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Abstract: 

Fatigue crack growth assessment of 2024-T3 aluminum alloy is carried out on the basis 

of a recently developed peridynamic fatigue model. The governing remaining-life equation of 

the peridynamic fatigue model has been solved by two different approaches i.e. numerical and 

analytical approaches to perform fatigue-crack growth simulations for 2024-T3 aluminum 

specimen with a pre-existing crack. Remaining-life parameters of the numerical and analytical 

solution approaches are determined by calibrating with the experimental crack growth data. 

Fatigue crack growth predictions, and associated material deformation of the specimen under 

various loading conditions are simulated by the two approaches. Predicted results show that 

the numerical approach has shortcomings in accurate predictions of crack growth rates for the 

application of different loading conditions, while the analytical approach can be applied for a 

wide range of loading conditions with good prediction accuracy and stable simulations of the 

material deformation with a growing crack. Furthermore, it is found that the computational 

time of the analytical approach is considerably shorter in comparison with the numerical 

approach. 
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Nomenclature 
 

FEM finite element method 𝑆̂𝑐𝑜𝑟𝑒 dimensionless parameter 

XFEM extended finite element method Smax maximum applied stress-level 

PD peridynamics 𝑅 stress ratio 

𝜌(𝑘) mass density 𝜆 remaining life 

𝑉(𝑗) incremental volume of the 
material point 

N loading cycle 

𝐛(𝑘) external body force density 𝑁1 loading cycle required for crack 
nucleation 

𝐱(𝑘) position vector of material point k 𝐴′ arbitrary value 

 𝐱(𝑗) position vector of material point j 𝐴1, 𝑚1 remaining parameters for crack 
nucleation phase 

𝐮(𝑘) displacement vector at material 
point 𝐱(𝑘) 

𝐴2, 𝑚2 remaining parameters for crack 
propagation phase 

𝐮(𝑗) displacement vector at material 
point 𝐱(𝑗) 

K stress intensity factor 

𝝃(𝑘)(𝑗) initial relative position vector 𝐾𝑚𝑎𝑥 maximum stress intensity factor 

 𝛈(𝑘)(𝑗) relative displacement vector 𝐾𝑚𝑖𝑛 minimum stress intensity factor 

𝛿 horizon size ∆𝐾 stress intensity factor range 

𝒔(𝑘)(𝑗) stretch between the material 
points 𝐱(𝑘) and 𝐱(𝑗) 

𝑑𝑎

𝑑𝑁
 

crack growth rate 

𝐭(𝑘)(𝑗) force density that material point 
𝐱(𝑗) exerts on material point 𝐱(𝑘) 

𝑌 geometrical correction factor 

𝐭(𝑗)(𝑘) force density that material point 
𝐱(𝑘) exerts on material point 𝐱(𝑗) 

∆𝜎 stress range 

𝜑 local damage 𝑎 crack length 

𝜇 history-dependent scalar-valued 
function 

t simulation time 

𝒔𝑐 critical stretch ∆𝑡 incremental time 

𝒔(𝑘)(𝑗)
+  stretch at higher extreme point ADR adaptive dynamic relaxation  

𝒔(𝑘)(𝑗)
−  stretch at lower extreme point LEFM linear elastic fracture mechanics 

𝜀 cyclic bond strain CCT center cracked tension 

𝜀1 largest cyclic bond strain 𝑤 width of specimen 

𝜀𝑐𝑜𝑟𝑒 core cyclic bond strain ∆ spacing between material points 

𝑆𝑐𝑜𝑟𝑒 core strain   
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1. Introduction 

Fatigue is the most common phenomenon of structural failure to have catastrophic effects 

on mechanical systems and structures. In several last decades, researchers have strived to 

understand fatigue damage mechanism that occurs in materials subjected to cyclic loadings. 

The stress and strain life methods [1-6] initially proposed by the researchers, can be defined as 

curve fitting-based methods using nominal and local stress and strain quantities. However, 

those approaches are mainly limited to estimating a number of load cycles allowed for prior to 

material failure rather than providing behavior of fatigue crack nucleation and propagation 

mechanism. The linear elastic fracture mechanics (LEFM) approach was introduced to address 

fatigue crack propagation [7]. It has been widely agreed that the LEFM methods can be applied 

to long cracks under small scale yielding conditions at the crack tip i.e. the Paris regime [7-8]. 

However, the LEFM-based methods lacked a mechanically systematic approach to fully 

address the behavior of fatigue crack growth mechanics in multiple length scales [8-9].     

Finite element (FE) analysis is a powerful numerical method that can be applied to predict 

behavior of complex geometries and structures widely used in engineering applications. Thus, 

FE analysis appears to be usable numerical method for fatigue crack propagation, however its 

applicability is limited due to the singularity of discontinuities such as a crack tip or crack 

surfaces as governing equations include spatial derivatives in its formulation. As a potential 

solution to overcome this problem, special treatment(s) are often adapted. Remeshing method 

[10-14] is a widely used as one of those special treatments for modeling of fatigue crack 

propagation to simulate irregular crack growth paths by regenerating meshes at every time step 

of the numerical solution. However, this method requires mapping all existing nodal points to 

other points for the mesh regeneration, which could lead to inaccurate meshing conditions. 

Meshless methods [15-19] can efficiently handle discontinuities and simulate material 

deformation and crack growth behavior for complex 3D configurations. However, as for 
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boundary condition problems defined by partial differential equation, solutions often do not 

stably converge and the achieved accuracy is often found to be poor. The extended finite 

element method (XFEM) was introduced by Belytschko and Black [20] and Moes and his 

collaborators [21] to deal with cracks without modifying mesh conditions. Elements in 

discontinuities are reformulated by adding the enrichment function to approximate space, 

greatly improving the speed and accuracy of convergence. However, this method also requires 

additional criteria to include displacement enrichment function in the element. 

Very recently, Silling et al. [22,23] introduced peridynamic (PD) theory to address 

discontinuities without any additional criteria for crack growth modeling. Since the PD 

governing equation does not include any spatial derivatives in its formulation, material 

deformation can be simulated including the fatigue damage by the solution of the PD governing 

equation. Therefore, the PD theory can be potentially applied to address any type of 

discontinuities e.g. a crack tip or crack surfaces. A number of PD studies have been recently 

introduced by researchers in the applications of mechanical failures. Askari and Xu and their 

coworkers [24,25] implemented a 3D EMU code to model and analyze the structural failure of 

aerospace composites. The authors performed failure analysis of composite panels due to the 

low-speed impact by using the PD code. Oterkus and Madenci [26] showed that the damage 

growth pattern can be predicted for pre-existing cracks by applying the PD theory to fracture 

analysis of composite materials. Diyaroglu et al. [27] reported applicability of the PD theory 

to predict the failure behavior and nonlinear transient deformation of composite structures 

under shock and blast type explosion induced loadings. Furthermore, Mitchell [28] proposed a 

PD plasticity model based on the state-based PD theory. The author suggested substantial yield 

criteria and derived modulus variables to perform implicit time integration. Madenci and 

Oterkus [29] developed the PD plasticity model based on von Mises yield criteria with isotropic 

hardening. The authors derived the expression of the yield function and plastic PD stretch in 
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terms of material parameters, force density, shear modulus and the horizon. In addition, a 

nonlinear PD model for large deformations has been developed [30, 31]. Silling and Bobaru 

[30] established a PD constitutive model for rubbery materials including cracks for one- and 

two- dimensional structures. Bang and Madenci [31] derived PD hyperelastic strain energy 

density functions for three types of equibiaxial, planar, and uniaxial loadings. Besides, by using 

the PD theory, the PD viscoelasticity model [32-35] and the PD viscoplasticity model [36-37] 

have been developed. 

Later, the application of PD theory has been further expanded to areas of heat diffusion 

and corrosion problems [38-45]. Bobaru and Duangpanya [38] presented a transient heat 

transfer model for one-dimensional problem of a material body that undergoes growing cracks. 

Also, the authors [39] established a PD heat transfer model for a plate containing evolving 

insulated cracks and fiber reinforced composites for multi-dimensional problem. Diyaroglu et 

al. [40] proposed a heat diffusion model that can generate results using ANSYS software to 

increase computational efficiency. Xue et al. [41] introduced a state-based PD heat diffusion 

model integrated with a generalized heat conduction model that includes key variables of 

temperature and heat flux. Tan et al. [42] developed a PD model of functionally graded 

materials to simulate transient heat conduction in a plate with insulated cracks. In addition, a 

PD corrosion model was proposed by Jafarzadeh et al. [43] to quantitatively estimate not only 

the shape of the corroded microstructure, but also the depth of penetration into the corroded 

surface. Chen and Bobaru [44] established a PD corrosion damage model by linking the metal 

concentration with the damage of the PD mechanical bond. Rokkam et al. [45] suggested a PD 

approach to model crack propagation and corrosion damage phenomena in materials subjected 

to both corrosion and mechanical loading.  

These various PD studies have been conducted on the basis that material damage can be 

modeled and simulated by applying the PD theory to the multi-length scale of crack growth 
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problems [46, 47]. Silling and Askari [48] introduced a PD fatigue model that includes a quasi-

static solution capable of capturing real-time deformation of a material subjected fatigue 

loadings.  The authors introduced the concept of “remaining life” to quantify the degree of 

accumulated damages that lead to cracks under cyclic loadings. Figure 1 schematically shows 

remaining life curves representing the crack nucleation and propagation phases, respectively. 

Each curve in Fig. 1 represents the degree of damage accumulation in the PD bond as the 

loading cycle increases. For the bond life of the crack nucleation phase, the remaining life 

decreases, eventually reaching zero. In addition, as for the bond life of the crack propagation 

phase [48], the remaining life of adjacent bond starts to decrease from the bond of the nucleated 

crack, and the bond breaks when the remaining life reaches to zero. All interacting bonds in 

the material experience a damage process of remaining life on the basis of crack nucleation and 

propagation. The PD fatigue model is based on the remaining life concept of crack nucleation 

and propagation damage states.  

 

Fig. 1. Remaining life curves for crack nucleation and propagation phases.  

Zhang et al. [49] demonstrated crack growth of a two-phase composite by introducing 

critical damage factors to validate the PD fatigue model. Freimanis and Kaewunruen [50] used 

PD fatigue model to present a study for rail squat crack initiation and propagation. Wang et al. 

[51] applied the PD fatigue model to study the effects of welding direction and hole position 

on the geometry of the crack path. Ma et al. [52] introduced a two-dimensional rail PD model 
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by considering the remaining life concept. However, these studies focused on the simulations 

of fatigue-crack propagation by using the remaining-life equation without demonstrating the 

process of determining remaining-life parameters.  

In this study, an analytical remaining-life approach is introduced to provide analytical 

solution of the remaining-life equation in addition to the existing numerical solution approach. 

By using two different solution approaches (i.e., two different ways of solving the remaining 

life equation), fatigue-crack growth simulations are performed for a 2024-T3 aluminum 

specimen with a pre-existing crack under various loading conditions i.e. different R ratios and 

stress levels. The remaining-life parameters are determined by calibrating model parameters 

with the experimental crack growth data of 2024-T3 aluminum alloy. Simulated results 

obtained by two approaches are assessed to determine their capabilities and shortcomings.  

2. Peridynamic methodology 

2.1. A review of peridynamic theory for elastic deformations  

       The PD theory is formulated in the form of an integro-differential equation which does 

not include spatial derivative in Eq. (1).  

𝜌(𝝃)𝐮̈(𝝃, 𝑡) = ∫ (𝐭(𝛈, 𝝃, 𝑡) − 𝐭′(𝛈′, 𝝃′, 𝑡))𝒅𝑯
𝑯

+ 𝐛(𝝃, 𝑡)    (1) 

where 𝜌 is mass density, u and ü are the displacement and acceleration, respectively. t 

denotes the force density that the material point at x′ exerts on the material point at x and, t′ 

represents the force density that the material point at x exerts on the material point at x′.  dH is 

an incremental volume of the material point. 𝜉 and η are the initial relative position vector and 

relative displacement vector in the reference configuration in Fig. 2, respectively. b  is a 

prescribed external body force density. 

 



8 
 

Thus, the PD equation can be applied to any type of discontinuities such as a crack tip or crack 

surfaces. The PD governing equation of Eq. (1) can be reformulated as the discretized form in 

Eq. (2).  

𝜌(𝑘)𝐮̈(𝑘) = ∑ [𝐭(𝑘)(𝑗)( 𝛈(𝑘)(𝑗), 𝝃(𝑘)(𝑗), 𝑡) − 𝐭(𝑗)(𝑘)( 𝛈(𝑗)(𝑘), 𝝃(𝑗)(𝑘), 𝑡)]𝑉(𝑗) +  𝐛(𝑘)
𝑁
𝑗=1       (2) 

where 𝐍 denotes a number of family members of the material point, 𝑘 and j denotes a 

specific family member of the material point, 𝑘. 𝑉(𝑗) is an incremental volume of the material point. 

As shown in Fig.2, the material point, 𝐱(𝑘) has a unique finite distance region called 

“horizon, 𝛿”. Within this horizon region, all material points interact with the material point, 

𝐱(𝑘) on the basis of nonlocal interactions. It is also regarded that each material point possesses 

its own volume,  𝑉(𝑗)  for given configurations of the continuous material body. Figure 2 

described a three-dimensional PD model in the undeformed and deformed states [53]. Let’s 

consider two interacting material points, 𝐱(𝑘)  and 𝐱(𝑗)  in the undeformed state. In the 

undeformed state, all of the position vectors constitute material body, and material points, 𝐱(𝑘) 

and 𝐱(𝑗) are relocated by displacement vector, 𝐮(𝑘) and 𝐮(𝑗) to the deformed state. In addition, 

two relative position vectors of the initial and current state, 𝐱𝑗 − 𝐱𝑘 = 𝝃(𝑘)(𝑗)  and 

𝐲𝑗 − 𝐲𝑘 = 𝝃(𝑘)(𝑗)+ 𝛈(𝑘)(𝑗) can be defined by taking into account the two position vectors in the 

undeformed and deformed states, respectively. Considering these two vectors, the stretch 

between the material points of 𝐱(𝑘) and  𝐱(𝑗) can defined in Eq. (3) 

𝑠(𝑘)(𝑗) =
(| 𝛈(𝑘)(𝑗)+𝝃(𝑘)(𝑗)|−|𝝃(𝑘)(𝑗)|)

𝝃(𝑘)(𝑗)
                        (3) 

On the other hand, 𝐭(𝑘)(𝑗)  and 𝐭(𝑗)(𝑘)  in Eq. (2) are defined as the force density 

interacting between material points as shown in Fig. 3 [53]. They are obtained based on the 

relationship between the strain energy density and force density in Eq.(4a) and (4b) given for 

material points, 𝐱(𝑘) and  𝐱(𝑗), respectively [53]. 
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𝐭(𝑘)(𝑗)(𝛈(𝑘)(𝑗), 𝝃(𝑘)(𝑗),𝑡) =
𝟏

𝑉(𝑗)

𝜕𝑊(𝑘)

𝜕(|𝛈(𝑘)(𝑗)+𝝃(𝑘)(𝑗)|)

𝛈(𝑘)(𝑗)+𝝃(𝑘)(𝑗)

|𝛈(𝑘)(𝑗)+𝝃(𝑘)(𝑗)|
                        (4a) 

and 

𝐭(𝑗)(𝑘)(𝛈(𝑗)(𝑘), 𝝃(𝑗)(𝑘),𝑡) =
𝟏

𝑉(𝑘)

𝜕𝑊(𝑗)

𝜕(|𝛈(𝑗)(𝑘)+𝝃(𝑗)(𝑘)|)

𝛈(𝑗)(𝑘)+𝝃(𝑗)(𝑘)

|𝛈(𝑗)(𝑘)+𝝃(𝑗)(𝑘)|
                         (4b) 

Silling and Askari [47] defined a local damage in Eq. (5) to measure the crack formation 

stage. This method provides damage information as to how much the crack progresses without 

considering the configurations of material deformation. Local damage, 𝜑 has a range of 0 to 1. 

Herein, a value of 0 means a connected interaction between material points, and a value of 1 

means a disconnected interaction between material points.  

𝜑 = 1 −
∫ 𝜇(𝝃(𝑘)(𝑗),𝑡)𝑑𝑉(𝑗)𝐻

∫ 𝑑𝑉(𝑗)𝐻

                        (5) 

where 𝜇(𝝃(𝑘)(𝑗), 𝑡)  is a history-dependent scalar-valued function to express the bond 

connection between material points in Eq. (6). If the stretch, 𝒔(𝑘)(𝑗) is less than the critical 

stretch, 𝒔𝑐, the material is deformed without damage, and if the stretch, 𝒔(𝑘)(𝑗) is greater than 

the critical stretch, 𝒔𝑐, the material is both deformed and damaged [53].  

𝜇(𝝃(𝑘)(𝑗), 𝑡) = {
1, 𝑖𝑓  𝒔(𝑘)(𝑗)(𝝃(𝑘)(𝑗), 𝑡)   <  𝒔𝑐   𝑓𝑜𝑟 𝑎𝑙𝑙 0 < 𝑡,

 0,                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                        (6) 



10 
 

  

 

  

Fig. 2. Peridynamic interactions between material points, 𝐱(𝑘) and  𝐱(𝑗) in undeformed and deformed states. 

 

 

Fig. 3. Force densities acting at material points, 𝐱(𝑘) and  𝐱(𝑗) based on peridynamic interactions. 

2.2. Peridynamic fatigue model   

The PD fatigue model addresses elastic solid isotropic materials, and it can efficiently 

account for cumulative damages in a material body under cyclic loadings [48]. The main 
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advantage of the PD fatigue model is that both the crack nucleation and propagation states can 

be concurrently accounted for. In addition, the crack growth simulations and the material 

deformations can be performed on the basis of the real time.  

To implement the PD fatigue model, the stretch which is defined at each point of 

extreme of loading cycles can be expressed in Eq. (7a) and (7b), respectively. Herein, the higher 

one is denoted " + " and the lower one is denoted as " − ". 

𝑠(𝑘)(𝑗)
+ =

(| 𝛈+
(𝑘)(𝑗)+𝝃(𝑘)(𝑗)|−|𝝃(𝑘)(𝑗)|)

𝝃(𝑘)(𝑗)
                        (7a) 

and 

𝑠(𝑘)(𝑗)
− =

(| 𝛈−
(𝑘)(𝑗)+𝝃(𝑘)(𝑗)|−|𝝃(𝑘)(𝑗)|)

𝝃(𝑘)(𝑗)
                        (7b) 

By using the stretches of Eq. (7a) and (7b), “cyclic bond strain, 𝜀(𝑘)(𝑗)” to represent the degree 

of deformations under fatigue loadings can be defined in Eq. (8). Also, the cyclic bond strain 

can be expressed as the right one of Eq. (8) by using the load ratio of 𝑅 = 𝑠(𝑘)(𝑗)
− 𝑠(𝑘)(𝑗)

+⁄  which 

is determined based on the elastic material behaviors.  

𝜀(𝑘)(𝑗) = |𝑠(𝑘)(𝑗)
+ − 𝑠(𝑘)(𝑗)

− | = |(1 − 𝑅)𝑠(𝑘)(𝑗)
+ |                        (8) 

             Thus, by employing the Eq. (8), Silling and Askari [48] established a remaining life 

equation of Eq. (9), which is defined as the instantaneous rate of remaining life over the time, 

t as a function of the cyclic bond strain, 𝜀(𝑘)(𝑗). By applying the Eq. (9) to each bond between 

the material points, 𝐱(𝑘)  and  𝐱(𝑗)  within a horizon, gradually accumulated damages in the 

material body can be simulated.  

𝑑𝜆(𝑘)(𝑗)

𝑑𝑡
= −𝐴(𝜀(𝑘)(𝑗))

𝑚
                  (9) 

The first-order differential equation of the remaining-life equation, Eq. (9) has a value of unity 

for an initial condition (i.e., 𝜆(𝑘)(𝑗)
0  = 1) [48]. Also, the remaining-life equation in Eq. (9) can 



12 
 

be applied to both the crack nucleation and propagation phases. Therefore, the remaining-life 

parameters, 𝐴, 𝑚 in Eq. (9) can be defined as 𝐴1 , 𝑚1  and 𝐴2 , 𝑚2  separately for the crack 

nucleation and propagation phases, respectively. In addition, the cyclic bond strain, 𝜀(𝑘)(𝑗) in 

Eq. (9) increases under the cyclic loadings, and the corresponding remaining-life,  𝜆(𝑘)(𝑗) 

decreases and eventually a bond breaks when the remaining-life is equal or less than zero, 

𝜆(𝑘)(𝑗) ≤ 0 as shown in Fig. 4 [48]. Herein, a bond just before it breaks is called “core bond”, 

and the core bond has the largest cyclic bond strain, 𝜀1. 

                                     

Fig. 4. Bond breakage at the crack tip. 

On the other hand, the incremental time, t in Eq. (9) is a simulation time, not a real time. 

Therefore, by applying the linear mapping relationship in Eq. (10) and the chain rule in Eq. 

(11), the simulation time, t can be converted into the real-time loading cycle, N.  

𝑁 =
𝑡

𝜏
                                               (10) 

in which 𝜏 is a linear mapping constant.  

𝑑𝜆(𝑘)(𝑗)

𝑑𝑡
=

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁

𝑑𝑁

𝑑𝑡
                (11) 

Thus, by using the Eq. (10) and (11), the remaining-life equation in Eq. (9) can be expressed 

in terms of the loading cycle, N in Eq. (12) for the crack nucleation phase.  

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= −𝐴1(𝜀(𝑘)(𝑗))

𝑚1
     ,          𝜆(𝑘)(𝑗)(0) = 1  (12) 
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where the parameters, 𝐴1 and 𝑚1 are specified as 𝐴1 = 𝐴𝜏 and 𝑚1 = 𝑚.  

As for the crack nucleation phase, the variations of the cyclic bond strain, 𝜀(𝑘)(𝑗) are 

very small under cyclic loadings. Thus, it can be assumed that the cyclic bond strain is 

independent of the loading cycle, N [48]. Therefore, based on this assumption, the remaining-

life equation in Eq. (12) can be solved analytically as Eq. (13).  

𝜆(𝑘)(𝑗) = −𝐴1(𝜀(𝑘)(𝑗))
𝑚1

𝑁 + 𝜆(𝑘)(𝑗)(0)                          (13) 

where 𝜆(𝑘)(𝑗)(0) is a value of unity. The crack is nucleated when the remaining life, 𝜆(𝑘)(𝑗) is 

zero, and it occurs in the core bond. Thus, by employing the largest cyclic bond strain, 𝜀1, the 

crack nucleation remaining-life expression can be written as Eq. (14).  

𝐴1𝜀1
𝑚1𝑁 = 1                           (14) 

Herein, 𝐴1, 𝑚1 are obtained by calibrating with the experimental fatigue life (i.e. S-N) data, 

e.g., Eq. (14) is plotted as Fig. 5, and it is compared with the S-N curve which is expressed in 

terms of strain, and the remaining-life parameters, 𝐴1, 𝑚1 are determined accordingly [48]. As 

a result, the loading cycle, 𝑁1 at which the crack nucleates can be obtained in Eq. (15).  

𝑁1 =
1

𝐴1𝜀1
𝑚1                                  (15) 

 

Fig. 5. Loading cycle, 𝑁1 as a function of the largest bond strain, 𝜀1 for crack nucleation damage. 
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As for the crack propagation phase, by using the Eq. (10) and (11), the remaining-life 

equation of Eq. (9) can be expressed in terms of the loading cycle, N as Eq. (16).  

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= −𝐴2(𝜀(𝑘)(𝑗))

𝑚2
     ,       𝜆(𝑘)(𝑗)(0) = 1     (16) 

where the parameters,  𝐴2 and 𝑚2 are specified as 𝐴2 = 𝐴𝜏 and 𝑚2 = 𝑚. Herein, to determine 

the remaining-life parameters, 𝐴2 and 𝑚2 in Eq. (16), the PD crack growth rate expression 

should be described in the frame reference of the crack geometry [48]. To do that, the reference 

coordinate, z in Eq. (17) is defined to specify the location of the effectiveness length of the 

remaining-life within a horizon, 𝛿 and it has the range of 0 to 𝛿 (i.e., 0 ≤ 𝑧 ≤ 𝛿).    

𝑧 = 𝑥 −
𝑑𝑎

𝑑𝑁
𝑁 (17) 

where a is crack length, and x is the coordinate along the crack growth axis. From the Eq. (17), 

it is known that the effective length, z and the crack length, a in the coordinate configuration 

are all dependent of the loading cycle, N, and it leads to Eq. (18).  

𝑑𝑎

𝑑𝑁
=

𝑑𝑧

𝑑𝑁
  (18) 

         By using the coordinate, z in Eq. (17), the cyclic bond strain and remaining life defined 

between material points, 𝐱(𝑘) and 𝐱(𝑗) can be re-expressed as a function of the loading cycle, 

N in terms of the coordinate, z in Eq. (19).  

 𝜀(𝑘)(𝑗)(𝑁) = 𝜀(̅𝑘)(𝑗)(𝑧)  ,            𝜆(𝑘)(𝑗)(𝑁) = 𝜆̅(𝑘)(𝑗)(𝑧) (19) 

where the cyclic bond strain, 𝜀(̅𝑘)(𝑗)(𝑧)  and remaining life, 𝜆̅(𝑘)(𝑗)(𝑧) are defined for the range 

of 0 ≤ 𝑧 ≤ 𝛿. At this point, the remaining-life value is defined at the end of point for that range 

as in Eq. (20), and the cyclic bond strain is the core cyclic bond strain as 𝜀(̅𝑘)(𝑗)(0)   =  𝜀𝑐𝑜𝑟𝑒 

at the end of point, z = 0 [48].   

𝜆̅(𝑘)(𝑗)(0) = 0,              𝜆̅(𝑘)(𝑗)(𝛿) = 1 (20)  
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Accordingly, consider the instantaneous value of the remaining-life and integrate it over the 

range of 0 ≤ 𝑧 ≤ 𝛿 and it leads to Eq. (21) using the expression of the chain rule.  

∫ 𝑑𝜆(𝑘)(𝑗)  = 
𝛿

0
∫

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁

𝑑𝑁

𝑑𝑧
𝑑𝑧 = 1 

𝛿

0
 (21) 

Therefore, by substituting Eq. (16) and (18) for Eq. (21), the PD crack growth rate expression 

in terms of the loading cycle, N can be obtained in Eq. (22).  

𝑑𝑎

𝑑𝑁
= 𝐴2 ∫ (𝜀(̅𝑘)(𝑗)(𝑧))

𝑚2

𝑑𝑧
𝛿

0
    (22) 

             On the other hand, the bond strain, 𝑠(𝑘)(𝑗)(𝑧) is defined in the z coordinate system by 

multiplying the core bond strain, 𝑠𝑐𝑜𝑟𝑒 (i.e., the PD strain between the material points, 𝐱(𝑘) and 

𝐱(𝑗) at the crack tip) by the arbitrary function of 𝑓(𝑧) as depicted in Eq. (23) [48]. 

𝑠(𝑘)(𝑗)(𝑧)  = 𝑠𝑐𝑜𝑟𝑒 × 𝑓(𝑧) (23) 

where the arbitrary function of 𝑓(𝑧) has the value of one and zero at z=0 and z=𝛿, respectively 

as 𝑓(0) = 1 and 𝑓(𝛿) = 0.  

To determine 𝑓(𝑧) in Eq. (23), apply the strain definition at the crack tip in the classical fracture 

mechanics to the PD core bond, the bond strain, 𝑠(𝑘)(𝑗)(𝑧) in Eq. (23) can be described in terms 

of the stress intensity factor, K, young’s modulus, E, the horizon, 𝛿 and the dimensionless 

proportional constant, 𝑠̂𝑏𝑜𝑛𝑑 in Eq. (24)..  

𝑠(𝑘)(𝑗)(𝑧) =   𝑠̂𝑏𝑜𝑛𝑑
𝐾

𝐸√2𝜋𝑧
   (24) 

Herein, Eq. (24) is defined when the coordinate, z goes to infinity (i.e., 𝑧 → ∞). In addition, 

based on the dimensional analysis, the core bond strain, 𝑠𝑐𝑜𝑟𝑒 in Eq. (23) can be also described 

in terms of the stress intensity factor, K, young’s modulus, E and the horizon, 𝛿 in Eq. (25).  

𝑠𝑐𝑜𝑟𝑒 = 𝑠̂𝑐𝑜𝑟𝑒
𝐾

𝐸√𝛿
 (25) 
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where 𝑠̂𝑐𝑜𝑟𝑒 is a dimensionless proportional constant for the core bond strain.   

Thus, by substituting Eq. (24) and (25) for Eq. (23), the function of 𝑓(𝑧) can be obtained in 

Eq. (26).  

𝑓(𝑧) =
1

𝑠̂𝑟𝑒𝑠√
2𝜋𝑧

𝛿

 (26) 

Herein, 𝑠̂𝑟𝑒𝑠  is a resultant dimensionless proportional constant obtained by dividing two 

proportional constants as 𝑠̂𝑐𝑜𝑟𝑒/𝑠̂𝑏𝑜𝑛𝑑. 

To relate Eq. (22) and Eq. (26), the cyclic bond strain, 𝜀(̅𝑘)(𝑗)(𝑧)  can be expressed by 

multiplying the core cyclic bond strain, 𝜀𝑐𝑜𝑟𝑒 by the arbitrary function of 𝑓(𝑧) in Eq. (27) in 

the same way as Eq. (23).   

𝜀(̅𝑘)(𝑗)(𝑧) = 𝜀𝑐𝑜𝑟𝑒 × 𝑓(𝑧) (27) 

As a result, by using the Eq. (22), (26), and (27), the PD crack growth rate in terms of the 

remaining-life parameters,  𝐴2 , 𝑚2 , a horizon,  𝛿 , a resultant  dimensionless proportional 

constant, 𝑠̂𝑟𝑒𝑠, and the core cyclic bond strain, 𝜀𝑐𝑜𝑟𝑒 (which varies for the loading conditions at 

the crack tip), can be expressed in Eq. (28).  

𝑑𝑎

𝑑𝑁
= 𝛽𝐴2(𝜀𝑐𝑜𝑟𝑒)𝑚2         ,                𝛽 =

𝛿
(1−

𝑚2
2

)

(𝑠̂𝑟𝑒𝑠(
2𝜋

𝛿
)

1
2)

𝑚2

(1−
𝑚2

2
)

 (28) 

where the core cyclic bond strain, 𝜀𝑐𝑜𝑟𝑒 is the value of the cyclic bond strain at z=0 when the 

bond breaks at the crack tip. Also, the cyclic bond strain, 𝜀𝑐𝑜𝑟𝑒 is related to the stress intensity 

factor range, ∆𝐾 of the LEFM, since these two quantities are linearly proportional to each other 

at the crack tip under the cyclic loading conditions. Therefore, by recalling the Paris law, Eq. 

(28) is related to 𝑑𝑎 𝑑𝑁⁄ = 𝐶(∆𝐾)𝑀 , and thus the exponent parameter in Eq. (28) can be 

described as 𝑚2 = 𝑀 [48]. In addition, as for a determination of 𝐴2, it is not possible for the 
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Eq. (28) to be related to the Paris law, 𝑑𝑎 𝑑𝑁⁄ = 𝐶(∆𝐾)𝑀 , because the core cyclic bond 

strain,  𝜀𝑐𝑜𝑟𝑒  in Eq. (28) and the stress intensity factor range, ∆𝐾  in the Paris law are not 

identical, and the value of  𝛽 in Eq. (28) cannot be found, because of the unknown resultant 

dimensionless proportional constant, 𝑠̂𝑟𝑒𝑠 in Eq. (28). Therefore, the remaining parameter, 𝐴2 

in Eq. (16) should be determined by an alternative way by considering the linear relationship 

of 𝐴2 and the crack growth rate, 𝑑𝑎 𝑑𝑁⁄ . By using the arbitrary value of 𝐴′ and its associated 

crack growth rate, (𝑑𝑎 𝑑𝑁⁄ )′, 𝐴2 is evaluated on the basis of the remaining-life solution in Eq. 

(29). Then, this evaluation is repeated until the PD predicted growth rate is fitted to the crack 

growth rate data.  

𝐴2 = 𝐴′
(𝑑𝑎 𝑑𝑁⁄ )

(𝑑𝑎 𝑑𝑁⁄ )′ 
                           (29) 

where 𝑑𝑎 𝑑𝑁⁄  is the real data for crack growth rate, which can be obtained from experimental 

data or the Paris law. 

2.3. Numerical and analytical remaining-life approaches 

             In order for the remaining-life solution to be used as the failure criterion in the PD 

fatigue model, the remaining-life equation should be solved. As for the crack nucleation phase, 

the remaining-life equation can be solved analytically by assuming that the cyclic bond strain 

is independent of the loading cycle, N, which is led by the fact that the variations of the cyclic 

bond strain is very small under the loading cycles. Whereas, as for the crack propagation phase, 

the cyclic bond strain is relatively larger than that of the nucleation phase. Therefore, the 

remaining-life equation can be solved numerically by taking into account the effects of the 

variations of the cyclic bond strain at every time step as shown in Eq. (30) [48].  

𝜆(𝑘)(𝑗)
𝑛 = 𝜆(𝑘)(𝑗)

𝑛−1 − 𝐴2
𝑛𝑢𝑚(𝜀(𝑘)(𝑗)

𝑛 )
𝑚2

𝑛𝑢𝑚

∆𝑁            ,               𝜆(𝑘)(𝑗)
0  = 1    (30) 

where n is the number of an iteration for remaining-life calculations. By using Eq. (30), the 

solutions of the remaining-life are updated numerically by evaluations at every time step.  
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Remaining-life value is the damage criterion for determining when the bond connection 

is broken by the bond force accumulated by cyclic loadings, i.e., the remaining life is the failure 

criterion for governing the crack growth under cyclic loadings. Therefore, there is no direct 

relationship between the remaining-life and the crack length. All bonds in the material 

experience changes in the remaining life, and the life of each bond is determined by the 

remaining life solution as shown in Fig. 6. In other words, remaining life begins to decrease 

from the point of unity with the increase of loading cycles, and when it reaches zero for the 

core bond (i.e. the most damaged bond in the vicinity of the crack tip.), the crack propagates 

one bond step due to breakage of the core bond. Figure 6 shows the process of remaining-life 

change for one single bond in the material.  

The numerical remaining-life solutions of a center cracked tension (CCT) 2024-T3 aluminum 

specimen for different loading conditions of R = 0/Smax = 207 MPa and R = 0.33/Smax =

155 MPa are shown in Figs. 6a) and b). Herein, the remaining-life parameters of 𝐴2
𝑛𝑢𝑚, 𝑚2

𝑛𝑢𝑚 

obtained are depicted in Table. 1. As seen from the results in Figs. 6a) and b), it is found that 

the remaining-life solution by the numerical approach is stably converging from the initial point 

of unity for the loading condition of R = 0/Smax = 207 MPa  in Fig. 6a), whereas, the 

remaining-life is decreasing stepwise and converging unstably from the unity point under the 

loading conditions of R = 0.33/Smax = 155 MPa in Fig. 6b). This shortcoming is attributed 

to the fact that the numerical solution of the remaining-life equation is limited to application of 

the fatigue simulation under different loading conditions. Therefore, in order to overcome this 

apparent shortcoming of the numerical approach for the PD fatigue model, a new approach is 

suggested to provide a potential solution of the remaining-life equation for crack propagation 

phase. The proposed solution approach is based on the assumption that remaining-life equation 

can be also solved analytically in a similar way to the nucleation phase.. Therefore, the effects 

of variations of the cyclic bond strain under the cyclic loadings can be disregarded. Thus, it can 
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be assumed that the cyclic bond strain is independent of the loading cycle, N in the crack 

propagation phase as well. Based on this assumption, the remaining-life equation can 

analytically be solved for the crack propagation phase as given in Eq. (31).   

𝜆(𝑘)(𝑗) =  −𝐴2
𝑎𝑛𝑎(𝜀(𝑘)(𝑗))

𝑚2
𝑎𝑛𝑎

𝑁 +  1    (31) 

The obtained solution results from the analytical remaining-life solution in Eq. (31) are shown 

for different loading conditions of R = 0/Smax = 207 MPa and R = 0.5/Smax = 138 MPa in 

Figs. 6a) and b), respectively. Herein, the remaining-life parameters of 𝐴2
𝑎𝑛𝑎 , 𝑚2

𝑎𝑛𝑎 used are 

depicted in Table 1. As seen from, Figs. 6a) and b), unlike the results of the numerical approach, 

the remaining-life solution by the analytical approach is stably converging from the point of 

unity for different loading conditions. Furthermore, the analytical approach yields shorter 

computational time in comparison to the numerical approach in Figs. 6a) and b), respectively. 

A detailed comparison of the two approaches based on the crack growth distance, crack growth 

rates, and associated material deformation results with a growing crack will be discussed in 

section 3. 

 

a)                                                                                                  b) 

Fig. 6. Remaining life variations as a function of a simulation time, t  in sec for the loading conditions of 

 a) R=0, Smax = 207 MPa; b) R=0.5, Smax= 138 MPa.  
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          On the other hand, the remaining-life parameters of the numerical and analytical 

approaches,  𝐴2
𝑛𝑢𝑚, 𝑚2

𝑛𝑢𝑚  and 𝐴2
𝑎𝑛𝑎 , 𝑚2

𝑎𝑛𝑎  in Eq. (30) and (31) are determined by the 

procedure described in section 2.2. The PD crack growth rate expression of the numerical and 

analytical approaches in Eq. (32a) and (32b) are related to the Paris law data [55], and the 

exponent parameters for each approach are determined as 𝑚2
𝑛𝑢𝑚 =  𝑚2

𝑎𝑛𝑎 = 4 in Table 1. 

Herein, both exponent parameters have the same value of 4. Since the linear proportionality of 

the stress intensity factor range, ∆𝐾 and the core cyclic bond strain, 𝜀𝑐𝑜𝑟𝑒 at the crack tip are 

not affected by the magnitude of the core cyclic bond strain in Eq. (32a) and (32b), i.e., the 

exponent value of Eq. (32a) and (32b) are not changed by the different approaches of 

remaining-life conditions.   

𝑑𝑎

𝑑𝑁
= 𝛽𝑛𝑢𝑚𝐴2

𝑛𝑢𝑚(𝜀𝑐𝑜𝑟𝑒)𝑚2
𝑛𝑢𝑚

  (32a) 

and 

𝑑𝑎

𝑑𝑁
= 𝛽𝑎𝑛𝑎𝐴2

𝑎𝑛𝑎(𝜀𝑐𝑜𝑟𝑒)𝑚2
𝑎𝑛𝑎  (32b) 

where 𝛽𝑛𝑢𝑚and 𝛽𝑎𝑛𝑎 are prescribed as 𝛽𝑛𝑢𝑚 =
𝛿

(1−
𝑚2

𝑛𝑢𝑚

2
)

(𝑠̂𝑟𝑒𝑠(
2𝜋

𝛿
)

1
2)

𝑚2
𝑛𝑢𝑚

(1−
𝑚2

𝑛𝑢𝑚

2
)

  

and 𝛽𝑎𝑛𝑎 =
𝛿

(1−
𝑚2

𝑎𝑛𝑎

2
)

(𝑠̂𝑟𝑒𝑠(
2𝜋

𝛿
)

1
2)

𝑚2
𝑎𝑛𝑎

(1−
𝑚2

𝑎𝑛𝑎

2
)

  for the numerical and analytical approaches, respectively.  

In addition, the remaining-parameters of  𝐴2
𝑛𝑢𝑚 and 𝐴2

𝑎𝑛𝑎 are determined by calibrating with 

the experimental crack growth data for the numerical and analytical approaches, respectively.  

This calibration process is repeated based on the linear relationship between the parameters of 

𝐴2
𝑛𝑢𝑚 , 𝐴2

𝑎𝑛𝑎  and the PD crack growth simulation results obtained from the numerical and 

analytical approaches, as given in Eq. (33a) and (33b), respectively.       
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𝐴2
𝑛𝑢𝑚 = (𝐴′)𝑛𝑢𝑚 (𝑑𝑎 𝑑𝑁⁄ )

((𝑑𝑎 𝑑𝑁⁄ )′)
𝑛𝑢𝑚

 
                           (33a) 

and 

𝐴2
𝑎𝑛𝑎 = (𝐴′)𝑎𝑛𝑎 (𝑑𝑎 𝑑𝑁⁄ )

((𝑑𝑎 𝑑𝑁⁄ )′)
𝑎𝑛𝑎

 
                           (33b) 

where 𝑑𝑎 𝑑𝑁⁄  is the real data for crack growth rate, and (𝐴′)𝑛𝑢𝑚 and (𝐴′)𝑎𝑛𝑎 are the arbitrary 

values for the numerical and analytical approaches, respectively.  

Since the remaining-parameters of A2 (i.e.  A2
num and A2

ana)  are unknown in Eq. (32a) and 

(32b), the computed crack growth rate vs N cycle result cannot be obtained before the 

remaining-life solution is determined. Therefore, the remaining-life solution is computed by 

using an arbitrary value of A′ i.e.  (A′)num and (A′)ana  in Eqs. 30 and 31. Then, the calculated 

crack growth rate in Eq. (32a) and (32b) is evaluated with the arbitrary value of A′ at every 

time step, and it repeats until the predicted crack growth rate matches with the experimental 

data as given in Eq. (33a) and (33b), and the converged value of A2 at that point is regarded as 

the parameter A2 of the remaining-life equation. The parameter m2 (i.e m2
numand m2

ana) in Eq. 

(32a) and (32b) is directly obtained from the power constant of the Paris equation.  

Table 1. Remaining-life parameters based on the numerical and analytical approaches 

for the 2024-T3 aluminum alloy. 

 Remaining-life parameters 

Numerical approach 𝐴2
𝑛𝑢𝑚 1150 

𝑚2
𝑛𝑢𝑚 4 

Analytical approach 𝐴2
𝑎𝑛𝑎 1300 

𝑚2
𝑎𝑛𝑎 4 

 

2.4. Numerical implementation of analytical and numerical remaining-life solutions 

              The loading process of the PD fatigue model is implemented by applying the cyclic 

loadings to the body force of external force in the PD governing equation. The degree of 
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physical deformation of the material body is realized by the difference of the stretches at each 

bond into which the external force is transferred from the two extreme points of the loading 

cycles. To simulate fatigue-crack growth of the material body under the cyclic loadings, a bond 

interacting perpendicular to the crack growth axis for the growing crack model I is considered 

within a horizon. As the failure criterion for the crack growth simulation, the remaining-life is 

applied to each bond in the material body, which physically represents the cumulative damage 

obtained from a solution of the first-order differential equation of the remaining-life equation. 

Herein, the remaining-life equation is solved by setting the initial value of the solution at the 

length of horizon, 𝛿 which is the longest length that can be affected by the variations of the 

remaining life [48]. As a number of cyclic load increases, the remaining-life value decreases 

from the point of unity, and eventually when the value reaches to/less than zero, the bond 

breaks, and the crack growth is progressed as one iteration step. The extent to how much fast 

the remaining-life decreases in the remaining-life curve depends on both the magnitude and 

number of load cycles. The degree of decrease of the remaining-life value influences the 

behavior of the crack growth. As for the numerical approach, the remaining life is updated by 

reducing the size by a discrete length in every iteration step. Whereas, in case of the analytical 

approach, the remaining-life is determined directly by taking the analytical remaining-life 

solution corresponding to simulation time, t in every iteration step. The crack growth behavior 

on the basis of the PD fatigue model can be determined by two different approaches of the 

remaining-life method. A modeling algorithm of the peridynamic fatigue model on the basis of 

these two solution approaches is schematically shown in Fig. 7. The integro-differential 

equation of the PD governing equation under the cyclic loadings is solved at every time step 

by applying the Adaptive Dynamic Relaxation (ADR) method [54], and based on this iterative 

computation process, the remaining-life value is updated and evaluated at every iteration step.  
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          The crack growth predictions obtained by the two approaches are based on the simulation 

time, not actual loading cycle, because the PD simulation is performed based on the simulation 

time, not real time. The simulation time generated by the PD fatigue model is well compatible 

with the convergence time produced by the ADR integrations. Therefore, the linear mapping 

technique which converts the simulation time into the actual loading cycles is very suitable for 

implementing the PD fatigue model. Note that one of the loading cycles to failure for specific 

ranges should be known in advance for the successfully application of the linear mapping 

technique [48]. Furthermore, the peridynamic simulation results (i.e. the crack growth length 

vs N cycle obtained from the PD fatigue model) are used to obtain the PD crack growth rate vs 

stress intensity factor range, ∆𝐾 . To do this, within a framework of LEFM, by using the 

maximum applied stress-level, 𝑆𝑚𝑎𝑥 , geometry correction factor, Y in Eq. (34) (this study 

applies the CCT specimen) and the crack length, a of the PD results, the maximum stress 

intensity factor, 𝐾𝑚𝑎𝑥 is calculated.  

𝑌 = √𝑠𝑒𝑐 (
𝜋𝑎

𝑤
)                            (34) 

where a is crack length and 𝑤 is a width of specimen.  

Then, based on the maximum stress intensity factor, 𝐾𝑚𝑎𝑥, by using the stress ratio, R defined 

as the ratio of the minimum and maximum applied stress-levels at the extreme points of the 

cyclic loadings, the stress intensity factor range, ∆𝐾 can also be calculated. Accordingly, the 

PD crack growth rate vs N cycle can be obtained from the PD crack growth length vs N cycle 

computed by the PD fatigue model. However, as mentioned above, the crack growth behaviors 

are quite dependable to the magnitude of the remaining-life parameters and the solution 

approach of the remaining-life equation. Thus, the computed crack growth rate is also 

dependent to the magnitude of the remaining-life parameters of 𝐴2, 𝑚2 . Therefore, the 

remaining-life parameters of 𝐴2
𝑛𝑢𝑚, 𝑚2

𝑛𝑢𝑚  and 𝐴2
𝑎𝑛𝑎, 𝑚2

𝑎𝑛𝑎  for the numerical and analytical 
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approaches are determined such that, the PD crack growth rate is calculated by using the 

arbitrary value of  (𝐴′)𝑛𝑢𝑚, (𝐴′)𝑎𝑛𝑎 based on the crack growth length vs N cycle result. The 

calculated values are compared at every time step to the experimental data with updated values 

of (𝐴′)𝑛𝑢𝑚, (𝐴′)𝑎𝑛𝑎 . And finally, when the crack growth rate results are fitted to the 

experimental data, the parameters, (𝐴′)𝑛𝑢𝑚, (𝐴′)𝑎𝑛𝑎  are determined for numerical and 

analytical approaches, respectively (see the flow chart in Fig. 7). On the other hand, the 

exponent parameters of  𝑚2
𝑛𝑢𝑚, 𝑚2

𝑎𝑛𝑎 for two approaches are directly obtained from the Paris 

law power constant.  The convergence criterion, R for whether the crack growth rate agrees 

well with the experimental data is evaluated by comparing the absolute value of the difference 

between the experimental crack growth data and predicted model results in Eq. (35). If the 

absolute value of the difference is less than R=0.0001 [mm/cycle], the model predictions are 

considered to be in agreement with the experimental data. 

|(
𝑑𝑎

𝑑𝑁
)

𝑃𝐷
− (

𝑑𝑎

𝑑𝑁
)

𝐸𝑥𝑝
| ≤ R          (35) 

 



25 
 

 

Fig. 7. Flow chart of fatigue-crack growth simulation using a peridynamic fatigue model at a pre-existing crack. 

3. Crack growth results at a pre-existing crack   

A center cracked tension (CCT) specimen for 2024-T3 aluminum alloy is adopted to   

model and simulate the PD fatigue-crack growth [55]. The 2024-T3 aluminum alloy has 

Young’s modulus of 𝐸 = 73.0 𝐺𝑃𝑎, mass density of 𝜌 = 2780 𝑘𝑔 𝑚3⁄ , and Poisson’s ratio 

of 𝜈 = 0.33, and the CCT specimen is presented with a width of 305.0 mm, a length of 699.0 
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mm, and a thickness of 2.28 mm, and its notch is located with 0.25 mm by 2.54 mm in the 

center of the specimen as shown in Fig. 8. As for PD modeling of the plate specimen shown in 

Fig.8, the plate is discretized into 150×350 material points with a uniform grid. A constant 

horizon size is used as 𝛿=3.015 × ∆ m, in which ∆ represents spacing between material points 

as ∆=0.002 m. Initial crack size is regarded as L=0.0025 m, which is greater than ∆ close to a 

specified notch size. 

 

Fig. 8. Configuration of the center cracked tension specimen for 2024-T3 aluminum alloy. 

3.1. Numerical solution approach for crack propagation   

Figure 9 shows the fatigue-crack growth results obtained by applying the numerical 

remaining-life solution under four different loading conditions for the CCT 2024-T3 aluminum 

specimen. It is shown that the crack begins to grow the fastest under the loading condition of 

R = 0  /Smax = 207 MPa , and then progressively at R = 0.33/ Smax = 155 MPa   and R =

0.7/Smax = 241 MPa,  and the crack begins to grow the latest at R = 0.5/Smax = 138 MPa. 

Herein, the x axis in the coordinate is expressed as the actual loading cycle, N by applying the 

linear mapping technique. Computational time in seconds for each curve crack length versus 

loading cycle, i.e. a-N is depicted in the caption of Fig. 9.  
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As can be seen from the results in Fig. 9, the crack growth results show non-smooth 

curves for the loading conditions of R = 0.33/ Smax = 155 MPa, R = 0.5/Smax = 138 MPa, 

and R = 0.7/Smax = 241 MPa, and as for the loading condition of R = 0 /Smax = 207 MPa 

the crack growth result shows a smooth a-N curve. This is attributed to the fact that two results 

are different is that the remaining-life parameter, 𝐴2
𝑛𝑢𝑚 which dominates crack growth behavior 

is determined based on the crack growth data of R = 0 /Smax = 207 MPa in Fig.9. 

 

Fig. 9. Fatigue-crack growth curves for 2024-T3 aluminum alloy under different loading conditions. 

Computational time for a-N curves: 3061sec for  R = 0  /Smax = 207 MPa ; 10891sec for R = 0.33/ Smax =

155 MPa;  40801sec for R = 0.5/Smax = 138 MPa; 17281sec for R = 0.7/Smax = 241 MPa 

To predict the crack growth rate based on the fatigue-crack growth curve of Fig. 9, the 

remaining parameters, 𝐴2
𝑛𝑢𝑚, 𝑚2

𝑛𝑢𝑚  must be determined from fatigue data of 2024-T3 

aluminum alloy; 𝑚2
𝑛𝑢𝑚  is obtained directly from the Paris law data [55], and 𝐴2

𝑛𝑢𝑚  is 

determined by calibrating with the experimental crack growth data [55] for the loading 

condition of R = 0/Smax = 207 MPa in Fig. 10a). Note that experimental data of different 

loading conditions in Fig. 10 can be utilized to determine the remaining parameter of 𝐴2
𝑛𝑢𝑚. 

However, in that case, different values of the remaining parameter are determined for each 

loading condition. The remaining-life parameters shown in Table 1 are obtained from the crack 

growth data of 2024-T3 aluminum alloy under the loading condition of R = 0/Smax =



28 
 

207 MPa. Based on these parameters, the crack growth rates for other loading conditions of 

R = 0.33/Smax = 155 MPa , R = 0.7/Smax = 241 MPa  and R = 0 .5/ Smax = 138 MPa  are 

predicted from the crack length curves in Fig. 9 on the basis of the numerical solution approach. 

However, it can be seen that the predicted crack growth rates are not correlated well with the 

experimental data for the loading conditions of R = 0.33/Smax = 155 MPa, R = 0.5/Smax =

138 MPa and R = 0.7/Smax = 241 MPa as shown in Figs. 10 b), c) and d), respectively. 

These predicted results show that the numerical solution approach has prediction limitations 

for general loading conditions other than the load condition from which the remaining life 

parameters are determined. 

a)  b)  

 

c)  d)  
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Fig. 10. Predicted crack growth rate and comparison with experimental data for 2024-T3 aluminum alloy under 

different loading conditions: a) R = 0 /Smax = 207 MPa; b) R = 0.33/ Smax = 155 MPa;  c) R = 0.5/Smax =

138 MPa; d) R = 0.7/Smax = 241 MPa. 

Figure 11 shows the simulation results for material deformation along with a growing 

crack in real time for 2024-T3 aluminum alloy for the loading condition of R = 0.33/Smax =

155 MPa. Deformation results of the CCT specimen with the crack evolution are demonstrated 

by applying a displacement exaggeration factor of 30 to make the crack shape visible. Figure 

11 A and B shows the displacement results for material deformation with a growing crack at 

the loading condition of R = 0.33/Smax = 155 MPa in the x and y directions, respectively. 

Displacement changes are observed by irregular contour patterns in the material body when the 

loading cycle, N reaches the final stage of N= 26580 as shown in Fig. 11A. As a result, it is 

found that it is not possible to perform a stable simulation with a growing crack by the 

numerical approach for the loading condition of R = 0.33/Smax = 155 MPa.  

Consequently, it is regarded that the numerical approach of the PD fatigue model is 

limited to its application for crack growth simulation under various loading conditions.  

 

  (Origin is located at the center of a crack)                                               

 

               A. 

                                             

                                   

a) Crack length: 53mm        b) Crack length: 81 mm              c) Crack length: 109 mm         d) Crack length: 141 mm 
Loading cycles: 22530          Loading cycles: 23880                  Loading cycles: 25170             Loading cycles: 26580                
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                B.                

                                                 

a) Crack length: 53mm        b) Crack length: 81 mm              c) Crack length: 109 mm         d) Crack length: 141 mm 
Loading cycles: 22530          Loading cycles: 23880                  Loading cycles: 25170            Loading cycles: 26580                    

 
 

Fig. 11. Fatigue-crack growth simulation at R = 0.33/Smax = 155 MPa for 2024-T3 aluminum alloy. Figure A. 

shows the displacement in the x direction (unit: mm); Figure B. shows the displacement in the y direction (unit: 

mm); displacement is exaggerated with a factor of 30.           

3.2. Analytical solution approach for crack propagation   

It is shown that the numerical approach of the PD fatigue model has shortcomings in its 

application for a wide range of loading conditions. This section provides a potential solution 

that addresses the shortcomings of the numerical approach by presenting predicted crack 

growth results on the basis of the analytical remaining-life approach thus demonstrating its 

prediction capabilities over the numerical solution approach. The remaining-life parameter, 

𝐴2
𝑎𝑛𝑎  is determined by calibrating with the experimental crack growth data for the loading 

condition of R = 0 /Smax = 207 MPa, and the parameter, 𝑚2
𝑎𝑛𝑎is obtained directly from the 

Paris law data [55]. The remaining-life parameters obtained here for 2024-T3 aluminum alloy 

for the analytical approach are given in Table 1.  

Figure 12. shows the fatigue-crack growth length results obtained by applying the analytical 

remaining-life solutions for four different loading conditions for the CCT 2024-T3 aluminum 

specimen. Predicted a-N curves under four different loading conditions of R = 0  /Smax =
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207 MPa , R = 0.33/ Smax = 155 MPa , R = 0 .7 /Smax = 241 MPa , and R = 0 .5/ Smax =

241 MPa are shown in Fig. 12. It is observed that predicted crack growth rate under the loading 

conditions of  R = 0.33/ Smax = 155 MPa, R = 0.7/Smax = 241 MPa, and R = 0.5/Smax =

138 MPa agree well with the experimental data as shown in Figs. 13 b), c) and d). This result 

demonstrates that the crack growth rates can be predicted with reasonable accuracy by the 

analytical remaining-life approach for various loading conditions. As seen from the captions in 

Figs. 9 and 12, the computational time for performing crack growth simulation is considerably 

shorter compared to the numerical remaining-life approach.   

 

Fig. 12. Fatigue-crack growth curves for 2024-T3 aluminum alloy under different loading conditions. 

Computational time for developing curves:  3090sec for R = 0 /Smax = 207 MPa; 3811sec for R = 0.33/ Smax =

155 MPa; 4621sec for R = 0.5/Smax = 138 MPa; 4081sec for R = 0.7/Smax = 241 MPa 
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a)  b)  

 

c)  d)  

Fig. 13. Predicted crack growth rate and comparison with experimental data for 2024-T3 aluminum alloy under 

different loading conditions: a) R = 0 /Smax = 207 MPa; b) R = 0.33/ Smax = 155 MPa;  c) R = 0.5/Smax =

138 MPa; d) R = 0.7/Smax = 241 MPa. 

Figure 14 shows the results of material deformation with a growing crack in real 

simulation time under the loading condition of R = 0.33/ Smax = 155 MPa. Figures 14 A and 

B show the material displacement results with a growing crack under the loading conditions of 

R = 0.33/ Smax = 155 MPa  for 2024-T3 aluminum alloy in the x and y directions, 

respectively. As can be seen in each plot of Figs. 14 A and B, it is considered that the 

displacement is stably evolved in the x and y directions as the load cycle increases. 

Consequently, it is regarded that the analytical approach can perform the fatigue-crack growth 

simulations for various loading conditions in a stable manner of the material deformation with 

a growing crack as shown in Figs 12-14. In addition, computational solution time of the 

analytical approach is significantly shorter than the numerical approach.  
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(Origin is located at the center of a crack) 

 
                                                       

            A.  

                                                      

b) Crack length: 53 mm        b) Crack length: 81 mm              c) Crack length: 109 mm         d) Crack length: 141 mm 
Loading cycles: 17000         Loading cycles:  20140               Loading cycles:   23120              Loading cycles: 26340 

 
 
 

              B.  

                                                    

a) Crack length: 53 mm        b) Crack length: 81 mm              c) Crack length: 109 mm         d) Crack length: 141 mm  
Loading cycles: 17000         Loading cycles:  20140                 Loading cycles:  23120           Loading cycles: 26340 

 

Fig. 14. Fatigue-crack growth simulation at R = 0.33/Smax = 155 MPa for 2024-T3 aluminum alloy. Figure A. 

shows the displacement in the x direction (unit: mm); Figure B. shows the displacement in the y direction (unit: 

mm).  Displacement is exaggerated with a factor of 30.           

4. Conclusion 

The analytical solution approach for the remaining-life method is introduced for 

providing the effective solution of the PD fatigue damage model. Predicted crack growth 

simulations have been implemented on the basis of both the analytical and numerical solution 
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approaches of the remaining-life method. It was found that the crack growth rates predicted by 

the numerical approach generate non-smooth crack growth a-N curves and the numerical 

approach provides poor correlations with the experimental data under different loading 

conditions. Furthermore, simulated material deformations showed irregular displacement fields 

on the deformation results. Whereas, the analytical approach yields smooth crack growth 

curves and the predicted crack growth rates are found to be in good agreement with the 

experimental data under different loading conditions. Furthermore, the material deformations 

are quite stably simulated by the analytical approach. It is also found that the computational 

time required for fatigue-crack growth simulations predicted by the analytical approach are 

considerably shorter than the numerical approach.     
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