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ABSTRACT 

The proliferation of mobile communications technology increases the 

demands for faster and more robust services, in addition to the ever decreasing 

sizes of antennas. These demands can be satisfied using circularly polarized (CP) 

dielectric resonator antennas (DRAs) exhibiting wide operational bandwidth 

capability. By utilizing such antennas, the probability of linking the transmitted and 

received signals is higher, and the system is more reliable since the CP wave is 

transmitted in all planes and less susceptible to unwanted reflections and 

absorptions. As CP system is insensitive to the transmitter and receiver 

orientation, the time consuming practice of continuously aligning the antennas can 

be avoided. Furthermore, the antennas profile can be reduced simply by using 

dielectric material with higher permittivity.  

The thesis focuses on the design and analysis of singly-fed regular-shaped 

DRAs with a wideband circular polarization. Two new single-point excitation 

schemes that can be easily used to excite an arbitrarily shaped DRA are 

introduced, where a square spiral and a rectangular open half-loop are used for 

DRA excitation. These proposed feeding methods are based on employing 

conformal conducting metal strips that are placed on the DRA surface.  

Additionally, two different approaches are employed onto the DRA design to 

enhance the CP bandwidth. The first approach is based on using a multilayer 

dielectric, and the second introduces a parasitic half-loop inside the feeding 

element. The generated broad CP bands have been achieved in conjunction with 

sufficient impedance matching bandwidths. The studied geometries have been 

modeled using a comprehensive self developed MoM code that employs the 
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volume surface integral equation (VSIE). The computed results have been 

validated against those obtained from measurements as well as CST microwave 

studio simulations. Theoretical and experimental results demonstrate a several 

folds enhancement in the CP bandwidths compared to those reported in the 

literature for identical DRA geometries.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background 

Compact and highly efficient antennas exhibiting wide operational 

bandwidth capability are becoming increasingly popular for current research 

activity in the wireless communication technology. Dielectric resonator antenna 

(DRA) remains one of the most attractive candidates for such requirements. The 

size of the antenna can be minimized simply by increasing the dielectric constant,

r  of the material [1] since the dimensions of the DRA are proportional to r /0 , 

where 0  is the free-space wavelength. Additionally, very high radiation efficiency 

(>98%) can be achieved using DRA, even at millimetre-wave frequency operation, 

by selecting a low-loss dielectric material. This results from the absence of 

conductor losses and surface waves associated with the antenna [2]. Surface 

waves are EM waves that propagate along an interface between two different 
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media. Strong excitation of surface waves, such as in microstrip antenna design, 

is undesirable since power launched into the surface waves is power which will 

eventually be lost. 

Furthermore, a DRA has a wider impedance bandwidth compared to other 

antenna types such as a microstrip antenna. This is mainly due to the fact that the 

waves radiate through the entire DRA surface, except for the ground, in contrast 

with the limited radiation of waves through two narrow edges of the patch in a 

microstrip antenna [3].  DRA also offers high design flexibility since its resonance 

frequency, excited modes and radiation characteristics are dependent on the 

antenna’s aspect ratio, dielectric constant and coupling mechanism. Additionally, 

the required design specifications can be accomplished when a DRA is employed 

owing to the availability of dielectric materials offering a wide range of electrical 

permittivities, and the existence of several feeding mechanisms including slots, 

microstrip lines and probes.  

The studies of dielectric resonator as antenna (instead of energy storage 

devices) began in early 1980s with investigations of the characteristics of basic 

DRA shapes such as hemispherical, cylindrical and rectangular geometries that 

have been conducted by Long, McAlister and Shen [4-6].  Since this breakthrough, 

researchers have investigated numerous DRA feeding mechanisms, and applied 

various analytical or numerical techniques to calculate the antenna’s resonance 

frequency and operating bandwidth.  Much of these works have been summarized 

in a review paper by Mongia and Bhartia [7]. Recently, the emphasis of 

researchers in this field has been on designing a CP DRA and enhancing its 

impedance matching bandwidth performance. This research adopts similar trend 

with additional aims and objectives outlined in the next section.   
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1.2 Aims and Objectives 

The research is conducted with the aim of designing a wideband CP DRA 

using a single-point feeding system. Additionally, the antenna should offer a 

sufficient impedance matching bandwidth at the same frequency range of the 

achieved circular polarization. Several objectives must be satisfied in order to 

achieve these aims. 

The first is to create a new single-point excitation schemes that can be easily 

applied to an arbitrarily shaped DRA. In this research, two variations of conformal 

conducting metal strips excitation are introduced, namely square spiral strip and 

rectangular open half-loop strip. The second objective is to develop a rigorous 

Computational Electromagnetics (CEM) model to simulate the electromagnetic 

fields interaction between the DRAs fed by the conformal conducting strip and its 

surrounding environment. For this purpose, the Method of Moments (MoM) has 

been chosen in conjunction with specialized basis functions as discussed in 

chapter 2. 

The next objective is to build the prototypes of the singly-fed DRAs. Prior to 

production, near-field and far-field properties, such as S11 and axial ratio, should 

be optimized through simulation. Then, the performances of these DRAs are to be 

measured using a vector network analyzer.  

Finally, the obtained experimental results are compared with the predicted 

results. In depth analysis and discussions of these results are presented in the 

thesis. 
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1.3 Circularly Polarized DRA 

Initially, investigation of DRAs as wireless communication devices was 

mainly concentrated on those producing linearly polarized (LP) waves since they 

are easier to design than CP DRAs. However with the rapid advancement of 

satellite communications technology, more attention has been paid to the latter 

due to its known advantages. 

The CP system is favoured over its LP counterpart owing to its insensitivity 

to the transmitter and receiver orientation. The probability of linking the transmitted 

CP wave is higher since it radiates in the horizontal, vertical as well as any plane 

in between.  In contrast, LP wave is capable of radiating in one plane only, which 

is particularly problematic in space-borne applications. Based on Faraday’s law, 

time varying magnetic flux induced electric field with rotation. Since ionosphere 

(85km to 600km altitude) consists of magnetized plasma with free electrons due to 

solar radiation, the polarization of EM waves passing through this layer will be 

rotated. To compensate for this effect, the receiver antenna should be aligned 

continuously which can be time consuming as this alignment must be precise.  

 Additionally, a CP wave that is transmitting in all planes is less susceptible 

to unwanted reflection and absorption. This effectively eliminates multi-path 

problems which occur when an antenna receives the primary and reflected waves 

at approximately the same time, creating an out-of-phase problem which can 

cause dead-spots and reduce the system’s overall performance.  

In recent years, tremendous research efforts have been spent on designing 

CP DRAs of various shapes. Much of these works will be summarized and 

categorized in section 1.3.2. 
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1.3.1 Theory of Circular Polarization 

It is crucial to understand the wave polarization theory when designing a 

CP antenna. Polarization is defined as the orientation of electric field vector, E


 

during the wave propagation. E


 is perpendicular to both magnetic field vector, H


  

and the direction of the travelling wave. To illustrate the polarization of an 

electromagnetic wave, consider a z-directed plane wave where the E


 field has 

components in both x and y direction. The time-harmonic E


 at 0z  is 

represented by  

   ytExtEE yyxx ˆcosˆcos  


                                                              (1-1)            

When the phase of these two E


 components are identical ( 0  yx ), its 

amplitude, E


, and angular orientation, , with regard to y-axis are  given by 

   022 cos   tEEE yx


                                                                                (1-2)         
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arctan                                                                                                   (1-3)                                     

In this case, the wave is said to be LP since   has no time dependence and 

hence the field vector traces out as a straight line over time. On the other hand, 

when the magnitudes of the E


components are equal ( 0EEE yx   ) and there is a 

2/  difference in the phase components, the E


 and   are given by 

   0
2

0

2

0 cos
2

cos EtEtEE yy 
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
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
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
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This means the field vector is travelling with constant amplitude that rotates either 

in a clockwise, or an anticlockwise, direction.  As a result, the vector traces out as 

a circle with time and thus the wave is said to be CP. Most of the time, the wave is 

elliptically polarized, for which the amplitude and orientation of E


 changes with 

time, tracing out an ellipse.  In order to quantify the type of polarization, the axial 

ratio (AR) is used, which is defined as the ratio of the major to minor axes of this 

ellipse and usually expressed in decibels as 











min

maxlog20
E
E

AR                                                                                               (1-6)            

where minE  and maxE  represent the magnitude of the minimum and maximumE


,  

respectively. The wave is said to be CP when AR is less or equal to 3dB.  

Equations (1-4) and (1-5) show that circular polarization can be created 

using an antenna capable of producing two spatially orthogonal LP waves that 

have equal magnitudes and  in phase quadrature, i.e. with a 2/  difference in the 

phase components. Therefore, CP DRA can be designed simply by applying two-

point quadrature feeds on a DRA which is capable of supporting two orthogonal 

degenerate modes, i.e. modes that have the same resonance frequency.  This 

dual-point feeding method typically yields a wide AR bandwidth that exceeds 10%.  

However, this approach has the disadvantages of increasing the complexity and 

size of the feed network considerably. Alternatively, CP DRA can be created using 

a single–point feeding system as described in section 1.3.2.2 
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1.3.2 Review of Circularly Polarized DRA 

 
1.3.2.1 Dual-Point Feeding System 

  For the generation of two spatially orthogonal LP waves that are in phase 

quadrature and have equal amplitudes, the DRAs must have the capability of 

supporting two orthogonal degenerate modes.  This requirement is satisfied by 

DRAs which exhibit symmetry along the x and y axes such as rectangular, ring, 

and cylindrical DRAs shown in Figure 1.1. 

 

 

                                   

 

       

  Y                         

                                DRA                                              Feed Point 

                  X                                         Ground 

Figure 1.1: Top view of several DRAs which are capable of generating CP wave 

These DRAs radiate CP waves when excited by two identical feeds placed 

on orthogonal DRA sides.  The feeds must have signals of equal amplitudes and 

being in phase quadrature to each other. Typically, a power divider network such 

as a T-junction splitter and a hybrid coupler is used in order to obtain such feed 

excitation. The most popular shape used for dual-point feed CP DRA is cylindrical.  

Drossos et al [8] have reported a 20% 3dB AR bandwidth for a probe-fed DRA, 
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which has a relative permittivity of εr=37, using a microstrip quadrature hybrid feed 

network.  A dual conformal strip-fed DRA, with εr=9.5, has been designed using a 

microstrip hybrid coupler network [9], achieving a 20% CP bandwidth. In [10], 

underlaid hybrid couplers were used to provide the required excitation for the two 

flat strips that are printed on the surface of an εr=9.5 cylindrical DRA, with a  3dB 

AR bandwidth of 25.9%.  A simpler design using a T-junction splitter has been 

proposed for a strip-fed DRA with a narrower AR bandwidth of 3.5% [11]. For a 

cylindrical ring, a 2dB AR bandwidth of 11% was reported in [12] for a probe-fed 

DRA  2.36r  using a quadrature coupler. Additionally, several examples of dual-

point feed CP rectangular DRA have been published in literature. For example, a 

conformal strip-fed DRA  12r  was designed in [13] using hybrid coupler 

network, achieving a 3dB AR bandwidth of 35%. When used in conjunction with 

underlaid hybrid couplers, 27.7% and 33.8% 3dB AR bandwidths have been 

reported for strip-fed and hollow rectangular DRAs  10r , respectively [14] [15].   

In all of the studies, the generated broad CP bands have been achieved in 

conjunction with sufficient impedance matching bandwidths. 

Although wide AR bandwidths of >10% have been obtained in most cases, 

there are several major disadvantages of using the dual-point feeding system. For 

instance, incorporating an additional power divider network significantly increases 

the antenna’s size. Furthermore, antenna designers should take into account the 

coupling effect between the two feeds. If the mutual coupling between the feeds is 

significant, the field components will be disturbed, and hence cause reduction in 

the resultant AR bandwidth. Therefore, it is important to establish a high isolation 

between the two feed ports in order to avoid degradation in the AR performance.  
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1.3.2.2 Single-Point Feeding System 

A single-point feeding system is proven to be more attractive option for most 

researchers. Although the AR bandwidth of this system is usually less than that of 

a dual feed system, this method does not require complex feeding network and 

offers a smaller overall antenna profile. Additionally, it is easier to incorporate a 

single-point feeding system in an array environment. Several methods of 

generating CP waves from basic-shaped DRAs have been reported in literature.  

A well-known procedure to design a singly-fed CP DRA is to introduce 

some modifications to the DRA geometry. The first reported singly-fed CP DRA is 

the chamfered DRA, which replicates a shape used in existing CP microstrip patch 

antenna technology. In such approach, two opposite corners of a square 

rectangular DRA have been truncated by cross-sectional areas of 2g / 2  as 

illustrated in Figure 1.2. A probe-fed chamfered DRA  38r  has demonstrated a 

3dB AR of 1.3% as reported in [16]. Another approach that has been borrowed 

from a concept used in the design of microstrip patches is the quasi square DRA 

[17-20], where a cross-sectional area of g  × w  is added on one side of a square 

DRA. The DRA can be fed either by an aperture placed near the centre or by a 

probe positioned along the diagonal surface as shown in Figure 1.3. An example 

of such a design for an aperture-fed DRA  40r  has reported a 2% 3dB AR 

bandwidth [17]. In both cases, the perturbation of one of the DRA’s dimensions 

has caused the resonance of the two orthogonal modes to be separated such that 

their difference in phase response is  /2 , hence making the DRA capable of 

generating the required CP wave. Additionally, analyses on a cross-shaped DRA 

have revealed its capability of producing two spatially orthogonal LP waves which 
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are necessary for a CP system. A 3dB AR bandwidth of approximately 4% was 

reported in [21] for an aperture-fed cross DRA  8.10r . Geometrical modification 

has also been applied to cylindrical DRA, as reported in [22] where a conformal 

strip-fed circular sector DRA  12r  has demonstrated a 3dB AR of 10%. 

                                                                              g  

  

             Probe feed g  

 

 w 

 

 Y    g 

  

 g 

 X        w 

Figure 1.2: Top view of chamfered DRA 

          

      w                                                                      w 

 w                                                                    w 

    

    g                                                                      g  

  

                                                   

                                            Aperture feed    Probe feed 

   Microstrip line                                                

Figure 1.3: Top view of quasi square DRA fed by probe and aperture 
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Alternatively, modifications can to be done to the feed itself rather than the 

DRA’s geometry. Huang et al [23] employed a cross-shaped slot fed with a 

microstrip line as shown in Figure 1.4 to generate CP waves from a cylindrical 

DRA. The desired  /2  phase difference between the degenerate modes has 

been achieved simply by manipulating the cross’s arms lengths, ul  and vl . A 3dB 

AR bandwidth of 3.91% was reported in [23] for a cylindrical DRA  79r  using 

this feeding configuration.  

 

 lv lu 

  

                                                                                                    Cross-shaped slot 

   

  Y   

  Microstrip line 

 

                  X 

Figure 1.4: Top view of cylindrical DRA fed by cross-shaped slot 

Furthermore, other special-shaped slots have been employed in the design 

of CP DRAs such as U-shaped slot for cylindrical DRA  16r  excitation [24], 

achieving a 2.4% 3dB AR bandwidth, and a tabbed annular slot used in [25] for a 

cylindrical DRA  5.9r  which produced a 3dB AR bandwidth of 3.4%. Although 

these slot excitations can be applied to various shapes DRA, it has the 

disadvantage of producing a high backlobe radiation which degrades the 
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antenna’s performance. To suppress this unwanted radiation, a metallic cavity is 

used underneath the slot. Alternative feed modification methods have been 

reported in literature such as employing a U-shaped conformal strip [26] which 

reported a 3dB AR bandwidth of 2.3% for rectangular DRA  30r , and a 

conformal spiral wire used for a hemispherical DRA  5.9r  excitation which 

provided a 3.9% 3dB AR bandwidth [27]. 

An alternative way of generating a CP system is through the use of a 

parasitic element in the configuration. As a result, the tasks of generating circular 

polarization and impedance matching can be conveniently separated. Here, the 

parasitic element can be manipulated to obtain a wide AR bandwidth while the 

feed is independently adjusted to achieve an input match. As an example, two 

pairs of rectangular slots and a circular loop slot have been used as parasitic 

elements in [28] and [29], respectively, generating 3dB AR bandwidth of up to 

2.7%. Alternative to parasitic slot, parasitic strips have been employed for a probe-

fed DRA [30], a slot-fed DRA [31], a microstrip-fed DRA [32], and a conformal 

strip-fed DRA [33-35], where the reported 3dB AR bandwidths range between 1% 

and 3%. In those designs, the usage of a parasitic element has resulted in 

perturbation of one of the degenerate modes causing CP radiation. 

In addition to the basic-shaped DRAs, some researchers have used 

complex-shaped DRAs to obtain an enhanced AR bandwidth for a single-point 

feed system. An aperture-fed stair-shaped DRA  12r  was designed in [36] as 

shown in Figure 1.5, achieving a CP bandwidth of10.6%. In a recent study, a 

trapezoidal DRA  4.9r  fed by a rectangular slot has been proposed as 

illustrated in Figure 1.6, which produced a 3dB AR bandwidth of 21.5% [37].   
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                 Slot 

                Y 

              X         Microstrip  

 

  Z                     Slot                                                                            Substrate 

 X 

Figure 1.5: Top view and side view of aperture-fed stair-shaped DRA aperture 

 

 

 

 

       Slot  

 

          Z 

 

      X 

                                              Microstrip                             Substrate 

Figure 1.6: Aperture-fed trapezoidal DRA 
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Other irregular-shaped CP DRAs include a probe-fed elliptical DRA [38] 

which produced a 3.5% CP bandwidth. Unlike basic-shaped DRA, this DRA has 

the ability of generating several broadside radiating modes with close resonance 

frequencies, which results in a wider AR bandwidth. Although this is very desirable 

approach, a designer should take into account the high cost involved since these 

complex DRAs geometries are not readily available commercially. Also, the 

modelling of these complex geometries takes significantly longer computational 

time. Therefore, a flexible single-point feeding method that can be used to 

generate a wideband CP radiation from DRAs with regular geometries is needed.  

Such a feeding mechanism has not been reported in the published literature, and 

it represents the main aim of the work presented in this thesis. 

 

1.4 Method of Analysis 

The design and modelling of antenna plays a vital part in the wireless 

communication system. This important stage requires engineers and researchers 

to command a good understanding of electromagnetic field theory commonly 

referred to as EM. This theory is governed by Maxwell’s equations, which contain 

a set of six fundamental partial differentiation equations that describes the 

interrelationship between electric and magnetic field, and relate them to their 

sources; current and charge density. EM modelling can be carried out either 

analytically or numerically. However, analytical solutions in closed form are known 

for limited number of cases only, involving simple structures which are hardly 

applicable in modern electromagnetic devices and systems. For complex 
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structures, the inability to derive closed form solutions of Maxwell's equations is 

solved by using computational numerical techniques.  

The process of numerically modelling electromagnetic fields interactions 

with physical objects and the surrounding environment is called Computational 

electromagnetics (CEM). Typical modern computers have the capability of 

handling complex computation in relatively short time.  This makes CEM stand out 

as an important tool in the design and modelling stages of antennas and other 

communication systems. Generally, in CEM, relevant Maxwell’s equations are 

converted into chain or matrix equations which can be solved either by matrix 

inversion or by iteration.   

It is highly beneficial for antenna designers using CEM to have a general 

understanding of the wide selection of methods available for the solution of 

electromagnetics problems, so that a well-informed choice can be made. With the 

correct application of the selected CEM method, the computation resources 

needed for designing an antenna can be optimized. As a result, the design and 

modelling stage is made faster and cheaper since the use of time consuming and 

costly antenna prototypes is minimized. 

Modelling that yields accurate predictions requires full-wave analysis which 

considers all the relevant wave mechanism. To date, there are many full-wave EM 

methods that can be applied to model typical antenna structures. In general, these 

methods can be categorized into two types depending on their solution; either by 

differential equation (DE) or by integral equation (IE). During the pre-computer era, 

most research in CEM had taken place in the frequency-domain (FD) for which the 

time-harmonic behaviour is assumed despite the fact that the Maxwell equations 

are often first encountered in the time-domain (TD), where time is assumed to be 
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an independent variable. This is mainly because the FD approach was more 

tractable analytically, thus requiring less complex computation compared to a TD 

approach. Also, the FD approach is favoured because most antennas’ 

measurement hardware at that time were largely confined to the FD system [39].  

At the moment, the three major paradigms of CEM modelling are the 

Method of Moments (MOM), Finite-Difference Time-Domain (FDTD) and Finite 

Element Method (FEM). MOM is categorized as a Frequency-Domain Integral 

Equation (FDIE) model, where Maxwell’s equations in integral form are discretized 

in order to determine the unknown field sources; induced current and charge 

density. Compared with other methods, MoM is very efficient for the treatment of 

highly conducting surfaces as the discretization involves the current density only 

and not the fields in the surrounding medium. Furthermore, solution process in 

MoM takes a relatively short time. However, since this method involves the 

solution of integral equation, the code implementation is harder compared to other 

modelling methods. MOM will be described further in Chapter 2. Examples of 

widely used MOM based software are FEKO [40], NEC [41] and WIPL-D Pro [42]. 

FDTD is classified as Time-Domain Differential Equation (TDDE) model. It 

involves the discretization of Maxwell’s equations in a partial differential form using 

field components or potentials as unknowns on a uniform Cartesian grid of points. 

A major advantage of FDTD is the ability to obtain wideband data in one 

simulation only since the computation is not restricted to a single frequency as 

implemented in the FD approach. Generally, FDTD is efficient as it requires only 

few operations per grid point and can be easily adapted to solve variety of 

problems. However, FDTD is less efficient for the modelling of long, thin structures 

such as wire. This is because solution requires the entire computational domain to 
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be gridded, and since these grids must be small compared to the smallest 

wavelength, excessively large computational domain can be developed, which 

result in very long solution time. Examples of commercially available FDTD 

simulator are Apsim FDTD [43] and Remcom XFDTD [44].  

As is the case with the MoM, FEM is mostly applied in frequency domain. In 

this case, FEM is classified as Frequency-Domain Differential Equation (FDDE). 

Using this approach, Maxwell’s equations are solved numerically by dividing the 

region of interest into unstructured grids known as meshes. The complex 

boundaries approximation is much better than in FDTD model and hence provides 

more accurate results but the solution process require a larger memory size and 

relatively time consuming. Two of commercial software using FEM model are 

Ansoft HFSS [45] and Analyst STAAR [46]. 

Alternatively, other modelling methods such as Finite Integration Technique 

(FIT) and Transmission Line Method (TLM) can be employed for the solution of 

EM problems.  In summary, these modelling methods have their own merits and 

drawbacks. Several researchers managed to achieve a better performance by 

combining this individual modelling method into a hybrid method. One such 

example is a MoM-FDTD hybrid modelling method formulated by R.A.Abd-

Alhameed [47].  Additionally, a hybrid modelling method combining FDTD and 

FEM is developed by Rylander and Bondeson in [48] 

In summary, each of the DE and IE solution method has its own strengths and 

weaknesses which are listed below [49, 50]. 

 DE method handles inhomogeneous, anisotropic or magneto-dielectric 

materials relatively easy, while IE method handling of such materials requires a 

high level of complexity. 
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 The implementation code required for DE method is simpler compared to IE 

method which requires solution of integral equation. 

 In general, IE solutions are more accurate and efficient since the solution 

space is only confined to the object and radiation condition is automatically 

enforced by the Green’s function where as the solution space in DE method 

take into account the object’s surrounding environment where the radiation 

condition is not enforced which resulted in a certain anomalies.  Additionally, 

spurious solution caused by numerical instability, which exists in DE method, is 

absent in the IE approach. 

 With proper approximation, IE solution requires significantly shorter 

computation time, since much of the solution is pre-processed using 

fundamental electromagnetics theory and intensive mathematical modelling. 

 
After evaluation of choices available, the modelling method selected for this 

research is MOM. Although this requires harder implementation code, the result 

obtained using MoM, which utilizes IE solution, is more accurate and efficient 

compared with other modelling methods such as FIT. This has been verified by 

comparing results from MoM and CST software with those obtained using 

measurements. Furthermore, the time required for the modelling of DRA 

configurations using MoM is shorter after appropriate approximation has been 

applied as discussed in Chapter 2. 
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1.5 Thesis Layout 

Following this introduction, Chapter 2 provides details of the CEM modelling 

method used in this research. The steps involved in the adopted MoM 

computational method, in conjunction with specialized basis and testing functions 

are described comprehensively. In Chapter 3, the first single-point excitation 

scheme used in this research known as a square spiral strip is introduced. The 

results for spiral strip-fed wideband CP rectangular DRA are discussed and 

analyzed, together with its frequency tuning capability. In Chapter 4, the spiral 

strip-fed excitation is applied onto cylindrical DRA. The limitations of this feeding 

method are discussed in Chapter 5, which introduces an alternative simpler single-

point excitation scheme used in this research, known as a rectangular open half-

loop strip. This excitation is employed to basic-shaped DRAs, such as rectangular, 

cylindrical and hemispherical geometries. In Chapter 6, a further bandwidth 

enhancement method is proposed based on incorporating a parasitic half-loop in 

the regular shaped DRA structures. Finally, Chapter 7 presents concluding 

remarks, as well as recommendations for future work. 
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CHAPTER 2 

 

 

DEVELOPMENT OF THE METHOD 

OF MOMENTS MODEL 

2.1 Introduction  

This chapter describes extensively the stages involved in the simulation of 

DRAs using MoM. Categorized as Frequency-Domain Integral Equation (FDIE) 

model, MoM has been one of the most widely used CEM model since the solution 

procedure was introduced by R.F. Harrington [1] in 1968.  

Using this approach, an integral equation describing the unknown induced 

current and charge density is developed from the frequency-domain Maxwell’s 

equations by applying the appropriate boundary conditions. To solve the Maxwell’s 

equation, the integral equation is then sampled in space by applying suitable basis 

and testing functions. A set of simultaneous equations relating these unknown 

quantities, i.e. current and charge densities, with known quantities, such as 
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radiated or scattered field, is then introduced and transformed into a matrix 

equation.  Solution of the matrix yields the current distribution, from which near-

field and far-field parameters such as input impedance, return losses, radiation 

pattern, radar cross section, axial ratio, efficiency and gain can be calculated.   

Mathematical representation of the MoM concept can be understood by 

considering the following linear equation  

  YFL                           (2-1)                      

where L is the linear operator, Y is the excitation function and F is the unknown 

response function to be determined. By expanding F into a set of known 

expansion or basis functions ....),,( 321 fff  in the domain of L such that 





N

n
nn fF

1

                                                                                                         (2-2) 

where i  are the coefficients to be determined and using the linearity of L, 

equation (2-2) can be expressed as  

  YfL
N

n
nn 

1

                                          (2-3)                                                                          

With the assumption that a suitable inner product YF,  has been determined by 

defining a set of weighting or testing functions ....),,( 321 www  in the range of L and 

taking the inner product of equation (2-3) with each mw , the previous equation can 

be expressed as  

YwLfw m

N

n
nmn ,,

1




                                                       (2-4)                                            

for m=1,2,3,…N.   
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This set of linear equations can then be presented in a matrix form as 

    mnmn YL                                                                                                      (2-5) 

Finally, the n  unknown coefficients are determined using a standard matrix 

solution procedure. 

MoM is capable of producing very accurate result if a suitable set of basis 

and testing functions are chosen. In this research, the triangular-based Rao-

Wilton-Glisson (RWG) basis functions [2], are used to model the two dimensional 

conducting surfaces, while the tetrahedral-based Schaubert-Wilton-Glisson (SWG) 

basis functions [3] are employed to model three dimensional dielectric structures. 

These basis functions are chosen because the triangular and tetrahedral patches 

are capable of accurately conforming to any arbitrarily shaped surfaces and 

volumes as noted in [4]. 

2.2 The RWG and SWG Basis Functions 

A typical DRA structure consists of a metal surface and a dielectric volume. 

Using RWG basis function, the metal surface is discretized into small triangular 

patches defined in terms of appropriate faces, vertices, edges and boundary 

edges. Each basis function is associated with a pair of adjacent triangles linked by 

an interior edge and resembles a small spatial dipole with linear current 

distribution. One of the triangles in each basis function is associated with a 

positive charge, while the second triangle is associated with a negative charge. 

The geometrical parameters of an RWG basis function at a common edge n  are 

shown in Figure 2.1 and as an example a spherical metal surface modelled by 

triangular patches is illustrated in the inset.  
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Figure 2.1: Geometrical parameters of an RWG basis function 

The RWG basis function S
nf


 consists of two adjacent triangles, 
nt  and 

nt  having 

areas of 
nA  and 

nA  respectively, and sharing a common edge nl  defined as [2] 
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and the surface divergence associated with each basis function is given by  

 
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                                                                                                                    (2-7)                                                                                                                 

where the position vector     nnn rrr 
  signifies a vector drawn from the free 

vertex of triangle 
nt  to a source point r  on that triangle and   nnn rrr     is a 

vector drawn from a source point on triangle 
nt  towards the free vertex of the 

same triangle. The RWG basis functions represent the surface current density, SJ


, 
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cr

flowing on the metal. The component of current normal to the nth edge is constant 

and continuous since the normal component of S
nf


 is equal to unity (i.e. 1ˆ  S
nfn


).  

At the boundary edges, there is no normal component of current and hence no line 

charges exist along this boundary. 

The dielectric structure is modelled by subdividing the volume into small 

tetrahedrons on which the SWG basis functions are applied. Each basis function is 

associated with a pair of adjacent tetrahedrons, linked by a common face. The 

geometrical parameters of a basis function at the common edge n are shown in 

Figure 2.2, and as an example a rectangular volume modelled by tetrahedrons is 

illustrated in the inset.      

 

             

Figure 2.2: Geometrical parameters of SWG basis function  

The SWG basis function V
nf


consists of two adjacent tetrahedrons, 
nT  and 

nT , 

having areas of 
nV  and 

nV  respectively, and sharing a common face na  that is 

defined as [3] 
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and the divergence of each basis function is given by  
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               (2-9)                                                 

where the position vector     nnn rrr 
  signifies vector drawn from the free 

vertex of tetrahedron 
nT  to a source point r  on the same tetrahedron, while 

  nnn rrr     is the vector drawn from a source point on tetrahedron 
nT  towards 

the free vertex of that tetrahedron. The SWG basis functions represent the volume 

polarization current density, VJ


, or more precisely its intermediate quantity D, i.e. 

flux density, throughout the dielectric volume. The normal component of flux 

density to the nth face is constant and continuous. In the special case where the 

nth face is located at the boundary of the dielectric volume, then only one of the 

tetrahedrons, i.e. 
nT  or 

nT , is interior to the volume. Thus the corresponding basis 

function associated with nth face is only defined within 
nT or 

nT                                                                                                            

Through the application of RWG and SWG basis functions, the MoM 

integral equations are derived for pure metal, pure dielectric, and combined metal 

dielectric structures. Detailed derivatives of the required equations for each 

structure are presented in the next sections. 
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2.3 MoM Model for Metal Structures 

For radiation problems, the “incident field”,  rE i 
 is defined as the applied 

electric field at the antenna’s feed, while for scattering problem, it essentially 

means the incoming electric field from impressed source. The term “scattered 

field”,  rE s 
 refers to field radiated by the antenna in the case of radiation problem 

while for scattering problem, the interpretation is straightforward.  The total electric 

field,  rE  , is given by the combination of these field components as 

     rErErE si


                                                                                           (2-10)                                                                        

Enforcing the boundary condition n̂      0 rErE si 
 on a perfectly conducting 

metal surface S results in   0tan rE 
and hence the relationship between  rE i 

 

and  rE s 
 reduces to  

   tantan rErE si 
                                                                                             (2-11) 

Based on derivation of Maxwell’s equations, using [5],  rE s 

 can be expressed in 

terms of the surface current density,  rJ s 


, and the free charges densities,  r  , 

on the metal surface, S, as  

     rrAjrE SS
s 

                                                                                (2-12) 

Substituting of equation (2-12) into (2-11) yields the following equation 

     rrAjrE ss
i 

                                                                                            (2-

13) 

where the magnetic vector potential,  rAS


, describes the radiation due to  rJ s 


 

and expressed as  
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      rdrrGrJrA
S

SS  


,
4

0


            (2-14) 

The electric scalar potential,  rS


 , refers to the radiation due to  rs    and 

defined as 

      rdrrGrr
S

S  
 ,

4
1

0




                                                               (2-15) 

In the above equations 0  and 0  represent the permittivity and permeability in 

vacuum, respectively. The free space Green’s function,  rrG , , is defined as  

 
R

errG
Rjk0

,





                                                                                                 (2-16) 

The time dependency  tjexp   has been assumed and the propagation constant 

is 0000 /2  k , where 0  is the free space wavelength. In the expression 

of Green’s function, rrR   , is the separation distance between the test, or 

observation, point r  and the source point r  .  

2.3.1 Application of the Testing Functions  

Equation (2-13) can be sampled in space into triangular elements. Multiplication 

by a testing function  rf Sm


 that covers the entire region of S, and integration over 

S yields  

             rdrfrrdrfrAjdrrfrE S
m

S
S

S
m

S
S

S
m

S

i

mmm


                               (2-17) 

According to Divergence theorem, the last term of equation (2-17) is given by  

              rdrfrldrfnrrdrfr S
m

s
S

S
m

l
S

S

S
mS

mmm


  ˆ                           (2-18) 

where n̂ is the unit normal vector. 
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From the properties of RWG basis functions described in section 2.2, all edges in 


mt  and 

mt  are free of line charges, hence the first term on the right hand side 

(RHS) of equation (2-18) will vanish, which simplifies equation (2-17) to  

           rdrfrrdrfrAjrdrfrE S
m

S
S

S
m

S
S

S
m

S

i

mmm


  )(                (2-19) 

Substituting  rf Sm


  with equation (2-6), the first term on the RHS of equation 

 (2-19) becomes 
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An approximation to equations (2-19) and (2-20) is needed in order to reduce the 

computational time. Such an approximation can be obtained using the assumption 

that the average value of  rAs


 over each triangle is given by the value of  rAs


at 

the triangle centroid.  As a result, the surface integrals in equation (2-20) can be 

eliminated and the equation is then simplified to 
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Applying similar approximation to the last term in equation (2-19) yields 
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                                     (2-22)

 

                                          c
m

c
mm rrl                       

The approximations in equations (2-20) and (2-21), which eliminate surface 

integrals for the potentials quantities, are justified since the potentials are locally 

smooth within each subdomain [6]. 
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2.3.2 Application of the Expansion Functions  

The surface current density,  rJ s 


 can be expanded into a set of simultaneous 

equations that employ the RWG basis functions in the form of  

   
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MN

n

S
nsnS rfIrJ

1


                                                                                          (2-23) 

where MN  is the total number of edges inside S.  Application of the continuity 

equation,    rjrJS 


 , yields  
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Substitution of equation (2-23) into (2-14) and equation (2-24) into (2-15) gives a 

set of equation for the potentials given by 
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The moment method matrix equation is then derived by substituting equations (2-

25) and (2-26) into (2-19)  
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The above equation is usually represented in terms of its symbolic notation of 
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N
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M
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
1

                      (2-28) 
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where the voltage excitation M
mV  is given by   

   drrfrEV S
m

S

iM
m

m
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and the impedance matrix elements MM
mnZ   are given by  
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in which the superscripts M refer to a metallic structure. The solution of this 

equation is obtained by expanding the RWG basis functions given by equation (2-

6). Applying the approximations in equations (2-20) to (2-22), the integral 

expressions of equation (2-30) can be simplified to  
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Calculation of MM
mnZ can be made by naively computing the elements directly 

for each index combination of edge m and edge n, i.e. edge-pair calculation. 

However, this is extremely inefficient since the integral required for a combination 

of m and n is also required for other combinations as well. To overcome this 

problem, the integrals should be computed using face-pair calculation. Consider a 

surface S that is discretized into N triangular patches i.e. Nt ,....3,2,1 .  Figure 2.3 

illustrates the combination of source triangle, qt  and observation triangle, pt            

( Nqp ,....3,2,1,  ) together with the geometrical parameters after local indexing 

scheme has been employed. 

 

 

 

 

Figure 2.3: Local coordinates for qt  with observation point at pt  

A point inside a source triangle, r   with vertices 21  , rr 
  and 3r 


 can be described by 

the normalized area coordinates [7] of qA
A1 , qA

A2 , qA
A3  where 1  . 

Applying this, any point inside the source triangle can be described as 
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 321 rrrr                                                                 (2-33) 

The position vector i


 used to define the basis function,    r
A
l

rf iq
i

i

 

2
  inside

qt  is given by 

 ii rr 


           , 3,2,1i                     (2-34)       

where ir  is the vertex opposite local edge i  in tq. These definitions in terms of the 

fixed vertices and area coordinates allow integrals over the source triangles to be 

expressed using scalar integrals, in which a typical term for potentials due to 

 rfi 


 in tq has the form of 
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where the scalar integrals are given by  

  



1

0

1

0

,


ddrrGI cppq  ,   



1

0

1

0

,


  ddrrGI cppq  ,   



1

0

1

0

,


  ddrrGI cppq        (2-37) 

Finally it should be noted that for radiation problems, the calculation of M
mV  is 

straightforward and can be implemented using a delta gap model. However, for 

scattering problems, the voltage excitation is due to a plane wave incidence. 

Therefore the incident field is given by 

    rkji eEErE

 00

ˆˆ                                                                                   (2-38) 
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where the propagation vector, k


 is equal to 

 zyxkk ˆcosˆsinsinˆcossin 00000  


                                                        (2-39) 

and  00
ˆ,ˆ   denotes the angle of arrival of the plane wave in terms of spherical 

coordinate system. 

 

2.4 MoM Model for Dielectric Structures 

For a configuration that entirely consists of dielectric components, the EFIE 

can be used in conjunction with the SWG basis functions to develop a moment 

method matrix for the dielectric volume. For a purely dielectric object, only 

scattering problem is considered. Unlike metal structure, the required derivations 

are implemented in terms of an intermediate quantity called electric flux density,

 rD 
, since the boundary condition of a homogeneous dielectric structure is given 

by  

     SrDrDn 


21ˆ                                                                                        (2-40) 

where  rD 
1  corresponds to flux density inside the structure,  rD 

2  is the flux 

density outside the structure, and S  refers to free charges on the surface of 

dielectric volume. As  rE   is given by      rrDrE 
̂/ , equation (2-10) becomes 
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Substituting  rE S 
 from equation (2.12) yields  
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where the volume vector potential,  rAv


, describes the radiation due to  rJV 


, 

and it is expressed as  
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On the other hand, the volume scalar potential,  rS


 , describes the radiation due 

to the volume bound and surface charges,  r   , and it is given by 
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           (2-44) 

The symbols in equation (2-43) and (2-44) carries the same meaning as described 

previously in section 2.3. 

2.4.1 Application of the Testing Functions 

 The required model is developed by using a testing function  rf Vm


 that covers the 

entire dielectric region V.  Then the multiplication of equation (2-42) by  rf Vm


 in 

conjunction with an integration over V yields  
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     (2-45)                          

According to Divergence theorem, the last term of equation (2-45) is given by  
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where A refers to the surface encircling the dielectric volume.  Thus, equation  

(2-45) becomes 
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Substituting  rf Vm


  with equation (2-8), the second term on the RHS of equation 

(2-47) may be written as 
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Once more, the numerical integration can be avoided by assuming the average 

value of  rAV


 over each tetrahedron is given by the value of  rAV


 at the 

tetrahedron centroid.  Therefore, equation (2-48) can be reduced to   
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Applying a similar approximation to the third term in equation (2-47) yields 
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It should be noted that if the common face m is located on A, where  rf Vm
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 is 

defined only within 
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2.4.2 Application of the Expansion Functions 

The volume polarization current density is given by [3] 
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Substitution of      rrDrE 

 ̂/  into this equation yields 
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              rDrj 


  

where the contrast ratio,  r  , takes into account all discontinuities in the normal 

component of  rJV 


 at the media interfaces. Furthermore,  rD 


, can be 

expanded into a set of simultaneous equations that consist of the SWG basis 

function in the form of  
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where DN  is the total number of faces throughout the dielectric structure. By 

substituting equation (2-54) into (2-53),  rJV 


 can be represented in the form of 
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Applying the equation of continuity to equation (2-55) and making use of the 

divergence theorem, the charge density can be expressed as 
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The first term on the RHS of equation (2-56) corresponds to the volume charge 

density V , and the second term refers to surface charge density S . It should be 

noted that V  exists in each tetrahedron in which the medium parameters are 

different from those of free space, while S  exists only on faces that separate 

different media for which  r   is discontinuous, that is, 0 
nn  . Substitution of 
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equations (2-55) and (2-56) into the potentials equations in (2-43) and (2-44) 

yields                                               
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Applying Gauss’s Law into the last term in equation (2-58),  rV


 becomes   
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Finally the MoM matrix equation can be derived by substituting equation (2-54),  

(2-57) and (2-59) into (2-47). In terms of symbolic notation,  
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D
m IZV
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         DNm ,....,2,1                                                                   (2-60) 

where the voltage excitation D
mV  is equal to  

    rdrfrEV V
m

V

iD
m

M


            (2-61) 

and the superscript D refers to a dielectric structure. For a scattering problem, in 

which the voltage excitation is due to a plane wave incidence, the incident field is 

given by equation (2-38) and (2-39).  It should be noted that the j  term had been 

intentionally brought out from terms in equation (2-57) and (2-59) so that the 

volume current coefficient, 
nV

I , can be equated to  

 nV DjI
n

                                                                                                        (2-62) 
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Hence, the MoM impedance matrix elements are given by  
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The first term on the RHS of equation (2-63) exists only when face m coincides 

with face n. The solution of this MoM equation is obtained by recalling the 

properties of SWG basis function described in section 2.2. Applying the 

approximations in equation (2-49)-(2-51), the integration part of equation (2-63) 

becomes 
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Calculation of integral in equation (2-69) can be made faster using analytical 

formula given in [8] 
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As with the integrals calculation in the case of metal structures, the tetrahedrons-

pair calculations should be applied instead of face-pair combinations to reduce the 

computational time. Assuming V is subdivided into N tetrahedron elements i.e.

NT ,....3,2,1 , Figure 2.4 shows the combination of source tetrahedron, qT , and 

observation tetrahedron, pT , ( Nqp ,....3,2,1,  ) together with the geometrical 

parameters after a local indexing scheme has been employed.  
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Figure 2.4: Local coordinates for qT  with observation point at pT  

A point inside a source tetrahedron, r  ¸with vertices 321 ,, rrr  
 and 4r 


 can be 

expressed in terms of the normalized volume coordinates [7] of qV
V1 , qV

V2 ,

qV
V3

 
and qV

V4 , where 1                

Applying this, any point inside the source tetrahedron can be described as 

 4321 rrrrr                                                                         (2-71) 
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inside qT is given by   
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where ir  is the vertex opposite local face i  in qT . These definitions in terms of 

fixed vertices and volume coordinates allow integrals over the source tetrahedron 
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to be written in terms of scalar integrals, where a typical term for potentials due to 

 rfi 


 in qT  is given as  
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where the scalar integrals are  given by 
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2.5 MoM Model for Combined Metal-Dielectric Structures 

For metal-dielectric interface, the EFIE is used in conjunction with RWG 

and SWG basis functions to model the structure. Consider a metal surface S that 

is attached to a dielectric volume V.  In this case, the  rE s 
 component has two 

contributions; the first is due to the volume polarization current,  rJV 


, and its 

associated bound charges,  rV   and  rS  , and the second is due to surface 

current,  rJ S 


, and free charge density on the metal surface,  rS  , as shown in 

the equations listed below 
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where the potential terms in eq. (2-76) and (2-77) carries the same meaning as 

discussed previously. By enforcing the boundary conditions of                                        

   
 r
rDrE 




̂
          , for Vr               (2-78) 

  0tan rE 
           , for Sr                            (2-79) 

a complete EFIE can be  derived for the whole structure 

   
         rrAjrrAj
r
rDrE SSvV
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 
̂

                , for Vr             (2-80) 

          tantan rrAjrrAjrE VVSS
i 

                    , for Sr             (2-81) 

2.5.1 Application of the Testing Functions 

Once more, the EFIE is sampled in space using the testing functions  rf Vm


 or

 rf Sm


. Most of the works described here have been discussed previously in 

section 2.3 and 2.4. To avoid confusion, the section, is divided into two 

subsections; one describing electrical parameters inside V, and the other 

describing electrical parameters on S. 

2.5.1.1 Observation point located throughout V 

For calculations involving a dielectric volume, assuming  rf Vm


 covers the entire 

dielectric region V, then multiplication of eq. (2-80) by  rf Vm


 and integrating over 

V yields  
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Note that the first four terms on the RHS of equation (2-81) are essentially the 

terms required for the calculation of DD
mnZ  as demonstrated in equation (2-63). On 

the other hand, the last three terms in this equation are used to calculate DM
mnZ  

which accounts for the radiation from a source point on the metal structure M that 

is tested on an observation point inside dielectric structure D. 

2.5.1.2 Observation point located on S 

Assuming that  rf Sm


 covers a metal surface S, then the multiplication of equation 

(2-81) by  rf Sm


 in conjunction with integration over S yields  
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Once more, the first two terms on the RHS of eq. (2-83) are essentially the terms 

required for the calculation of MM
mnZ  as demonstrated in equation (2-30), while the 

last two terms are required for the calculation of MD
mnZ  which describes the 

contribution of radiation from a source point inside D tested at an observation point 

on M. 
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2.5.2 Application of the Expansion Functions 

The expansion of volume current, charge and flux density has been explained in 

section 2.4, whilst the expansion of surface current and charge density has been 

described in section 2.3. The complete moment method matrix equation can be 

obtained by appropriately substituting the expansions into equations (2-82) and (2-

83). In terms of symbolic notation,   


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
MD N

n
sn

DM
mnnv

N

n

DD
mn

D
m IZIZV

11
                                                                              (2-84)                                                          



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MM N

n
vn

MD
mnsnv

N

n

MM
mn

M
m IZIZV

11
                                                                            (2-85) 

where the voltage excitation is given by   

    rdrfrEV V
m

V

iD
m

M


             (2-86) 

   drrfrEV S
m

S

iM
m

m


                                                                                        (2-87) 

Since terms required for calculation of DD
mnZ and MM

mnZ  have been outlined in 

equations (2-63) and (2-30) respectively, only the derivations of MD
mnZ and DM

mnZ  are 

described here. The impedance matrix elements of DM
mnZ  can be obtained by the 

substitutions of equations (2-25) and (2-26) to the last three terms of equations (2-

82), which gives 
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Similarly, expressions for the impedance matrix elements of MD
mnZ  can be derived 

through the substitutions of equations (2-57) and (2-59) to the last two terms of 

equations (2-83), which provides 
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                                            (2-89)                                   

Since the gradient of dielectric contrast is given by     nnr  , a relation 

between MD
mnZ  and DM

mnZ  can be derived.  

TDM
mn

MD
mn ZZ  ̂                                                                                                   (2-90) 

where ̂  refers to the contrast ratio coefficient, and 
TDM

mnZ corresponds to the 

transpose of MD
mnZ  matrix, i.e. the inner and outer integrals interchanged. 

Using this relationship, calculations of MD
mnZ  and DM

mnZ  can be performed by 

computing integrals contained in either one of them. It is preferable to compute 

integrals in DM
mnZ  using equation (2-88) rather than in MD

mnZ  via equation (2-89) since 

the computational time for surface integrals at the source elements is less than 

those for volume integrals. The integration terms of equation (2-88) are listed 

below after taking into account the approximation used in equations (2-49)-(2-51) 
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As in the calculation of the integrals in MM
mnZ , the equations above are calculated 

using a face-pair combination rather than an edge-pair combination, which 

significantly enhances the computation efficiency.  

 

2.6 Efficient  Calculations of the Integrals 

It is well known that the numerical computations of MoM integrals accounts 

for most of the total computational time. Therefore, the task of minimizing the 

integrals calculation time is essential in order to reduce the overall computational 

time.  An effective way to perform this is by employing the Gaussian quadrature 

formula [7] onto the integrals in equation (2-37) and equation (2-75).  The formulas 



  
 
Chapter 2: Development of the Method of Moments Model                                              51 
 
used for integrals calculation involving a source triangle and a source tetrahedron 

are listed in Tables 2.1 and 2.2, respectively. In order to ensure efficient 

calculation of the integrals, the formula is applied based on the separation 

distance between the source point, r ,and the observation point, r , i.e. rrR 


. 

In order to maintain the required accuracy, more number of points, np, is needed 

for smaller R. However, for the integrals calculation involving points separated by 

larger R, it is more efficient to use a smaller np since the solution yields results just 

as accurate as that obtained using a higher np. 

 

Expansion from equation (2-37):     iii

n

i
Wfddf

p




,,(
1

1

0

1

0
 



 

 
No of 
points Iteration Unit Coordinates Weights 

np i ηi ζi Wi 

1 1 1/3 1/3 1/2 

3 
1 1/6 1/6 1/6 
2 2/3 1/6 1/6 
3 1/6 2/3 1/6 

4 

1 1/3 1/3 -  9/32 
2 3/5 1/5 25/96 
3 1/5 3/5 25/96 
4 1/5 1/5 25/96 

7 

1 0 0 1/40 
2 1/2 0 1/15 
3 1 0 1/40 
4 1/2 1/2 1/15 
5 0 1 1/40 
6 0 1/2 1/15 
7 1/3 1/3 9/40 

 
Table 2.1: Symmetric quadrature for unit triangle (taken from [7], pp. 197) 
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Expansion from equation (2-75):
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n

i
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No of 
points Iteration Unit Coordinates Weights 

np i ηi ζi ζi Wi 

1 1 1/4 1/4 1/4 1/6 

4 

1 a b b 1/24 
2 b a b 1/24 
3 b b a 1/24 
4 b b a 1/24 

5 

1 1/4 1/4 1/4 -   2/15 
2 1/2 1/6 1/6 3/40 
3 1/6 1/2 1/6 3/40 
4 1/6 1/6 1/2 3/40 
5 1/6 1/6 1/6 3/40 

11 

1 1/4 1/4 1/4 -4/5625 
2 11/14 1/14 1/14 343/45000 
3 1/14 11/14 1/14 343/45000 
4 1/14 1/14 11/14 343/45000 
5 1/14 1/14 1/14 343/45000 
6 c c d 56/2250 
7 c d c 56/2250 
8 c d d 56/2250 
9 d c c 56/2250 
10 d c d 56/2250 
11 d d c 56/2250 

where a   20/535   , b   20/535   , c    4/14/51 ,d    4/14/51  
 

Table 2.2: Symmetric quadrature for unit tetrahedral (taken from [7], pp. 198) 

 

Although applying the Gaussian quadrature formula has significantly 

reduced the computational time, this technique is not suitable for the treatment of 

self integrals. When the source and observation points coincides with one another 
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(m=n), a singularity problem exists since the separation distance, rrR 


becomes zero. Thus, the solution of these integrals using the quadrature formula 

yields unstable results.  

For the treatment of self integrals, a singularity extraction technique 

proposed by D.R. Wilton et. al in [9] can be employed. For a pure metal structures, 

the equations describing the vector and scalar potentials in (2-35) and (2-36) can 

be simplified into 
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Applying vector projection, the vector potential in (2-94) is proportional to the 

vector i 


, where 
  and i
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which can be expanded into  
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where   is the vector projection of r  onto the plane of qt . Thus, applying 

singularity extraction technique, this vector potential is then proportional to 
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Similarly, applying singularity extraction technique to the scalar potential in (2-95) 

yields  
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The last two terms in equation (2-98) and the last term in equation (2-99) are 

calculated using analytical formulas derived in [9] while the preceding terms can 

be efficiently calculated using Gaussian quadrature formula. This singularity 

extraction technique can also be applied for pure dielectric structure. 

The analytical formulas given in [9] are discussed briefly. These formulas 

provide an accurate and faster solution to the singularity problem in both surface 

and volume integrations. Figure 2.5, which illustrates a source point within a plane 

of triangle t, is useful in visualizing many variables needed for the computation of 

these self- integrals.  
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Figure 2.5: Geometrical quantities associated with a source point within a plane of 

triangle t  

 

Here, '
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is the vector projection of r onto the plane of triangle t and   is 
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il  and 

il . The distance 

(measured in P ) from   to the given endpoints 
i


 and 
i
  are denoted 

iP  and 


iP , respectively. Using these definitions, the quantities of il̂ , 

il , 0
iP , 

iP and 

0
îP  can be calculated in terms of  

i
 , 

i
  and  by the following equations.  
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il














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          (2-100) 

  ll ii
ˆ  


          (2-101) 

  iii uP ˆ0   
            where iii nlu ˆˆˆ                 (2-102) 

   220   iiii lPP 


        (2-103) 

 
0

0
ˆ

ˆ
i

ii
i P

ll
P

 





          (2-104) 

For surface sources distributed on a planar polygon S, the potential observed at r


due to an elemental source on S at r is proportional to 
R
1 . In this case, the 

distance R  is denoted in terms of 0
iR  and 

iR  which are given by  
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  2200 dPR ii            (2-105) 

  22 dPR ii  

                   (2-106) 

where d is the height of the observation point above the plane of S, measured in 

the direction of in̂  as 

  ii rrnd ˆ                    (2-107) 

The vectors il̂ and 
i
 can now be defined in terms of 

ir
 . These are given by 









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ii
i rr

rrl 


ˆ                              (2-108)

   iiiii rnnr ˆˆ
           (2-109) 

Based on these definitions, analytical formulas to solve the singularity problem in 

surface and integration can be formulated. The derivation of these formulas has 

been discussed in detail in [9].  The analytical formulas for surface integrals are 

expressed in the form of 
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Additionally, the analytical formulas for volume integrals are given by 
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where the double subscript ij signifies a quantity associated with the ith edge of the  

jth face, while the single subscript j denotes a quantity associated with the jth face 

only. Equations (2-110) to (2-113) are used once the singularity extraction 

technique has been applied to both potential integrals as shown in equations (2-

98) and (2-99). 

 

2.7 Solution of the MoM Block Matrix 

Once the impedance matrices for the structure are obtained, the total block 

impedance matrix Z can be calculated by combining the metal’s impedance matrix 

MM
mnZ  with the dielectric’s impedance matrix DD

mnZ  as well as the mutual impedance 

matrices DM
mnZ  and MD

mnZ  in the form of 








DM
mn

MM
mn

Z
Z

Z  





DD
mn

MD
mn

Z
Z

           (2-114) 

Consequently, the resultant system of linear equations  

IZV


                                                                                                             (2-115) 
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is solved using Gaussian elimination [10].  For this purposes, subroutines F07ARF 

and F07ASF from Numerical Algorithms Group (NAG) FORTRAN library are used, 

which allows for a faster computation time. In summary, these subroutines 

compute the solution to a complex system of linear algebraic equation 

BXA


ˆ                      (2-116) 

where X


 and B


 corresponds to column vectors of length n and  Â  refers to an 

n×n symmetric complex matrix. Subroutine F07ARF factorizes Â  as a product                                                                          

of lower triangular matrix and upper triangular matrix, in a process called LU 

factorization. This factored form of Â  is then used as an input by the second 

subroutine, which uses Gaussian elimination with backward and forward 

substitution, depending on the form of Â , to solve the system of linear equations.   
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                CHAPTER 3 

 

 

WIDEBAND CIRCULARLY 

POLARIZED RECTANGULAR DRA 

USING a SPIRAL EXCITATION 

3.1 Introduction 

Throughout this research, regular-shaped DRAs are used due to their ease 

of production, low cost, and modelling simplicity. These include rectangular, 

cylindrical, and hemispherical DRAs. Out of the three regular geometries, 

rectangular-shaped DRA offers the greatest flexibility in choosing the design 

parameters. In this chapter, a rectangular DRA that is characterized by a height a, 

a width b, a depth c, and a dielectric constant εr, has been excited using a square 

spiral metal strip to generate a wideband circular polarization. Additionally, the 

frequency tuning ability of this rectangular DRA has been demonstrated. 



 
 
Chapter 3: Wideband Circularly Polarized Rectangular DRA using a Spiral Excitation    61 
 
3.1.1 Degree of Freedom 

The rectangular shape offers two degrees of freedom, where the aspect 

ratio of height to width (
b
a ) and depth to width (

b
c ) directly influence the resonance 

frequency and the radiation Q-factor. This gives the designer a greater control 

over the antenna profile and its impedance bandwidth in tailoring the DRA to suit 

particular applications. For example, since these ratios can be chosen 

independently, the designer can choose either to use a thin and wide or a tall and 

a slender antenna to achieve the required resonance frequency and Q-factor for a 

given dielectric constant. 

3.1.2 Resonance Modes 

The EM fields inside a rectangular DRA mounted on a perfect electrically 

conducting (PEC)  ground plane, as shown in Figure 3.1, are assumed to be 

equivalent to those of an isolated rectangular dielectric waveguide [1, 2] having 

similar dimensions of b, c, εr and a height of 2a. Here, the tangential components 

of the EM fields are assumed to be continuous across the two surfaces of the  

DRA that are perpendicular to the direction of propagation in the dielectric guide, 

whilst perfect magnetic walls are assumed along the other four surfaces that are 

parallel to the direction of propagation.  According to Okaya and Barash [3], the 

modes of an isolated dielectric waveguide can be divided into two families: 

Transverse Magnetic (TM) and Transverse Electric (TE). The TM modes are 

characterized by having a zero value for the radial component of the magnetic 

field (Hr=0), while the TE modes have a zero radial component of the electric field 

(Er=0). However, for any DRA mounted on the ground plane, it is the TE modes 
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that are usually excited since the presence of lower-order TM modes cannot be 

confirmed experimentally [4], due to the lack of coupling between the inside and 

outside resonator fields . For such rectangular DRAs, TEx, TEy and TEz modes are 

possible, in which the radiation would be similar to those of a short magnetic 

dipole located at the centre of the DRA and oriented along x, y and z directions, 

respectively. The resonance frequency of each of these modes depends on the 

DRA’s dimensions and permittivity. The lowest order TE mode, i.e. TE mode with 

the lowest resonance frequency, corresponds to the direction in which the smallest 

dimension of the DRA is located. For example, if the DRA’s dimensions are such 

that c > b > a, then the TE modes in terms of increasing resonance frequencies 

are TEz11δ < TEy1δ1 < TExδ11, where the mode indices denote variation of EM fields 

along the x, y and z directions inside the resonator and the value of δ ranges 

between 0  δ 1, which approaches 1 for high values of dielectric permittivity [5]. 

                                                      z  

                                                                     θ            r 

  
        c 
   
  
 
    a 
 
 y 
 
Ground Plane                b           ∅ 
            
                                   x   
 
Figure 3.1: Geometry of a rectangular DRA mounted on ground plane 

The resonance frequencies of the TE modes can be approximately 

predicted using the dielectric waveguide model (DWM) method [4]. Since the 
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analysis of all the modes is similar, it is adequate to describe the analysis of one of 

these modes only. For the TEzmnδ mode, where m and n are integers, the z-

directed fields inside the resonator can be expressed in the following form [2]: 

     zkykxkAH zyxz coscoscos             (3-1) 

0zE                     (3-2) 

in which A is an arbitrary constant. kx, ky and kz 
respectively denote the 

wavenumbers in the x, y and z directions inside the DRA. By enforcing the 

magnetic wall boundary condition 0 nE 
at the surfaces of the resonator, the 

following equations are obtained for the wavenumbers 

c
mkx


 ’ b
nk y


              (3-3)

    22
01tan zrzz kkakk     

where 0k represents the free-space wavenumber.   Additionally, the wavenumbers 

must satisfy the following equation.    

2
0

222 kkkk rzyx               (3-4) 

in which k0 corresponds to the resonance frequency, i.e. 

c
fk 0

0
0

22 




             (3-5) 

where λ0 is the free-space wavelength, and c is the speed of light in vacuum.  

Substitution of equation (3-5) in equation (3-4) yields the resonance frequency as 

222
0 2 zyx

r

kkkcf 
            (3-6)  
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3.1.3 Axial Ratio and Gain Measurements Procedures 

The measurement of the antenna’s far-field parameters such as axial ratio 

(AR) and gain is not as straightforward as measuring the S11 or far-field pattern.  

For the calculation of the AR, the following expression can be used [6] 

L

L

E
E





R

R

E
E

  AR               (3-7) 

in which the right-hand CP electric field component, ER, and the left-hand CP 

electric field component, EL, can be derived using the following equations [7] 

  jEE 
2

1  ER               (3-8)

  jEE 
2

1  EL               (3-9) 

where E  represents the electric field component in the ߶-direction and Eθ 

denotes the electric field component in the θ-direction. In order to determine E  

and Eθ experimentally, the DRA has been placed in the receiving terminal inside 

an anechoic chamber as shown in Figure 3.2, where it can be observed that a 

standard horn has been used as a transmitting antenna. The component Eφ has 

been obtained by measuring the received signal at each elevation angle θ (θ = 1o, 

2o, 3o ….360o) while the transmitting antenna has been fixed at azimuthal angle of 

߶ = 0o. The same procedure has been repeated for the measurement of Eθ with 

the horn antenna rotated at ߶= 90o.  

The previous method of measuring AR is preferred compared to an 

alternative method presented in [8] that use multiple magnitude components of E  

and Eθ without the need of measuring their phases. The magnitude of the electric 

field components are taken at four planes in the azimuthal direction (߶ = 45o, 90o, 
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135o and 180o). This method has not been considered because it is more 

susceptible to experimental errors since the horn antenna need to be rotated twice 

as much as the previous method. Furthermore, the calculations of ER and EL 

components are not possible without the phase information. 

 

Figure 3.2: Measurement setup for the DRA’s far-field parameters 

For the gain measurements, a comparison method has been applied in 

which another horn antenna has been used at the receiving end.  The gain of the 

rectangular DRA, GDRA can be calculated from the known gain of the reference 

horn, GHorn using the following expression [9],  

























Horn

DRA

Horn

DRA

P
PG

1
1

log20log10G 1010dBin Horn dBin DRA                           (3-10) 

where P and Γ represent the received power and reflection coefficient, 

respectively. 
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3.2 Circularly Polarized Rectangular DRA 

It is well known that a spiral antenna can radiate CP waves if a travelling-wave 

current distribution is established along its length [10]. That is because this type of 

current distribution is capable of radiating two far-field components which are 

equal in amplitude and in phase quadrature that are needed to generate the 

circular polarization. In this research, a conformal square spiral strip has been 

employed to regular-shaped DRAs, producing wideband axial ratio.  

3.2.1 Antenna Configuration 

Figure 3.3 presents the geometry of a rectangular DRA that is excited using 

a spiral strip.  The DRA has the dimensions of a, b, c and a dielectric constant of 

εr, whereas the feeding strips have the same width, w, and lengths of l1, l2, l3, l4 

and l5.  The feed point is located at a distance of d from the nearest side wall.  

 

  
                                                
 b 
 
 
 
                                              
                                               l2                                   
                                                                                
            a 
 
                            l1                                                     l3                                               z 
                                              l5      
 
                                                                                       c                 x 
 
                           d                    l4                                                                                                 y 
                                Feed point    

Figure 3.3: A rectangular DRA excited by a square spiral metal strips 
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The configuration has been simulated using the MoM in conjunction with 

the combined RWG and SWG basis functions described in Chapter 2. Meshing 

has been achieved using the Cimne-GiD [11] commercial software, where the 

rectangular dielectric has been meshed to 2546 tetrahedrons and the metallic 

strips to 86 triangular patches, giving a total of 5530 unknowns. Image theory has 

been applied in order to take into account the effects of the PEC ground plane. 

The memory size requirement for the solution of EM modeling has been reduced 

with the application of image theory, as the need to physically model the ground 

plane has been eliminated. The source feed has been simulated using a delta-gap 

voltage generator model. The computation time is approximately 55 seconds per 

frequency point, which is significantly faster than the simulation time of 1200 

seconds using CST Microwave studio for the same antenna configuration. 

An iterative design procedure has been followed to determine the optimum 

dimensions of the feeding metallic strips that are needed to establish a travelling-

wave current distribution along the spiral-shaped monopole as well as exciting a 

DRA mode within the same frequency range. The existence of this travelling-wave 

current on the DRA surface generates a circularly polarized wave with two 

orthogonal field components that have the same amplitudes and a phase 

difference of 90o which can be attributed to the fact that the spiral antenna and its 

image have currents of equal magnitude but of opposite phase [10]. Since the 

travelling-wave current distribution changes slowly with frequency, a wider CP 

bandwidth is expected.  

The DRA parameters are similar to those used in [12], that is, a = 26.1 mm, 

b = 25.4 mm, c = 14.3 mm and εr = 9.3. The results of the design procedure are 

summarized in Table 3.1, which shows several selected dimensions of l1, l2, l3, l4 
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and l5 that are capable of generating circular polarization in conjunction with 

sufficient impedance matching bandwidth. The formula used to calculate the 

percentage of overlapping AR and S11 bandwidth is given by 

  100
bandwidth AR

bandwidth S11  sufficient with bandwidth  AR%Bandwidth  gOverlappin   (3-11)    

As can be seen from the table, the achieved AR bandwidth is rather 

sensitive to the strips lengths, as changing the latter may generate a standing 

wave current distribution, which deteriorates the circular polarization.  

L1 
(mm) 

L2 
(mm) 

L3 
(mm) 

L4 
(mm) 

L5 
(mm) 

3db AR 
Bandwidth (%) 

10dB S11 
Bandwidth (%) 

Overlapping AR & 
S11 Bandwidth (%) 

8.25 

10 6 8 6 3.24 9.43 100 
7 8 6 2.65 9.18 100 

12 

  
10 

4 3.23 8.92 100 
6 5 3.64 7.65 100 

  6 4.87 7.40 100 

7 10 
4 3.17 7.14 93.1 
5 4.08 8.67 76.2 
6 6.07 8.42 66.2 

8 10 
4 2.64 8.16 90.5 
5 3.28 5.63 86.3 
6 4.25 5.38 100 

10.25 
10 

8 8 
6 1.17 6.89 100 
7 2.32 6.63 100 
8 4.59 6.38 100 

9 8 8 4.43 6.13 100 
10 8 8 6.60 8.50 100 

12 10 10 7 2.07 4.90 48.3 

12.25 

8 

10 6 10 3.15 4.42 77.5 

11 6 9 1.71 4.20 100 
10 4.08 3.97 43.4 

12 6 9 3.15 3.75 100 
10 3.10 3.54 100 

10 12 8 9 2.30 3.34 100 
10 7.47 7.91 60.3 

12 11 10 9 1.05 4.66 100 

Table 3.1: AR and S11 bandwidths for different spiral dimensions 
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3.2.2 Results and Discussions 

A rectangular DRA prototype has been built using Alumina (Al2O3) ceramic 

material, which has a relative permittivity of εr = 9.3. The square spiral has been 

constructed using five individually cut strips of an adhesive-backed copper tape 

that can be stuck easily on the surface of the DRA. The strips have been 

electrically connected to each other using a conductive silver paint. The 

dimensions of the strips have been optimized based on the aforementioned 

iterative design procedure. With reference to Table 3.1, the optimized lengths of 

the individual strips are found to be l1 = 10.25 mm, l2 = 10 mm, l3 = 10 mm, l4 = 8 

mm and l5 = 8 mm. The DRA has been mounted on a square aluminum ground 

plane with a side length of 400 mm. An HP8720D vector network analyzer has 

been used in the measurements. Feeding has been implemented by soldering the 

one end of the spiral strip to an SMA connector that is connected to the network 

analyzer using a 50 Ω coaxial cable. It should be noted that the feed point is 

located at a distance of d=7.7 mm from the DRA edge as illustrated in Figure 3.2. 

Any possible air gaps between the DRA and the ground plane have been 

eliminated by employing a procedure described in [13], in which the DRA has 

been attached to a double sided adhesive conducting tape that is placed above 

the ground-plane. The existence of such air gaps causes measurements errors, 

since the air gaps (εr = 1) reduces the εr for the whole antenna structure, which 

subsequently increases the resonance frequency and bandwidth of the resonance. 

A travelling-wave current distribution has been attained along the spiral 

metal strip at the frequency band of operation as illustrated in Figure 3.4. The 

current distribution consists of outbound and reflected travelling waves along the 

spiral arm, decaying as they radiate.  Close to the feed point, the wave outbound 
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from the feed has not yet decayed much, while that reflected from the end of the 

arm has decayed twice, radiating significantly in both directions, thus causing least 

interference. Therefore, the net result is close to a decaying travelling wave, as 

can be observed in the relatively linear phase progression and smoother 

amplitude decay.  It is the predominant travelling wave close to the feed that is 

responsible for the good axial ratio [11].  
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Figure 3.4: Current distribution along the spiral strip at 4.1 GHz 

The spiral strip has a perimeter of 1.39λg, where λg is the guided 

wavelengths at 4.1 GHz that has been calculated as [14], 

  2/1
0




r
g 

             (3-12) 

It should be noted that this spiral perimeter is comparable to that of 1.25λg 

obtained for a CP spiral antenna design reported in [15]. This circumference 

supports the first-mode of radiation, for which the conditions are ideal for CP wave 

radiation. It has been noted in [16] that currents existing beyond the one-
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wavelength circumference continue experiencing change of phase as they 

progress outward. For a large spiral structure, these currents will be out-of-phase 

at the second-wavelength circumference and in-phase at the radius where the 

circumference is three wavelengths. No radiation occurs from the two-wavelength 

circumference because the currents on adjacent spiral arms are anti-phase in 

contrast to strong radiation from the three-wavelength circumference. 

The computed and the measured return losses are shown in Figure 3.5, 

where it can be noticed that there is a good agreement between simulation and 

measurements. From these results, it can be seen that an dB 10S11  , that is, a 

voltage standing wave ratio (VSWR) of 2, has been achieved over a bandwidth 

of 8.5 % in both cases. The minimum S11 has been measured at 4.10 GHz 

compared to 4.14 GHz in the computations, which constitute a marginal difference 

of 0.97 % between the two sets of results.  
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Figure 3.5: Return losses of a rectangular DRA fed by square spiral strip. 
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Apart from the computed and measured results, the resonance frequency 

has also been studied using DWM model as described in section 3.1.2.  Using this 

simple and approximate technique, the resonance frequency has been predicted 

as 3.82 GHz for the TEy1δ1 mode in which the DRA has been excited. The electric 

field distribution across an isolated rectangular DRA with similar dimensions of b, 

c, εr and height of 2a, due to the ground plane removal, operating in this mode is 

presented in Figure 3.6 (a).  As can be seen from Figure 3.6 (b), the DRA has a 

strong magnetic field near the ground plane along both side walls parallel to the y-

axis; hence it can be excited by the spiral strips that have a maximum current 

magnitude at the feed point close to the ground plane. 

 

 

 

 

 

 

 

 

 

Figure 3.6: Fields distribution for TEy111 mode; (a) E-field and (b) H-field 

 

By applying equation (3-7), the AR of the rectangular DRA has been 

computed and measured at the bore-sight direction, θ=0.  The variation of AR as a 

function of frequency is shown in Figure 3.7, where it can be seen that the 

minimum computed value is 1.23 dB at 4.1 GHz, which is close to the 

(a) (b) 



 
 
Chapter 3: Wideband Circularly Polarized Rectangular DRA using a Spiral Excitation    73 
 
corresponding measured value of 1.39 dB at the same frequency. From these 

results it can be observed that the theoretical 3 dB AR bandwidth extends from 

4.01-4.27 GHz compared to 4.00-4.28 GHz in the measurements. These figures 

show that a circular polarization has been achieved over bandwidths of 6.60 % 

and 7.07 % in the analysis and the measurements, respectively. These are 

significantly higher than the typical bandwidths of less than 3% for singly-fed 

rectangular DRAs as described in section 1.3.2.2.  Employing a finite ground plane 

and experimental tolerances have produced a slight discrepancy between the 

predicted and the measured bandwidths. Furthermore, with reference to Figure 

3.8 which illustrates the region of overlapping AR and S11 bandwidths for the 

rectangular DRA design, it can be observed that a sufficient impedance matching 

bandwidth has been obtained throughout the achieved circular polarization 

bandwidth.  
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Figure 3.7: Axial ratio of a rectangular DRA fed by square spiral strip 
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Figure 3.8: Region of overlapping bandwidths for S11 and AR 

Additionally, the theoretical and experimental variations of the axial ratio, as 

functions of the elevation angle, are illustrated in Figures 3.9 and 3.10, where it is 

evident that the DRA produces a CP radiation over beam-width of 25○ in both 

0  and 
90  principle planes, respectively, at the minimum AR frequency of 

4.1 GHz. These relatively narrow beam-widths can be attributed to the fact that the 

main beam throughout the circular polarization bandwidth is slightly shifted to ~10o 

from the bore-sight direction due to the position of the feed point. 
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Figure 3.9: Axial ratio beam-width of the rectangular DRA at 0  
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Figure 3.10: Axial ratio beam-width of the rectangular DRA at 90  
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A comparison between the calculated and the measured radiation patterns 

is shown in Figure 3.11 with reasonable agreement and stability across the 

circular polarization bandwidth.  It is evident from these results that this is a right-

hand CP DRA, and the right-hand, RHCP, field component is stronger than the 

left-hand counterpart, LHCP, by more than 20 dB in the bore-sight direction at 4.1 

GHz.  Furthermore, a left-hand CP DRA can be attained by changing the square 

spiral arm winding from a clockwise to a counter-clockwise direction.  

 

Figure 3.11: Radiation pattern of the rectangular DRA at 

(a) 4.01, (b) 4.10, and (c) 4.27 GHz 
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With the aid of equation (3-10), the antenna bore-sight gain has been 

measured and the results are illustrated in Figure 3.12, where it can be observed 

that a satisfactory gain of 2.9 dBi has been achieved at the optimum AR frequency 

of 4.1 GHz.  However, the gain decreases rapidly to approximately 0 dBi at the 

upper end of the CP bandwidth, which is due to the shift in the main beam at that 

frequency.   
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Figure 3.12:  Gain of a rectangular DRA fed by square spiral strip 
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3.3 Frequency Tuning of the Circularly Polarized Rectangular 

DRA 

3.3.1 Antenna’s Configuration  

The possibility of achieving a wideband CP radiation at a different 

resonance mode is investigated next, where the spiral position has been shifted 

from the centre of the DRA surface as illustrated in Figure 3.13.  This is important 

as it demonstrates the possibility of tuning the operation frequency if needed.  The 

DRA parameters are similar to those used in section 3.2, except the distance d, 

which has been changed to 15.4mm. This distance has been chosen so as to 

excite the TEx111 mode that has a strong magnetic field at that position as shown 

in Figure 3.14 (b), which maps the magnetic field distribution across an isolated 

rectangular DRA with similar dimensions of b, c, εr and height of 2a due to the 

ground plane removal.  

 

Figure 3.13: Rectangular DRA excited by a shifted square spiral strip metal 



 
 
Chapter 3: Wideband Circularly Polarized Rectangular DRA using a Spiral Excitation    79 
 
 

 

 

 

 

 

 

 

 

Figure 3.14: Fields distribution for TEx111 mode; (a) E-field and (b) H-field 

3.3.2 Results and Discussions 

The current distribution along the spiral arm is illustrated in Figure 3.15, 

where, again, a travelling-wave current distribution has been attained, which is 

needed to produce the CP wave. The spiral strip has a perimeter of 1.07λg at 3.1 

GHz, which is ideal for CP radiation. Good agreement has been obtained between 

the computed and measured return losses as illustrated in Figure 3.16, where it 

can be seen that an S11 ≤-10 dB has been achieved over a bandwidth of 33% and 

30% in computations and measurements, respectively.  The S11 bandwidth is 

much wider than those achieved previously due to the merging of the two 

minimum S11 points caused by the excitation of TExδ11 and TEyδ11 modes. It 

should be noted that the possibility of exciting the TEyδ11 mode using the new 

position of feed point is still high, since the magnetic field inside the DRA operating 

in this mode is very strong along the side wall parallel to the y-axis and around the 

ground plane as can be seen in Figure 3.6 (b).  The first minimum S11 point has 

(a) (a) (b) 
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been measured at 2.95 GHz compared to a computed value of 2.93 GHz, that is, a 

marginal difference of 1% has been achieved between the two sets of results. 

Furthermore, the resonant frequency has also been calculated using the DWM 

approximation technique as 2.83 GHz for the TExδ11 in which the DRA is excited. 
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Figure 3.15: Current distribution along the shifted spiral at 3.10 GHz 
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Figure 3.16: Return losses of the rectangular DRA fed by a shifted spiral.  
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The axial ratio has been computed and measured at the bore-sight 

direction as shown in Figure 3.17, where it can be seen that a minimum value of 

1.5 dB has been attained at 3.10 GHz in both simulations and measurements. 

From these results it can be observed that the achieved 3 dB AR bandwidths are 

6.4% and 6.7% in the analysis and measurements, respectively.  This is similar to 

the achieved bandwidth for a DRA supporting the TEy111 mode at 4.10 GHz as 

described in section 3.2. These results confirm the robustness of the presented 

feed mechanism as the CP operating frequency and the resonance mode have 

been varied easily by shifting the spiral from the centre of the DRA surface. The 

slight discrepancy between the predicted and measured results can be attributed 

to experimental tolerance and the finite ground plane used. Additionally, the 

circular polarization bandwidth has been achieved in conjunction with sufficient 

impedance matching bandwidth as illustrated in Figure 3.18.  
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Figure 3.17: Axial ratio of the rectangular DRA fed by a shifted spiral. 
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Figure 3.18: Region of overlapping bandwidths for S11 and AR 

The variation of the axial ratio with the elevation angle is demonstrated in 

Figures 3.19 and 3.20, where it can be seen that the DRA offers circular 

polarization over useful computed beam-widths of 93○ and 72○ in the 0  and 

90 planes, respectively.  These beam-widths are significantly wider than those 

achieved in the previous design because the main beam position is at the bore-

sight direction. 
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Figure 3.19: Axial ratio beam-width of the rectangular DRA at 0  

(degree)

-80 -60 -40 -20 0 20 40 60 80

A
xi

al
 R

at
io

 (d
B

)

0

1

2

3

4

5

Computed
Measured

 

Figure 3.20: Axial ratio beam-width of the rectangular DRA at 90  
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A comparison between the calculated and measured radiation patterns is 

shown in Figure 3.21 with reasonable agreement. It is evident from Figure 3.21 (b) 

that this is a right-hand CP DRA, in which the RHCP field is stronger than the 

LHCP field by more than 20 dB in the bore-sight direction at 3.10 GHz. Again, as 

in the case with the previous design, a left-hand CP DRA can be attained by 

changing the square spiral arm winding from clockwise to counter clockwise 

direction.  

 

Figure 3.21: Radiation pattern of the rectangular DRA at 

(a) starting, (b) minimum, and (c) ending of AR frequencies 
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Finally, the antenna gain of the rectangular DRA, with the shifted spiral 

feed, has been measured at bore-sight. The results are illustrated in Figure 3.22, 

where it can be seen that the antenna offers a good gain of approximately 5dBi 

across the whole frequency range of the achieved circular polarization. The 

achieved gain is stronger than those achieved by previous DRA configuration 

because the main beam is located near to θ=00 throughout the achieved CP 

frequency band. 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Antenna gain of a rectangular DRA fed by a shifted spiral.  

 

3.4 Conclusions 

A wideband CP rectangular DRA has been designed using a square spiral strip for 

excitation. The antenna provides a 3 dB AR bandwidth of approximately 7%, 

which is considerably greater than what has been reported in earlier studies for a 
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singly-fed CP DRA. This has been achieved in conjunction with a sufficient 

impedance-matching bandwidth across the same frequency range.  The frequency 

tuning of the wide band circularly polarized DRA antenna has been demonstrated, 

where shifting the spiral position from the centre to the right of the DRA surface 

has shifted the operating frequency from 4.10 GHz to 3.10 GHz.  This corresponds 

to a change in the supported modes from TEy111 to TEx111.  In both modes a wide 

CP bandwidth has been achieved. Furthermore, the spiral feed can be constructed 

using adhesive conducting strips.  A good agreement has been obtained between 

experimental and theoretical results.  
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CHAPTER 4 

 

 

A WIDEBAND CIRCULARLY 

POLARIZED CYLINDRICAL DRA  

4.1 Introduction 

Out of the three regular geometries used throughout this project, cylindrical 

DRA offers the second greatest design flexibility.  Additionally, the fabrication of a 

cylindrical structure is simpler than that of a hemispherical DRA. In this chapter, 

the versatility of the excitation method introduced previously is assessed by 

employing the spiral feed to a cylindrical DRA to generate a wide circular 

polarization bandwidth.  Furthermore, a multilayer DRA configuration is proposed 

for further enhancement of the CP bandwidth. The cylindrical shape offers one 

degree of freedom, where both the resonance frequency and the radiation Q-

factor are exclusively dependent on the radius to height aspect ratio, i.e. (
h
a ).  
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Therefore, for a given dielectric constant, a wide and thin DRA can be made to 

resonate at the same frequency as a tall and slender DRA. As a result, antenna 

designers have the choice of using different antenna profiles to achieve the 

desired resonance frequency.  

4.1.1 Resonance Modes 

                                                   z  
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  y 
                                                      ∅       r 
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                                     x   
 
Figure 4.1: Geometry of a cylindrical DRA mounted on ground plane 

Figure 4.1 illustrates a cylindrical DRA that is mounted on a PEC ground 

plane. The EM fields inside this antenna can be assumed to be equivalent to those 

of an isolated cylindrical dielectric waveguide [1] having the same parameters of a, 

εr and a height of 2h. As in the rectangular DRA model, the Hz component is 

assumed to be zero at all surfaces parallel to the z-axis, i.e. a perfect magnetic 

walls condition, whilst the tangential EM fields are continuous across surfaces 

perpendicular to the z-axis. These EM fields are assumed to decay exponentially 

outside the DRA from their values at the boundary to zero at an infinite distance 

away from the DRA [2]. 
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According to Kobayashi [3], the modes of an isolated cylindrical dielectric 

waveguide can be categorized into three distinct types: TM, TE, and hybrid 

modes. The fields of TM and TE modes are axially symmetric and the fields of the 

hybrid modes are azimuthally dependent. The hybrid modes can be further 

categorized into EH and HE types [4], depending on the relative strength between 

the electric (E) and magnetic (H) field components. In the case of EH modes, the 

Hz component is significantly stronger than the Ez component. Hence, from the 

knowledge of the Hz component only, other field components can be obtained.  

The reverse is true for the HE modes. 

The modes in each category are classified as TM0mp+δ, TE0mp+δ, EHnmp+δ and 

HEnmp+δ. The mode subscripts denote the order of variations of fields in azimuthal 

(∅), radial (r) and axial (z) directions, respectively. The first index (n = 0, 1, 2…) 

indicates the variation of fields in the azimuth direction, while the second index (m 

= 1, 2...) denotes the radial variation of field.  Similarly, the index p+δ (p=0, 1, 2…) 

indicates the variation of field in axial direction, where the value of δ ranges 

between 0  δ 1 depending on the DRA’s permittivity. It should be noted that the 

most commonly used modes are TM01δ, TE01δ and HE11δ [5]. The far-field radiation 

of TM01δ mode is similar to that of a small vertical electric monopole, while the 

TE01δ mode radiates like a small vertical magnetic monopole. Additionally, the far-

field radiation of HE11δ mode is similar to those radiated from a small horizontal 

magnetic monopole.  

The resonance frequencies of these commonly used modes can be 

approximately predicted using equations that are based on extensive numerical 

calculations and curve fittings [1].  Results obtained from these equations typically 

lie within 10% of those calculated rigorously using numerical methods.  For given 
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values of  
h
a  and r , the parameter of interest is the normalized wavenumber, k0a.  

When r  is very high ( 100r ), the normalized wavenumber is solely dependent 

on r  [6], i.e.   

r

ak

1

0 
      

                            (4-1) 

However, when 100r , the following equation can be used as a good 

approximation 
 

 X
ak

r 



1

0                (4-2) 

where the value of X (X=1, 2…) is obtained empirically by comparing the results 

from numerical methods available in literature.  For a DRA with a lower value of r , 

the value of X for the TM01δ mode was found to be equal to 2 after comparison 

with the results from numerical method available in [7] that led to the following 

expression  
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which is valid when the aspect ratio is in the range of 533.0 
h
a
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For the TE01δ, the resonant frequency can be calculated using the equation 

proposed by DeSmedt [8], which is valid for any value of r and an aspect ratio in 

the range of 533.0 
h
a   
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Finally, the expression for the normalized wave number for the HE11δ mode is 

given by  
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which can be used for any value of r  and an aspect ratio in the range of 

64.0 
h
a  

 

4.2 Circularly Polarized Cylindrical DRA 

4.2.1 Antenna Configuration 

A cylindrical DRA that is excited using a conformal square spiral metal strip 

is illustrated in Figure 4.2. The DRA has a radius of a, a height of h and a dielectric 

constant of εr, whereas the feeding strips have lengths of l1, l2, l3, l4 and l5 as well 

as a width of w = 1 mm. In order to assess the performance of the cylindrical DRA, 

the dimensions have been chosen to be as the same as those reported in [9].  

Therefore, the relative permittivity, radius, and height have been chosen as 9.2, 

7.01 mm, and 10.54 mm, respectively. 
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Figure 4.2: Configuration of a cylindrical DRA excited 

 using a conformal square spiral 

The structure has been modeled using the method of moments together 

with the combined RWG and SWG basis and test functions described in chapter 2.  

The dielectric cylinder has been meshed to 2260 tetrahedrons, and the metallic 

strips to 86 triangular patches, giving a total of 5060 unknowns. Once more, the 

PEC ground plane has been considered using the image theory, and the feed has 

been simulated using a delta-gap voltage source model. The computation time 

has been reduced by employing analytical equations for singularity extraction, and 

Gaussian quadrature formula in conjunction with the approximate Galerkin MoM 

as described in section 2.6. The computation time is approximately fifty seconds 

per frequency point, which is significantly faster than the simulation time using 

CST Microwave studio for the same structure. 
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The optimum dimensions of the feeding metallic strips that are required to 

establish a travelling-wave current distribution along the conformal spiral-shaped 

monopole, as well as exciting a DRA mode within the same frequency range, have 

been determined through an iterative design procedure. The existence of this 

travelling-wave current produces a circularly polarized wave which radiates from 

the DRA surfaces. As mentioned earlier, the travelling-wave current distribution 

changes slowly with frequency, hence a wider CP bandwidth is expected.  

Table 4.1 presents the AR bandwidth, impedance matching bandwidth, and 

the bandwidths overlapping percentage for several strips dimensions. From the 

table, the achieved AR bandwidth is rather sensitive to the strips lengths, as 

changing the latter may generate a standing wave current distribution, which 

deteriorates the circular polarization. The optimized dimensions of the individual 

strips have been found to be l1 = 10.54 mm, l2 = 10 mm, l3 = 9 mm, l4 = 8 mm, and l5 

= 5 mm, which give an AR and S11 bandwidths of 3.48% and 15.65%, respectively. 

Furthermore, it can be clearly seen that in some cases, the circular polarization 

radiation has been achieved without sufficient impedance matching bandwidth, 

thus making the antenna design inefficient when used in CP communication 

system. In these cases, no mode has been excited at the CP frequency band. As 

explained earlier, the CP wave is radiated by the DRA due to the existence of 

travelling-wave current distribution along the spiral feed whereas the antenna’s 

resonance frequency and S11 bandwidth are mainly dependent on the aspect 

ratios and permittivity of the DRA.  Additionally, the resonance frequency can be 

affected by various factors such as efficiency of fields coupling between feed and 

DRA, load of, and location of feed. 
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l1 
(mm) 

l2 

(mm) 
l3 

(mm) 
l4 

(mm) 
l5 

(mm) 
3 dB AR 

Bandwidth (%) 
-10 dB S11 

Bandwidth (%) 
Overlapping AR 

& S11 Bandwidth (%) 
8 

10 

6.5 

8 

4.5 0 0 0 
8.5 7 5 0 0 0 
9 7.5 5.5 1.07 11.45 100 

9.5 8 6 2.83 12.31 64 
10 8.5 6.5 3.21 12.95 73 

10.25 8.75 6.75 3.25 13.21 79 
10.54 9 7 3.1 13.02 94 

      

10.54 

8 

9 

6 

7 

0 0 0 
9 7 2.64 8.98 2 

10 8 3.1 13.02 94 
11 9 1.58 4.28 0 
12 10 0 0 0 

  

10.54 10 

10 

8 7 

0 0 0 
9.5 0 0 0 
9 3.1 13.02 94 

8.5 2.11 13.93 100 

        

10.54 10 9 8 

7 3.10 13.02 94 
6.5 3.29 14.10 96 
6 2.87 14.73 100 

5.5 3.39 15.05 100 
5 3.48 15.65 100 

4.5 2.98 16.98 100 
4 1.94 23.24 100 

3.5 0 0 0 

Table 4.1: Optimization of the feeding strips dimensions. 

4.2.2 Results and Discussions 

A prototype of cylindrical DRA has been built using Alumina ceramic 

material.  The conformal square spiral has been constructed using five individually 

cut strips of an adhesive-backed copper tape which have been electrically 

connected to each other using a conductive silver paint. As mentioned in the 



 
 
Chapter 4: A Wideband Circularly Polarized Cylindrical DRA                                         96 
 
previous chapter, possible air gaps between the DRA and the ground plane have 

been eliminated by employing the procedure described in [10]. 

Comparison between the calculated and measured input impedances is 

illustrated in Figure 4.3, which illustrates a close agreement between the results.  

Figure 4.4 shows the return losses, where it can be observed that an S11 ≤ -10 dB 

has been achieved over bandwidths of 15.65% and 14.3% in the simulation and 

measurements, respectively. The minimum S11 has been computed at 5.89 GHz 

compared to 5.96 GHz in the measurements, which constitutes a marginal 

difference of 1.18% between the two sets of results.  
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Figure 4.3: Input impedance of the cylindrical DRA 
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Figure 4.4: Return losses of the cylindrical DRA 

The resonant frequency obtained from theoretical and measurement results 

agree well with the predicted resonance frequency of 5.61 GHz for the TE01δ mode 

calculated using equation (4-4), in which the DRA is excited. The EM fields 

distribution across an isolated cylindrical DRA with similar parameters of a, εr and 

height of 2h operating in this mode are shown in Figure 4.5. It is evident from 

Figure 4.5 (b) that the DRA exhibits strong magnetic field along the curved 

surface, thus it can be excited by the spiral strips attached on that curved surface, 

which have a maximum current magnitude at the feed point. 
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Figure 4.5: EM Fields distribution for TE01δ mode; (a) E-field and (b) H-field 

 

Furthermore, a travelling-wave current distribution achieved along the spiral 

at the frequency band of operation is shown in Figure 4.6. The spiral strip has a 

perimeter of 1.7λg at 5.38 GHz. This circumference supports the first-mode of 

radiation, for which the conditions are ideal for CP wave radiation. 
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Figure 4.6: Current distribution along the spiral strip at 5.38 GHz  
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The bore-sight axial ratio has been computed and measured as 

demonstrated in Figure 4.7, where it can be seen that the minimum computed AR 

value is 1.3 dB at 5.38 GHz, which is close to the corresponding measured value 

of 1.6 dB at 5.55 GHz.  From these results it can be noticed that the theoretical 3 

dB AR bandwidth extends from 5.28-5.48 GHz compared to 5.44-5.66 GHz in the 

measurements. Therefore, circularly polarized radiation has been achieved over 

bandwidths of 3.48% and 4.20% in the analysis and the measurements, 

respectively, which is higher than a bandwidth of ~2% that has been achieved 

earlier for a singly-fed CP cylindrical DRA with similar dimensions [9]. It should be 

noted that this frequency band for CP radiation is achieved at lower frequency 

than those achieved in [9]. The slight discrepancy between the computed and 

measured results can be attributed to experimental tolerance and the use of finite 

ground plane. Additionally, compared to the rectangular counterpart, the cylindrical 

DRA has a much lighter weight which has caused some difficultly in positioning it 

firmly on the PEC ground plane, hence the air gaps couldn’t be eliminated totally 

and this may have contributed to the discrepancy between theory and experiment. 

Furthermore, based on graphs in Figure 4.7, it can be observed that a sufficient 

impedance matching bandwidth has been obtained throughout the frequency band 

of the achieved circular polarization.  
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Figure 4.7: Axial ratio of a cylindrical DRA fed by square spiral strip 
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Figure 4.8: Region of overlapping bandwidths for S11 and AR 
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The variation of the axial ratio with the elevation angle is demonstrated in 

Figures 4.9 and 4.10, where it can be noticed that the DRA offers circular 

polarization over a useful computed beam-widths of over 65○ and 90○ in the 0  

and 
90 planes, respectively. In terms of measurements, the beam-widths 

have been achieved over 61○ in the 0  plane and 82○ in the 
90 planes. 
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Figure 4.9: Axial ratio beam-width of the cylindrical DRA at 0   
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Figure 4.10: Axial ratio beam-width of the cylindrical DRA at 90     
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The stability of radiation pattern has been studied as illustrated in Figure 

4.11, where it is evident that the patterns are stable across the whole CP 

bandwidth, and an isolation of more than 18 dB has been achieved between the 

co-, and cross-, polarization components at the minimum AR frequency point. The 

discrepancy in the pattern of LHCP at 90  in Figure 4.11 (a) and (b) can be 

attributed to the discretization error. This problem can be solved by taking more 

measurement points, such as every 1.0  step instead of 1 . 

 

Figure 4.11: Radiation patterns of the cylindrical DRA at the (a) beginning, (b) 

centre, and (c) end of the CP bandwidth. 
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Figure 4.12 presents the calculated and measured bore-sight gain of the 

cylindrical DRA, where it can be observed that a useful gain of more than 4 dBi 

has been achieved throughout the CP bandwidth in the theoretical and 

experimental results. 
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Figure 4.12:  Gain of a cylindrical DRA fed by a square spiral strip 

 

4.3 Bandwidth Enhancement of the Circularly Polarized 

Cylindrical DRA using Multi Dielectric Layers  

4.3.1 Antenna’s Configuration  

The possibility of enhancing the AR bandwidth by employing multi dielectric 

layers is investigated next. It should be noted that shortly after the measurements 

of this approach, few studies have been published on the same idea of enhancing 

the CP bandwidth using a layered DRA configuration [11-13]. For instance, an 

increase of 100% in the 3dB AR bandwidth has been reported in [11] when a 
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multilayer rectangular DRA fed by cross slot is used instead of single layer 

structure. Additionally, investigations done in [12-13] demonstrate that the AR 

bandwidth of the multilayer structure is approximately three times that of a single 

layer DRA. In these cases, removing the central portion of the single layer DRA 

and filling the gap with material of lower permittivity decreases the effective 

dielectric constant of the overall structure, which caused a reduction the radiation 

Q factor of the DRA and thus increases the S11 and AR bandwidths.  

In this research, a smaller dielectric cylinder of different permittivity has 

been embedded within the cylindrical DRA. Figure 4.13 shows the configuration of 

the two layer DRA, where a machinable-glass ceramic known as Macor with a 

relative permittivity of 5.67 has been chosen as the inner layer owing to lower cost 

and excellent insulation properties, as well as ease of fabrication since it is 

machinable to any desired shape with standard metalworking tools. 

 

 
Outer Layer 
Dielectric 
(Alumina) 
 
 
 
 
Inner Layer  
Dielectric (Macor) 
 
 
                   Conformal spiral strips 

 
 

 a2 

Figure 4.13: Configuration of a multilayer cylindrical DRA 

(Inset: side-bottom view of the DRA)   

  h2 
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The parameters of the outer layer and conformal spiral are similar to those 

used in section 4.3. The height, h2, and radius, a2, of this inner layer have been 

varied in proportion to the dimensions of the outer layer. This parameter, P has 

been used to speed up the optimization process. The AR bandwidth and the 

corresponding minimum AR frequency point are shown in Figure 4.14 as functions 

of the inner layer aspect ratio. From these results, it can be noticed that as P 

increases, the resonance frequency for the TE01δ mode also increases. This can 

be attributed to the decrease in the effective permittivity of the DRA. 

Consequently, this leads to an AR bandwidth increment when the dimensions of 

inner layer increases up to P=0.9.  It should be noted that when P=1, a single 

dielectric is achieved with a permittivity of 5.67, which changes the electrical 

dimensions of the spiral and produces a narrower AR bandwidth. Therefore, the 

optimum dimensions of the inner dielectric layer have been determined as h2= 

9.49 mm and a2 = 6.31 mm.  
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Figure 4.14: Axial ratio bandwidth and corresponding resonance frequency  

as a function of the size of inner layer. 
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4.3.2 Results and Discussions 

A prototype of the multilayer cylindrical DRA is illustrated in Figure 4.15. 

The parameters of the outer layer dielectric and conformal spiral are similar to 

those used in section 4.3 and the inner layer has a parameter of P=0.9.  

  

Figure 4.15: A multilayer cylindrical DRA excited by a conformal spiral strip 

The input impedance has been measured and compared to the MoM 

computation with close agreement as illustrated in Figure 4.16.  Additionally, the 

simulated and measured return losses agree well with each other as shown in 

Figure 4.17, in which it is evident that S11 ≤-10 dB bandwidths of 15.2% and 

14.4% have been achieved in computations and measurements, respectively. The 

minimum S11 has been computed at 6.25 GHz compared to 6.33 GHz in the 

measurements, that is, a marginal difference of 1.41% between the MoM model 

and the experiment. In order to compare the resonance frequency obtained by 

these results with those predicted by equation (4-4), extra calculation needs to be 

implemented by taking into account the presence of inner dielectric layer. From 
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[14], when another dielectric layer of parameters εr2, a2 and h2 is added, the 

effective permittivity of the overall DRA structure becomes 

  rreff mm   1)( 2              (4-6) 

where m is the volume fraction of the inner layer dielectric which is given by 

overallVVm /2               (4-7) 

Since the cylindrical volume is computed using  

haV 2                (4-8) 

therefore the effective permittivity of the overall DRA structure can be determined 

as εeff=6.62. Using this value, the predicted resonance frequency for the broadside 

TE01δ mode has been calculated using equation (4-4) as 6.55 GHz, which is 

reasonably close to those obtained by the theory and experiment 
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Figure 4.16: Input impedance of the multilayer cylindrical DRA 
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Figure 4.17: Return losses of the multilayer cylindrical DRA 
 

A travelling-wave current distribution has been obtained along the feeding 

spiral as illustrated in Figure 4.18, where it can be observed that smoothly 

decaying current amplitude has been achieved in conjunction with an 

approximately linear phase progression. The spiral strip has a perimeter of 1.72λg 

at 6.25 GHz, which supports the first-mode of radiation. 
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Figure 4.18: Current distribution along the spiral strip at 6.25 GHz 
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The axial ratio has been computed and measured at the bore-sight 

direction as shown in Figure 4.19, where it can be seen that the minimum 

computed AR is 0.67 dB at 6.25 GHz, compared to the corresponding measured 

value of 1.71 dB at 6.36 GHz. The measured and computed minimum AR 

frequency points are close to each other with a slight difference of 1.5%. From 

these results it can be observed that the achieved 3 dB AR bandwidths are 5.63% 

and 5.9% in the analysis and measurements, respectively. This represents an 

increase of over 66% in both computations and measurements for the AR 

bandwidth compared with those achieved using a single layer cylindrical DRA as 

discussed in section 4.2. It should also be noted that this AR bandwidth is 

substantially wider than what has been reported in the literature for cylindrical 

DRAs. Furthermore, with reference to Figure 4.20, it can be seen that a sufficient 

impedance matching bandwidth has been obtained throughout the achieved 

circular polarization bandwidth.   
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Figure 4.19: Axial ratio of the multilayer cylindrical DRA fed by a spiral metal. 
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Figure 4.20: Region of overlapping bandwidths for S11 and AR 

Figures 4.21 and 4.22 present the axial ratio beam-width.  With reference to 

the computational result, the DRA offers circular polarization over useful computed 

beam-widths of 58○ and 78○ in the 0  and 90 planes, respectively. 
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Figure 4.21: Axial ratio beam-width of the multilayer cylindrical DRA at 0   
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Figure 4.22: Axial ratio beam-width of the multilayer cylindrical DRA at 90   

A comparison between the calculated and measured radiation patterns at 

the optimum AR frequency is shown in Figure 4.23 with reasonable agreement. It 

is evident from these results that this is a right-hand CP DRA, in which the RHCP 

field is stronger than the LHCP field by more than 18 dB in the bore-sight direction. 

Again, as in the case with the previous design, a left-hand CP DRA can be 

attained by changing the square spiral arm winding from clockwise to counter 

clockwise direction. Finally, the antenna gain of the multilayer cylindrical DRA has 

been measured at bore-sight. The results are shown in Figure 4.24, where it can 

be seen that the antenna offers a satisfactory gain of over 3 dBi across the whole 

frequency range of the achieved circular polarization. The gain is lower than that 

achieved by the single layer design due to the slight shift of approximately 5o in 

the main beam from the bore-sight direction at the CP frequency band as can be 

seen in Figure 4.23.  



 
 
Chapter 4: A Wideband Circularly Polarized Cylindrical DRA                                         112 
 

 

Figure 4.23: Radiation patterns of the multilayer cylindrical DRA 

at the optimum AR frequency point. 
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Figure 4.24:  Gain of the multilayer cylindrical DRA fed by conformal spiral strips 

 

4.4 Conclusions 

In order to prove the versatility of a square spiral metal strip excitation introduced 

in previous chapter, the excitation method has been applied to a cylindrical DRA. 

This antenna configuration has achieved a 3 dB AR bandwidth of more than 3.4%, 

which is higher than what has been reported in the literature for a singly-fed 
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cylindrical DRA. The CP bandwidth is associated with a satisfactory gain of over 4 

dB as well as an impedance matching bandwidth of approximately 14.3%.  

Additionally, a novel approach has been introduced for further CP bandwidth 

enhancement, which is based on employing a multilayer DRA. The results 

represent an additional AR bandwidth increment of ~66% on top of the 

enhancement achieved using the spiral excitation.  Therefore, respective CP and 

S11 bandwidths of ~5.6%, and 15% have been achieved by using the multilayer 

cylindrical DRA. Throughout the research, a good agreement has been obtained 

between experimental and theoretical results.  
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CHAPTER 5 

 

 

WIDEBAND CP DRAs USING 

CONFORMAL RECTANGULAR 

HALF-LOOP EXCITATION 

5.1 Introduction 

In this chapter, another variation of the conformal strip excitation scheme 

developed in this research is introduced.  Instead of employing spiral metal strips, 

a simpler feeding method is proposed using a rectangular open half-loop antenna 

to generate a wide CP bandwidth. Utilizing such an excitation scheme onto the 

rectangular DRA designed in section 3 has provided results comparable to those 

obtained using the spiral excitation. Additionally, the flexibility of this feeding 

method has been demonstrated by employing the half-loop feed onto other regular 

shaped DRAs such as cylindrical and hemispherical geometries. 
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5.1.1 Problem Formulation 

Although the square spiral feed can be used to achieve a wide CP radiation 

from an arbitrarily shaped DRA, it has been noticed that the AR bandwidth is very 

sensitive to the spiral dimensions. For example, a deviation of less than 1 mm in 

the spiral dimension can significantly diminishes the DRA capability of radiating 

CP wave. Therefore, the requirement to maintain a precisely small separation 

distance between the spiral arms makes this approach difficult and time 

consuming to follow especially in normal laboratory environment. This limitation is 

particularly noticeable with curved DRA surfaces, where conformal strips with 

precise dimension and spacing are needed.  

As a result, a simpler feeding method capable of generating a broadband 

CP radiation from regular, as well as irregular, shaped DRAs is needed. Such a 

feeding mechanism is introduced, where a rectangular open half-loop antenna that 

consists of three metallic strips has been employed for DRA excitation. In addition 

to its simplicity, the proposed feed facilitates the incorporation of a concentric 

parasitic half-loop that can be used to enhance the CP bandwidth further as 

demonstrated in the next chapter.   

 It is well-known that a closed-loop antenna serves as a standing wave 

resonant antenna and thus is commonly used in LP communication systems [1].  

However, it has been proven theoretically in [2] that introducing a gap of 

appropriate dimensions and placement within the closed-loop can induce a 

travelling-wave current distribution along the loop. As a result, an open-loop 

antenna can be used to generate CP radiation as reported in [3-5].  
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5.2 Circularly Polarized Rectangular DRA 

5.2.1 Antenna Configuration 

 Figure 5.1 presents the geometry of a rectangular DRA that has been 

excited using a rectangular open half-loop antenna. The DRA has the dimensions 

of a, b, c and a dielectric permittivity of εr, whereas the feeding structure has a 

width of wd, a height of hd and a gap size of gd located at a gap position of ݃⃗p 

within the metallic strips. The feed point is placed at a distance of d from the 

nearest side wall.  

  

                                                     

  b 

            
            wd 

                                                ݃⃗p(2)   

        a         strip 2      
              gd                       
              ݃⃗p(1)                ݃⃗p(3)   hd    

                strip 1            strip 3      
             c         z  

                   x 
            d               Feed point                                      
                                                                                                                               y                 

Figure 5.1: Configuration of a rectangular DRA fed by a rectangular open half loop 

   
 The antenna configuration has been modeled using the method of 

moments in conjunction with the combined RWG and SWG basis functions 

described in Chapter 2, where the rectangular dielectric has been meshed to 2463 
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tetrahedrons and the metallic strips to 59 triangular patches, giving a total of 5305 

unknowns. Once more, an iterative design procedure has been employed to 

determine the optimum dimensions of the feeding metallic strips that are needed 

to establish a travelling-wave current distribution along the rectangular open half-

loop antenna as well as exciting a DRA mode within the same frequency range. 

This travelling-wave current provides a circular polarization radiation and excites a 

DRA mode within the CP frequency band. Since the travelling-wave current 

distribution changes slowly with frequency, a broadband CP radiation is obtained.  

 In order to assess the performance of the open half-loop design, the 

rectangular dielectric has the same parameters as those used in Chapter 3 with a 

relative permittivity of εr = 9.2, and dimensions of a = 26.1 mm, b = 25.4 mm and c 

= 14.3 mm [6]. The gap position, ݃⃗p, has been optimized initially when the half-

loop dimensions are fixed as hd = wd = 10 mm, gd = 1 mm and d = 7.7 mm.  Figure 

5.2 shows the actual AR bandwidth and effective AR bandwidth, i.e. AR bandwidth 

obtained in conjunction with impedance matching bandwidth, as  functions of ݃⃗p 

when the gap was placed within strip 1, strip 2 and strip 3, respectively (labelled 

as ݃⃗p(1), ݃⃗p(2) and ݃⃗p(3) in Figure 5.1).  It should be noted that due to the convention 

used for the gap position, ݃⃗p(1) = 0 mm is essentially the same as ݃⃗p(2) = 0 mm.  

This also applies to ݃⃗p(2) = 9 mm and ݃⃗p(3) = 0 mm. With reference to Figure 5.2, 

the highest AR bandwidth of 4.06% has been obtained when ݃⃗p(1) = 1 mm. The 

minimum S11 obtained using this feeding structure configuration has been 

computed at a frequency of 3.71 GHz, with an AR that covers this frequency.  
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Figure 5.2: AR bandwidth and Effective AR bandwidth as a function of gap 

position, for gap placed within strip 1, strip 2 and strip 3 

Table 5.1 presents the AR, impedance matching and the percentage 

overlapping bandwidths for various half-loop dimensions, hd, and wd, when the 

optimized ݃⃗p is used and gd is fixed to 1 mm. The results illustrate that the CP 

radiation can be attained easily using strips’ dimensions range of 9 to 13 mm, 

which is a desired feature in the DRA design. On the contrary, there is a significant 

change in the S11 bandwidth for different strip’s dimensions. Based on these 

results, the optimized dimensions for the half-loop are hd = wd = 13 mm. The reason 

for such an open loop configuration producing a good AR and S11 bandwidths is 

due to the presence of travelling-wave current distribution along the metal strip, as 

discussed in the next section. Using the optimized dimensions, the computed 

minimum S11 has been determined at a frequency of 3.50 GHz. 
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Height, 
hd (mm) 

Width, 
wd (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

9 

9 3.39 7.86 53 

10 3.69 8.17 42 

11 4.01 4.98 11 

12 4.63 1.32 0 

13 4.94 4.24 0 

10 

9 3.69 10.32 88 

10 4.06 13.6 100 

11 4.65 15.05 100 

12 4.91 3.05 58 

13 5.19 3.05 58 

11 

9 3.95 13.42 94 

10 4.32 15.63 100 

11 4.63 17.07 100 

12 4.9 5.66 97 

13 5.27 5.40 88 

12 

9 4.07 10.14 79 

10 4.65 13.33 100 

11 4.27 17.66 100 

12 4.85 23.46 100 

13 5.42 4.86 76 

13 

9 4.59 2.45 5 

10 4.96 4.27 100 

11 5.04 5.75 100 

12 5.44 22.15 100 

13 6.50 18.74 100 

Table 5.1: AR and S11 bandwidths for different dimensions of the half-loop feed 

By employing the aforementioned optimized dimensions together with gd = 

1 mm, the position of the gap has been optimised once more, where it has been 

noticed that the optimum overlapping bandwidth can be achieved when the gap is 

located at a distance of 10-14 mm from the feed point as shown in Table 5.2. 

Furthermore, when the optimized hd, wd, and ݃⃗p are used, varying gd has little 

effect on the AR bandwidth compared to that on the S11 bandwidth as 

demonstrated in Table 5.3.  
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Distance of gap  from 
feed point (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

9 0 15.95 0 
10 5.52 15.43 100 
11 6.50 18.74 100 
12 5.91 19.02 91 
13 5.56 19.52 69 
14 4.91 10.34 41 
15 1.43 5.59 16 

Table 5.2: AR and S11 bandwidths for different position of gap 

Gap size, 
gd (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

0.25 6.26 21.02 100 
0.5 6.35 19.95 100 
0.75 6.43 19.42 100 

1 6.50 18.74 100 
1.25 6.56 15.32 96 
1.5 6.64 12.46 93 
1.75 6.69 7.89 85 

2 6.71 4.35 64 

Table 5.3: AR and S11 bandwidths for different gd  

5.2.2 Results and Discussions 

A prototype of a rectangular DRA that is excited using open half-loop 

antenna is illustrated in Figure 5.3. From the results obtained using the iterative 

design procedure, the used optimized dimensions of the feeding loop are hd = wd = 

13 mm, gd = 1 mm, d = 6.5 mm and the gap is located at a distance of 11 mm from 

the feed point. The half-loop, has been connected to the ground plane at two ends 

using a conductive silver paint. The measurements have been conducted using 

the same set-up described in Chapter 3. 
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Figure 5.3: A rectangular DRA excited using open half-loop antenna 

 

The computed and measured input impedance and return losses are shown 

in Figures 5.4 and 5.5, respectively, where it can be observed that good 

agreement has been achieved between the two sets of results. The impedance 

matching has been attained over bandwidths of 18.74% and 21.8% in the 

theoretical and experimental results, respectively. The minimum S11 has been 

computed at a frequency of 3.50 GHz compared to 3.59 GHz in the 

measurements, which constitute a marginal difference of 2.5%. These results 

agree reasonably well with a predicted resonance frequency of 3.8 GHz for the 

TEy111 mode in which the DRA is excited, as calculated using DWM method 

proposed in [7]. As reported in [6], the broadside TEy111 mode of this DRA has a 

strong magnetic field near the ground plane; hence it can be excited by a half-loop 

antenna that has a maximum current magnitude at that point to generate CP 

radiation within this mode. The EM fields distribution across the rectangular DRA 

operating in this mode has been shown in Figure 3.6. 
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Figure 5.4: Input impedance of a rectangular DRA fed using a half-loop 
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Figure 5.5: Return losses of the rectangular DRA 
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Furthermore, the current distribution has been studied where it has been 

observed from Figure 5.6 that a travelling-wave current distribution has been 

attained along the feeding strips with a smoothly decaying magnitude and 

approximately linear phase progression. Along the first metallic strip, the 

magnitude of current decreases to zero rapidly, owing to the limited distance 

between the feed point and gap. The rectangular half-loop has a perimeter of ~1λg 

at 3.24 GHz that represents the first-mode of radiation band, for which the 

conditions are ideal for CP wave radiation [8, 9]. Changing the aspect ratio of the 

one wavelength perimeter maintains the travelling wave nature of the current as 

long as 9   wd 15 mm, otherwise a folded-dipole is formed on the DRA surface 

that only supports standing wave current, hence making the rectangular DRA 

radiates LP wave only.  This may also results in a noticeable shift of the feed point 

position which effects the excited resonance mode and hence the S11 bandwidth.  

Distance along strip (mm)
0 5 10 15 20 25 30 35

C
ur

re
nt

 m
ag

ni
tu

de
 (m

A
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ph
as

e 
(d

eg
re

e)

-60

-30

0

30

60

Magnitude
Phase Progression

strip 1 strip 2 strip 3

 

Figure 5.6: Current distribution along the feeding strips at 3.24 GHz 
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The variation of the bore-sight axial ratio as a function of frequency has 

been computed and measured as shown in Figure 5.7, where it can be noticed 

that the minimum computed AR value is 1.6 dB at 3.24 GHz, which is close to the 

corresponding measured value of 1.3 dB at 3.26 GHz.  From these results it can 

be seen that the theoretical 3dB AR bandwidth extends from 3.14-3.35 GHz 

compared to 3.14-3.39 GHz in the measurements.  As a result, a CP radiation has 

been achieved over bandwidths of 6.50% and 7.75% in the analysis and 

measurements, respectively, which is comparable to that obtained using the spiral 

excitation as discussed in section 3.2.2. Furthermore, with reference to Figure 5.8, 

it can be observed that a sufficient impedance matching bandwidth has been 

obtained throughout the whole frequency band of the achieved circular 

polarization. 
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Figure 5.7: Axial ratio of a rectangular DRA fed by half-loop strip 
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Figure 5.8: Region of overlapping bandwidths for S11 and AR 

The theoretical and experimental variations of the axial ratio with the 

elevation angle are demonstrated in Figures 5.9 and 5.10, which show that the 

rectangular DRA offers CP radiation over a useful beam-widths of over 98○ in both 

0  and 
90  planes at the minimum AR frequency. 
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Figure 5.9: Axial ratio beam-width of the rectangular DRA at 0   
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Figure 5.10: Axial ratio beam-width of the rectangular DRA at 90   

Figure 5.11 presents the calculated and measured bore-sight gain of the 

rectangular DRA fed by an open half-loop antenna, where it can be noticed that a 

useful gain of over 4dBi has been achieved throughout the obtained circular 

polarization bandwidth.  
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Figure 5.11:  Gain of the rectangular DRA 
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Additionally, the computed and measured radiation patterns are presented 

in Figure 5.12, where it can be seen that good agreement has been achieved 

between the two sets of results. The radiation patterns are stable throughout the 

CP frequency band. With reference to Figure 5.12(b), which shows the radiation 

pattern taken at minimum AR frequency, an isolation of more than 20 dB has been 

achieved between the co-, and cross-, polarization components. It is evident from 

these results that this is a right-hand CP DRA, as RHCP is the stronger field. 

Figure 5.12: Radiation pattern of the rectangular DRA at (a) starting, (b) minimum, 

and (c) ending of AR frequencies  
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5.3 Circularly Polarized Cylindrical DRA  

5.3.1 Antenna’s Configuration  

The versatility of the rectangular half-loop feeding method is demonstrated 

next, by employing such an excitation scheme onto the single layer cylindrical 

DRA used previously in section 4.2, as illustrated in Figure 5.13.  The DRA has a 

radius of a, a height of h and a dielectric constant of εr, whilst the feeding structure 

has a width of wd, a height of hd, and a gap size of gd located at a gap position of 

݃⃗p within the metallic strips.  

  

    
  
                                                      a    
      

݃⃗p(2) 
                                                             
                                                     strip 2              gd 
 
                                                                                            h 
                    hd     ݃⃗p(1)                                                       ݃⃗p(3)                                         
                                        strip 1                            strip 3       
                                                                                  z 
     
    x 

                                                                  
                Feed point                     wd                                                        y 

 

Figure 5.13: Configuration of a cylindrical DRA 

excited by an open half-loop antenna 
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The antenna configuration has been simulated using the method of 

moments, where the cylindrical dielectric has been meshed to 2470 tetrahedrons 

and the metallic strips to 59 triangular patches, giving a total of 5323 unknowns. 

The optimum dimensions of the feeding metallic strips that are required to 

establish a travelling-wave current distribution along the half-loop, as well as 

exciting a DRA mode within the same frequency range, have been determined 

after employing an iterative design procedure.  

In order to assess the performance of the cylindrical DRA fed by an open 

half-loop design, the parameters of the cylindrical dielectric have been chosen 

similar to those used in Chapter 4, that is h = 10.54 mm, a = 7.01 mm and εr = 9.2 

[10]. Initially, in order to obtain the optimized gap position, ݃⃗p, the half-loop 

dimensions were fixed to hd = 10.54, wd = 10 mm and gd = 1 mm. The simulation 

results of the actual and effective AR bandwidths are shown in Figure 5.14 when 

the gap is placed at any of the three copper strips. Again, due to the convention 

used for the gap position, ݃⃗p(1) = 0 mm is essentially the same as ݃⃗p(2) = 0 mm. 

This also applies to ݃⃗p(2) = 9 mm and ݃⃗p(3) = 0 mm. Based on the results from 

Figure 5.14, it can be observed that the highest effective AR bandwidth of 3.01% 

was obtained when the gap is located within strip 3 at ݃⃗p(3) = 1 mm. This 

effectively means the optimum ݃⃗p is located between the last two metallic strips as 

shown in Figure 5.13. The minimum S11 obtained using this feeding structure 

configuration has been computed at a frequency of 5.8 GHz. 
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Figure 5.14: Actual and Effective AR bandwidths as functions of the gap position 

The results obtained from the optimization process for parameters hd and 

wd, using optimized ݃⃗p and gd = 1 mm, are shown in Table 5.4, where the change 

in the AR bandwidth remains relatively stable in contrast to the fluctuation in the 

S11 bandwidth when the half-loop width is varied within a range of 8   wd  10 mm 

for a given height value in the range of 7.54   hd  10.54 mm. Based on these 

results, hd and wd have been adjusted to attain optimum respective values of 

10.54 mm, and 10 mm that provide maximum AR and impedance matching 

bandwidths. Consequently, the results for different value of gd are shown in Table 

5.5, when the optimized parameters of hd, wd and ݃⃗p are employed. With reference 

to the table, an optimum value of gd is 2 mm has been chosen as it proved an AR 

bandwidth of 3.63%. The minimum S11 obtained using this feeding structure 

configuration has been computed at a frequency of 3.77 GHz. 
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Height,
hd (mm) 

Width, 
wd (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

7.54 

7 0 7.71 0 

8 1.29 11.81 71 

9 1.46 7.71 100 

10 1.96 12.6 100 

8.54 

7 0 8.96 0 

8 1.81 14.27 87 

9 2.11 17.62 100 

10 2.47 21.98 100 

9.54 

7 0 12.04 0 

8 2.77 16.13 100 

9 3.05 21.21 100 

10 2.87 20.63 100 

10.54 

7 0 14.32 0 

8 2.36 21.18 100 

9 3.15 22.71 100 
10 3.01 20.41 100 

Table 5.4: AR and S11 bandwidths for different dimensions of the half-loop feed 

Gap size, 
gd (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

0.25 2.53 21.61 100 

0.50 2.79 21.99 100 

0.75 2.97 22.18 100 

1.00 3.15 22.71 100 

1.25 3.32 22.97 100 

1.50 3.44 23.20 100 

1.75 3.61 23.40 100 

2.00 3.63 22.23 100 
2.25 3.63 23.81 100 

2.50 3.43 23.91 100 

2.75 3.08 23.84 100 

3.00 2.29 23.98 100 

Table 5.5: AR and S11 bandwidths for different gap sizes  
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5.3.2 Results and Discussions 

Figure 5.15 presents the prototype of a cylindrical DRA that is excited using 

open half-loop. Based on Table 5.4 and Table 5.5, the optimized dimensions of 

open half-loop metal strips are found to be hd = 10.54 mm, wd = 9 mm and gd = 2 

mm.  

 

Figure 5.15: A cylindrical DRA excited by an open half-loop antenna 

 

Good agreement has been obtained between the computed and measured 

input impedance and return losses as shown in Figures 5.16 and 5.17, 

respectively, with slight discrepancy owing to employing a finite ground plane and 

experimental tolerance. Additionally, the light weight of this DRA made it difficult to 

totally eliminate the potential air gaps. From Figure 5.17, the return losses 

bandwidth has been computed to be 22.2%, which is slightly higher than 20.55% 

in the measurements. There is a marginal difference of 1.55% between the two 

sets of results as the minimum S11 has been computed 5.76 GHz compared to 

5.85 GHz in the measurements. Consequently, the results agree well with the 

predicted resonance frequency of 5.61 GHz for the TE01δ mode calculated using 
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DWM method, in which the DRA is excited. The distribution of fields across the 

cylindrical DRA operating in this mode has been presented in Figure 4.5. 

Frequency (GHz)
5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8

In
pu

t I
m

pe
da

nc
e 

(


-60

-40

-20

0

20

40

60

80

100

Computed
Measured

 

Figure 5.16: Input impedance of the cylindrical DRA 
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Figure 5.17: Return losses of the cylindrical DRA 
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Figure 5.18: Current distribution along the half-loop strip at 5.85 GHz. 

Additionally, a travelling-wave current distribution has been obtained along 

the half-loop at the frequency band of operation as shown in Figure 5.18. The half-

loop has perimeter of ~1.19λg at 5.85 GHz. The antenna exhibits strong CP 

radiation as the loop’s one-wavelength circumference supports the first-mode of 

radiation. Figure 5.19 shows the computed and measured axial at the bore-sight 

direction, where it can be seen that the minimum computed AR value is 1.23 dB at 

5.85 GHz, compared to the corresponding measured value of 1.25 dB at 5.94 

GHz. From these results it can be observed that the achieved 3 dB AR bandwidths 

are 3.63% and 4.14% in the analysis and measurements, respectively, which is 

comparable to the results obtained by the cylindrical DRA of similar dimensions 

using the spiral excitation albeit with a simpler feeding method.  Furthermore, 

based on Figure 5.20, it can be seen that a sufficient impedance matching 
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bandwidth has been attained throughout the achieved circular polarization 

bandwidth. 
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Figure 5.19: Axial ratio of the cylindrical DRA fed by a open half-loop strips. 
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Figure 5.20: Region of overlapping bandwidths for S11 and AR 
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The axial ratio beam-width is shown in Figures 5.21 and 5.22. With 

reference to the computational result, the DRA offers circular polarization over a 

measured beam-widths of 63○ and 40○ in the 0  and 90 plane, respectively. 

As expected, the beam-width in the 0o plane is wider than that in the 90o plane 

because the height of the rectangular loop is longer than its width [11]. 

 (degree)

-80 -60 -40 -20 0 20 40 60 80

A
xi

al
 R

at
io

 (d
B

)

0

1

2

3

4

5

Computed
Measured

 

Figure 5.21: Axial ratio beam-width of the cylindrical DRA at 0   
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Figure 5.22: Axial ratio beam-width of the cylindrical DRA at 90   
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Additionally, the gain of the cylindrical DRA has been measured at bore-

sight. The results are shown in Figure 5.23, where it can be observed that the 

antenna offers a satisfactory gain of more than 4dBi across the frequency range in 

which a CP wave is radiated. Comparisons between the calculated and measured 

radiation patterns across the AR frequencies are shown in Figure 5.24 with 

reasonable agreement, where it can be noticed that the patterns are stable 

throughout the whole frequency range of the achieved circular polarization. With 

reference to Figure 5.24 (b), it is evident that this is a right-hand CP DRA, in which 

the RHCP field is stronger than the LHCP field by more than 18 dB and 22 dB in 

the bore-sight direction in the 0  and 90 plane, respectively.  
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Figure 5.23:  Gain of a cylindrical DRA fed by an open half-loop. 
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Figure 5.24: Radiation pattern of the cylindrical DRA at 

(a) starting, (b) minimum, and (c) ending of AR frequencies 
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The performances of the rectangular and cylindrical DRAs fed using the 

excitation schemes proposed in this research are summarized in Tables 5.6 and 

5.7. For comparison purposes, the results from published literature are included in 

the reference column. From the tables, it is evident that the DRAs excited using 

the new feeding methods have produced considerably wider CP bandwidths 

compared to those reported in the literature for identical singly-fed DRAs. The 

discrepancy in the S11 bandwidth achieved using square spiral and open half-loop 

excitation can be attributed to the relative strength of power coupled between the 

feed and the DRA, which is highly dependent on the location and type of feed [12]. 

Also, it should be noted that the DWM method is an approximate technique. The 

resonance frequency computed using a more rigorous method such as MoM 

usually lies within 10% [7] from those predicted by the simple DWM method, owing 

to several factors such as coupling efficiency and load of feed. 

  

-10dB S11 
Bandwidth 

(%) 

3dB AR 
Bandwidth 

(%) 

Resonance 
Frequency 

(GHz) 

Excited Mode & 
Frequency predicted 
using DWM method 

Reference [6] 14 2.7 3.55 
TEy1δ1 (3.80 GHz) Square spiral 8.5 6.6 4.1 

Rectangular open half-loop  18.7 6.5 3.5 

Table 5.6: Performance for various rectangular DRA configurations 

  

-10dB 
S11 

Bandwidth 
3dB AR 

Bandwidth 

Resonance 
Frequency 

(GHz) 

Excited Mode & 
Frequency predicted 
using DWM method 

Reference [10] 22 2.2 6.38 
TE01δ(5.61 GHz) Square spiral 15.7 3.48 5.89 

Rectangular open half-loop  22.23 3.63 5.76 

Table 5.7: Performance for various cylindrical DRA configurations 
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5.4 Circularly Polarized Hemispherical DRA 

The versatility of this excitation scheme is demonstrated further by employing the 

conformal rectangular half-loop metal feed onto a hemispherical DRA. Since this is 

the first time such geometry is used in this research, it would be appropriate to 

briefly discuss the characteristics of a hemispherical DRA. 

5.4.1 Degree of Freedom and Resonant Modes 

In comparison with other regular DRA shapes, such as rectangular and 

cylindrical, hemispherical offers the least flexibility in choosing the design 

parameters. The hemispherical DRA has zero degree of freedom since both the 

resonance frequency and the radiation Q-factor are exclusively dependent on the 

radius, as well as the DRA permittivity. Furthermore, the fabrication of a 

hemispherical DRA is relatively difficult and more expensive than other regular 

DRA geometries. However, interest in hemispherical DRA remains strong since 

this is the only shape for which an exact analytical solution to describe the various 

field mode configurations is possible. 

A hemispherical DRA is able to support TM and TE modes. The modes in 

each category are classified as TMmnr and TEmnr. The mode indices denote the 

variation of the fields in the elevation (m), azimuth (n) and radial directions (r), 

respectively. The lowest order and most common mode of the hemispherical DRA 

is TE111 mode. The far field radiation pattern emanates from DRA in this mode is 

similar to those radiated from a short horizontal magnetic dipole.  For the TE111 

mode of a hemispherical DRA, the resonance frequency can be calculated by 

solving the characteristics equation given in [13]: 
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where ko is a  complex number that denotes the free space wavenumber, J(x) is the 

first order Bessel function and H(2)(x) is the second order Henkel function. Once the 

solution of ko, has been obtained, the resonance frequency, f0 can be determined 

using the following expression [14]. 

 
a

ak
f 0

0
Re7713.4


             (5-2) 

where a denotes the radius of the hemisphere in cm, and f0 is expressed in GHz. 

5.4.2 Antenna Configuration 

  
                                                wd 

 
                               ݃⃗p(2) 
                     gd     
                                                strip 2                                   
                                                      
                                                       
                 hd   ݃⃗p(1)         ݃⃗p(3)                                         
                                     strip 1                       strip 3                       
                                                                                              

 
                                                                         z 

   a  x 

               Feed point        y 

                                                                                
                                                                                                                    

Figure 5.25: Configuration of a hemispherical DRA 

excited by a rectangular half-loop antenna  
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The geometry of a single layer hemispherical DRA that has been excited 

using a half-loop antenna is presented in Figure 5.25, where the DRA has a radius 

of a, and a dielectric constant of εr. The feeding half-loop has a width of wd, a 

height of hd and a gap size of gd that is placed at a distance of ݃⃗p from the 

beginning of a strip. The antenna configuration has been modeled using the 

method of moments together with the combined RWG and SWG basis functions, 

where the hemispherical dielectric has been meshed to 2352 tetrahedrons and the 

metallic strips to 74 triangular patches, giving a total of 5124 unknowns. 

The parameters of the hemispherical dielectric are similar to those used in 

[15], that is, a = 12.55 mm and εr = 9.5. An iterative design procedure has been 

applied to determine the optimum dimensions of the feeding metallic strips that are 

required to attain a travelling-wave current distribution. For the initial simulations to 

determine the gap position, ݃⃗p, the half-loop dimensions have been fixed to hd = 

wd = 10 mm with a gap width of gd = 1 mm. Figure 5.26 shows the actual and 

effective AR bandwidths as functions of ݃⃗p when the gap was placed within each 

individual strip. It can be noticed from these results that the highest effective AR 

bandwidth of 2.22% has been obtained when the gap was placed within strip 3 at 

݃⃗p(3) = 0 mm (essentially the same as when the gap was placed within strip 2 at 

݃⃗p(2) = 9 mm). This effectively means the optimum ݃⃗p is located between the last 

two metallic strips as illustrated in Figure 5.25. The minimum S11 obtained using 

this feeding structure configuration has been computed at a frequency of 5.66 

GHz. 
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Figure 5.26: AR bandwidth and Effective AR bandwidth as a function of gap 

position, for gap placed within strip 1, strip 2 and strip 3 

Table 5.8 presents the AR and impedance matching bandwidths as well as  

the percentage overlapping bandwidth for various values  of hd, and wd when gd = 

1 mm and the optimized ݃⃗p has been employed.  The optimization process has 

shown that the CP radiation is achieved for various dimensions of the half-loop, 

which is a desired feature in the DRA design. With reference to the results of 

these simulations, the optimized parameters which yield maximum effective AR 

bandwidth (i.e. 2.22%) are given by hd = wd = 10 mm. Additionally, the results for 

different values of gd are shown in Table 5.9, after these optimized parameters of 

hd, wd and ݃⃗p have been applied. 
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Height,
hd 

Width, 
wd 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

9 

9 0 5.90 0 
10 5.45 6.80 0 
11 6.86 12.02 18 
12 6.94 7.91 15 

10 

9 0 6.14 0 
10 7.31   8.31 30  
11 6.98 6.02 32 
12 5.47 13.76 17 

11 

9 3.43 9.50 48 
10 7.52 4.26 18 
11 6.36 5.52 20 
12 5.10 6.78 25 

12 

9 2.99 5.15 56 
10 6.21 13.91 12 
11 5.34 4.01 0 
12 4.28 7.58 0 

Table 5.8: AR and S11 bandwidths for different dimensions of the half-loop feed 

Gap size, 
gd 

3db AR Bandwidth 
(%) 

-10dB S11 Bandwidth 
(%) 

Overlapping AR & S11 
Bandwidth (%) 

0.5 4.31 8.43 38 

1.0 7.31 8.31 30 
1.5 3.63 8.23 18 

2.0 0 8.11 0 

2.5 0 8.12 0 

3.0 0 8.12 0 

Table 5.9: AR and S11 bandwidths for different gap sizes  

Although several simulations have been conducted to determine the 

optimized parameters of the half-loop, the achieved effective AR bandwidth of 

2.22% is relatively smaller than what has been achieved in earlier studies for a 

singly-fed CP hemispherical DRA discussed in section 1.3.2.2. As can be 

observed from Table 5.8, the overlapping AR and S11 bandwidth can be increased 

if a wider impedance matching bandwidth is obtained or if the S11 bandwidth is 
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shifted closer AR frequency band. This can be achieved by incorporating an 

integrated stub to the feeding structure so that input impedance matching can be 

adjusted as desired [16]. The stub’s length ls, width ws, and position ps play an 

important role towards achieving a perfectly matched system. Figure 5.27 shows 

the geometry of a hemispherical DRA that has been excited using an open half-

loop antenna with a stub matching connected along strip 1. 

  
   
                                   
 wd 
                                                                             gd 
                                                       strip2 
                                                                                   
                           strip 1                       strip 3             
                                         hd 
                              ls                                                              
                
  ws   
            ps                                                                                                                               
                                                      z  
                                                     a                                           x 
   
           Feed point                                                                                               y 
 

Figure 5.27: Configuration of a hemispherical DRA 

excited by a rectangular half-loop antenna with a matching stub. 

Table 5.10 shows the results for the optimization of ps and ls when hd = wd = 

10 mm, ݃⃗p = 0 mm, gd = 1 mm and ws is fixed at 1 m. Subsequently, once the 

optimized parameters of ps and ls have been applied, the stub width, ws, can also 

be adjusted as shown in Table 5.11.  From these tables, the optimized parameters 

of the stub are ps = 4 mm, ls = 2 mm and ws =2.5 mm. The minimum S11 obtained 

using this configuration has been computed at a frequency of 5.66 GHz. 
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Stub position, 
ps (mm) 

Stub length,  
ls (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

1 1 6.19 5.77  87 

  2 4.52 4.7  93 

2 1 5.8 5.96  97 

  2 3.56 5.53  100 

3 1 5.75 6.69  100 

  2 5.85 6.29  100 

4 1 6.40 7.48  100 

  2 6.69 8.08  100 
5 1 6.58 7.66  100 

  2 6.31 8.14  100 

6 1 1.86 7.49  100 

  2 1.77 7.82  100 

7 1 1.74 7.29  100 

  2 0.91 7.08  100 

8 1 2.15 6.61  100 

  2 0.24 6.53  100 

Table 5.10: AR and S11 bandwidths for different dimensions of ps and ls 

Stub width, 
ws (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

0.5 5.27 8.03 98 

1 6.69 8.08 100 

1.5 6.88 8.43 100 

2 7.06 8.74 100 

2.5 7.61 9.36 100 
3 1.62 9.29 100 

Table 5.11: AR and S11 bandwidths for different stub widths   

 Figure 5.28 compares the performances of the DRA when the optimized 

matching stub is added onto the feed. It is evident that the inclusion of the stub 

has negligible impact on the AR bandwidth in contrast to the drastic change in the 

value of return loss. This is expected since the stub produces pure reactance at 

the attachment point [16]. The addition of this reactance which can be either 

capacitive or inductive, depending on the electrical length of the stub, alters the 
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total reactance of the half-loop feed. Hence, the S11, derived from the antenna’s 

input impedances changes significantly. Additionally, it can be observed from the 

figure that the DRA has excited two modes at ~4 GHz and ~5.6 GHz. Those 

modes have been identified using an Eigen mode solver in CST microwave studio 

as TE111 and TE122, with predicted resonance frequencies of 3.98 GHz and 5.2 

GHz, respectively.  The EM fields of a spherical DRA, with radius of a, operating in 

these modes are shown in Figures 5.27 and 5.28. As can be seen from Figure 

5.29 (b) and 5.30 (b), there is a strong magnetic field presence along the DRA 

surface near the ground plane. Therefore, it is possible to excite both modes by 

attaching the half-loop to this area, as the maximum current magnitude at the feed 

point induces strong coupling between the feed and the DRA. 
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Figure 5.28: Axial ratio and return loss of DRA fed by half loop with or without stub  
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Figure 5.29: EM Fields distribution for TE111 mode; (a) E-field and (b) H-field 

 

Figure 5.30: EM Fields distribution for TE122 mode; (a) E-field and (b) H-field 

Further enhancement of the wideband CP radiation can be made by 

employing a multilayer structure as discussed in section 4.3.1.  Therefore, a 

hemispherical air gap has been introduced inside the existing DRA as shown in 

Figure 5.31.  The parameters of the half-loop metal strips used in section 5.3 are 

retained. Several simulations have been conducted using different radii of the 

inner layer air gap, a2. The AR bandwidth and its corresponding resonance 
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frequency versus the dimensions of inner layer air gap are presented in Figure 

5.32.  It should be noted the graph only shows the AR bandwidth achieved when 

the DRA is operating in the TE111 mode. As a2 increases, the resonance frequency 

also increases due to the decrease in the effective permittivity as the air gap 

dominates the structure. Additionally, the results have been compared with Figure 

2 (a) in [17], which shows the resonance frequency of an identical multilayer 

hemispherical DRA calculated using mode-matching method, where close 

agreement can be observed for the resonance frequency. The performances of 

the multilayer hemispherical DRA with an optimized radius of a2 = 7 mm is 

illustrated in Figure 5.33. In comparison with single layer DRA, it is evident that the 

addition of inner layer air gap has significantly increased the AR bandwidth from 

3.56% to 11.19% as well as the S11 bandwidth from 9.36% to 10.43%. 

  
                              Outer Layer 
                       Dielectric (Alumina) 
 
                           Air gap 
 
 

 
 
Conformal rectangular 
half-loop metal strips 

 
 

 

 

Figure 5.31: Configuration of a multilayer hemispherical DRA 

(Inset: side-bottom view of the multilayer hemispherical DRA) 
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Figure 5.32: Axial ratio bandwidth and corresponding resonance frequency as a 

function of the radius of inner air gap 
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Figure 5.33: Axial ratio and return loss of DRA fed by half loop with or without stub  
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5.4.3 Results and Discussions 

5.4.3.1   Circularly Polarized Single Layer Hemispherical DRA 

Due to a cost constraint, only a prototype of a multilayer hemispherical has 

been built. For the single layer hemispherical, the results from simulation by MoM 

have been compared with those obtained from the commercial CST microwave 

studio software. From results obtained using iterative design procedure, the 

optimized dimensions of the feeding structure are found to be hd = wd = 10 mm, gd 

= 1 mm, ps = 5.5 mm, ls = 2 mm and ws = 2.5 mm. In the CST simulations, a 

discrete port of length 0.25 mm has been used as a source feed to the half-loop 

metal, which has a strip width of 1 mm.  Additionally, a hexahedral mesh type of 

30 mesh lines per wavelength with an accuracy of -50 dB has been used within a 

wide frequency range of 4.5 to 6.5 GHz. 

The computed return losses are presented in Figure 5.34, where it can be 

seen that a good agreement has been achieved between the MoM and CST 

results. The corresponding input impedances are shown in the inset of Figure 

5.34. It is found that the impedance matching has been attained over bandwidths 

of 9.36% and 9.92% in the MoM and CST computations, respectively. The 

minimum S11 frequency points have been computed as 5.66 GHz and 5.55 GHz in 

the MoM and CST simulations, respectively, which represents a marginal 

difference of ~2% between the two sets of results. These resonance frequencies 

agree reasonably well with that of 5.2 GHz for the TE122 mode in which the DRA is 

excited, as predicted by CST Eigen mode sover.  
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Figure 5.34: Return losses and input impedances of the hemispherical DRA 

The variation of the bore-sight axial ratio as a function of frequency is 

presented in Figure 5.35, where it can be noticed that the 3 dB AR bandwidth has 

been achieved over bandwidths of 7.61% and 7.42% in the MoM and CST 

computations, respectively, which is significantly higher than the typical singly-fed 

CP hemispherical DRA bandwidth of ~4%.  With reference to Figure 5.36, it can 

be noticed that a sufficient impedance matching bandwidth has been obtained 

throughout the whole frequency band of the achieved circular polarization. 

Furthermore, analysis of the axial ratio as a function of the elevation angle at the 

minimum AR frequency shows that the hemispherical DRA offers CP radiation 

over a beam-widths of 17○ and 11○ in 0  and 
90  planes, respectively. 

Figure 5.37 shows the radiation patterns for MoM and CST computations, where it 

can be noticed that an excellent agreement has been achieved between the two 

sets of results. An isolation of more than 20 dB has been achieved between the 
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co-, and cross-, polarization components in both planes and it is evident from 

these results that this is a right-hand CP DRA. 
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Figure 5.35: Axial ratio of a hemispherical DRA fed by half-loop strip 
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Figure 5.36: Region of overlapping bandwidths for S11 and AR 
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Figure 5.37: Radiation pattern of the DRA at minimum AR frequencies  

 

5.4.3.2   Circularly Polarized Multilayer Hemispherical DRA 

Figure 5.38 presents a prototype of the hollow, or multilayer, hemispherical 

DRA that is excited using a rectangular half-loop. The antenna has been built 

based on the optimized parameters obtained using the iterative design procedure.  

 

Figure 5.38: A multilayer hemispherical DRA excited by  

a rectangular half-loop antenna 
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The computed and measured input impedance and return losses are shown 

in Figures 5.39 and 5.40, respectively, where it can be seen that a reasonable 

agreement has been obtained between theory and experiment.  The return losses 

bandwidth has been computed to be 10.43% which is slightly higher than 10.32% 

in the measurements. The minimum S11 has been computed at 4.09 GHz 

compared to a measured value of 4.3 GHz. Consequently, the results agree well 

with the expected resonance frequency of 3.98 GHz for the TE111 mode in which 

the DRA is excited, as predicted by the CST Eigen mode solver. Furthermore, a 

travelling-wave current distribution has been achieved along the rectangular half-

loop at the frequency band of operation as illustrated in Figure 5.41. The half-loop 

has perimeter of 1.05λg at 4.5 GHz that supports the first-mode of radiation, for 

which the conditions are ideal for wave radiation. 
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Figure 5.39: Input impedance of the multilayer hemispherical DRA 
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Figure 5.40: Return losses of the multilayer hemispherical DRA 
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Figure 5.41: Current distribution along the half-loop strip at 4.50 GHz. 
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Figure 5.42 presents the computed and measured axial ratio at the bore-

sight direction, where it can be seen that the minimum computed AR value is 1.55 

dB at 4.5 GHz, compared to the corresponding measured value of 1.58 dB at 4.56 

GHz. From these results, the achieved 3 dB AR bandwidths are 11.19% and 

11.15% in the analysis and measurements, respectively. Furthermore, the 

overlapping AR and S11 bandwidths from computations and measurements are 

shown in Figure 5.43. Based on the results, the theoretical effective AR bandwidth 

is found to be 8.5% compared to 8.4% in the experiment.  It should be noted that 

the effective AR bandwidth can be increased to 10.4% and 10.7% in the 

computations and measurements, respectively, if a threshold of S11<-7.5dB is 

considered, which corresponds to a voltage standing wave ratio (VSWR) of 2.5. 

Such an impedance matching criteria has been employed in earlier studies and 

has been considered to be acceptable [18]-[19]. 
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Figure 5.42: Axial ratio of the multilayer hemispherical DRA  

fed by a rectangular half-loop strips. 
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Figure 5.43: Region of overlapping bandwidths for S11 and AR 

The variation of the axial ratio as a function of elevation angle is shown in 

Figures 5.44 and 5.45, where it can be notice that the computed AR beam-widths 

are 26○ and 81○ in the 0  and 90 plane, respectively. Furthermore, the 

calculated and measured radiation patterns across the AR bandwidth are shown in 

Figure 5.46, where a reasonable agreement can be observed between the two 

sets of results. It is noticeable that the patterns are stable throughout the whole 

CP frequency range. From Figure 5.46 (b), it is evident that this is a right-hand CP 

DRA, in which the RHCP field is stronger than the LHCP field by more than 20 dB 

in the bore-sight direction for both principal planes. Finally, the antenna gain of the 

multilayer DRA is shown in Figure 5.47, where it can be observed that the DRA 

offers a useful gain of more than 4dBi across the frequency range of the achieved 
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circular polarization until 4.40 GHz where the gain decreases steadily to 

approximately 1.50 dB at the ending AR frequency 
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Figure 5.44: Axial ratio beam-width of the DRA at 0   
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Figure 5.45: Axial ratio beam-width of the DRA at 90   
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Figure 5.46: Radiation pattern of the hemispherical DRA at 

(a) starting, (b) minimum, and (c) ending of AR frequencies 
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Figure 5.47:  Gain of the multilayer hemispherical DRA 

 

5.5 Conclusions 

A simpler feeding method that can be used to achieve broadband circularly 

polarized singly-fed DRAs is presented. The proposed method is general and 

applicable to DRAs of any geometry as proven by application of the rectangular 

half-loop onto a rectangular, cylindrical and hemispherical dielectric. The CP 

bandwidth achieved in each case is considerably higher than those reported in the 

literature for a singly-fed DRA of the same shape.  In all cases, the theoretical and 

experimental results agree reasonably well with each other.  Additionally, the CP 

radiation is not sensitive to the dimensions of the half-loops, which means it can 

be obtained without difficulty.   
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CHAPTER 6 

 

 

AR BANDWIDTH ENHANCEMENT 

OF CP DRAs USING a PARASITIC 

HALF-LOOP 

6.1 Introduction 

In addition to its simplicity, the rectangular open half-loop excitation scheme 

facilitates the incorporation of a concentric parasitic half-loop. For a single loop 

antenna, the addition of a parasitic element can create another minimum AR point. 

By optimizing the dimensions of the two loops, two minima AR points, which 

resonate at frequencies that are close to each other, can be generated. As a 

result, the combination of the two AR bands leads to a significant enhancement in 

the overall circular polarization bandwidth. Employing this approach results in 
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improving the AR bandwidth without a noticeable increase in the antenna’s 

complexity and profile since the parasitic element can be conveniently placed 

inside the driven half-loop antenna.  

Enhancing the CP bandwidth of a loop antenna by adding a parasitic 

element is a well known procedure that has been reported in earlier studies [1-5].  

For instance, the addition of a parasitic element inside a circular loop antenna has 

resulted in the increase of AR bandwidth from 6.5% to 20% [1]. In a later study [2], 

a pair of parasitic rhombic loops has been placed inside a dual-rhombic loop. The 

AR bandwidth of this configuration was found to be 46%, which is more than three 

times wider than those achieved without the parasitic element. Additionally, the 

combination of two AR bands from a dual rhombic loop antenna with double 

parasitic loops has contributed to a very significant increase in the AR bandwidth 

from 3% to 23.7%, as reported in [3]. The effects of adding a pair of parasitic loop 

inside dual rectangular loop antenna has been investigated in [4], in which the 3dB 

AR bandwidth has been reported as 46% compared to 18% without the parasitic 

elements. Furthermore, the incorporation of a parasitic circular loop onto a probe-

fed CP circular loop antenna has generated a wide CP bandwidth of 16%, 

compared to less than 6% for a single loop [5].  

In this chapter, CP rectangular and cylindrical DRAs that are excited using 

driven and parasitic half-loops are studied rigorously. The addition of the parasitic 

elements has significantly increased the CP bandwidths compared to those from 

the same DRAs excited using a driven element only.   
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6.2 CP Rectangular DRA Excited Using Concentric Half-Loops 

6.1.1 Antenna Configuration 

The geometry of a rectangular DRA fed by an open half-loop antenna in the 

presence of a concentric parasitic open half-loop is presented in Figure 6.1. The 

feeding structure consists of driven and parasitic elements. The driven half-loop is 

connected to the coaxial cable, while the parasitic half-loop is excited through 

electromagnetic coupling with the driven counterpart. As explained earlier, the 

driven element has a width of wd, a height hd and a gap size of gd located at a gap 

position of gp. The parasitic element is placed inside the driven loop antenna and 

has respective width and height of wp and hp. The parameters of the gap within 

this parasitic element follow those within the driven element.  

    

 
 
 

 
 
 
 
 
   wd 
  
                                           gd        wp                                                    z 

               gp(1)        gd                         hp       hd  x  

                                                                                    y  

                                          d feed point 

Figure 6.1: Configuration of a rectangular DRA excited by an open half-loop 

in the presence of a concentric parasitic open half-loop 
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The configuration has been modeled rigorously using the method of 

moments together with the combined RWG and SWG basis functions described in 

Chapter 2, where the rectangular dielectric has been meshed to 2407 

tetrahedrons, and the metallic strips to 82 triangular patches, giving a total of 5289 

unknowns. The optimized dimensions of the driven half-loop have been used as 

given in section 5.2.2. An iterative design procedure has been followed to 

determine the optimum dimensions of the parasitic element that are needed to 

establish another travelling-wave current distribution in addition to that along the 

driven half-loop. These travelling-wave currents produce two minima AR points at 

frequencies that are close to each other, which lead to a broadband CP radiation.  

The dimensions of the parasitic half-loop, hd and wd, have been optimized 

when the parameters of the driven element are fixed as hd = wd = 13 mm, gd = 1 

mm and gp = 11 mm. Table 6.1 presents the AR, impedance matching and the 

percentage of overlapping bandwidths for parasitic half-loop dimensions ranges of 

7≤hp≤10 mm and 7≤wp≤10 mm. Throughout these simulations,  a gap of size gd = 

1 mm has been placed between the first two parasitic metallic strips of the 

parasitic half-loop as shown in Figure 6.1. The results demonstrate that the CP 

radiation can be attained easily using strips’ dimensions range of 7 to 10 mm, 

which is a desired feature in the CP DRA design. Based on these results, the 

highest overlapping bandwidths of 12.71% has been obtained when hp =7 mm and 

wp = 9 mm. For this optimized configuration, the resonance frequency occurs at 

3.5 GHz, which corresponds to the TEy111 excited mode 
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Height, 
hp (mm) 

Width, 
wp(mm) 

3db AR 
Bandwidth (%) 

-10dB S11 

Bandwidth (%) 
Overlapping AR & 
S11 Bandwidth (%) 

7 

7 10.27 21.81 100 
8 11.31 22.82 100 
9 12.71 21.32 100 
10 8.02 26.05 100 

8 

7 9.09 32.47 100 
8 8.26 32.02 100 
9 12.12 30.04 100 
10 8.75 28.88 95 

9 

7 8.92 21.82 93 
8 8.93 21.6 98 
9 8.61 20.56 98 
10 8.33 19.32 84 

10 

7 5.85 16.27 66 
8 6.15 14.83 29 
9 6.81 12.08 0 
10 10.84 11.31 0 

Table 6.1: AR and S11 bandwidths for different dimensions 

 of the parasitic half-loop  

Graphical representations of Table 6.1 are presented in Figures 6.2 and 

6.3. These figures show the variation of return loss and AR as functions of 

frequency, respectively, for different values of hp when wp is fixed at 9 mm.  As a 

reference, the results achieved without the presence of the parasitic element is 

included in both graphs. Based on the figures, it is noticeable that the S11 changes 

significantly for different hp, in contrast to the relative stability in AR. From these 

results, it can be seen clearly that the inclusion of the parasitic element has 

created another AR minimal point at 3.5 GHz in addition to the AR minimal point at 

3.24 GHz generated by the driven half-loop. The wider bandwidth can be achieved 

by merging the two minima AR points, which can be accomplished using half-loop 

heights that range between 7 and 8 mm. When hp exceeds 8 mm, the AR minimal 
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point generated by the parasitic half-loop falls outside the AR≤3dB threshold. 

Hence, the overall AR bandwidth is significantly reduced.  
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Figure 6.2: Return loss for different heights of parasitic half-loop  
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Figure 6.3: Axial ratio for different heights of parasitic half-loop  
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6.1.2 Results and Discussions 

Figure 6.4 illustrates a fabricated rectangular DRA that is excited using 

open half-loop antenna in conjunction with a concentric parasitic half-loop. This is 

the same DRA that has been used in Chapters 3 and 5, which has a relative 

permittivity of εr = 9.2, and dimensions of a = 26.1 mm, b = 25.4 mm and c = 14.3 

mm [6]. Based on the results of the iterative design procedure, the used optimized 

dimensions of the parasitic element which are hp = 7 mm, wp = 9 mm, and gd = 1 

mm.  The parameters of the driven element used in section 5.2.2 are retained, that 

is, hd = wd = 13 mm, gd = 1 mm, d = 6.5 mm and the gap is located at a distance of 

11 mm from the feed point. Each half-loop has been connected to the ground 

plane at two ends using a conductive silver paint.  As mentioned earlier, potential 

air gaps between the DRA and the ground plane, which could cause error in the 

measurements, have been eliminated by attaching the DRA to a double sided 

adhesive conducting tape that is placed above the ground-plane as shown in 

Figure 6.4. 

 

Figure 6.4: A rectangular DRA excited using concentric half-loops 
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The input impedance has been measured and compared to the MoM 

computation with close agreement as illustrated in Figure 6.5. Additionally, the 

simulated and measured return losses agree well with each other as shown in 

Figure 6.6. Based on these results, S11 bandwidths of 21.32% and 19.30% have 

been achieved in theory and measurements, respectively. The minimum S11 has 

been computed at a frequency of 3.53 GHz compared to 3.47 GHz in the 

measurements, which represents a marginal difference of 0.6%. These results 

agree reasonably well with a predicted resonance frequency of 3.8 GHz for the 

TEy111 mode in which the DRA is excited, as calculated using DWM method 

proposed in [7]. The DRA operating in this broadside TEy111 mode has a strong 

magnetic field near the ground plane, thus it can be excited by the half-loops that 

have maximum current magnitudes at these points to generate CP radiation within 

this mode.  
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Figure 6.5: Input impedances of a rectangular DRA excited  

using concentric half-loop. 
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Figure 6.6: Return losses of the rectangular DRA  

Additionally, the distribution of current along the two half-loops at the 

frequency band of operation has been studied, where it is evident from Figure 6.7 

that a travelling wave current distribution has been attained with a smoothly 

decaying magnitude and approximately linear phase progression.   
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Figure 6.7: Current distribution along the concentric half-loops at 3.24 GHz 
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Figure 6.8 presents the computed and measured axial ratio at the bore-

sight direction, where it can be observed that the minimum computed AR is 1.18 

dB at 3.24 GHz, which is close to the corresponding measured value of 0.99 dB at 

3.21 GHz. Based on these results, the calculated 3 dB AR bandwidth is 12.71%, 

which is slightly narrower than the measured bandwidth of 13.74%. This 

constitutes at least a 95% AR bandwidth increment compared to that obtained 

from a DRA excited using the driven half-loop only.  Furthermore, with reference to 

Figures 6.9, it can be noticed that a sufficient impedance matching bandwidth has 

been attained throughout the achieved circular polarization bandwidth. 

Additionally, the theoretical and experimental variations of the axial ratio, as 

functions of the elevation angle, are illustrated in Figures 6.10 and 6.11, where it is 

evident that the DRA produces a CP radiation over computed beam-widths of 

110○ and 95○ in both 0  and 
90  principle planes, respectively, at the 

minimum AR frequency. In terms of measurements, the beam-widths have been 

achieved over 98○ in the 0  plane and 94○ in the 
90 planes. 
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Figure 6.8: Axial ratio of the rectangular DRA excited using concentric half-loops 
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Figure 6.9: Region of overlapping bandwidths for S11 and AR 
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Figure 6.10: Axial ratio beam-width of the rectangular DRA at 0   
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Figure 6.11 Axial ratio beam-width of the rectangular DRA at 90   

The calculated and measured bore-sight gains are shown in Figure 6.12, 

which demonstrates that a satisfactory gain of over 4dBi has been attained 

throughout the achieved circular polarization bandwidth. 
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Figure 6.12:  Gain of the rectangular DRA excited using concentric half-loops 
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Furthermore, the computed and measured radiation patterns are shown in 

Figure 6.13, where it can be observed that the radiation patterns are stable across 

the CP frequency band.  Based on Figure 6.12 (b), an isolation of more than 23 dB 

has been achieved between the co-and cross-, polarization components. The 

results clearly show that the DRA radiates right-hand CP wave, as RHCP field is 

the much stronger component than LHCP field. 

 

 

Figure 6.13: Radiation pattern of the rectangular DRA at 

(a) starting, (b) minimum, and (c) ending of AR frequencies 
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6.3 CP Cylindrical DRA Excited using Concentric Half-Loops 

6.3.1 Antenna Configuration 

Figure 6.14 illustrates the geometry of a multilayer cylindrical DRA that is 

excited using concentric open half-loops. The multilayer design is used since the 

inclusion of parasitic loop for single layer design does not significantly enhance the 

AR bandwidth. The outer layer has a radius of a, a height of h and a dielectric 

constant of εr while the inner layer has parameters of a2, h2 and εr2. As explained 

earlier, the driven half-loop has a width of wd, a height hd and a gap size of gd 

located at a gap position of gp. The parasitic half-loop that is placed inside the 

driven element has dimensions of wp and hp, and the parameters of the gap within 

this parasitic element follow those within the driven element.  

       
 wd 

              

                       wp       gd 
                             

 
                                       gp(3) 
                     hd                            gd                  h 
                                                       hp 
                                       

 
 
 

      Feed point                            a2                         a   
 
 

 
 

Figure 6.14: Configuration of a multilayer cylindrical DRA excited 

 using concentric half-loops 
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The antenna configuration has been modeled using the method of 

moments in conjunction with the combined RWG and SWG basis functions, where 

the cylindrical dielectric has been meshed to 2432 tetrahedrons and the metallic 

strips to 87 triangular patches, giving a total of 4989 unknowns. The optimum 

dimensions of the feeding metallic strips that are required to establish a travelling-

wave current distribution along the half-loops, as well as exciting a DRA mode 

within the same frequency range, have been determined following the same 

iterative design procedure that has been employed for the RDRA.  

In order to assess the performance of the cylindrical DRA, the dimensions 

have been chosen to be as the same as those reported in [8], that is h = 10.54 

mm, a = 7.01 mm and εr = 9.2. The dimensions of both half-loops have been 

optimized after employing the parameters of the inner dielectric layer used 

previously in section 4.4. Throughout these simulations, a gap of size gd = 1 mm 

has been placed between the last two metallic strips of each half-loop as shown in 

Figure 6.13. The results of this optimization procedure are shown in Table 6.2. 

Most of the conducted simulations indicate that the DRA radiates CP wave, which 

is desirable in the CP antenna design. However, impedance matching has been 

totally lost for some dimensions, which suggests that no mode has been excited at 

the obtained CP frequency. As a result, the optimized parameters that generate 

maximum overlapping between the AR and S11 bandwidths have been determined 

as hd = wd = 9 mm, hp = 6 mm and wp = 5 mm. Using these antenna 

configurations, an effective AR bandwidth of 4.64% has been obtained and 

consequently the resonance frequency is found to be 6.81 GHz, which is close to 

the predicted resonance frequency of 6.55 GHz for the broadside TE01δ mode as 

calculated using equation (4-4).  
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hd and wd 
(mm) 

hp 

(mm) 
wp 

(mm) 
3db AR 

Bandwidth (%) 
-10dB S11 

Bandwidth (%) 
Overlapping AR & 
S11 Bandwidth (%) 

9 

4 
5 0 0 0 

6 0 6.74 0 

7 0 2.32 0 

5 
5 9.38 6.94 0 

6 6.13 11.32 0 

7 3.96 6.67 0 

6 
5 10.47 8.91 44.3 
6 7.21 5.24 12.4 

7 3.08 0 0 

9.5 

4 
5 8.66 4.63 52.3 

6 2.41 6.06 0 

7 3.77 0 0 

5 
5 6.82 12.11 22.2 

6 1.97 5.41 0 

7 4.84 7.75 47.9 

6 
5 5.08 7.49 0 

6 5.07 5.54 0 

7 3.63 0 0 

10 

4 
5 6.94 5.65 11.7 

6 1.45 6.64 0 

7 4.96 8.32 0 

5 
5 1.05 12.72 0 

6 2.23 5.38 14.2 

7 4.94 6.19 0 

6 
5 0.3 6.94 0 

6 2.96 4.89 0 

7 4.22 3.98 0 

10.54 

4 
5 0.47 10.13 0 

6 3.13 4.63 0 

7 4.06 7.67 0 

5 
5 0.52 12.98 0 

6 4.31 5.19 0 

7 4.14 6.37 0 

6 
5 0 9.51 0 

6 5.95 7.95 0 

7 3.75 5.15 0 

Table 6.2: AR and S11 bandwidths for different 

dimensions of the concentric half-loops  
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As can be seen from Table 6.2, only 44.3% of the AR bandwidth achieved 

using the optimized dimensions, has been attained within sufficient impedance 

matching bandwidth. Therefore, an integrated stub has been incorporated with the 

driven element so that a wider overlapping between the bandwidths can be 

obtained. The stub has been attached to the first metallic strip at position of ps. 

The dimensions of the stub are given by ls and ws. 

Table 6.3 shows the results for the stub optimization when the parameters 

of hd = wd = 9 mm, hp = 6 mm, wp = 5 mm, and gd = 1 mm have been employed.  

With reference to the table, the widest effective AR bandwidth has been obtained 

when ls = ps = 1. After employing these optimized stub length and position, the 

results for different value of ws are presented in Table 6.4, where it can be seen 

the effective AR bandwidth has increased to 7.35% when ws = 2 mm. 

Furthermore, the resonance frequency of this antenna has been found to be 6.7 

GHz, which corresponds to the TE01δ mode. The performances of the DRA when 

the optimized matching stub is included are shown in Figure 6.15. In comparison 

to the DRA design without stub, it is evident that the addition of the stub has 

shifted the matching bandwidth to be closer to the AR bandwidth, thus increasing 

the effective AR bandwidth. 
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Stub postion, 
ps(mm) 

Stub length, 
ls (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & S11 
Bandwidth (%) 

1 
1 9.01 7.23 75.1 
2 10.85 5.77 54.12 

3 5.99 12.86 0 

2 
1 9.05 23.69 63.3 

2 7.78 8.69 61.8 

3 2.19 12.03 0 

3 
1 9.28 21.74 34.1 

2 6.5 11.44 0 

3 0 12.14 0 

4 
1 8.48 15.85 0 

2 6.15 9.06 0 

3 0 10.51 0 

5 
1 8.41 13.31 0 

2 5.72 6.96 0 

3 0 5.26 0 

Table 6.3: AR and S11 bandwidths for different dimensions of ps and ls 

Stub width, 
ws (mm) 

3db AR 
Bandwidth (%) 

-10dB S11 
Bandwidth (%) 

Overlapping AR & 
S11 Bandwidth (%) 

0.5 8.85 6.37 72.2 

1 9.01 7.23 75.1 

1.5 9.21 7.46 78.9 

2 9.17 7.69 80.2 
2.5 8.55 7.96 79.4 

3 7.9 8.39 78.2 

Table 6.4: AR and S11 bandwidths for different stub width 
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Figure 6.15: Axial ratio and return loss of DRA fed by half loop with or without stub  

Figure 6.16 and 6.17 illustrate the CP bandwidth enhancement caused by 

the presence of the parasitic half-loop. The graphs show the variation of S11 and 

AR as functions of frequency for different dimensions of hp and wp when the 

optimized parameters of stub and the driven half-loop are employed.  Additionally, 

the performance of the DRA without the presence of the parasitic element is also 

included as a reference. The inclusion of the parasitic element has created 

another AR minimal point at 6.45 GHz in addition to that generated by the driven 

half-loop at 6.75 GHz. The combination of these two points a constitutes an ~84% 

increase in the effective AR bandwidth compared to those achieved at the 

absence of the inner half-loop. 
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Figure 6.16: Return loss for different dimensions of parasitic half-loop 
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Figure 6.17: Axial ratio for different dimensions of parasitic half-loop  
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6.3.2 Results and Discussions 

A prototype of a multilayer cylindrical DRA that is excited using concentric 

half-loops is illustrated in Figure 6.18.  The inner layer height, radius, and relative 

permittivity are h2 = 9.49 mm, a2 = 6.31 mm and εr2 = 5.67, respectively, while the 

outer layer has been designed using h = 10.54 mm, a = 7.01 mm and εr = 9.2 [8]. 

The optimized parameters of the feeding half-loops have been determined using 

the aforementioned iterative design procedure as hd = wd = 9 mm, gd = 1 mm, hp = 

6 mm, wp = 5 mm, ps = ls = 1 mm, and ws = 2 mm. 

 

Figure 6.18: A multilayer cylindrical DRA fed by concentric half-loops. 

Reasonable agreement has been obtained between the computed and 

measured input impedances as demonstrated in Figure 6.19. The experimental 

and theoretical return losses are presented in Figure 6.20, where it can be noticed 

that an S11 ≤-10 dB bandwidth of 7.69% has been achieved in computations 

compared to 8.23% in measurements. The minimum S11 has been computed at 
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6.74 GHz compared to 6.92 GHz in the measurements, which represents a 

difference of 2.77% between the two results. This discrepancy can be attributed to 

measurements error, as the air gaps between the PEC ground plane and the 

antenna can not be fully eliminated since the cylindrical DRA is very lightweight, 

which has caused some difficultly in positioning it firmly on the ground plane. As 

demonstrated earlier in section 4.3.2, the predicted resonance frequency for the 

multilayer design operating in broadside TE01δ mode has been calculated as 6.55 

GHz, which is reasonably close to those obtained by the theory and experiment. 

Additionally, a travelling wave current distribution, which generates CP wave, has 

been attained along the half-loops as illustrated in Figure 6.21. 
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Figure 6.19: Input impedance of the multilayer cylindrical DRA excited  

using concentric half loop  
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Figure 6.20: Return losses of the multilayer cylindrical DRA 
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Figure 6.21: Current distribution along the concentric half-loops at 6.75 GHz  
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The bore-sight axial ratio has been computed and measured as 

demonstrated in Figure 6.22, where it can be seen that the minimum computed 

AR is 0.61 dB at 6.75 GHz compared to a corresponding measured value of 1.53 

dB at 6.88 GHz. With reference to the figure, the theoretical 3 dB AR bandwidth 

extends from 6.38 to 7. GHz compared to 6.59 to 7.15 GHz in the measurements. 

Therefore, CP radiation has been achieved over bandwidths of 9.17% and 8.12% 

in the analysis and the measurements, respectively, which is more than double of 

what has been achieved for the CP cylindrical DRA excited by a driven half-loop 

only as discussed in section 5.3.2.  Additionally, it is several folds higher than the 

AR bandwidth of ~2% reported in [8] for a cylindrical DRA with the same outer 

layer’s dimensions and permittivity. Furthermore, the overlapping AR and S11 

bandwidths from computations and measurements are shown in Figure 6.23.  

Based on the results, the theoretical effective AR bandwidth is found to be 7.35% 

compared to 6.45% in the experiment.  It should be noted that if an S11<-7.5dB 

bandwidth (VSWR = 2.5) is considered, the effective AR bandwidth can be 

increased to 8.6% and 8.12% in the computations and measurements, 

respectively,  
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Figure 6.22: Axial ratio of the multilayer cylindrical DRA  
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Figure 6.23: Region of overlapping bandwidths for S11 and AR 
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The axial ratio beam-width is demonstrated in Figures 6.24 and 6.25, where 

it can be noticed that the DRA offers circular polarization over measured beam-

widths of over 39○ in the both planes 
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Figure 6.24: Axial ratio beam-width of the multilayer cylindrical DRA at 0   
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Figure 6.25: Axial ratio beam-width of the multilayer cylindrical DRA at 90   
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Furthermore, the stability of the radiation pattern has been studied as 

shown in Figure 6.26, where it is evident that the patterns are stable across the 

whole CP bandwidth, and an isolation of more than 21 dB has been achieved 

between the co-, and cross-, polarization components at the minimum AR 

frequency point.  As the RHCP field component is much stronger than LHCP field, 

the DRA radiates right-hand CP wave.  

 

Figure 6.26: Radiation patterns of the multilayer cylindrical DRA at 

 (a) beginning, (b) centre, and (c) end of the CP bandwidth. 
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Finally, Figure 6.27 presents the calculated and measured bore-sight gain 

of the antenna configuration, where it can be seen that a reasonable gain of 

approximately   3 dBi has been achieved throughout the circular polarization 

bandwidth in the theoretical and experimental results. 
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Figure 6.27:  Gain of the multilayer cylindrical DRA 

excited using concentric half-loop 

 

6.4 Conclusions 

The AR bandwidths of rectangular and cylindrical DRA have been increased 

substantially through the incorporation of an inner parasitic half-loop within the 

driven half-loop. With appropriate dimensions and placement of the parasitic 

element, the parasitic half-loop creates another minimum AR point at frequency 

close to that created by the driven half-loop. Thus, merging the two AR minimal 

points results in a wider circular polarization bandwidth. In both rectangular and 
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cylindrical DRA a configuration, the inclusion of concentric parasitic elements has 

approximately doubled the CP bandwidths compared to those obtained using the 

driven half-loops only. This is very desirable, since the parasitic half-loop has been 

included in the structure without increasing the antenna size or complexity. 

Throughout the research, reasonable agreement has been obtained between 

computations and measurements with some discrepancies that can be attributed 

to experimental tolerances, as well as fabrication and measurement errors.  
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CHAPTER 7 

 

 

CONCLUSIONS AND  

FUTURE WORK 

7.1 Summary and Conclusions 

The thesis focuses on the design of singly-fed DRAs with a wideband 

circular polarization. Two new single-point excitation schemes have been 

introduced that can be easily used to excite an arbitrarily shaped DRA. The 

proposed feeding methods are based on employing conformal conducting metal 

strips on the DRA surface.  The generated broad CP bands have been achieved in 

conjunction with sufficient impedance matching bandwidths. The studied 

geometries have been modeled using a self developed MoM code, and the 

computed results have been validated against those obtained from measurements 

or CST simulations.  
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In chapter one, the theory of circular polarization has been discussed 

together with a concise literature review of dual and singly-fed CP DRAs.  

Additionally, the basic characteristics of several CEM modelling methods have 

been described. The second chapter provides details of the employed modelling 

method, where the steps involved in MoM computations, in conjunction with 

specialized basis and testing functions, have been described comprehensively. 

In the third chapter, a new feeding scheme based on using a conformal 

square spiral has been employed to excite a rectangular DRA. The feeding spiral 

parameters have been optimized using an iterative design procedure to establish 

a travelling wave current distribution. This approach has produced a CP bandwidth 

of ~7%, which is considerably wider than the typical bandwidth of < 3% reported in 

earlier studies for singly-fed rectangular DRAs. Additionally, the frequency tuning 

ability of the wideband CP rectangular DRA has been demonstrated, where 

shifting the spiral from the centre to the right of the DRA surface has reduced the 

antenna operating frequency from 4.10 GHz to 2.93 GHz. This shift in the 

resonant frequency corresponds to a change in the excited mode from TEy111 to 

TEx111. However, the achieved CP bandwidth is comparable to those obtained 

using a centrally located feeding spiral. 

In Chapter 4, the versatility of the spiral excitation has been assessed by 

employing the feed to a cylindrical DRA to generate a wideband circular 

polarization radiation. Once more, using optimized parameters to achieve a 

travelling current distribution has generated a CP bandwidth of ~4% compared to 

~2% reported in literature for singly-fed CP cylindrical DRAs. Additionally, the CP 

bandwidth of the cylindrical antenna has been enhanced further by employing a 

multilayer DRA configuration, where a smaller dielectric cylinder of different 
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permittivity has been embedded within the cylindrical DRA. This has provided an 

increase of more than 66% in the AR bandwidth compared with that using a single 

layer cylindrical DRA. 

Despite the advantages of utilizing a square spiral excitation, it has been 

observed that the achieved CP radiation is very sensitive to the spiral dimensions.  

Furthermore, the required precise dimensions are particularly difficult to achieve 

when the spiral needs to be placed on a conformal surface. Therefore, a simpler 

feeding method that is capable of generating wideband CP radiation, without the 

aforementioned limitations, has been proposed in chapter 5. The new feed is 

based on exciting the DRA using a rectangular half-loop that consists of three 

metallic strips.  The flexibility of this feeding method has been demonstrated by 

employing the half-loop to excite regular shaped DRAs such as rectangular, 

cylindrical and hemispherical geometries.  Again, the achieved CP bandwidths are 

considerably higher than those reported in the literature for singly-fed DRAs of the 

same shapes and dimensions. 

A further CP bandwidth enhancement has been achieved by incorporating 

a parasitic half-loop inside the driven element. Employing the optimized 

dimensions of the two concentric half-loops have produced two AR minima 

frequency points that are close to each other. Consequently, merging these two 

AR bands leads to a significant enhancement in the overall circular polarization 

bandwidth. The inclusion of a concentric parasitic element has approximately 

doubled the CP bandwidths compared to those obtained using only the driven 

half-loop for rectangular and cylindrical DRA configurations. 

Tables 7.1-7.3 summarize the achieved CP bandwidths and the 

corresponding resonance frequencies for the studied DRAs configurations. The 
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results from published literature are included in the reference column for 

comparison purposes. From the tables, it is evident that the DRAs fed using 

introduced excitation schemes have produced considerably wider CP bandwidths 

compared to those reported in the literature for identical singly-fed DRAs. 

Furthermore, the bandwidth can be significantly enhanced by placing a parasitic 

element, with appropriate dimensions, inside the driven half-loop or by adding 

another dielectric layer. 

  
Reference 

[1] 
Square 
spiral 

Shifted 
square spiral  

Rectangular 
half-loop  

Rectangular half-
loop with parasitic 

Effective AR 
Bandwidth (%) 2.7 6.6 6.4 6.5 12.71 

Resonance 
Frequency (GHz) 3.55 4.1 2.93 3.5 3.53 

Table 7.1: Effective AR bandwidth and the corresponding resonance frequency for 

various rectangular DRA configurations 

 
Reference 

[2] 
Square 
spiral 

Square 
spiral, multi 

layer 

Rectangular 
half-loop 

Rectangular half-
loop with parasitic, 

multilayer 
Effective AR 
Bandwidth (%) 2.2 3.48 5.63 3.63 7.35 

Resonance 
Frequency (GHz) 6.38 5.89 6.25 5.76 6.74 

Table 7.2: Effective AR bandwidth and the corresponding resonance frequency for 

various cylindrical DRA configurations 

  
Reference 

[3] 
Rectangular 

half-loop 
Rectangular half-
loop, multilayer 

Effective AR 
Bandwidth (%) 4.5 7.61 8.5 

Resonance 
Frequency (GHz) 3.98 5.66 4.09 

Table 7.3: Effective AR bandwidth and the corresponding resonance frequency for 

various hemispherical DRA configurations 
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7.2 Future Work 

This research has demonstrated the ability of the proposed new excitation 

schemes to obtain wideband circular polarizations in conjunction with sufficient 

impedance matching bandwidths for each of the considered DRA configurations.  

For the future work, the following topics are worthy of further investigations; 

Due to limited cost and time constraint, each of the excitation schemes 

have been employed for the excitation of regular shaped DRAs. Thus, it would be 

interesting to see how the feeding methods fare in comparison with other 

published excitation schemes when used to excite irregular shaped DRAs such as 

staircase and trapezoidal geometries. Furthermore, it is possible to investigate the 

design of CP DRA using a square spiral slot excitation. From extensive review of 

earlier studies, this DRA configuration has never been done in contrast to the 

open loop slot excitation schemes.  Although this requires additional development 

of the existing complex MoM code, there is a very good potential of such feeding 

method to generate a wideband CP.  

The proposed excitation methods can also be used to feed DRAs with 

higher permittivities to investigate the possibility of achieving a CP radiation from a 

reduced size DRA. It is expected that such DRAs will offer narrower CP 

bandwidths in conjunction with a lower profile. Additionally, a further measure to 

reduce the CP DRA profile is to employ an artificial magnetic conducting (AMC) 

surface in conjunction with the proposed excitation approaches.  

Additionally, a better representation of curved geometries can be obtained 

using higher order RWG and SWG basis functions. The application of a more 

refined triangle and tetrahedron elements, as opposed to the flat elements used in 
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the first order basis function, leads to higher accuracy and less memory 

requirements for the solution of problem in 3-D. 
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APPENDIX A 
1. Code execution flowchart 
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2. Code segments of core modules 

2.1 Calculation of Surface Integrals 

 

i) Calculation using analytical formula 

Variables required for calculation of self integrals using analytical formula are 

shown in eq. (2-100) to (2-111) in chapter 2. For ease of understanding, the code 

is shown for each equation separately. 

_
ˆ

ii

ii
il 
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          (2-100) 
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  ll ii
ˆ  


          (2-101) 

 

 

  iii uP ˆ0   


           where iii nlu ˆˆˆ                 (2-102) 

 

 

 

   220   iiii lPP 


        (2-103) 

 

 

 



 
 
Appendix A                                                                                                                      204 
 

 
0

0
ˆ

ˆ
i

ii
i P

ll
P

 





          (2-104) 

 

 

  2200 dPR ii            (2-105) 

 

 

  22 dPR ii  

                   (2-106) 

 

 

  ii rrnd ˆ                    (2-107) 
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The calculations of eq. (2-108) and (2-109) are not required since the eq. have 

already been determined in terms of 
i
 , 

i
  and  . Finally, using the variables 

derived previously, the self-integrals can be calculated by eq. (2-110) and (2-111) 
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ii) Calculation using Gaussian quadrature 

The Gaussian quadrature formula for surface integrals is shown in Table 2.1. As 

calculation of surface integrals does not significantly affect the computational time 

compared to volume integrals, maximum number of source points (i.e. np=7), has 

been used to maintain computational accuracy. The following code shows the 

calculation of surface integrals, based on the formula given in the table. 
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2.2 Calculation of Volume Integrals 

 

i) Calculation using analytical formula 

Variables required for calculation of self integrals (for volume integration) using 

analytical formula are shown in eq. (2-100) to (2-109) and (2-112) to (2113). The 

codes to calculate variables in eq. (2-100) to (2-109) have been shown previously. 
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ii) Calculation using Gaussian quadrature 

The Gaussian quadrature formula for volume integrals is shown in Table 

2.2. In order to ensure efficient calculation of the integrals, the formula is applied 

based on the separation distance between the source point, r ,and the 

observation point, r , i.e. rrR 


. In order to maintain the required accuracy, 

more number of points, np, is needed for smaller R. In this case, the number of 

points, np used in the calculation is 11. For the integrals calculation involving 

points separated by larger R, it is more efficient to use a smaller np since the 

solution yields results just as accurate as that obtained using a higher np. The np 

used for such cases are 1 and 5. 

 

 If R > 0.2 λ, then np=1 is used 
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 If 0.1 λ <R < 0.2 λ, then np=5 is used 

 

 

 If R < 0.1 λ, then np=11 is used 
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3. Instructions on running the programs   

Mesh antenna structure using GiD 

 

Run a FORTRAN program called ‘RWG SWG.for’ to obtain  

the antenna’s input impedance and current distribution 

 

Run a FORTRAN program called ‘Far Field.for’ to obtain  

the far-field antenna parameters  

 

i) Mesh antenna structure using GiD 

o Mesh dielectric volume into small tetrahedrons and surface metal into small 

triangles. 

o Collect information about the mesh. Record the data describing  

 nodes and coordinates as ‘I – <DRA shape> <Number of tetrahedrons> 

Nodes.dat’ 

Node number  Coordinate in x  Coordinate in y  Coordinate in z 
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 metal triangles and nodes as ‘I – <DRA shape> <Number of 

tetrahedrons> Metal.dat’ 

Triangle Number                 Node Numbers 

 

 boundary triangles and nodes as ‘I – <DRA shape> <Number of 

tetrahedrons> Boundary.dat’ 

Triangle Number                 Node Numbers 
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 tetrahedrons and nodes as ‘I – <DRA shape> <Number of tetrahedrons> 

Dielectric.dat’ 

Tetrahedron Number                 Node Numbers 

 

ii) Run a Fortran program called ‘RWG SWG.for’ 

o Ensure the mesh input files are located in the same folder as this Fortran 

program. 

o Run the program. Enter inputs as requested by the program such as the 

operating frequency range, permittivity of dielectric and antenna mode of 

operation. 

o The important outputs from this program are the antenna’s 

 Input impedance, saved as ‘O – Zin.dat’ 

       Real part of Zin      Imaginary part of Zin 
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 Current Distribution, saved as ‘O – Current.dat’ 

Real part of current  Imaginary part of current 

 

 

 

 

 

 

 

ii) Run a Fortran program called ‘Far field.for’ 

o Ensure the output files from the previous program, i.e. ‘O – Zin.dat’ and ‘O – 

Current.dat’ are located in the same folder as this Fortran program. 

o Run the program. Enter inputs as requested by the program such as the 

operating frequency, permittivity of dielectric and far-field plane orientation. 

o The outputs from this program are the far-field parameters of  

 Eθ and EΦ, saved as ‘O – Eth(polar).dat’ and ‘O – Eph(polar).dat’ 

 ER and EL, saved as ‘O – ER(polar).dat’ and ‘O – EL(polar).dat’ 

 Axial Ratio, saved as ‘O – AR.dat’ 

 Gain, saved as ‘O – Gain.dat’ 

 

 

Current 
associated 
with each 
basis function 




