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ABSTRACT 
Fatigue damage is a cumulative process. The fatigue design 

of offshore structures requires long term wave data to calculate 

fatigue damage. However, the climate change may affect the 

long-term wave statistics and consequently affect the cumulative 

fatigue damage. This paper aims to project the trend of annual 

fatigue damage of offshore floating structures and to detect the 

climate change impact on the future fatigue damage by coupling 

a conventional fatigue design method with climate and wave 

models. Firstly, climate scenarios are selected to project the 

global radiative forcing level over decadal or century time 

scales. Secondly, climate models are used to simulate global or 

regional atmosphere circulations and to obtain the wind field 

data. Thirdly, wave conditions are simulated by coupling wind 

driven wave models to climate models. Fourthly, stress analysis 

and fatigue assessments are conducted to project the annual 

fatigue damage. At last, control simulations are carried out in 

order to identify the range of natural variability and to detect the 

human-induced change. A case study is presented for a Floating 

Production Storage and Offloading (FPSO) unit operating in the 

Sable field offshore South Africa. The results indicate that, in the 

Sable field, the significant wave height is considerably 

influenced by the human-induced climate change. However, 

when detecting its effect on the annual fatigue damage, this 

change induced by human activities is still partially masked by 

the dominant natural variability. In addition, both the significant 

wave height and the annual fatigue damage increase over 

century time-scales. 

Keywords: climate models, wave models, natural climate 

change, human-induced climate change, fatigue damage 

1. INTRODUCTION 

Fatigue damage is a long-term cumulative process. The 

lifecycle of floating structures consists of design, manufacture, 

operation (service) and demolition stages. The whole lifecycle 

may last more than 30 years. As the climate change is also a 

long-term process, it is necessary to consider the climate change 

impact on waves and to estimate its effect on fatigue damage in 

the design stage. However, the conventional spectral approach of 

fatigue assessment for offshore floating structures is based on 

scatter diagrams [1]. The sea states in these scatter diagrams 

were basically measured in the past, and are assumed to be 

representative of the sea states in the future, ignoring the climate 

change impact.  

The climate change impact on wave conditions has been 

widely investigated [2–4]. Most studies concentrated on the 

annual or seasonal variability of sea states, sea level rising and 

extreme sea states. However, the fatigue assessment requires 

wave scatter diagrams including the probability of occurrence of 

all short-term sea states [5], and the coexistence of wind waves 

and swells should also be considered[6]. In addition, the climate 

trend in the past is not necessarily representative of the climate 

trend in the future. In fact, the climate change rate varies year by 

year. The trajectory of climate change is very important to 

fatigue damage calculations, because all the short-term sea states 

contribute to the cumulative fatigue damage. 

Climate change occurs as a result of both external forcing 

changes and internal variability within the climate system. The 

external forcing refers to the solar radiative forcing which is 

affected by the emission of greenhouse gases (GHGs). With the 
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emission of GHGs, human activities are regarded with high 

confidence as the primary reason of climate change during the 

recent decades. Internal variability is caused by the different 

response time of climate components (atmosphere, ocean, land 

and sea ice) to external forcing [7]. Even without any change of 

external forcing, the internal variability may also occur naturally 

due to the non-linear interactions between the climate 

components. Therefore, externally induced climate change in 

this paper is also called human-induced climate change, and the 

internally induced climate change is called natural variability.  

The modelling technology of the climate and ocean waves 

has been highly developed since last century. In 2008, the fifth 

phase of the Coupled Model Intercomparison Project (CMIP5) 

was proposed with the aim to examine climate “predictability” 

and to explore the ability of models to predict climate on decadal 

time-scales [8]. Twenty climate research groups around the 

world got involved in this project with different climate models 

and climate scenarios. In addition, wind-driven wave models are 

progressing into the third generation. These models, driven by 

wind forces, can numerically simulate wind-wave interactions, 

nonlinear wave-wave interactions, and energy dissipation [9]. 

The most widely used wind-driven wave models are Ocean Wave 

Model (WAM) [10], Simulating WAves Nearshore model 

(SWAN) [11], and WaveWatch-III model [12]. The application 

of these models has been demonstrated on various research fields 

[5,13].  

The methodology presented in this study aims to project the 

trend of annual fatigue damage and to detect the future fatigue 

damage of FPSOs. In the following sections, the methodology is 

introduced at first. A case study in the Sable oil field is followed 

to demonstrate the methodology. The Sable field is located 

offshore near South Africa, and the unique geographical location 

of the Sable field is vulnerable to waves from both the Atlantic 

and Indian Ocean. At last, the control simulations are conducted 

to identify the range of natural variability and detect the human 

induced climate change. 

2. METHODS 

The methodology has six steps, as outlined in Fig. 1. Firstly, 

the solar radiative forcing trajectories in the future are projected 

by the climate scenarios. Secondly, climate models are used to 

simulate global atmosphere and ocean circulations. Thirdly, 

wave conditions are numerically simulated by wind-driven wave 

models. Then, the stress analysis and fatigue damage in decadal 

time-scales are calculated with the projected wave scatter 

diagrams. Finally, the climate change trend is detected by control 

simulations.  

 
FIGURE 1: Outline of fatigue assessment method with 
allowance for climate change [5] 

2.1 Climate models 

Basically, most state-of-the-art climate models are 

constructed by the same fundamental physical laws (such as 

conservation of mass, energy and momentum) with many 

specific developments [7]. These models were designed for 

different purposes and may differ in parametrizations and 

numerical formulations. A climate model usually consists of four 

components: atmosphere, land surface, ocean and sea ice 

component models [1].  

An atmosphere model, also called atmospheric general 

circulation model (AGCM), is numerically designed to simulate 

a wide range of key atmospheric processes, such as the 

exchanges of momentum, heat, water, and other tracers [15]. 

These processes are described by integrating a variety of 

dynamical, chemical, or even biological equations derived from 

the fundamental physical laws. There are various variables in the 

equations, including temperature, pressure and surface wind 

speed [16]. In atmosphere models, atmospheric momentum, heat 

and water are transferred both horizontally and vertically. Hence, 

all the atmosphere models are designed to have an adjustable 

horizontal resolution and multiple vertical layers. Most 

atmosphere models and ocean models are coupled to form an 

atmosphere-ocean coupled general circulation model 

(AOGCM), and the interactions between them are simulated. In 

this study, AOGCMs are the basis for a full climate model, 

because focus is given on the simulations of sea states. 

The original driving force of climate system is solar 

radiative forcing. Due to the greenhouse effect, the emission of 

GHGs may affect the global distribution of radiative forcing and 

eventually cause climate change [16]. With the increase of GHGs 

concentration, the atmospheric layers absorb more longwave 

radiation from the ground surface and re-emit it back to the earth, 

which breaks the energy balance of the climate system [17].  

Although GHGs are not the primary components of the 

atmosphere, they are very important for the climate change. In 

addition, their concentrations are highly affected by human 

activities, such as population growth, immigration, Gross 

Domestic Product (GDP), policy making, and energy 
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consumption and composition [18]. In order to evaluate the 

climate change in the future, it is required to project all these 

factors and estimate their impact on the radiative forcing. As a 

result, plenty of different climate scenarios were presented, and 

it was hardly possible to compare one study to another. 

Therefore, in 2007, four climate scenarios named Representative 

Concentration Pathways (RCPs) were adopted in the 

Intergovernmental Panel on Climate Change (IPCC). RCPs 

project the emission of GHGs and the radiative forcing trajectory 

until the year 2100. Four RCPs are described and shown in 

Table 1 and Fig. 2, respectively [18]. When adopting RCPs, it is 

unnecessary to make specific assumptions related to population 

growth, economic development or other human related factors. 

It is possible that different human activities and environmental 

policies lead to the same radiative forcing level. RCPs enable 

researchers to neglect the specific human behaviors and to study 

the climate change impact directly. They provide information 

with the spatial resolution of approximately 60 kilometers and 

the temporal resolution of one year. The temporal resolution can 

be modified to monthly, daily or even 6-hourly by considering 

the seasonal cycle and the historic radiative data. 

 

Table 1 The RCP descriptions 

Name Description 

RCP8.5 Rising radiative forcing pathway leading to 8.5 

W/m2 in 2100. 

RCP6 Stabilization without overshoot pathway to 6 

W/m2 at stabilization after 2100 

RCP4.5 Stabilization without overshoot pathway to 4.5 

W/m2 at stabilization after 2100 

RCP2.6 Peak in radiative forcing at ~ 3 W/m2 before 

2100 and decline 

 
FIGURE 2: Outline of fatigue assessment method with 
allowance for climate change 

In the CMIP5 project, the driving force of all the climate 

simulations is represented by the RCP radiative forcing 

trajectories. Therefore, the simulations by different climate 

models can be compared in order to evaluate the simulating 

ability of each climate model. Which RCP and climate model 

should be selected depends on the researchers’ expectation of the 

future climate condition. All the simulation results are available 

online (http://cmip-pcmdi.llnl.gov/cmip5). 

Theoretically, most climate change effects on the global 

atmosphere system can be simulated by climate models under 

the corresponding radiative forcing level. For example, the effect 

of climate change on the future surface wind fields can be 

simulated by projecting the radiative forcing trajectory instead 

of projecting wind fields directly. In addition, the radiative 

forcing level has a closer connection with human activities, and 

it is much easier to project the emission of GHGs rather than 

wind and waves in decadal time-scales. RCPs are not the real 

prediction of radiative forcing. Each RCP only stands for one 

expectation of the global radiative forcing trajectory and GHGs 

concentrations in the future. The climate projections are different 

from weather forecast, because weather forecast can be quickly 

tested. In contrast, there are no precise past analogues for the 

climate projections over time scales of many decades. The 

projected simulations of the future climate are the expected 

conditions corresponding to each RCP [7]. 

2.2 Wind-driven wave models 

Wind-driven wave models are required to simulate ocean 

waves for fatigue assessment, because ocean waves are 

considered as the main source of fatigue damage for ships and 

offshore structures. The driving force of wave models is the 

surface wind field. Therefore, by coupling wave models to 

climate models, the future ocean waves are projected indirectly. 

Wind-driven wave models are constructed based on energy 

or action conservations. They are designed to explicitly simulate 

the physical process of wave growth, wave propagation and 

wave dissipation on a large or even global scale. At a given sea 

location, there are two main types of ocean surface waves: wind 

waves and swells. Wind waves are generated by local winds at a 

considered location. Wind waves which have traveled to the 

considered location from remote locations are swells. In the 

wave models, both wind waves and swells are simulated and well 

partitioned for fatigue analysis. The sea state at each spatial grid 

point includes several wave systems (wind waves and swells). A 

wave spectral partitioning methodology with automated swell 

tracking and storm source identification capabilities is used in 

WaveWatch-III [19]. Each partitioned wave system is 

respectively represented by significant wave height, zero-

crossing period and mean wave direction. More information on 

wind-driven wave models and their application to fatigue 

assessment can be found in Zou and Kaminski (2016) [5]. 

2.3 Control simulations 

Climate change is a combination of the natural variability 

and the human-induced climate change. Natural variability has a 

high degree of randomness, while the effect of human activities 

on the climate trend is more deterministic. It is a challenge to 

separate human-induced climate change from observed or 

projected climate change. In other words, it is challenging to 

evaluate to what extent climate change is attributed to human 

activities. 
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In climate models, natural variability is represented by 

simulating the nonlinear interactions and circulations of climate 

components under a certain radiative forcing level. For short 

term simulations, the initial conditions are also important for the 

randomness, because any small disturbance in the initial 

conditions may result in differences due to the nonlinear 

behaviors of climate model. With the increase of simulations 

period, the impact of initial conditions is becoming less 

pronounced. Therefore, a long term (decadal or century) control 

simulation with the controlled radiative forcing level is used to 

identify the randomness of natural variability. In control 

simulations, the radiative forcing is constant and equal to the 

mean forcing level of a preindustrial year (e.g., 1850). A long-

term simulation is conducted under this constant radiative 

forcing by climate and wave models. As control simulations 

produce different responses of the climate system to the constant 

radiative forcing, the simulation time only represents the model 

time, not the real calendar years. The constant radiative forcing 

ensures that there is no human-induced climate change. If the 

simulations time is long enough, the range of natural variability 

can be identified. 

In order to detect the human-induced climate change, the 

projected simulations under projected radiative forcing 

trajectories are compared with the control simulations. The result 

of projected simulations includes both human-induced climate 

change and natural variability. Once the projected climate 

trajectory exceeds the upper or lower limit of natural variability, 

the human-induced climate change is detected. 

3. CASE STUDY 

The case study of this methodology was conducted for the 

Glas Dowr FPSO at the Sable oil field, offshore South Africa 

(35.21°S, 21.32°E). The main characteristics of the FPSO are 

presented in Table 2. The sea states of 2006-2020 and 2051-2060 

were projected, and the annual fatigue damages were calculated 

based on the procedures shown in Fig. 1. 

Table 2 Main characteristics of the Glas Dowr FPSO  

Displacement 121,400  

metric tons 

Depth 21.2 m 

Length 232 m Midship Draft 12.99 m 

Breadth 42 m Water Depth 103 m 

 

3.1 Climate change scenarios and wind field 
simulation 

In order to exemplify the effect of climate change, the 

climate scenario is defined as RCP8.5 which is characterized by 

increasing GHGs and radiative forcing level. According to 

RCP8.5, there are ten climate models available from CMIP5. 

Among them, ACCESS1.0, ACCESS1.3, CMCC-CM and 

MRI-CGCM3 are preliminarily selected, because they have finer 

grid resolutions, as listed in Table 3. 

Table 3 The grid resolutions of climate models 

Model Name Atmospheric Grid Size 

Latitude Longitude 

ACCESS1.0 1.25° 1.875° 

ACCESS1.3 1.25° 1.875° 

CMCC-CM 0.75° 0.75° 

MRI-CGCM3 1.12° 1.125° 

The wind data simulated by these climate models were 

obtained from the CMIP5 database. The 10 m height annual 

wind speed from 2006 to 2015 was compared with ERA-interim 

dataset. In this paper, ERA-interim data are considered as the 

“true” data due to the lack of measured wind and wave data in 

the Sable field. ERA-Interim project is a global atmospheric 

reanalysis project covering the period from 1979 to the 

present [21]. This project can provide plenty of atmospheric data 

including 10 m height wind data with 1.0°×1.0° 

latitude/longitude grid and 6-hourly interval. It is using the wave 

model WAM to simulate the global waves with the same 

resolution [9]. 

To find the most suitable climate model in wind 

simulations, the averaged annual wind speed (the averaged value 

of annual wind speed) from all the climate models was compared 

with the ERA-interim dataset as shown in Table 4 and Fig. 3. 

The averaged wind speed and standard deviation (𝑆𝐷) of these 

four climate models are all very close to ERA-interim. The 

maximum difference of wind velocity is 0.79 m/s for 

MRI-CGCM3, and the minimum difference is 0.47 m/s for 

ACCESS1.3. Compared with ERA-interim, each climate model 

tends to underestimate or overestimate continuously. CMCC-

CM is the only climate model which overestimated the wind 

speed for the decade. In contrast, the annual wind speeds of the 

other three models are always below ERA-interim. This result is 

consistent with the comparison of the cumulative probability 

distributions (Fig. 4). In addition, the wind speed distributions 

from ERA-interim and the climate models are compared by the 

quantile-quantile plot (Q-Q plot) (Fig. 5). The wind speed 

distributions of ACCESS1.0 and CMCC-CM are linearly related 

to the distribution of ERA-interim, because the points in the Q-

Q plot are falling in a straight reference line (Fig. 5a and Fig. 5d). 

Similarly, most of the points in Fig. 5b and Fig. 5c also fall in a 

straight line, but they start to deviate from the straight line at high 

values. It indicates that the wind speed distributions of 

ACCESS1.3 and MRI-CGCM3 have a heavy or light right tail. 

In addition, the reference line (red) in Fig. 5d is slightly steeper 

than the 45-degree straight line (black). Therefore, the CMCC-

CM distribution is more dispersed than the distribution of ERA-

interim. Conversely, the distributions of the other climate models 

are less dispersed than ERA-interim. As mentioned above, all 

these climate models were designed for different spatial regions 

or research purposes. In this case study, wind data from CMCC-

CM are selected to drive the following wave simulations, 

because CMCC-CM has the finest grid resolution. 

Table 4 The comparison of averaged annual wind 
speed from 2006 to 2015 

 Wind velocity   

[m/s] 

 𝑆𝐷 

[m/s] 
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ERA-Interim 7.10 0.25 

ACCESS1.0 6.33 0.23 

ACCESS1.3 6.63 0.21 

CMCC-CM 7.88 0.25 

MRI-CGCM3 6.31 0.28 

 
FIGURE 3: The comparison of annual wind speed from 
2006 to 2015 

 

Table 5 The modelling details 

Climate scenario RCP8.5 

Climate model CMCC-CM 

Wave model WaveWatch-III 

Spatial resolution 0.75°×0.75° 

Global time step 3600 seconds 

Source term time step 300 seconds 

Topography ETOPO1 

Model output 6-hourly wave data 

 
FIGURE 4: The cumulative probability of 6-hourly wind 
speed 

 
FIGURE 5: The Q-Q plot of wind speed data from ERA-
interim and climate models 

3.2 Wave simulation 

WaveWatch-III was used to simulate ocean surface waves 

in this case study. WaveWatch-III is the third generation wave 

model developed at NOAA/NCEP [12]. A large scale or even 

global wave simulation is required to simulate all the waves in 

the Sable field, because the Sable field is located between the 

Atlantic and Indian Ocean. Global simulations can ensure that 

all the swells generated in remote sea areas could propagate into 

the Sable field. The output of the wave model is 6-hourly wave 

spectra defined for 24 directions (i.e. every 15°) and 25 

frequencies ranging from 0.042 Hz to 0.414 Hz. The spatial 

resolution of grids in the model is 0.75° × 0.75° Latitude/
Longitude. The wave condition at each spatial grid point was 

partitioned into two wave systems (one wind wave and one 

swell). More details of modelling are listed in Table 5. 

The FPSO is a turret moored vessel. Therefore, in order to 

receive proper structural response, the vessel heading should be 

calculated based on all the environmental loadings, such as wind, 

wave and current. In this case study, only wave loading was 

considered. The vessel heading was calculated in two steps. 

First, each wave system was represented by a vector. The mean 

wave direction 𝜃𝑚  of each vector is defined as the energy 

weighted mean direction over all frequencies [22]: 

  𝜃𝑚 = atan (
𝑏

𝑎
)   (1) 

𝑎 = ∫ ∫ cos(𝜃) 𝐹(𝜎, 𝜃)𝑑𝜎𝑑𝜃
∞

0

2𝜋

0
 

 (2) 

𝑏 = ∫ ∫ sin(𝜃) 𝐹(𝜎, 𝜃)𝑑𝜎𝑑𝜃
∞

0

2𝜋

0
 

 (3) 
where 𝐹(𝝈, 𝜽) is the wave spectral density. The length of each 

vector was proportional to the energy contained in each wave 

system. In the second step, the resultant vector was calculated as 

the geometrical sum of all wave system vectors. The vessel 

heading is just opposite to the direction of the resultant vector. 

Once the vessel heading is known, the relative wave directions 

α, β, and γ can be calculated. 
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The sea states from 2006 to 2015 in the Sable field were 

simulated by WaveWatch-III. The results were compared with 

ERA-interim wave data as shown in Fig. 6. Table 6 lists the 

averaged significant wave height (𝐻𝑠), standard deviation (𝑆𝐷) 

and coefficient of variation (CV). The averaged significant wave 

height of CMCC-CM is 4% higher than the wave height of ERA-

interim. The slight overestimate of wave height is consistent with 

the overestimate of wind speed by CMCC-CM. 

 
FIGURE 6: The comparison of annual significant wave 
height from 2006 to 2015 

Table 6 Annual significant wave heights from 2006 to 
2015 

 𝐻𝑠 [m] 𝑆𝐷 [m] CV 

CMCC-CM 2.67 0.09 0.03 

ERA-interim 2.56 0.10 0.04 

The wave conditions in the Sable field of 2011-2020 

(present decade) and 2051-2060 (future decade) were projected 

with RCP8.5 to evaluate the impact of climate change. The gap 

between these two periods is 30 years, which is equal to the 

service lifetime of ships. The results are compared in Fig. 7 and 

Table 7. According to Fig. 7a, the averaged significant wave 

heights (𝐻𝑠) of these two periods are very close to each other. 

Fig. 7b and Fig. 7c show that 𝐻𝑠  of future decade is neither 

continuously higher or lower than 𝐻𝑠 of present decade. Hence, 

the averaged significant wave height is neither increasing nor 

decreasing continuously over time in the Sable field. 

 

FIGURE 7: The comparison of annual significant wave 
height in 2011-2020 and 2051-2060. (b) and (c) are the 
zoomed-in plots of (a) 

Table 7: Averaged annual significant wave heights in 
2011-2020 and 2051-2060 

 𝐻𝑠 [m] 𝑆𝐷 [m] CV 

2011-2020 2.82 0.07 0.02 

2051-2060 2.81 0.09 0.03 

In order to evaluate the range of natural variability, a 30-

year control simulation was conducted under the constant 

radiative forcing level of the preindustrial year 1850. In 1850, 

the concentration of global GHGs was not significantly affected 

by human activities, and there was hardly any human-induced 

climate change. As a result, the time series of 43800 

(30 years × 365 days × 4 sea states per day ). continuous 6-

hourly sea states in Sable field was generated by CMCC-CM and 

WaveWatch-III.  

All the 6-hourly sea states in the control simulation were 

subsampled by different sample sizes. Each sample size 

corresponds to one averaging period from 1 year to 10 years. For 

example, when the averaging period is 1 year, the sample size is 

1460 (365 days × 4 sea states per day). The sampling allows 

overlapping, but non-continuous sampling is precluded. In other 

words, all the neighboring sea states in each sample should not 

be interrupted in time, as shown in Fig. 8. Consequently, the 

sample size is (30 − 1) ∗ 365 ∗ 4 + 1 = 42341 . When the 

averaging period is 𝑛  years, the sample size is (30 −
n) years ×  365 days × 4 sea states per day + 1 . For each 

averaging period, the averaged significant wave heights of all 

samples were fitted by the normal distribution 𝑁(𝜇, 𝑆𝐷) with 

mean value 𝜇 and standard deviation 𝑆𝐷. Then, the confidence 

intervals of 0.05 and 0.95 for were defined as the lower and upper 

limits of natural variability for this averaging period. The 

sampling result of each averaging period is listed in Table 8. The 

mean value of significant wave height for all the averaging 

periods is equal to 2.76 m, because all the samples are from the 

same population (the 43800 continuous sea states from the 

control simulations). The samples with 1-year averaging period 

have the highest standard deviation, and the smallest 𝑆𝐷 is for 

the samples with 10-year averaging period. It means that the 

effect of natural variability is most significant for short-term 

averaged significant wave height. With the increase of averaging 

period, the effect of natural variability is becoming smaller. 
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FIGURE 8: The illustration of sampling from the 30-
year control simulation. The sampling result for 1-year 
averaging period is listed to exemplify the sampling 
approach. For the other averaging periods (from 2 
years to 10 years), the results are not listed. The black 
boxes stand for the sampling units in each sample. 
Each sea state is represented in YYYYMMDD-HH 
format. The gap between neighboring sampling-units 
is 6 hours, as long as the length of one sea state. There 
are 42341 sampling units for 1-year averaging period, 
which is also the number of sample size. 

Table 8 The sampling result of each averaging period 

Averaging period 
[year] 

µ [m] 𝑆𝐷 [m] 

1 2.76 0.097 
2 2.76 0.061 
3 2.76 0.045 
4 2.76 0.034 
5 2.76 0.027 
6 2.76 0.022 
7 2.76 0.022 
8 2.76 0.021 
9 2.76 0.019 
10 2.76 0.017 

In order to detect climate trend, the range of natural 

variability was compared with the projected significant wave 

height which was calculated based on simulations with RCP8.5 

for the present decade 2011-2020 and the future decade 2051-

2060 (Fig. 9). For the present decade, the averaged significant 

wave height 𝐻𝑠𝑎(𝑡) in each averaging period 𝑡 = {1; 2; … ; 10} 

was calculated as follows: 

𝐻𝑠𝑎(1) = 𝐻𝑠𝑎(2011)    (4) 

𝐻𝑠𝑎(2) = 𝐻𝑠𝑎(2011 − 2012)   (5) 

𝐻𝑠𝑎(3) = 𝐻𝑠𝑎(2011 − 2013)   (6) 

⋮ 

𝐻𝑠𝑎(10) = 𝐻𝑠𝑎(2011 − 2020)   (7) 

where 𝐻𝑠𝑎(𝑝)  is the averaged significant wave height within 

the time period 𝑝 =  {2011;  2011 − 2012;  2011 −
2013; ⋯ ; 2011 − 2020} . For the future decade, the averaged 

significant wave height 𝐻𝑠𝑎(𝑡) was calculated in the same way 

as in Eqs. (4)-(7).  

It can be seen that when the sampling period is 1 year, the 

sampling data in the control simulations have the highest 

dispersion due to the natural variability. If the significant wave 

height of the 6-hourly sea states is a variable 𝐻𝑠~𝑁(𝜇𝑠, 𝜎𝑠). All 

the sea states are considered unrelated. For each averaging 

period, the number of sampled sea states is 𝑁 , and their 

averaged significant wave height is defined as 𝐻𝑠~𝑁(𝜇̅𝑠, 𝜎𝑠). 

𝜇𝑠  is very close to 𝜇̅𝑠 , because they are from the same 

population. The standard deviation of 𝐻̅𝑠  is the standard 

deviation of 𝐻𝑠  for each individual sea state divided by the 

square root of sea state number N: 

𝜎̅𝑠 =
𝜎𝑠

√𝑁
     (8) 

𝑁 is increasing with the length of averaging period. As a result, 

with the increase of averaging period, the dispersion of 

significant wave height is getting smaller and the range of natural 

variability is becoming narrower. 

 

 
FIGURE 9: The natural variability of significant wave 
height and the detection of human-induced climate 
change. The shadowed area represents the range of 
natural variability calculated by the control simulation. 
The solid lines are the averaged significant wave 
heights for 2011-2020 (blue line) and for 2051-2060 (red 
line). They are calculated by projected simulations 
with RCP8.5. The horizontal straight dotted line is the 
averaged significant wave height in the control 
simulations for each averaging period (Table 8). 

The human-induced climate change has been clearly 

detected, as the averaged significant wave heights in the present 

decade and the future decade (respectively, blue and red lines in 

Fig. 9 exceed the upper limit of natural variability. In addition, 

the averaged significant wave heights in these two periods are all 

above the straight dotted line. It means that human-induced 

climate change results in higher wave height in the Sable field 

over century time-scales. This conclusion contradicts earlier 

conclusion that averaged significant wave heights 𝐻𝑠  in both 

periods 2011-2020 and 2061-2060 are close to each other (see 

Fig 9). A possible explanation is that the increased wave height 

in 2061-2060 induced by human activities is masked by the 
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decreased wave height caused by the natural variability. 

Evidently, the selected periods 2011-2020 and 2051-2060 are too 

close to each other. The time gap is 30 years and is too short for 

exposing statistically significant trend of wave height change in 

the Sable field. The time gap should be probably at least 100 

years for a statistically significant change of wave height. When 

the averaging period is 1 year, the averaged wave height of the 

present decade 2011-2020 is higher than the value of the future 

decade 2051-2060, because the significant wave height in 2051 

is higher than in 2011. With the increase of averaging period, 

these two projections gradually converge, which is consistent 

with Table 8. 

3.3 Fatigue calculations 

Although increasing wave height caused by the human-

induced climate change has been detected, it does not mean that 

the same trend is valid for fatigue damage, because wave periods 

and wave directions also affect fatigue damage. The next step is 

to analyze stress range and calculate fatigue damage for FPSO-

Glas Dowr based on a hydro-structural linear model. Simple 

beam models were used to calculate the structural response. 

There are four loading mechanisms in this simple beam model: 

overall vertical and horizontal bending of the vessel, and local 

bending of secondary stiffeners caused by external action of 

waves and internal tank pressure fluctuations induced by varying 

motions of the FPSO. More information about stress analysis can 

be found in [5]. 

The fatigue damage at the main deck (Table 9) was 

calculated by Bluefat which is a component program of the 

advisory monitoring system Monitas [20,23]. By using the wave 

partitioning technique [19], the projected scatter diagrams of 

wave systems (wind wave and swells) for each year were 

constructed by wave simulations. Then, Bluefat calculated the 

wave-induced fatigue damage with the conventional spectral 

fatigue calculation method corrected for the intermittent wetting 

effect. The one-slope S-N curve with m=3 and log(C) =5.75 

(stress in MPa) was used to represent the fatigue resistance. 

 

Table 9 The location for fatigue calculations 

Position [m] 
Description 

x y z 

112.85 18.3 21.31 
On the main deck at frame 66½  

above decks longitudinal #22 [24] 

No statistically significant trend of annual fatigue damage 

in both projected periods was detected as shown in Fig. 10. The 

averaged fatigue damages (the averaged value of annual fatigue 

damage within a certain period) in present decade 2011-2020 and 

future decade 2051-2060 are very close to each other, as listed in 

Table 10. The coefficient of variation for the annual fatigue 

damage (0.15 and 0.16) is much higher than the coefficient of 

variation for wave height (0.02 and 0.03), because the fatigue 

damage is proportional to the third power of structural response 

when the inverse slope of S-N curves is equal to 3. In the hydro-

structural linear model, structural response is proportional to 

significant wave height, and the relation between unit wave 

height and structural response is represented by the linear 

transfer function. This result indicates that the annual fatigue 

damage has more variability than the annual significant wave 

height.  

In order to validate the projected simulations, fatigue 

damage based on buoy-measurement was calculated for 

comparison. The sea state data in the Sable field were measured 

by buoys from July 2007 to June 2008 [25]. The fatigue damage 

in these 12 months was calculated as a reference value 

(Table 10). It is lower than the averaged fatigue damage in 

present decade and future decade. However, due to the existence 

of random natural variability, it does not mean that the 

methodology overestimates the annual fatigue damage. In fact, 

the projection of sea states for a particular year should not 

necessarily match buoy measurements due to both natural 

variability and the uncertainties in numerical models. The 

methodology is more useful to evaluate the trend of sea states 

and fatigue damage in a long-term period. 

 
FIGURE 10: Projected annual fatigue damages in 2011-
2020 and 2051-2060. The dotted straight line is the 
reference value of annual fatigue damage calculated 
based on the buoy-measurements in the period 
07/2007-06/2008. 

Table 10 Annual fatigue damages in 2011-2020 and 
2051-2060 

Period Averaged fatigue 

damage [× 10−3] 

𝑆𝐷  

[× 10−3] 

CV 

2011-2020 8.06 1.18 0.15 

2051-2060 

Buoy 07/2007-

06/2008 

7.93 

6.20 

1.30 

- 

0.16 

- 

The effect of human-induced climate change on fatigue 

damage was also evaluated in the same way as its effect on wave 

height. Based on the result of the control simulation, the 30-year 

fatigue damage was calculated under the constant solar radiative 

level of 1850. The annual fatigue damages were subsampled 

with different averaging periods and fitted by normal 

distributions. The confidence intervals of 0.05 and 0.95 were 

defined as the lower and upper limits of natural variability for 
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each averaging period. The range of natural variability was 

compared with the averaged fatigue damages of 2011-2020 and 

2051-2060 in Fig. 11. The averaged fatigue damages were 

calculated in the similar way to the averaged significant wave 

heights as listed in Eqs. (4)-(7). 

 
FIGURE 11: The natural variability of averaged annual 
fatigue damage and the detection of human-induced 
climate change. The shadowed area represents the 
range of natural variability calculated by the control 
simulation. The solid lines are the averaged fatigue 
damages from 2011 to 2020 (blue line) and from 2051 
to 2060 (red line). The horizontal straight dotted line is 
the averaged annual fatigue damage in the control 
simulations for each averaging period. 

The annual fatigue damage in the Sable field is increased 

over century time-scales, because the projected fatigue damages 

are basically above the horizontal straight dotted line except for 

the annual fatigue damage in 2051 (the first point of red line in 

Fig. 11). This upward trend of fatigue damage is mainly attribute 

to the human-induced climate change, as the impact of human 

activities is slightly detected by the fatigue damage trajectory of 

the present decade (the blue line). However, the effect of human-

induced climate change on fatigue damage is not as pronounced 

as its effect on wave height. The exceedance of the fatigue 

damages over the upper limit is so small, and the annual fatigue 

damage is not increased significantly in the 30 years between the 

two projected periods. In other words, the upward trend of annual 

fatigue damage is not as significant as the trend of significant 

wave height, because fatigue damage is also affected by other 

factors, such as wave period, wave direction and the distribution 

of wave height. The annual fatigue damage in 2051 is relatively 

small, because the 1-year projected simulation in 2051 has a 

higher randomness and dispersion as explained in Eq. (8). 

Besides, the sea states in 2051 are more subjected to the 

influence of initial conditions, which can induce more 

randomness. 

The effect of wave period change on fatigue damage is 

investigated below. In Fig. 12, the distributions of zero-crossing 

wave period for moderate and extreme sea states (significant 

wave height higher than 2.8 m) in the projected and control 

simulations are compared. The mild sea states with significant 

wave height less than 2.8 m are dismissed due to their limited 

contribution to fatigue damage. The averaged wave period in the 

projected simulations is 10.13 s, longer than the averaged period 

(9.98 s) in the control simulations. The longer wave period in the 

projected simulations indicates the lower frequency of cyclic 

wave loadings, which result in less fatigue damage. In contrast, 

according to the load transfer function of Glas Dowr (Fig. 13), 

the sea states with zero-crossing wave period of 10.13 s could 

induce greater structural responses and more fatigue damage 

than the sea states with 9.98 s wave period. Hence, although 

fatigue damage is very sensitive to wave height, the trend of 

significant wave height cannot fully represent the trend of annual 

fatigue damage. When analyzing the effect of climate change on 

fatigue assessment, the changes of other wave factors should also 

be taken into account. 

 
FIGURE 12: The distribution of zero-crossing wave 
period for moderate and extreme sea states 
(significant wave height higher than 2.8 m)  

 
FIGURE 13: Load transfer function (Response 
amplitude operator) of midship in head seas for Glas 
Dowr 
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FIGURE 14: The comparison of cumulative fatigue 
damage. The Control-Max line is the cumulative 
fatigue damage based on the top 10 of annual fatigue 
damage in the 30-year control simulation. The Control-
Min line is the cumulative fatigue damage based on the 
lowest 10 of annual fatigue damage in the control 
simulation. The Control-Mean black straight line is the 
cumulative fatigue damage based on the average 
annual fatigue damage of the control simulation. 

The comparison of cumulative fatigue damage in Fig. 14 

resulted in a similar conclusion to the comparison of annual 

fatigue damage above. The cumulative fatigue damages of 2011-

2020 and 2051-2060 are both higher than the mean cumulative 

fatigue damage of the 30-year control simulations. In addition, 

they are very close to the maximum cumulative fatigue damage 

of the control simulation. It indicates that there is an increasing 

trend of fatigue damage over more than one century, but the 

upward trend of annual fatigue damage is not so significant due 

to the dominance of random natural variability. 

4. CONCLUSION 

The paper has presented a methodology to project the future 

fatigue damage of floating structures, and to detect the climate 

change impact on the future fatigue damage. The methodology 

has been applied for an FPSO moored in the Sable field, South 

Africa. The sea states and annual fatigue damages in the present 

decade 2011-2020 and the future decade 2051-2060 were 

projected based on RCP8.5, and the range of natural variability 

was estimated by the control simulations. 

The effect of human-induced climate change on the 

significant wave height at the Sable field has been detected, and 

it has been found that the significant wave height considerably 

increases over a century. The effect of human-induced climate 

change on fatigue damage has been also detected. However, it is 

less pronounced, because fatigue damage is, besides wave 

height, also affected by other wave characteristics, such as wave 

periods and wave directionality. When investigating the effect of 

climate change on fatigue damage, the changes of all wave 

characteristics should be taken into account. In addition, it is 

concluded that the effect of natural variability is still dominant 

over human-induced climate change in the Sable field over 

decadal time-scales, and it partially counterbalances the impact 

of human activities on wave height and fatigue damage. 

In general, the human-induced climate change is mixed 

with the natural climate variability. A control simulation allows 

for detection of such a change. Obviously, fatigue lifetime of 

offshore structures is highly dependent on the sea area and the 

structural properties. In this paper only one case has been 

presented in order to illustrate the application of the 

methodology. More cases in the other sea areas are being 

investigated.  
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