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ABSTRACT 
 

This study was aimed at investigating the effect of inhibiting SRPK1 in leukaemic cells. It 

was also aimed at exploring the potential utility of combining conventional leukaemia 

chemotherapy (such as imatinib) with compounds that inhibit SRPK1. 

SRPK1 is best known for its role in the phosphorylation of serine/argenine rich proteins 

(SR-proteins) which are responsible for constitutive and alternative mRNA splicing. 

Studies have associated elevated levels of SRPK1 with tumour growth, proliferation and  

invasiveness with inhibition resulting in decreased tumour growth and altering the 

choice of alternative splice site. 

Imatinib mesylate and azacytidine remain the drugs of choice for the management of 

chronic myeloid leukaemia (CML) and acute myelogenous leukaemia (AML)  

respectively. Studies have shown that both imatinib and azacytidine are able to reduce 

the growth of proliferating Bcr/Abl+ and AML cells principally through the induction of 

apoptotic cell death.  

SRPK1 was inhibited using the small molecule inhibitor SPHINX. SPHINX was combined 

with either  imatinib in a CML cell line (K562) or azacytidine in an AML cell line (Kasumi-

1) for up to 72hrs. Results suggest that the SPHINX compound affects the ability of SRPK1 

to phosphorylate its substrates in all three cell lines (TK6, K562 and Kasumi-1).  Inhibition 

of SRPK1 was  found to reduce cell viability in Kasumi-1 cells and at higher concentration,  

affect K562 cell viability consistent with the work of Sanidas et al.,(2010). There was also 

an indication that SRPK1 could be regulating its own expression through a feedback loop 

in a cell line-dependent manner. 

Studies with imatinib mesylate and azacytidine showed that both imatinib mesylate and 

azacytidine are able to reduce cell growth and viability in a dose and time-dependent 

manner. On combining them with SPHINX, a combination of azacytidine and SPHINX had 

an additive effective on Kasumi-1 cells but not with imatinib mesylate in K562 cells. 

Results also showed that imatinib affected the alternative splicing  of caspase 9 

favouring a pro-apoptotic isoform, caspase 9a. Imatinib mesylate alone also caused an 

apparent reduction in the expression of SRPK1, CLK1 and SRSF1, suggesting that 

pathways imatinib affects cell signalling pathways that regulate the expression of these 

oncogenic splice factor kinases and splice factors. In summary, this thesis presents 
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evidence that targeting SRPK1 could potentially provide therapeutic benefit in the 

treatment of a range of leukaemias; further research is now needed to explore this novel 

approach.  
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CHAPTER 1  
Introduction 
1.1 Haematopoiesis 

The blood system is established and maintained by self-renewing haematopoietic stem 

cells found in the bones marrows of adult humans. This process known as 

haematopoiesis is the process by which circulating blood stem cells called 

haemocytoblasts go on to become committed progenitor cells giving rise to erythroid, 

megakaryocytic, granulocytic, monocytic, basophilic, eosinophilic, or lymphoid lineages 

over the course of a lifetime (Kondo et al., 1997; Akashi et al., 2000) (Figure 1.1). An 

earlier study suggests that not all haematopoietic stem cells become committed to a 

lineage as some cell which express high levels of interleukin-7 (IL-7) neither adopt 

erythroid or megakaryocyte lineage fates (Adolfsson et al., 2005). The process of cell 

differentiation in haematopoiesis is mediated by transcription factors (TFs) (AML-1, 

GATA-2), cytokines (such as granulocyte–macrophage CSF(GM-CSF) receptors, 

interleukins (ILs), interferons) and other factors (Ikros, Hox, Notch) with variable level of 

expression of these molecules observed at different stages of cell differentiation (Klug 

et al., 1998; Pan and Simpson, 2001; Enciso et al., 2016).  

 
 

 

Figure 1.1: Stages of cell differentiation in haematopoiesis. Pluripotent haematopoietic 
stem cell differentiates into myeloid and lymphoid precursor cells. 
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While this process is tightly controlled to achieve stability and homeostasis, genetic 

alteration which can be in the form of variation, mutation and deletion in this process 

could result in disease conditions (Owen et al., 2008). For example, germline mutation 

of the RUNX1 gene leading to its deficiency cause familial platelet disorder and 

predisposes an individual with such mutation to myeloid leukaemia (Owen et al., 2008). 

Deficiency of the RUNX1 gene also correlates with deficiency in megakaryocyte colony 

formation thus, implicating RUNX1 as a regulator of megakaryopoiesis. This links RUNX1 

haploinsufficiency and predisposition to malignant haematological conditions (Owen et 

al., 2008) possibly due to increased circulating haematopoietic progenitor cells and 

defective T- and B-lymphocyte development observed in mice deficient of AML-

1/RUNX-1 (Ichikawa et al., 2004).  

Further studies suggests that bone marrow tumour microenvironment is initiated by 

pro-inflammatory cues within the bone marrow and is responsible for the maintenance 

of ALL precursor cells at the expense of normal hematopoietic cells, through aberrant 

expression of NF-кB induced by intrinsic and extrinsic factors (Enciso et al., 2016).   It is 

also known that an interplay between genetic and epigenetic changes is responsible for 

the development of B-cell acute lymphoblastic leukaemia. These changes lead to 

excessive production of malignant B-lymphoid precursor cells within the bone marrow 

(BM) (Pelayo et al., 2012; Purizaca et al., 2012). 

Failure in the differentiation of immature cell into myeloid or lymphoid cell is a 

characteristics of blast phase in chronic myeloid leukaemia (CML) (Hehlmann, 2012).  A 

study has shown that although the blast phase CML is driven by genetic instability and 

additional mutation through the BCR-ABL fusion gene, cross-talk between the signalling 

network involving Sonic hedgehog (Shh), Wnt, Notch and Hox are responsible for blast 

transformation of CD34+ CML cells (Sengupta et al., 2007). Interestingly, 

haematopoietic stem cell transcription factors; most of which are DNA binding proteins 

such as RUNX1, TEL/ ETV6, SCL/Tal1, and LMO2 have been linked to leukaemia-

associated somatic mutations and translocations in patients. The result is deregulation 

of the locus or generation of chimeric fusion proteins (Golub et al., 1995; Krivtsov et al., 

2006; Regha et al., 2015). These findings suggest the role dysregulation in both 

biochemical and molecular pathway during haematopoiesis plays in the initiation of 

leukaemia and related myelodysplastic syndromes. 
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1.2 Leukaemia 

1.2.1 Definition, types and classification 

Leukaemia results from the proliferation of an abnormal clone of haematopoietic stem 

cells that has become insensitive to regulatory, differentiation and apoptotic signal (Chu 

et al., 2012). These cells are known to multiply at the expense of normal haematopoietic 

cells (Lee et al., 2007). Signs of leukaemia are commonly related to the leucocytes 

infiltrating the lymphatic nodes and organs. However, most patients will present with 

symptoms related to bone marrow failure such as spontaneous bruising or abnormal 

bleeding, recurrent infection due to neutropenia or symptoms relating to severe 

anaemia (Grigoropoulos et al., 2013). Leukaemia is known to have a poor prognosis 

(Huang et al., 2014). It could result in osteolytic bone destruction, impaired 

haematopoiesis, and progressive renal failure (Allegra et al., 2010). Despite the 

advancement in understanding the molecular pathogenesis of leukaemia, improvement 

in therapy and introduction of novel drugs, most patients will relapse (Allegra et al., 

2010). Relapse in leukaemic cancers is a common event and has been associated to the 

heterogeneous nature of the tumour cells due to genomic instability and accumulation 

of multiple mutations (Schlenk et al., 2008; Casado et al., 2013). Such heterogeneity 

disrupts the homeostasis of the signalling network which is maintained by complex 

crosstalk and feedback (Sugawara et al., 1998; Kahlert et al., 2014). Therefore, 

regulation of protein signalling networks in leukaemic cells is difficult to predict, as it is 

also difficult to predict the influence of oncoproteins on the cells, as well as determine 

the most effective method to reverse the adverse effects of these oncoproteins on the 

cell (Quail and Joyce, 2013; Bailey et al., 2018). For example, the RUNX1/ETO 

oncoprotein responsible for leukaemic transformation in AML.  In a complex network, 

RUNX1/ETO downregulates several DNA repair proteins such as BRCA2 and ATM and 

increase the phosphorylation of TP53 gamma H2AX (γH2AX) (Forster et al., 2016). 

The EVI1 (ecotropic viral integration site 1) oncoprotein is a transcriptional regulator 

with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid 

leukaemia (AML) confers extremely poor prognosis through transcriptional regulation, 

signalling, and epigenetic modifications by interacting with DNA, proteins and protein 

complexes (White et al., 2013).  Other oncoproteins which are well characterized and 

associates with complex protein-protein network driving leukemogenesis include the 
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MYC (Yun et al., 2018), BCR-ABL oncoproteins (p210 and p230) (Hantschel et al., 2014), 

the RAS family proteins (Liang et al., 2006) and the tyrosine kinases which are activated 

in this network (Scheijen and Griffin, 2002). 

Leukaemia’s are either of pre-B cell or pre-T cell phenotype, meaning that they exhibit 

cell surface markers of normal pre-B and pre-T cells and appear to be clonal outgrowths 

of normal precursor cells whose differentiation has not progressed but stopped at a 

particular stage (Aziz et al., 2015). Leukaemic cells are capable of extravasation since 

they are blood cells.  There are mounting evidence that common genetic mutation in 

leukaemia such as translocations involving t(12;21)TEL-AML1, t(8;21)AML1-

ETO, inv(16)CBFB-MYH11 occur prenatally evidenced by its presence in neonatal blood 

spots at birth in children who contract leukaemia later in life (McHale et al., 2003; Zuna 

et al., 2011). Further studies have shown that mutations associated with leukaemia 

increase susceptibility to the condition but do not result in the acquisition of the disease 

itself (Mori et al., 2002). This is true for TEL-AML1 and AML1-ETO, the most common 

translocations for ALL and AML, respectively suggesting that a percentage of normal 

individuals carry preleukaemic clones (Mori et al., 2002; Zuna et al., 2011). 

Classification of leukaemia is based on cell type and stage of leukocyte differentiation. 

Leukaemia classification can either be acute or chronic. Leukaemia is said to be acute 

when the proliferating blood cells are immature white blood cells or cells in blast phase. 

Whereas the proliferation of mature cells is considered chronic. Further classification is 

based on the origin of the leukaemic cells. Leukocytes are usually of lymphoid origin and, 

hence, leukaemic cells can be classed as T-cell or B-cell leukaemia whereas, neutrophils, 

basophils, eosinophils and monocytes which are of myeloid origin are classed as myeloid 

leukaemia (Grigoropoulos et al., 2013). 
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The World Health Organization (WHO) in 2016 revised haematopoietic and lymphoid 

tissue related neoplasms. The revision (Table 1.1) reflects the opinion of 

haematopathologists, haematologists, geneticists and oncologists and incorporates 

updated data to include new clinical, prognostic, morphologic, immunophenotypic and 

genetic characteristics (Arber et al., 2016). 

 

    Table 1.1. Summary of WHO classification of myeloid neoplasms and acute 
                       Leukaemia. Reported in Arber et al., 2016 

Leukaemia

Acute
[proliferation of 

immature blast cell]

Acute lymphoblastic 
leukaemia (ALL) 
(Lymphoblast)

Acute myelod 
leukaemia (AML) 

(Myelobalsts)

Chronic
[proliferation of 

mature cells]

Chronic lymphocytic  
leukaemia(CLL) 
(Lymphocytes)

Chronic myeloid 
leukaemia (CML) (for 
example, neutrophils, 
eosinophils, basophils

Myeloproliferative Neoplasms (MPN)  

o Chronic Myeloid Leukaemia (CML), BCR-ABL11+  

o Chronic Neutrophilic Leukaemia (CNL)  

o Polycythaemia Vera (PV)  

o Primary Myelofibrosis (PMF) 

 PMF, prefibrotic/early stage  

 PMF, overt fibrotic stage  

o Essential Thrombocythemia (ET)  

o Chronic Eosinophilic Leukaemia, not otherwise specified (NOS) 

o MPN, unclassifiable  

o Mastocytosis 

Figure 1.2. Summary of the broad classification of leukaemia 
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Myelodysplastic syndromes (MDS)  

 

o MDS with single lineage dysplasia  

o MDS with ring sideroblasts (MDS-RS) 

 MDS-RS and single lineage dysplasia 

 MDS-RS and multi-lineage dysplasia 

o MDS with multi-lineage dysplasia 

o MDS with excess blasts  

o MDS with isolated del(5q)  

o MDS, unclassifiable  

o Provisional entity: Refractory cytopenia of childhood  

o Myeloid neoplasms with germ line predisposition 

 

Acute Myeloid Leukaemia (AML) and related neoplasms 

  

o AML with recurrent genetic abnormalities  

 AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1  

 AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-

MYH11 

 APL with PML-RARA  

Myeloid/Lymphoid Neoplasms with eosinophilia and rearrangement of 
PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2 
 

o Myeloid/Lymphoid Neoplasms with PDGFRA rearrangement 

o Myeloid/Lymphoid Neoplasms with PDGFRB rearrangement 

o Myeloid/lymphoid Neoplasms with FGFR1 rearrangement 

o Provisional entity: Myeloid/Lymphoid Neoplasms with PCM1-JAK2 

Myelodysplastic/Myeloproliferative Neoplasms (MDS/MPN)  

 

o Chronic Myelomonocytic Leukaemia (CMML)  

o Atypical Chronic Myeloid Leukaemia (aCML), BCR-ABL1- 

o Juvenile Myelomonocytic Leukaemia (JMML)  

o MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T)  

o MDS/MPN, unclassifiable 
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 AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A  

 AML with t(6;9)(p23;q34.1);DEK-NUP214  

 AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, 

MECOM  

 AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-

MKL1 

 Provisional entity: AML with BCR-ABL1  

 AML with mutated NPM1 

 AML with biallelic mutations of CEBPA  

 Provisional entity: AML with mutated RUNX1  

o AML with myelodysplasia-related changes  

o Therapy-related myeloid neoplasms  

o AML, NOS  

 AML with minimal differentiation  

 AML without maturation  

 AML with maturation  

 Acute Myelomonocytic Leukaemia  

 Acute Monoblastic/Monocytic Leukaemia  

 Pure erythroid leukaemia 

  Acute Megakaryoblastic Leukaemia  

 Acute Basophilic Leukaemia  

 Acute panmyelosis with myelofibrosis  

o Myeloid sarcoma  

o Myeloid proliferations related to Down syndrome  

 Transient Abnormal Myelopoiesis (TAM) 

  Myeloid leukaemia associated with Down syndrome 

Blastic plasmacytoid dendritic cell neoplasm  

 

Acute leukaemia’s of ambiguous lineage  

 Acute undifferentiated leukaemia  

 Mixed phenotype acute leukaemia (MPAL) with 

t(9;22)(q34.1;q11.2); BCR-ABL1  

 MPAL with t(v;11q23.3); KMT2A rearranged  

 MPAL, B/myeloid, NOS  

 MPAL, T/myeloid, NOS 
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B-Lymphoblastic Leukaemia/Lymphoma  
 

o B-lymphoblastic leukaemia/lymphoma, NOS  
o B-lymphoblastic leukaemia/lymphoma with recurrent genetic 

abnormalities  
 

o B-lymphoblastic leukaemia/lymphoma with t(9;22)(q34.1;q11.2);BCR-
ABL1  

o B-lymphoblastic leukaemia/lymphoma with t(v;11q23.3);KMT2A 
rearranged  

o B-lymphoblastic leukaemia/lymphoma with t(12;21)(p13.2;q22.1); 
ETV6-RUNX1 B-lymphoblastic leukaemia/lymphoma with hyper-
diploidy 
  

o B-lymphoblastic leukaemia/lymphoma with hyp-odiploidy 
 

o B-lymphoblastic leukaemia/lymphoma with t(5;14)(q31.1;q32.3) IL3-
IGH 

o B-lymphoblastic leukaemia/lymphoma with t(1;19)(q23;p13.3);TCF3-
PBX1  

o Provisional entity: B-lymphoblastic leukaemia/lymphoma, BCR-ABL1–
like 

o Provisional entity: B-lymphoblastic leukaemia/lymphoma with iAMP21 
T-Lymphoblastic Leukaemia/Lymphoma  

o Provisional entity: Early T-cell precursor Lymphoblastic Leukaemia 

o Provisional entity: Natural killer (NK) cell Lymphoblastic 

Leukaemia/Lymphoma 

 

 

1.2.2  Prevalence and statistics 

According to Cancer Research UK (CRUK), leukaemia is the 12th most common cancer in 

the UK with about 9,900 new cases of leukaemia reported each year. The incident rate 

is higher in male than in females. It is projected that the incidence rate of leukaemia will 

rise by 5% between 2014 and 2035 to 19 cases per 100,000 people while the mortality 

rate will rise by 18%. The Caucasian population are known to be more affected than 

Black or Asian populations. Current statistic on leukaemia incidence and survival 

according to CRUK are shown in Figure 1.3 and 1.4.  
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More comprehensive data compiled from several databases was recently published by 

Adalberto et al., (2018) (Table 1.2). The collected data was consistent with reports that 

leukaemia is more common in males than female. Australia and New Zealand were 

identified as having the highest incidence of leukaemia. Among children, acute 
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Figure 1.3. UK leukaemia incidence rate per 100,000 population by sex 
from 1993 to 2015. Increase rate in leukaemia in all age group. Age 
standardized (AS) incidence rate in males and females between 1993-1995 
and 2013-2015 was 15% and 14% respectively (adapted from CRUK). 
 

Figure 1.4. Survival rate of leukaemia in England and Wales between 2010- 
2011. Chart showing overall survival at 69%, 52% and 46% for one, five and ten 
years from the time of diagnosis (adapted from CRUK). 
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lymphoblastic leukaemia (ALL) subtype was more prevalent. In adults, subtypes were 

found to be diverse. European and North American adults had a relatively higher 

incidence of chronic lymphoblastic leukaemia (CLL) whereas, adults in South American, 

Caribbean, Asian and African had higher rates (Adalberto et al., 2018). 

                Table 1.2. Summary of finding on the global incidence of leukaemia  

Continent/ region Sex Incidence rate 
Australia and New Zealand Males 11.3 
 Females 7.2 
North America Males 10.5 
 Females 7.2 
Western Europe Males 9.6 
 Females 6.0 
Western Africa Males 1.4 
 Females 1.2 

                                                                                                          Adalberto et al., 2018 

 

It has been observed that adults have a higher incidence of CML, AML, myelodysplastic 

and myeloproliferative syndrome when compared to children (Adalberto et al., 2018). 

Whereas childhood leukaemia is more prevalent in B and T-cell acute lymphoblastic 

leukaemia (ALL). The former subtype which has shown a higher incidence in adults are 

of myeloid origin and are derivative of precursor cells critical in innate immunity rather 

than adaptive immunity (Abbas et al., 2005).  
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1.2.3 Aetiology and Pathogenesis  

The table below summarises some factors which are thought to increase the risk of 
developing leukaemia. 

 

     Table 1.3. Genetic and environmental risk factor implicated in leukaemia 

Environmental factors 
 Radiation and electromagnetic exposure 
 Chemical exposure e.g. benzene 
 Viral infection e.g. human T-cell lymphoma virus (HTLV-1), Epstein-Barr virus 

(EBV) 
 Therapy-related predisposition e.g. radiotherapy and chemotherapy 

 
Congenital and inherited syndromes 
Inherited predisposition factors 

 Fanconi anaemia 
 myelodysplasia 
 Neurofibromatosis 

DNA repair defects 
 Bloom syndrome 
 Li-Fraumeni syndrome 
 Ataxia-telangiectasia 

Chromosomal associated syndrome 
 Down syndrome 
 Klinefelter syndrome 

 
Other factors 

 Age 
 Gender 
 Race 
 Family history 
 Preventable cases e.g. lifestyle 

 
Extensive review by Buffler et al., 2005. 

 

As mentioned earlier, in adults there was a higher incidence of leukaemia of myeloid 

origin, myeloid cells are derivatives of precursor cells critical in innate immunity rather 

than adaptive immunity (Abbas et al., 2005). Cells involved in innate immunity are 

known to produce large number of enzymes (e.g., myeloperoxidase) that can produce 

cytotoxic mediators as part of their normal function. The cytotoxic mediator produced 

can activate environmental chemicals (e.g., benzene), reactive oxygen and nitrogen 

species through chronic inflammation that can reach the bone marrow and produce 

genotoxic intermediates (van der Vliet et al., 1997; Eiserich et al., 1998). Benzene is a 

known culprit in leukaemia and lymphoma development as well as causes haemopoietic 
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defects (Hayes et al., 2000; Lan et al., 2004). Myeloperoxidase in the bone marrow 

activates benzene metabolites to nucleophilic compounds causing DNA damage 

(Wiemels et al., 1999; Eastmond et al., 2005).  Bioactivated benzene metabolite, 

hydroquinone (BAHQ) has also been shown to inhibits topoisomerase-II (Topo II) in vitro 

and in vivo during the DNA binding stage and at the closed clamp stage in the catalytic 

cycle thereby interfering with either binding of Topo II to the DNA or the release of 

synthesized DNA.  This could result in DNA breakage, chromosomal aberration and 

leukaemic-associated chromosomal translocation in bone marrow (Eastmond et al., 

2001; Mondrala and Eastmond, 2010). 

A recent study using a genome wide association study and meta-analysis found a 20-

fold increased risk of acute lymphoblastic leukaemia (ALL) in children with Down 

syndrome (DS).It also demonstrated distinct somatic features, 

including CRLF2 rearrangement in approximately 50% of cases with susceptibility loci for 

single nucleotide polymorphisms in IKZF1, CDKN2A, ARID5B and GATA3 which was 

independent of DS-ALL subtype (Brown et al., 2019). Knockdown of IKZF1 resulted in 

increased cell proliferation in lymphoblastoid cell lines (Brown et al., 2019). Lifestyle 

factors such as smoking and increased BMI associated with obesity have been identified 

as risk factors for other cancers and leukaemia (Poynter et al., 2016). Owing to the 

conflicting results published, a meta-analysis of a pool of existing data found an 

association between being overweight and obesity with increased incidence of AML (Li 

et al., 2017). However, they only found an association between acute promyelocytic 

leukaemia (APL) with short overall survival (OS) and high risk of differentiation syndrome 

but not with AML (Li et al., 2017). Among the several mechanisms which have been 

suggested through which obesity can increase susceptibility and promote cancer is the 

activation of free radicals through mitochondrial and tissue stress which are capable of 

inducing DNA damage by release of reactive intermediates (Inoue and Kawanishi, 1995; 

Collado et al., 2012). Through the production of leptin and adiponectin which are 

adipokines, obesity promotes cancer cell proliferation and survival via activation of PI3K, 

MAPK, and STAT3 (Jaffe and Schwartz, 2008; Gao et al., 2009). 
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1.2.4 Chronic Myeloid Leukaemia (CML) 

Chronic Myeloid Leukaemia (CML) is a myeloproliferative disorder of transformed 

haematopoietic stem cells and progenitors such as common myeloid progenitor and 

granulocyte-macrophage progenitor cells (Jamieson et al., 2004). CML is characterized 

by a balanced and reciprocal translocation of chromosome t(9;22)(q34;q11) with 

resultant fusion of the breakpoint cluster region protein (BCR) and Abelson Murine 

Leukaemia viral oncogene homolog 1 (ABL1) (Figure 1.5) (Li et al., 1999). The resultant 

BCR-ABL fusion gene is commonly referred to as the Philadelphia (Ph) chromosome 

(Tough et al., 1961; Nowell, 2007) and is found in over 90% of CML patients. The initial 

phase of CML is characterised by expansion of premature myeloid precursors and 

mature cells which have the capacity to differentiate normally.  

Studies (Daley et al., 1990; Li et al., 1999) suggests that three main types of BCR-ABL 

protein are formed depending on the breakpoint (Figure 1.5). A breakpoint that occurs 

in introns 1 or 2 of ABL and in cluster region (M-bcr) of BCL between exon 13 and 14 (b2) 

or exon 14 and 15 (b3) produce BCR-ABL fusion gene that is transcribed into b2a2 or 

b3a2 mRNA (where b = BCL gene and a = ABL gene). The resultant fusion protein, 

p210BCR-ABL is 210kDa, and sufficient for the malignant transformation of CML and 

responsible for the phenotypic characteristics such as elevated WBC, splenomegaly and 

anaemia observed in the chronic phase of CML. Atypical causes are those resulting from 

BCR-ABL transcripts involving ABL exon a3 instead of a2, e1a2 encoding a protein about 

190kDa, p190BCR-ABL and BCR exon 19/ABL exon a2 (e19/a2) encoding a larger protein of 

about 230kDa, p230BCR-ABL. A study (Sawyers et al., 2002) suggested that although these 

fusion proteins differ in their BCR component, they express the same level of c-ABL 

tyrosine kinase activity. 
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Functional domains (Figure 1.6) in the BCR-ABL protein that could be responsible for the 

cellular transformation in leukaemia have been identified (Pendergast et al., 1991).  In 

the ABL portion, the Src-homology domain 1 and 2 (SH1 and SH2) and the actin-binding 

domain have been named. While in the BCR portion, the coiled-coil oligomerization 

domain (aa-1-63), the Grb-2 binding site (Tyr-177) and the phosphoserine/threonine-

rich SH2 binding domain have been identified to aid cellular transformation (Pendergast 

et al., 1991; McWhirter et al., 1993; Fredericks and Ren, (2013).     

                       

Figure 1.5. Schematic representation of BCR and ABL gene, translocation and resultant 
protein. Boxes represent exons while connecting horizontal lines represents introns. A. 
Breakpoints in the ABL gene are indicated by the arrows and occur at intron 1 or 2 of the 
ABL gene. B. BCR alternative first (e1’) and second (e2’) exon. Breakpoints in BCR occur 
within the cluster region (m-bcr, M-bcr and µ-bcr) shown by the double-headed 
horizontal arrows. C. Represents the structure of the various BCR-ABL mRNA transcript 
which are formed and in accordance with the position of the BCR breakpoint. Breaks in 
m-bcr gives rise to mRNA molecule with e1a2 junction. Breaks in M-bcr generate fusion 
transcripts with a b2a2 or a b3a2 junction, respectively. Breakpoints in µ-bcr, result in 
BCR-ABL transcripts with an e19a2 junction. (where: I = intron; e=exon; b=BCL gene 
and a=ABL gene) (Adapted from Li et al., 1999). 

A 

B 

C 
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The resultant BCR-ABL fusion protein exhibits a constitutively active tyrosine kinase 

activity because of autophosphorylation of the activation loop via SH2 binding 

(Hantschel et al., 2014). The tyrosine kinase activity of the chimeric protein is found 

exclusively in the cytoplasm of the cell complexed with several cytoskeletal proteins 

(Figure 1.7) (Puil et al., 1994; Raitano et al., 1995). The constitutively active tyrosine 

kinase activity and the interaction with cytoskeletal proteins underlie the mechanism of 

induction and pathophysiology of the leukaemic phenotype.  The cytoskeletal proteins 

and their role in cell signalling have been listed in Table 1.4. 

 

 

 

 

 

 

Figure 1.6. Schematic illustration showing the functional domains of BCR-ABL protein 
using the p210BCR-ABL example. Shown on the BCR portion is the coiled-coil domain, Grb-
2 binding site, the phosphoserine/threonine-rich SH2-binding domain, the rho-GEF 
domain. The ABL portion consist of the regulatory src-homology regions SH3 and SH2, 
the SH1 tyrosine kinase domain, the nuclear localization signal (NLS) and the DNA and 
actin binding domain (Adapted: Salesse and Verfaillie, 2002). 
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In CML, the abnormal cells function adequately, allowing a mild initiation of the disease; 

a benign chronic phase (CP). This then progresses to an accelerated phase (AP), which is 

more difficult to control and characterised by an enlarged spleen and increased number 

of blast cells. The final stage of CML is the acute or blast crisis (BC) phase characterised 

by blast cells domination of the bone marrow and blood. At the blast phase, CML 

presents as ALL in 25% of patients, while the remaining 75% present as AML 

(Hamerschlak, 2008). 

 

 

 

 

 

Figure 1.7. Basic representation of the signalling pathway of the BCR-ABL proteins. 
Activation of the RAS-JAK/STAT-PI-3 pathways and the FAK complex (actin, paxillin and 
integrin) which are multi-protein structures that link the extracellular matrix (ECM) to 
the cytoplasmic cytoskeleton result in increased cell proliferation, differentiation and 
decreased apoptosis in CML progenitor cells. Binding of these proteins to adaptor 
protein such as GRB2, CBL, SHC, and CRKL result in their activation. BAP-1 denotes 
BCR-associated protein 1; GRB2: growth factor receptor-bound protein 2; CBL: casitas 
B-lineage lymphoma protein; SHC: SRC homology 2-containing protein; CRKL: CRK-
oncogene-like protein; JAK-STAT: Janus kinase-signal transducers and activators of 
transcription; FAK: focal adhesion kinase, SOS: son-of-sevenless and GEF: GDP-GTP 
exchange factor (Adapted: Salesse and Verfaillie, 2002).  
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           Table 1.4. The Role of signalling pathways and transcriptional factors  
           dysregulated in response to BCR-ABL activation 

Pathway       Role Effectors 

Wnt/β-catenin -HSCs self-renewal  
-Interaction with BM niche 
-CML progression 

Wnt  
β-catenin  
GS3K 

Notch -Interaction between leukemic, HSCs, 
and BM niche  
-CML advanced stages 

 
ϒsecretase 

PI3K/AKT/mTOR  Normal haemopoiesis PI3K  
AKT 
mTOR1/2 

JAK/STAT  -Normal haemopoiesis 
-A key player in a variety of 
myeloproliferative disorders 

 
JAK 1/2 

FoxO/TGF-β  -Expression of genes involved in cell 
growth, proliferation and differentiation  
-Involvement in BCR-ABL activated 
PI3K/AKT pathway 

 
TGF-β 

PML -Critical role in haemopoiesis 
-Dysregulated in CML  
-LSC maintenance 

 
PML 

                     Abbreviations: CML, chronic myeloid leukaemia; HSC, hematopoietic stem cells; BM, bone marrow.  
                     PI3K, phosphoinositide 3-kinase; PML, promyelocytic leukaemia; PP2A, protein phosphatase 2A;  
                     TGF-β, transforming growth factor-β. (Jilani et al., 2008; Naka et al., 2010) 
 

 

Diagnosis of CML is through a basic blood test which looks for elevated peripheral WBC 

count that is dominated by granulocytes.  A confirmation is achieved by examination of 

the bone marrow, which shows a large proportion of matured white cells when 

compared to the blast cells. Bone marrow aspiration is also useful for staging between 

phases. Chromosomal abnormalities can be identified in bone marrow samples using 

fluorescence in-situ hybridization (FISH) and reverse transcriptase polymerase chain 

reaction (RT-PCR) technique (Schoch et al., 2002; Jabbour and Kantarjian, 2018). The 

FISH analysis relies on co-localization of large genomic probes specific for BCR and ABL 

genes. The error margin for a false positive test is between 1-5% depending on the probe 

used (Jabbour and Kantarjian, 2018). PCR can be either qualitative or quantitative. A 

qualitative assessment provides information about the presence of BCR-ABL transcript 

whereas, quantitative PCR assesses the amount of transcript present.  Qualitative PCR 

is preferred in the diagnosis of CML whereas quantitative PCR is best used to monitor 

the amount of residual disease (Jabbour and Kantarjian, 2016; 2018). Both FISH and PCR 
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techniques can also be used to assess response to treatment and differentiate CML from 

other myeloproliferative diseases with similar presentation (Schoch et al., 2002).  

A cost-effective chemiluminescence clinical diagnosis method has been recommended 

by Xu and colleagues (Xu et al., 2016). WHO has outlined criteria for CML diagnosis listed 

in Table 1.5 (Arber et al., 2016). 

 

Chronic phase (CP) CML 

 Cytogenetic evidence of Ph+ chromosome in peripheral blood or 

bone marrow  

 Examination of haematological cells from bone marrow (BM) 

aspiration with less than 10% blast cells 

Acute phase (AP) CML (diagnosed if any one or more of the following exist) 

 Persistent or increasing WBC (>10 x 109/L), unresponsive to chemo or 

radiation therapy 

 Persistent or increasing splenomegaly, unresponsive to chemo or 

radiation therapy 

 Persistent thrombocytosis (>1000 x 109/L), unresponsive to chemo or 

radiation therapy 

 Persistent thrombocytopenia (<100 x 109/L) unrelated to chemo or 

radiation therapy 

 20% or more basophils in the peripheral blood 

 10%-19% blasts in the peripheral blood and/or bone marrow 

 Any new clonal chromosomal abnormality in Ph+ cells that occurs 

during therapy 

Tyrosine kinase inhibitor (TKI) response criteria  

 Hematologic resistance to the first TKI (or failure to achieve a 
complete hematologic response to the first TKI)  

 Any haematological, cytogenetic, or molecular indications of 
resistance to two sequential TKIs 

 The occurrence of two or more mutations in BCR-ABL1 during TKI 
therapy 

 
BC CML (diagnosed if any one or more of the following exist)  

 ≥20% of peripheral blood or bone marrow cells are blasts  

 Onset lymphoblast in the peripheral blood or bone marrow cells 

Table 1.5. WHO haematological/cytogenetic criteria for the diagnosis of CML                      
                   Report: Arber et al., 2016. 
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Earlier treatment and or management of CML was initially based on cytoreductive 

therapy such as hydroxyurea.  This method of therapy only provides temporary disease 

control but does not limit disease progression with a median survival of about 45months 

from diagnosis. Later immunology-based therapy was introduced which, includes the 

use of interferon alpha (IFN-α) (Hehlmann et al.,1994). This proved to be superior to 

cytoreductive therapy with an increase in the median survival rate of 60months from 

diagnosis and patients going into complete cytogenic remission (Allan et al., 1995; 

Bonifazi et al., 2001). 

The use of allogeneic haematopoietic stem cell transplant (HSCT); a process in which 

stem cells from a matching donor is infused into a recipient to re-establish 

haematopoietic function, offered effective and lasting curative potential for patients 

with CML. However, this method was less applicable than alternative therapies due to 

the challenge in finding a suitable donor, the morbidity of the procedure, tissue rejection 

known as graft versus host disease (GvHD) and the age of the recipient (McGlave et 

al.,2000; Curtler et al., 2001). Further challenges in the use of HSCT as a lasting solution 

is the theory of “bystander effect”. A theory in which the naïve haematopoietic stem 

cells transplanted are reprogrammed within the new host microenvironment and 

becomes cancerous (Shen et al., 2012). This has been blamed on the total body 

irradiation (TBI) required for conditioning regimen (Shen et al., 2012).  

The use of tyrosine kinase inhibitors (TKI), which function by blocking adenosine 

triphosphate (ATP) binding sites in the BCR-ABL kinase proved efficacious in patients 

who were nonresponsive to IFN-α (Kantarjian et al., 2002a). The first TKI, imatinib 

became the front-line drug for the management of CML (O’Brian et al., 2003; Baccarani 

et al.,2009). Imatinib, when administered at a standard daily dose of 400mg/day in a 

patient, is relatively tolerated but not without side effects which include nausea, 

oedema, and diarrhoea (Druker et al., 2001).  Following its success with an estimated 

progression-free survival of 90% in 5years (Kantarjian et al., 2002b), the newer 

generation of imatinib analogue; nilotinib, dasatinib, and bosutinib has been developed 

and approved by the FDA as front-line treatment of patients with newly diagnosed CML 

in chronic phase (CP) (Talpaz et al., 2006; Kantarjian et al., 2007; Cortes et al., 2011). 

This newer generation of drugs was developed to solve the problem of resistance with 

imatinib due to mutations in the BCR-ABL ATP binding site (Talpaz et al., 2006; Kantarjian 
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et al., 2007; Cortes et al., 2011). Patients who develop the T315I “gatekeeper” mutation 

display resistance to all currently available TKIs except ponatinib (O’Hare et al., 2009). 

Individuals with the advanced disease do not respond to imatinib and hence, are offered 

induction chemotherapies such as etoposide, cytarabine and carboplatin with the hope 

of restoring patients to the chronic phase. Kuroda et al., (2013) argues that molecular 

remission (which is a complete remission with no evidence of the disease in the blood 

and or bone marrow using sensitive monitoring test such as PCR) is rarely achieved even 

when haematological and cytogenetic remission is achieved. This is due to the protective 

effect conferred on these cells by the extensive network of BCR-ABL1 gene with a normal 

haematopoietic and signalling pathway (Kuroda et al., 2013). Allogeneic stem cell HSCT 

remains an important therapeutic option for patients with CML-CP who have failed at 

least two TKIs, and for all patients in CML advanced phases (Jabbour et al., 2011). 

Studies have shown that combining kinase inhibitor with cytoreductive drugs could 

improve the efficacy of TKI in overcoming the challenge of mutation in the BCR-ABL1 

oncogene (Fava et al., 2015). Combination of imatinib and interferon has been 

suggested to improve the cytogenic response (Palandri et al., 2008; Fava et al., 2015). A 

phase III randomized study combining imatinib and peginterferon alfa-2a obtained a 

higher rate of major molecular response (MMR) (i.e., a BCR-ABL RNA level ≤0.1%) 

(Preudhomme et al., 2010). Another study found that co-treatment with imatinib and 

amiloride re-sensitized BCR-ABL1 T3151 mutant cells to imatinib treatment by 

modulating alternative splicing (Cheng et al., 2011). These studies suggest that 

combined kinase therapy in CML treatment may offer a better cytogenic response. 

1.2.5 Acute myeloid leukaemia (AML) 

Acute myeloid leukaemia (AML) is a heterogeneous malignancy that is characterized by 

exaggerated growth or clonal expansion of blast cells (myeloid progenitors) in the bone 

marrow and peripheral blood (Narmala et al., 2010). This results in haematopoietic 

insufficiency with or without leucocytosis (Narmala et al., 2010). It was earlier reported 

that 40-50% of patients with AML do not have clonal chromosomal aberration (Schlenk 

et al., 2008). In recent years, with the advances in technology, several acquired genetic 

mutation and deregulated gene expression profiles have been identified.  The 

cytogenetic risk for AML has been classed as favourable prognosis, intermediate 

prognosis and poor prognosis and have been summarized in Table 1.6. Two classes of 
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somatic mutations have been observed in AML. Class I includes mutation that activates 

the signal transduction pathway; mainly the FMS-related tyrosine kinase 3 gene (FLT3) 

and RAS family of viral oncogenes (Schlenk et al., 2008). While class II involves mutations 

that affects transcriptional factors and components of the transcriptional co-activation 

complex e.g. mutations in CCAAT/enhancer binding protein α gene (CEBPA), myeloid–

lymphoid or mixed-lineage leukaemia gene (MLL) and nucleophosmin gene (NPM1) 

(Schlenk et al., 2008).  There has also been a report on an early acquisition of somatic 

mutation in genes encoding epigenetics modifiers such as DNMT3A, ASXL1, TET2, IDH1 

and IDH2 (Ley et al., 2010; Rocquain et al., 2010). 

 

 

      Table 1.6 Prognostic cytogenetics risk for acute myeloid leukaemia 

Prognosis Cytogenetics 

 

 

Favourable  

Balanced structural rearrangements; 

t(15;17) (q22;q 12-21) 

t(8; 21) (q22; q22) 

inversion (16)(p13q22)/t (16;16)(p13 ;q22) 

 

 

 

Intermediate  

Normal karyotype 

Balanced structural rearrangements 
 t(9 ;11)(p22 ;q23)  

 
Unbalanced structural rearrangements  
del (7q), del (9q) , del (11q) , del (20q) 

 
Numerical aberrations  
-Y, +8, +11, +13, +21 

 
 

 

Poor 

       Balanced structural rearrangements; 

Inversion (3)(q21q26)/t (3 ;3)(q21 ;26) 
t(6 ;9)(p23 ;q34) 

t(6 ;11)(q23 ;p13,1) 
 

Unbalanced structural rearrangements  
del (5q) 

 
Numerical aberrations 

 -5, -7 
                                                                                      (Adapted: Hamerschlak, 2008) 
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Another sub-classification of AML using M0-M7 has been described. M0 and M1, 

immature myeloblastic; M2, mature myeloblastic; M3, promyelocytic; M4, 

myelomonocytic; M5, monocytic; M6, erythroleukaemia; and M7, megakaryocytic 

based on the different cell types observed in the blood and bone marrow (Bennett et 

al., 1985; Basharat et al., 2019).   

Following the WHO update, the European leukaemic network has published a more 

comprehensive cytogenetic/mutational prognostic stratification and is described by 

Döhner et al., (2017) in Table 1.7. 

 

Table 1.7. Update summary of AML genetics/mutational prognostic stratification 

Prognosis Genetic abnormality 

Favourable t(8;21)(q22;q22.1);RUNX1-RUNX1T1 

Inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

Mutated NMP1 without FLT3-ITD or with FLT3-ITDlow (allelic ratio 

<0.5); Biallelic mutated CEBPA 

Intermediate Mutated NPM1 and FLT3-ITDhigh 

(allelic ratio ≥0.5) 

Wild-type NPM1 without FLT3-ITD or with FLT3-ITDlow (without 

adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A 

Cytogenetic abnormalities not classified as favourable or adverse 

Adverse t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23.3); 

KMT2A rearranged t(9;22)(q34.1;q11.2); 

BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

(EVI1) -5 or del(5q); -7; -17/abn(17p) 

Complex karyotype (three or more unrelated chromosome 

abnormalities), 

Monosomal karyotype (defined by the presence of 1 single 

monosomy) 

Wild-type NPM1 and FLT3-ITDhigh 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 

                                                                                                 (Adapted: Döhner et al., 2017) 
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Development of AML has been associated with exposure to benzene, ionizing radiation, 

chemotherapy and inherited syndrome such as Fanconi anaemia and Downs syndrome 

(Tsai et al., 2014).  The statistical record for AML incidence in the UK is approximately 

3.9 and 5.2/100,000 in females and males accounting for 43% and 57% respectively 

(CRUK) with a diagnostic median age of 75years (Cartwright et al., 2002; Bhayat et al., 

2009). AML is more common in older people than children and adolescent (Bhayat et 

al., 2009). The five years relative survival rate in England is 16% and 14% respectively for 

women and men compared to 18% and 15% reported for available data for Europe 

(CRUK). Techniques such FISH, PCR, flow cytometry and array technology, which can 

detect gain and loss of genetic materials can be used for the diagnosis of AML (Döhner 

et al., 2010). 

 

1.2.6 AML therapy and management 
 

Due to the wide range of cytogenetic and mutational events that occur in AML, 

treatment is based on presentation. Intensive chemotherapy (IC) is often employed in 

30-60% of the elderly with adverse prognosis but results in poor performance and 

treatment-related mortality of about 10-25% (Burnett et al., 2007). Overall survival (OS) 

when IC is feasible is 13months. Low-dose cytosine arabinoside (LDAC), the 

farnesyltransferase inhibitor tipifarnib, and gemtuzumab ozogamicin have shown 

improved outcome with patients going into remission but without improvement in OS 

(Burnett et al., 2007; Burnett et al., 2013). 

 

Older patients with AML and high-risk myelodysplastic syndrome (MDS) who have never 

received treatment showed increased therapy response with clofarabine. However, OS, 

relapse and treatment co-morbidity were unchanged when compared to patients who 

had LDAC treatment (Burnett et al., 2013). Sapacitabine alone, a nucleoside analogue, 

has also been used in a randomized study in older patients with no improvement in OS 

when compared to LDAC alone. Both Sapacitabine and LDAC were found to result in a 

similar outcome except for sapacitabine whose side effect was well tolerated (Burnett 

et al., 2015). Barasertib showed an OS of 8.2 months against 4.5 months with LDAC but 

with more toxic effect. The population for this study was notably small at 74 (Kantarjian 

et al., 2013).  
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Volasertib, a selective inhibitor of polo-like kinase (Plks) which is responsible for mitotic 

checkpoint regulation and cell division in a phase 2 trial, was found unsuitable for 

intensive induction therapy when compared to LDAC (Dohner et al., 2014). Although a 

significant increase in event-free and OS rate were achieved when combined with LDAC, 

volasertib led to an intolerable increase in the frequency of adverse effect (Dohner et 

al., 2014).  

 

Azacytidine, a DNA methylation inhibitor administered at 75mg/m2/d in a phase-III trial 

significantly prolonged OS in patients with intermediate and high-risk myelodysplastic 

syndrome. Patients for this study were classified using the French American British (FAB) 

classification with one-third meeting the WHO definition of AML at ≥20% BM blasts 

(Fenaux et al., 2010; Dombret et al., 2015). In phase I/II trial, azacytidine was combined 

with midostaurin; a broad-spectrum tyrosine kinase inhibitor of both wild type and 

mutated FLT-3 type. The result showed better response and longer median remission 

duration in patients who have not been previously exposed to FLT3 inhibitor and 

previously transplanted (Strati et al., 2014). On Table 1.8 is listed the current regiment 

used in AML management and the drug performance according to (Almeida and Romas, 

2016). 
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Table 1.8. Summary of therapeutic efficacy of drugs used for AML in older patients 

Regimen    Complete         
   remission (%) 

Median overall 
survival (OS) 

(months) 

Intensive chemotherapy  50-60 6–12 

LDAC  10-25 6 

Azacytidine in low-blast count AML   25 24.5 

Azacytidine in AML >30%  25 12.1 

Decitabine in AML >30% bone 
marrow blast 

18 7.7 

Clofarabine 38 11.4 

Sapacitabine  37 7.9 

Barasertib  35 8.2 

Volasertib (+ LDAC)  31 8 

Tipifarnib  8 3.6 

Midostaurin (+Aza)  2 NA 

Quizartinib  54 <12 

Vorinostat (+LDAC) 46 NA 

Gemtuzumab Ozogamicin 30 11 

                                                                                                           (Almeida and Romas, 2016) 
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1.3   Constitutive and alternative Splicing 
 

RNA splicing is a post-transcriptional modification required for the maturation of RNA. 

There are two types of splicing events; constitutive splicing (Figure 1.7A) in which all 

introns are removed and exons are joined together (Ding and Elowitz, 2019) while 

alternative splicing (Figure 1.8B-F) is a regulatory mechanism of post-transcriptional 

mRNA processing that selectively removes or retains introns, which allows for multiple 

expression of several mRNAs from a single gene. The result is the generation of two or 

more proteins from a single gene (Liu et al., 2017; Bush et al., 2017). Other processes 

through which multiple mRNA transcript can be generated apart from alternative 

splicing are alternative polyadenylation and alternative promoter usage (Pecci et al., 

2001; Hilgers, 2015). The close coupling of constitutive splicing with transcription (Fong 

and Zhou, 2001) is thought to serve as a signal-processing filter that regulates the 

amount of mature mRNA depending on the rate of transcription (Ding and Elowitz, 

2019). There are indications that constitutive splicing provides several possible functions 

including intron-enhanced transcriptional efficacy (Brinster et al., 1988), increased 

retention of intronic miRNAs and other non-coding RNAs in constitutively spliced introns 

(Rodriguez et al., 2004; Rearick et al., 2011) and could reflect or promote the 

evolutionary selection of new phenotypes (Lev-Maor et al., 2007). Thus, constitutive 

splicing could be playing roles beyond isoform diversification.  

An earlier study suggests that the size of an intron determines whether an exon is 

constitutively or alternatively spliced. The study found that when intron size is between 

200 and 250 nucleotides, the splice sites across the introns are not recognized resulting 

in exonic splice site recognition with inclusion of weak exonic splice site (Fox-Walsh et 

al., 2005). Other factors such as the exon and intron architecture have been shown to 

influence the choice of splice site such that large exons result in exon skipping but could 

be included when flanked by small introns (Fox-Walsh et al., 2005; Roy et al., 2008). This 

suggests that constitutive splice-site recognition is more efficient in small exons and 

introns. 

It is estimated that 90-95% of human genes are alternatively spliced (Wang et al., 2008). 

It is also apparent that alternative splicing plays a role in physiological functions and 

developmental processes and in recent times has been found to aid the progression of 
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several diseases such as cancer, neurological conditions like Alzheimers, vascular defects 

of the eyes and metabolic disorders (Climente-González et al., 2017; Han et al., 2018; 

Batson et al., 2017; Wong et al., 2018). A proteomic mapping performed on human 

tissue identified several new protein-coding regions in genes due to alternative splicing 

and selection of an alternative splice site thus indicating that alternative splicing also 

contributes to proteomic complexity (Kim et al., 2014). Alternative splicing can modify 

the properties of the encoded protein which affects the stability, binding pattern, 

cellular localization and activity (Bush et al., 2017). With a better understanding of the 

regulatory mechanism of alternative splicing, studies are now geared toward 

understanding the functional consequence of splicing events.  

 

 

 

 

 

 

 

 

 

Figure 1.8. Representation of constitutive and alternative splicing. 
Alternative splicing of pre-mRNAs occurs when an exon is skipped, intron 
retained, an alternative 3’- (acceptor) or 5’- (donor) sites are used and from 
selection of mutually exclusive exons. Exons (rectangles) are connected by 
introns (black lines).  Broken lines depict regions which are spliced (adapted: 
Li et al., 2007). 
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1.3.1 Precursor messenger RNA (Pre-mRNA) splicing by spliceosome 

Pre-mRNA splicing is a process whereby the intron sequence is identified and excised 

from pre-mRNA with the ligation of adjoining exons (Figure 1.7). Binding of the splicing 

machinery to the splice site results in the assembly of the spliceosome. Splicing is 

catalysed by the spliceosome, which is a large ribonucleoprotein complex formed from 

an assembly of five small nuclear ribonucleoproteins (snRNP) (Makarov et al., 2002).  

Each snRNP is composed of a single uridine-rich small nuclear RNA (snRNA U1, U2, U4, 

U5, and U6) (shown in Figure 1.9) and multiple proteins such as the U1 specific proteins, 

SR-proteins and U2AF protein required for RNA-protein interaction during the splicing 

process (Makarov et al., 2002; Saulière et al., 2006). 

              

 

 

 

 

 

 

A 

B 

Figure 1.9. Illustration of the mechanism of spliceosome assembly. Representative pre-
mRNA showing binding site. GU sequence is binding site for U1snRNP, AG sequence is 
binding site for U2AF splice factors and the branchpoint sequence (A) which is binding site 
for U2 snRNP. Inactive Complex B formed from combination of the U1, U2 snRNP with the 
pre-assembled tri-snRNP. Activated Complex B is formed after dissociation of U1 and U4.  
Formation of a lariat intron and excision of the intron result in complex C and matured 
mRNA. Dissociated snRNP are recycled into the system (Adapted: Wahl et al., 2009).  
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During the initiation of splicing, there are characteristics of the RNA which determines 

spliceosome assembly and includes;  

 Recognition of the 5’ and 3’ splice site (5’ss and 3’ss) that determine the 

exon-intron and intron-exon boundaries. 

 The polypyrimidine tract binding protein (PTB/hnRNP I) which recognizes 

short motif such as UCUU and UCUCU associated with the polypyrimidine tract 

upstream of the 3’ss of alternative exons  

 The branchpoint sequence (BPS) which provides activity site for the 

2’hydroxyl group during the first transesterification reaction. 

The mechanism of spliceosome assembly (Figure 1.9) begins with the U1 snRNP 

recognising the 5’ splice site. The U1 snRNP is recruited together with SR proteins by 

RNA polymerase II and ensure the coupling of splicing to transcription and they are co-

transcriptionally deposited on the 5′ splice sites of nascent transcripts (Staknis, and 

Reed, 1994; Das et al., 2007). The co-transcriptional deposition of SR proteins on 

nascent pre-mRNA transcripts contributes to genome stability and prevents the 

formation of R-loops due to hybridization of the neosynthesized RNA to the 

complementary strand of the DNA template (Li and Manley, 2005). The U2 snRNP 

recognises functional 3’ splice site by base pairing with the branch-point sequence (Shao 

et al., 2014).  This pairing between U2 and BPS requires the assistance of auxiliary splice 

factors like U2AF due to the degenerate nature of the branch point sequence (Zhang et 

al., 1992). The U2AF heterodimer consist of two subunit U2AF65 and U2AF35 which 

binds the polypyrimidine tract downstream of the BPS and the AG dinucleotide, 

respectively (Singh et al.,1995; Valcárcel et al., 1996). This result in the stability of the 

branch point. SR proteins such as SF1 interact with U1 snRNP and the 35kDa subunit of 

the heterodimeric factor, U2AF, bridging the gap between U1 and U2AF snRNP (Wu and 

Maniatis, 1993). This pre-spliceosome assembly is the earliest splicing-specific complex 

to form and is known as complex E. Conversion of complex E to complex A involves an 

ATP-dependent association of U2 snRNP at the branchpoint sequence of the intron 

(Shao et al., 2014). The tri-snRNPs U4/U6/U5 which forms the A complex associates with 

U1 and U2 snRNPs and pre-mRNA forming the pre-catalytic B complexes. Following this, 

U5 snRNP interacts with the 5’ and 3’ splice site, leading to the destabilization and 

dissociation of the U1 and U4 snRNPs association and activating the B complex. The U5 
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snRNP binds to the 5’ splice site and U6 associates with U2 snRNPs resulting in the 

U2/U5/U6 complex. With the activation of the B complex and looping of the spliced 

intron, complex C is formed, and splicing is processed. Intron is spliced out and a 

matured mRNA is formed. U2/U5/U6 complex then dissociates and is recycled. 

These signals responsible for recruitment of the spliceosome are thought to be 

recognized multiple times during the spliceosome assembly to coincide with the internal 

rearrangements resulting in the assembly of spliceosome complexes (Lim and Hartel, 

2004; Schneider et al., 2010). A critical step in the mRNA splicing is the recruitment of 

pre-assembled tri-snSNP U4/U6/U5 to Complex A which interacts with 5’ and 3’ SS to 

form the pre-catalytic Complex B. Formation of activated Complex B result from 

structural and conformational changes of the pre-catalytic Complex B This step is 

associated with the release of U1 and U4 and the hydrolysis of ATP and GTP catalysed 

by Brr2 and Snu114 proteins, respectively (Häcker et al., 2008). The splicing reaction is 

completed by Complex C whose formation is catalysed by activated Complex B 

(Wickramasinghe et al., 2015). The kinetics of splicing involves two esterification 

reaction. The first which results in the formation of a lariat structure after the 2′OH 

group of the branch adenosine of the intron carries out a nucleophilic attack on the 5′ss. 

This results in cleavage at this site and ligation of the 5′ end of the intron to the branch 

adenosine. Next, the 3′OH group of the 5′ exon attacks the 3′ss, leading to the ligation 

of the 5′ and 3′ exons and formation of the mRNA with a corresponding release of the 

intron (Will and Lührmann, 2007). 

      

1.3.2  Regulation of constitutive and alternative splicing by regulatory elements (SRE) 
and splice factors 

 

Spliceosome assembly is highly dynamic, and tightly controlled in its rearrangement, 

(Makarov et al., 2002) as splicing errors involving a single nucleotide either by addition 

or removal will affect the open reading frame (ORF) of an mRNA resulting in the use of 

alternative splice site (Krawczak et al., 1992; 2007). To overcome such error, snRNAs 

target specific phosphate bonds for cleavage once the spliceosome is assembled. The 

spliceosome, however, needs to be able to recognize the correct splice site. This is aided 

by regulatory cis elements known as exonic and intronic splicing enhancers (ESEs and 

ISEs) and exonic and intronic splicing silencers (ESSs and ISSs) (Will and Lührmann, 2007). 
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Exons contain short and classical splice site sequences, whereas, introns contain 

numerous pseudo splice sites which have sequence similar to a true splice site (Sun and 

Chasin, 2000; Lim and Burge, 2001). Since splicing needs to be precise and definite, the 

cis-regulatory elements (ESEs and ISEs; ESSs and ISSs), which either promote or inhibit 

the inclusion of an exon or intron or the use of adjacent splice site, regulate this process 

by recruiting trans-acting splice factors that activate or suppress recognition of a splice 

site or spliceosome assembly (Chasin, 2007). 

It has been shown that ESEs function by recruiting serine/arginine (SR) protein family 

members such as SRSF1 and SRSF2 (previously known as SC35) which bind to the RNA 

recognition motif (RRM) domains on the N-terminal of the ESEs and mediates protein-

protein interaction that facilitates spliceosome assembly (Graveley et al., 1998). The 

heterogenous nuclear RNA proteins (hnRNP) are class of protein associated with 

heterogenous nuclear RNA (hnRNA or pre-mRNA). These were found to be associated 

with the splicing machinery where they act as splice repressors.  The splice repressors 

of the hnRNP class often bind the ESSs. hnRNP such as PTB (hnRNP I) can act by blocking 

interaction between U1 and U2 snRNPs causing skipping of the exon (Sharma et al. 2005) 

while hnRNP A1 either displace U1 snRNP or binds on either side of the exon forming a 

loop (Nasim et al. 2002;). Both ESEs and ESSs have been identified based on their 

enrichment and depletion from the authentic exon sites so that exons which are 

constitutively spliced have abundant ESEs bound to it. Similarly, there are fewer ESSs 

bound to authentic exons (Fairbrother et al., 2002). The abundance of ESEs in 

constitutively spliced exons suggested that while enhancers play a dominant role in 

constitutive splicing, silencers play more prominent role in alternative splicing 

(Fairbrother et al., 2002; Wang et al., 2004). 

ISEs such as the G-triplet (GGG) have been well characterized and are found in clusters. 

They enhance the recognition of adjacent 5’ and 3’ splice site (McCullough and Berget 

2000). Intronic C-A repeats are known to enhance splicing of upstream exons through 

binding of hnRNP L (Hung et al. 2007). Some neuron-specific ISEs such as YCAY (Y=C or 

U) and UGCAUG have been identified which are responsible for brain-specific splicing 

event and recognized by the brain and muscle-specific factor Fox-1 and Fox-2 (Wang et 

al., 2012).  
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It is known that the SR-proteins, a family of splice factors with a characteristic serine-

arginine (SR)-rich domain, play a critical role in the assembly of the spliceosome and 

interact with regulatory elements and cofactors during splicing. SRSF1 is known to 

regulate the use of 5’ss which does not involve the binding of SRSF1 to ESE via hyper-

phosphorylation by CDC-like kinase 1 (CLK1) and serine-rich protein kinase-1 (SRPK1) 

(Bourgeois et al., 2004). The study suggests that SRSF1 acts by increasing the 

recruitment of U1 snRNP to the 5’ss by interaction with the U1-70k subunit with the 

alternate use of proximal 5’ss (Bourgeois et al., 2004).  An earlier study has also reported 

a novel tri-snRNP-specific 27K SR-protein, which is thought to be phosphorylated by the 

snRNP associated kinase, is responsible for the recruitment of the tri-snRNP (U4/U6/U5) 

during spliceosome assembly (Fetzer et al., 1997). SRPK2 has been associated with the 

tri-snRNP via stabilization of PRP28 (DDX28), which is required for the formation of the 

B-complex whereas, SRPK1 is associated with the U1 snRNP in spliceosome assembly 

(Mathew et al., 2005). Another protein kinase, the pre-mRNA processing factor 4 kinase 

(PRP4K or PRPF4B), through phosphorylation of PRP6 and PRP31, has been shown to 

interact with pre-mRNA splicing factor PRP6, copurify with U5 snRNP and regulate the 

U4/U6/U5 tri-snRNP assembly during B complex formation (Dellaire et al., 2002; 

Schneider et al., 2010). 

1.3.3 Aberrant alternative splicing in cancer 

Considering the increased likelihood of the choice of alternative splicing event and the 

resemblance between a true and pseudo splice site, it is not unlikely that the splicing 

machinery can be hijacked and manipulated resulting in diseases such as cancers. The 

consequence of which, results in aberrant splicing through the choice of an alternative 

pseudo-splice site. Alternative splicing can occur in untranslated 3’ and 5’ regions (UTR) 

of mRNA resulting in altered mRNA stability and translation efficiency (Hughes 2006). 

Aberrant splicing can also result in the introduction of premature stop codon which can 

render mRNA transcript inactive, alter protein function or result in an encoded protein 

with an antagonistic function (Solier et al., 2005).  

 

Changes in alternative splicing have been observed to affect several aspects of 

tumorigenesis to include cell cycle control of tumour growth, migration and 

proliferation, cell apoptosis, tumour metabolism and angiogenesis (Inoue and Fry, 2015; 
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Mavrou et al., 2014; Christofk et al., 2008). In recent times, studies have continued to 

show that alternatively spliced gene can be used for diagnostic and prognosis purposes, 

as well as therapeutic targets in malignancies (Amin et al., 2011; Mavrou et al., 2014). 

For example, inhibition of SRPK1 using a small molecule inhibitor, SPHINX, result in 

alternative splicing of VEGF to its anti-angiogenic isoform, thus, inhibiting growth of 

blood vessel in models of choroidal angiogenesis in vivo (Batson et al., 2017) 

 

Breast cancer has been associated with aberrant splicing of the TP53, BRCA1 and PTEN 

genes (Okumura, et al., 2011), and CDC25 encoding phosphatase (Albert, et al., 2011). 

In ovarian cancer, the growth factor receptor-bound protein-7 (GRB7) has been 

identified to be alternatively spliced and its spliced variant GRB7v function as an adaptor 

for extracellular signalling ligand responsible for cell proliferation (Wang, et al., 2010). 

In colon cancer, tissue inhibitor of metalloproteinase-1 (TIMP-1) and cell adhesion 

molecule CD44 are alternatively spliced and increase the metastatic potential of colon 

cancer cells (Usher et al., 2007; Gotley et al., 1996). A wide variety of genes (BCL2L1, 

CD44, VEGFA, CCND1) with spliced variants were found in lung cancer that confer 

increased proliferation and resistant to apoptosis to tumour cells (Cheung et al., 1998; 

Nguyen et al., 2000; Shabnam et al., 2004; Li et al., 2008). Other splicing events, which 

have also been observed, include CLK1 (Simon, et al., 2018), VEGFA (Mavrou and Oltean, 

2016), BCL2L2 (Mercatante et al., 2001 and ERG (Hagen et al., 2014) splicing in prostate 

cancer, Caplin-3 in melanoma and Kruppel-like factor-6 (KLF6) in liver cancer (Hanoun et 

al., 2010). 

It is evidenced that isoform switches resulting from translation of alternative spliced 

gene or use of alternative reading frame affect protein-protein interactions in cancers 

due to loss or gain of the functional domain. Loss of function has been observed in 

NFE2L2 (Goldstein et al., 2016) when alternatively spliced and consequently, activates 

an alternative mechanism for oncogenesis when interacting with a negative regulator 

such as KEAP1 (Goldstein et al., 2016; Climente-González et al., 2017). 

1.3.4 Aberrant alternative splicing in leukaemia 

Aberrant splicing has also been reported in leukaemic cancers and has been shown to 

drive leukaemogenesis. For example, DNA methyltransferase 3A (DNMT3A) and its 

transcripts (DNMT3A2; DNMT3A4) are known to be key players in haematopoietic cell 



34 
 

differentiation and proliferation (Božić, et al., 2018). An alternative spliced variant of 

transcript DNMT3A2; DNMT3A2V when overexpressed has been shown to delay cell 

proliferation whereas a mutated isoform DNMT3A2V R882H promotes cell proliferation 

in haematopoietic cell. A switch from DNMT3A1 to DNMT3A2V is implicated in the 

pathophysiology of AML (Lin, et al., 2017). Further RNA-seq analysis of AML has shown 

variations in isoform levels of key genes (such as MYB, BRD4 and MED24) known to be 

involved in leukaemogenesis following inhibition of SRPK1 (Tzelepis et al., 2018). 

 

In Philadelphia positive (Ph+) pre-B-lymphoblastic leukaemia and ALL cells, aberrant 

splicing induced by BCR-ABL1 gene has been found in IKAROS; a transcription factor 

belonging to the zinc-finger family, with the resultant isoform (IK6) exerting a negative 

dominant effect on early lymphoid commitment of B-cells (Klein et al., 2006). Increased 

expression of IK6 isoform correlates with the high percentage of blast cells in ALL and 

TKI resistance (Klein et al., 2006; Iacobucci et al., 2008). 

An earlier study (Liu et al., 2012) has found differential expression of the gene (CENPE, 

SLC4A1, WT1 and E2F7) responsible for the cell cycle in K562, a CML cell line. However, 

a reversed gene expression level was observed with genes which were previous 

upregulated (E2F7, WT1, CCNE2 and CHEK2) becoming downregulated due to imatinib-

induced alternative splicing of the T-box transcription factor (TBX3) (Liu et al., 2015). A 

similar experiment has found a change in splicing in Bclx protein with the anti-apoptotic 

variant, Bcl-xL showing increased expression after treatment with imatinib in K562 cell 

line (Liu et al., 2012). 

 

A key gene c-Myb involved in the regulation of proliferation and differentiation in 

several cells including haematopoietic cells (Emambokus et al., 2003) has been found to 

be alternatively spliced with its spliced variant highly expressed in leukaemia and 

implicated in leukaemic cell transformation (Zhou et al., 2011).  Expression of c-Myb 

variant correlated with poor survival in a cohort of B-ALL samples (Zhou et al., 2011). 

The alternative spliced Myb variants are formed using alternate exon 8A,9A.9B.10A,13A 

and 14A.  The levels of these spliced variant transcripts were shown to be regulated 

independent of one another during haematopoietic cell differentiation (O’Rourke and 

Ness, 2008). 
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1.4 Serine/arginine-rich (SR) proteins 
 

An essential class of splicing regulators is the serine/arginine (SR) family of proteins. SR 

proteins are a highly conserved family of splicing factors and regulators which contain 

an arginine/serine (RS)-rich domain. The SR protein have a characteristically organized 

structure which contain one or two N-terminal RNA-recognition motifs (RRM), C-

terminal rich in arginine and serine (RS) dipeptides repeats (Krainer et al., 1990; Fu and 

Maniatis, 1992). Using the mAb104 monoclonal antibody, specific for phosphoepitopes, 

members of the SR protein family were identified and classed as a family (Roth et al., 

1991). Members of the ‘classical’ SR protein family has been designated splice factor, 

serine/arginine (SRSF) 1-9 and 11. These differs either in the presence or absence of the 

RRMH, the zinc knuckle and the number of arginine/serine repeats (Figure 1.10) 

(Boucher et al., 2001).  

                        

              

Figure 1.10. Schematic showing structural organization of the common 
human SR proteins. RRM, RNA recognition motif; RRMH, RRM 
homology; RS, arginine/serine-rich domain; Zn, Zinc knuckle (Shepard 
and Hertel, 2009).   
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Localization of SR proteins are in ‘speckles’ which are subnuclear structures found in the 

interchromatin region of the nucleoplasm of mammalian cells from where the SR 

proteins are mobilized during active transcription (Cazalla et al., 2002). 

SR proteins have been shown to determine and regulate splice-site selection during 

constitutive and alternative splicing (Chandler et al., 1997), a function performed by the 

RRM while the RS domain mediate protein-protein interaction in several steps during 

spliceosome assembly (Kohtz et al., 1994; Tronchère et al., 1997). They have also been 

implicated in crucial aspects of mRNA metabolism including export, localization, 

translation, and nonsense-mediated decay (NMD) (Krainer et al. 1990; Cáceres et al., 

1998; Sanford et al.,2004). Another study reports that SR proteins binds noncoding RNAs 

and exhibit positional RNA binding during regulated alternative splicing events (Bradley 

et al., 2014). The choice of alternative promoter and polyadenylation site selection are 

also affected by levels of SR proteins (Bradley et al., 2014). SR proteins act as activators 

during alternative splicing by binding to exonic splicing enhancers (ESEs) in pre-mRNA 

and recruiting the splicing machinery to the splice site through RS-domain-protein 

interaction (Bradley et al., 2014). 

Other essential function of the SR protein in cell viability and embryogenesis has been 

demonstrated in cultured cell and xenograft study using mice with germline deletion of 

Srsf1, Srsf2 and Srsf3 resulting in cell death and early embryonic death in mice 

respectively (Jumaa et al., 1999; Wang et al., 1996, 2001; Xu et al., 2005). In contrast 

Srsf10 null mice were observed to have severe cardiac defect to include septa defect 

and myocardial thinning (Feng et al., 2009). These findings underline the key role played 

by SR proteins in early development and active gene transcription. 

The role of SR proteins in splice site selection and spliceosome assembly is regulated by 

their phosphorylation. In vitro phosphorylation of RS domain affects both protein-

protein and protein-RNA interactions and prevents nonspecific binding during early 

spliceosome assembly (Xiao and Manley, 1997; Tacke et al., 1997). Dephosphorylation 

on the other hand, results in the resolution of the splice machinery and release of 

processed RNA (Cao et al., 1997). Thus, suggesting that phosphorylation-

dephosphorylation cycle of the RS domain of SR proteins play a role during the splicing 

cycle. Further supporting the effect of phosphorylation on the function of SR protein is 

evidenced by the intracellular and intranuclear trafficking mediated by RS domain 
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phosphorylation (Yeakley et al., 1999) and suggests the regulation of SR proteins by 

specific kinases.  

Protein kinases which have been well characterized and specific for SR protein are the 

SRPK and CLK families of kinases. Kinases belonging to these two families are structurally 

distinct, are differentially expressed and exhibit different substrate specificities (Gui et 

al., 1994; Colwill et al., 1996).  

 

1.5 CDC-like kinase-1 (CLK1) 
 

1.5.1 Structure and function of CLK1 

CDC-like kinase-1 (CLK1) is a member of an evolutionarily conserved group of kinases. 

There are four CLKs in humans, termed CLK1-4. It is widely expressed and can 

phosphorylate protein substrates at serine, threonine and tyrosine residue (Moeslein et 

al., 1999). CLK1 was first identified by Ben-David et al., (1991) where it was closely 

associated with protein kinases involved in the regulation of the cell cycle.  The human 

CKL1 gene consists of 13 exons. Its full-length protein consists of 484 amino acids (aa) 

with the first 130aa constituting a regulatory region required for CLK1 interaction with 

SR proteins. The remaining amino acids forms its catalytic domain (Uzor et al., 2018). 

Within the motif HTDLKPEN, CLK has a threonine where most other kinases have 

arginine (Ben-David et al., 1991). The CLK consist of 19 amino acid (19-aa) inserts in 

between the HTDLKPEN and highly conserved DFG motif relative to other protein 

kinases (Ben-David et al.,1991; Hanks et al., 1998). The CLKs can phosphorylate both 

Arg-Ser and Ser-Pro dipeptides common in all serine-rich proteins ((Aubol et al., 2013). 

Localization of CLK1 is mainly in the nucleus where its function is to phosphorylate SR 

proteins and facilitate the release of SR proteins from nuclear speckles during splicing 

and regulation (Aubol et al., 2013). High level of CLK1 is thought to inhibit the 

recognition of splice sites by SR proteins and regulate SRPK1 nuclear presence (Aubol et 

al., 2016). Phosphorylation and activation of the protein-tyrosine phosphatase 1B (PTP-

1B) is achieved with the action of CLK1 resulting in fold increase of phosphatase activities 

in HEK-29 cells in vivo (Moeslein et al., 1999) 



38 
 

It is suggested that CLK1 is required for cell cycle progression as inhibition or depletion 

of CLK1 results in cell death or G1/S phase arrest due to a defect in mitosis (Dominguez 

et al., 2016). 

1.5.2 Regulation of CLK1 expression and activity 

Studies on the regulation of CLK1 expression appear to be sparse. An earlier study has 

suggested that CLK1 is regulated through its pre-mRNA splicing yielding a catalytically 

active CLK1 and a truncated inactive polypeptide (CLK1T) (Duncan et al., 1997). This was 

further demonstrated in a recent study, which showed that CLK1 auto-regulates itself 

through exon-4 skipping and intron-4 retention in the presence of environmental or 

biological stress by altering the balance between its full length and truncated form Uzor 

et al., 2018).  

 

Aubol et al., (2016; 2018) has shown that mobilization of SRSF1 from the nuclear speckle 

by SRPK1 is enhanced by CLK1 and this, in turn, result in fold increase in the level of CLK1 

in the nuclei as it forms a complex with SRPK1.  In a similar study, it was observed that 

human CLK1 activity is dependent on CLK1 concentration (a concentration fold change 

which was associated with its quaternary structure). It was also observed that the N-

terminus of CLK1 is necessary for speckle location of CLK1 and induces oligomerization, 

which determines CLK1 substrate specificity (Keshwani et al., 2015) 

1.5.3 Molecular interactions of CLK1 

The association of CLK1 with SRPK1 in the mobilization of SR proteins, during pre-mRNA 

splicing is well described (Figure 1.11). The release of SR protein from nuclear speckles, 

following phosphorylation, requires the CLK1-SRPK1 hetero-kinase complex (Aubol et 

al., 2016). It is also reported that this process results in the nuclear regulation of SRPK1 

by CLK1 (Aubol et al., 2014; 2016).  
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Like the association between CLK1 and SRPK1, another protein kinase Prp4 has been 

shown to interact with CLK1 carboxylic terminus resulting in phosphorylation of Prp4 

arginine/serine-rich domain by CLK1 (Kojima et al., 2001). The protein kinase PTP-1B 

which is required for regulation of intracellular protein phosphorylation is itself 

enzymatically activated by CLK1 phosphorylation (Moeslein et al., 1999). Myelin basic 

proteins and Histone H1 have also been identified as CLK1 substrates. 

There are also indications that CLK1 may interact with some apoptotic genes such as 

Caspase, MCL-1, BCL-X and Survivin as inhibition of CLK1, using the benzothiazole TG003, 

one of the first established inhibitors of CLKs (Muraki et al., 2004) was found to alter 

levels of pro and anti-apoptotic isoforms of these genes (Uzor et al., 2018). 

 
1.5.4 The role of CLK1 in cancer 

 
With the critical function of CLK1 synergizing with SRPK1 in the release of SR protein and 

consequent regulation of SRPK1 (Aubol et al., 2016) during alternative mRNA splicing, 

and its role in cell cycle regulation and progression (Dominguez et al., 2016), it is not 

Figure 1.11: Schematic diagram showing CLK1-SRPK1 interaction during SR protein 
phosphorylation for the initiation of pre-mRNA splicing. CLK1 bounds to the RNA 
recognition motif (RRM) of SR protein and phosphorylates SR protein. With the nuclear 
import of SRPK1, SRPK1-CLK1 complex is formed which recruits the U1 snRNP to the splice 
site. With the attachment of U1 snRNP to the splice site, complete phosphorylation and 
release of SR protein from nuclear speckle, splicing is initiated (Adapted: Aubol et al., 2016). 
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surprising that CLK1 could play a role in carcinogenesis. Varying levels of CLK1 have been 

found in different cancers with the overexpression indicative of poor disease prognosis 

and survival (Dominguez et al., 2016). Silencing of CLKs in MCF7 breast cancer cells and 

MCF10 female xenograft mice using shRNA plasmid or lentivirus has been shown to 

inhibit breast tumour growth indicated by expression of smooth muscle epithelium 

(Yoshida et al., 2015) as well as a change in the splicing pattern of epithelial-

mesenchymal transition (EMT) genes such as ENAH gene (Yoshida et al., 2015). CLK1/4 

has also been shown to regulate alternative splicing of tumour suppressor gene TP53 in 

breast cancer where it influences the choice of alternatively spliced p53β and p53Ƴ 

isoforms (Marcel et al., 2014; Czubaty and Piekiełko-Witkowska, 2017). 

 

In lung cancer, CLK1/4 prevents the stimulation of hypoxia-induced angiogenesis 

through reduction of an alternatively spliced isoform of tissue factor (asTF), which is 

known to stimulate the expression of proangiogenic genes (Eisenreich et al., 2013). A 

recent study also showed that CLK1 is upregulated in PC3 prostate cancer cell lines and 

inhibition of CLK1 in prostate cancer significantly resulted in decreased expression of 

anti-apoptotic caspase 9b isoforms (Bowler et al., 2018). 

 

CLK1 has also been implicated in therapy-related resistance due to its direct regulation 

of the SPF45 human splice factor (Liu et al., 2013). Knockdown of CLK1 using siRNA was 

found to degrade SPF45 with consequent reduction in SPF45-induced exon 6 exclusion 

from Fas mRNA (Liu et al., 2013) implicating CLK1 as a druggable target. 

There are insufficient data on the role of CLK1 in leukaemia and blood-related 

malignancy. One study found that upregulation of CLK1 and other members of the CLK 

family have been observed in hexamethylene-bis-acetamide (HMBA)–induced 

erythroleukaemia cell differentiation and, thus it is implicated in the erythroid cell 

transformation in leukemogenesis (García-Sacristán et al., 2005).  

Owing to the fact that the effect of CLK1 in carcinogenesis is related to its role in 

alternative splicing of TNF-stimulating genes (TSGs) and oncogenes and with the 

established role alternative splicing play in tumorigenesis and cancer progression, it is 

therefore, arguable that the control of alternative splicing in cancers through 

manipulation of splice factors and their kinases such as SRPK1 and CLK1, could be key in 
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the treatment and management of most cancer types where aberrant splicing is key to 

progression and metastasis. 

1.5.5 CLK1 as a therapeutic target 

As the search for targeted therapeutics with high efficacy and minimal side effect 

continues, the use of small molecule inhibitors against protein molecules and their 

substrates has continued to increase. This has shown prospect as some of these 

molecules have moved on to clinical trials (extensive review by Gatzka, 2018).  Targeting 

protein kinases involved in alternative splicing is gaining grounds and an emerging 

therapy due to the key role they play in gene regulation. As such, several molecules are 

currently being developed targeting the CLK1 and the CLK family of kinases such as CLK2 

and CLK4 (Araki et al., 2015; Iwai et al., 2018). 

Mounting evidence continues to show that targeting the CLKs significantly affect tumour 

behaviour and significantly change splicing. Araki et al., (2015) showed that CLK 

inhibition leads to modulation in ribosomal protein kinase, S6K splicing, splicing 

alterations in several genes and protein depletion for multiple genes including those 

involved in tumour growth and survival pathways such as endothelial growth factor 

receptor (EGFR), eukaryotic translation initiation factor 3 (EIF3D) and poly (ADP-ribose) 

polymerase (PARP). A similar finding was also published by ELHady et al., (2017) in which 

CLK1 and CLK4 led to the depletion of EGFR, histone deacetylases (HDAC1) and S6K1 

kinase in cancer cells. 

A study investigated 169 cell lines, of which, 19 were haematological cancers and 150 

were solid tumours.  The results showed that a reduction in CLK-dependent 

phosphorylation, led to alternate skipping of exons in CLK-regulated genes, increased 

apoptosis and growth suppression both in vitro and in vivo, of which, MYC-driven 

cancers were found to be the most sensitive (Iwai et al., 2018). 

Compound screening has identified CC-671 as a potential and selective inhibitor of 

CLK1/2 in triple-negative breast cancer. Mechanism of action of this compound involves 

the inhibition of SRSF4 through reduced phosphorylation which resulted in the selection 

of an alternate splice site leading to increased cell apoptosis (Zhu et al., 2018). 
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1.6  Splice factor kinase-1 (SRPK1) 
 

1.6.1 Structure and function of SRPK1 kinase 

The serine/arginine-rich protein-specific kinase-1 (SRPK1) belongs to a family of protein 

kinases which phosphorylates RS-domain of proteins rich in serine/arginine repeats. 

Members of this kinase family (SRPK1 and SRPK2) are known to be conserved in 

eukaryotes (Yun and Fu, 2000). The human SRPK1 gene is located on chromosome 

6p21.2-p21.3 (Figure 1.12A) (Wu et al., 2013). Like most protein kinases, SRPK1 is 

characterized by two conserved kinase domains separated by a spacer sequence; an 

accessory domain (Figure1.12B) (Ding et al. 2006; Zhong et al., 2009).  

The accessory domain is known to regulate SRPK1 cytoplasmic-nuclear shuttling as 

deletion of the accessory domain results in exclusive nuclear localization (Wang et al., 

1998; Zhong et al., 2009). This observation suggests the role of SRPK1 in spliceosome 

assembly and in the mediation of trafficking of splice factors and subsequent 

phosphorylation of SR proteins during constitutive and alternative splicing in 

mammalian cells (Zhou et al., 2012). A further study has also shown that the accessory 

domain in addition to stabilizing the catalytic loop is essential for protein substrate 

phosphorylation by increasing the exchange rate in the glycine-rich and activation loop 

which drives phosphoryl transfer from ATP (Plocinik et al., 2011).  

The N-terminus and C-terminus of this kinase are not known to be conserved and are 

thought to play an auxiliary role (Ngo et al., 2005).  Deletion of the N- and C-terminal 

does not inactivate the kinase catalytic activity (Ngo et al., 2007). However, another 

study demonstrated that the N-terminus stabilizes the docking groove of the kinase 

domain which enhances high-affinity binding and efficient phosphorylation of its 

substrate, the SR proteins (Ngo et al., 2005). Consequently, deletion of the N-terminus 

reduces SR-protein recognition and binding affinity (Plocinik et al., 2011).  

X-ray structures of SRPK1 reveal an insert for mitogen-activated protein kinase (MAPK) 

which connects helices αG and αH, a loop connecting helices αF and αG and a docking 

groove generated by the MAPK insert which contains eight amino-acid residues (191-

198) (Ngo et al., 2007).  Contrary to other proteins, which require regulation by diverse 

mechanism, SRPK1 and its family members are constitutively active and require no post-

translational modification or additional subunits for optimal activity (Ngo et al., 2007). 
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This is because SRPK1 has a relatively short activation loop that lacks a reversible 

phosphorylation site, allowing for a stable conformation and access of substrates to the 

constitutively active site (Ngo et al., 2007).  

The presence of a short activation loop in addition to the malleability of the activation 

loop, and the ability of the kinase catalytic loop to extract hydroxyl hydrogen (OH-) from 

the substrate serine; a critical step for phosphorylation, has been shown to be 

responsible for the maintenance of a constitutively active conformation for SRPK1 (Ngo 

et al., 2007).  

Other family members of the SRPK family have been identified that are expressed in the 

nervous system (SRPK2) and muscle cells (SRPK3) respectively. In addition, a spliced 

isoform of SRPK1 known as SRPK1a, which result from the inclusion of 513bp segment 

is exclusively expressed in the testis (Sanidas et al., 2010; Nikolakaki et al., 2001). This 

implies that the members of this kinase family have their distinct cellular localization 

and functions in different cell types (Nakagawa et al., 2005; Zhou and Fu, 2013). 

        

 

          

 

 

 

 

 

Figure 1.12 Gene location and protein structure of SRPK1. Structure of chromosome 6 
showing the location of the SRPK1 gene on p21.2-p21.3 (A). Structure of full length SRPK1 
protein (B). The accessary domain (AD) located between aa 256-474 is flanked at both end by 
N-terminal (aa 227-255) and C-terminal (aa 474-489) and divides the kinase domain into two 
(Ngo et al., 2007). 
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1.6.2  Regulation of SRPK1 activity 

The accessory domain (AD) of SRPK1 has been shown to affect the localization of SRPK1 

Zhong et al., 2009. An earlier study has shown that deletion of the accessory domain 

results in SRPK1 being sequestered in the nucleus (Wang et al., 1998; Zhong et al., 2009). 

It is possible that the AD function as a cytoplasmic anchor for SRPK1. The accessory 

domain of SRPK1, in part, regulates its function by providing a binding surface for 

chaperone complex assembly. Plocinik et al., (2011), in an X-ray diffraction study, 

discovered that although the AD is large with about 200 amino acid, it lacks a stable 

structure and proposed that the bulk of the AD which has been previously described 

constitute a large intrinsically disordered region in SRPK1.  It suggests that this region 

could provide a large unstructured surface for chaperones which are known to bind to 

unfolded proteins (Plocinik et al., 2011).  

Chaperones, which have been identified are the heat shock family and co-chaperones 

Hsp40/Hsp70 and Hsp90/Aha1(Zhong et al., 2009) (Figure 1.13). While Hsp40 targets 

region outside the accessory domain, Hsp90 targets the accessory domain (Zhong et al., 

2009). Chaperone complex assembly is initiated by the binding of Hsp40/Hsp70 to SRPK1 

followed by the binding of Hsp90 and Aha1, a co-chaperone (Figure 1.13). Formation of 

SRPK1/chaperone/co-chaperone complex also ensures the folding of SRPK1 into its 

active conformation and protects it from proteasome degradation. This model has been 

validated in an experiment which showed that inhibition of the chaperone Hsp90 ATPase 

activity resulted in dissociation of the chaperone complex and SRPK1 nuclear localization 

(Pratt and Toft, 2003; Zhong et al., 2009).  



45 
 

 

 

 

 

1.6.3  Molecular interactions of SRPK1 

Like other protein kinases, SRPK1 interacts with several molecules, which either serve 

as a substrate or control its association with substrates. Such interactions result in the 

regulation of their activity either directly or indirectly. Phosphorylation of SR proteins by 

SRPK1 results in nuclear import of SR-proteins and their localization into nuclear 

speckles. 

 In relation to SRPK1 phosphorylation of SR proteins, SRPK1 also interacts with the splice 

factor protein kinase CLK1. SRPK1 forms a complex by interacting with the RS-domain in 

the N- terminus of CLK1 in a mechanism to release the phosphorylated SR protein (Aubol 

et al., 2016 and 2018). 

SRSF1 is a member of the SR protein family which has been extensively studied and 

strongly phosphorylated by SRPK1. SRSF1 has two RRM and an RS domain of about 50 

amino acids. It is known that SRPK1 interacts with about 10-12 amino acids of the RS 

Figure 1.13. Model for SRPK1 regulation showing the binding of chaperone and co-
chaperone proteins to SRPK1. Signalling such as those required for transcription result in 
dissociation of SRPK1 from the chaperone molecules and it’s binding to SR-protein with 
nuclear translocation which results in transcription and constitutive and alternative splicing 
(Zhong et al., 2009). 
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domain (Plocinik et al., 2011); an interaction which produces high-affinity binding which 

is considered critical for the regulation of the extent to which SRSF1 is phosphorylated 

(Ngo et al., 2007; Plocinik et al., 2011).  Phosphorylation of SRSF1 by SRPK1 has been 

shown to be in C- to N-terminal direction irrespective of the presence (SRPK1-FL) or 

absence of N-terminal (SRPK1∆N) and spacer domain (SRPK1∆S) (Plocinik et al., 2011). 

Cellular interactions of SRPK1 with SRSF1 affects several pathways including those 

involved in apoptosis and cell proliferation (Anczuków et al., 2012) as well upstream 

signalling pathways of MYC and PI3K such as S6K1 and BIN1 (Karni et al.,2007).  Studies 

(Amin et al., 2011; Oltean et al., 2012) have also shown that SRPK1 and its key substrate, 

SRSF1 is part of an essential pathway responsible for the regulation of the alternative 

splicing of vascular endothelial growth factor (VEGF) into pro-/anti-angiogenic isoform 

in renal epithelial cells (podocytes) and in colon carcinoma cells. These studies further 

demonstrate that a knockdown of SRPK1 increased levels of VEGF anti-angiogenic 

isoform and prevents tumour growth in xenograft by reducing micro-vessel density. A 

similar finding has been observed in a study using prostate cancer cell line PC3 (Mavrou 

et al., 2014). Furthermore, interaction of SRPK1 with the Wilms’ tumour-1 (WT1) has 

resulted to hyper-phosphorylation of SRSF1 and hence splice shift in VEGF to 

proangiogenic isoform (Amin et al., 2011).  

Studies (Wang et al., 2014; Chang et al., 2015) suggests that SRPK1 is a downstream 

target of activated protein kinase-B (Akt/PKB). The studies showed that SRPK1 interacts 

and modulates the Akt pathway through recruitment of pH domain leucine-rich repeat 

protein phosphatase (PHLPP), an Akt phosphatase. SRPK1 was shown to induce Akt 

activation by interfering with PHLPP mediated dephosphorylating of Akt, which suggest 

that SRPK1 could be a regulator of Akt. A positive feedback mechanism between SRPK1 

and Akt was also suggested where elevated SRPK1 induced activation of Akt and the 

activated Akt then binds and stimulates SRPK1 auto-phosphorylation (Chang et al., 

2015). 

Also, SRPK1 has been shown to regulate epidermal growth factor (EGF) activation; a 

proto-oncogene which is upregulated in tumour cells and capable of activating several 

oncogenic pathways in cancers (Zhou et al., 2012). This study suggests that EGF can be 

activated by SRPK1 via the phosphatidylinositol-3-kinase/protein kinase-B (PI3/Akt) 

pathway other than the well-known downstream mammalian target of rapamycin 
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(mTOR) pathway to induce large splicing response in the nucleus (Zhou et al., 2012). 

Supporting this finding is a mass spectrometry analysis of SRPK1 phosphopeptides 

showing multiple phosphorylation sites, which could be induced by EGF or Akt (Zhou et 

al., 2012). There are also indications that down-regulation of SRPK1 or CLK1 blocks EGF 

stimulation of nuclear SRSF1 mobilization (Aubol et al., 2018).  

Since SRPK1 has been shown to display both cytoplasmic and nuclear localization (Aubol 

et al., 2016), it is speculated that SRPK1 may have other substrates which drive its 

cellular function even though it is known to be highly specialised to target SR proteins 

and related splicing factors (Aubol et al., 2013). 

Other named possible substrate of SRPK1 are viral proteins. Nuclear import of herpes 

simplex virus-1 protein, ICP27 due to interaction with SRPK1, was found to reduce 

splicing activity with subsequent intron-less viral mRNA formed (Sciabica et al., 2003).  

In hepatitis B virus (HBV) infected cells, SRPK1 phosphorylates the viral protein which 

results in the encapsulation of the viral genetic material (Zheng et al., 2005). This was 

further evidenced by the failure in encapsulation of Sindbis virus following inhibition of 

SRPK1 by a small molecule, SRPIN340 (Fukuhara et al., 2006). The E1^E4 protein of 

human papillomavirus 1(HPV-1) has also been named as a substrate for SRPK1, where it 

inhibits SRPK1 phosphorylation of viral SR protein thus, regulating posttranscriptional 

processing of viral transcript by SR protein (Prescott et al.,2014). 

In addition, phosphoprotein such as human P1 protamine has been identified as 

substrates for SRPK1. SRPK1 phosphorylation of human P1 protamine results in its 

exchange with histone H1 and H3 during the process of spermiogenesis 

(Papoutsopoulou et al., 1999). 

 

1.6.4 The role of SRPK1 in cancer 
 

Interestingly, upregulation of SRPK1 has been observed in prostate cancer (Mavrou et 

al., 2014), glioma (Wu et al., 2013), colon cancer (Amin et al., 2011), breast cancer (van 

Roosmalen et al., 2015) and hepatocellular carcinoma (Zhou et al., 2013). It is also 

apparent that the role and expression of SRPK1 in different cancers are heterogeneous 

and not yet entirely clear (Zhou et al., 2013). While SRPK1 upregulation has been 

observed to promote tumour growth, progression, metastatic dissemination in prostate, 
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breast and hepatocellular cancers, and an indication for chemo-resistance in cancers 

with the proangiogenic phenotype (Oltean et al., 2012; Mavrou et al., 2014; van 

Roosmalen et al., 2015). Tumours of germinal origin have shown progressive and 

metastatic dissemination characteristics following downregulation of SRPK1 with 

associated cisplatin resistance (Krishnakumar et al., 2008; Wang et al., 2014). van-

Roosmalen and colleagues have associated high levels of SRPK1 with poor prognosis, 

tumour aggressiveness, dissemination and distant metastases in breast cancer and have 

suggested SRPK1 as a potential target for drug therapy (van Roosmalen et al., 2015). 

That SRPK1 is a druggable target has already been demonstrated as its inhibition blocks 

angiogenesis and tumour growth in vivo (Amin et al., 2011; Mavrou et al., 2014). 

 

1.6.5  SRPK1 in leukaemia 
 

The complexity of protein network involved in molecular signalling and its interaction 

with kinases and other molecules has become the target in leukaemia therapy due to 

their role in genomic instability and dysregulation of these signalling pathways in 

leukaemia (Paulsen et al., 2009). Research into molecular and cellular mechanisms can 

provide clues on the behaviour of leukaemia cells and possible therapeutic interventions 

(García-Sacristán et al., 2009; Jang et al., 2008; Paulsen et al., 2009).  

The need to maintain cell homogeneity and homeostasis in leukaemia has implicated 

SRPK1 as candidate for drug targeting due to its involvement in wide cellular interaction 

responsible for pre-mRNA splicing (Sanidas et al., 2010; Zhou et al., 2012), angiogenesis 

(Amin et al., 2011; Oltean et al., 2012), cell survival and proliferation (Sanidas et al., 

2010) even in leukemic cells. A study using K562 CML demonstrated that SRPK1 is highly 

expressed in erythroid and lymphoid cells and associated increased expression of SRPK1 

to cell proliferation and tumour grade (Sanidas et al., 2010). Another review suggests 

that repression of SRPK1 in acute myelogenous leukaemia (AML) could modify the 

choice of a splice site in VEGF (Mohamed et al., 2014). The mechanism is such that 

repression of SRPK1 results in hypo-phosphorylation of SRSF1 and hence, the selection 

of 3’ proximal (pro-angiogenic) splice site during VEGF splicing (Oltean et al., 2012; 

Mohamed et al., 2014). Several studies (Daub et al., 2002; Hishizawa et al., 2005; Zheng 

et al., 2005; Fukuhara et al., 2006;) have shown that SRPK1 is able to interact with viral 

protein associated with several viral diseases which include the human T-cell leukaemia 
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virus 1. Thus, the pharmaceutical targeting of SRPK1 could benefit not just leukaemia 

and other cancer treatments, but also antiviral treatments, 

 

1.6.6 SRPK1 and leukaemia therapy 
 

There has been increasing interest towards targeting SRPKs in the management of 

several cancers as SRPKs have shown increased expression in tumours of the pancreas, 

colon, breast as well as viral-induced T-cell leukemic cells (Fukuhara et al., 2006). More 

so, experiments using several cell line models (U87, CaCo2 MiaPaCa2, HL60) have also 

shown diminished activities in pathways relating to cell proliferation, invasion, 

migration, and increased apoptotic potential and sensitivity to common 

chemotherapeutics following inhibition of SRPK1 (Hayes et al., 2007; al., 2011; Wu et 

al., 2013; Siqueira et al., 2015). Earlier studies have demonstrated increased expression 

of SRPK1 as an indication for resistance to chemotherapeutic agents such as oxaliplatin, 

gemcitabine and cisplatin using HT29 colon cancer cell and K562 leukaemic cell lines 

(Plasencia et al., 2006; Sanidas et al., 2010). In myeloma, combined therapy of 

bortezomib, a proteasome inhibitor and thalidomide, a cell cycle inhibitor has been 

investigated which only showed improved progression-free survival (PFS) on long-term 

administration but not overall survival (OS) with increased toxicity even in a high-risk 

patient with cytogenic profile t(4;14).   

Over time, second-generation proteasome inhibitors and immunomodulatory agent 

such as pomalidomide, alkylphospholipid (an Akt inhibitor) perifosine and heat shock 

protein (HSP) inhibitors have undergone varying level of clinical evaluation in leukaemia 

(Anderson et al., 2007; Mitsaides et al., 2009; Allegra et al., 2011). In phase III clinical 

trial by Palumbo et al., (2010) combined bortezomib-melphalan-prednisone-

thalidomide (VMPT), which combines a proteasome inhibitor, alkylating agent, immune 

cells and cell cycle respectively was used followed by maintenance with bortezomib-

thalidomide (VMPT-VT). This was compared with bortezomib-melphalan-prednisone 

(VMP) treatment alone in untreated multiple myeloma patients who are ineligible for 

autologous stem-cell transplantation. Patients showed only three years of overall 

survival (OS). This was not free of toxicity relating to cardiologic and thromboembolic 

event which result in treatment-related death of 4% of the 38% who completed the 

therapy. It was shown that the inclusion of thalidomide greatly improved the efficacy of 
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the treatment (Palumbo et al., 2010). The current regimen for the management of 

leukaemia is not without toxic side effects, which have affected therapy as most of these 

drugs were found to have reduced potency at lower doses (Palumbo et al., 2010).  

Drug-like imatinib mesylate, a tyrosine kinase inhibitor which was developed since the 

1990s to specifically target the breakpoint cluster region (BCL/ABL+) fusion protein in 

CML has remained the first line treatment for this condition. Although not curative, 

imatinib is only known to manage the condition through inhibition of cell proliferation 

and induction of apoptosis (Liu et al., 2015) with up to 37% discontinuing the therapy 

due to suboptimal response or tolerance (Jangamreddy et al., 2013). 

Following increased treatment failure and relapse in patients with leukaemia in novel 

therapeutic regimens, investigations are further targeted towards specific signalling 

pathways that are known to be deregulated (for example, constitutively activated) in 

leukemic cancers (Allegra et al., 2011). The evidence strongly suggests that targeting 

splice factor kinases in leukaemic patients could prove to be beneficial. There is however 

very little work on targeting SRPK1 as a novel method in improving existing drugs in 

leukaemia treatment. The aim of this thesis is to explore the potential benefits of 

combining SRPK1 inhibition with the effect of existing leukaemic drugs. 

 

1.7 Hypothesis and aims 
 
1.5.1. Hypothesis 

Targeting SRPK1 in leukaemia will enhance the efficacy of conventional chemotherapy. 

1.5.2. Aims and objectives 

The aims of this research are; 

Aim A 

To investigate the consequences of targeting SRPK1 in K562 and Kasumi-1 leukaemic 

cells. 

This will be achieved through the following specific objectives; 
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i. Investigate the effect of SRPK1 chemical inhibition using small molecule 

inhibitors such as SPHINX and its knockdown using small interfering RNA (siRNA) 

on leukaemic cell growth, proliferation and apoptosis (chapters 3 and 4). 

ii. Investigate the effect of SRPK1 chemical inhibition and knockdown on the 

alternative splicing of a panel of apoptotic genes; BCL2L1, APAF1 and CASPASE 9 

(chapters 3 and 4). 

Aim B 

To investigate the potential of combining conventional chemotherapeutic drugs 

(imatinib mesylate and azacytidine) with SRPK1 (and for comparison CLK1 inhibition) in 

leukaemic cells; 

This will be achieved using the following specific objectives; 

i. Treat leukaemic cell lines (K562 and Kasumi-1) with established 

chemotherapeutic drugs; Imatinib mesylate and azacytidine and observe the 

effect on cell activities such as cell growth, proliferation and apoptosis (chapter 

4). 

ii. Combine SPHINX and TG003 treatment with conventional chemotherapeutic 

drugs to see if it augments their effects (chapter 4).  

iii. Investigate the effect of this combination on the alternative splicing of a panel 

of apoptotic genes; BCL2L1, APAF1 and CASPASE 9 (chapter 4). 
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CHAPTER 2 
2 Materials and methods 

 
2.1 Cell and tissue culture 

Human lymphoblastic cell line, TK6, chronic myeloid leukaemia cell (Phil+), K562 and 

acute myeloblastic leukaemic cell line, Kasumi-1 were used in this experiment which 

targets the effect of SRPK1 on these cell lines. Cells were purchased from the European 

Collection of Authenticated Cell Cultures (ECACC). All three cell lines are suspension cells 

and were cultured using RPMI-1640 culture medium with L-glutamine from (Sigma 

Aldrich, UK). Culture media was further supplemented with 10% foetal bovine serum 

(Sigma Aldrich, UK) for TK6 and K562 cell lines while Kasumi-1 cells were cultured in a 

20% foetal bovine serum enhanced media. Cells used were between passage six to 

nineteen. Sub-culturing of all three cell lines involves the collection of the cell 

suspension into a centrifuge tube and centrifuged at 106 x g for 5mins. Following 

centrifugation, the supernatant was aspirated and discarded, and cell pellets were re-

suspended in an appropriate volume of fresh media. Cells were seeded at densities of 

5x105 – 1.0x106 in a T25 flask and were sub-cultured every 48hours.  All cell lines used for 

this experiment were incubated at 5% CO2 at 37oC. 

 

2.2 Cell viability and growth count 
 

Cell count and viability were determined using basic trypan-blue stain.  Ten microlitre of 

cell suspension was diluted with an equal amount of 0.4% trypan-blue dye in a ratio of 

1:1. Using a haemocytometer counting chamber, an aliquot of the stained cell is viewed 

and counted under a microscope at x10 magnification. Cells which absorbed the dye and 

stain blue were considered non-viable/dead. Alternatively, the Luna FL automated cell 

counter (Logos Biosystems, France) was used and result compared to manually counted 

cells. Following cell count, cell viability and proliferation were estimated using standard 

formula; 
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2.3 Chemical inhibition of splice factor kinases 
 

Either TK6, K562 or Kasumi-1 cell line was treated with SRPK1 specific small molecule 

inhibitors 5-methyl-N-[2-(morpholin-4-yl)-5-(tri-fluoromethyl)phenyl] furan-2-

carboxamide commonly known as SR Protein Inhibitor X (SPHINX) which was purchased 

from Enamine (Kiev, Ukraine). SRPK1 chemical inhibitors were dissolved in 100% sterile 

dimethyl sulfoxide (DMSO) (Sigma Aldrich, UK) soluble at 25mM. Using culture media, a 

serial dilution of 10nM, 100nM, 1µM, 10µM was prepared. The equivalent of the 

amount of DMSO (1%) in each dilution was used as positive control while negative 

control was represented by an untreated cell culture. The experimental setup involved 

seeding 1.0x106/ml of cells in a T25 culture flask for each treatment. The experimental 

setup was done in duplicate. Cells were incubated for the period of treatment up to 

72hrs. 

Similarly, K562 and Kasumi-1 cell were also treated with 1-(3-ethyl-5-methoxy-2, 3-

dihydrobenzothiazol-2-ylidene) propan-2-one, known as TG003, a competitive inhibitor 

for CLK1. The experimental setup was like those of SPHINX treatment although the 

concentration of TG003 up to 50µM was used to determine the inhibitory concentration. 

The subsequent experiment was performed using the highest concentration of 50µM. 

𝑐𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑡𝑦 =
𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙

𝑙𝑖𝑣𝑒 + 𝑑𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠
 

𝐶𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 (𝑁) =  𝑥
𝑦 × 𝑎 ×  𝑏 ×  𝑐 

where;  
x=Total live cell count; y= Number of grids counted (4); a= Dilution factor; b=Fixed 
factor (1x104) and c=Total volume of cell suspension 
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2.4 Treatment with chemotherapeutic drugs 
 

Imatinib mesylate (Gleevec, formally; STI571) is an orally bioavailable mesylate salt of 

Imatinib which a multi-target inhibitor of Abl-Bcr+. The tyrosine kinase inhibitor, [N-(4-

methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)phenyl)-4-(4-methylpiperazin-1-

yl)methyl)benzamide methanesulfonic acid] was the drug of choice for K562 treatment. 

Whereas, 4-amino-1--D-ribofuranosyl-1,3,5-triazin-2(1H)-one; azacytidine, a DNA 

methyltransferase inhibitor was used to treat Kasumi-1 cells. Both drugs were sourced 

from Selleckchem. The initial dose of imatinib and azacytidine treatment was up to 

20µg/ml and 1.5µg/ml respectively. These were later maintained at 3-5µg/ml and 

750ng/ml respectively corresponding to the peak serum concentration when a standard 

clinical dose of 400mg and 75mg/ml/m2 is administered to a patient. 

 

Figure 2.1: Structure and chemical formulae for SRPK1 and CLK1 small 
molecule inhibitors.   
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2.5  Caspase-3 colorimetric assay 
 

To determine Caspase 3 activity in all leukaemic cell lines, caspase-3 colorimetric assay 

kit sourced from Abcam (ab39401) was used. The protocol used were those provided by 

the manufacturer. Cells were treated with kinase inhibitor or drug of choice for the 

treatment duration. At the end of the treatment period, cells were collected in a 

microcentrifuge tube, pelleted and lysed using the lysis buffer provided. Extracted 

proteins were quantified using the Bradford assay method. Aliquot of 1.5mg/ml of 

extracted protein was transferred into a 96-well plate in triplicates (x3). Appropriate 

volumes of a cocktail mixture containing 2x reaction buffer, dithiothreitol (DTT) and a 

labelled substrate, DEVD-p-nitroaniline (DEVD-p-NA) was added to each well. Plates 

were incubated at 37OC for one hour, protected from light.  Spectrophotometric 

detection of the chromophore p-nitroaniline after cleavage was read at 405nm 

corresponding to caspase-3 activity in the cells. Caspase-3 activity was determined by 

subtracting reading of background wells from those of the actual sample. 

 

2.6 Microscopy 
 
2.6.1 Examination of cell morphology using acridine orange fluorescence stain 

The compound 3, 6-Bis(dimethylamino) acridine hydrochloride zinc chloride double salt 

also known as acridine orange hemi (zinc chloride) salt; is a cell-permeable, nucleic acid 

selective dye that emits green fluorescence when bound to dsDNA and red fluorescence 

when bound to ssDNA or RNA (Sigma Aldrich). Since it is a cationic dye, it also enters 

Figure 2.2: Structure and chemical formula for imatinib mesylate and 
azacytidine.   
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acidic compartments such as lysosomes which in low pH conditions, will emit orange 

light. Twenty thousand of K562 cells were collected post-treatment into a 

microcentrifuge tube and spun at 106 x g for 10minutes. The supernatant was aspirated 

and discarded. The cell pellet was re-suspended in 150µL of sterile phosphate buffered 

saline (PBS) and transferred into a cytofunnel. The cytofunnel which has a microscope 

slide attached was spun at 20,000 x g for 8minutes in a Cytospin 4 (Thermo Scientific). 

Cells were then fixed using 90% methanol for 10mins and air dried.  

For staining, slides were dipped in fresh phosphate buffer (0.66% (w/v) potassium 

phosphate mono-basic + 0.32% (w/v) sodium phosphate dibasic, at pH 6.4-6.5) to 

rehydrate and stained in a solution of acridine orange (0.12 mg/ml in phosphate buffer; 

Sigma Aldrich, UK) for 45 seconds. Removal of excess stain was achieved by dipping 

slides in two changes of fresh buffer for 10 minutes and 15 minutes, respectively. Post-

staining, slides were air dried and stored away from light. Microscopic examination of 

slides using phosphate buffer as a mountant. Slides were analysed using the Nikon 

Eclipse 80i (upright) fluorescence microscope. Nuclei morphology was analysed using a 

BG-12 excitation filter and 0-530nm barrier filter under x40 magnification. Scoring was 

achieved by manually counting 2,000 cells per slide. 

2.6.2  Examination of cell morphology using caspase 3/7 fluorescence stain 

Cells pre-treated with a combination of kinase inhibitor and chemotherapeutic agent 

were stained with the ThermoFisher scientific CellEventTM Caspase 3/7 green detection 

reagent. The detection reagent was diluted (1:100) in PBS. Twenty thousand pelleted 

cells were suspended in 150µl of the reconstituted reagent and allowed to stand for 

45minutes at room temperature away from light. Counterstaining was done using the 

Hoechst at a 1:5000 in PBS for one minute after which cells were transferred into a 

cytofunnel (Fisher Scientific, UK) and spun onto a microscope slide using the cytospin 4 

(Thermo Scientific, UK) at 20,000 x g for 8minutes. Air drying of slides was in the dark. 

Slides were mounted using Mowiol aqueous mounting media (24g Glycerol, 9.6g 

Mowiol, 24ml Ultra dH20 and 48ml 0.2M Tris-HCl, pH 8.5). The Nikon Eclipse 80i 

fluorescent microscope was used for imaging. Nuclei morphology was analysed using a 

BG-12 and FITC excitation filter and 0-530nm barrier filter under X40 magnification. 
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The principle of action is such that the caspase 3/7 green detection reagent which is a 

four-amino acid peptide (DEVD) is activated in apoptotic cells following cleavage of the 

peptide (Thermofisher). This enables the dye to bind to DNA producing a bright green 

fluorescence emission of about 530nm. 

 

2.7 RT-PCR and Agarose gel electrophoresis 
 

2.7.1  RNA isolation and DNase treatment 

The Agilent absolute RNA miniprep kit (cat: 400800) and its protocol for total RNA 

isolation were adapted. Post treatment, cells were transferred into a microcentrifuge 

tube and centrifuged (Beckman Allegra x-22R, Rotor: F2402H) at 9,650g for 5minutes. 

Cell pellets were lysed using a reconstituted lysis buffer containing a 1:100 dilutions of 

β-mercaptoethanol and the lysis buffer. Homogenization of cells was achieved either by 

vortexing for a minute or passing solution through a 21guage needle. Up to 700µl of the 

cell homogenate was transferred to a pre-filter spin column placed in a receptacle and 

spun at 9,650g for 5min. The spin column was discarded while the filtrate retained. An 

equal amount of 70% ethanol was added to the filtrate and vortexed until mixed 

thoroughly. Up to 700µl of the filtrate was then transferred to an RNA binding spin 

column seated in a sterile receptacle and spun at maximum speed for a minute. The 

filtrate was discarded, and the spin cup which contains the bound RNA was retained. 

For DNase treatment, 600µl of 1x low-salt wash buffer was added into the RNA binding 

column and spun at maximum speed for 3mins. A constituted aliquot of DNase digestion 

buffer and reconstituted RNase buffer was added to the matrix of the spin column and 

incubated at 37oC for 15mins. This was followed by several washes with 1x high and low 

salt wash buffer. Purified RNA was eluted in 30µl of elution buffer into a micro-

centrifuge tube following a 2minute incubation at room temperature. The final product 

was stored in -20 or -80oC. The total RNA concentration was determined using a 

Nanodrop spectrophotometer (Thermo Fisher Scientific, USA). 1.5µl of each RNA sample 

was used to determine RNA purity, reading absorbance on the spectrophotometer at 

260/280nM.  
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2.7.2 Complimentary DNA (cDNA) synthesis 

Post RNA extraction, cDNA synthesis was performed using the ProtoScript first strand 

cDNA synthesis kit protocol described by New England Biolabs (NEB). Two micrograms 

(2µg) of RNA for each treatment category was collected in a 0.5ml sterile 

microcentrifuge tube. In each tube, a cocktail (2µl of a mixture of random primer and 

oligodT at a 1:1, 4µl of 2.5mM dNTP) was added and brought to a final volume of 16µl 

with nuclease-free water (Qiagen). This was followed by incubation at 70oC on a heat 

block for 5mins. The reaction product was spun down and held immediately on ice. 

While on ice, another cocktail (2µl of 10x M-MLV reverse transcriptase buffer, 1:1 mix 

of 2x reverse transcriptase and RNA inhibitor; NEB, UK) was added to the tube followed 

by incubation at 42oC for one hour. The transcriptase enzyme was deactivated at 90oC 

for 10 mins and the final product stored at -20oC.  

 

2.7.3 Standard PCR and Agarose gel electrophoresis 
 
Following cell treatment with chemical inhibitors, RT-PCR was carried out to measure 

the levels of SRPK1, and the alternative splicing of the gene of interest, which included 

Caspase 9, Bcl-x, APAF-1, CLK1 and VEGF. Beta-actin (β-actin) was also amplified and 

used to determine the quality of the cDNA as well as a loading control. Table 2.1 

describes all primer sequence used for standard PCR and the annealing temperatures 

(Tm) for individual primers.
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2.7.4  Primer sequences and design 

 

 

Gene name Primer sequence/ length Alignment  Tm(0C) Amplicon length (bp) 

SRSF protein kinase 1 (SRPK1) 

NM_003137 

F: TTCCTCAACTGTAGGTCAGTCATTC (25) 

R: TGTTCTTGCTCTTGTTCATCTTCAC (25) 

F :1329 – 1353  

R :1430 – 1403  

49 102 

Beta – actin (β-actin) 

NM_001101 

F:  TTAAGGAGAAGCTGTGCTACG (21) 
R: GTTGAAGGTAGTTTCGTGGAT (21) 

F: 719 – 739  

R: 924 – 904  

52 206 

Vascular endothelial growth 

factor A (VEGF-A) 

NM_001025366 

F:  GTAAGCTTGTACAAGATCCGCAGACG (26) 
R: ATGGATCCGTATCAGTCTTTCCTGG (25) 
 

F: 1616 – 1641 

R: 1814 – 1790  

54 199 

Vascular endothelial growth 

factor A (VEGF-A165b)  

NM_001171629 

F:  GGCAGCTTGAGTTAAACGAACG (22) 
R: ATGGATCCGTATCAGTCTTTCCTGG (25) 
 

F: 1562 – 1583  

R: 1625 – 1601  

52 64 

Vascular endothelial growth 

factor A (VEGF-A165b)  

NM_001033756 

F:  GGCAGCTTGAGTTAAACGAAC (21) 
R: ATGGATCCGTATCAGTCTTTCCTGG (25) 
 

F: 1560 – 1580  

R: 1623 – 1599  

52 64 

BCL2 like 1 (BCL2L1) xl  F:  CATGCCAGCAGTGAAGCAAG (20) F: 627 – 646 53 351 
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NM_138578 R:  GCATTGTTCCCGTAGAGATCC (21) R: 977 – 957  

BCL2 like 1 (BCL2L1) xs  

NM_001191 

F:  CATGCCAGCAGTGAAGCAAG (20) 
R:  GCATTGTTCCCGTAGAGATCC (21) 

F: 857 – 876 

R: 1018 - 998 

53 162 

Apoptotic peptidase activating 

factor 1 (APAF1)  

NM_013229 

F:  CAGCTGATGGAACCTTAAAGC (21) 
R: GTCTGGTCATCAGAAGATGTC (21) 

F: 2829 – 2849 

R: 3258 – 3238  

48 430 

Apoptotic peptidase activating 

factor 1 (APAF1)  

NM_001160 

F:  CAGCTGATGGAACCTTAAAGC (21) 

R: GTCTGGTCATCAGAAGATGTC (21) 

F: 2829 – 2849 

R: 3129 – 3109 

48 301 

Caspase 9 Variant alpha (CASP9α) 

NM_001229 

F: GCTCTTCCTTTGTTCATCTCC (21) 
R:  CATCTGGCTCGGGGTTACTGC (21) 

F: 220 – 240 

R: 961 – 941  

50 742 

Caspase 9 Variant beta (CASP9β) 

NM_001278054 

F:  GCTCTTCCTTTGTTCATCTCC (21) 
R: CATCTGGCTCGGGGTTACTGC (21) 
 

F: 450 – 470  

R: 741 – 721  

50 292 

CDC like kinase 1 (CLK1), Exon 4 

retention 

NM_004071 

F: (1FB) CAAGGATGTGAACCTGGACATCGC (24)  
R: (3RB) CTCCTTCACCTAAAGTATCAAC (22)  

F: 339 – 362  

R: 606 – 585  

48 268 

CDC like kinase 1 (∆CLK1), Exon 4 

skipping 

F: (1FB) CAAGGATGTGAACCTGGACATCGC (24)  
R: (3RB) CTCCTTCACCTAAAGTATCAAC (22) 

F: 339 – 362  

R: 606 – 585  

48 187 
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NM_004071 

CDC like kinase 1 (∆CLK1x), intron 

4 retention 

NM_004071 

F: (2FB) GGAGGGTCACCTGATCTGTCAG (22) 
R: (3RA) CTGCTACATGTCTACCTCCCGC (22)  

F: 530 – 551  

R: 663 – 642  

57 516  

CDC like kinase 1 (CLK1x), intron 4 

skipping 

NM_004071 

F: (2FB) GGAGGGTCACCTGATCTGTCAG (22) 
R: (3RA) CTGCTACATGTCTACCTCCCGC (22)  

F: 530 – 551  

R: 663 – 642  

57  134 

          Table2.1: Forward (F) and reverse (R) primer sequences for all human genes amplified using standard PCR.  
          The target sites of the primers, and amplicon size are shown. All primers were obtained from Eurofins Ltd, (Germany). 
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First, a gradient PCR was performed to determine the optimum annealing temperature 

(Tm/0C) for each primer, and these are shown on Table 2.1. General cycling conditions 

for all primers are as follows; denaturation at 95°C for 30 seconds, elongation at 68°C 

for 1minute and final extension was at 68°C for 5minute. A total of 35 cycles at 95°C for 

15 seconds was performed. PCR amplicons were electrophoresed on a 2% agarose gel 

using 1x tris-acetate-EDTA (TAE) buffer at 95V for 45minutes. Gels were stained with 

0.01% of 10µg/ml ethidium bromide (Sigma Ltd, UK). A 100bp DNA ladder (NEB, UK) was 

loaded alongside the PCR products to determine amplicon size. 

Image acquisition from gels was performed using the LI-COR Odyssey FC imaging system 

(USA) at 600nm. 

2.7.5 Normalization of RT-PCR 

To ensure that the level of gene expression observed was due to experimental 

treatments, gels were analysed using LI-COR odyssey FC software (Image studio Lite 5.2) 

that measured RT-PCR band densities. Obtained values were normalized to β-actin for 

the same treatment. Final values were exported to GraphPad statistical software 

(version 7). Corresponding graphs were generated for each RNA and their splice 

variants. Splice variants were plotted as the percentage of splice inclusion (PSI-Ѱ). Data 

were presented as mean ± 95% confidence interval (CI).  

 

2.8  SDS-PAGE and immunoblotting 
 

2.8.1 Protein extraction and quantification 

Proteins were extracted from cells using the radioimmunoprecipitation assay (RIPA) lysis 

buffer (10 mM Tris-Cl (pH 8.0), 1mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 

0.1% SDS, 140mM NaCl). Post-treatment harvested cells were suspended in ice-cold lysis 

buffer (0.1mL per 1 x 106 cells) supplemented with protease inhibitor (1:1000) (Roche 

Diagnostics, UK) for 30minutes. This was followed by centrifugation at 3000 x g at 4oC 

for 10minutes.  Supernatant which contained proteins were aspirated into a clean sterile 

microcentrifuge tube and held on ice for quantification. 

 

Protein samples were diluted in a 1:1 ratio with nuclease free water for quantification. 

The PierceTM BCA assay kit (Thermo Scientific) was used. Five protein standards using 
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bovine serum albumin (BSA) was prepared in the following concentrations: 2 mg/ml, 1 

mg/ml, 0.5 mg/ml, 0.25 mg/ml and 0.125 mg/ml. The working solution was prepared 

using the Pierce BCA suggested dilution of 50:1 (BCA reagent A: BCA reagent B). An 

aliquot of 200µl of the working solution was added to each well of a 96well plate 

containing the sample to be quantified. The plate was incubated in the dark for 

30minutes. All samples including controls were prepared in duplicates and read at 

560nm on a plate reader (Fluostar Optima, BMG lab tech, Germany). Absorbance values 

were exported into an excel sheet (Microsoft) where a standard curve was generated, 

and protein concentration determined using the graph equation generated. Final 

protein concentration was brought to 20µg/µl using sterile water and were mixed with 

2x Laemmli buffer (Sigma, UK) in 1:1 dilution. The mixture was then boiled at 100oC for 

5minutes before being held on ice for loading into gels. 

2.8.2 Acrylamide gel 

Proteins were separated on a 10% acrylamide gel. Each gel contains 30% (v/v) 

acrylamide mix (29:1; acrylamide: bis-acrylamide) (Sigma Aldrich), 1.5M resolving buffer 

(18.17g tris and 100ml diH2O; pH 8.8), distilled water, 10% (w/v) ammonium persulphate 

(AP) (Sigma Aldrich) and tetramethylethylenediamine (TEMED) (Sigma Aldrich). This 

cocktail was carefully loaded on to the pre-assembled casting trays using a pasture 

pipette and allowed to set for 15-20mins. A 5% acrylamide stacking gel was then added 

to overlay the separating gel and a 10-well comb was inserted and allowed to set. 

2.8.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Gel electrophoresis was performed using the Electrophoresis cell apparatus for mini gels 

(Bio-Rad, UK).  The units were assembled, and the middle chamber filled with running 

buffer (25mM Tris, 190mM glycine and 0.1% (w/v) SDS adjusted to pH 8.3). The comb 

was removed and 700µg of the protein samples were carefully loaded in each well. A 

pre-stained protein marker (NEB, UK) was also loaded to determine protein size. The 

outer chamber of the unit was also filled with the running buffer depending on the 

number of gels following the manufacturers’ recommendation. The gels were run at 

100V for 2 hours. 
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2.8.4 Transfer of proteins on to membranes 

For protein transfer onto a membrane, gels were prised from the casting trays and the 

stacking gel removed. The separating gel, which contains the protein samples was 

assembled in a sandwich of sponges, filter papers, gel and polyvinylidene difluoride 

(PVDF) membrane on a cassette in the following order (Figure 2.4). 

 

     

 

 

Gels were transferred on to a polyvinylidene difluoride (PVDF) membrane (Thermo 

Scientific). The membrane was activated in absolute methanol for 20secs, thereafter, 

held in 1 x cold (4oC) tris/glycine/methanol transfer buffer (25mM Tris, 190mM glycine 

and 20% methanol). Following assembly of the components on the cassette, the cassette 

was placed in the transfer tank containing cold transfer buffer. A magnetic stirrer and 

an ice pack were placed in the tank to maintain the cold temperature. Transfers were 

done in 4 hours. 

2.8.5 Immunoblotting 

Post-transfer, membranes were blocked in a 5% non-fat dry milk and 1xTBST solution 

for a minimum of 1 hour. This is to prevent unspecific binding of the antibody to 

membranes. Thereafter, the membrane was incubated at 4oC overnight in the primary 

antibody of choice (Table 2.2). 

 

Figure 2.4: Diagram illustrating sandwich assembly for transfer of proteins 
to PVDF membrane.  
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Membranes were washed (3x) in appropriate volume of 1x tris-buffered saline with 

Tween-20 (TBST) (20mM Tris pH 7.5, 150mM NaCl, 0.1% Tween20). Each wash lasting 

5mins each. This was followed by incubation with a horseradish peroxidase (HRP) linked 

secondary antibody (Cell signalling) at room temperature for 1 hour. Unbound 

secondary antibodies were removed by repeated washes (3x) in 1 x TBST, each wash 

lasting about 5mins. About 500µl of HRP-substrate (Millipore, UK) was dispensed on to 

the membrane for 2mins prior to image acquisition. Image acquisition from membranes 

was performed using the LI-COR Odyssey FC imaging system (USA) at chemi function for 

2mins. 

 

2.9 SRPK1 siRNA knockdown 
 
2.9.1 Cell culture and preparation 

All cell lines, TK6, K562 and Kasumi-1 cells were cultured in a T25 cell culture flask 

respectively for cells to be 80% confluence.  Cells were then harvested and spun down 

to discard the growth media. For each cell line, 5x105 cells were collected and washed 

in 1 x PBS followed by centrifugation at 106 x g for 5minutes. The supernatant was 

aspirated and discarded. Each cell line was re-suspended in 800µl of OptiMEM media 

(Gibco, UK) and transferred into a 6-well plate and incubated at 5% CO2 at 37oC. 

Antibody/ 
Specie 

Concentration Dilution used Source Secondary 
antibody used 

Anti-β-actin 
(ab8226-
Mouse) 

1mg/ml 1:5000 Abcam Horse anti-mouse 
IgG) 
 

Anti-SRPK1 
(EE-13-
Mouse) 

200µg/ml 1:1000 Santa Cruz 
Biotechnology 

HRP-linked 
antibody (Cell 
Signalling) 

Anti-SR (1H4) 
(sc-13509-
Mouse) 

200µg/ml 1:500 Santa Cruz 
Biotechnology 

 

Anti-SRSF1 
(sc-33652-
Mouse) 

200µg/ml 1:1000 Santa Cruz 
Biotechnology 

 

Anti-CLK1 
(G313-1-
Mouse) 

200µg/ml 1:2000 BD 
Biosciences 

 

Table 2.2: Antibodies used for western blotting. Sources and working 
dilutions are stated. 
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2.9.2 siRNA Transfection 

A cocktail of Lipofectamine RNAiMAX (7.5µl) (Thermo Fischer Scientific, UK) and 

OptiMEM media (100µl) was prepared. One hundred microlitre of 

Lipofectamine/OptiMEM cocktail was added to the SRPK1 siRNA (Eurofins, Genomics, 

UK) which was reconstituted in OptiMEM media to a final concentration and volume of 

100nM and 100µl, respectively. The entire mixture was incubated at room temperature 

(RT) for 20 minutes. Two hundred microlitre of siRNA/Lipofectamine/OptiMEM was 

added to each well and then left to incubate for 4 hours. Thereafter, each well was 

topped up with 1ml of appropriate tissue culture media and allowed to further incubate 

at 370C for 48hrs from the time of transfection. 

A similar protocol was applied to controls using a scrambled sequence of siRNA, which 

had previously been described by Karakama et al., (2010) and listed in Table 2.3. 

 

 

siRNA Targeted                            Sequence    Source 

SRPK1 5’-UUAAUGACUUCAAUCACUCCAUUGC-3’  

 5’UAAGAAAUCUGUGAAGCCAGCUGCC-3’ Karakama et 
al., 2010 

Scrambled siRNA 
control 

5’GCAGCAGCAGCAGCGGGACTT-3’  

       

2.10  Statistical Analysis 
 

All statistical analysis was performed using GraphPad Prism version 7.0. Error bars 

represent mean ± 95% confidence interval (CI). Number of experimental repeats equals 

three (n=3). Except where stated, one-way ANOVA was used for analysis. The Tukeys 

and Dunnett’s test was employed for posthoc test within a treatment group where data 

assumes Gaussian distribution. Where distribution was not normal, Kruskal’s Wallis test 

was used to test for the difference between two groups and the Student t-test for pair-

wise comparison. Normality test was performed using the D’Agostino-Pearsons 

normality test which also computes the Skewness and Kurtosis, examining the symmetry 

Table 2.3: siRNA sequences used for knockdown and target.  
Complimentary sequence was determined by Eurofins Genomics, UK. 
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of the data relative to normal distribution. The confidence level was taken at 95%CI and 

P-value ≤0.05 was considered statistically significant. 
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CHAPTER 3 
3 Effect of SRPK1 inhibition on leukaemic cell viability and 

growth 
 

3.1 Introduction 
 
The serine/arginine-rich protein kinase-1 (SRPK1) like other protein kinases interacts 

with other proteins in order to transmit cell signalling.  SRPK1 phosphorylates the SR-

protein family of splice factors; its most studied substrate is SRSF1 (Plocinik et al., 2011; 

Gonçalves et al., 2014). Phosphorylation of the SR-protein by SRPK1 plays an important 

role in the regulation of pre-mRNA splicing, translation and non-sense mediated RNA 

decay (Graveley et al., 1998; Plocinik et al., 2011;). Studies suggest that knockdown of 

SRPK1 or inhibition of its catalytic activities results in reduced phosphorylation of SRSF1 

and other SR-protein, hence a shift in pre-mRNA splicing and changes in cell behaviour 

(Nowak et al., 2010; Goncalves et al., 2014; Mavrou and Oltean, 2016). SRPK1 

interaction with SRSF1 has been shown to affect the alternative splicing of caspase 9 

(Shultz et al., 2011) and vascular endothelial growth factor (VEGF-A), the latter 

controlling the ratio of pro and anti-angiogenic isoforms in a renal epithelial cell, colon 

and prostate cancer cells (Amin et al., 2011; Oltean et al., 2012; Mavrou et al., 2014). A 

previous study has also shown that SRPK1 interacts with activated protein kinase-B 

(Akt/PKB) through PHLPP, an Akt phosphatase and PI3 (Zhou et al., 2012). These 

pathways are upstream of several oncogenic signalling such as the mTOR and are known 

to regulate cell growth, upregulated proliferation, survival, differentiation, and protein 

synthesis. The PI3/Akt pathway through the mTOR-EGF signalling is known to affect pre-

mRNA splicing by modulating the interaction between SRPK1 and Hsp70 and Hsp40 

chaperone proteins (Zhou et al., 2012). 

Interestingly, over-expression and dysregulation of SRPKs have been shown to promote 

cell proliferation in several cancers including leukaemia. In particular, overexpression of 

SRPK1 was found in acute lymphoblastic leukaemia (ALL) and chronic myeloid leukaemia 

(CML) (Siqueira et al., 2015). Inhibition of SRPK1 using SRPIN340 resulted in reduced cell 

viability (Siqueira et al., 2015).  Additional research is needed to understand in greater 

details the exact role of SRPK1 in leukaemia. 
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The aim of this chapter is, therefore, to establish whether SRPK1 inhibition using SPHINX, 

a specific and more potent inhibitor (compared to an older analogue SRPIN340) of SRPK1 

causes changes in cell growth and viability as well as on the alternative splicing of a panel 

of cancer-associated genes. 

 

3.2  Results 
 
3.2.1 Validation of SPHINX and effect of SRPK1 inhibition with SPHINX on TK6 cell 

viability and growth 
 
First, the potency of SPHINX was determined by treating PC3 cell line with 10μM SPHINX 

for 48hrs. Similar experiment has been performed by Mavrou and colleagues (2014) 

suggesting that SRPK1 inhibition reduces tumour growth in vivo in orthotopic prostate 

cancer (PCa) mouse model. Result obtained from this experiment also showed that 

SRPK1 inhibition in PCa cells, PC3, reduces PC3 cell viability and growth in vitro (Figure 

3.1A-B). It was observed that SRPK1 protein levels were significantly reduced as well as 

decreased phosphorylation of SR protein family (Figure 3.2A-B) following treatment with 

SPHINX.
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Figure 3.1.  Effect of SRPK1 inhibition with SPHINX on PC3 cell viability and growth. 
PC3 cells treated with 10μM of SPHINX for 48hrs. A. Percentage cell viability in PC3 
cells compared SPHINX treatment to DMSO (**P=0.0096). B. Cell number 
significantly decreased in PC3 cell (****P≤0.0001) when SPHINX was compared to 
DMSO treatment (n=3). 
 
 

A 

B 
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To investigate the effect of SRPK1 on the growth and viability of TK6 cells, 2 x 106 of the 

cells were seeded and treated with up to 10μM of SPHINX for up to 72hrs. Cells were 

counted at 24hr interval using trypan blue and an automated cell counting chamber and 

result compared to the DMSO control treatment. 

Results showed a slight reduction in cell viability between the DMSO control and the 

SPHINX treatment at higher concentrations (1μM and 10μM). This was not found to be 

significant (P≥0.05). However, when the cell viability was compared between time 

points, there was a significant (P=0.041) apparent increases in cell viability between 

48hrs and 72hrs (Figure 3.3A). 

A B 

Figure 3.2.  Levels of SRPK1 and phospho SR-proteins in PC3 cells.  A. Immunoblot showing 
levels of SRPK1 in PC3 cells. B. Reduced phosphorylation of SR proteins when SPHINX 
treatment was compared to DMSO. n=3. 
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Since no significant decrease in TK6 cell viability was observed, cell growth following 

SPHINX treatment was then examined. TK6 cells continued to grow with cell numbers 

doubling (up to 4 x 106) by 72hrs. There was also no difference when the treated group 

was compared to the DMSO control, proliferation rate significantly increased (P< 

0.0001) with time (Figure 3.3B). This suggests that SPHINX had no effect of TK6 cell 

growth and viability. 

A 

B 

Figure 3.3.  Effect of SRPK1 inhibition with SPHINX on TK6 cell viability and growth.TK6 
cells were treated with increasing concentrations (10nM, 100nM, 1μM and 10μM) of SPHINX 
for up to 72hrs. A. Percentage cell viability was significant (P ≤ 0.041) between 48hrs and 
72hrs. Treatments were compared to DMSO for each time point (n = 3). B. TK6 cells showed 
significant increase in cell growth (P < 0.0001) between time points (n = 3). 
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3.2.2 Effect of SRPK1 inhibition with SPHINX on K562 cell viability and growth 

Different leukaemic cell lines will respond differently to treatment depending on their 

type and the inherent mutations they have acquired (Siqueira et al.,2015). Chronic 

myeloid leukaemia cell line, K562 cells was also investigated for the effect on viability 

and growth following SPHINX treatment with concentrations up to 10µM for 72hrs. Like 

TK6 cells, K562 cells were also counted every 24hrs to investigate changes in cell growth 

and viability. There was no significant percentage decrease in cell viability when the 

SPHINX treated cells were compared to the DMSO cells for each concentration (Figure 

3.4A). Further analysis factoring in time showed an apparent percentage increase on cell 

viability between time points such that viability between 24hrs vs 48hrs and 24hrs vs 

72hrs significantly increased (P ≤ 0.05).  

Investigations into SPHINX effect on K562 cell growth also suggested there was no effect 

as K562 cell continued to grow and proliferate even at higher concentration of SPHINX 

(Figure 3.4B). K562 cell growth significantly increased with time suggesting that SPHINX 

does not reduce K562 cell viability and growth. 
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3.2.3 Effect of SRPK1 inhibition with SPHINX on Kasumi-1 cell viability and growth 

The effect of SRPK1 inhibition using SPHINX on Kasumi-1 (AML) cells was also 

investigated to see whether or not AML cells will react differently from the CML (K562) 

and lymphoblast (TK6) cell.  Results showed significant percentage decrease in cell 

viability with Kasumi-1 cells at higher concentrations of 1µM and 10µM of SPHINX 

inhibition when compared to DMSO control (Figure 3.5A). Decrease in cell viability at 

1μM was observed at 48hrs and 72hrs. At 10μM, Kasumi-1 cell viability continued to 

decrease with time. This suggests that Kasumi-1 cell viability may be affected by SRPK1 

inhibition at higher concentrations. 

Cell number in Kasumi-1 cells was also reduced at higher concentrations of 1μM and 

10μM but only at 72hrs was this effect significant (Figure 3.5B). Having observed an 

apparent decrease in both cell viability and growth in Kasumi-1 cells suggests that 

Kasumi-1 cells are more sensitive to SRPK1 inhibition. 

 

B 

Figure 3.4. Effect of SRPK1 inhibition with SPHINX on K562 cell viability and growth. 
K562 cells were treated with increasing concentration (10nM, 100nM, 1μM and 10μM) 
of SPHINX for up to 72hrs. A. Represent percentage in cell viability. Significant 
differences and percentage reduction in cell viability are observed between 24 and 48hrs 
(P ≤ 0.05) and 24hrs and 72hrs (P ≤ 0.01). Treated cells were compared to DMSO for each 
time point. B. K562 cells showed significant increases in cell number (**=P ≤ 0.01 and 
****=P< 0.0001) between time points. (n = 3). 
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Figure 3.5.  Effect of SRPK1 inhibition with SPHINX on Kasumi-1 cell viability and growth. 
Kasumi-1 cells were treated with increasing concentrations (10nM, 100nM, 1μM and 10μM) 
of SPHINX for up to 72hrs. Analysis compared DMSO treated cells with SPHINX treatment at 
each time point. A. A significant decrease in cell viability was observed at higher 
concentrations (1μM; **P=0.006 and ***P=0.0002 respectively) and (10μM; *P=0.013; 
***P<0.0001; 0.0001 respectively). B. Only at higher concentrations at 72hrs, was a reduced 
cell number observed (*P ≤ 0.05) compared to time-matched control. n = 3.  
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3.2.4 Effect of SRPK1 inhibition on caspase 3/7 activity in leukaemic cells 
 

3.2.4.1 Effect of SRPK1 inhibition on caspase activity in TK6 cells 
 
To further confirm that inhibition of SRPK1 does not affect TK6 cell viability and growth, 

the activities and expression of cleaved caspase 3 were studied. Caspase 3 is known as 

the apoptosis executioner and its activation is a product of both the intrinsic and 

extrinsic pathway (Brentnall et al., 2013). Hence, the choice of its investigation. TK6 cells 

were treated with increasing concentrations of SPHINX for 72hrs. Post-treatment, cells 

were harvested separately and processed following the methods, which have already 

been described in chapter 2.5. TK6 cells showed no significant difference in caspase 3 

activity with increasing concentration of SPHINX and when compared to DMSO control 

(Figure 3.6A). 
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Figure 3.6. Measurement of caspase 3/7 activity in TK6 cells. (A) Cells were treated with increasing concentrations of SPHINX for 72hrs. (B) 
Percentages of apoptotic cells in TK6 cells. (C) Examination of TK6 cell morphology for caspase 3/7 activity. I. Micrograph represents Hoechst stain 
of the total cell at excitation between 420-495nm band width bypass. Arrows (green) represents necrotic cells marked by swelling of the cell and 
loss of cytoplasmic membrane. Apoptotic cells (orange).  II. Corresponding image stained with cleaved caspase 3/7 fluorescent dye. n=3. 
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Lymphoblastic TK6 cells were stained with cleaved caspase 3/7 fluorescent dye and 

viewed under the microscope equipped with a fluorescent lamp. Since cells were in 

suspension culture, it was difficult to accurately view the same field. Therefore, cells 

were spun on to a microscope slide post staining with cleaved caspase 3/7 and 

counterstained using Hoechst fluorescent dye.  Micrograph of the Hoechst dye (Figure 

3.6 CI) represents the total cell found in a single field viewed per slide. Whereas Figure 

3.6CII represent the total number of cells positive for caspase 3/7 in the corresponding 

field as the Hoechst. The percentage number of cells positive for caspase 3/7 relative to 

the total number of corresponding cells was calculated in TK6 cells and result found no 

apparent increase in caspase 3/7 positive cells with increasing concentration of SPHINX 

and when compared to the DMSO control (Figure 3.6B). This is further evidence that 

SPHINX has no effect on TK6 cell viability. 

 
3.2.4.2 Effect of SRPK1 inhibition on caspase activity in K562 cells 
 
The CML cell line, K562 also did not display a change in cell viability measured via cell 

count using trypan blue. It was further investigated if the result is consistent by 

measuring the level of apoptotic activities in K562 cells treated with SPHINX. 

Spectrophotometric detection of the chromophore p-nitroaniline, which corresponds to 

the level of caspase 3 activity within the cell was found to be increased at the highest 

concentration of 10μM/ml, but this was not found to be statistically significant. 

Examination of the cleaved caspase 3/7 fluorescent dyes (Figure 3.7C) showed the 

general cell morphology (I) and the caspase 3/7 positive cells (II). When the positive cells 

were counted, and percentages taken in relation to the total cell number per field view, 

there appeared to be an increase in the percentage of positive cells as SPHINX 

concentrations increased. This was also found not be significant when compared to the 

DMSO control (Figure 3.7B and C). 
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Figure 3.7. Measurement of caspase 3/7 activity in K562 cells. (A) Cells were treated with increasing concentration of SPHINX for 72hrs. (B) Percentages 
of apoptotic cells in K562 cells. (C) Examination of K562 cell morphology for caspase 3/7 activity. I. Micrograph represents Hoechst stained. Arrows (green) 
represents necrotic cells and (orange) apoptotic cells. II. Corresponding image viewed at a green (FITC) band width. n=3. 
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3.2.4.3   Effect of SRPK1 inhibition on caspase activity in Kasumi-1 cells 

Kasumi-1 cells appeared to be more sensitive to SPHINX treatment and showed a 

decrease in cell viability and proliferation which was found to be significant at higher 

concentrations.  To further investigate whether the decrease in Kasumi-1 cell viability is 

due to cells death via apoptosis, the level of caspase 3 activity was measured (Figure 

3.8). A significant percentage increase in caspase 3 activity was observed. The level of 

activity was found to increase progressively with SPHINX concentration (Figure 3.8A). 
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Figure 3.8.  Measurement of caspase 3/7 activity in Kasumi-1 cells. (A) Cells were treated with increasing concentration of SPHINX for 72hrs. A significant 
difference in caspase 3 activity was found at concentrations of 10nm to 10µM (*P= 0.044; 0.038; 0.024; 0.025 compared to DMSO. (B) Percentages of 
apoptotic cells. Significant increase in caspase 3/7 positive cells were observed at higher concentrations of 100nM and 10µM (*P= 0.01; **P= 0.009; **P= 
0.006) when SPHINX treated group were compared to the DMSO control. (C) Examination of Kasumi-1 cell morphology for caspase 3/7 activity. Cells 
treated with varying concentrations of SPHINX for 72hrs were stained cleaved caspase 3/7 fluorescent dye. I. Micrograph represents Hoechst stained. 
Arrows (green) represents necrotic cells and (orange) apoptotic cells.  II. Corresponding image viewed at a green (FITC) band width. Arrows indicate 
caspase 3/7 positive (green). n=3. 
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The level of caspase 3 activity was further confirmed using fluorescent dye which was 

able to pick up cleaved caspase 3/7. Micrograph (Figure 3.8CI) of Kasumi-1 cells treated 

with increasing concentrations of SPHINX for 72hrs presented with cells with abnormal 

morphology, which appear to be distorted and hyper-fluorescent; an indication of 

chromatin fragmentation. Concentrations of 100nM- 10µM also showed fragments of 

particles, which are probably a product of the broken-down cells.  When the percentage 

of caspase 3/7 positive cells were analysed in relation to the total number of cells per 

field view, the number of positive cells increased with concentration (Figure 3.8CII) 

when compared to the DMSO control. This result further suggests that the inhibition of 

SRPK1 in the AML cell, Kasumi-1, results in cell death by apoptosis and indicated that 

SRPK1 could be playing a crucial role in Kasumi-1 cell growth and viability and hence the 

propagation of the disease.  

 

3.3 Effect of SPHINX on levels of SRPK1, VEGF and alternative splicing of 
a panel of apoptotic genes in TK6 cells  

 
Studies have shown that nearly 95% of all human genes are alternatively spliced, and 

the process is disrupted in cancer cells (Wang et al., 2008). Aberrant splicing in most 

cancers is known to be responsible for cancer of progressive phenotype seen in prostate 

cancer, basal-like and triple negative breast cancer, which further determine the 

response of these cancer cells to treatment (Mavrou et al., 2014; van Roosmalen et al., 

2015). Inhibition of SRPK1 has been shown to result in splicing in favour of the anti-

angiogenic phenotype of VEGF165b in cancer cells, podocytes and vascular disease 

(Amin et al., 2011; Oltean et al., 2012; Mavrou et al., 2014). It has also been shown that 

SRPK1 through SRSF1 is able to alter splicing of caspase 9 favouring pro-apoptotic (9a) 

isoform (Shultz et al., 2011). Therefore, the effect of SRPK1 inhibition on splicing in 

leukaemic cells was investigated since inhibition was seen to affect cell viability and 

growth, in some cells. 
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3.3.1  Effect of SPHINX on SRPK1 expression  
 

TK6 cells were treated with increasing concentrations of SPHINX for up to 48hrs and 

total RNA extracted. Complementary DNA (cDNA) was synthesised using the reverse 

transcription method and amplified by PCR using appropriate primers. Conditions for 

amplification are described in the method section (chapter 2.7.4). 

To examine a potential auto-regulatory effect, levels of SRPK1 expression was 

measured. There was no significant change in SRPK1 levels when treatment was 

compared to control (Figure 3.9 A-C). 

                        

                           

                     

 

 

 

Figure 3.9. SRPK1 levels in SPHINX treated TK6 cells. Cells were treated with increasing 
concentration of SPHINX for 48hrs. PCR was performed using SRPK1 specific primers. (A) 
TK6 β-actin controls for 24hrs and 48hrs. Representative PCR result for 24hrs and 48hrs 
post-treatment (B). C. Densitometry of SRPK1 levels normalized to β-actin n=3. 
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3.3.2 Effect of SPHINX on VEGF alternative splicing 

Previous work has shown that inhibition or knockdown of SRPK1 in cancer cells resulted 

in a change in VEGF splicing to a more anti-angiogenic isoform, VEGF165b. We 

investigated if the inhibition of SRPK1 in TK6 cells resulted in a switch in splicing. No 

switch in VEGF splicing was observed (Figure 3.10B-C).  
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Figure 3.10. Alternative splicing of VEGF in SPHINX treated TK6 cells. Cells were treated 
with increasing concentrations of SPHINX for 48hrs. PCR was performed using VEGF 
specific primers. B. Representation of PCR amplicon sizes for 24hrs and 48hrs.  C. 
Densitometry for VEGF amplicon normalized to β-actin. DMSO was compared to each 
SPHINX treated group at each time point. n=3. 
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3.3.3  Effect of SPHINX on Bclx alternative splicing 

To confirm that inhibition of SRPK1 in TK6 cells with increasing concentration of SPHINX 

does not result in increased apoptosis, hence reduced cell viability, as previously 

observed, changes in Bclx splicing was investigated. No change in splicing of Bclx was 

observed. There was a higher level of anti-apoptotic Bcl-xl to pro-apoptotic phenotype 

Bcl-xs and this was not altered by SPHINX (Figure 3.11B-C). 

                   

               

                            

           

 

 

 

 

 

Figure 3.11.  Alternative splicing of BCLx in SPHINX treated TK6 cells. Cells were 
treated with increasing concentrations of SPHINX for 48hrs. PCR was performed using 
Bclx specific primers. B. Representation of PCR amplicon sizes for 24hrs and 48hrs. C. 
PCR image quantification showing percentage of splice inclusion (PSI-Ψ) in Bcl-xl/xs 
isoform. Figures represent three experimental repeats, n=3. 
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3.3.4  Effect of SPHINX on Apaf-1 alternative splicing 

Splice ratio of Apaf-1xl/1s showed no significant difference when treated cells were 

compared to the controls. Level of pro-apoptotic Apaf-1xl appears to be consistent 

between treated group and control (Figure 3.12B-C) 

                     

 

              

 

 

 

 

 

Figure 3.12.  Alternative splicing of Apaf1 in SPHINX treated TK6 cells. Cells were treated 
with increasing concentrations of SPHINX for 48hrs. PCR was performed using Apaf1 specific 
primers. Representation of PCR amplicon sizes for 24hrs and 48hrs (B). C. Densitometry 
showing Apaf-1xl/1s PSI-Ψ values for 24hrs and 48hrs. n=3.  

A 

B 

C 



 

89 
 

3.3.5  Effect of SPHINX on caspase 9 alternative splicing 

When caspase 9 was investigated for a switch in splicing in TK6 cells following SRPK1 

inhibition with SPHINX, there was also no change in splicing observed. There was an 

apparent increase in caspase 9a pro-apoptotic isoform at higher concentrations 

(100nM-10µM) at 48hrs. This was not found to be statistically significant when 

compared to the DMSO control (Figure 3.13B-C). 

                     

            

                      

 
 

 

Figure 3.13.  Alternative splicing of caspase 9 in SPHINX treated TK6 cells. Cells were treated 
with increasing concentrations of SPHINX for 48hrs. PCR was performed using caspase 9 
specific primers. (B) PCR amplicon sizes for caspase 9 at 24hrs and 48hrs C. Densitometry 
showing caspase 9a/b PSI-Ψ values for 24hrs and 48hrs. DMSO vs treatment at 48hrs 100nM-
10µM (P= 0.28; 0.29; 0.39). n=3. 
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3.4 Effect of SPHINX on protein levels of SRPK1, SRSF1 and on the 
phosphorylation of SR protein in TK6 cells. 

 

3.4.1  Effect of SPHINX on SRPK1 protein levels  

There was no change in SRPK1 levels when compared to DMSO control or between 24hrs 

and 48hrs (Figure 3.14) in TK6 cells. 

     
         
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 SRPK1 protein levels in SPHINX treated TK6 cells. Western blot images for 
SRPK1 in TK6 cells treated with SPHINX for up to 48hrs with corresponding β-actin. No 
significant difference in SRPK1 levels. n=3. 
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3.4.2  Effect of SPHINX on SRSF1 protein levels 

SRSF1 is phosphorylated by SRPK1, however, it is also conceivable that the effect of 

inhibition of SRPK1 may (indirectly) alter total SRSF1 protein levels. To investigate this, 

an immunoblot for total SRSF1 was performed. At 48hrs, there seemed to be an 

apparent reduction in total SRSF1 protein level at the 1µM and 10µM concentrations 

which was found to be statistically significant when SPHINX treatment was compared to 

DMSO (Figure 3.15A-B). 

 

        

 

 

 

 

 

Figure 3.15 SRSF1 protein levels in SPHINX treated TK6 cells. A. Western blot images for 
SRSF1 in TK6 cells treated with SPHINX for up to 48hrs. B. Densitometry of SRSF1 protein 
level normalized to β-actin. Significant reduction in SRSF1 levels was found at higher 
concentrations of 1µM and 10µM at 48hrs (*P<0.05) when compared to DMSO. n=3. 
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3.4.3  Effect of SPHINX on SR protein phosphorylation 

Since previous studies have shown that SRPK1 inhibition results in reduced 

phosphorylation of SR-proteins including SRSF1, phosphorylation of SR-proteins was 

examined in leukaemic cells. An immunoblot was performed using the phospho-

antibody which pick up phospho-epitopes of SR-proteins. Levels of the SR-protein were 

not found to be significantly different in TK6 cells (Figure 3.16).              

                   

               

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Protein levels of phospho-SR proteins in SPHINX treated TK6 cells. 
Representative western blot images for phospho-SR family protein in TK6 cells. 
n=3.  
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3.5 Effect of SPHINX on mRNA levels of SRPK1, VEGF and alternative 
splicing of a panel of apoptotic genes in K562 cells  

 

3.5.1 Effect of SPHINX on SRPK1 expression 

The effect of SPHINX on SRPK1 mRNA levels in K562 cells was observed following 

treatment. There were indications of significant changes in SRPK1 expression at higher 

concentrations of SPHINX at 48hrs compared to time-matched DMSO controls (Figure 

3.17B-C). 
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Figure 3.17. SRPK1 levels in SPHINX treated K562 cells. Cells were treated with increasing 
concentrations of SPHINX for up to 48hrs. PCR was performed using SRPK1 specific 
primers. (A) β-actin loading controls at 24hrs and 48hrs. (B) Amplicons of SRPK1 at for 
24hrs and 48hrs C. Densitometry analysis of SRPK1 expression showing significant 
decrease (****P≤0.0001) on SRPK1 levels at higher concentrations at 48hrs, n=3. 
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3.5.2  Effect of SPHINX on VEGF alternative splicing 

The Inhibition of SRPK1 had no effect on total levels of VEGF expression (Figures 3.18A-

B). 
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Figure 3.18. Alternative splicing of VEGF in SPHINX treated K562 cells. Cells were 
treated with increasing concentration of SPHINX for up to 48hrs. PCR was performed 
using VEGF specific primers. A. Representation of VEGF PCR amplicon sizes for 24hrs 
and 48hrs showing band intensity and size. B. Densitometry for VEGF amplicon 
normalized to β-actin. n=3. 
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3.5.3  Effect of SPHINX on Bclx alternative splicing 

Result showed two distinct Bclx isoforms (xl and xs) with no switch in splicing to its anti-

apoptotic, Bcl-xl or pro-apoptotic, Bcl-xs (Figure 3.19B). 
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Figure 3.19. Alternative splicing of Bclx in SPHINX treated K562 cells. K562 cells were 
treated with increasing concentrations of SPHINX for up to 48hrs. B. Bclx PCR amplicon 
sizes for 24hrs and 48hrs showing band intensity and sizes. n=3. 
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3.5.4  Effect of SPHINX on Apaf-1 alternative splicing 

There was a significant change in Apaf1 alternative splicing following SRPK1 inhibition in 

K562 cells at 24hrs when SPHINX treatment was compared to DMSO. No change in 

splicing was observed at both time points (Figure 3.20 B). 
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Figure 3.20. Alternative splicing of Apaf1 in SPHINX treated K562 cells. K562 cells 
were treated with increasing concentrations of SPHINX for up to 48hrs. B. Apaf1 PCR 
amplicon sizes for 24hrs and 48hrs showing band intensity and sizes. n=3. 
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3.5.5 Effect of SPHINX on caspase 9 alternative splicing 

Two distinct caspase 9 isoforms (9a/b) are expressed in K562 cells. Following inhibition 

of SRPK1 in K562 cells, there was no switch in splicing. Levels of caspase 9a were 

significantly reduced in SPHINX treated group when compared to DMSO control (Figure 

3.21C). 

                         

    

       
 
 
 
 
 

 

Figure 3.21. Alternative splicing of caspase 9 in SPHINX treated K562 cells. K562 cells 
treated with increasing concentrations of SPHINX for up to 48hrs. B. Representation of 
caspase 9 PCR amplicon sizes for 24hrs and 48hrs showing band intensity and sizes C. 
Percentage splice inclusion (PSI-Ψ) for caspase 9a/9b. SPHINX treatment compared to 
DMSO for 24hrs (****P<0.0001) and 48hrs (****P<0.0001 and *P=0.038).  n=3. 
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3.6 Effect of SPHINX on protein levels of SRPK1, SRSF1 and on the 
phosphorylation of SR-protein in K562 cells. 

 

3.6.1 Effect of SPHINX on SRPK1 protein levels 

To investigate the effect of SRPK1 inhibition on SRPK1 protein levels and SR-protein 

phosphorylation, immunoblotting was performed. Protein levels of SRPK1 were found 

to be increased at concentrations of 10µM at 24hrs and 48hrs when compared to DMSO 

control (Figures 3.22A-C). 

         

   
 
 
 
 
 
 

 

Figure 3.22 Protein levels of SRPK1 in SPHINX treated K562 cells. Densitometry for SRPK1 
protein level normalized against β-actin. A. Result showing increased SRPK1 protein levels 
following higher concentrations of SPHINX for 24hrs and 48hrs (***P= 0.0008 and 
****P<0.0001 respectively). B. and C. showing western blot images for SRPK1 with 
corresponding β-actin loading control. n=3. 
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3.6.2 Effect of SPHINX on SRSF1 protein levels 

Protein levels of SRSF1 appeared to increase at higher concentrations of SPHINX 

inhibition at 24hrs but not at 48hrs. These differences were not found to be significant 

(Figures 3.23A-C). 

       
 

                 
 
 
 
 
 

 

 

 

Figure 3.23 Protein levels of SRSF1 in SPHINX treated K562 cells. A. Densitometry for 
total SRSF1 protein level normalized to β-actin. B. and C. Western blot images for 
SRPK1 with corresponding β-actin loading control. n=3. 
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3.6.3 Effect of SPHINX on SR protein phosphorylation 

An investigation into the effect of SPHINX on levels of SR-protein phosphorylation was 

also investigated in K562 cells. Interestingly, unlike the TK6 cells, levels of SRSF6 in K562 

cell were nearly undetected both in the treatment group and controls (Figure 3.24). This 

might be an indication of the different abundance of each splice factor in different cell 

lines. Levels of phospho SRSF4 and SRSF5 were found to be reduced at higher 

concentrations at 48hrs with no change in phosphorylation observed in SRSF11 (Figure 

3.24). 

                           

 

 

 

 

 

 

 

 

 

Figure 3.24 Protein levels of phospho-SR proteins in SPHINX treated K562 cells. 
Densitometry of phospho-SR protein level normalized with β-actin. pSRSF4 and pSRSF5 
showing significant decreases in phosphorylation at 48hrs at higher concentrations n=3.  
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3.7 Effect of SPHINX on the level of SRPK1, VEGF RNA and alternative 
splicing of a panel of apoptotic genes in Kasumi-1 cells  

 
3.7.1 Effect of SPHINX on SRPK1 expression 
  
Results by Siqueira et al., (2015) indicates that each cell line responds differently to 

SRPK1 inhibition despite having a common origin from the white blood cell. This may be 

related to the unique mutations that each cell line has acquired, how quickly cells are 

able to get rid of factors, which are considered alien to the cells, and the functional 

importance of SRPK1 in the cell. In Kasumi-1 cells, SRPK1 levels appear to decrease with 

increasing concentration of SPHINX (Figure 3.25B-C).  
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Figure 3.25. SRPK1 RNA levels in SPHINX treated Kasumi-1 cells. Cells were treated with 
increasing concentrations of SPHINX for up to 72hrs. PCR was performed using SRPK1 specific 
primers. A. Representation of β-actin PCR amplicon sizes at 24hrs, 48hrs and 72hrs. B. SRPK1 
amplicons for 24hrs, 48hrs and 72hrs. C. Densitometry for SRPK1 amplicon normalized to β-
actin, n=3. 
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3.7.2 Effect of SPHINX on VEGF alternative splicing 

Levels of total VEGF was unchanged at 24hrs with increasing concentration of SPHINX 

inhibition. At 48hrs and 72hrs, total VEGF levels were significantly different from the 

controls with levels at 72hrs showing an apparent increase. This was not however dose 

dependent. No alternative splicing event was observed, specifically the anti-angiogenic 

VEGF165b isoform, which was not detected by standard PCR (Figure 3.26A-B). 

       

 

            
 
 
 
 
 

 

 

 

Figure 3.26. Alternative splicing of VEGF in SPHINX treated Kasumi-1 cells. Cells were 
treated with increasing concentrations of SPHINX for up to 72hrs. A. Representation of 
VEGF PCR amplicon sizes for 24hrs, 48hrs and 72hrs B. Densitometry for total VEGF 
normalized to β-actin.  Significant changes were observed in VEGF at 48hrs (P<0.05) and 
72hrs (****P<0.0001) when treated groups were compared to DMSO, n=3. 
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3.7.3 Effect of SPHINX of Bclx alternative splicing 

Levels of Bclx showed an apparent change in splicing towards Bcl-xs pro-apoptotic 

isoform in treated groups when compared to controls (Figure 3.27B).  

                    

 

    
 
 
 
 

 

 

 

 

Figure 3.27. Alternative splicing of Bclx in SPHINX treated Kasumi-1 cells. Cells were treated 
with increasing concentrations of SPHINX for up to 72hrs. PCR was performed using Bclx 
specific primers. B. Representation of Bclx PCR amplicon sizes for 24hrs, 48hrs and 72hrs C. 
PSI-Ψ values for Bcl-xl/xs PSI-Ψ values. Statistical analysis for DMSO versus SPHINX for 24hrs 
(*P<0.05), 48hrs (*P<0.05) and 72hrs.  n=3. 
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3.7.4 Effect of SPHINX on Apaf1 alternative splicing 

There was no significant change in Apaf1 alternative splicing at 24hrs to 72hrs time 

points. Although, there was less expression of the pro-apoptotic isoforms at 24hrs and 

48hrs especially at 10µM concentration. (Figure 3.28B-C). 
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Figure 3.28. Alternative splicing of Apaf1 in SPHINX treated Kasumi-1 cells. Cells were 
treated with increasing concentrations of SPHINX for up to 72hrs. PCR was performed 
using Apaf1 specific primers. B. Representation of Apaf1 PCR amplicon sizes for 24hrs, 
48hrs and 72hrs. C. Percentage splice inclusion (PSI-Ψ) for Apaf-1xl/1s for 24hrs -72hrs, 
n=3. 
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3.7.5 Effect of SPHINX on caspase 9 alternative splicing 

Caspase 9 alternative splicing was affected by SRPK1 inhibition using SPHINX. Isoforms 

of caspase 9 were found to be decreased at higher contractions of SPHINX. Levels were 

found to be significantly different when compared to DMSO control (Figure 3.29B-C). 

          

    
 

       
 
 

 

 

Figure 3.29. Alternative splicing of caspase-9 in SPHINX treated Kasumi-1 cells. Cells were 
treated with increasing concentrations of SPHINX for up to 72hrs. PCR was performed using 
caspase 9 specific primers. B. Representation of caspase 9 PCR amplicon sizes for 24hrs, 
48hrs and 72hrs. C. Percentage splice inclusion (PSI-Ψ) for caspase 9a/9b. Statistics 
comparing DMSO and SPHINX treatment for 24hrs (***P=0.0004, *P=0.012; **P=0.005), 
48hrs (*P=0.03; **P=0.008; *P=0.021, ***P=0.0007) and 72hrs (**P=<0.01), n=3. 
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3.8 Effect of SPHINX on protein levels of SRPK1, SRSF1 and on the 
phosphorylation of SR-protein in Kasumi-1 cells. 

 

3.8.1 Effect of SPHINX on SRPK1 protein levels 

Further studies were performed to understand what the effect of inhibiting SRPK1 in 

Kasumi-1 cells will be on the expression of SRPK1 at the protein level. There was no 

apparent change in SRPK1 protein levels in treated Kasumi-1 cells. Kasumi-1 cells 

appeared to express SPRK1 at a high level, owing to the high intensity of the bands 

(Figure 3.30). 

                   

         
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.30. Protein levels of SRPK1 in SPHINX treated Kasumi-1 cells. Western blot 
analysis on Kasumi-1 protein extracts using anti-SRPK1 antibody. Image showing protein 
band visualized on PVDF membrane with corresponding β-actin loading control and band 
weight. n=3. 
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3.8.2 Effect of SPHINX on SRSF1 protein levels 

Following the inhibition of SRPK1, levels of total SRSF1 in Kasumi-1 cells were measured. 

Total SRSF1 levels were increased across treatment and controls. Similar levels were 

found between SPHINX treatments and time matched DMSO controls.  There was also 

no change observed between time points when compared (Figure 3.31A & B). 

             

                           

 
 

 

 

Figure 3.31. Protein levels of SRSF1 in SPHINX treated Kasumi-1 cells. Western blot 
analysis on Kasumi-1 protein extracts using anti-SRSF1 antibody. A. Densitometry showing 
protein levels of SRSF1 with no difference seen between treatment or time points. B. 
Image showing protein band visualized on PVDF membrane with corresponding β-actin 
loading control and band weight. n=3. 
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3.8.3 Effect of SPHINX on SR-protein phosphorylation  

Phosphorylation of serine-arginine protein in Kasumi-1 was investigated following 

SRPK1 inhibition using SPHINX. The SR splice factors are a key substrate whose activities 

are dependent on the ability of SRPK1 to phosphorylate these proteins (Aubol et 

al.,2016). There was an apparent decrease in SRSF4 phosphorylation at higher 

concentrations of 1µM and 10µM when compared to time matched DMSO controls. 

Treatments at higher SPHINX concentration of 1µM and 10µM at 72hrs showed 

decrease phosphorylation in pSRSF6 levels. (Figure 3.32). Only with the 10µM 

concentration at 24hrs was the level of pSRSF11 found to be significantly reduced. 

Phosphorylation of pSRSF11 at 48hrs and 72hrs remained unchanged between treated 

group and controls. No significant differences were observed in pSRSF5 and pSRSF2 

phosphorylation at 48hrs and 72hrs following SRPK1 inhibition.  

 

              

 

 

 

 

 

Figure 3.32. Protein levels of phospho-SR protein in SPHINX treated Kasumi-1 
cells. Representative western blot image showing levels of SR protein 
phosphorylation, and time-matched β-actin loading control following inhibition 
with increasing concentration of SPHINX. n=3.  
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3.9  Discussion 
 

3.9.1 Effect of SPHINX on SRPK1 protein and SR protein phosphorylation in leukaemic 
cells 

All three cell lines used in this study appear to express SRPK1 (Figure 3.14;3.22 and 3.30). 

SRPK1 protein remained unchanged in treated TK6 and Kasumi-1 cells when compared 

to the DMSO control. However, in K562, increased SRPK1 protein level (Figure 3.22) 

were observed at concentrations of 10µM SPHINX without a corresponding increase 

observed in RNA levels (Figure 3.17). Studies which have investigated transcription to 

translation ratio have also found conflicting results. While Lundberg et al., (2010) and 

Wilhelm et al., (2014) found a correlation between transcriptomes and proteomes in 

cell lines and tissues respectively, others (Nagaraj et al., 2011; Edfors et al., 2016) have 

concluded that protein and RNA levels do not correlate, and either cannot serve as proxy 

to predict the abundance of the other. This, they have attributed to the complexity in 

regulation and post-modification changes of these -omics at different stages.  Another 

study on colorectal cells found that knockdown of AKT2 and AKT3 affected expression 

of Rac1b only at the protein level and attributed differences in Rac1b RNA and protein 

to post-splicing effects on the RAC1 gene (Goncalves et al.,2014). These modifications 

may account for the observed result. The unchanged protein levels in TK6 and Kasumi-

1 and the increase observed in K562 suggests that the differential expression of SRPK1 

could be cell line dependent. It was also observed that SPHINX altered levels of the splice 

factor SRSF1 as well, particularly in K562 cells (Figure 3.23). This was consistent with the 

report of Goncalves et al., (2014) which observed that inhibition of SRPK1 using 25μM 

SRPIN340, an earlier analogue of SPHINX on colorectal cancer cell line. significantly 

reduced protein levels of total SRSF1 and pSRSF1 but not SRPK1 protein levels when 

compared to the DMSO control. Thus, in evaluating the effects of SPHINX treatment 

going forward, it will be necessary to consider that it might, directly or indirectly alter 

the expression of its target and the target’s substrates. 

Levels of phosphorylation of SR-proteins varied between cell lines following SPHINX 

treatment. Levels of pSRSF4 decreased in TK6 and Kasumi-1. In K562 cells, it appeared 

significant only at higher concentrations.  No apparent change in pSRSF6 levels was 

observed in TK6 whereas, in Kasumi-1 cells, it appeared to change at higher 

concentrations at 72hrs only. A significant reduction of pSRSF11 was observed in 
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Kasumi-1 cells at 24hrs. Levels of pSRSF5 were unaffected in TK6 and Kasumi-1 cells; a 

significant reduction was observed at higher concentrations of SPHINX at 48hrs. pSRSF2 

could only be detected in Kasumi-1 cells with a variable degree of expression at different 

time points. With the caveat that the detection of phospho-SR proteins by western 

blotting is not strictly quantitative and therefore only indicative of changes, two 

conclusions are possible: one, that SPHINX broadly, and as expected, causes a reduction 

in levels of phospho-SR proteins; and two, the effectiveness of SPHINX on specific SR-

protein may be cell type dependent. 

The effect of SRPK1 inhibition on phosphorylation of SR protein has been widely studied, 

this study found consistent results with another study, which showed that SRPK1 

inhibition following interaction with HPV viral protein E1^E4 (a fusion protein processed 

to form the E4 viral protein), results in variable reduction in the phosphorylation of SR 

proteins with the pSRSF4 being the most affected (Prescott et al., 2014). An earlier study 

reported differential phosphorylation of SR protein in sorbitol-treated HeLa cells with 

resultant alternative splice site selection in the conserved early region 1A (E1A) of 

adenovirus due to altered cellular distribution of SRPK1 following SRPK1 knockdown 

(Zhong et al., 2009). Increased phosphorylation of SR proteins with a corresponding 

increase in mRNA and protein levels of SRPK1 and CLK1 has been observed in hypoxic 

cells, an effect which was reversed with siRNA knockdown of both kinases 

(Jakubauskiene et al., 2015), suggesting the effect of SRPK1 on SR protein 

phosphorylation. 

3.9.2 Leukaemic cell growth, viability and apoptosis following SRPK1 inhibition 

Cancer therapeutic agents are generally compounds screened for their ability to 

increase cytotoxicity of human cancer cells. The overall aim is to develop therapeutic 

agents that can modulate or inhibit specific molecular targets identified as being 

essential for tumour growth (Oltersdorf et al., 2005; Tse et al., 2008).  The aim of this 

chapter was to investigate the effect of SRPK1 inhibition with the compound SPHINX on 

leukaemic cancer cell lines. Lymphoblast cells (TK6), CML (K562) and AML cells Kasumi-

1 were used as model cell lines for this experiment.  

The inhibition of SRPK1 found no change in TK6 and K562 cell viability and growth (Figure 

3.3 and 3.4). However, Kasumi-1 cell showed a significant percentage decrease at higher 
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concentrations of SPHINX, which were also time dependent (Figure 3.5). In terms of 

apoptosis, colorimetric assay and fluorescent examination in Kasumi-1 showed 

percentage increase in cleaved caspase 3 and caspase 7 activity (Figure 3.8). Although, 

K562 showed increased caspase 3/7 activity at the highest concentration of 10µM after 

72hrs, this was not found to be significant (Figure 3.7). This suggests that sensitivity to 

drug could differ from one cancer to another, even though, they have a common origin 

(blood). It also further explains why certain drugs can be used for the management of 

one type of cancer but not the other.  

Consistent with these findings is a study (Siqueira et al., 2015) investigating the effect of 

SRPK1 inhibition using SRPIN340 (an earlier version of SPHINX and less specific inhibitor 

of SRPK1) that showed that cells were sensitive to SRPK1 inhibition. It further reports 

that of all the representative cell lines, (i.e. cells of myeloid and lymphoid origin), the 

HL-60 cell line of myeloid origin was the most sensitive with increased apoptosis and 

reduced cell viability. Since both Kasumi-1 and HL-60 are cells derived from peripheral 

blood of acute leukaemic phases, this suggests that SRPK1 might be critical in the 

propagation of acute phases of leukaemia.  

Published studies on other cell lines have found conflicting results on the effect of 

inhibiting SRPK1 in cells. While Mavrou et al., (2014) found no effect on cell growth, 

proliferation and migration in the prostate cancer cell lines PC3 and DU145, Gammons 

et al., (2016) reported a decrease in melanoma tumour growth in vivo but no effect on 

cell growth, proliferation or migration was observed on in vitro cell culture.  This 

suggests a selective effect of the SRPK1 inhibitors on cell biology. 

Yildiez (2018) in his experiment in hepatocellular cancers suggested that drug sensitivity 

is dependent on cell-specific genetic mutations and the effectiveness of the non-

homologous end joining mechanism of DNA repair. It is, therefore, possible that the 

different mutations present in these cell lines, (Kasumi-1 t(8; 21); K562 t(9; 22)(q34; 

q11); (Kang et al., 2016) could be responsible for their sensitivity to SRPK1 inhibition and 

the selective effect of SRPK1 inhibitors on cell biology. Further to this, because this study 

was done on a population of cells, Nipel et al., (2017) suggested that heterogeneity in 

cell population has a significant impact on cell response as the assumption that cells in 

any given population react uniformly to any given concentration of a drug is not always 

true.  
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3.9.3 Effect of SPHINX on alternative splicing of a panel of apoptotic genes 

Small molecule inhibitors are being developed to provide new avenues in cancer 

therapy. These small molecules are generally designed to target specific proteins and 

bind to extracellular, cell surface ligands as well as intracellular proteins. Most of these 

drugs inhibit critical cancer targets and block signal transduction pathways (Lavanya et 

al., 2014).  Published work has shown that inhibition of SRPK1 resulted in altered VEGF 

splicing in podocytes in favour of its anti-angiogenic isoform, VEGF165b with a resultant 

decrease in angiogenesis (Nowak et al., 2010).  

To further explore splicing patterns following SRPK1 inhibition, a panel of genes (VEGF-

A, Bclx, Apaf1, and caspase 9) were investigated in leukaemic cell lines. This study 

determined whether SPHINX might alter the expression of SRPK1 itself (in a feedback 

loop). No effect on overall SRPK1 expression was observed (Figure 3.9).  Whereas total 

VEGF in TK6 and Kasumi-1 at 48hrs significantly decreased at higher concentrations 

(Figure 3.10 & 3.26), levels in Kasumi-1 increased at 72hrs with no change seen in K562 

upon treatment with SPHINX. This study was unable to detect the VEGF anti-angiogenic 

isoform which other study has detected in tumour growth in PC3 mouse xenografts and 

the PC3 cell line (Mavrou et al., 2015). It is possible that more sensitive assays, such as 

western blotting and ELISA, using a specific antibody targeting VEGF165b isoform and a 

suitable control such as podocyte cells or VEGF165b plasmid would give better 

indication of the VEGF165b isoform since PCR is semi-qualitative. 

 

No clear effect on Bclx, Apaf1 and caspase 9 alternative splicing was observed in all cell 

lines with the dominant isoforms being highly expressed. When levels of these isoforms 

were compared to the DMSO control, an increase in Bcl-xs was observed in Kasumi-1 

(Figure 3.27B). Also, a transient shift in Apaf1 splicing to Apaf-1xl isoform at 24hrs and 

48hrs was observed at higher concentration of 1µM and 10µM in Kasumi-1 cells (Figure 

3.28) but not in TK6 and K562 cells. The caspase 9a isoform was increasingly expressed 

in the SPHINX treated group in K562 and Kasumi-1 cells but not in TK6 when compared 

to the DMSO control. The increasing level of caspase 9a, a pro-apoptotic isoform of 

caspase 9 is consistent with increased caspase 3/7 activity in Kasumi-1 cells and at higher 

concentrations in K562 (Figure 3.7 & 3.8) which matched the decreased percentage in 

cell viability and growth (Figure 3.5). These findings suggest that the caspase pathway 
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could be a downstream target of SRPK1 inhibition and highlights the possible role of the 

caspase pathway in maintenance of AML clones.  

The degree of mRNA processing is known to differ from cell to cell and depends partly 

on the rate of transcription which is not constant (Ingolia et al., 2011). There have been 

reports in which transcriptional changes feed back to regulate mRNA synthesis and 

structure (Namy et al., 2006; Yanagitani et al., 2011). Such transcriptional changes and 

the degree of mRNA processing may explain the differences in mRNA levels in these cell 

lines.  

SRPK1 overexpression, which was also observed at protein levels in this experiment, has 

been reported in several cancers including colon and breast malignancy where elevated 

levels decrease cell apoptosis (Lin et al., 2014; Mavrou et al., 2015).  

SRSF1 has been shown to regulate caspase 9 splicing in non-small lung cancer (NSCLC) 

and cell lines such as Hela cells, H838 and HBEC3-KT cells through interaction with RNA 

cis-element such as C9-I6/ISE and C9-E6/ESE that determines the choice of the splice 

site in caspase 9 (Shultz et al., 2011). It may be appropriate to infer that the levels of 

caspase 9a observed in this study is an indirect effect of SRPK1 inhibition since SRSF1 is 

a key substrate of SRPK1. The same study identified increased caspase 9a/b ratio in 

NSCLC following inhibition of phosphatidylinositol 3-kinase (PI3K/Akt), a pathway which 

has been shown to be activated by SRPK1 (Chang et al.,2015).  Apaf1 binding to pro-

caspase 9 is required for its activation in the intrinsic pathway (Anichini et al., 2006), 

studies have suggested that increased expression of Apaf-1xl isoform correlates to 

cancer cell survival and resistance to apoptosis (Shakeri et al., 2017). One study suggests 

that the balance between Apaf-1xl/s is required to overcome drug resistance and 

increase apoptosis in tumour cells (Benites et al., 2008). It has also been suggested that 

both hypo- and hyper-phosphorylation of SR proteins alter mRNA splicing significantly 

(Zhong et al., 2009). The variability in splicing observed remains inconclusive as to 

whether it is a direct effect of SRPK1 inhibition via SR protein phosphorylation. Assays 

such as qPCR and western blotting which are more quantitative and with a suitable 

control would give better indication to this result.  
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Chapter 4  
4 Combining SRPK1 and CLK1 inhibition with standard 

chemotherapeutic drugs 
 

4.1 Introduction 
 

Treatment of blood cancers is a very challenging task. There is an ongoing need to 

develop new and effective drugs. The management of leukaemic conditions such as CML 

and AML continues to be challenging. Imatinib mesylate (Gleevec) is the first drug (first 

generation) developed for targeted therapy of BCR-ABL positive CML; and azacytidine, 

a hypo-methylation agent is the first drug of choice for the treatment of AML (O’Brien 

et al., 2003; Tallman et al.,2019). Several generations, up to the third generation of the 

likes of imatinib such as Ponatinib (Iclusig) have been developed (O’Hare et al., 2009). 

Even though each new generation of these drugs has increased potency and efficacy, 

they are known to have severe side effects which could lead to patients withdrawing 

from the treatments. Side effects can also lead to the development of secondary 

diseases such as embolism, diabetes, stroke, congestive heart failure and secondary 

cancers that could potentially kill the patient (Aichberger et al., 2011; Gugliotta et al., 

2015). As newer generation of drugs becomes more focused, targeting specific 

mutations, unique to each of these cancers, it is still the case that targeting these 

pathways can be responsible for the severe side effects (Bagnyukova et al., 2010). 

Another challenge with chemotherapy regimen is the ability of patients to meet certain 

criteria such as presenting at a particular phase of the disease, never been exposed to 

certain drugs and having specific cytogenetic or chromosomal abnormalities to be 

eligible for a specific treatment. To overcome some of these therapy-related problems, 

it has been suggested that a combination of potential treatment regimen will increase 

treatment efficacy due to broad target and reduce side effects resulting from high dose 

(Cheng et al., 2011; Jabbour and Kantarjian, 2018). 

The aim of this chapter is to evaluate the consequence of co-inhibition of the splice 

factor kinase, SRPK1 and CLK1 combined with conventional chemotherapeutic agents 

used in the treatment of CML and AML. It is hoped that combining this treatment could 

improve outcomes.   
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4.2 Results  
 

4.2.1 Effects of Imatinib on K562 cell viability and growth 

To understand the effect of imatinib on cell viability, K562 cells were treated with 

increasing concentrations of imatinib mesylate up to 20μg/ml for 72hrs using a method 

that has earlier been described in chapter 2.4. Treatment of K562 with imatinib show 

that imatinib can reduce K562 cell viability in a dose-dependent manner, with time, 

when compared to the DMSO control. (Figure 4.1A). 
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Not only was cell viability decreased in a dose-dependent manner, a reduction in K562 

cell proliferation, and hence, cell growth was also observed, which was highly significant 

(P<0.0001) especially at 48hrs and 72hrs (Figure 4.1B).  

At 72hrs, for imatinib doses at 10μg/ml and 20μg/ml, less than 20% of the cells were 

viable and cell number decreased significantly. Therefore, these doses were considered 

very toxic to the cells and were not used in future experiments. Furthermore, 

considering that there was a need to extract RNA and proteins from these treated cells 

for further experiments, this would have been very difficult owing to the low cell 

number. For further experiments, cells were treated with no more than 5μg/ml of 

imatinib mesylate. This was considered as 3μg/ml is the clinically relevant dose and 

represent the peak serum concentration of imatinib when administered at FDA 

recommended a standard clinical dose of 400mg/day (Rezende et al., 2013).  

Figure 4.1. Effect of increasing concentration of imatinib mesylate on K562 cell 
viability and growth. Two million (2 x 106) cells were seeded over 72hrs with cell 
count performed every 24hrs. A. Percentage cell viability in K562 cells up to 72hrs.  
20µg imatinib treatment at 24hrs (P=0.001). At 48hrs and 72hrs (P<0.0001). B. 
Reduction in cell growth/cell number was observed with 5µg/ml, 10µg/ml and 
20µg/ml imatinib at 24hrs (P≤0.001). The cell number further reduced at all drug 
concentration for 48hrs and 72hrs (****P<0.0001) when treated group were 
compared to the DMSO control. n=3 

B 
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4.2.2 Effect of combined SRPK1 inhibition and imatinib on K562 cell viability and 
growth 

The effect of imatinib on K562 cell viability and an appropriate concentration range was 

confirmed. Further experiments were then aimed at combining imatinib treatment with 

SRPK1 inhibition using SPHINX at 10μM concentration. This aim was to investigate 

whether there is any added advantage to imatinib treatment in achieving increased cell 

death in CML at lower doses. 

Therefore, cells were treated with either 10μM SPHINX, 3μg/ml and 5μg/ml imatinib 

alone or a combination of both for up to 72hrs. Results showed a significant decrease in 

cell viability when groups treated with SPHINX or in combination with imatinib were 

compared to DMSO controls (Figure 4.2A). However, further analysis to determine 

whether combined treatment with imatinib and SPHINX significantly differ from either 

SPHINX or imatinib alone found no significant changes in cell viability (Table 4.1A-B). 

Similar results were also obtained with the cell growth (Figure 4.2B) except for the 24hrs 

time point were only 5μg/ml imatinib and combination of imatinib with SPHINX differed 

from the controls.  
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Figure 4.2. Effect of combined SPHINX and imatinib mesylate on K562 cell viability and 
growth. Two million (2 x 106) cells were seeded over 72hrs with cell count performed every 
24hrs. A. Reduced in cell viability observed with imatinib and imatinib + SPHINX combined 
treatment at each time points when compared to DMSO control (****P<0.0001). B. 
Reduced cell growth/cell number was observed in 5µg/ml imatinib and imatinib + SPHINX at 
24hrs (*P=0.03 and **P=0.002 respectively) and at 48hrs and 72hrs (****P<0.0001) 
respectively. Treated group were compared to time matched DMSO control, n=3. 
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4.2.3 Effect of combined SRPK1, CLK1 inhibition with imatinib on K562 cell viability 
and growth 

It has been established that both SRPK1 and CLK1 are required for the phosphorylation 

of SR-protein. One study suggests that, whereas, SRPK1 which has both nuclear and 

cytoplasmic presence is responsible for phosphorylation dependent transport of SR 

protein from the cytoplasm to the nucleus, CLK1, which is nuclear localized, is 

responsible for SR protein mobilization from speckles to the site of active pre-mRNA 

splicing (Aubol et al., 2016). Further studies have also suggested that both kinases 

interact in the nucleus via the CLK1 N-terminal to complete the functional task of SR 

protein phosphorylation in the nucleus. This is such that nuclear SRPK1 is responsible 

for the release of SR proteins, which have been mobilized at active splice site by CLK1 

which also regulates SRPK1 levels in the nucleus (Aubol et al., 2014; 2016). Thus, the 

Table 4.1A: K562 cell viability analysis for imatinib and imatinib 
combined with SPHINX 

Statistical analysis comparing cell viability on K562 cell treated with imatinib 
mesylate vs imatinib + SPHINX. Confidence interval (CI) at 95% for mean 
difference (-4.95, 16.84); T-value = 2.35; P = 0.144 (paired t-test). No significant 
statistical difference was observed in K562 cell viability when imatinib treated 
group was compared to imatinib and SPHINX combination.                        

Table 4.1B: K562 cell growth analysis for imatinib and 
imatinib combined with SPHINX 

 

Statistical analysis comparing cell viability on K562 cell treated with imatinib 
mesylate vs imatinib + SPHINX. Confidence interval (CI) at 95% for mean 
difference (-0.1932, 0.2732); T-value = 0.74; P= 0.537 (paired t-test). No 
significant statistical difference was observed in K562 cell number when 
imatinib treated group was compared to imatinib and SPHINX combination.                                                 
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effect of inhibiting both SRPK1 and CLK1 in leukaemic cell line K562 was studied to see 

if inhibition of both kinases will increase the rate of cell apoptosis and if additional 

combined treatment with imatinib will have an added advantage. Results of the analysis 

showed that double kinase inhibition of SRPK1 and CLK1 in addition to imatinib 

treatment resulted in a significant decrease in cell viability when compared to either 

SRPK1 or CLK1 inhibition alone at all-time points except for 3µg/ml imatinib treatment. 

At 48hrs, all combined treatment also differed significantly from imatinib and SPHINX 

combination and TG003 (CLK1 inhibitor) and SPHINX combination respectively (P<0.05) 

(Figure 4.3A).  

Similar results were also obtained when the effect on K562 cell growth was observed. 

The rate of K562 cell growth significantly reduced in all combined treatment than the 

single kinase inhibition/treatment or the controls. No significant change was observed 

when both kinases (SRPK1 and CLK1) were inhibited or with individual kinase inhibition 

combined with imatinib (Figure 4.3B). 
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4.2.4 Effect of azacytidine on Kasumi-1 cell viability and growth 

Kasumi-1 cells were also treated with azacytidine, a first line drug of choice in AML. FDA 

approved dose of 75mg/m2 IV or IM results in a peak serum concentration of 750ng/ml 

(FDA, 2007), which was considered the clinically relevant dose in this experiment. 

However, doses up to 1.5μg/ml were used to determine the effect of azacytidine on 

Kasumi-1 viability. A dose and time-dependent decrease in Kasumi-1 cell viability was 

observed when compared to the treatment controls (Figure 4.4A). 

Figure 4.3. Effect of combined SPHINX and TG003 with imatinib mesylate on K562 cell 
viability and growth. Two million (2 x 106) cells were seeded over 72hrs with cell count 
performed every 24hrs. A. Cell viability in treated cells. Cell viability differs significantly 
between SPHINX+TG003+Imatinib treated group when compared to the single treatment 
(untreated, DMSO, SPHINX and TG003) (****P<0.0001) for 24hrs and 72hrs. At 48hrs, 
untreated, DMSO, SPHINX and TG003 also differ significantly (****P<0.0001) in addition to 
Imatinib + SPHINX treatment (P≤0.03). A comparative analysis of time points also showed 
significant difference (P≤0.01) between start point and other time points. B. Reduced cell 
growth/cell number was also observed between SPHINX+TG003+imatinib treated group and 
the single treatments (****P<0.0001) for 48hrs and 72hrs, and (**P=0.004, ****P<0.0001 
respectively) for 24hrs. n=3 

B 



 

123 
 

           

 

        

 

 

 

 

 

 

 

 

 

A 

Figure 4.4. Effect of increasing concentration of azacytidine on Kasumi-1 cell 
viability and growth. Two million (2 x 106) cells were seeded over 72hrs with cell count 
performed every 24hrs. A. Result showing the percentage viability in Kasumi-1 cells up to 
72hrs(****P<0.0001) when compared to the DMSO control. B. Time points also showed 
significant difference in cell number at 24hrs vs 72hrs and 24hrs vs 72hrs at ****P<0.0001 
while at 48hrs vs 72hrs (***P=0.0004).  n=3 
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When the effect of azacytidine on cell growth was observed, only at higher doses of 

750ng/ml and 1.5µg/ml was there a significant decrease in cell growth at 24hrs. 

However, at 48hrs and 72hrs, all azacytidine treatment showed a significant decrease in 

cell growth and hence proliferation in a dose-dependent manner (Figure 4.4B). 

4.2.5 Effect of SPHINX and azacytidine on Kasumi-1 cell viability and growth 

To determine whether there is any beneficial effect in combining SRPK1 inhibition and 

azacytidine treatment in the management of AML patients, Kasumi-1 cells were treated 

with either 10µM SPHINX or 750ng/ml azacytidine or a combination of both. There were 

indications of a beneficial effect as cell treated with a combination of SPHINX and 

azacytidine showed a significant decrease in cell viability. This was compared to the 

untreated and DMSO controls or SPHINX only treatment at each time points. Only at 

48hrs was azacytidine treatment significantly different from the combined treatment 

(Figure 4.5A). There was a difference between the combined treatment and the controls 

but not with either the SPHINX or azacytidine treatment (Figure 4.5B). 
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Figure 4.5. Effect of combined SPHINX and azacytidine on Kasumi-1 cell viability and 
growth. Cells were seeded over 72hrs with cell count performed every 24hrs. Cells were 
treated with SPHINX + azacytidine or SPHINX or azacytidine alone. A. Control, DMSO and 
SPHINX treated group showed increase in cell viability at 24hrs (****P<0.0001 and **P= 
0.004) and 72hrs (****P<0.0001 and **P=0.004). Cells at 48hrs showed similar result in 
addition to the azacytidine treated group ****P<0.0001; *P= 0.01 and **P= 0.004). Values 
when time was compared were ****P<0.0001 for 24hrs vs 72hrs and *P= 0.02 48hrs vs 
72hrs.  B. Cell growth was observed to increase in controls when compared to the SPHINX+ 
azacytidine treatment (***P=0.0001 and **P= 0.007) at 72hrs. n=3 
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4.2.6 Effect of combined SPHINX and TG003 with azacytidine on Kasumi-1 cell 
viability and growth 

The effect of combined CKL1, SRPK1 inhibition with azacytidine on Kasumi-1 cell viability 

was investigated to determine if there was a beneficial outcome in the response of an 

AML cell line. the combination of azacytidine with SPHINX and TG003 showed a 

significant decrease in cell viability against single treatments and azacytidine combined 

with individual kinase inhibitor except with cells treated with SPHINX and TG003 at 

24hrs. At 48hrs, azacytidine and TG003 and SPHINX and TG003 were not statistically 

different whereas, at 72hrs, all single treatments, except azacytidine, showed no 

difference when compared to the combined treatment (Figure 4.6A). Cell growth was 

found to be increased in the untreated and DMSO controls only at 48hrs and 72hrs and 

this differed significantly when compared to cell growth in the azacytidine with SPHINX 

and TG003 combined treatment (Figure 4.6B). 
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Figure 4.6. Effect of combined SPHINX and TG003 with azacytidine on Kasumi-1 cell viability 
and growth. Cells were seeded over 72hrs with cell count performed every 24hrs. Cells were 
treated with inhibitors (SPHINX or TG003) alone, inhibitor and azacytidine or in combination. 
A. At 24hrs, all treatment except SPHINX+TG003 showed a significant difference in cell 
viability when compared to the group treated with inhibitors and azacytidine (***P≤0.0005). 
Only azacytidine + SPHINX and SPHINX + TG003 did not differ significantly with inhibitors and 
azacytidine at 48hrs (P≥0.05) and at 72hrs, only the single treatment significantly differs from 
the inhibitors and azacytidine (****P<0.0001 and *P= 0.01 respectively). At time points, 
****P<0.0001 for 24hrs vs 72hrs and *P= 0.02 48hrs vs 72hrs.  B. Cell growth was observed 
to increase in controls when compared to the inhibitors + azacytidine treatment (*P<0.05) at 
48hrs and 72hrs. n=3 
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4.2.7 Effect of combined SPHINX and chemotherapeutic drug on leukaemic cell 
biology 

4.2.7.1 Examination of the effect of combined SPHINX and imatinib on K562 cells 
 
Further investigation on the effect of combined imatinib and SRPK1 inhibition using 

acridine orange, fluorescent dye, showed that combining imatinib with SPHINX 

significantly increased (P≤0.0001; 0.0014) cell apoptosis when compared to the controls 

and SPHINX only treatment, which was consistent with the cell viability and growth in 

K562 cells. Interestingly, it was observed that more cells were driven to apoptosis when 

K562 were treated with imatinib alone than when combined with SPHINX (Figure 4.7A-

B). 
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B 

Figure 4.7. Effect of combined SPHINX and Imatinib on K562 cell morphology. Representative micrograph of K562 cells stained with acridine 
orange fluorescence dye.  Cells were treated with either SPHINX, imatinib or in combination of both for up to 72hrs. A. Percentages of 
apoptotic cells. Significant decrease in cell apoptosis was observed in all group when compared to combined imatinib and SPHINX treated 
group (****P≤0.0001). B. Image viewed at a green (FITC) band width of about 510-560nm. Normal cells with intact nucleus and cytoplasm 
(grey arrow), apoptotic cell (orange) and necrotic cells (blue). n=3 
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4.2.7.2 Effect of combined SPHINX and azacytidine on caspase 3/7 activity in Kasumi-1 
cells 
 
Experiment was performed to further understand the effect of azacytidine and SPHINX 

combined treatment on Kasumi-1 cells by investigating caspase 3/7 activity. Increased 

level of caspase 3/7 activity was observed in all treatments except for the controls. The 

level of caspase-3 activity did not differ significantly when the combined SPHINX and 

azacytidine was compared to SPHINX or azacytidine group except for the controls. 

Suggesting no added benefit (Figure 4.8A).
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Figure 4.8. Examination of caspase 3/7 activity in Kasumi-1 cells. (A) Post-treatment, cells were labelled with a known substrate; DEVD-p-
NA. Combined SPHINX + azacytidine cells significantly increased in caspase 3 activity when compared to untreated (**P=0.006) and DMSO 
(**P=0.008) control. (B) Percentage increase in apoptotic cells in combined SPHINX + azacytidine treatment compared to untreated (P=0.031) 
and DMSO (P=0.030) controls (C). I. Hoechst stain of the total cell at excitation between 330-380nm band width bypass. Arrows (green) 
represents necrotic cells and (orange) apoptotic cells.  II. Corresponding image viewed at a green (FITC) band width of 490-590nm. Caspase 
3/7 positive cell (grey arrow), n=3. 
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Examination of the activities of caspase 3/7 on Kasumi-1 cell (Figure 4.8B & C) showed 

results which were consistent with caspase 3 activity (Figure 4.8A) where only the 

controls significantly differed when compared to the SPHINX and azacytidine combined 

treatment. Although, there was an apparent increase in cell death in cells treated with 

combined SPHINX and azacytidine than SPHINX or azacytidine only. This was not found 

to be significant.  

            

4.3 Effect of SPHINX and imatinib on levels of SRPK1, VEGF and 
alternative splicing of a panel of apoptotic genes in K562 cells  

 

Experiments were performed to determine the effect of combined SPHINX and imatinib 

treatment on alternative splicing of genes. Hypothesis for this aspect of the study states 

that combining SPHINX and imatinib will lead to splicing in a panel of apoptotic genes in 

favour of pro-apoptotic isoforms than treatment with SPHINX or imatinib treatment 

alone.  To test this hypothesis, PCR were performed using methods already described in 

chapter two. 

 

4.3.1 Effect of combined SPHINX and imatinib on SRPK1 expression 
 

Using appropriate primers, it was first observed whether combining SPHINX with 

imatinib will have any effect on SRPK1 mRNA levels. No significant changes in SRPK1 

expression were observed (Figure 4.9B). 
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4.3.2 Effect of combined SPHINX and imatinib on VEGF alternative splicing 

VEGF was amplified to check for alternative splicing event (specifically, expression of the 

pro- and anti-angiogenic VEGF arising from 3’ splice site in exon 8) and levels of total 

VEGF. There was no difference in total VEGF level neither was there any splicing event 

observed. (Figure 4.10). 

 

       

        

 

 

 

Figure 4.10. VEGF levels in combined SPHINX and imatinib treated K562 cells. Cells were 
treated with either SPHINX, Imatinib or a combination of both for up to 72hrs. 
Representation of VEGF PCR amplicon (199bp) for 24hrs, 48hrs and 72hrs. n=3. 

 

Figure 4.9. SRPK1 levels in combined SPHINX and imatinib treated K562 cells. Cells were 
treated with either SPHINX, Imatinib or a combination of both for up to 72hrs. A. 
Representation of β-actin amplicons for experimental time points;24hrs-72hrs. B. SRPK1 
PCR amplicon (102bp) for 24hrs, 48hrs and 72hrs. n=3. 
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4.3.3 Effect of combined SPHINX and imatinib on Bclx alternative splicing 

       

 

                   

 

 

 

 

 

Figure 4.11.  Alternative splicing of Bclx in combined SPHINX and imatinib treated K562 
cells. Cells were treated with either SPHINX, Imatinib or a combination of both for up to 
72hrs. B. Representation of PCR amplicon for 24hrs, 48hrs and 72hrs. C. Densitometry 
showing percentage of splice inclusion (PSI-Ψ) in Bcl-xl/xs, n=3. 
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Splicing events were studied by observing gene involved in the apoptotic pathway. Bcl-

x was studied to check whether combined treatment with SPHINX and imatinib would 

result in a splice switch to the pro-apoptotic isoform Bcl-xs. There was no significant 

change in the splice ratio of Bcl-xl and Bcl-xs (Figure 4.11). 

 

4.3.4 Effect of combined SPHINX and imatinib on Apaf1 alternative splicing 

Apaf1 amplification suggests an alteration in alternative splicing. At 24hrs, levels of Apaf-

1s, the pro-apoptotic isoform was found to be reduced compared to the pro-apoptotic 

isoform. Levels of the pro-apoptotic isoform were the same for both treatment and 

controls. However, at 48hrs and 72hrs, they were found to be the same in the controls 

while levels of Apaf-1s were also increased tending towards a switch to a pro-apoptotic 

phenotype when compared to images acquired at 24hrs (Figure 4.12B). However, 

quantification of PCR amplicons showed no change in splice ratio between Apaf-1xl/1s 

(Figure 4.12C). 
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4.3.5 Effect of combined SPHINX and imatinib on caspase 9 alternative splicing 

Caspase 9 was examined to see if combining SPHINX with imatinib would lead to the 

expression of the pro-apoptotic caspase 9a isoform. Interestingly, unlike Apaf1, which 

did not show a complete switch in splicing, caspase 9 showed an apparent switch to pro-

apoptotic caspase 9a at 48hrs and 72hrs (Figure 4.13B). Densitometry of the PCR 

amplicon also indicated a switch in splicing with more inclusion of caspase 9a isoform in 

treatment including imatinib (Figure 4.13C). Since this switch was observed in the 

imatinib and combined imatinib and SPHINX but not in the SPHINX only treatment, it is 

unlikely that this switch resulted from SPHINX alone. Hence, suggesting that a 

combination of SRPK1 inhibition (using SPHINX) and imatinib treatment may not be 

beneficial in driving more cells to apoptosis in a CML cell line model. 

 

Figure 4.12.  Alternative splicing of Apaf1 in combined SPHINX and imatinib treated 
K562 cells. Cells were treated with either SPHINX, Imatinib or a combination of both for 
up to 72hrs. B. Representation of PCR amplicon for 24hrs, 48hrs and 72hrs. C. 
Densitometry showing percentage of splice inclusion (PSI-Ψ) in Apaf-1x/1s. n=3. 
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Figure 4.13.  Alternative splicing of caspase 9 in combined SPHINX and imatinib treated 
K562 cells. Cells were treated with either SPHINX, Imatinib or a combination of both for 
up to 72hrs. B. Representation of PCR amplicon for 24hrs, 48hrs and 72hrs. C. 
Densitometry showing percentage of splice inclusion (PSI-Ψ) in caspase-9a/9b isoforms 
(*P=0.04; **P= 0.006; ****P<0.0001). n=3. 
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4.4  Effect of combined SPHINX and azacytidine on mRNA levels of 
SRPK1, VEGF and alternative splicing of a panel of apoptotic genes in 
Kasumi-1 cells  

 

4.4.1  Effect of combined SPHINX and azacytidine on SRPK1 expression 

Experiments were performed to also investigate the combined effect of SRPK1 inhibition 

using SPHINX and azacytidine on SRPK1 overall expression in Kasumi-1 cells. With the 

caveat that standard PCR is not quantitative, the data suggest no change in overall SRPK1 

expression (Figure 4.14B). 
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Figure 4.14. SRPK1 levels in combined SPHINX and azacytidine treated Kasumi-1 cells. Cells 
were treated with either SPHINX, azacytidine or a combination of both for up to 72hrs. A. 
Representative image for β-actin for experimental time points. B. SRPK1 PCR amplicon 
(102bp) for 24hrs, 48hrs and 72hrs. n=3. 
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4.4.2 Effect of combined SPHINX and azacytidine on VEGF alternative splicing 

Alternative splicing event and levels of VEGF in Kasumi-1 cells indicate no change in VEGF 

expression level (Figure 4.15). At 48hrs, one experimental repeat showed an indication 

of a splicing event yielding a faint amplicon with a size of 65bp which corresponds to 

VEGF165b anti-angiogenic isoform. However, it was difficult to confirm this result as a 

repeat experiment aimed at reproducing the same result was not successful.   

   

                

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. VEGF expression in combined SPHINX and azacytidine treated Kasumi-1 cells. 
Cells were treated with either SPHINX, azacytidine or a combination of both for up to 72hrs. 
Representation of total VEGF PCR amplicon (102bp) for 24hrs, 48hrs and 72hrs.  n=3. 
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4.4.3 Effect of combined SPHINX and azacytidine on Bclx alternative splicing 

The ratio of Bcl-xl to Bcl-xs was broadly unaffected. Levels of highly expressed anti-

apoptotic Bcl-xl were predominant (Figure 4.16B). It was however interesting to note 

the very low levels of Bcl-xs in Kasumi-1 cells (Figure 4.16B). This provides further 

evidence that levels of gene expression differ from one cell type to another. 
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Figure 4.16. Alternative splicing of BCLx in combined SPHINX and azacytidine treated 
Kasumi-1 cells. Cells were treated with either SPHINX, azacytidine or a combination of 
both for up to 72hrs. B. Representation of PCR amplicon for 24hrs, 48hrs and 72hrs for 
Bcl-xl/xs isoform. n=3. 
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4.4.4 Effect of combined SPHINX and azacytidine on Apaf1 alternative splicing 

There was no change in levels or alternative splicing events in Apaf1 when compared to 

the controls. This difference was not found to be statistically significant. (Figure 4.17B-

C). 
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Figure 4.17. Alternative splicing of Apaf1 in combined SPHINX and azacytidine treated 
Kasumi-1 cells. Cells were treated with either SPHINX, azacytidine or a combination of both 
for up to 72hrs. B. Representation of PCR amplicon for 24hrs, 48hrs and 72hrs. C. 
Densitometry showing percentage of splice inclusion (PSI-Ψ) in Apaf-1x/1s isoform. n=3. 
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4.4.5 Effect of combined SPHINX and azacytidine on caspase 9 alternative splicing 

Levels of caspase 9 appear unaffected with the highly expressed 9a isoform being 

consistent and showed no difference between the treatments and controls (Figure 

4.18B-C). 
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Figure 4.18. Alternative splicing of caspase 9 in combined SPHINX and azacytidine treated 
Kasumi-1 cells. Cells were treated with either SPHINX, azacytidine or a combination of both 
for up to 72hrs. B. Representation of PCR amplicon for 24hrs, 48hrs and 72hrs. C. 
Densitometry showing percentage of splice inclusion (PSI-Ψ) in caspase-9a/9b isoform. n=3. 
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4.5 Effect of combined SPHINX and TG003 with imatinib mesylate on the 
expression of SRPK1, CLK1, VEGF and alternative splicing of a panel 
of apoptotic genes in K562 cells  

 

4.5.1 CLK1 alternative splicing following inhibition with TG003 in K562 cells 

As previously discussed, CLK1 may affect the function of SRPK1 as both kinases 

complement the activity of the other in the phosphorylation of SR proteins, their 

preferred substrate (Aubol et al., 2014). Therefore, the effect of inhibiting both kinases 

together was examined. Chronic myeloid leukaemic cells, K562 were treated with 

increasing concentration of TG003, a specific inhibitor of CLK1. The effect of CLK1 

inhibition on its alternative splicing was then observed. Primers used were forward 

primers in exon 3 and exon 4 and two reverse primers on exon 5 of CLK1. A combination 

of these primers would detect alternative splicing events within these regions. Inhibition 

of CLK1 results in increased exon 4 retention at higher concentration of 10µM and 50µM 

(Figure 4.19B-C), with a significant difference when TG003 treatments were compared 

to DMSO control. This result was also matched with less intron 4 retention at the same 

higher concentration of 10µM at 24hrs and 10µM and 50µM at 48hrs and 72hrs 

respectively (Figure 4.19D-E).  
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Figure 4.19. Alternative splicing of CLK1 following inhibition with TG003 in K562 
cells. K562 cells were treated with increasing concentrations of TG003 for up to 
72hrs. PCR was performed using CLK1 specific primers. A. representative image for 
β-actin for experimental time points. B. PCR amplicon for CLK1/∆CLK1 exon 4 skipping 
at 24hrs, 48hrs and 72hrs and illustration of alternative splicing events in CLK1 
showing retention of exon 4. C. Densitometry showing percentage of splice inclusion 
(PSI-Ψ) for CLK1 exon 4. P-values for DMSO versus treatment at 24hrs 
(****P<0.0001), 48hrs (P=0.02; 0.01; 0.009; P<0.0001) and 72hrs(****P<0.0001). D. 
PCR amplicon for 24hrs, 48hrs and 72hr showing intron 4 retention and illustration 
of alternative splicing event in CLK1x showing retention of intron 4. E. Densitometry 
showing percentage of intron 4 retention for 24hrs-72hrs. DMSO was compared to 
TG003 concentrations at 24hrs (**P= 0.004; *P=0.01; *P=0.03; **P=0.003), 48hrs 
(*P=0.04; 0.02) and 72hrs (*P=0.017; **P=0.005). n=3. 
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4.5.2 Effect of combined SPHINX and TG003 with imatinib on SRPK1 expression in 
K562 cells 

Levels of SRPK1, where both SRPK1 and CLK1 kinase was inhibited in addition to imatinib 

treatment was not found to be different from the controls or all other treatment (Figure 

4.20B-C). 
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Figure 4.20. SRPK1 levels in combined SPHINX and TG003 with imatinib mesylate treated 
K562 cells. K562 cells were treated with either Imatinib, SPHINX or TG003 inhibitor, a 
combination of both inhibitors and all three treatments for up to 72hrs. A. Representative 
image for β-actin for the experimental time points. B. SRPK1 amplicons for 24hrs, 48hrs and 
72hrs. C. Densitometry showing levels of SRPK1 expression in K562 cells. n=3. 
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4.5.3 Effect of combined SPHINX and TG003 with imatinib on CLK1 alternative splicing 
K562 cells 

Since the effect of CLK1 inhibition on its own splicing is known, experiments were then 

performed to see how CLK1 splicing is affected by other treatments including combining 

CLK1 and SRPK1 inhibition in addition to imatinib treatment. At 24hrs, there was more 

exon 4 retention in the TG003 and TG003 and imatinib treated cell. However, at 48hrs 

and 72hrs, all treated group with CLK1 inhibition using TG003 either singly or in 

combination with other treatment showed increased retention of exon 4 (Figure 4.21A-

B). Further to this, a corresponding result was also observed with less intron 4 retention 

(Figure 4.21C-D). This suggests that inhibiting CLK1 and SRPK1 in addition to imatinib 

treatment may not have any added advantage to CLK1 activity in CML cell model. 
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Figure 4.21. Alternative splicing of CLK1 in K562 cells following combined SPHINX and 
TG003 with imatinib mesylate treatment. K562 cells were treated with either Imatinib, 
SPHINX or TG003 inhibitor, a combination of both inhibitor and all three treatments for 
up to 72hrs. A. Representative of PCR amplicon for 24hrs, 48hrs and 72hrs. illustration 
of alternative splicing events in CLK1 showing retention of exon 4. B. Densitometry 
showing percentage of splice inclusion (PSI-Ψ) in CLK1 for exon 4 when other 
treatments were compared to combined SPHINX+TG003+Imatinib at 24hrs, 48hrs and 
72hrs. C. Representation of PCR amplicon for 24hrs, 48hrs and 72hr showing levels of 
intron 4 retention and illustration of alternative splicing event in CLK1. D. Densitometry 
showing percentage of intron 4 retention in CLK1 and significant levels observed when 
SPHINX+TG003+Imatinib was compared to other treatment. n=3.  
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4.5.4 Effect of combined SPHINX and TG003 with imatinib on VEGF alternative 
splicing in K562 cells 

There was also no difference in VEGF expression between treatments, neither was 

there any alternative splicing event observed (Figure 4.22). 

   
 
    
 

 

 

4.5.5 Effect of combined SPHINX and TG003 with imatinib on Bclx alternative splicing 
in K562 cells 

Alternative splicing in Bclx was studied using appropriate primers. There was no change 

in Bclx splicing across all treatments including the controls. The dominant isoform Bcl-

xl was expressed. 

 

 

 

 

 

 

 

Figure 4.22. VEGF levels in combined SPHINX and TG003 with imatinib treatment in 
K562 cells. K562 cells were treated with either Imatinib, SPHINX or TG003 inhibitor, a 
combination of both inhibitor and all three treatments for up to 72hrs. Representation 
of PCR amplicon (199bp) for 24hrs, 48hrs and 72hrs. n=3 
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Figure 4.23.  Alternative splicing of Bclx in K562 cells following combined SPHINX and 
TG003 with imatinib treatment. K562 cells were treated with either Imatinib, SPHINX 
or TG003 inhibitor, a combination of both inhibitor and all three treatments for up to 
72hrs. PCR was performed using Bclx specific primers. B. Representation of PCR 
amplicon (Bcl-xl, 351bp) and (Bcl-xs, 162bp) for 24hrs, 48hrs and 72hrs. C. Densitometry 
showing percentage of splice inclusion (PSI-Ψ) of Bcl-xl isoform. n=3. 

A 

B 

C 



 

151 
 

4.5.6 Effect of combined SPHINX and TG003 with imatinib on Apaf1 alternative 
splicing in K562 cells 

PCR amplicons for Apaf1, on visual examination, appear to express equal level for 

both isoforms at 24hrs, but with a reduction in Apaf-1s level in the SPHINX and TG003 

and its combination with imatinib at 48hrs. However, at 72hrs, the levels seem to 

vary with treatment, maintaining higher levels of Apaf-1xl and Apaf-1s levels in the 

controls, SPHINX and TG003 treated groups. Treatment with imatinib, Imatinib and 

TG003 and the combined SPHINX, TG003 and imatinib treatment showed a reduction 

but equal levels of both Apaf-1xl and Apaf-1s isoforms (Figure 4.24B). Image 

quantification of the bands showed varying ratio with each treatment at 48hrs and 

72hrs. (Figure 4.24C).  
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4.5.7 Effect of combined SPHINX and TG003 with imatinib on caspase 9 alternative 
splicing in K562 cells 

The levels of caspase 9 were investigated to see whether inhibiting SRPK1 and CLK1 in 

addition to imatinib treatment would result in a complete switch in splicing to the pro-

apoptotic caspase 9a since earlier treatments with imatinib alone resulted in a switch 

but non-significant change in splice ratio between 9a/9b (Figure 4.25B). Figure 4.25C 

shows levels of caspase 9a and 9b levels for 24hrs-72hrs. Reduced levels and an 

apparent change in splicing was observed at 48hrs and 72hrs in groups with imatinib. 

This result was consistent with the previous experiment indicating imatinib but not 

SPHINX or TG003 potentially being responsible for the induction of pro-apoptotic events 

observed in K562 cells.  

 

 

 

Figure 4.24. Alternative splicing of Apaf1 in K562 cells following combined SPHINX and 
TG003 with imatinib mesylate treatment. K562 cells were treated with either Imatinib, 
SPHINX or TG003, a combination of both inhibitor and all three treatments for up to 
72hrs. B. Representative of PCR amplicons (Apaf-1xl, 430bp) and (Apaf-1s, 301bp) for 
24hrs, 48hrs and 72hrs. C. Densitometry showing percentage of splice inclusion (PSI-Ψ) 
in Apaf-1xl/1s isoforms. n=3. 
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Figure 4.25. Alternative splicing of caspase 9 in K562 cells following combined 
SPHINX and TG003 with imatinib mesylate treatment. K562 cells were treated 
with either Imatinib, SPHINX or TG003 inhibitor, a combination of both 
inhibitor and all three treatments for up to 72hrs. B. Representation of PCR 
amplicon (caspase 9a, 742bp) and (caspase 9b, 292bp) for 24hrs, 48hrs and 
72hrs. C. Densitometry showing percentage of splice inclusion (PSI-Ψ) in 
caspase-9a/9b isoform. Statistics comparing SPHINX+TG003+Imatinib with 
other treatment was significant at 48hrs (*P=0.01) and 72hrs (P<0.05), n=3. 
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4.6 Effect of combined SPHINX and TG003 with azacytidine on the 
expression of SRPK1, CLK1, VEGF and alternative splicing of a panel 
of apoptotic genes in Kasumi-1 cells  

 
4.6.1 Effect of combined SPHINX and TG003 with azacytidine on SRPK1 expression 

 
The effect of SRPK1 and TG003 inhibition in addition to treatment with azacytidine in 

Kasumi-1 was also investigated to see if combined treatment would influence RNA 

processing in AML treatment potentially indicating a better therapeutic outcome. 

Changes in levels of SRPK1 was examined to see if a combination of this treatment would 

result in any change in SRPK1 RNA when compared to the use of each inhibitor or drug 

alone. Results showed no change in SRPK1 levels (Figure 4.26B-C). 
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Figure 4.26. SRPK1 levels in combined SPHINX and TG003 with azacytidine treatment 
in Kasumi-1 cells. Kasumi-1 cells were treated with either azacytidine, SPHINX or 
TG003 inhibitor, a combination of both inhibitor and all three molecules for up to 
72hrs. A. Representation of loading control, β-actin (206bp) for 24hrs, 48hrs and 72hrs. 
B. SRPK1 PCR amplicon for 24hrs, 48hrs and 72hrs. C. Densitometry showing levels of 
SRPK1 levels which showed no significant difference between treatments. n=3. 
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4.6.2 Effect of combined SPHINX and TG003 with azacytidine on VEGF alternative 
splicing in Kasumi-1 cells 

Levels of total VEGF was also investigated for the changes and to see if treatment would 

result in a switch in splicing to VEGF anti-angiogenic isoform VEGF165b which has been 

shown to slow down disease progression through inhibition of neovascularization 

(Mavrou et al., 2014). There were no significant changes in total VEGF levels, neither 

was there any splicing event seen. (Figure 4.27). 

 

              

 

              

 

 

 

4.6.3 Effect of combined SPHINX and TG003 with azacytidine on Bclx alternative 
splicing in Kasumi-1 cells 

The apoptotic gene Bclx was studied to see if there was a change in splicing to the pro-

apoptotic isoform Bcl-xs. The dominant isoform was seen to be highly expressed and no 

change in individual isoform level was observed with treatment or controls (Figure 

4.28B-C).  

 

 

 

Figure 4.27. VEGF levels in combined SPHINX and TG003 with azacytidine treatment 
in Kasumi-1 cells. Kasumi-1 cells were treated with either azacytidine, SPHINX or TG003 
inhibitor, a combination of both inhibitor and all three treatments for up to 72hrs. 
Representation of VEGF PCR amplicon (199bp) for 24hrs, 48hrs and 72hrs.    
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Figure 4.28. Alternative splicing of Bclx following combined SPHINX and TG003 
with azacytidine in Kasumi-1 cells. Kasumi-1 cells were treated with either 
azacytidine, SPHINX or TG003 inhibitor, a combination of both inhibitor and all three 
molecules for up to 72hrs. B. Representation of PCR amplicon (Bcl-xl, 351bp) and 
(Bcl-xs, 162bp) for 24hrs, 48hrs and 72hrs. C. Densitometry showing percentage of 
splice inclusion (PSI-Ψ) of Bcl-xl isoform. n=3. 
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4.6.4 Effect of combined SPHINX and TG003 with azacytidine on Apaf1 alternative 
splicing 

The levels of Apaf1 appear to be unaffected at 24hrs and 48hrs, anti-apoptotic isoform, 

Apaf-1xl seem to have a higher level of expression. While at 72hrs, cells treated with 

azacytidine, TG003 and azacytidine, SPHINX and TG003 and all three combined 

treatment showed reduced but equal levels of both isoforms. 

     

               

                        

 

 

 

Figure 4.29. Alternative splicing of Apaf1 following combined SPHINX and TG003 
with azacytidine in Kasumi-1 cells. Kasumi-1 cells were treated with either 
azacytidine, SPHINX or TG003 inhibitor, a combination of both inhibitor and all three 
molecules for up to 72hrs. B. Representation of PCR amplicon (Apaf-1x, 430bp) and 
(Apaf-1s, 301bp) for 24hrs, 48hrs and 72hrs. C. Densitometry showing percentage of 
splice inclusion (PSI-Ψ) of Apaf-1 isoform. n=3. 
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4.6.5 Effect of combined SPHINX and TG003 with azacytidine on caspase 9 alternative 
splicing in Kasumi-1 cells 

Levels of caspase 9 appear unaffected across the treatment with caspase 9a isoform 

being more expressed (Figure 4.30B-C).  
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Figure 4.30. Alternative splicing of caspase-9 following combined SPHINX and TG003 
with azacytidine in Kasumi-1 cells. Kasumi-1 cells were treated with either azacytidine, 
SPHINX or TG003 inhibitor, a combination of both inhibitor and all three molecules for 
up to 72hrs. PCR was performed using caspase 9 specific primers. B. Representative PCR 
amplicon for caspase 9a, (742bp) and caspase 9b, (292bp) for 24hrs, 48hrs and 72hrs.C. 
Densitometry showing percentage of splice inclusion (PSI-Ψ) in caspase 9. n=3. 
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4.6.6 Effect of combined SPHINX and TG003 with azacytidine on CLK1 alternative 
splicing in Kasumi-1 cells 

Kasumi-1 cells showed more CLK1 exon-4 inclusion in all treatment involving TG003 at 

24hrs and 48hrs. At 72hrs time point, except for the TG003 only treatment, all others 

involving TG003 in addition to the azacytidine only treatment had more exon 4 inclusion. 

(Figure 4.31A-B). Similarly, levels of CLK1 intron 4 retention varied between treatment 

(Figure 4.31C). 
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Figure 4.31. Alternative splicing of CLK1 following combined SPHINX and TG003 with 
azacytidine in Kasumi-1 cells. Kasumi-1 cells were treated with either azacytidine, 
SPHINX or TG003 inhibitor, a combination of both inhibitor and all three molecules for 
up to 72hrs. A. Representative PCR for (CLK1 268bp) and (ΔCLK1 187bp) for 24hrs, 
48hrs and 72hrs. B. Densitometry showing percentage of exon 4 splice inclusion (PSI-
Ψ) in CLK1. C. PCR showing levels of intron 4 retention following treatments. n=3. 
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4.7 Effect of combined SPHINX and TG003 with imatinib on SRPK1 
expression and on SRSF1 and other SR-protein phosphorylation in 
K562 cells 

 

4.7.1 Effect of combined SPHINX and TG003 with imatinib on SRPK1 protein 
expression in K562 cells 

Studies into the effect of inhibiting SRPK1, CLK1 and imatinib treatment on K562s has 

shown that these have very little effect on the level and alternative splicing. We next 

examined the effect of the inhibitors on SRPK1 and CLK1 protein levels as there is 

evidence; at least in the case of CLK1 that expression of the splice factors themselves 

changes through presumed auto-regulatory mechanisms (Uzor et al., 2018). Protein 

levels of SRPK1 were found to alter when a comparison was made between the cells 

treated with SPHINX, TG003 and imatinib to all other treatments, only the controls and 

single kinase inhibition was found to show a significant change in SRPK1 protein level at 

24hrs and DMSO and TG003 at 72hrs (Figure 4.32A-B). This result was consistent with 

the data suggested by the standard PCR experiment.  
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4.7.2 Effect of combined SPHINX and TG003 with imatinib on SRSF1 protein 
expression in K562 cells 

Like the levels of SRPK1, levels of total SRSF1 protein levels at 24hrs were found to be 

higher in the controls, SPHINX, TG003 and imatinib treatment than in the combination 

treatments. At 48hrs levels of the controls, combined SPHINX and imatinib and SPHINX 

and TG003 were higher compared to the combined treatment group. Whereas at 72hrs, 

SRSF1 levels were higher in the controls, SPHINX and TG003 treatment (Figure 4.33). It 

was expected that the total SRSF1 level will be unaffected by SRPK1 or CLK1 inhibition 

because both kinases are only known to act on the phosphorylated epitope.  

           

 

B 

Figure 4.32. SRPK1 Protein levels in combined SPHINX and TG003 with imatinib in 
K562 cells. Western blot analysis on K562 protein extracts using anti-SRPK1 antibody. 
K562 cells were treated with either SPHINX; or TG003, a combination of both inhibitor 
and in addition to Imatinib.  A. Densitometry showing protein levels of SRPK1 with 
increased SRPK1 protein level in the single treatment at 24hrs (P= 0.02, 0.006,0.04, 
and 0.03 respectively) and the DMSO and TG003 group at 72hrs (P<0.05) when 
compared to SPHINX+TG003+IM treated group. B. Image showing protein band 
visualized on PVDF membrane with corresponding β-actin loading control n=3. 
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4.7.3 Effect of combined SPHINX and TG003 with imatinib on CLK1 protein expression 
in K562 cells 

It was only at 72hrs did CLK1 levels in K562 cells treated with SPHINX, TG003 and 

imatinib significantly differ from the control but not with all other treatment (Figure 

4.34A). Like with SRPK1, CLK1 proteins levels appear to be unaffected following CLK1 

inhibition. In contrast, imatinib treatment results in a reduction in CLK1 protein levels as 

all treatment including imatinib showed an apparent decrease (Figure 4.34B). This was 

also an interesting finding knowing that imatinib could affect signalling pathway that 

results in changes in CLK1 expression. This was not the focus of this study; further 

investigation is necessary to understand what role CLK1 and changes in CLK1 levels in 

response to chemotherapy could be playing in CML progression and treatment 

outcome.  

Figure 4.33. Total SRSF1 protein levels in combined SPHINX and TG003 with imatinib 
in K562 cells. Western blot analysis on K562 protein extract using anti-SRSF1 antibody. 
K562 cells were treated with either SPHINX or TG003, a combination of both inhibitor 
and addition to Imatinib.  Image showing protein band visualized on PVDF membrane 
with corresponding β-actin loading control and band weight. n=3. 
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Figure 4.34. CLK1 protein levels in combined SPHINX and TG003 with imatinib in 
K562 cells. Western blot analysis on K562 protein extract using anti-Clk1 antibody. 
K562 cells were treated with either SPHINX or TG003, a combination of both 
inhibitor and in addition to Imatinib. A. Densitometry showing protein levels of CLK1 
with only the control at 72hrs showing a significant difference (*P=0.02). B. Image 
showing protein band visualized on PVDF membrane with corresponding β-actin 
loading control. n=3. 
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4.7.4 Effect of combined SPHINX and TG003 with imatinib on SR-protein 
phosphorylation in K562 cells 

Examination of phosphorylation serine/arginine proteins in K562s showed varying levels 

of phosphorylation with each treatment measured using an antibody specific to 

phospho-SR epitopes. Representative image blots are shown in Figure 4.35 

corresponding to each time point. There were indications of reduced phosphorylation 

in all treatments involving imatinib, and group treated with a combination of SPHINX 

and TG003 especially at 72hrs. Since SRPK1 and CLK1 are critical in the phosphorylation 

of SR proteins, it was expected that inhibition of either kinase will result in reduced 

expression of SR phospho-epitope. This was not the case, especially at 72hrs.  

Figure 4.35. Protein levels of phospho-SR protein in combined SPHINX and TG003 with 
imatinib in K562 cells. Western blot analysis on K562 protein extract using 1H4 pan 
antibody. K562 cells were treated with either SPHINX or TG003 a combination of both 
inhibitor and in addition to Imatinib. Western blot image showing protein levels for 
phospho-SR family proteins at 24hrs (I), 48hrs (II), and 72hrs (III). Results are suggestive 
of reduced phosphorylation of SR proteins in treatments with imatinib and combined 
SPHINX with TG003. Images were visualized on PVDF membrane with corresponding β-
actin loading control. n=3. 
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4.8 Effect of combined SPHINX and TG003 with azacytidine on SRPK1 
expression and on SRSF1 and other SR-protein phosphorylation in 
Kasumi-1 cells 

 

4.8.1 Effect of combined SPHINX and TG003 with azacytidine on SRPK1 protein 
expression in Kasumi-1 cells 

Contrary to the effect of imatinib on SRPK1 in K562s, azacytidine has no effect on levels 

of SRPK1 protein expression in Kasumi-1 cells. Combining Inhibition of SRPK1 and CLK1 

with azacytidine results in a significant reduction in SRPK1 levels at 48hrs when 

compared to other treatment. However, at 72hrs, levels only differed with TG003, 

azacytidine and combined SPHINX and azacytidine (Figure 4.36A&B). Even though the 

combination of SPHINX and TG003 with azacytidine was not significantly different from 

the SPHINX and TG003 combination, there are indications that azacytidine may have a 

potential effect on levels of the SRPK1 oncoprotein. 
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Figure 4.36. SRPK1 Protein levels in combined SPHINX and TG003 with azacytidine in 
Kasumi-1 cells. Western blot analysis on Kasumi-1 protein extract using anti-SRPK1 
antibody. Kasumi-1 cells were treated with either SPHINX or TG003, a combination of 
both inhibitor and in addition to azacytidine. A. Densitometry showing increased protein 
level of SRPK1 at 48hrs in all treatment which differs significantly (****P≤0.0001; 
**P=0.008 and **P=0.002) from the SPHINX+TG003+azacytidine group except for 
SPHINX+TG003 treatment. At 72hrs (*P<0.05; **P=0.007 respectively) in the TG003, 
azacytidine and SPHINX+ azacytidine group. B. Images are representation of PVDF 
membrane showing protein levels with corresponding β-actin loading control. n=3.   
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4.8.2 Effect of combined SPHINX and TG003 with azacytidine on SRSF1 protein 
expression Kasumi-1 cells 

Figure 4.37 are immunoblotting of total SRSF1 protein in Kasumi-1 cells following 

treatment with several compounds. Levels of total SRSF1 were found to be reduced at 

24hrs treatment with combined SPHINX and azacytidine and combination of all three 

treatment. An apparent increase in total SRSF1 was observed in the controls, SPHINX, 

azacytidine and TG003 and azacytidine when compared to SPHINX, TG003 and 

azacytidine combination. At 48hrs and 72hrs, levels of SRSF1 appear to be reduction in 

total SRSF1 splice factor in combined TG003 and azacytidine, SPHINX and TG003 and 

SPHINX, TG003 with azacytidine combination which appears to be time dependent. The 

latter displayed the lowest levels at all time points. 

 

                 

 
 
 
 
 

 

 

 

 

 

Figure 4.37. Total SRSF1 protein levels in combined SPHINX and TG003 with azacytidine 
in Kasumi-1 cells. Western blot analysis on Kasumi-1 protein extract using anti-SRSF1 
antibody. Kasumi-1 cells were treated with either SPHINX or TG003, a combination of 
both inhibitor and in addition to azacytidine. Images are representation of protein levels 
with corresponding β-actin loading control. n=3.   
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4.8.3 Effect of combined SPHINX and TG003 with azacytidine on CLK1 protein 
expression in Kasumi-1 cells 

Examining the levels of CLK1 in Kasumi-1 cells showed a trend which is both treatment 

and time dependent. There was an apparent decrease in CLK1 with the combined 

treatments at 24hrs and 48hrs. Furthermore, at 72hrs, combined SPHINX, TG003 and 

azacytidine resulted in low levels of CLK1, compared to all other single and combined 

treatment (Figure 4.38). 

          

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.38. CLK1 protein levels in combined SPHINX and TG003 with azacytidine 
in Kasumi-1 cells. Western blot analysis on Kasumi-1 protein extract using anti-CLK1 
antibody. Kasumi-1 cells were treated with either SPHINX or TG003, a combination 
of both inhibitor and in addition to azacytidine. Images shows level of CLK1 proteins 
with corresponding β-actin loading control. n=3.   
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4.8.4 Effect of combined SPHINX and TG003 with azacytidine on SR-protein 
phosphorylation in Kasumi-1 cells 

Phosphorylation of the serine-rich splice factors is the key function of SRPK1 and CLK1. 

Protein blots for SR proteins showed significant decrease in phosphorylation in groups treated 

with TG003 and azacytidine, SPHINX and TG003 and a combination of all three compounds. 

These were more Phosphorylation of SRSF4 at 24hrs increased in the controls, SPHINX, 

TG003 and azacytidine but not in groups with combined treatment when compared to 

combined SPHINX, TG003 and azacytidine (Figure 4.39).  

At 48hrs and 72hrs, reduced phosphorylation was observed in TG003 and azacytidine 

and SPHINX and TG003 combination of all three treatments. Phosphorylation of pSRSF11 

for SPHINX and TG003 at 24hrs, TG003 and azacytidine and SPHINX and TG003 at 48hrs, 

and at 72hrs, SPHINX and TG003 was reduced.  

Levels of pSRSF5 were different across each treatment. Except for SPHINX and TG003 

treatment and a combination of all three treatments, levels were observed to rise after 

24hrs. Levels of pSRSF2 were similar to those found in pSRSF5.  

Figure 4.39. Protein levels of phospho-SR protein in combined SPHINX and 
TG003 with azacytidine in Kasumi-1 cells. Western blot analysis on Kasumi-
1 protein extract using SR-antibody (1H4). For statistical analysis, all 
treatments were compared to the combined SPHINX+TG003+azacytidine 
treatment. Representative Western blot images for SR protein blot showing 
levels of phosphorylation of SR proteins and corresponding β-actin loading 
control (n=3).   

 



 

172 
 

 

4.9 Discussion 
 

4.9.1  Effect of combined SPHINX and TG003 with imatinib on K562 cell viability and 
growth 

CML is a myeloproliferative disorder characterized by a balanced translocation t(9;22) 

(q34; q11). This results in the formation of BCR-ABL oncoprotein, a constitutively active 

tyrosine kinase that promotes cellular growth and proliferation. Imatinib, a tyrosine 

kinase inhibitor, is a first-generation drug and a first line drug for the management of 

CML targeting the ATP-binding site of the fusion protein. Previous studies have shown 

that treatment of CML with imatinib results in decreased cell proliferation and cell death 

due to apoptosis (Husaini et al., 2017). 

To observe first-hand the effect of imatinib on the K562 cell line, cells were treated with 

increasing concentrations of imatinib up to 20μg/ml (Figure 4.1). Results obtained were 

consistent with previous research which recorded increased cell death and reduced cell 

proliferation in CML cells treated with imatinib or its analogue, dasatinib (Roussidis et 

al., 2004; Lu et al., 2017). Contrary to this finding, an earlier study (Roseé et al, 2003) 

found no correlation between imatinib treatment and cell death in K562 possibly due to 

experimental design, as the cells used were synchronized and arrested at the G1/S phase 

and treated with 1µM imatinib for up to 48hrs. Another study has shown that imatinib 

is able to inhibit cell growth and proliferation in platelet derived growth factor receptor 

positive (PDGFR+) ovarian cancer (Matei et al., 2004) and in colon cancer, with cell cycle 

arrest at G1/S phase (Samei et al., 2016). The increased cell death observed in K562 cells 

even at low doses of imatinib confirms the effectiveness of imatinib in CML treatment. 

Combining imatinib treatment and SRPK1 inhibition using SPHINX in K562 cells showed 

no further decrease in cell viability and growth. However, the result was consistent with 

the reduced cell viability in imatinib only treated cells This finding was unexpected. 

However, with a further assay, using acridine orange fluorescent dye to study cell 

apoptosis in combined imatinib and SPHINX treatment, it was observed that there were 

fewer apoptotic cells in the combined treatment than imatinib treatment alone. This 

brings into question if there is an indirect effect of SPHINX on the targets of imatinib, 

since cells have more survival advantage when SPHINX was combined with imatinib. 
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A study has shown that both imatinib and SPHINX or its analogue (SRPIN340) are able to 

interact with the PI3/Akt pathway (Zhou et al., 2012; Wang et al., 2014). It is therefore 

possible that SPHINX interaction with PI3/Akt activates rather than inhibits downstream 

target pathways responsible for cell survival. This will require further study on the 

structure of both molecules to understand what relationship exists between them. 

4.9.2  Effect of combined SPHINX and TG003 with azacytidine on Kasumi-1 cell 
viability and growth 

 

The use of azacytidine (a cystidine analogue with DNA hypo-methylation properties) in 

the management of AML was suggested in patients with unfavourable cytogenetics or 

myelodysplasia-related changes who are ineligible for stem cell transplant (NICE, 2018).  

Treatment with azacytidine has a clear activity but treatment does not result in a 

significant increase in overall survival (OS) (Dombret et al., 2015).  

Using the Kasumi-1 cell line as a model for AML, the effect of azacytidine on Kasumi-1 

cell viability and growth was observed. With a clinically relevant dose of 750ng/ml of 

azacytidine, concentrations up to 1.5µg/ml of azacytidine were used. Decreasing cell 

viability and reduced cell growth was recorded.  

Since treatment with azacytidine is not without side effects, which is a consequence of 

most chemotherapeutic agent, its combination with SPHINX was investigated with the 

thought that an increase in cell death would inform reduction in clinical doses. Kasumi-

1 cell viability was decreased in the combined treatment when compared to controls 

and SPHINX treatment (Figure 4.5A). However, for cell growth, the combination 

treatment was only reduced relative to the untreated and DMSO controls but was not 

significantly reduced relative to SPHINX or azacytidine treatments alone (Figure 4.5B). 

Additional assays measuring caspase 3/7 activity showed increased caspase activity with 

the combined treatment but did not differ significantly with the SPHINX or azacytidine 

treatment alone. This study observed no change in cell viability and growth with 

additional inhibition of CLK1. Suggesting that combined treatment with azacytidine, 

SPHINX and TG003 may have no additional benefit in AML treatment than combining 

azacytidine and SPHINX or azacytidine and CLK1 alone. 

With a lack of data comparing the effect of small molecules such as SPHINX and CLK1 

inhibition with a conventional chemotherapeutic agent, it is unknown what to expect.  
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Research comparing the effect of combining azacytidine and romidepsin (AR) with 

interferon-α (IFN-α) on tumour progression and metastasis found that the addition of 

interferon potentiates the anti-proliferative, pro-apoptotic and metastasis activity of 

azacytidine and romidepsin alone in colorectal cancer (CRC) and CRC stem cells (CSCs) 

(Buoncervello et al., 2015). This combination was also known to affect the ERK1/2 and 

Akt pathway (Buoncervello et al., 2015). An earlier study has suggested a better 

outcome when immune therapy is combined with a conventional chemotherapeutic 

agent by induction of immunogenic cell death and increased T-cell recognition of 

tumour cells (Galluzzi et al., 2012). 

4.9.3 Effect of combined SPHINX and TG003 with imatinib on the expression of SRPK1, 
CLK1, VEGF and alternative splicing of a panel of apoptotic genes in K562 cells. 

The earlier results (Figure 3.17) demonstrated that inhibition of SRPK1 in K562 cells 

showed a fluctuating level of SRPK1 mRNA such that levels increased at 24hrs but 

decreased at 48hrs. Further experiments combining SRPK1 with imatinib treatment 

found no further change in levels of SRPK1, with levels remaining unaffected with 

additional inhibition of CLK1(Figure 4.20). This suggests that combined treatment offers 

no potential benefit where the aim is not just to inhibit the activity but also to reduce 

SRPK1 protein levels.  

SRPK1 has been described as a constitutively active kinase and considered to be resilient 

to inactivation due to its activation loop not requiring intra-protein interaction to stay 

active (Ngo et al., 2007). This could explain the unaffected levels of SRPK1 in leukaemic 

cells as preliminary studies in this research carried out on the prostate cancer cell line 

PC3, observed a significant decrease in SRPK1 mRNA and protein levels following SRPK1 

inhibition. 

Results obtained were consistent with previous studies which showed that inhibition of 

CLK1 results in more exon 4 inclusion and less intron 4 retention in an auto-regulatory 

loop (Uzor et al., 2018). This change in CLK1 splicing was observed only at concentrations 

of 10µM and 50µM TG003. When CLK1 inhibition was combined with either SPHINX or 

imatinib treatment or a combination of all treatments, only treatment involving TG003 

continued to show more exon 4 inclusion, whereas only at 72hrs did all treatments 

combined with TG003 result in less intron 4 retention. Other studies reported the 
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upregulation of CLK1 and its alternative splicing towards full-length CLK1 both in hypoxic 

conditions (Bowler et al., 2018), and in osmotic and heat shock conditions (Uzor et al., 

2018). There are indications that most tissues express both full-length and truncated 

forms of CLK1. However, there is a shift in how much of each isoform is expressed in the 

presence of stress (Ninomiya et al., 2011; Uzor et al., 2018).  Analysis of both exon 4 and 

intron 4 has shown that compared to intron 4, exon 4 is flanked by weak splice 

recognition sites and therefore will require strong ESE such as SRSF1 (Schwartz et al., 

2008; Uzor et al., 2018). The need for effective splicing towards catalytically active full 

length CLK1 continues to suggest its auto-regulation as an adaptative mechanism to 

maintain its function in adverse and disease conditions.  

Results presented here confirm that the autoregulation of CLK1 through its alternative 

splicing, observed following TG003 treatments in prostate cancer cell lines, can be 

reproduced in leukaemic cell lines. There is no strong evidence, however, of SPHINX 

causing a similar change to SRPK1 protein levels, and therefore, the effects measured 

are presumably due to an inhibitory effect on SRPK1 enzyme activity. 

Compared to previous studies (Nowak et al., 2009; Mavrou et al., 2014; Batson et al., 

2017) this study was unable to observe changes in VEGF splicing towards the anti-

angiogenic isoform VEGF165b in three leukaemic cell lines, neither did any single kinase 

inhibition nor a combination of any two or more compounds find any change in splicing. 

This suggests that VEGF165b isoform could be selectively expressed in certain cell types. 

A study (Song et al., 2012) also suggests that the BCR/ABL mutation self-regulates VEGF 

expression through HIF-1α activation of STAT3 on the VEGF promoter in leukaemic 

cancer. This auto-regulatory ability of VEGF may account for the levels of total VEGF 

observed. 

No change was observed in Bclx alternative splicing in combined imatinib and SPHINX 

treatment or in addition to CLK1 inhibition. Similarly, no change was observed in Apaf1 

alternative splicing with increased PSI (Ѱ) value indicating higher expression of Apaf-1xl 

anti-apoptotic isoform. Treatment with imatinib and imatinib TG003 combination 

expressed equal ratio of Apaf-1xl/1s at 72hrs. Like Apaf1, caspase 9 showed an apparent 

switch in splicing to caspase 9a upon treatment with imatinib or in combination with 

other inhibitory molecules. Combining imatinib with both kinase inhibitors had no 

potential additional benefit in CML treatment. The inference drawn from splice changes 
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in Apaf1 and caspase 9 continues to support the ability of imatinib to initiate alternative 

splicing and apoptosis in K562 cells (Liu et al., 2012 and 2015). 

4.9.4  Effect of combined SPHINX and TG003 with imatinib on protein levels of SRPK1, 
SRSF1, CLK1, and on the phosphorylation of SR protein in K562 

It has been observed that inhibition of SRPK1 using SPHINX had no effect on SRPK1 and 

total SRSF1 in the K562 CML cell line. The degree of the effect on SR protein 

phosphorylation in K562 varied from one SR protein to another, with reduced phospho-

epitope as expected following increasing concentrations of SPHINX (Figure 3.24). 

This study was expanded to investigate what effect a combination of SRPK1 and CLK1 

inhibition, in addition to treatment with imatinib, would have on individual protein 

kinase expression and on phosphorylation of SR proteins. The research group confirms 

previous work (Uzor et al., 2018; Bowler et al., 2018) in which CLK1 is found to auto-

regulate its expression in response to stress. Protein levels of CLK1 were elevated in 

treatments involving TG003 without imatinib in K562 cells. Interestingly, this increase is 

accompanied by an increase in SRSF1 supporting findings that suggest SRSF1 as the ESE 

required for CLK1 auto-regulation (Schwartz et al., 2008; Uzor et al., 2018); increased 

catalytically active CLK1 mRNA equals increased CLK1 protein. Furthermore, increased 

SRPK1 protein levels were observed even with a combination of TG003 with SPHINX 

which inhibits SRPK1. These results put together, suggests that CLK1 regulates SRPK1 

levels, and both CLK1 and SRPK1 are responsible for SR protein function (Aubol et al., 

2016 and 2018).  It is also possible that SRPK1 undergoes auto-regulation, and a further 

complication is that its nuclear presence is controlled by CLK1 (Aubol et al., 2016). 

Interestingly, except for combined imatinib and SPHINX treatment, all other treatments 

with imatinib combinations showed a time-dependent decrease in protein levels of 

SRPK1, SRSF1 and CLK1 at 48hrs and 72hrs. Since imatinib is specific for targeting the 

tyrosine kinase BCR-ABL, it can be inferred that through a downstream signalling 

pathway of BCL-ABL such as mTOR/Akt, imatinib is able to regulate protein synthesis of 

SRPK1, CLK1 and SRSF1 (Kharas et al., 2008). One study suggests that Akt, which is a 

target of imatinib can induce auto-phosphorylation of SRPK1, increasing SRPK1 nuclear 

import and subsequent SR protein phosphorylation (Zhou et al., 2012) indicating a direct 

relationship between imatinib SRPK1, CLK1 and SRSF1. However, it was interesting to 
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observe that imatinib can reduce the levels of total SRSF1 through a mechanism, which 

is not known. This finding will need further investigation. 

Examining the effect on SR protein phosphorylation, fluctuating levels of 

phosphorylation within the SR protein family was observed. An apparent reduction in 

phosphorylation was observed where treatments were combined at the 72hrs time 

point. This was consistent with the levels of SRPK1 and CLK1 levels earlier observed. 

Overall, combining imatinib treatment and both kinase inhibition suggests a potential in 

the regulation of SR protein kinases, SRPK1 and CLK1 (Figure 4.32 & 4.34) and their 

substrate, SRSF1 (Figure 4.33) in CML. This in the broad sense will regulate aberrant 

splicing and pathways such as the PI3K/Akt which are targets of the SRPK1-CLK1-SR 

protein axis necessary for progression of CML.  

4.9.5 Effect of combined SPHINX and TG003 with azacytidine on the expression of 
SRPK1, CLK1, VEGF and alternative splicing of apoptotic genes in Kasumi-1 cells 

Statistics have shown that many adult patients with AML will go into a refractory phase 

or relapse from the disease (Breems et al., 2005). With the success achieved in the use 

of small molecule inhibitors for the treatment of multiple tumours such as 

gastrointestinal stromal tumour and CML (Luger, 2010; Demetri et al., 2002; O’Brien et 

al., 2003), the shift in research is the need to develop a therapeutic agent with a lasting 

positive outcome for patients in this category. 

This study has shown that SPHINX, and likewise, azacytidine, affect Kasumi-1 cell viability 

and growth. Further study expanded on this to see how a combination of both molecules 

in addition to CLK1 inhibition affects mRNA levels and splicing. Levels of SRPK1 and VEGF 

were unaffected when SPHINX was combined with azacytidine or with additional 

inhibition of CLK1. At 48hrs in the SPHINX and azacytidine combination, a smaller 

amplicon band (65bp) was observed, suspected to be VEGF165b isoform (Figure 4.15). 

This was inconclusive as the result was not reproducible. CLK1 showed more exon 4 

inclusion and less intron 4 retention in all groups involving TG003 treatment. Contrary 

to the levels of CLK1 intron 4 observed in K562, Kasumi-1 cells overall appear to express 

less of CLK1 intron 4 isoform. This observation was made considering the low levels 

observed in the untreated and DMSO controls. It does follow that different cells will 

express varying degrees of each isoform.  It is also possible that the levels observed 
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might be common in acute phases of leukaemia as a previous study has observed 

similarly low levels of this isoform in MOLT 4, an acute lymphoblastic leukaemia cell line 

(Uzor et al., 2018). Choice of splice site involving binding of the ESE such as SR proteins 

on the alternative exons has been shown to promote exon inclusion (Han et al., 2011). 

This might be the case with Kasumi-1 mRNA splicing.    

Furthermore, no change was observed in Bclx, Apaf1 and caspase 9 alternative splicing 

following combined SPHINX and azacytidine, or in addition to CLK1 inhibition. This can 

be accounted for by mutation and copy number changes in genes encoding spliceosome 

proteins such as SRSF2, U2AF1 and SF3B1 in AML shown to affect maintenance and 

stability of leukaemic stem cell (LSC) clones and propagation of AML (Crews et al., 2016; 

Papaemmanuil et al., 2016). These proteins interact with pre-mRNA, and when mutated, 

splice site recognition is altered, which results in more intron retention and exon 

skipping. This correlates with the splicing event observed in these genes as the larger 

isoforms were highly expressed. Results observed with Bclx also suggest that the cell 

death observed in Kasumi-1 cells may have resulted from pathways other than the 

intrinsic pathway in which Bclx is involved, while a reduced but equal ratio of both Apaf1 

isoforms could be responsible for the induction of apoptosis rather than a complete 

switch from one isoform to the other. Since levels of Apaf1 in the combined treatment 

appear the same with azacytidine and with combined SPHINX and TG003 inhibition, it is 

unlikely that combining all three treatment may have an added advantage (Figure 4.29B-

C) 

4.9.6  Effect of combined SPHINX and TG003 with azacytidine on of SRPK1, SRSF1, 
CLK1, protein expression and phosphorylation of SR protein in Kasumi cells 

A previous study has shown increased sensitivity of myeloid cells to SRPK1 inhibition 

using the small molecule inhibitor SRPIN340 when compared to leukaemic cancers of 

lymphoid origin (Siqueira et al., 2015), suggesting that Kasumi-1 cells, which belongs to 

the same category, could be more sensitive to treatment.  

The result from this study has also suggested similar sensitivity with Kasumi-1 cells as a 

model when compared to K562 and TK6 cells where no effect on protein expression was 

observed following inhibition with SPHINX and TG003. Contrary to K562 cells, where 

decreased expression of SRPK1, SRSF1 and CLK1 appear to be affected by imatinib rather 
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than SPHINX or TG003, in Kasumi cells, a reduction was observed with treatment 

combination of TG003 and azacytidine, SPHINX and TG003 and a combination of both 

kinase inhibitor with azacytidine. Results were found to be consistent with time except 

for SRPK1 levels at 24hrs (Figure 4.36). Since SRPK1 and CLK1 phosphorylate SR-proteins, 

including SRSF1, it was expected that inhibition of both kinases would result in an 

increased expression of total SRSF1 rather than a decrease. The reduced expression of 

SRSF1 observed when SPHINX, TG003 and azacytidine were combined indicates a 

prospect of the potential benefit a combination of these compounds could play in the 

reduction of oncogenic splice factor SRSF1 in tumour cells. These results also suggest a 

cell-specific and cell-dependent effect of one kinase over another. Furthermore, the 

similarity in the protein levels of SRPK1 and CLK1 continue to confirm existing 

publications on the role SRPK1 and CLK1 in SR protein phosphorylation, and the 

regulation of SRPK1 by CLK1 (Zhou et al., 2012; Aubol et al., 2016).  

Phosphorylation of SR proteins; pSRSF4, pSRSF6, pSRSF11, pSRSF5 and pSRSF2 appear 

to also follow the trend observed in SRPK1, SRSF1 and CLK1 when the cells were treated 

with a combination of TG003 and azacytidine, SPHINX and TG003 and a combination of 

both kinase inhibition with azacytidine. Reduced phosphorylation was observed when 

all three treatments were combined and consistent with time, especially at 48hrs and 

72hrs. This confirmed the role of SRPK1 and CLK1 in SR protein phosphorylation. Also, 

since multiple SR proteins act on a set of ESEs, the degree of one SR protein expression 

over the other may result in competitive binding between SR proteins. The consequence 

which will either enhance or repress the binding of another SR protein (Pandit et al., 

2013). The implication of this result outcome is that combined targeting of SRPK1 and 

CLK1 could be beneficial to augment existing AML therapies, subject of course to further 

research. 
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CHAPTER 5 
5 Comparative assessment of the effect of SRPK1 inhibition and 

SRPK1 siRNA knockdown in leukaemic cell lines. 
 

5.1 Introduction  
 

The serine-arginine protein kinase-1 (SRPK1) plays an essential role in various cancer and 

its progression (Mavrou et al., 2014; Roosmalen et al., 2015). SRPK1 has been shown to 

be upregulated in several types of cancers (Han et al., 2017). It has been shown that 

knockdown of SRPK1 inhibited tumour growth in xenograft and altered splicing of VEGF 

to a more anti-angiogenic VEGFxxxb isoform (Gonćalves, et al., 2014; Mavrou et al., 

2014). Other studies have shown that targeting SRPK1 using siRNA resulted in reduced 

cell proliferation and altered expression of key regulators of apoptosis (Hayes et al., 

2007). In K562 and AML, SRPK1 knockdown has been shown to suppress cell growth, 

induce apoptosis and altered isoform levels of genes involved in leukaemogenesis and 

apoptosis such as MYB, BRD4, VEGF-A and BCL2 (Tzelepis et al., 2018; Wang et al., 2018). 

This chapter was aimed at investigating the effect of SRPK1 knockdown using small 

interfering RNA (siRNA) on TK6, K562 and Kasumi-1 cell models. 

5.1.1 SRPK1 siRNA knockdown in leukaemic cell lines     

Using siRNA, SRPK1 was knocked down in leukaemic cell lines; TK6, K562 and Kasumi-1 

cell. The target sequence of the siRNA has been previously used (Karakama et al., 2010) 

to successfully knockdown SRPK1 (described in chapter 2.9). To determine the effective 

concentration of siRNA for SRPK1 knockdown, leukaemic cell lines were transfected with 

increasing concentration of SRPK1 siRNA up to 100nM. Cell transfection time with the 

siRNA was four hours and total incubation time was 72hrs. Immunoblotting was used to 

determine the effective knockdown which showed significant SRPK1 knockdown in all 

cell lines. Concentration for siRNA knockdown was then maintained at 100nM for all cell 

lines in further experiments. 
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5.1.2 Effect of siRNA knockdown on leukaemic cell viability and growth 

The effect of SRPK1 knockdown on leukaemic cell viability and cell growth was studied. 

This was done by transfecting TK6, K562 and Kasumi-1 cells with siRNA. Cell counts and 

viability assays were performed after 72hrs. Results of cell viability and growth in 

Knockdowns, scrambled control and SPHINX treatments were compared to DMSO. 

Results suggest no change in TK6 cell viability. In K562 and Kasumi-1 cells, SPHINX and 

knockdown cells significantly decreased when compared to DMSO (Figure 5.2A).  

When cell growth for all cell line was investigated, TK6 cells showed changes in cell 

number even in the scrambled control whereas, K562 and Kasumi-1 cells showed a 

significant decrease in cell growth in SPHINX and knockdown cells when compared to 

DMSO. This indicates that knockdown of SRPK1 has an apparent effect on leukaemic cell 

growth and suggests that SRPK1 may be involved in regulating the growth and 

proliferation pathways of some of these cells (Figure 5.2B). 

Figure 5.1. Knockdown at protein level of SRPK1 in leukaemic cells using small 
interfering RNA. Representative blots for TK6, K562 and Kasumi-1 cells showing 
knockdown efficiency of SRPK1. n=3 
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A 

B 

Figure 5.2. Comparative effect of SRPK1 inhibition and knockdown on leukaemic cell 
growth.  Leukaemic cells were either treated with 10µM SPHINX or transfected with 
100nM siRNA for 72hrs. A. TK6 cell viability were unaffected. SPHINX (P=0.012) and 
SRPK1-siRNA (P<0.0001) percentage viability differed with DMSO in K562 cells. 
Percentage decrease (****P<0.0001) in Kasumi-1 cell viability for SPHINX and SRPK1-
siRNA when compared to DMSO. B. TK6 cells (**P= 0.007; 0.002; 0.002) showed changes 
in cell growth. Cell number was reduced (*P= 0.03; ****P<0.0001) when compared to 
DMSO in K562 cell. For Kasumi-1 cells, a reduction (*P=0.042; ****P<0.0001) in cell 
growth when compared to DMSO.  n=3 
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5.2 Effect of SRPK1 siRNA knockdown on alternative splicing of a panel 
of genes in leukaemic cells 

 

5.2.1 Effect of siRNA knockdown on VEGF alternative splicing 

Levels of total VEGF showed no apparent difference between SPHINX treated cells and 

cells where SRPK1 were knocked down in TK6, K562 and Kasumi-1 cell. Both the treated 

group and control appear to be the same except for Kasumi-1 cells, where the VEGF in 

the SPHINX treatment and knockdown seem higher when compared to the controls. 

Alternative splicing of total VEGF to its anti-angiogenic isoform which has previously 

been reported (Mavrou and Oltean, 2016; Batson et al., 2017) following SRPK1 inhibition 

or knockdown was not detected (Figure 5.3B).  

                   

                     
 
                        
 
 
 
 
 

B 

Figure 5.3. Comparative effect of SRPK1 inhibition and knockdown on VEGF alternative 
splicing. Leukaemic cells were either treated with 10µM SPHINX or transfected with 
100nM siRNA. A. Actin control for all PCR amplification. B. Total VEGF PCR amplicon 
(199bp) and anti-angiogenic isoform, VEGF165b plasmid (65bp) in leukaemic cells. n=3 

 

A 
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5.2.2 Effect of siRNA knockdown on Bclx alternative splicing 

Ratios of Bclx isoforms (xl/xs) remained unchanged following SRPK1 knockdown in all 

three cell lines (Figure 5.4A-B). Bclx splicing levels in the knockdown were like the 

SPHINX treatment and controls with the more abundant anti-apoptotic isoform Bcl-xl 

(351bp) being more highly expressed.  

            

 

                          
 
 
 
 
 
 
 
 
 
 
 

A 

B 

Figure 5.4. Comparative effect of SRPK1 inhibition and knockdown on Bclx alternative 
splicing. Leukaemic cells were either treated with 10µM SPHINX or transfected with 
100nM siRNA or a scrambled control. A. PCR images for (Bcl-xl, 351bp) and (Bcl-xs, 
162bp) for TK6, K562 and Kasumi-1. B. Densitometry showing percentage of splice 
inclusion (PSI-Ψ) in Bcl-xl/xs isoform.  n=3. 
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5.2.3 Effect of siRNA knockdown on Apaf1 alternative splicing. 

Knockdown of SRPK1 showed no apparent effect on Apaf1 splicing (Figure 5.5). 

 

            
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5. Comparative effect of SRPK1 inhibition and knockdown on Apaf1 
alternative splicing. Leukaemic cells were either treated with 10µM SPHINX or 
transfected with 100nM siRNA or a scrambled control. Representative PCR image for 
Apaf-1xl (430bp) and Apaf-1s (301bp) for TK6, K562 and Kasumi-1. n=3. 
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5.2.4 Effect of siRNA knockdown on caspase 9 alternative splicing. 

Knockdown of SRPK1 had no effect of caspase 9 alternative splicing. Quantitative 

analysis of gel electrophoresis indicates equal levels of both isoforms being expressed 

both in the controls and treated group (Figure 5.6A-B).   

 

         
 
 

                         

 

 
 
 
 
 
 

A 

B 

Figure 5.6. Comparative effect of SRPK1 inhibition and knockdown on caspase 9 
alternative splicing. Leukaemic cells were either treated with 10µM SPHINX or transfected 
with 100nM siRNA or a scrambled control. A. Representation of PCR amplicon (caspase 9a, 
742bp) and (caspase-9b, 292bp) for TK6, K562 and Kasumi-1. B. Densitometry showing 
percentage of splice inclusion (PSI-Ψ) in caspase-9a/b isoform. n=3. 
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5.3 Comparative assessment of SRPK1 inhibition and SRPK1 
siRNA knockdown in leukaemic cells protein levels 

 

5.3.1 Effect of siRNA knockdown on SRPK1 protein levels  

Protein quantification indicated an effective knockdown of SRPK1 using siRNA. Levels of 

SRPK1 differed significantly between knockdown and DMSO (Figure 5.7A-B). 

          

                      

       
 

 

 

A 

B 

Figure 5.7. Comparative assessment of SRPK1 protein levels in SRPK1 inhibition and 
knockdown leukaemic cells. Cells were treated with either SPHINX or transfected with 
SRPK1 siRNA. A. Result showed significant knockdown of SRPK1 in the siRNA transfected 
cells for all cell lines. In TK6 (**P= 0.006).  K562 protein levels also differ (***P=0.0002) 
compared to DMSO. Knockdown of SRPK1 in Kasumi-1 (**P=0.003) when compared to 
DMSO. B. Images are representative of immunoblot with corresponding β-actin loading 
control. n=3.   
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5.3.2 Effect of siRNA knockdown on SRSF1 protein levels  

Protein levels for total SRSF1 were found to be increased following knockdown of SRPK1 

in K562 cells, when compared to the DMSO control. Kasumi-1 and TK6 cells showed no 

difference in both the knockdown and SPHINX when compared to DMSO control (Figure 

5.8). 

  

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8. Comparative assessment of total SRSF1 protein levels in SRPK1 
inhibition and knockdown leukaemic cells. Western blot analysis on leukaemic cells 
protein extract using anti-SRPK1 antibody. Cells were treated with either SPHINX or 
transfected with SRPK1 siRNA. Representative immunoblots with corresponding β-
actin loading control. n=3.   
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5.3.3 Effect of siRNA knockdown on SR protein phosphorylation  

Phosphorylation of SR protein following SRPK1 knockdown using siRNA was also 

investigated. Protein levels for pSRSF4 were found to be reduced in the knockdown 

group for all cell lines. In TK6 and K562 cells, reduced levels of phosphorylation 

significantly differed from the DMSO treated cells. Furthermore, in Kasumi-1 cells, both 

the SPHINX and knockdown cells showed a significant decrease in phosphorylation when 

compared to the DMSO. 

Immunoblotting using the 1H4 monoclonal antibody designed to identify phospho-

epitopes for the SR proteins showed that levels of pSRSF6 following SRPK1 knockdown 

was found to be reduced. Lower levels of phosphorylation were observed in the 

knockdown in TK6 and K562. While in Kasumi-1 cells, SPHINX and the knockdown cells 

significantly decreased pSRSF6 levels (Figure 5.9). 

Levels of pSRSF11 appear to be affected by the knockdown in TK6 and K562 cells (I & II) 

when compared to the DMSO control. In Kasumi-1, reduced phosphorylation of pSRSF11 

was observed in the SPHINX and knockdown cells when compared to DMSO (III).  

Reduced levels of pSRSF5 were observed in knockdown cells in all three cell lines these 

were found to be significantly reduced compared to the increased level seen in the 

untreated, DMSO and scrambled group. Similar levels were also observed for Kasumi-1 

in addition to the SPHINX treated cells which also showed a decreased level of SRSF5 

phosphorylation.  
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 Figure 5.9. Comparative assessment of protein levels of phospho-SR 

protein in SRPK1 inhibited and knockdown leukaemic cells. Western 
blot analysis on leukaemic cells protein extract using anti-SRPK1 
antibody. Cells were treated with either SPHINX or transfected with 
SRPK1 siRNA. Representative western blot images (I-III) for SR-proteins 
with corresponding β-actin loading control. (n=3).   
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5.4 Discussion 
 

5.4.1 Effect of SRPK1 knockdown on leukaemic cell viability and growth 

In a previous study, knockdown of SRPK1 in the CML cell line, K562 using siRNA has been 

shown to induce apoptosis and decrease K562 cell proliferation (Wang et al., 2018). 

Levels of apoptosis induction correlated with increased levels of cleaved caspase-3, 

cleaved PARP and p53 protein levels (Wang et al., 2018). A similar experiment carried 

out in renal cell carcinoma (RCC) and pancreatic tumour cells also observed growth and 

proliferation inhibition as well as suppression in the migratory and invasive ability of the 

cells (Hayes et al., 2007; Han et al., 2017).  

A further experiment was carried out firstly to confirm that the effects observed with 

SPHINX was an SRPK1-dependent effect and secondly, to observe whether leukaemic 

cells will behave differently if SRPK1 was knocked down using siRNA rather than 

inhibited with small molecules. Apart from TK6 cells where no change was observed in 

the cell viability, a significant decrease in cell viability was observed in K562 and Kasumi-

1 cells in SPHINX and knockdown cells when compared to DMSO. Furthermore, cell 

growth was significantly reduced in the SPHINX and knockdown cells when compared to 

DMSO controls in TK6, K562 and Kasumi-1 cells. This result is consistent with published 

work (Wang et al., 2018) and suggests that SRPK1 could be involved in CML and AML cell 

growth and disease progression. 

5.4.2  Effect of SRPK1 knockdown on alternative splicing of VEGF and a panel of 
apoptotic genes 

This study found no difference in VEGF levels between knockdown, SPHINX inhibition 

and controls. This suggests that knockdown of SRPK1 has no effect of VEGF in TK6, K562 

and Kasumi-1 model cell lines. No change was also observed with splicing of apoptotic 

genes in all three cell lines, with the dominant isoforms being highly expressed. Other 

studies have found changes in VEGF alternative splicing following inhibition or 

knockdown of SRPK1 in several cancers (Gammons et al., 2014; Gonçalves et al., 2014; 

Hatcher et al., 2018). Previous studies have reported altered expression of caspase and 

BCL2L apoptotic genes following transfection with small interfering RNA targeting SRPK1 

in leukaemic cells and other cancers (Hayes et al., 2007; Wang et al., 2018). 
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5.4.3  Effect of SRPK1 knockdown on the levels of SRPK1, SRSF1 protein and on 
phosphorylation of SR protein in leukaemic cells 

Consistent with the established role of SRPK1 in phosphorylation of SR proteins, levels 

of total SRSF1 were increased, whereas phosphorylation for pSRSF4, pSRSF6, pSRSF11 

and pSRSF5 were found to be reduced in knockdown cells. The levels of SR protein 

differed from the controls but not all SR protein showed a difference between the 

knockdown cells and the SPHINX treated cells. This suggests that there may not be a 

compensatory mechanism for SRPK1. So, whether inhibition or knockdown, the same 

effect will be observed on the phosphorylation of its substrate. Results suggest that 

targeting SRPK1 could be useful in controlling aberrant splicing via regulation of SR 

protein phosphorylation.
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CHAPTER 6 
6 Discussion of key findings, limitation of study and future 

work 
 

6.1 Summary of key findings  
 

Leukaemia is a malignant disorder that results from the abnormal proliferation of a clone 

of haematopoietic cells characterised by insensitivity of blood cells to growth regulation 

and apoptosis (Chu et al., 2012). According to CRUK, leukaemia is the 12th most common 

cancer in the UK with about 9,900 new cases of leukaemia reported in the UK each year 

(CRUK, 2018). The incidence rate is higher in males than in females. It is projected that 

the incidence rate of leukaemia will rise by 5% between 2014 and 2035 while the 

mortality rate will rise by 18%. Leukaemia prognoses differs significantly depending on 

whether it is acute or chronic, of myeloid or lymphoid cell type, age and time of diagnosis 

(CRUK). Despite advancements in understanding the molecular pathogenesis of 

leukaemia, and despite improvements in therapy and the introduction of novel drugs, 

most patients will relapse due to impaired haematopoiesis driven by clonal evolution of 

bone marrow stem cells (Martínez et al., 2005; Yilmaz et al., 2019).  

The serine/arginine-rich protein splice factor kinase-1 (SRPK1) belongs to a family of 

protein kinases, which phosphorylate specific amino acids of proteins rich in 

serine/arginine repeats (RS-domain). A study has shown that following activation of EGF, 

SRPK1 can induce substantial changes in the alternative splicing landscape through 

phosphorylation of SR proteins (Zhou et al., 2012). It is apparent that the role and 

expression of SRPK1 in different cancers is heterogeneous and therefore, its role in 

cancer is not yet fully understood (Zhou et al., 2013; Bullock and Oltean, 2016). 

A study in leukemic cells demonstrated that SRPK1 is highly expressed in erythroid and 

lymphoid cells and, there is an associated increased expression of SRPK1 to cell 

proliferation and tumour grade (Sanidas et al., 2010). Repression of SRPK1 in AML was 

shown to modify the choice of a splice site in VEGF and caspase 9 (Shultz et al., 2011; 

Oltean et al., 2012). In relation to VEGF, the mechanism is such that repression of SRPK1 

results in hypo-phosphorylation of SRSF1 and hence, the selection of a distal 3’ splice 
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site in exon 8 during VEGF pre-mRNA splicing resulting in expression of anti-angiogenic 

VEGF (Shultz et al., 2011; Oltean et al., 2012).  

This thesis was aimed at targeting SRPK1 with a small molecular inhibitor as alternative 

mechanism in slowing the growth of leukaemic cells and augmenting existing 

conventional chemotherapeutic drugs. 

6.1.1 Effect of SPHINX on leukaemic cell viability and growth 

This study investigated what effect SRPK1 inhibition using SPHINX has on leukaemic cell 

viability and growth. It also investigated if combining SRPK1 inhibition with existing 

drugs will improve leukaemia treatment using three cell line models: the lymphoblastic 

cell line TK6, the chronic myeloid leukaemia cell line K562 and the acute myeloblastic 

leukaemia cell line Kasumi-1. 

Results from this study showed that inhibition of SRPK1 using SPHINX had no effect on 

TK6 and K562 cell viability and cell number at experimental concentrations. Kasumi-1 

cell viability and growth were significantly decreased and shown to be concentration 

dependent. The percentage decrease in cell viability observed was accompanied by an 

increase in caspase 3/7 activity, which are known to be indicators of apoptosis.  When 

SRPK1 was knocked down using siRNA in all three cell lines, K562 and Kasumi-1 but not 

TK6 showed a decrease in both cell viability and growth. Peripheral blood cells of 

myeloid origin have been shown to be more sensitive to SRPK1 inhibition (Siqueira et 

al., 2015). This suggests that SRPK1 could play a role in leukaemic cell survival, but its 

effect could also be cell specific. 

This study also confirms that both Imatinib mesylate (a tyrosine kinase inhibitor 

targeting the fusion protein Bcr/Abl in CML) and azacytidine (a DNA hypo-methylation 

agent used in AML therapy) are both effective in inducing cell death in CML and AML 

cell line models. However, when SPHINX was combined with either imatinib for K562 or 

with azacytidine for Kasumi-1, only in Kasumi-1 cells was an additive effect of increased 

cell death observed over cells treated with either SPHINX or azacytidine alone. 

Combining imatinib and SPHINX showed no additive effect in the percentage of cell 

death in K562 cells compared to imatinib treatment. A limitation to this aspect of the 

study is the lack of a suitable control in the microscopic investigation of apoptosis. A 

suitable control would have been cells treated with caspase 3/7 inhibitors such as isatin 
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sulfonamide which inhibits caspase 3/7 activity by competitively binding to the active 

binding site and catalytic cysteine residue respectively (Lee et al., 2000; Yoshimori et 

al.,2004). The established apoptotic inducer apoptolidin, has been shown to be 

selectively cytotoxic on several cancer cell lines and non-cytotoxic on normal cells (Ghidu 

et al.,2008) and would have served as a good positive control. These would have 

validated the observed result especially in the untreated and DMSO controls where no 

caspase activity was observed. Owing to this caveat, it is possible that some leukaemic 

cancers could benefit from therapies that include inhibiting SRPK1; this ought to be 

looked at in much further depth in future research. 

6.1.2 Effect of SPHINX on alternative splicing of CLK1 and a panel of apoptotic genes 

The results obtained showed that alternative splicing in RNA levels of Bclx, Apaf1 and 

caspase 9, responded differently following inhibition of SRPK1 using SPHINX.  

SPHINX inhibition of SRPK1 favoured the increased expression of the anti-apoptotic Bcl-

xl isoform in all cell lines. Higher levels of Bcl-xl have been reported in several cancers 

including leukaemia where it confers a cell survival advantage in leukaemic cells (Boise 

et al., 1993; Takehara et al., 2001; Willimott et al., 2011). 

 

Like with BCL2L, APAF1 also encodes two isoforms; Apaf-1xl and 1s. Apaf-1xl which is 

the full-length isoform and anti-apoptotic in function was also found to be increasingly 

expressed in all cell lines except for Kasumi-1 cells at 10μM concentration at 24hrs. 

Studies have shown that an increased level of Apaf-1xl in cells prevents cell apoptosis 

and confers resistance to chemotherapeutic treatment (Benites et al., 2008). The study 

also suggests that an equal level of both isoforms rather than overexpression of either 

Apaf-1xl or 1s is required to initiate apoptosis in cells and overcome drug resistance 

(Benites et al., 2008). 

 

On the alternative splicing of caspase 9, caspase 9a the larger of the caspase 9 isoforms 

which is also known to be pro-apoptotic (Shultz et al., 2011) in function was increasingly 

expressed in TK6 cells and Kasumi-1 cells at higher concentrations of SPHINX inhibition. 

Conversely, K562 showed decreased levels of the pro-apoptotic 9a isoform. This finding 

indicates that caspase 9a could be involved in the apoptosis of some leukaemia cells. 

Possible mechanisms may include inhibiting the attachment of caspase 9a to the 
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apoptosome and supressing (9b), or activation (9a) of the caspase enzyme cascade (Vu 

et al., 2013). A case-controlled study (Edathara et al., 2019) suggested that a 

polymorphism, CASP9-1263A>G, observed in a CML patient, enhanced the risk for 

developing CML while, Ex5 +32G>A exonic polymorphism, which results in the 

substitution of glutamine by arginine causes conformational changes in caspase 9 and 

therefore its affinity to Apaf-1. This change in caspase 9 affinity for Apaf-1 was observed 

to confer resistance to CML cells against apoptosis (Edathara et al., 2019). It also 

suggests that the choice of apoptotic pathway could be cell-specific since levels of 

caspase 9a matched the increased level of cell death in Kasumi-1 cells but not in the 

other two cell lines. 

 

On combining SPHINX with either imatinib or azacytidine, CLK1 showed increased exon 

4 retention and less intron 4 inclusion in treatments involving TG003. This shift in splicing 

is aimed towards higher expression levels of catalytically active CLK1 and its auto-

regulation in order to maintain its activity. It was also observed that the level of 

retention of intron 4 was lower in Kasumi-1 cells as compared to K562. There was no 

additional effect of combining SPHINX and azacytidine in the alternative splicing of Bclx, 

Apaf1 and caspase 9 when these were compared with the single treatments in Kasumi-

1 cells. Furthermore, in K562 cells, combining SPHINX and imatinib showed a change in 

alternative splicing towards increased expression of caspase 9a, an effect which could 

have been caused by imatinib since the same splicing event was not observed in the 

SPHINX only treatment.  A previous study (Liu et al., 2012) had observed a switch in Bclx 

to a pro-apoptotic isoform (Bcl-xs) in K562 cells following treatment with imatinib. The 

concentration of imatinib used however, was higher than the concentration used in this 

thesis.  

This aspect of the study was confronted with some challenges. First, PCR for the 

reference gene (β-actin) used as loading control and normalization of the gene of 

interest was performed on each batch of synthesized cDNA. This has the advantage of 

confirming the integrity of the cDNA after synthesis and a baseline for overall actin 

expression in the cell lines. It does have the disadvantage of not confirming the integrity 

of the cDNA in subsequent repeats. Even though cDNAs are known to be relatively 

stable, the cycle of freeze thawing, handling and temperature have an effect which was 

not accounted for, by not including a housekeeping gene in subsequent PCR assays. This 
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could be responsible for the second challenge, which is large variation in the confidence 

intervals observed during statistical analysis. As such, some of the PCR outputs were 

neither quantified nor normalized, and results presented were interpreted based on 

visual examination of the amplicon intensity, which could be subject to bias.  

 

6.1.3 Effect on protein levels of SRPK1 and SRSF1 and phosphorylation of SR-protein 
 
It is conceivable that the inhibition of SRPK1 might result in changes in its own 

expression as there are no published studies investigating the effect of SRPK1 inhibition 

on its own protein levels through such an auto-regulatory mechanism. Results from this 

thesis have shown that inhibition of SRPK1 in model cell lines using SPHINX suggest an 

increase in SRPK1 protein levels at higher concentrations in K562 but not in TK6 and 

Kasumi-1 cell lines. Exposing K562 cells to imatinib did appear to cause a reduction in 

SRPK1 levels, and this effect was not significantly augmented with SPHINX. In Kasumi-1 

cells, there was an obvious advantage over combining SPHINX and TG003 with 

azacytidine as cells in this group expressed less SRPK1 protein overall. In summary there 

is some evidence that i) there may be an auto-regulatory mechanism that needs to be 

investigated further and ii) established drugs such as imatinib appear to influence SRPK1 

expression presumably by interfering with regulatory or cell signalling pathways such as 

Rac signalling where it affects its splice selection of e3b with consequent decrease of 

Rac1b (Gonçalves et al., 2014) required to maintain SRPK1 expression. 

 

Protein levels of total SRSF1 appeared to be reduced at 48hrs in TK6 at higher 

concentrations but were unaffected in K562 and Kasumi-1 cells. This suggests that SRPK1 

activity might also influence the overall expression of its own substrates, perhaps 

through an alternative splicing mechanism. Protein levels of the splice factor kinase CLK1 

were found to be reduced in K562 cells in treatment with imatinib, imatinib and TG003 

and a combination of all three molecules. In Kasumi-1 cells, combining SPHINX and 

TG003 with azacytidine resulted in a significant decrease in CLK1 protein when 

compared to other treatments. This suggests that as well as affecting the expression of 

SRPK1 and SRSF1, treating leukaemic cell lines with these compounds also affects 

(reduces) CLK1 levels. The reduction of splice factor kinase levels could bring additional 
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benefit, since elevated expression of these splice factor kinases is generally associated 

with a more proliferative phenotype (Karni et al., 2007; Anczuków et al.,2012). 

 

Phosphorylation of SR proteins was found to be significantly reduced and affected either 

in a concentration-dependent manner or at a time point in all three cell lines following 

SRPK1 inhibition with SPHINX. This was not surprising as these splice factors are SRPK1 

substrates and required for their activation (Gui et al., 1994), and confirmed that SPHINX 

was having the desired effect. Knockdown of SRPK1 was shown to affect the level of SR 

protein phosphorylation. Combining SPHINX (to inhibit SRPK1) with TG003 (to inhibit 

CLK1) with imatinib or azacytidine resulted in decreased SR protein phosphorylation 

when compared to the single treatments in K562 especially at 72hrs.  In the AML cell 

line, Kasumi-1, there was a marked decrease in SR protein phosphorylation in cells 

treated with SPHINX, TG003 and azacytidine. Increased SR protein phosphorylation and 

associated increases in SR protein activity is associated with a proliferative phenotype 

(Karni et al., 2007); therefore, the ability of SPHINX (especially in combination with other 

inhibitors) to reduce phosphorylation of SR proteins could prove beneficial in the 

treatment of AML. However, for an experiment lasting 72hrs, the half-life of the 

inhibitors and drugs used were not determined. Other factors such as drug handling, 

storage, light and temperature are known to affect shelf-life of drugs (Anderson and 

Scott, 1991; Singh et al., 2002). It is possible that some results which were not consistent 

were because of degradation of the drugs. For example in Figures 3.32, 4.36 and 4.39, 

where a decrease was observed at 24hrs while at 48hrs and or 72hrs, an increase was 

observed. 

Taken together, the results presented in this thesis do suggest that there may be benefit 

in targeting the splice factor kinase SRPK1 with SPHINX, perhaps in combination with 

existing drugs, and in combination with CLK inhibitors. Further research is needed to 

address this hypothesis, including in vivo studies. 
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6.2 Future work 
 

6.2.1 Determine the broad effect of SRPK1 inhibition in leukaemic cells on the 
transcriptome 

Results presented in this thesis suggest that SRPK1 inhibition in the model cell lines (TK6, 

K562 and Kasumi-1) has a different effect on each cell line with Kasumi-1 cells being the 

most affected. It is possible that SRPK1 inhibition using SPHINX could influence other 

targets and pathways other than those investigated in this research. Tzepelis et al., 

(2016) have identified SRPK1 as a gene that could be targeted in AML following a CRISPR 

screen and pharmacological validation. Previous studies (Zhou et al., 2012; Wang et al., 

2014) have also found an effect of targeting SRPK1 on PI3/Akt pathways, which was not 

investigated in this study. As expected, we observed that SRPK1 inhibition affected 

phosphorylation of SR proteins, which are key in the splicing machinery. It would be of 

interest to determine the effect of SRPK1 inhibition, either alone or together with CLK 

inhibition, and together with established drugs on the transcriptome more widely. The 

most direct approach would be to use RNASeq and to examine the effect on the 

alternative splicing of a wide range of cancer-associated transcripts, associated with 

each of the hallmarks of cancer. As well as a broad analysis of alternative splicing, the 

alternative splicing of genes specifically associated with critical roles in each type of 

leukaemia could be examined. This type of research would also shed further light on the 

biological function of SRPK1. 

6.2.2 In vivo experiments to determine the effect of SRPK1 inhibition on tumour 
growth 

Siqueira et al., (2015) observed that peripheral blood cells of myeloid origin where 

Kasumi-1 cells belong are more sensitive to SRPK1 inhibition when compared to cells of 

lymphoid origin. Result obtained in this study were consistent with their findings with 

Kasumi-1 showing increased propensity to cell death following SPHINX inhibition and 

knockdown when compared to K562 and TK6 cells. It would be worth investigating if 

such a result could be replicated in vivo to confirm the previous reports of SRPK1 as a 

potentially druggable target in AML and, therefore, to move research forwards.  

It is worth mentioning at this point that two in vivo study attempts were made during 

this project using K562 and Kasumi-1 cells to see if the in vitro experiment with cell lines 
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could be replicated in vivo, specifically in mouse xenograft experiments. However, due 

to technical issues experienced, viable tumours did not form and so, the experiment was 

not completed. This study was unable to achieve growth of tumours in all the mice at 

the end of the approved period for such work. Owing to the time limit of this project, it 

was not possible to make another attempt. This will be a primary objective in future 

research, perhaps using a different leukemic cell line model that is more suitable for 

xenografting. 

6.2.3 Investigating the potential of targeting CLK1 in leukaemic cells 

The effect of inhibiting CLK1 with TG003 on SR protein phosphorylation and on its own 

alternative splicing was investigated in this project even though it was not the focus of 

the research. It was observed that CLK1 splicing particularly in CML cells following 

inhibition with TG003 resulted in more exon 4 retention and intron 4 skipping; this was 

not apparent in Kasumi-1 cells. It was observed that CLK1 protein was increased 

following its inhibition with TG003; when imatinib was combined with TG003, an 

additive effect was observed. It would be of great interest to investigate the effect of 

CLK1 inhibition on leukemic cells, either on its own, or in combination with SRPK1 

inhibition. It should be noted that TG003 is one of the first CLK inhibitors to be developed 

(in Masatoshi Hagiwara’s laboratory); it also inhibits CLK4, which is closely related to 

CLK1. More specific CLK inhibitors are being developed that could supersede TG003. It 

is conceivable that a potential novel therapy will be focused on inhibiting both SRPKs 

and CLKs together. There are, furthermore, other splice factor kinases such as the DYRKs 

(Becker and Joost, 1999); their role and targetability in leukaemia should also be 

considered.  

6.2.4 Effect of combining SPHINX with imatinib 

This research also observed some interesting results with imatinib.  It was observed that 

imatinib alone reduced cell viability as well as protein levels of CKL1, total SRSF1 and 

SRPK1 in CML.  In addition, imatinib appeared to affect the alternative splicing of caspase 

9 favouring pro-apoptotic caspase 9a. Interestingly, when imatinib was combined with 

SPHINX, the effect on SRPK1, CKL1 and total SRSF1 expression was less prominent. So, 

there are likely to be complex effects when SPHINX and imatinib are combined. In line 

with this, a study has reported that both SRPK1 and imatinib both interact with the 
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PI3/Akt pathway (Wang et al., 2014). Future work will address in more detail the 

consequences of combining SPHINX with imatinib in terms of effects on downstream 

targets. 
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