from the description, this



approach (using non-parametric AUC using a bivariate model) appears to be mostly relevant
when synthesising OS and PFS from different sources, rather than the joint modelling of
progression and survival outcomes within a single trial. Strong assumptions are also required
to extrapolate beyond the trial period. Consequently, in the absence of further details, this
approach was not considered further.

Following discussion with other analysts, an additional paper of potential interest was suggested relating
to the use of moment-generating functions in health economics.%® However, this paper did not meet the

inclusion criteria as it was not related to the joint modelling of progression and survival outcomes.

As no additional methods included in this thesis were identified through expert opinion, the final
taxonomy was not sent back to expert for validity testing. The key characteristics of methods identified

during the systematic process are summarised in Table 10.

6.9.1 General extensions of the multi-state/illness-death model for the joint modelling of PFS
and OS

Three general extensions of the MSM were identified to jointly model PFS and OS. Parameters for each

transition are estimated jointly. These methods are described in turn below.
6.9.1.1 The model proposed by Li et al (2015)*

The authors aimed to extend the model developed by Fleischer et al (2009)2 based on the assumption
of exponential distributions to a Weibull distribution to include the dependence between progression

and survival outcomes in a multi-state model.

6.9.1.1.1 Development of the method

This is an extension to the statistical model developed by Fleischer et al (2009) which is, in turn, an
extension of the multi-state framework. Fleischer et al (2009) developed a statistical model based on
exponential distributions that describes the dependence structure between OS and PFS. The model
developed by Li et al (2015)°! generalises the exponential to the Weibull distribution, in order to provide

additional flexibility.

This model was developed to predict PFS and OS; but could be extended to other time-to-event
outcomes. This section focuses on the model developed by Li et al (2015) as this includes both the case
where the transitions follow an exponential distribution (Fleischer’s model) or the Weibull distribution
(Li’s model). Consequently, despite being identified, the model by Fleischer et al (2009)® is not
described here as this is the same model, but uses an exponential rather than the Weibull.
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Table 10 : Summary of approaches identified to jointly model PFS and OS

Extension of the multi-state Frailty . Copula models First passage
model/extension
Li et al (2015);" Belkacemi et al Meller et al Krol et al Fu et al Sildnes et al (2018)%
Fleischer et al (2009)%  (2014)% (2019)% (2017),*°Mazroui et al (2013),%°*Weber et al
(2012),%2 Rondeau et al (2019),% Oakes et al
(2007),®® Dejardin et al (1982)1®
(2010)%"
Transitions follow a Transition Likelihood Frailty acts Form of bivariate The joint distribution
Weibull  distribution follow an estimated multiplicatively on the model must satisfy random
Key properties/assumptions with  same  shape e>_<po_nenjcia| using_ hazard sign censoring
parameter distribution counting
Conditional processes
distribution
Has the method been Yes—withinanillness- Yes — within an Yes — within Yes — a frailty term Yes — under semi- Yes — semi-competing
applied to jointly model PFS  death model illness-death model an  illness- shared between TTP and competing risk risk
and OS death model  PPS
- Limited to Limited to  Unpublished Limited to PHM Large number of Terminal and non-
Weibull  distribution exponential at the time of (possible to extend to copulas available terminal event follow
Key limitations Same shape writing  of AFT) same underlying
assumed between this chapter Choice of frailty process
transitions distribution and model
Example of R code Exponential is too Code not Challenging to Example of R code No example of
Example of implementation provided by the authors restrictive available implementintheabsen_ce provided by the authors im_plementation in a
available?  andlor  key ofa_step—by—step f[utorlal (F_u, 2013) suitable package
barriers i‘or use in health — given the different Different copula would Gamma process
possible formulations require different (restrictive)

gconomics

formulation

Abbreviations: AFT: accelerated failure time; OS: overall survival; PFS: progression-free survival

110



6.9.1.1.2 Theoretical properties

The model proposed by Li et al (2015) can be represented as an MSM with transition intensities which
follow a Weibull distribution. The model has four parameters 44, 1,, A3 and a; with the same shape
parameter () being shared between transitions. Consequently, the dependence/correlation between
transitions is induced by transitions sharing the same shape parameter. As the Weibull is an extension

of the exponential, the same results will be obtained by Fleischer et al (2009)% when a = 1.

The working assumption is that TTP and OS are independent (this is the “maximal independence
assumption”), with PFS given by the minimum of TTP and OS. If death occurs before progression, then
PFS=0S (for an individual patient). If progression occurs first (TTP<OS), OS would be equal to the
sum of TTP and a new variable OS’(latent time).

Equations described here are reproduced from the paper directly.®* Further information is available in
the paper.®*

This can be written down as:
TTP~f; = Weibull(a, A1) 0Syrig~f, = Weibull(a, A3), PFS = min (TPP,0S,,4)
0S'~f; = Weibull(a, A3), 0SLTTPLOS,, )

0S = { PFS,if PFS = TTP
~ |TTP + 0S',if PFS = TTP
Where 4; > 0,4, > 0,43 >0anda > 0

For this model, the survival function for OS is given by [equations reproduced from the paper®!]:
Sos() = expl=(A + A)x] + Aya [ y*rexp [~ (A + )y = A5 (x — 1) “]dy

The parameters 14, 4,,1; and « are estimated using maximum likelihood estimation (MLE), with the

likelihood calculated for four types of patients (represented by 6,,):

1. those, who progress and then are censored without death (6;),
2. those, who progress and then die (5),

3. those who die before progression (83),
4

those, who are censored without progression or death (6,).
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The likelihood for these four patients’ categories can then be calculated based on the density f() and

the survival function S() so that:

if §; = 1 then

LiV(0) = P(TTP = t;)P(0Sorig > tu)P(0S™ > tiz) = f1(ti1)S> (ti1)S3(t:2)

if §; = 2 then

LP(0) = P(TTP = tp)P(0Sorig > ti)P(0S = tip) = fi(tu)Sa(t) f(ti2)

if §; = 3 then

L{P(8) = P(TTP > tn)P(0Sorig = tin) = S1(tu)f(tir)

if §; = 4 then

L (9) = P(TTP > t;1)P(0Sorig > tis) = S1(tix)Sz(tin)

with the overall log likelihood being the sum of the log likelihood across all subjects.

It should be noted that the model proposed by Li et al (2015),°* and by extension Fleischer et al (2009),%8
is considered to use a latent failure time approach by Meller et al (2019),°3 given that the estimation of
the transition for PFS can occur after OS (but this is adjusted as PFS cannot be greater than OS in the
final model). Meller et al (2019) suggest that this could make the interpretation of the estimate difficult,

as the predictions may not be as meaningful from a clinical point of view.

Although not presented here, it is also possible to derive analytical correlations amongst TTP, PFS and
OS from Li’s model.

6.9.1.1.3 Application of the method to the modelling of PES and OS

Li et al (2015) applied their method in three cancer trials.®* Overall, the authors reported that their model
provided a good fit to the data and, as expected, a better fit compared with the exponential distribution.
They also demonstrate that whilst the assumption of a constant shape parameter « could be
guestionable, the model can still, in general, provide a good fit to the data during the observed period

of a study.
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In addition, the authors conducted a simulation study to evaluate the fit of the Weibull and exponential
models using hypothetical data sets generated from various distributions:

1. Assuming the simulated event times follow an exponential distribution, the authors report that
both the Weibull and exponential functions provided an accurate fit to the data.

2. When the simulated event times are generated from a Weibull distribution with the same shape
parameter (across transitions), the Weibull model provided a good fit to the data. In contrast,
the exponential distribution fitted the data less well.

3. Assuming the data are generated from a Weibull distribution with different shape parameters;
the Weibull model provided a reasonable fit, despite the assumption of common shape
parameter being violated. In contrast, the exponential provided a poor fit.

4. When the simulated event times were generated from a log-logistic distribution (hazard had a
non-monotonic shape), the Weibull model provided a reasonable visual fit to the KM and
performed better than the exponential, as expected,

5. Similarly, when the simulated event times were generated from a log-normal distribution, the

Weibull model provided a reasonable visual fit to the KM.

The model developed by Li et al (2015)° was also evaluated in Meller et al (2019)* using a simulated
dataset, as well as in a real-life example, using data from the CLEOPATRA trial; a Phase Il RCT in
HER2-positive metastatic breast cancer involving 808 patients. Using the simulated data, Meller et al
(2019) reported that the model developed by Li et al (2015) tended to over-estimate the correlation
coefficient between PFS and OS. Using real data from the CLEOPATRA trial, Meller et al (2019)
reported that whilst the model proposed by Li et al (2015) provided a slight over-estimate of the
transition between progression and death, the model provided a reasonable fit to PFS and OS.

6.9.1.1.4 Applicability of the method to health economic evaluation

The method was specifically designed for estimating jointly PFS and OS and therefore can be applied
easily to an RCT dataset for use in health economic analyses. The statistical model proposed by Li et
al (2015)* is a general illness-death model. Compared with the model by Fleischer et al (2009), a key
strength is that it uses Weibull models which are more flexible compared with exponential models. The
Weibull model is expected to provide a better fit with a more accurate estimation of the correlation
(formula for analytical estimation of correlation not shown here). Whilst its implementation is more

complex, a copy of the R code is available from the author on request and is relatively straightforward
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to implement (as demonstrated in the simulation study in Appendix 12). Despite the primary aim of the
author to estimate OS, the code is easily adaptable to extract PFS predictions as well.

A key limitation is that transitions are assumed to follow a Weibull distribution, which may not always
be appropriate. Furthermore, the same shape parameter is assumed between transitions, which is a
simplification. However, simulation studies conducted by the authors showed that even when the
underlying distribution has a non-monotonic hazard, the proposed Weibull model (using the same shape
parameter) could still provide an adequate fit to the observed data. The use of the same shape parameter
is justified by the author on the basis of mathematical convenience. The authors also argue that usually
the shape of the hazards for progression and death are similar; therefore, this is a plausible assumption.
However, even when the common « assumption is violated, the authors show that the proposed Weibull
model with the same a parameter fits the data adequately. The authors suggest this could be relaxed
and it is possible to use different shape parameters. However, the correlations among the survival

endpoint and OS can no longer be derived analytically.

In summary, the model proposed by Li et al (2015)% presents a potential alternative to the STM as
currently implemented in health economics as it allows for the joint modelling of PFS and OS. The
model is relatively straightforward to implement in R. Whilst a key limitation is the use of the Weibull
distribution, the Weibull distribution is often used in health economic analyses and appears to provide
a reasonable visual fit to the observed data, even when data are generated using other distributional
forms. Nevertheless, the plausibility of the predictions beyond the trial period generated using this

method remain unclear.
6.9.1.2 The model proposed by Belkacemi et al (2014)%

The authors aimed to develop a model, whereby PFS and PPS are linked using a conditional exponential
distribution to test the existence of an association between PFS and PPS to better understand the process

of improvement or decrement of OS.

6.9.1.2.1 Development of the method

The model proposed by Belkacemi et al (2014)% is also an extension of the multi-state framework,

whereby OS is modelled based on PFS and PPS, but using a conditional distribution.

6.9.1.2.2 Theoretical properties

The model proposed by Belkacemi et al (2014)% considers the conditional association between PFS

and PPS. In other words, the dependence structure between PFS and PPS is represented by a conditional
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distribution. This is different to the model developed by Flesicher et al (2009)® and Li et al (2015)
which did not consider conditional distributions.

The working assumption of the model proposed by Belkacemi is that:

o If both progression and death are observed, OS is composed of two survival times; (a) PFS and
(b) PPS,
o If only death is observed, this is counted as a progression event and therefore PFS < 0S

e PFS and PPS are statistically dependent.

Equations described here are reproduced from the paper directly.® Further information is available in
the paper.%

Belkacemi et al (2014) describe the survival function for OS as:

t
Sr(t) = Sx(t) + Jy Syjx(t — x|x) fx (x)dx
Where:

T represents OS, X is PFS and Y is PPS and Sy x is the conditional survival function of Y given X

Estimates for the survival function are then generated using MLE. The likelihood is calculated by
dividing the contribution of patients in 5 categories [equations reproduced from the paper®®], where, for
the ith patient, 81, ) is @ categorical indicator, n; the number of patients in each category, C the

administrative right censoring time,

For 8; = 1, both progression and death are observed
Ly = H?:llfx(xi) fy|X(Yi|xi)

where y; = t; — x;

For 8; = 2, only progression is observed

L, = H?jlfx(xi) Sy|X(yl-C|xl-)

where yf = ¢; — x;

For 8; = 3, only death is observed (related to cancer)
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Ls = H?jl{l = Sx ()} fr(t)

For §; = 4, only death is observed (unrelated to cancer)
L, = H?:l Sx(t;) fr(t)

For 8; = 5, neither progression nor death are observed
Ls = 172, Sx(c;) Sr(cy)

The model proposed by Belkacemi et al (2014)% assumes that both PFS and PPS (conditional on PFS)
are exponentially distributed with parameters A for PFS and 6(x) for PPS.

As PPS is conditional on PFS, 08(x) is assumed to follow a conditional exponential distribution with 2

parameters {3 and v such that:
9Y|X(X) = a.exp (—Bx)
where a = exp(v)and g < 1/2

The correlation coefficient 8 provides an indication of the correlation between PFS and OS and PFS
and PPS. The authors observed that if PFS and OS are positively correlated, an improvement in PFS
would therefore lead to an improvement in OS. However, the authors state that this is different to
assuming that PFS is positively correlated with PPS, because the improvement in PFS may translate to
lower PPS.

The hazard function for PPS can be written as:

Iy Byx(0)g(xy)dx
Jy g(xy)dx

hy(y) =

The hazard function for OS can be written as :

t
_ Jo Oyix () g (x,t—x)dx
- —At) ot
%fo g(x,y)dx

he (t)

where g(x,y) = exp {—[0yx(x)y + Ax|} and the assumption that X and Y|X to be exponentially
distributed with parameters 1 and 6(x)
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6.9.1.2.3 Application of the method to the modelling of PES and OS

The authors applied their method in a Phase 11l clinical trial of patients with NSCLC.*° Parameters
were found by optimisation methods using two R software packages; DEopt im (a package to perform
global optimisation, used to find starting values), and alabama (which includes functions that use the
augmented Lagrangian and adaptive barrier minimisation algorithm in which constraints are allowed).
The model is applied with (explanatory variables considered relevant by the authors including tumour
stage, performance status and toxicity) and without covariates. In their dataset, the 3 parameter (the
correlation coefficient) was statistically significant, indicating a link between PFS and PPS confirming

the adequacy of the conditional model.

Overall, the authors show that the proposed model provided a reasonable fit to OS, PFS and PPS when
no covariates are considered. When considering covariates in their dataset, the authors suggest that their
model performed better for the estimation of OS (especially at the tail) compared with the Cox-semi
Markov model. The authors state that results were consistent with Fleischer et al (2009)2 in the same
dataset; despite the statistical models being different. It should be noted that both Belkacemi et al
(2014)% and Fleischer et al (2009)® use exponential distributions, but the model proposed by
Belkacemi et al (2014)%° takes into account the dependency between PFS and PPS, that is not considered
by Fleischer et al (2009).

6.9.1.2.4 Applicability of the method to health economic evaluation

Whilst this method could be easily applied to an RCT dataset, the model developed by Belkacemi et al
(2014) has limited application to the HE context as it is very restrictive and is limited to the exponential
distribution only (applied as a conditional exponential distribution). The exponential distribution was
used for mathematical convenience. The authors suggest that the generalisation to the Weibull
distribution is numerically possible, but that the estimate of the correlation becomes analytically
impossible to derive. The absence of code to reproduce results limits its applicability to health

egconomics.
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6.9.1.3 The model proposed by Meller et al (2019)

6.9.1.3.1 Development of the method

The model proposed by Meller et al (2019)* is also an extension of the multi-state framework.
However, compared with the models developed by Fleischer et al (2009)2 and Li et al (2015),%* which
according to the authors, use a latent failure time approach, the model developed by Meller et al
explicitly considers all “transition intensities between all states.” The model proposed by Meller et al
(2019)* has been specifically developed for the joint modelling of PFS and OS, but is applicability is

not restricted to the modelling of PFS and OS and could be used for any illness-death model.

6.9.1.3.2 Theoretical properties

The model proposed by Meller et al (2019)* follows a general illness-death MSM approach. PFS is

defined as the waiting time in the initial state. OS is defined as the time until reaching the death state.

The authors state that no assumptions are made, with the exception that there are no progressions after
death. PFS < OS if a progression event occurs, whilst PFS = OS if a patient transition directly from the
initial state to death (i.e. the patient dies prior to progression). PFS is first estimated based on the hazard
of patients moving from the initial state to either the progression or death health state. In the second
step, a binomial distribution is used to define if PFS<OS. The residual time until death in people for
whom PFS<OS is then simulated. Neither latent times nor copulas are used in the model developed by
Meller et al (2019).%

The model proposed by Meller et al (2019)% is therefore very similar to the multi-state framework used
by Jackson et al (2012)*® and Putter et al (2013)* whereby all transitions are explicitly modelled.

However, whilst the general framework is similar, parametric inference for the model proposed by
Meller et al (2019) relies on MLE for counting processes, thus, it is based on the contributions of the
three transitions. This contrasts with the multi-state framework in Putter et al (2013), whereby transition
intensities are estimated independently of each other one at a time and then combined under a competing

risk framework.

In addition to the estimation of the transition intensities, the authors demonstrate how the correlation
between PFS and OS can be computed (see Meller et al (2019)* for further details). This is not

described here as it is beyond the scope of the review.
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6.9.1.3.3 Application of the method to the joint modelling of OS and PFS

The authors compared their model with the model by Fleischer et al (2009)% and Li et al (2015)%* in
both a simulation study and a real case example. In the simulation study, the authors show that their

model provided a better estimation of the transition between the PD state and death, and therefore did

not result in such an over-estimation of the true underlying correlation. This is explained by the fact

that the shape of Weibull distribution was not assumed to be constant between transitions.

In a real-life example, using data from the CLEOPATRA trial; a Phase IlIl RCT in HER2-positive

metastatic BC involving 808 patients, the authors found that:

119

for the transition between PF and PD, all models provided a very similar and satisfactory visual
fit

for the transition between PF to death, the model proposed by Meller provided a slightly better
visual fit

for the transition from PD to death, no direct comparison is provided as estimates are shown on
different scale. The authors stated that the model by Meller slightly over-estimated the hazard
for that transition. The model by Fleischer et al (2009)% and Li et al (2015)** provided a
reasonable visual fit to the observed data (Nelson-Aalen); however, in the absence of a direct
comparison with the method of interest, it is unclear how they performed compared with the
model proposed by Meller et al (2019).%

when considering the fit to the PFS and OS survival functions, the estimate for PFS was
generally similar irrespective of the approach used. As the authors pointed out, this is not
surprising, since: (a) all approaches provide similar estimates for the transition between PF and
PD, and (b) the number of transitions from PF to death is relatively much lower than the number
of transitions to PD.

the authors also found that estimates for OS are also very similar between approaches, although
they do not comment on the implications of this finding.

finally, the authors note that the estimated correlation coefficients are similar between
approaches, but are associated with large confidence intervals, indicating the difficulty in

estimating the correlation coefficient with precision irrespective of the approach used.



6.9.1.3.4 Applicability of the method to health economic evaluation

The model proposed by Meller et al (2019)* was developed to jointly model PFS and OS and therefore,
is highly relevant to the context of health economics.

A key advantage of the model proposed by Meller et al (2019),° compared with other extensions of the
multi-state framework discussed previously (Li et al (2015)°* and Fleischer et al (2009)%) is that there
is no restriction on the parametric distribution and strong assumptions are not made e.g. the assumption

used by Li®! regarding the same Weibull shape parameter for all transition intensities.

Despite its flexibility, results from the simulation study and real-life case study example remain
inconclusive, with the authors noting that the estimates for PFS and OS are relatively similar
irrespective of the approach used in the case study example. It should be noted that this could be
attributable to the data used, and that the methods might perform differently using different datasets.
The evaluation of the performance of the method was also limited to the goodness-of-fit to the observed

data (visual fit) and therefore does not account for the plausibility of the long-term extrapolation.

A key barrier for the adoption of the method described by Meller et al to health economics is the lack
of detail provided regarding its implementation. Whilst the authors describe their general model and the
approach used for statistical inference, few details are provided by the authors on how to reproduce the
results, leaving the reader/analyst to program the implementation based on their understanding of the
method described by the authors. No code is available in the final paper published in Statistics in
Medicine; this is a key barrier for its immediate adoption in health economics. Analysts typically in
charge of developing such health economic models may not have the technical skills to implement such
an approach without a comprehensive tutorial. A copy of the code used to generate results in the paper
was requested from the main author, but was not shared and therefore information is limited to what is

contained in the paper.

120



6.9.2 Jointly model PFS and OS and inducing the dependence by the introduction of a random
effect — the frailty/transformation model

6.9.2.1 Development of the method

This method is not specific to the joint modelling of progression and survival outcomes but is a general
approach to account for the dependence between two survival endpoints. Frailty models'!! are an
extension of the Cox PH model. They account for the heterogeneity caused by unmeasured covariates.
The Cox model can be considered as a frailty model without a random effect term. Thus, the frailty acts

as a random effect.

Frailty models can be used for a number of purposes, but are widely used for clustered survival data
when modelling the dependence between two processes belonging to the same cluster. For instance,
frailty models are used extensively in family disease studies for instance, where the time to disease
onset for individuals within a family (cluster) are correlated, possibly due to sharing similar

environmental and/or genetic conditions.*2
6.9.2.2 Theoretical properties

Frailty models were originally introduced for PH models and were later extended to AFT models. The
key assumption in the frailty model is that the survival times are conditionally independent given an
(unobserved) frailty term (or random effect). Therefore, in the case of the PH model, given an
unobserved frailty (random effect), the hazard for each survival time is assumed to follow a PH model,
with the frailty effect acting multiplicatively on the baseline hazard. The joint survival function can then
be obtained by integrating out the frailty (using an appropriate frailty density and its corresponding

Laplace transformation — see details below).

There are a number of classes of frailty models (shared, additive, nested or joint frailty models). Brief
descriptions of the shared frailty model and the joint frailty model are provided in the next sub-section,
as these two models are the most relevant when considering the dependence between progression and

survival outcomes.

In addition to the different classes of frailty, different frailty densities can be used; the most common
being the gamma, positive stable or log-normal distribution. The gamma distribution is possibly the
most commonly used due to its simplicity compared with other models. However, the log-normal model
is more flexible than the gamma distribution, but requires the use of a more complex MLE procedure

to estimate the parameters.
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The baseline hazard can be non-parametric, semi-parametric or parametric. Parameters are usually
estimated through the marginal likelihood via the marginal distribution (the likelihood integrated with
respect to the frailty term).!* As previously highlighted, frailty models were originally developed for
PH models, with the frailty term (random effect) acting multiplicatively on the hazard, inducing positive
correlation. For AFT models, the frailty is included as an error term. The frailty could be considered as
an unobserved covariate that is additive on the log failure time scale and describes some reduced or
increased event times for different clusters.t** Similarly, multi-level mixed effects parametric survival
analysis described by Crowther et al (2017)1 is an extension of parametric frailty survival models,
allowing any number of normally distributed random effects to be used, including the exponential,
Weibull, and Gompertz PH models, and the Log-Logistic, Log-normal and Generalised Gamma AFT

models.

6.9.2.2.1 The shared frailty model

The shared frailty model is appropriate when observations within a cluster share a common
unobservable frailty. Typically, a single frailty is assumed, implying a positive correlation within each
group. This can be relaxed by considering two independent frailty terms. Furthermore, the frailty
assumes that the unobserved factors are the same within a group of clustered observations, and therefore
the correlation is assumed to be constant between all individuals. Therefore, the shared frailty model is

particularly useful in the context of the illness-death model where transitions share a frailty term.
The hazard function for the shared frailty for PH model can be written as follows:%®

For the j-th (j = 1, ..., ni) individual of the i-th group (i=1, ..., G),

Aij(tlv) = vido(8) exp(BTXy;) = vidy;(t)

where A, is the baseline hazard; X;; is the covariate vector associated with the vector of regression

parameter £, and v; the random effect for the i-th group.

For AFT,™ the shared frailty can be expressed as a log-linear model for the logarithm of the event time

such as:
lOg TU = xl']ﬁ + bi + O'Eij

where f is a vector of fixed effects corresponding to covariate vector x;;, o is a scale parameter, the
g’ s are independent and identically distributed random errors, and the b;’s are the cluster-specific

random effects.
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6.9.2.2.2 The joint frailty model

In contrast to the shared frailty model described above (see Section 6.9.2.2.1), the joint frailty model®®
% can be used irrespective of whether the observations are clustered. This is particularly useful when
an event may be terminated by loss to follow-up, end of study, or a major failure such as death.
Therefore, the joint frailty model is particularly useful in the context of semi-competing risks.

The joint frailty model considers the joint evolution of two survival processes whereby one event (event
2) impedes the process of another event (event 1); treating the terminal event (event 2) as informative
censoring.% It considers the dependency between the survival processes and respects that event 2 is a

competing event for event 1.

Compared with the shared frailty model, in the joint frailty model, the frailty (v;), which links the two
processes is assumed to act differently on the two survival functions. This is made possible by the

introduction of an additional parameter, o.%% %

The hazard functions for the joint frailty model, for the intermediate and terminal events can be written

as:%

1y (tlvy) = vir(6) exp(BT X;;) = v;ry;(¢t) (intermediate event)

2:(tlvy) = v, () exp(BTX;) = v 2;(t) (terminal event)

where ry(t) is the intermediate event baseline hazard function and A, (t) the terminal event baseline

hazard function.

It should be noted that when a = 1, the frailty has an identical effect on the risk of recurrent events and
on the risk of terminal event. When o> 0, the recurrent events rate and the terminal event rate are

positively associated. Finally, when o = 0 the terminal event is independent of the recurrent events.
6.9.2.3 Application of the method to the joint modelling of PFS and OS

A large number of applications of frailty models were identified. However, the large majority of
applications of frailty models identified during this review process focused on: (i) the estimation of the
frailty term; (ii) the estimation for the effect of covariates for PFS and OS rather than health state sojourn

time, typically using non-parametric distributions, or (iii) the modelling of a recurring event and death.

Thus, this section focuses on a limited number of cases that were considered relevant to the prediction

of PFS and OS and the estimation of health state sojourn time. Perhaps the most relevant example for
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the use of frailty terms for the joint modelling of PFS and OS has been described by Dejardin et al
(2010).8” The authors proposed an illness-death model whereby PFS and OS are jointly modelled
through the use of frailty term which is shared between TPP and PPS. The key assumption was PH
between progression and death. Transitions shared a common parameter and therefore, the survival
distribution for the PPS was partly determined by the survival distribution for TTP. Key characteristics
of the model developed by Dejardin et al (2010) are: (a) it incorporates interval censoring, and (b) it
assumes that death can only occur after progression (therefore, there is no direct transition from the PF
state to death). The authors assumed piecewise marginal distributions (semi-parametric) and examined
two frailty distributions: the gamma and positive stable frailty distributions. Overall, the authors
reported that their model estimate for time to death was close to the non-parametric KM estimator, using
either the gamma frailty or positive stable distribution, with the exception of the tail of the curve (which
is important to consider in health economics). A similar model was also used by Rice et al (2017)%°

using a non-parametric distribution.

A similar approach (frailty shared between transitions in an illness-death model) was employed by Xu
et al (2010)%6 using data from a RCT of nasopharyngeal cancer to estimate the effect of covariates. A
frailty term (gamma distribution) was shared between all transitions (non-parametric maximum
likelihood estimation [NPMLE]). The authors compared their model with: (a) the Markov model and
(b) a restricted model (semi-competing model). They found that the Markov model and the general
frailty model gave broadly similar results, both of which were more realistic compared with those of
the restricted model. Similarly, Han et al (2014) proposed a Bayesian Markov Chain Monte Carlo
methods (MCMC) for model fitting and a frailty term with normal distribution (in WINBUGS).

Examples of the joint frailty model have been identified mostly for the modelling of recurring events
and death to estimate the effect of covariates; these have been described for examples by Liu et al
(2015),'*” Rondeau et al (2007)* and Mazroui et al (2012).%

6.9.2.4 Applicability of the method to health economic evaluation

Frailty models are useful tools when modelling the dependence between two processes and have been
extensively studied. Whilst frailties were originally developed for PH models, they can be extended to
some AFT models. Furthermore, whilst not specific to the modelling of PFS and OS, frailty models can
be used when considering the dependence between TTP/PFS and OS/PPS with;

o the shared frailty model, whereby TTP and PPS share a common unobservable frailty,
e the joint frailty model, whereby the dependence between TTP and OS is considered under a

semi-competing risk framework, with TTP terminated by death.
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A key limitation is that a single frailty induces positive correlation, which may not always be
appropriate. This can however be relaxed by the addition of another frailty term. The use of a frailty
term also assumes that the unobserved factors are the same within a group of clustered observations,
and therefore the correlation is assumed to be constant between all individuals within that group.
Furthermore, the marginal survival functions in the frailty model contain the association parameter of

the frailty distribution,*® and thus can be challenging to couple with other frailty models.

When considering the frailty model, in addition to the class of model, assumptions are also needed
regarding the distribution of the frailty term (gamma, log-normal etc.), which specifies the type of
dependence between the two processes. A key barrier for the adoption of frailty models (shared or joint)
in health economics is the absence of clear step-by-step tutorial on how to jointly predict PFS and OS
using frailty models. Whilst Dejardin et al (2010) reports an example of the use of a frailty model to
jointly model PFS and OS, the code used to reproduce results is not available online. Strong assumptions
were also made by the authors. The author was contacted, but no response was provided at the time of
writing of this thesis. The only application identified in which the code was available in the appendices
was from Han et al (2014). However, the approach is programmed in WINBUGS
(statistical software for Bayesian analysis using MCMC methods), which is likely to be a barrier for

many analysts responsible for development cost-effectiveness models in HTA.

It should be noted that there are a number of R packages that are available to fit general frailty models
such as frailtypack, frailtySurv or parfm that could potentially be used to jointly model
progression or survival outcomes. However, these packages do not provide clear examples for direct
use in health economic analyses. The implementation is also likely to be different according to the
parametric distribution assumed, the frailty distribution used and type of frailty model; this limits the

immediate adoption of the approach in health economic evaluation.
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6.9.3 Bivariate models: the Copula model
6.9.3.1 Development of the method

This method is not specific to the joint modelling of PFS and OS, but is a general approach to account
for the dependence between two survival endpoints.

Sklar’s theorem is the foundation principle for copulas (which establishes the connection between a
joint d-dimensional distribution function and its univariate marginal distribution).*® Copulas are a class
of bivariate distribution whose marginal distribution function are uniform on the unit interval. Copulas
can be described as functions which enable the combination of univariate distributions to obtain a joint
distribution given a specified dependence structure. Therefore, any bivariate model can be considered

to represent a form of copula.
6.9.3.2 Theoretical property

The copula model compared with the frailty model deals with the joint survival function whereas the
frailty model is a conditional hazard model that has a multiplicative factor.? Indeed, Nelsen et al (2006)
describe the copula, C, as a function that “joins or couple multiple distribution functions to their one-
dimensional marginal distribution functions”.!*® Sklar’s theorem states that for a given joint distribution

and univariate marginal distribution, there exists a copula function to couple them. 1121

In mathematical terms'?, for Hy y(x,y) - a joint distribution, Fx(x) - the marginal distribution of X and

Fy(y) - the marginal distribution of Y, there exists a copula C(u, v) such that:

HX,Y(x' y) = C(Fx(x), Fy(y))

Each pair, (x,y) are associated with a point (Fx(x),Fy(y)), in the unit square [0,1] x [0,1],

corresponding to a number, Hy y(x,y), in [0,1].*#

In the copula model, there are no constraints with the form of the marginal distribution (in contrast with

the frailty model). This is because the correspondence is independent of the marginal distribution.

Copula are effective tool to obtain the joint CDF from individual marginal distribution. A key difference
of the copula compared with frailty model is that the marginal survival function does not include the
association parameter (the copula). In other terms, the marginal function remains unchanged, which is
an attractive property as it is flexible and allows for the separation of the measure of dependence from

the marginal distribution.
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A copula having a domain of 12 has the following properties.?
e Itis 2-increasing'*
For every uq,u,, vq, v, in I such that u; < u, and v; < v,, then
C(up,vp) — Cuy,vy) — C(uy,vp) + C(ug,v1) 20
Where | is the identity matrix.
e Itis grounded!®
For every u,vin I,
Cu,0)=0= C(v,0)
e Finally, for every u,vin I,'%
Clu,1)=u
c(l,v)=v

Several families of Copulas have been described, with the Archimedean copulas being the most popular
to model the dependence in reliability engineering, medicine, climate and weather research, hydrology
research. The Archimedean copulas (associative class of copula) is particularly popular as only one
parameter is needed to govern the strength of dependence, it can be easily constructed and admit an
explicit formula.'?? There are a varieties of Archimedean copulas such as Ali-Mikhail-Hag, Clayton,

Franck, Gumbel, independence and Joe.'?* 124

Another families of copulas often used is the Gaussian copula.'? 1% As described in Wikipedia,'® it is
a distribution over the unit cube [0,1]%and constructed from a multivariate normal distribution over R?,

by using the probability integral transform.
This family of copula has been used to jointly model PFS and OS by Fu et al.®

As described in Wikipedia,*? for a given correlation matrix R € [—1,1]¢* ¢, the Gaussian copula with

parameter matrix R can be written as:

CEWSS(u) = Pr(P~1(ul), ...., (271 (ud))
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The inferential procedure for the copula model follows two possible approaches;

e A two stage approach.'?* The marginal survival functions are first estimated. The estimates for
the marginal distribution are then used to estimate the dependence parameters (copula function
parameters) by maximisation of the likelihood with respect to the copula function. This is
particularly useful when modelling the marginal survival functions in a semi-parametric or
nonparametric way.

e Simultaneous MLE for all the parameters (the parameters of the marginal survival functions
and the parameters of the copula). This is usually done when the marginal survival function is
modelled parametrically. The simultaneous estimation would provide a different estimation for
the baseline hazard accounting for the dependency.!?

6.9.3.3  Application of the method to the modelling of PFS and OS

Copula models have been extensively studied and have typically been used to assess the surrogacy
between PFS and OS in meta-analysis or used for evidence synthesis.1?6 127

However, an example of the use of a copula to jointly predict PFS and OS was reported by Fu et al
(2013).%° The authors describe the use of a Copula function to study both the correlation structure
between PFS and OS and to predict OS based on PFS. The authors proposed a normal induced copula
estimation model and used a Gaussian copula to link the marginal distributions of TTP and OS, under

a Bayesian framework.

In this model, PFS and OS are combined under a semi-competing risk framework, with OS (the terminal
event) censoring the non-terminal event (PFS), with the copula acting as the dependence parameter
between the terminal and non-terminal events. The authors proposed a normal induced copula
estimation model and used a Gaussian copula (bivariate normal) to link the marginal distributions of
TTP and OS, under a Bayesian framework. Both the marginal and copula terms are estimated
simultaneously. The choice of a bivariate normal distribution is justified by the authors as it is simple

to interpret and because the dependence can be determined by the correlation coefficient.

In terms of calculation of the likelihood and estimation of parameters, within Fu’s model, parametric
functions are fitted to both TTP and OS at the same time, with the likelihood function calculated based

on the contribution of 4 type of individuals:

e those who both progressed and died subsequently

o those who progressed only but did not die
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those who died prior progression

those who neither progressed nor died.

The total likelihood is therefore the sum of the likelihood estimated for these four type of individuals

in the dataset, with parameters for both the marginal distributions (e.g. parameters for the Weibull for

OS and Gompertz for TTP) and copula parameter estimated as the parameters that maximise the
likelihood.

This contrasts with the independent model, whereby parametric functions for PFS and OS are fitted

separately to each outcome, with the likelihood function for both events only incorporating information

on patients who had the event of interest or were censored.

Fu et al (2013)®° performed a simulation study to determine whether the performance of the method in

terms of OS prediction was improved using joint modelling compared with the independent model
(direct fit to PFS and OS). The authors concluded that:

when there is no correlation in the data (p = 0), the copula model performed less well (in terms
of mean squared error and biases) compared with the working independent model. This is
justified by the author because of the introduction of an additional parameter,

both the copula model and working independent model provide an unbiased estimate of the
median OS and are not significantly different from each other (irrespective of p). However, the
authors note that the variance with the NICE model is usually smaller, therefore providing a
more accurate estimate of median OS,

when p # 0, the copula model performs better (i.e. it is more accurate estimate and unbiased)
for TTP. This is because TTP can be dependently censored by OS, and therefore the correlation

parameter p becomes important.

Fu et al (2013)®° also demonstrate how to estimate OS and PFS given that their model is based on TTP

and OS. This could be summarised in three steps:

Step 1: Obtain M posterior samples for p and the hazard functions of TPP and OS
Step 2: for each k (sample), generate TTP and OS as {Ty;, Toi}ioy " on the basis of

{ArTP K0 AOS ks PK}

Step 3: derive PFS and OS such as {min (Ty; Ty;), Tai}op >

The code used by the authors is available in the supplementary appendix and therefore, the model can

be used by other analysts. Although it is unclear whether the Fu’s model example was used, as this was
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only available in abstract form, Felizzi et al (2018)'?® conducted a study using a Gaussian copula
(bivariate normal) to link OS and PFS survivals. Another relevant example for the use of copulas is
provided by Rotolo et al (2013). Rotolo et al (2013) used Copulas to generate simulated data within an
MSM that would include: (a) the dependence of time for successive time, and (b) the dependence of
time for competing events. Clayton copulas were used to induce the dependence for the competing

event and another Clayton copula was used to induce the dependence for the successive transitions.
6.9.3.4 Applicability of the method to health economic evaluation

Copulas are versatile and are suitable methods for use in health economics to induce the dependence
between survival outcomes. Copulas are equally useful when including the dependence of time for
successive events or semi-competing events. A key strength of copula is that the marginal distribution
remains unchanged and therefore it is possible to couple different copulas to induce different levels of
dependence, as shown by Rotolo et al (2013).1%° In the copula model, there are also no constraints with
the form of the marginal distribution (in contrast to the frailty model). This is because the

correspondence is independent of the marginal distribution. This is a key strength.

Fu et al (2013) provide an example of implementation (R code) for the Gaussian copula for the joint
modelling of PFS and OS. Whilst the exponential distribution is used, the code provided by the authors
can be easily amended by the user to any parametric distribution (as shown in the simulation study in
Appendix 12). Therefore, the method by Fu et al (2013) using a Gaussian copula to jointly model PFS
and OS under a semi-competing risk can be easily and immediately adopted in health economic
analyses. For instance, the same model was used recently by Felizzi et al (2018)'?® However, it should
be noted that a large number of other copula functions exist, which would require a different
implementation and formulation. The Gaussian copula, whilst simple, may not always be the most
appropriate copula for the data (depending on the tail of the distribution of the data). The Gaussian
copula is said to be tail independent,**® thus a key limitation for this type copula is the inability to
capture extreme values. Other copulas may be more appropriate. However, from a practical point of
view, it is not feasible to look at all copula functions. Researchers suggest that the choice of copula is
often based on familiarity, ease of use and analytical tractability.*?? The choice of copula function could
also be informed by goodness-of-fit tests, such as the Akaike Information Criterion (AIC).**! Exploring
the type of dependency pattern exhibited within the data can also be useful to limit the number of copula

functions examined.
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6.9.4 Semi-competing risk by means of first passage times of a stochastic process

This method® was originally developed for engineering problems and is an extension of threshold
analysis and the single-threshold model proposed by Paroissin and Salami (2014). The approach

proposed by the authors models terminal and non-terminal event under a semi-competing framework.%

The description presented in this section is very brief, as | wasn’t able to understand properly this
method based solely on the description provided by the authors. No software for implementation was
also provided, meaning | could not check or confirm my understanding using an example of

implementation in software.

In brief, the two events are coupled through the introduction of a threshold. A threshold (c) is assumed

for the terminal event at time X. A threshold (S) is assumed for the non-terminal event at time Z.

The authors propose a model whereby the time to the terminal event (X) is the first passage time to a
fixed level ¢ in a stochastic process, while the time to the non-terminal event (Z) is represented by the
first passage time of the same process to a stochastic threshold S, which is assumed to be independent
of the stochastic process.

The method was applied in a simulated dataset (data generated using the method examined itself
[threshold model]) .% The authors showed that estimated parameters using MLE were close to the true

parameters in their simulated data.

The authors also applied their method to a case study in bone marrow transplantation. The threshold
model was first fitted to the data assuming S follows a log-normal distribution. Following examination,
the authors found that a normal distribution was more appropriate. Parameters for S and the underlying

process D(t) (gamma process) were then estimated using MLE.

The authors state that the parametric curves seem to fit fairly well to the non-parametric curve (I believe
this is debatable when examining the fit against the KM), but less well compared with that in the
simulated data (which were simulated using the method itself). The authors also compared their estimate
for the marginal distribution for Z (the non-terminal event) against estimation by Fine et al (2001) and
state that their predictions using their model was within the confidence interval estimated by Fine et al
(2001), but did not reflect the plateau at the end. Agai,n | believe this is debatable.

While this approach® to deal with semi-competing risks is interesting, its applicability to health
economics is likely to be very limited given the strong assumptions upon which the model relies. In

particular, both events are assumed the follow same underlying process (D(t)). As acknowledged by
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the authors this may not always be appropriate. In particular, the process may change when the non-
terminal event occurs. Although this is debatable, the approach did not appear to fit the data well
(according to my interpretation) even when data were simulated using the approach itself (and approach
subsequently used estimate the underlying parameters).

Perhaps more importantly, |1 wasn’t able to fully comprehend this method based on the description in
the paper. No implementation in a software is provided, and therefore | had to rely on the description
in the paper; the same challenges are likely to be face by most analysts in health economics. The absence
of the code in a suitable statistical package to replicate results is an important limitation to its use and

quick adoption to health economics.
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6.10 Discussion and conclusions

This chapter aimed to identify and summarise approaches that could be used to jointly model
progression and survival outcomes in order to estimate health state sojourn times in health economic
models for anticancer therapies. A systematic review process was employed, using an iterative
approach, in order to account for challenges associated with searching and reviewing the
methodological literature. Only one reviewer screened and extracted results, which is a limitation.
Despite some overlap, identified methods could be categorised according to two groups; (1) methods
that include the dependence between transitions in an illness-death model (joint/conditional modelling
of transitions) and (2) methods that include the dependence between PFS and OS under a semi-
competing risk framework. These could be further separated into four broad categories; (i) general
extensions of the MSM; (ii) methods where the dependence is induced by a frailty/error term; (iii)
methods where dependence is induced using a copula or bivariate model, and (iv) the first-passage

method.

All of the approaches identified within this review are subject to certain limitations. The extensions of
the multi-state method identified during the review process are limited to specific parametric
distributions, typically the exponential and Weibull.® ®* This may therefore be a strong assumption
which may not be consistent with the underlying distributions from which transitions are drawn. An
additional recent paper®® was identified describing a method to jointly model PFS and OS (using the
multi-state framework); however, details are currently insufficient for its immediate adoption in health

economic analyses.

The frailty model, which is typically used for PH models, allows for the induction of the dependence
between two survival outcomes. This can be extended to some AFT models using an error term.
However, this requires transformation. There are several types of frailty models, with the shared frailty
and joint frailty models being possibly the most relevant to the health economics context. Within the
shared frailty approach, the dependence can be induced between consecutive transitions (for instance
between TTP and PPS).8" % % 132 The joint frailty model is useful in the context of semi-competing
risks whereby a terminal event (OS) censors a non-terminal event (TTP). The introduction of a frailty
in the shared frailty model typically induces a positive correlation, as this acts multiplicatively on the
hazard. However, this can be relaxed by the introduction of a second frailty term. In addition to the type
of frailty, there are different distributions for the frailty term that can be used, including the gamma or

log-normal distribution.
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The copula model is an alternative to frailty model.8 118 121.129. 133 Copylas are essentially a type of
bivariate model. Copulas are perhaps more flexible compared with the frailty model, as there is no
constraint on the choice for the marginal distribution. Compared with the frailty model, the marginal
distribution in the copula model also remains unchanged. The copula model also induces both positive
and negative correlation. Similar to the frailty model, copula models can be used to induce the
dependence between consecutive transitions (such as TTP and PPS) or to deal with a semi-competing
risk situation whereby a terminal event (OS) censors a non-terminal event (TTP). OS and TPP are
therefore estimated jointly, accounting for their dependence. Despite copulas being flexible, a large
number of copulas exists, and the choice between copulas can be difficult. This can be informed by

statistical goodness-of-fit.

In Chapter 8, the performance of approaches commonly used in health economics will be examined in
addition to alternative approaches that could be employed to jointly model progression and survival
outcomes and to estimate health state sojourn time. A key consideration when examining a method is
whether the method is likely to be adopted in the first place. Given the need for transparency and
technical skills of analysts typically in charge of building or reviewing cost-effectiveness models, a
method is unlikely to be adopted if there are no examples/tutorials on how to implement the method in
a suitable software package. Even with a tutorial (and examples available in a suitable package),*> %
adoption is not guaranteed as illustrated by the slow adoption of the MSM. This is also reflected by the
restriction on the software use when companies submit to NICE. Consequently, for pragmatic reasons,
only methods that provided code or a clear tutorial for its implementation in a suitable package were
included in Chapter 8.

Whilst a number of these identified methods have potential, these are unlikely to be adopted
immediately to health economics, either because they need to be further developed or a thorough tutorial
is required to guide analysts on how to implement these approaches (in particular given the different
possible formulation). The model proposed by Li et al (2015); a MSM using Weibull distributions with
transitions sharing a common parameter, and the model proposed by Fu et al (2013); Bayesian Gaussian
copulas are methods that could be immediately adopted in health economics and therefore will be

included in the next stage of this thesis.

Despite its high degree of relevance, the approach proposed by Meller et al (2019)* is unlikely to be
adopted immediately and easily in health economics given the insufficient information to implement
the approach (the code is not available in the final version of the published article and was not provided
upon request to the author). The approach also did not show to be particularly superior to the Li’ model

in a simulation study conducted by the author. A number of general methods are available to jointly

134



model two survival outcomes (PFS and OS) under a semi-competing risk framework. Of particular
interest are the frailty model and the use of a copula. Both are widely used in the field of statistics, in
particular for evidence synthesis, bivariate analysis or the modelling of a recurrent event and a terminal
event. There are however a large number of copula and frailty models. Although the volume of literature
on this topic is large, none of the models seem to hold any clear advantage compared to the other. There
are also a large number of different specifications, making any direct comparisons impossible. It should
be noted that a comparison of the copula and frailty model is outside the scope of this thesis, and
therefore, the focus in this thesis is on exploring whether the joint modelling of PFS and OS could
potentially improve predictions compared with the separate fit (as currently done in the PSM) and
therefore focusing on the Fu et al (2013)% was deemed reasonable as this approach was also used by
Felizzi et al (2018).1% Despite the approach being limited to one copula distribution (Gaussian), this
approach could be easily and immediately adopted in health economics. The use of other forms of
copula would require a different formulation. The Gaussian copula is tail independent in that it may not
capture extreme values, which is likely to be appropriate when considering PFS and OS. No papers
were identified providing a clear example of the implementation of the frailty model under a semi-
competing risks framework, despite some packages being available. Whilst it could have been
interesting to examine both copula and frailty models in Chapter 8 when jointly modelling PFS and OS
under a competing risk framework, I had to be pragmatic in this thesis and focus on approaches that are
most likely to be adopted and which have been implemented in a suitable statistical package (for
conclusions to be helpful for decision-makers and analysts, rather than conclusion to be limited to a
research exercise). Whilst this could be considered as a possible limitation, using the Fu model in
Chapter 8 (given the availability of a clear tutorial) could inform future research in health economics
on whether predictions are improved sufficiently to justify using complex models (given the different
formulations) which may make decision-making more complicated. Indeed, at present, decision-making
is already challenging by the choice of parametric functions. If different approaches/formulations were

also to examined, this would introduce additional challenges.

In the next chapter, I describe the possible limitations/biases associated with the use of PPS estimated
in the subset of patients who experienced progression to reflect the overall trial population when

developing a model based on information collected in an RCT only.
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7 CHAPTER VII: LIMITATIONS ASSOCIATED WITH THE USE OF
POST-PROGRESSION SURVIVAL (PPS) WHEN DEVELOPING A
MODEL BASED ON INFORMATION COLLECTED IN AN RCT
ONLY

7.1 Chapter overview

In this chapter, | describe the potential biases associated with the use of PPS estimated only in a subset
of patients who progress when generalised to the overall randomised population in the same randomised
control trial (RCT). This may be an issue for any STM.

Section 7.2 introduces this Chapter. In Section 7.3 | discuss the possible limitations and illustrate those
using hypothetical simulated data. In Section 7.4, | use real datasets to illustrate the possible limitations.
Finally, in Section 7.5, I discuss a possible simple approach to reduce potential biases associated with
PPS and test this within a real dataset to assess whether it improve predictions of OS.

7.2 Introduction

As described in Chapter 4.5, within the STM approach (including MSMs), OS is estimated indirectly
through the explicit modelling of every transition between health states. This is an attractive approach,
as this allows for a more natural and explicit modelling of the natural history/underlying disease
progression process of cancer. This contrasts with the PSM which does not involve modelling the
disease process, but instead involves directly fitting parametric functions to data on PFS and OS.
Modelling the underlying disease progression process appears more naturally appropriate rather than
fitting a curve directly to OS. However, when developing a model based only on information collected
in an RCT, transitions are not observed for all randomised individuals, which could introduce a series

of biases.

Indeed, when developing a model based on information collected in an RCT only, the transitions from
the PF state to the PD state (using TTP) or death states (using PrePS) are estimated using data relating
to all randomised patients. Despite data not being fully complete due to censoring (administrative or
random), (right) censoring is assumed to occur at random. Consequently, the estimate for the transitions
from the PF state (to progression or death) can be considered ‘unbiased’ as this is estimated amongst
all randomised individuals in the trial. The likelihood function for the survival function uses information
both from patients who have had the event and from those who are censored. It should be noted however

that TTP/PFS would be biased if censoring was not random.
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Conversely, when developing a model based on information collected in a single RCT only, the
transition from the PD state to the death state (PPS) is estimated only in the subset of patients who
progressed during the observed period of the trial; thus, only a subset of randomised patients contributes
information to the likelihood function for PPS, and those who did not progress within the observed trial
period are excluded from the estimation of this transition.

Consequently, whilst the estimate for this transition could be considered unbiased within those who
progressed, the estimate could be biased when representing the overall population (those who
progressed and those who did not yet progress) for two reasons. First, patients who experienced
progression by the time the trial ended (also referred as early progressors) may have a different survival
prognosis following progression compared with patients who had not yet progressed by end of the trial
(from which data are not observed). Secondly, those who progress later are more likely to be censored
in the PPS dataset. This would suggest that there is time-dependent bias in the form of informative

censoring.

This chapter aims to: (a) demonstrate and describe potential biases associated with the use of PPS
estimated in the subset of patients who experienced progression when developing a model based on
information collected in an RCT only; (b) describe some of the implications of these biases and; (c)
discuss the advantages and disadvantages of some of the approaches that have been suggested to adjust

the estimated PPS when developing a model based on information collected in a single RCT.

7.3 Potential limitations associated with the use of PPS when developing a model based on

information collected in an RCT only

As only the subset of patients who experienced disease progression within the observed period of the
trial are included in the analysis of PPS, this estimated transition may not be generalizable to the overall
population. This may be the case if patients who had progressed within the observed period of the trial
experience a faster or a slower time to death following progression compared with those patients who

had not progressed at the data cut-off for the trial.

In order to illustrate this problem, hypothetical trial data were generated assuming 3 levels of
dependence (negative dependence, independence and positive dependence) between TTP and PPS,
whereby the truth (i.e. the complete data in the absence of censoring) is known, in addition to the same

data assuming censoring reflects early termination in trials.

The process used to generate data is described below. Hypothetical uncensored time-to-event data were

first generated for PFS and OS using a simple multi-state process for 500 individuals. TTP and PPS
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were assumed to follow an exponential distribution, with rate parameters of 0.03019738 and 0.082085,
corresponding to mean sojourn times of 144 weeks and 53 weeks, respectively. No death was assumed
prior to progression; thus, PFS equals TTP. A Gaussian copula was then used to link TTP and PPS to
induce three levels of dependence (moderate negative, independent and moderate positive). A moderate
dependence was defined by a Kendall’s Tau of 0.5 for illustration.** Once uncensored survival times
were generated, administrative censoring was introduced at Week 156 for all three scenarios, so that
patients with an uncensored TTP time or death time greater or equal to 156 weeks were censored at this
time. This was done to reflect early termination in trials and to compare whether the KM for PPS
estimated in all randomised patients estimated using uncensored survival time is similar to the KM for
PPS estimated only in the subset of patients who had a recorded progression event by the trial cut-off.
For simplicity, no random censoring was assumed to occur before the administrative censoring time-

point in this illustration.

KM plots for the scenarios of independence between TTP and PPS, negative moderate dependence and
positive moderate dependence are shown in Figure 26, Figure 27 and Figure 28, respectively. The
simulated uncensored correlated time for TTP and PPS (in all randomised patients — complete dataset)
are shown in the left-hand panels, the generated censored PFS and OS KM are shown in the centre

panels, and estimates for PPS are shown in the right-hand panels of the figures.

Unsurprisingly, when TTP and PPS duration times are independent / not correlated (Figure 26), the KM
for PPS estimated in the censored dataset only in the subset of people who progressed before Week 156
(blue line) is relatively similar to the KM for PPS generated from the respective uncensored dataset
(amongst all randomised patients in an uncensored dataset). This could be explained by the fact that the
time to progression does not affect the time to death following progression. In this case, it is reasonable
to assume that PPS estimated in the subset of patients who progressed early is generalisable to the

overall population.
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Figure 26: Data generated assuming independence between PFS/TTP and PPS
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When TTP and PPS duration times are moderately negatively correlated (Figure 27), the KM plot for

PPS estimated for early progressors (before Week 156, blue line) is significantly higher compared with

the KM for PPS estimated in all randomised patients in th